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Abstract 

 

“We are what we eat.” Imbalanced diet is a major reason for obesity and 

consequently type-2 diabetes. A healthy and attractive diet is key to the control 

and prevention of obesity and type-2 diabetes. Among many fruit products, 

blueberry is rich in bioactive substances and possesses powerful antioxidant 

potential, which can protect against oxidant-induced and inflammatory cell 

damage and cytotoxicity. Blueberry has been found to improve insulin sensitivity 

in muscle and adipose, and thus reduce the risk of developing type 2 diabetes. 

However, whether blueberry affects β-cell function and growth were not fully 

evaluated. 

To study the effect of the whole blueberry on beta cell function, a modified 

high-fat diet supplemented with 4% (wt:wt) freeze-dried whole blueberry 

powder (HFD+B) was applied to the C57BL/6 male mice. Compared to the mice 

fed with high-fat diet (HFD), the addition of blueberry had no significant change 

in the body weight and glucose level. Interestingly, after 8 weeks feeding, the 

plasma insulin level was decreased significantly in mice fed with HFD+B 

compared to mice fed with HFD. In addition, mice fed with HFD+B had 

significantly increased glucose tolerance and insulin sensitivity. Moreover, the 

blueberry-supplemented diet prevents HFD-induced beta-cell expansion and 

preserves the islet structure. Taken together, our results indicated that blueberry-

supplemented diet could significantly protect β-cell, restore HFD-induced 

impaired glucose homeostasis and attenuate the development of obesity, which 

will provide new insights into the effects of blueberry on beta-cell function and 

expand our understanding the importance of blueberry in treating and preventing 

obesity and diabete.
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Chapter 1. Introduction 

1.1 Glucose homeostasis 

Glucose is an important energy source required for the normal functioning of 

the tissues and organs in the body. Abnormal blood glucose level can result in 

serious disease or even death. For example, low blood glucose level 

(hypoglycemia) can cause loss of consciousness and seizures. However, too 

much sugar in the blood (hyperglycemia) can result in diabetes, vascular disease 

and so forth. Several hormones are essential to maintain the blood glucose 

homeostasis at a steady state level. Insulin and glucagon, secreted form the 

pancreas, tightly regulate glucose homeostasis (Figure 1.1) (Freudenrich, C., 

2008).  

Insulin is synthesized and secreted from pancreatic beta cells found within the 

islets of Langerhans of the pancreas. Beta cells secret insulin in response to 

increasing levels of blood glucose after eating a meal. Secreted insulin enters the 

blood stream where it binds and activates the insulin receptor within target 

tissues such as liver, muscle and adipose (Figure 1.1). Insulin stimulates glucose 

uptake and storage as glycogen or lipids in these tissues, which lead to a 

reduction of blood glucose levels. When the glucose level reaches a set point, the 

stimulus of beta cell release diminishes and glucose level return to normal.  

Glucagon promotes the opposite metabolic function that insulin stimulates. 

Glucagon is produced and secreted from pancreatic alpha cells within the islets of 

Langerhans of the pancreas.  When blood glucose levels fall, glucagon is 

released from alpha cells. Like insulin, glucagon travels through the blood where 

it binds and activates the glucagon receptor within target tissues such as liver 

and muscle. In the liver, glucagon stimulates glycogen breakdown and converts 

stored glycogen into glucose, which is released into the blood. These events 
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allow blood glucose levels to increase, and thus, again maintain glucose 

homeostasis (Freudenrich, C., 2008)(Figure 1.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Insulin and glucagon have opposite actions in maintaining 

glucose homeostasis. Figure was adapted from Freudenrich, C., 2008 

 

1.2 Pancreatic islets of Langerhans  

The pancreatic islets of Langerhans (commonly referred to as islets) are very 

small and comprise only 2% of the entire pancreas. However, islets contain 

several types of cells, including Alpha, beta, delta, epsilon and PP cells that 

produce glucagon, insulin, somatostatin, ghrelin and islets amyloid polypeptide, 
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respectively. β-cell is the only source to release insulin and insulin is the only 

hormone to lower the blood glucose level. Insulin, a small protein composed of 

two polypeptides referring to A chain and B chain and containing 51 amino acids, 

is critical for glucose regulation (Mayer J. et al. 2007, White J. 2010). 

How elevated glucose stimulates insulin releasing form beta cells? Glucose is 

uptake by cells through the glucose transporters ( GLUT-1 1 or GLUT-2) and is 

phosphorylated by glucokinase (GCK). The phosphorylated glucose is converted 

into ATP by the subsequent metabolic reaction. Increased ATP levels lead to 

triggering the closure of potassium channels, membrane depolarization and the 

opening of calcium channels. The rising of intracellular calcium level result in the 

exocytosis of insulin –containing granules and	eventually elevated insulin in 

adjacent blood vessels (Pagliuca, F.W. et al. 2013).      

 

1.3 Diabetes and beta cell dysfunction 

1.3.1 Prevalence of diabetes 

Diabetes mellitus is a group of metabolic disorder diseases and is characterized 

by high blood glucose level (hyperglycemia). The situation of diabetes is getting 

worse all the time, and it is recognized as one of the most prevalent diseases. 

The number of diabetics has been increased rapidly since 1980. Report from 

World Health Organization stated the number of people lived with diabetes in 

2014 is quadrupled compare to 1980 (422 million v.s 108 million) (WHO 2016).    

There is three main type of diabetes mellitus include type 1 diabetes (T1D), 

type 2 diabetes (T2D) and gestation diabetes mellitus (GDM). The difference and 

characters are listed below (Table 1). T2D is one of most common chronic 

disease worldwide, and the T2D patients are increasing rapidly. 382 million 

people suffered diabetes in 2013 and were raised to 592 million in 2015 
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(Guariguata et al. 2014). 

 

Table 1. The definition, characters, population and treatment of Type 1 

diabetes, Type 2 diabetes and gestational diabetes mellitus.

 
 

 

1.3.2 Type 2 diabetes and β-cells dysfunction 

The defect of insulin biosynthesis and action cause hyperglycemia and finally 

lead to diabetes. In the fasting state of nondiabetic, low glucose level stimulates 

glycogenolysis under the direction of glucagon and diminishes the suppression of 

gluconeogenesis and glycogenolysis by insulin action (Aronoff et. Al., 2004). 

Under the fed state of nondiabetic individuals, insulin decreases blood glucose 

level through Suppressing gluconeogenesis and glycogenolysis in the liver and 

inhibiting glucagon secretion and promoting properly. In the fed state of 

diabetes, insulin is ineffective in inhibiting glucagon secretion, which causes the 
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elevation of hepatic glucose production. The imbalance of the appearance of 

glucose and the disappearance of glucose in the circulation lead to 

hyperglycemia. Adapted from (Aronoff et. Al.2004). 

Type 2 diabetes is associated with pancreatic β-cell dysfunction and insulin 

resistance. Insulin resistance is a complex pathological disease, and it is 

described as the resistance of insulin to uptake the glucose in insulin target 

tissues such as live muscle and fat. If insulin resistance exists, normal β-cells 

release a greater amount of insulin and/or increase β-cells mass to compensate 

for insulin resistance. An inadequate insulin compensation might lead to 

hyperglycemia that results in the gradually deteriorates of β-cells function and 

the aggravation of insulin resistance (Poitout & Robertson 2002;.Weir et al. 

2001). The processes of deleterious effect induced by high-level glucose and free 

fatty acid call glucotoxicity and lipotoxicity respectively. Excess of reactive oxygen 

species (ROS) included superoxide, hydrogen peroxide, hydroxyl radical, nitric 

oxide, hypochlorite and peroxynitrite (Vincent et al. 2006) is contributed to the 

deleterious effect of hyperglycemia. The excess of ROS is harmful to the body 

that leads to DNA damage, protein, cell function (Yu 1994). The imbalance of 

ROS and antioxidants induces oxidative stress (Figure 1.6) (Kaneto et al. 2006). 

Oxidative stress has been reported the association with progression of T2D. It 

agrees with the existence of increased oxidative stress in patients with diabetes 

and its complications (Baynes et al. 1999, Baynes 1991). In addition of T2D, 

oxidative stress is also involved in carcinogenesis, inflammation, atherosclerosis. 

In diabetic conditions, oxidative stress provoked in β-cells (Gorogawa et al. 

2002). β-cells is valuable to oxidative stress because of the extremely low 

expression levels of antioxidant enzymes such as catalase, and glutathione 

(Tiedge et al. 1997 ). ROS accumulate by four major metabolic pathways during 
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the period of hyperglycemia: elevated polyol pathway flux, elevated advanced 

glycation end-product (AGE) pathway, elevated hexosamine pathway flux and 

activation of the isoform of protein kinase C (PKC) (Brownlee M. 2001).  

The reduction of transcription factor activation in β-cells has been observed 

under the oxidative stress. PDX-1, involving in the homeodomain-containing 

transcription factor family, plays a critical role in pancreas development and 

differentiation (Cao et al. 2004; Dutta et al. 1998; Ferber et al. 2000; Hollan, et 

al. 2002; Horb et al., 2003;Jonsson, et al., 1994; Kaneto et al. 2005; Miyatsuka 

et al. 2003; Stoffers et al. 1997; Taniguchi et al. 2003). An in vitro study showed 

the oxidative stress inhibited insulin gene expression, and this suppression may 

cause by the PDX-1 activate reduction (Kajimoto Y. et al. 2004). Taken together, 

oxidative stress suppresses insulin biosynthesis through the reduction of PDX-1 

activity (Kaneto et al. 2006).  

c-Jun N-terminal Kinase (JNK), known as stress-activated protein kinase 

(SAPK), involve in several signal transduction pathways. Oxidative stress 

activates JNK pathway in β-cells, and the activation of JNK pathway reduces the 

insulin gene expression (Kaneto et al. 2002). The inhibition of JNK pathway 

protects oxidative stress induced β-cells dysfunction (Kaneto et al. 2002). The 

isolated rat islets were exposed to oxidative stress, the overexpression of wild-

type JNK1 inhibited the insulin gene expression and secretion. Conversely, the 

Adenovirus-media overexpression of dominant-negative type JNK1 protects the 

oxidative induced decreased insulin gene expression and secretion (Kaneto et al., 

2002). The resultant reduced in insulin gene expression induced by the activation 

of JNK pathway is associated with the decreased activation of PDX-1 DNA-binding 

(Kaneto et al. 2002). A potential mechanism for JNK mediated PDX-1 inactivation 

described that oxidative stress trigger the translocation of PDX-1 from the nuclei 
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to cytoplasm (Kaneto et al. 2006). Cyclin-dependent kinase inhibitor p21, 

involved in cell cycle regulation, can be induced by oxidative stress and 

associated to diabetes development by increased the expression level in islets 

(Kaneto H. et al. 1999). During the period of oxidative stress, activating 

transcription factors (ATF3), known as an oxidative stress-inducible gene, is 

induced in β-cell associated with β-cell apoptosis (Hartman M. et al. 2004).  

 

1.4 Obesity and insulin resistance  

  Obesity, a high-risk factor for diabetes, is a prevalent health problem, resulting 

from the increased ratio of energy intake and energy output. Obesity is classified 

a BMI (body mass index) of 30 or greater (WHO 2011). The contribution of 

besity is related to gender, age, ethnicity, diet and physical inactivity (WHO 2011; 

Wang et al. 2007). Most T2D patients are obese, and some studies showed 

obesity itself could cause some degree of insulin resistance. Insulin resistance is 

referred to the resistance of target tissues to responses to insulin action. Adipose 

tissue is one of these insulin target tissue, and adipose tissue has been proposed 

to be a side of insulin resistance (Kahn and Flier 2000). Insulin promoted storage 

of triglycerides in adipose tissue through multiple pathways, involving in 

stimulating the glucose transportation, increase the uptake of fatty acid derived 

from circulating lipoproteins and lipogenesis in mature adipocytes, promotes the 

differentiation of preadipocytes to adipocytes, and inhibiting lipolysis (Kahn & 

Flier 2000). Insulin binding to the insulin receptor on the membrane of adipose 

cells which lead to the activation of insulin receptor substrate (IRS). The 

activation of insulin receptor substrate protein is involved in the activation of the 

Ras-mitogen-activated protein kinase (MAPK) pathway and the 

phosphatidylinositol 3-kinase (PI3K)-AKT/protein kinase B (PKB) pathway (Jung 
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& Choi 2014).The PI3K-AKT/PKB pathway is associated with most insulin 

metabolic action. IRS1 is the phosphorylated insulin receptor substrate and 

activate PI3K by binding to its SH2 domain (Jung, 2014). The activated PI3K 

generates a lipid second messenger, phosphatidylinositol-(3,4,5)-triphosphate, 

leading to the activation of several phosphatidylinositol-(3,4,5)-triphosphate-

dependent serine/threonine kinases, including AKT/PKB (Jung 2014). These 

signaling events trigger the translation of glucose transporter 4 (Glut 4) to 

plasma membrane and ultimately increase the glucose uptake by adipocytes     

resistance. In contrast to HFD fed wild-type mice, JNK-KO mice (JNK1 gene 

knockout ) attenuated HFD-induced obesity and decreased the glucose levels. 

Moreover, the intraperitoneal insulin tolerance test and intraperitoneal glucose 

tolerance test indicated the improvement of insulin sensitive and glucose 

tolerance in JNK-KO mice. 

  Studies showed that some factors involve tumor necrosis factor-alpha ( TNF-α) 

and Interleukin-6 (IL-6) play an importance role in obesity-induced IR. TNF-α, a 

potent pro-inflammatory cytokine, is primarily produced by monocytes and 

macrophage. In obese state, the adipocyte involves the development of obesity-

induced inflammation by releasing the pro-inflammatory cytokine and 

chemokines include TNF-α and IL-6 (Hotamisligil et al.1993; Rotter et al. 2003). 

The production of TNF-α through the activation of MAPK and  NF-κB signaling 

pathways stimulate the release of other inflammation such as IL-1β and IL-6 

(Chen et al. 2002; De Luca. 2006). TNF-α has reported as the first obesity-

induced IR related inflammatory mediator (Hotamisligil et al. 1993). TNF-α has 

been reported the inhibition of activating insulin receptor and IRS1. Knockout 

TNF-α in diet-induced obese mice significantly improves the insulin sensitivity 
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(Uysal K. 1997). Moreover, IL-6, known as one of the important inflammatory 

mediators, is released by white adipose tissue (WAT), skeletal muscle, and liver 

and activated by the JAK/STAT and MAPK pathways (Heinrich et al., 2003). IL-6 

have been found the expression level of IL-6 is related to obesity-induced insulin 

resistance (Kern P. 2001). IL-6 also have been reported the association of 

suppressor of cytokine signalling-3 (SOCS-3) through the inhibition of insulin 

signal transduction in hepatocytes (Senn. J.J. et al. 2002). 

An elevated level of FFA is common in the obese and T2D individual (Gordon 

G. et al. 1960, Reaven G 1988 ). Plasma FFA, the major circulating lipid fuel, 

usually originates from adipose tissue lipolysis (Jensen 2002).The increased 

plasma FFA is likely associated with an expansion in adipose tissue mass 

(Bjorntorp et al. 1969). Studies showed the increased FFA contributed to the 

development of insulin resistance in skeletal muscle and liver ( Boden 1997; 

Shulman 2000).  

In skeletal muscle, insulin stimulates increased glucose transportation and 

glycogen. Elevation of glucose intake, insulin stimulate the increased glucose 

uptake by the translocating of GLUT-4 from intracellular vesicle to the plasma 

membrane and increased glycogen synthesis by activating glycogen synthesis in 

the healthy insulin-sensitive skeletal muscle (Saltiel & Kahn 2001). One possible 

explanation of FFA-induced IR in human is that the increased plasma FFA-

induced IR by inhibiting the glucose transporter activity (Kovacs & Stumvoll 

2005). As we mention above, PI3K is required for the insulin signaling and the 

decreased glucose transporter activity lead to the decreased IRS-1 related PI3K 

(Kovacs & Stumvoll 2005). 

  A study found that increased oxidative stress caused by the elevated ROS 

production from fat accumulation in obesity (Shigetada 2004). This study also 
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found the mRNA expression level of NADPH oxidase increased while the mRNA 

expression level and activity of the antioxidant enzyme is declined (Shigetada F. 

2004). Ros accumulation in obesity is achieved by polyol pathway, increased 

advanced glycation end-products and glucose autooxidation (Figure 1.2) and the 

increased ROS result in oxidative stress (Vincent et al. 2006). An in vitro study 

illustrated that Oxidative stress caused by ROS also play a major role in insulin 

resistance (Houstis  2006). 

 

  
 

Figure 1.2 Reactive oxygen species (ROS) accumulation pathways in 

Obesity-induced hyperglycemia and IR. Accumulation of ROS by the polyol 

pathway, the advanced glycation end-products pathway and glucose 

autooxidation pathway lead to oxidative stress in obese people. Figure was 

adpated by Vincent et al. 2006. 
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1.5 Prevention and Treatment of Type 2 diabetes and obesity 

Excessive caloric intake is an important reason to develop obesity and 

consequently T2D. An adequate and balanced diet could prevent obesity and 

T2D. Obesity associated with inflammation and oxidative stress, the dietary 

restriction, and weight loss might lead to the decreased of inflammation and 

oxidative stress. In both Esposito K, et al. (2002) and  Mohanty, P. et al. (2001) 

studies showed 3 hours of excess glucose intake cause acute oxidative stress and 

inflammation at cellular and molecular level. Contrarily, four weeks of dietary 

restriction lead to a significant reduction of reactive oxygen species in obesity 

(Dandona et al. 2001).   

The consumption of cereal fiber and polyunsaturated fat is highly 

recommended because of the beneficial for decrease the risk of T2D, whereas 

the higher dietary trans fat and glycemic load is associated with the increased 

risk of T2D ( Salmetron et al. 2006, Salmetron et al. 1997, Salmetron et al. 2001; 

Meyer et al. 2000, ). The higher of sugar-sweetened beverages is also a risk 

factor for obesity and T2D. Evidence indicated the individuals with highest sugar-

sweetened beverages intake had 26% greater risk to develop T2D compared to 

those with lower sugar-sweetened beverages intake (Malik et al. 2010). In 

addition to weight gain, sugar-sweetened beverages contain larger quantities of 

rapidly absorbable carbohydrates could cause the increased risk of obesity due to 

the quickly elevated blood glucose(Malik et al. 2010). Reduced absorption of 

nutrient is one of obesity and T2D strategies.     

Health diets can prevent obesity and type 2 diabetes, popular dietary 

approaches have generated to treat obesity, such as low-fat,  high protein diets, 

or antioxidant supplements. A study with HFD induced-obese rat showed that the 

administration of a dietary with oral gingerol once a day for 30 days significantly 
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reduced the glucose level, body weight, and insulin compared to rat only fed with 

HFD(Saravanan et al. 2014). Either obesity or obesity-induced type 2 diabetes 

has been described as a state of oxidative stress. Dietary antioxidants 

supplementation including vitamin C, vitamin E, and carotenoids is  widely 

believed as a potential therapeutic strategy. Studies have been indicated diets 

with antioxidants supplementation have a positive effect on anti-obesity and anti-

diabetes include reducing the oxidative stress, improving beta-cell 

function(Jayaprakasam 2006), increasing insulin secretion and decreasing insulin 

resistance(Guo et al. 2007, Lai 2008, Prior et al. 2010 ) 

 

1.6 Health Benefits of Blueberries   

Berries are excellent sources of antioxidants. Blueberries are receiving growing 

interest due to the beneficial effect on health with delicious taste and flavor. 

Blueberries are as species from the family “Ericaceae” (Gough 1994). The 

remarkably high antioxidant properties of blueberries are related to the richness 

bioactive substance especially natural phenolic compounds (You Q., et al. 2011). 

There are two major groups of phenolic compound in blueberry: non-flavonoids 

and flavonoid (Nicoletti et al. 2015). Anthocyanins is a world research fruit 

because of the high antioxidant capacity. 

 

Anthocyanin  

Anthocyanin, belong to flavored, is a world-researched bioactive compound, 

due to its powerful antioxidant action. It exists in blueberry as glycosidic and 

aminoglycosidic forms of anthocyanidins (Routray & Orsat 2011 ). The basic 

structure of anthocyanins is showed in Figure 1.3 left and the 6 most common 

anthocyanins are showed on right of figure 1.3. The most function of 
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anthocyanins is to give color to fruits, vegetables, and plants. Anthocyanins also 

can act as antioxidant because of its excellent antioxidant capacity. (Kong et al. 

2003).   

Bioavailability refers to “the proportion of the nutrient that is digested, 

absorbed and metabolized” (McGhie and Walton 2007). Some studies have 

demonstrated the low bioavailability of anthocyanins (Bitsch et al. 2004; Felgines 

2003, Felgines et al. 2005 ). This low bioavailability is associated with the 

instability chemical structure of anthocyanins (Giovanelli et al. 2009). The oral 

anthocyanins can be quickly absorbed as glycosides by the stomach and small 

intestine. The systemic bioavailability of oral anthocyanins administration is 

around 0.26-1.8% in animal studies (Felgines et al. 2002; Felgines et al. 2003; 

Ichiyanagi T et al. 2006; Marcyzlo T. et al. 2009; Matsumoto et al. 2006). 

Surprisedly, a study found the high bioavailability of long-term anthocyanin 

extraction or anthocyanins supplementation feeding (Kalt et al. 2008). In (Kalt et 

al. 2008), Kalt et al. fed the pig with four weeks’ diets supplemented with 

blueberry and found anthocyanins accumulation in tissues but none in plasma 

and urine (Speakman et al. 2007).   

As we are mentation before, Obesity can induce oxidative stress, and β-cell is 

very sensitive to oxidative stress because of the low expression of antioxidant 

enzymes. Bioactive substances such as anthocyanins in Blueberry may act as an 

exogenous antioxidant to prevent or slow obesity-induced oxidative stress 

through eliminating free radical (Veberic et al. 2015). Studies showed both 

anthocyanins purification and blueberry supplements reduce oxidative stress and 

increased antioxidant capacity (Guo et al. 2007; Kay et al. 2002; Nizamutdinova 

et al. 2009,). 

In addition to the reduction of oxidative stress, Low dose of Anthocyanin 
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extraction prevented obesity. HFD supplemented with purified blueberry 

anthocyanins in the drinking water inhibited diet-induced obesity. Moreover, 

purified anthocyanins restored β-cell function(Prior 2010). 

The whole blueberry also has reported the protection of β-cell function. An oral 

administration of freeze-dried wild blueberry power protected β-cell function by 

reducing the oxidative stress (Kay et al. 2002).  The C57BL/6 mice fed an HFD 

diet supplemented whole Freeze-dried blueberry power reduced insulin 

resistance (Defuria et al. 2009). 

The beneficial effect of anthocyanins may associate with the anthocyanins 

metabolites. For example, protocatechuic acid is the main metabolite of 

anthocyanins in humans, and it serves as an antioxidation and anti-inflammatory. 

In addition to anthocyanin, other bioactive substance in blueberry such as 

flavonoids, vitamin C also has antioxidative properties and are contribute to the 

antioxidant action of blueberry (Giovanelli et al. 2009).    

       

 

 

 

Figure 1.3 Basic structure and common types of anthocyanins.The 

differentiation of anthocyanin depend on the number of hydroxyl 
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groups, the number and position of sugar attach to molecular and the 

present aliphatic and aromatic acid link to the sugar molecular . 

Delphinidin, The table on the right showed the six most common anthocyanin. 

Cyanidin, malvidin, and petunidin are most common anthocyanin found in 

blueberries (Sancho & Pastore 2012; Wang et al. 2012). Figure was Adapted 

from Sancho & Pastore 2012. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	

	 16	

Chapter 2. Research Objective 

 

Recent findings indicated blueberrie supplementation reduces the risk of 

obesity and obesity-induced disease. However, the effect of the whole 

blueberries on β-cell function needs to be determined. The objective of this study 

focuses on the effects of whole blueberry on pancreatic β-cell function in mice 

fed with high-fat diet. 
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Chapter 3: Materials and Methods 

 

3.1 Experimental design  

 

 
3.2 Animals and diet 

All animal protocols were approved by the Animal Care Committee at the 

Michigan Technological University. The C57BL/6 mice housed in an animal facility 

of Michigan Technological University with 12-h light / dark cycle and unlimited ad 

libitum water. The male wild-type mice, which are more susceptible to obesity 

and diabetes than female mice, at age of 4 weeks will be assigned to cohorts (n 

= 5 mice/cohort) that received two different kinds of diets including: 1) a high-

fat diet (HFD) containing 60% of energy from fat (Research Diets, no. D12492); 

2) a modified HFD supplemented with 4% (wt:wt) freeze-dried whole blueberry 

powder (HFD+B). The blueberry powder will be purchased from the U.S. 

Highbush Blueberry Council.  

The following metabolic parameters were analyzed biweekly in two groups of 

mice: Body weight, blood glucose, plasma insulin and glucagon. 



	

	 18	

 

3.3 Methods 

Plasma insulin and glucagon  

Fasting blood samples were collected from orbital venous sinus while mice 

were anesthetized with isoflurane. 3 ul 2% Ethylenediaminetetraacetic acid 

(EDTA) were applied to blood samples to avoid clot. Samples were centrifuged at 

4000rmp for 4 min twice at 4C. After centrifugation, plasma were transferred to 

a new microcentrifuge tube and stored in -80C refrigerator. Plasma insulin and 

glucagon levels were measured by Ultrasensitive plasma insulin ELISA kit and 

glucagon ELISA kit (Mercodia).  

 

Glucose Tolerance Test (GTT)  

The GTT were performed following 8 weeks of diet feeding and mice were 

anesthetized with isoflurane after 16 hours starving. Glucose solution (1.5 g/ kg 

of body weight) was injected into the intraperitoneal cavity. Blood glucose level 

was measured by the tail tip and recorded at the following time point：0,15,30, 

45, 60, 90 min and blood samples were collected from the orbital vein at 0,15,30 

min. Blood samples were centrifuged at 4000rmp for 4 min twice at 4°C. Plasma 

(supernatant) was transferred to a new microcentrifuge tube and stored in -80°C 

until for analyzing insulin level. The area under the curve of GTT was calculated 

to analyze the glucose tolerance. Plasma insulin and glucagon levels during GTT 

period were also measured as described.    

  

Insulin Tolerance Test (ITT) 

Insulin tolerance test (ITT) was performed on mice that had been fasted for 6 

hours. Mice were injected with insulin (0.5 units/ kg body weight) by 
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intraperitoneal (I.P) injection. Blood glucose was measured before (time=0) and 

15, 30, 45, 90 and 120 mins after injection.    

 

Evaluation of β-cell mass and islet size 

Mice at 18-week-old were sacrificed through CO2 asphyxiation and performed 

whole body perfusion with PBS and 4% paraformaldehyde respectively. The 

isolated pancreas was fixed in 4% Paraformaldehyde for overnight. Entire 

paraffin blocks containing pancreas were processed and serially sectioned at 5 

μm.  

Insulin and glucagon staining: Section slides were dewaxed and rehydrated in 

Ethanol series (xylene, 100% Ethanol, 95% Ethanol, 90% Ethanol 79% Ethanol 

50% Ethanol and ddH2O). Treated the sections with 4% citrate buffer with 

Tween 20 (antigen retrieval) for 14 min at a high level of microwaves. After 

rinsing the section by dH2O and washing with PBS, incubated sections with 5% 

Bovine serum albumin (BSA) in PBS for 1 hours in a humid chamber at room 

temperature and treated with primary antibody (anti-insulin and anti-glucagon) 

overnight at 4°C in a humid chamber. Treated the sections with fluorescence 

secondary antibody (Alexa 488 and 594) after washing with PBS for 2 hours in a 

cover humid chamber at room temperature on the following day. Staining DAPI 

for 2 min after Washing slides by PBS and rinsing in ddH2O. Cover the section 

with a coverslip after rinsing in ddH2O. Let the slices dry overnight in dark.  

The entire pancreatic sections were scanned and the fraction of the insulin- or 

glucagon positive areas were determined using Image-Pro Premier software. The 

mass was calculated by multiplying this fraction by the initial pancreatic wet 

weight.  
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β-cell proliferation  

Bromodeoxyuridine staining: 18-week old mice were sacrificed after 

intraperitoneal injection of Bromodeoxyuridine (BrdU, 100mg/kg) for seven 

consecutive days. Pancreas was dissected and fixed. The section slide was 

immunostained with BrdU antibody as described. Blocks needed to treat with 

hydrochloric acid for 20 min before antigen retrieval. Immunofluorescent 

microscopy was used to determine fluorescence signal. All images were taken 

under the 20X magnification. BrdU-positive cells were counted to determine cell 

proliferation.  

 

3.4 Statistical analysis  

Two-tailed Student t-test was used to analyze statistical significance, and a p-

value of lower than 0.05 was considered as statistically significant. 
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Chapter 4: Results 

 

4.1 Effect of blueberry diet on body weight 

  To study the effect of the blueberry diet on mouse body weight and fed 

glucose levels, we measured the body weight and glucose level biweekly. There 

were no significant differences in body weight between these two groups (Figure 

4.1 A). We analyzed the accumulative body weight gains between these two 

groups. We measured the body weight of 4 weeks old mice prior to diets 

changed. The mice fed with HFD+B gain slightly less weight (>3.5 g) than mice 

fed with HFD at 12 weeks old (Figure 4.1 B). Results indicated that the addition 

of blueberry power to HFD did not increase body weight and may protect against 

HFD induced weight gain because of the less cumulative body weight gain. We 

also examined the effect of blueberry on fed glucose level. The addition of 

blueberry did not attenuate the HFD-induced high fed glucose level (Figure 

4.1C).        

 
Figure 4.1 Effect of blueberry diet on body weight. Biweekly and 

accumulative Body weight (g) of mice fed with HFD or HFDB for 8 wk. The Body 
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weight gains were normalized by the body weight of 4-week old mice.  Values 

are presented by mean + STDEV. A: Biweekly body weight. B: Cumulative body 

weight. C. Weekly glucose level (mg/dL)   

 

4.2 Effect of blueberry diet on fasted blood glucose level and plasma 

insulin level. 

To understand the effect of blueberry diet on fasted blood glucose level and 

fasting plasma insulin level. We examined the body weight, glucose level, and 

plasma insulin before and after 16 hours fasting. Either fed or 16 hours fasted, 

there were no significant differences in body weight and glucose level between 

these two groups at 8 wk old and 12 wk old (Figure 4.2 A-D). However, the 

fasted glucose levels of mice fed with HFD with freeze-dried blueberry powers 

were slightly lower than mice fed HFD diet (141.75 mg/dL vs. 174.75 mg/dL). 

Fasted plasma insulin level was similar between these two groups at 8 wk old. 

Compare to the mice fed with HFD, mice fed with HFDB had significant lower 

fasted plasma insulin level at 12 wk old (Figure 4.2 F). Results demonstrated 

the improvement of whole Blueberry supplement on insulin efficiency.         

 



	

	 23	

 
Figure. 4.2 Effect of blueberry diet on blood glucose level and plasma 

insulin level. Body weight and blood glucose level were measured before and 

fasted at 8 wk old and 12 wk old. Plasma samples were collected from orbital 

vein blood at 8 wk old and 12 wk old after 16 hours fasted. Value are mean + 

STDEV. ** p<0.01. A, B: body weight and glucose level before and after fasted 

at 8 wk old. C, D: body weight and glucose level before and after fasted at 12 wk 

old. E. Fasted plasma insulin level at 8 wk old and 12 wk old.   

 

4.3 Blueberry improves insulin sensitivity and glucose tolerance in 

high-fat diet treat mice. 

HFD+B fed male had a significant low plasma insulin at 12-week old compared 

to HFD fed mice. We suggested the addition of blubbery in HFD might increase 

insulin efficacy. To further study the effect of the whole blueberry on insulin 

efficacy, we performed ITT after 8 wk of HFD or HFDB treatment. As expected, 

mice fed with HFD+B had less insulin resistance (IR) compared with those fed 

the HFD (Figure 4.3 C). HFD+B fed mice had less IR than HFD fed mice at 45, 60 
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and 90 min. The area under the curve (AUC) during ITT demonstrated the 

HFD+B fed mice had significant less IR than HFD fed mice (figure 4.3 E). The 

addition of blueberry in HFD could decrease the HFD induce IR. Compare to mice 

fed with HFD, mice fed with HFD+B had a high glucose tolerance (Figure 4.3 A) 

and lower insulin level (Figure 4.3 C). At 30 min and 45 min after glucose 

injection, blood glucose levels in HFD+B fed mice were significantly lower than 

HFD fed mice. In contrast, no significant changes of plasma insulin level in HFD 

fed mice, and HFD+B fed mice at 30 min after glucose chandelle as well as 15 

min. The plasma insulin level of HFD+B fed mice were significantly higher than 

HFD fed mice at 16 hours fasting. We calculated the AUC under the GTT, the AUC 

of HFD+B fed mice were significantly lower than HFD fed mice (Figure B). Taken 

together, these results suggested Blueberry might decrease HFD-induced IR and 

increase glucose tolerance.    

         

Figure 4.3 Diet supplemented blueberry reduced insulin resistance and 

glucose tolerance. GTT an ITT were performed on mice with 8 wk HFD or 

HFD+B treatment through I.P injection (n=5). HFD and HFD+B fed mice fasted 
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16 hours for GTT and 6 hours for ITT. The injection amount of glucose was 

1.5g/kg body weight in GTT, and the injection amount of insulin was 0.5IU in ITT. 

The Values are mean +- STDEV. * p<0, 05 and **p<0.01. A: GTT. B: The insulin 

area under the curve (AUC) during GTT, C: ITT. D: The glucose area under the 

curve (AUC) during ITT. E: 16 hours fasted plasma insulin (ug/L) during GTT at 

0, 15, 30 min.   

 

4.4 Blueberry protects pancreatic β-cell function 

Long-term HFD feeding might lead to β-cell expansion, in contrast, 

anthocyanins extracts have been reported for associated with preserved islet 

architecture (45). To determine whether whole blueberries protect islet 

architecture, we examined the islets morphology by immunolabeling and quantify 

the islet sizes, beta-cell mass. Islets in mice fed HFD+B showed preserved the 

islet morphology (Figure 4.4 A). Islet size and beta cell mass were no significant 

different between HFD-fed or HFD+B fed mice (Figure C ). However, the average 

islets size in HFD+B fed mice was slightly smaller than HFD-fed mice (18874.10 

um2 vs. 21815.87 um2). We analyze the range of islet size distribution. The 

number of Islets belong to 5000-10000um2 had a significant increased and the 

number of islets size 40000-5000um2 had a significant decrease in HFD+B 

(Figure 4.4 D). The blueberry supplement significant increased the smaller islets 

and decreased the number of larger islet size (figure 4.4 D).   

We suggested the blueberry supplement might increase the β-cell proliferation 

based on The increasing number of smaller islets in the blueberry supplement 

group. We did 7 consecutive days BrdU (100mg/kg) I.P injection to determine 

the cell proliferative in the pancreas. The β-cell proliferation rate was slightly 

higher in mice fed HFD with freeze-dried blueberries but no significant changes 
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between these two group (figure B).    
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Figure 4.4 The addition of blueberry preserved islet architecture. 

Elevation of β-cell proliferation, islet size, and β-cell mass by 

immunohistochemistry. HFD or HFD+B fed mice were killed by CO2 asphyxiation 

at 18-week old (n=3-5). A: anti-Insulin (red) and anti-glucagon (green) 

immunostaining on HFD or HFD+B treated mouse pancreas at 18wk old. B. anti-

insulin(green) and anti-BrdU (red) and anti-glucagon (green) immunostaining on 

HFD or HFD+B treated mouse pancreas at 18wk old (images).. C. beta cell mass 

and islet size of 18-week old HFD or HFD+B fed mice. Beta cell mass was 

normalized by HFD treated beta cell mass.  D. Islet size distribution. Islets 

graded by size, The Value is mean +- STDEV. E. Positive β- cell incorporation 

BrdU (left) 
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Chapter 5: Discussion 

 

Our findings suggested that blueberry supplementations reduce insulin 

resistance and glucose tolerance through increased insulin sensitivity. Moreover, 

the blueberry supplements attenuate the HFD-induced obesity and protect beta 

cell function by preserving islet morphology and stimulating β-cell proliferation. 

Taken together, the blueberry supplement may have a therapeutic potential in 

preventing and treating obesity and T2D.  

In this study, we chose to study blueberries because of it is most available and 

more attractive. Blueberries contain 5 of 6 most common anthocyanins and other 

bioactive compounds. Bioactive substances such as flavonoids, vitamin C 

contributing to antioxidant action as well as anthocyanins. 

Our finding that blueberry supplement decreased insulin resistance is in 

agreement with the previous study suggesting the effect of the whole blueberry 

on decreasing insulin resistance (DeFuria et al., 2009). Mice was subjected to 

insulin tolerance test, mice treated with HFD+B show a significant low insulin 

resistance, especially at 45, 60 90 mins after insulin injection. In DeFuria et al. 

study, the decreased insulin resistance also have been observed in mice treated 

with blueberry freeze powder supplement. In addition, other anthocyanins rich 

fruit or anthocyanins extract also have been found the effect of decreased HFD-

induced insulin resistance ( Guo et al. 2007; Nizamutdinoza et al., 2009; 

Seymour et al. 2009). Taken together, the anthocyanins supplement improve the 

HFD-induced IR. However, what is not know is whether a particular single 

anthocyanin or several anthocyanins is a response to this effect. Whether other 

bioactive substances in anthocyanin-rich fruit have the similar effect on the IR is 

required to determined.    
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    β-cell expansion can result from long-term HFD feeding. In the previous 

study,  C57BL/6 mice were subjected to HFD with anthocyanins supplement, 

islets morphology were preserved as well as glucose tolerance improvement 

(Jayaprakasam et al. 2009). Our findings related to glucose tolerance and islets 

morphology is consistency with this. The purified anthocyanins used in this study 

(Jayaprakasam et al. 2009) is the mixture of Cyanidin 3-O-galactoside, 

pelargonidin 3-O-galactoside, and delphinidin 3-O-galactoside. Blueberry contain 

two of them: Cyanidin 3-O-galactoside and delphinidin 3-O-galactoside. Either 

Cyanidin 3-O-galactoside or delphinidin 3-O-galactoside or both of them 

contribute to the ability of islet structure preservation. Furthermore, the whole 

blueberry also increases glucose tolerance. We subjected mice to GTT on 12- 

week old and measured plasma insulin during GTT. The fasted plasma insulin 

levels were significantly lower in HFD+B group. The increased glucose tolerance 

with low insulin level indicated that the blueberry supplements increase glucose 

tolerance through the elevation of insulin sensitivity.     

Diet-induced obesity in an animal model has been used to mimic obesity like 

condition in humans. Long-term HFD feeding contributes to obesity present 

increased body weight and fat accumulation. C57BL/6J mouse is impressionable 

to HFD-induced obesity (Peakman J. et al. 2007). In our study, the results 

showed the cumulative weight gain of mice fed HFD supplemented freeze-dried 

blueberry powder was slightly less than mice fed HFD. Base on these results, 

blueberry supplementation may attenuate the HFD-induced obesity. In contrast 

to our results, a study showed C57BL/6J fed HFD with freeze-dried blueberry 

powder supplementation increased body weight (Prior R. L. 2008). However, 

another study claimed 12-week blueberry juice intake inhibited obesity (Wu T., et 

al. 2013). Moreover, purified anthocyanins from Cornus mas also demonstrated 
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amelioration of obesity (Jayaprakasam et al. 2006). This conflict results may 

cause by the differential purified preparation methods and content of 

anthocyanins or the differential of total consumed anthocyanins in different 

individuals.  

Compared to HFD feeding, feeding with HFD+B for 12 weeks dramatically 

decreased the fasted plasma insulin level (Figure 4.2 E). A previous study 

showed blueberry juice did not alter the plasma insulin level (Wu et al. 2013). 

The differences may result from the difference of blueberry supplements. We 

purchased the HFD and HFD+B from the research lab. The fructose levels were 

normalized in HFD and HFD+B. Compare to HFD+B we used in our experiment, 

blueberry juice may have a higher amount of fructose.  The higher blueberry 

juice may have an effect on insulin secretion.      

β-cell expansion and proliferation might result from long-term HFD feeding. 

To examined the role of blueberry in islet structure and β-cell proliferation. We 

observed the islet morphology by immunostaining technique. Diet supplement 

blueberry slightly increase β-cell proliferation (Figure 4.4 E).  An in vitro study 

showed the fruit extract of different parts of blueberry plants increased β-cell 

proliferation and replication in β TC-test-cells (Martineau et al. 2006). The 

bioactive substances have not been defined, but the anthocyanins present in this 

fruit was supposed involved in this process (Prior et al. 1998, Martineau et al. 

2006). In the previous study, anthocyanin extracts prevent β-cell apoptosis 

through down-regulation of pro-apoptotic Proteins (Caspase 3 and Bax) 

(Nizanutdinova et al. 2009). If the blueberry supplement has a similar effect as 

anthocyanins, blueberry may indicate a potential protection of β-cell through an 

increase in β-cells proliferation and a decrease in β-cell apoptosis.  
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Chapter 6: Future work 

 

  The beneficial effects of anthocyanins on obesity, diabetes, vascular 

disease and cancer have been observed. However, the effect of the whole 

blueberry has not been completely evaluated on these diseases. Since blueberry 

is most available and consumption compares to the anthocyanin extracts, it is 

necessary to determine whether consumption of the whole blueberry would have 

the similar effect to those observed for anthocyanins extract.  

  The previous study indicated anthocyanin extracts inhibited β-cell 

apoptosis. Whether the whole blueberry has the similar effect on β-cell apoptosis 

needs to be determined. If the whole blueberry has a similar effect on 

decreasing β-cell apoptosis, The whole blueberry supplement can be considered 

as the potential treatment of diabetes.   

   Studies showed either anthocyanin extraction or anthocyanins rich food 

have anti-inflammatory property and reduce the expression level of TNF-a. MCP-

1, IL-6 in adipose tissue (Defuria et al . 2009; Wu et al. 2013). The effects of 

whole freeze-dried blueberry supplements on anti-inflammatory factors in 

pancreas islet have not been determined.   

ROS induces β-cell apoptosis because of the low antioxidant enzymes. 

Anthocyanin extraction reduces oxidative stress maker and increases antioxidant 

enzymes activities in the pancreas (Nizamutdinova et al. 2009). It is possible that 

blueberry supplements may have the same effect as anthocyanin extraction on 

antioxidant defense. It is important to observe the effect of blueberry on the 

expression of anthocyanin enzymes. Increased antioxidant defense can protect 

β-cell function and reduces apoptosis.  
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Chapter 7:  Conclusion 

 

Dietary supplementation with whole blueberries can not only improves insulin 

sensitivity in muscle and adipose tissues, but also protects β-cell function and β-

cell proliferation. Long time of HFD consumption leads to impaired glucose 

homeostasis. Blueberry supplements can attenuate the HFD-induced impaired 

glucose homeostasis. Our findings strongly suggest that the whole blueberry has 

a therapeutic potential for improving diet-induced β-cell dysfunction. 
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