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Preface: 

Chapter 2 consists of a paper that was co-authored by Chelsea Schelly and Joshua 
Pearce, and is currently submitted to Renewable and Sustainable Energy Reviews. As 
first author on this paper, I was responsible for gathering background information and 
data on current U.S. military renewable energy installations, U.S. budget allocated to 
defense contracting, top U.S. defense contractors, and costs of solar PV systems. I 
calculated potential nameplate capacity for the entire U.S. military. I created all the 
graphs and figures in the paper and was responsible for drafting the paper, with editorial 
and technical assistance from my co-authors.  

Chapter 3 includes a paper that was co-authored by Ahbilash Kantamneni and 
Chelsea Schelly, and will be submitted for review in Energy Policy. Target date for 
submission is December 2016. For this paper, data were collected from the Michigan 
Public Service Commission, the 2010 U.S. Census, and National Renewable Energy Lab 
(NREL), and Michigan Secretary of State Office. Analyses were conducted at the zip 
code level. I was responsible for data cleaning, variable construction, and statistical 
analysis. I was also responsible for drafting the paper, with editorial and technical 
assistance from my co-authors. 

Chapter 4 includes a paper that was co-authored by Joshua Pearce and was 
submitted to the journal Renewable and Sustainable Energy Reviews. I was responsible 
for collecting background data on coal air pollution at the global and national levels, 
number of U.S. deaths due to coal-fired electrical production, and current U.S. solar PV 
capacity. These variables were used to calculate death rate of coal electrical production, 
death rate of solar PV production, and the number of U.S. lives saved by replacing 100% 
of coal electricity with solar PV. I created all figures and graphs in the paper and was 
responsible for drafting the paper, with editorial and technical assistance from my co-
author.  
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Thesis Abstract:  
 

This thesis presents three examples of U.S. energy policy and demonstrates how 
these policies violate the principles of energy justice. First, requiring only Federal 
agencies to obtain a percentage of energy production from renewables violates the 
distributive energy justice principle through a lack of a federal renewable energy policy 
which distributes the potential for unequal electrical grid failure to populations. Second, 
U.S. energy policy violates the procedural energy justice principle through inequitable 
participation and poor knowledge dissemination that, in some cases, contributes to 
stagnant renewable targets during the decision-making process and inequitable 
distribution of the benefits associated with renewable energy arguably resulting from 
differential representation of economic groups in policy decision making. Third, the 
United States’ continued reliance on and subsidization of fossil fuel extraction and use, 
violates the prohibitive energy justice principle by causing physical harm to humans and 
the environment. Finally, a lack of federal renewable energy policy hinders 
comprehensive energy policy including diversifying the U.S. renewable energy 
portfolios. Considering energy policy through the framework of energy justice offers a 
means of evaluating existing policy and can improve future energy policy decision-
making. Demanding energy justice ensures that all populations have equitable 
distribution, participation, and access to affordable, efficient, and clean energy 
technologies that contribute to obtaining basic needs.  
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Chapter 1: How does U.S. energy policy reconcile with the principles of energy justice?  

Introduction 

Energy embodies a number of dimensions rather than being limited to the 

simplistic explanation of the capacity or power to do work. Energy is broken up between 

primary energy (the energy found in natural resources), end-use energy (the product 

supplied to consumers from primary energy), useful energy, and energy services 

(Goldthau and Sovacool, 2012). Scholars define energy services as any benefits provided 

by the energy industry that functions to support human wellbeing (Sovacool and 

Mukherjee, 2011). Many argue that energy is the essence of the commodity industry 

(Schumacher, 1982). While energy is not considered a commodity itself, it provides the 

pathway for which commodities are made. Taking this one step further, energy is the 

“lifeblood of the economy and human existence” (Goldthau and Sovacool, 2012: 1). 

Thus, how energy plays a role in distributing benefits becomes both an economic and 

political question. Energy security, energy accessibility, and entering the new transition 

to low carbon energy sources are all important energy issues that move beyond energy as 

simply an available stock of capacity. Energy has become a “mega-issue” that requires 

governance at all levels - local, regional, national, and global (Goldthau, 2014, Lesage et 

al, 2010). 

The current energy electrical grid is centralized and integrated, heavily 

interconnected, and automated. As a result, a democratic majority has less influence than 

technical experts who control production when any challenge threatens the status quo of 

U.S. energy production (Winner, 1980). As technology scholar Langdon Winner 

suggests, development of energy systems is a process that includes scientific knowledge 
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and technological development but also political and economic power (Winner, 1980). 

Individuals less wealth, access to information, and resources have little power in energy 

system decision-making. Fossil fuel companies spend billions to convince the public that 

our current system is technologically and economically necessary (Jones et al, 2015). Yet 

in reality, continued fossil fuel extraction results in collateral damage that affects human-

environment relationships. Specifically, human’s continued dependence on fossil fuels 

results in environmental problems such as air pollution (Goldberg, 1985), oil spills 

(Blumer et al, 1973), acid rain (Patel et al, 1974), biodiversity loss (Vitousek et al, 1997), 

and climate change (Wuebbles and Jain, 2001). These externalities are unjust in that the 

corporate actors in our current energy market do not incur the costs associated with 

environmental ills produced from fossil fuel extraction, distribution, and generation 

(McKibben, 2012). Outdoor air pollution comes in many forms such as ozone, particulate 

matter, sulfur and nitrogen oxides, carbon monoxide, hydrocarbons, and mercury. These 

air pollutants are highly correlated with public health issues, chronic disease, morbidity, 

and mortality effects (Curtis et al, 2006, Yim et al, 2012). Catastrophic accidents such as 

oil spills continue to happen (Gorman, 2001). Acid rain effects span across ecosystems, 

damaging fisheries, forests, agriculture and livestock, as well as man-made structures 

(Likens et al 1979, Likens et al, 1996). Destruction via direct land use for mining 

practices, waste storage, power plants, and dam infrastructure can decrease biodiversity 

in affected areas (Cardinale et al, 2012). Finally, human actions, such as industrial 

practices, energy production, and transportation (to name a few) increase the magnitude 

of global climate change effects (Lockwood et al, 2009, Smith et al, 2013). U.S. reliance 

on fossil fuel extraction, distribution, and combustion contribute to these negative 
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environmental impacts. While many government strategies, pollution regulations, cap and 

trade, taxes, and subsidies work to restructure environmental degradation and subsequent 

human impacts, they do not promote the investment in a fuel source that offers an 

opportunity for more just distribution of energy systems and services (Winner, 1980 and 

Lovins, 1976): renewable energy technologies.   

Renewable energy sources can be considered a just technology, in that they have 

the potential to promote social justice (Lovins, 1977). Renewable energy sources provide 

customers with energy that produces little to no emissions (Panwar et al, 2011) of 

outdoor air pollutants or greenhouse gases. Full life cycle assessments of energy 

technologies illustrate renewable energy sources produce a fraction of the externalities 

(emissions and environmental degradation) associated with fossil fuels (Epstein et al, 

2011, Fthenakis et al, 2008, Fthenakis and Kim, 2011, Evans et al, 2009). Fossil fuels 

distribute these harms to the environment and humans, while renewable technologies 

knowingly reduce the impacts of energy production and consumption.  

Consequently, the environmental and energy justice fields originated from these 

ethical and moral implications of human’s energy decisions (Sovacool and Dworkin, 

2015).  Injustice becomes an even more salient issue as a resource becomes scarce 

(Lerner, 1981, Clayton, 2000). Alongside this, energy justice issues are most notable 

when society experiences severe environmental degradation, human rights violations, or 

severe accidents (Sidortsov and Sovacool, 2015). The energy justice concept is still in its 

infancy and scholars do not yet have a general consensus on a definition of energy justice 

(Sidortsov and Sovacool, 2015). However, many definitions have been proposed and 

include themes of equitable distribution, equal right to access, and minimal damage to 



9 
 

human life of and by energy systems (Heffron and McCauley, 2014, Jones et al, 2015, 

Goldthau and Sovacool, 2012). Decision-makers continually use technical and economic 

considerations alone when designing energy production, generation, and distribution 

(Sovacool et al, 2011). When scholars discuss energy justice or injustice, it is often in 

concert with issues of environmental justice (Sovacool et al, 2013, Goldthau and 

Sovacool, 2012, Sovacool et al, 2011, Sovacool and Dworkin, 2014). The focus is on 

communities that are threatened by polluting energy and wasteful technologies. (Energy 

Justice Network, 1999) Equitable distribution of environmental benefits and burdens 

along with equitable participation in decision-making and equitable consideration of 

alternatives can help create a “clean energy, zero-emission, zero-waste” future (Energy 

Justice Network, 1999). Finding coordination of effective policies with federal assistance, 

private investment, and nonprofit initiatives can provide access to resources to improve 

energy efficiency and affordability, decrease externalities, and tackle other energy 

injustices (Jenkins et al, 2016).  

 

1.1 Existing US Energy Policy 

The U.S. does not have a federal umbrella renewable energy policy. The Energy 

Policy Act of 2005 sets requirements for federal agencies to obtain a certain percentage 

of energy generation from renewables (DOE, 2005). President Barack Obama instituted 

an “All of the Above Energy Strategy,” which targets American energy production 

domestically, to increase our energy independence (Executive Office of the President, 

2014). Specifically targeting clean energy fuels, the U.S. Government focuses renewable 

energy development on federal agencies, public lands, and military installations. Federal 
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incentives to promote renewable energy generation include: investment tax credits, 

production tax credits, a clean power plan, and DOE loan program (NREL, 2015). Prior 

to taking office, President Obama proposed a federal renewable portfolio standard (RPS) 

that would require 25% of American electrical generation come from renewable energies 

by 2025 (Office of President, 2014), yet this policy has not been implemented, and 

federal energy regulation changed focus to regulate CO2 emissions instead (Bochner, 

2014). Although there is no federal policy to focus efforts, half of U.S. states have 

voluntary or mandatory renewable portfolio standards programs. A RPS places 

obligations on utility companies within each state to produce a minimum fraction of 

electricity from renewable resources. Thirty-five states currently hold either renewable 

portfolio standards or goals that were established through legislation or ballot initiatives 

(DSIRE, 2016). This suggests large bipartisan support to move in the direction of 

alternative energy.  

As part of the Clean Power Plan (EPA, 2016), the Environmental Protection 

Agency sets state-by-state rate-based carbon dioxide emission targets. States then receive 

guidelines on how to design and implement plans to reduce carbon dioxide emissions. 

The Clean Power Plan does not oblige heavy fossil fuel using states to invest in or 

generate energy through renewable sources (EPA, 2014).  While the Clean Power Plan 

attempts to reduce carbon dioxide emissions at the state level, it does not provide an 

avenue to reduce the dependency on long-term fossil fuel usage within the U.S. The lack 

of U.S. energy policy that includes renewables in the portfolio is an example of energy 

injustice by failing to address distributive and procedural justice concerns and failing to 

consider issues related to affirmative and prohibitive justice principles.  
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1.2 Energy Policy and Energy Justice 

Scholars have identified several forms of energy injustice, including three justice 

theories that form the foundation for an energy justice framework. Distributive justice 

considers “how social goods are allocated across society” (Sovacool et al, 2013:23). The 

main scope of distributive justice includes how goods are distributed, what populations 

receive the distributed goods, and through what approach are these goods distributed? 

These approaches come in many forms, including decisions based on economic status, 

necessity, property rights, etc. (Jenkins et al, 2016). Distributive justice is concerned with 

the benefits and burdens of energy to different social groups. More specifically, 

considering distributive justice shifts decision making to include an equitable sharing of 

outcomes (Gross, 2007). Equitable or inequitable distribution of energy and energy 

impacts can shape a society’s educational opportunities, accessibility to natural resources, 

health and human services, along with economic and political advantages or 

disadvantages. An equitable distribution of energy thereby distributes economic and 

politic power. There are social costs that result from the distribution patterns of energy. 

Relating to energy justice, distributive justice considers the distribution of goods and ills 

from energy production and use.  

Procedural justice reflects the idea of an imbalance of power in the processes that 

allocate resources. It also comprises the consideration of how decision makers engage 

with their communities (Jenkins et al, 2016). The main concern is with how decisions are 

made. This includes rights of participation and access to information (Gross, 2007). The 

focus is on the fairness of the process (Lind and Tyler, 1988). To achieve fairness in 
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procedural justice, decision-making must involve full participation, allow full expression 

of opinions, provide sufficient information, and involve a maintained level of impartiality 

of decision makers. Some scholars argue procedural justice is more significant than 

equitably distributed outcomes in regards to perceptions; MacCoun (2005) suggests that 

citizens care more about a fair process as it can lead to fair outcomes. Criticisms of 

fairness in the decision-making process concern parties without social power. These 

parties have the potential to be excluded from participation and decision-making 

regarding environmental matters (Clayton, 2000). Tying this to energy systems, 

procedural energy justice examines the domination of “social, industrial, and political 

elites” (Sovacool et al, 2013, Dworkin and Sovacool, 2014, Kramer and Tyler, 1996) who 

maintain control in the extraction, distribution, and generation of fossil fuel sources.  

Finally, cosmopolitan justice is concerned with the global and intergenerational 

distribution of burdens and benefits (Caney, 2005). Conventional energy infrastructure 

and policies have global impacts in the form of both environmental and human costs. The 

externalities associated with fossil fuel use are not limited by borders and span the globe, 

distributing damages to other nations. The continued extraction of fossil fuels decreases 

fossil fuel reserves, leaving fewer resources for future generations.  

Recent extensions of the energy justice theories related to distributive and 

procedural principles reviewed above resulted two additional concepts, prohibitive and 

affirmative energy justice principles (Sovacool et al, 2013). The prohibitive principle 

considers energy system infrastructure designs that hinder a person’s ability to acquire 

basic energy goods. More specifically, this principle involves consideration of level of 

risk experienced by populations as a result of polluting energy technologies energy 
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systems that inflict damage onto people (i.e. pollution morbidity and mortality effects) 

and/or future generations violate their entitlement to basic goods. The prohibitive 

principle goes beyond a simple “access to energy” issue. It pulls external costs of energy 

services into the equation. If the design of the energy infrastructure system violates the 

prohibitive principle, society bears external costs. The affirmative principle states “if any 

basic good to which every person is justly entitled can only be secured through energy 

services, then there is also a derivative right to the energy service” (Sovacool et al, 

2013:46, Hernandez, 2015). The affirmative energy justice principle is concerned with 

attainment of basic goods. If these goods can only be obtained through energy services, 

then individuals have an established right to energy. In this instance, energy serves as a 

necessity to satisfy or obtain other basic needs. The affirmative principle considers 

alternative options of energy services because people have a “derivative entitlement” 

(Jones et al, 2015:165) to obtain these basic needs. Alongside alternative sources, 

affirmative justice speaks to those populations living in energy or fuel poverty. 

Availability of an alternative technology is useless with limited means to invest in these 

renewable sources.   

Given this context of contemporary energy policy in the United States, this thesis 

explicates theories and principles of energy justice and applies these frames to existing 

U.S. energy policy. Through the lens of theories and principles mentioned above, 

(Jenkins et al, 2016, Jones et al, 2015), U.S. energy policy, arguably presents 

opportunities for analysis and recommendations for future change given the lack of 

federal, substantive, and equitable pursuit of cleaner energy production and distribution. 

This application allows for examination of how specific U.S. energy policies reconcile 
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with energy justice, the consequences of these violations, and the possibilities for 

changing and improving policy by using an energy justice framework to guide policy 

development.  

Borrowing from Lakatos (1970), a framework is a basic structure underlying a 

system or a concept. Frameworks function to provide researchers with a platform to 

describe or explain phenomena in particular contexts. Frameworks also afford researchers 

a common language for interdisciplinary communication. While frameworks may not be 

directly testable (Jenkins-Smith et al, 2014), they can provide guidance towards 

descriptive and/or explanatory inquiries. For the purpose of this thesis, an energy justice 

framework provides an innovative means of identifying policy weaknesses and a 

potential tool for improving the social implications of energy policy. Three case studies 

are presented below via co-authored manuscripts currently in preparation.  

 

1.3 Organization of the Thesis 

The papers are presented here in an order that corresponds to the conceptual 

development of the energy justice field. Deutsch (1975), Rawls (1971) and Dworkin 

(1985) provide early descriptions of distributive (Chapter 2) and procedural (Chapter 3) 

justice concepts. These theories were later adapted to describe inequalities in 

environmental and energy studies (Dobson, 1998, Schlosberg, 2004, Schrader-Frechette,  

2002, Cole, 2001, Socavool and Dworkin, 2015). Sovacool et al later developed the 

prohibitive and affirmative energy justice principles (Sovacool et al, 2013) building upon 

the theories of distributive and procedural justice.    
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Chapter 2 presents a case study of the potential for solar PV scale up for U.S. 

military facilities. This chapter addresses the energy justice theory regarding the 

distribution of benefits and burdens by energy systems. The literature surrounding 

distributive energy justice focuses on direct impact of energy systems. This chapter 

considers the role of existing energy policies and the consequences (environmental goods 

and bads) of the distribution (or lack thereof) of these policies, specifically considering 

the feasibility for addressing existing U.S. policy aimed at military facilities while also 

drawing attention to the inequitable distribution of targeted energy policies for utilities 

renewable energy systems for energy security across critical infrastructures and for 

community resilience. A major social cost of continued reliance and subsidies of fossil 

fuels is the potential for massive electrical grid failure. Due to its highly interconnected 

and interdependent nature, electric grid failure has the potential to impair economic and 

social functions in the event of a power outage. Yet renewable energy policies are being 

inequitably distributed among end users; while the U.S. has no federal renewable energy 

target, military facilities must obtain 25% of energy generation from renewable energy 

resources by 2025 (ACORE, 2016). The distributive energy justice principle speaks to 

not only a physical equitable distribution of environmental benefits and burdens, but also 

distribution of “responsibilities” (McCauley, 2013). This includes a population’s 

exposure to a certain level of risk. The gap lies in a mandate to secure the grid to protect 

the general public from effects of accidental or intentional grid failure. Considering 

distributional energy justice into the U.S. renewable energy portfolio will allow decision-

makers to enact policies that equitably distribute environmental goods and burdens across 

the nation, and ultimately move toward protecting U.S. citizens from major grid failure.  
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Chapter 3 offers a state level analysis of solar PV adoption in Michigan. This 

paper acknowledges the reality of fuel poverty in Michigan, pointing to both procedural 

justice and the affirmative energy justice principle. Chapter 3 attempts to situate 

sustainable consumers in an energy policy context to understand other factors that may 

shape their ability to adopt solar PV technology. This study uses predictors including 

socioeconomic indicators (median home value, education, unemployment rate, fuel 

poverty), political affiliations (% republican), and utility policy (utility rates) to 

understand what predicts residential adoption of solar PV technology. This information 

can inform decision-makers about the context of decision making shaping technology 

choices in residential households. This paper will assist policy development by 

suggesting the importance of including procedural and affirmative justice in the policy-

making process, considering equitable representation and full public participation when 

developing and evolving Michigan’s renewable energy portfolio that might support and 

incentivize residential solar technology use. Individuals who live in or near fuel poverty 

have difficulty obtaining energy services, and are less likely to adopt residential PV 

technology. According to the affirmative principle of energy justice, these individuals 

have a basic right to energy; the inability to afford alternative options violates this 

principle. The issue of fuel poverty relates to procedural energy justice because 

individuals living in or near fuel poverty have unequal access and representation in the 

energy decision-making process (Kramer and Tyler, 1996).  

Chapter 4 presents a second national level case study to address opportunities for 

policy change within the scope of the prohibitive energy justice principle. The U.S. 

reliance on fossil fuels for energy brings many externalities. Poor air quality from coal 
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combustion adversely impacts human health including mortality and morbidity effects on 

respiratory, cardiovascular, nervous, urinary, and digestive systems. Energy development 

must take into account the people and the community first in decision-making. For 

chapter 4, the prohibitive principle speaks to a larger issue of infrastructure design. 

Externalities must be factored into the equation to provide adequate energy justice.  This 

case illustrates how current U.S. energy policy violates the prohibitive principle. The 

U.S. spends roughly $4.7 billion to subsidize the fossil fuel industry (U.S. Department of 

Treasury, 2014). Conventional fossil fuels have great externalities ranging from 

environmental degradation in the extraction process (Sims, 2003), to harmful emissions 

during the combustion/energy generation process (Epstein et al, 2011), to further climate 

disruption (Lockwood, 2009).  The current system has externalities that harm humans and 

this paper shows the number of deaths per year in the U.S. due to coal-fired electrical 

combustion. The nature and infrastructure design of the current U.S. energy extraction, 

transmission, and generation does not factor externalities into energy costs.  

 

1.4 Conclusion 

Based on each empirical investigation, this thesis stresses the importance of 

utilizing an energy justice framework in policy decisions regarding energy production 

and consumption. By moving the focus from a purely economic and/or technical 

perspective to social justice concepts, we can transform the way policy makers and 

deliberators form U.S. energy policy. Policy recommendations are further explored in the 

conclusion chapter of the thesis to aid decision-making in the energy policy arena. 
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Abstract 
The U.S. electrical grid, the largest and most complex man-made system in the world, 
is highly vulnerable to three types of external threats: 1) natural disasters, 2) intentional 
physical attacks, and 3) cyber-attacks. The technical community has recommended 
hardening the grid to make it more resilient to attack by using distributed generation 
and microgrids. Solar photovoltaic (PV) systems are an ideal distributed generation 
technology to provide power for such microgrids. However, both the deployment 
velocity and the policy of how to implement such technical solutions have been given 
far less attention than would be normally considered adequate for a national security 
risk. To address this threat, this paper investigates the technical and economic viability 
of utilizing defense contracting for the beginning of a national transition to distributed 
generation in the U.S.  First, the technical scale of electrical demand and the solar PV 
system necessary is analyzed in detail to meet the first level of strategic importance: the 
U.S. military. The results found that a little over 18GW of PV would be needed to 
fortify the U.S. military domestically. The current domestic geographic deployment of 
microgrid installations in the critical U.S. defense infrastructure were reviewed and 
compared to historical grid failures and existing and planned PV installations to 
mitigate that risk. The results showed a minimal number of military bases have 
introduced solar PV systems, leaving large parts of Department of Defense electrical 
infrastructure vulnerable to attack. To rectify this situation, the technical skills of the 
top 20 U.S. defense contractors is reviewed and analyzed for a potential contracting 
transition to grid fortification. Overall the results indicate that a fortified U.S. military 
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grid made up of PV-powered microgrids is technically feasible, within current 
contractors skill sets and economically viable. Policy recommendations are made to 
accelerate U.S. military grid fortification. 

 
 
 
Keywords: national security; photovoltaic; resilience; microgrid; defense; distributed 
generation 

 
 
 
 
2.1 Introduction 
 
The U.S. electrical grid, the largest and most complex man-made system in the world 

today (Chen et al, 2010), is an interconnected network for delivering electricity from 

generally centralized suppliers to distributed consumers. This electrical system 

architecture is comprised of substations with variable carrying capacities of electrical 

load, which are susceptible to widespread cascading failures (Chen et al, 2010, Wang 

and Rong, 2009, O’Brien and Hope, 2010). Every U.S. sector (military, economy, 

government, health care, education, etc.) depends on the grid to deliver essential 

electrical services. Due to its highly interconnected and interdependent nature, electric 

grid failure has the potential to impair economic and social functions in the event of a 

power outage (Johansson et al, 2007, Amin, 2005, Amin, 2008). The interdependencies 

of the power grid and other critical infrastructures are illustrated in Figure 1. The 

general consensus in the energy community is that the electrical grid is highly 

vulnerable to three types of external threats: 1) natural disasters (Little, 2002, Albert et 

al, 2004, Brown et al 2014), 2) intentional physical attacks (Amin, 2005, Amin, 2002, 

Motter and Lai, 2002, Salmeron et al 2004, Kinney et al, 2005), and 3) cyber-attacks 

(Watts, 2003, Fovino et al, 2011, Sridhar et al, 2012, Hebert, 2013, Aitel, 2013, 

Umbach, 2013, Onyeji et al, 2014). 



27 
 

 

The first threat of natural disasters caused by severe weather is responsible for $18 to 

$33 billion every year in power outages and damages to U.S. infrastructure (Gent and 

Costantini, 2003, Brummitt et al, 2012, Office of President, 2013). These disasters tend 

to be widespread, with an average of 700,000 consumers impacted per weather-

induced power outage annually (Amin, 2005). The impacts of past major U.S. power 

outages are summarized in Table 1. The majority of economic costs result from spoiled 

inventory, delayed production, and damage to grid infrastructure (Office of President, 

2013). 

 

The second threat of physical attacks includes traditional acts of terrorism such as 

bombing or sabotage (Watts, 2003) (e.g. an electromagnetic pulse attack (Bernstein et 

al, 2012, FERC, 2015, Detwiler, 2014). The traditional power grid infrastructure is 

incapable of withstanding intentional physical attacks (NRC, 2012). Damage resulting 

in physical attack could be long lasting, as power plants operate with large transformers 

that are difficult to move and source. Custom rebuilt transformers require time for 

replacement ranging from months and even up to years (NRC, 2012). For example, a 

2013 sniper attack on California’s Pacific Gas and Electric (PG&E) substation disabled 

17 transformers supplying power to Silicon Valley. Repairs and improvements cost 

PG&E roughly $100 million and lasted 27 days (Avalos, 2014, CNN, 2015, Memmott, 

2014). 
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In addition to physical attacks, the electrical grid is also exposed to cyber-attacks. The 

Pentagon reports spending roughly $100 million to repair cyber-related damages to the 

electric grid in 2009 (WSJ, 2009). The U.S. electric grid, along with other critical 

infrastructure systems, is growing increasingly dependent upon the Internet and other 

network connections for data communication and monitoring systems (Sridhar et al, 

2012, Wu et al, 2005, Schainker et al, 2006, Ulieru, 2007, Bessani et al, 2008). While 

this allows electrical suppliers convenient operation and management of systems, it 

increases the grid’s susceptibility to cyber-attack, which exploit critical infrastructure 

systems, causing denial of webpage services to consumers, disruption to supervisory 

control and data acquisition (SCADA) operating systems, or sustained widespread 

power outages (Sridhar et al, 2012, Aitel, 2013, Krotofil et al, 2014, Wooi Ten et al, 

2010). Unlike a physical attack, cyber attackers are capable of penetrating critical 

electric infrastructure from remote regions of the world, requiring only an Internet 

connection to gain pathways and install malware into the electric power grid’s control 

systems. Many efforts are underway to harden the grid from such attack (Hebert, 2013, 

Gent and Costantini, 2003, Bessani et al, 2008).  However, the integrated nature of the 

grid, which is based on centralized generation, but diffuse transmission, makes the 

entire system vulnerable to a concentrated attack, in contrast to a natural disaster that 

may have local or regional impacts. The U.S. Department of Homeland Security reports 

responding to approximately 200 cyber incidents in 2012 across critical infrastructure 

sectors, of which 41% involved the electrical grid (BPC, 2014). Economic impacts of a 

successful breach are estimated to cost $243 billion mounting to roughly $1 trillion in 

an extreme case (Dipietro, 2015). According to senior intelligence officials, various 
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nation states (e.g. China, Russia, North Korea) have made attempts to map current 

critical infrastructure for future navigation and control of the U.S. electrical system 

(WSJ, 2009). 

 

Due to such offensive efforts, several other countries, including the U.S., have added 

cyber-attacks into their current military defense preparations (Schainker et al, 2006). 

As cyber-attacks are becoming increasingly prevalent, it is necessary to recognize the 

unpreparedness of critical infrastructure operators. In 2008, the Federal Energy 

Regulatory Commission (FERC) alongside the North American Electric Reliability 

Corporation (NERC) implemented a mandatory Critical Infrastructure Protection 

(CIP) Reliability Standards program (Aradau, 2010). Then an Executive Order (EO 

13636) was implemented in 2013, in effort to address additional protection measures 

not listed in the CIP Standards program (Spina and Skees, 2013). Other proposed 

policy solutions to electric grid cyber vulnerability include better assessment of 

vulnerabilities and increased cyber security control through strong firewalls and 

monitoring systems [Chen et al, 2002, Bessina et al, 2008, Aradau, 2010). 

 

The technical community has recommended a more direct solution to all of these 

threats for some time: distributed generation and microgrids (Colson et al, 2011, 

Shahidehpour and Khodayar, 2013, Che and Shahidehpour, 2014). Microgrids allow 

the generation system to separate from distribution during disturbance events. The 

system maintains a high level of service and performance while decreasing the chances 

of cascading failures and enables distributed generation without grid redesign (Lasseter 
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and Paigi, 2004, Pearce, 2002), thereby making the entire grid more resilient. Solar 

photovoltaic (PV) systems, which generate electricity directly from sunlight (Pearce, 

2002), are an ideal distributed generation technology to provide power for such 

microgrids (Maity and Rao, 2010). PV costs have dropped significantly (Barbose et al, 

2014, Reichelstein and Yorston, 2013), due to technical evolution, large-scale 

manufacturing (Zweibel et al, 2008) and a substantial learning curve (Van Der Zwaan 

and Rabl, 2003, Nemet, 2006, Candelise et al, 2013). Coupled with current decreasing 

battery costs (DOE, 2013, Tesla, 2015), the transition to solar PV distributed generation 

microgrid systems can be highly economical (Chaurey and Kandpal, 2010, Abu-Sharkh 

et al, 2006, Su et al, 2014). 

 

The policy of how to implement such technical solutions has been given far less 

attention than would be normally considered adequate for a national security risk as 

demonstrated by the dearth in the literature as compared to more conventional national 

security threats. To address this threat, this paper investigates the technical and 

economic viability of utilizing defense contracting for a start of a national transition to 

distributed generation in the U.S.  First, the technical scale of electrical demand and the 

necessary solar PV system is analyzed in detail to meet the first level of strategic 

importance: the U.S. military. The current domestic geographic deployment of 

microgrid installations in the critical U.S. defense infrastructure is reviewed and 

compared to historical grid failures and existing and planned PV installations to 

mitigate that risk. Then the technical skills of the top 20 U.S. defense contractors is 

reviewed and analyzed for a potential contracting transition to grid fortification. Three 
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case studies are presented (Lockheed Martin, Bechtel, and GE) to demonstrate how this 

transition could take place. A cost sensitivity is performed and the potential revenue 

increase for the current defense contracts of the top 20 U.S. contractors for 2014 is 

presented. Then, each of the remaining levels the current grid vulnerabilities is 

summarized and policy recommendations are made to demonstrate a path to a secure 

and hardened U.S. electric system made up of PV-powered microgrids. 

 
 
 
2.2 Methods and Calculations 

 
 
Electric load data for fiscal year 2014 was obtained from the U.S. Energy Information 

Administration (EIA) for: (1) military, (2) government, (3) critical infrastructure 

(systems defined as electric power, natural gas/oil production, telecommunications, 

transportation, water supply, banking and finance, transportation, emergency and 

government services, and agriculture (Rinaldi et al, 2001), (4) industrial, (5) 

commercial, and (6) residential (EIA, 2015) to determine the scale of PV-powered 

microgrid fortification needed at each level of strategic importance. For level 1 

(military) facilities, the Department of Defense (DOD) Title 10 USC 2911 requires 

military operations to obtain 25% of energy generation from renewable energy 

resources by 2025 (GPO, 2011). Along with the DOD Title 10 USC 2911, the DOD 

implemented a secondary initiative of 3GW of renewable capacity by 2025 (DOD, 

2015). 

 

To determine the percentage of military facilities meeting national security thresholds, 

operational military bases (Army, Air Force, Navy, and Marine) were identified from 
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military databases (U.S. Army, 2015, U.S. Navy, 2015, U.S. Air Force, 2015) and 

cross-referenced with current Department of Defense solar renewable energy existing 

installations and upcoming projects (U.S. Army, 2015, U.S. Navy, 2015, U.S. Air 

Force, 2015). Information was tabulated to provide base location, PV installation 

capacity, and base population. 

 

Next, data on past major U.S. power blackouts were collected (Amin, 2005) and 

geolocated with the following data:  cost in damages, amount of states and customers 

affected, and the cause of blackout. Two shapefiles were obtained to analyze the 

national solar electrical security for strategic level 1 facilities: 1) a shapefile of the 

United States was obtained from the ArcGIS database (Fitzpatrick, 2012), 2) a point 

shapefile of 2015 military bases was obtained from the DOD (DOD, 2015). Power 

outage locations military bases were then transcribed to a map utilizing ArcMap 

version 10.3.1, and this geographic information systems (GIS) data was then overlaid 

with current military solar-PV installations to provide a map of national solar 

electrical security for strategic level 1 facilities. 

 

In order to gauge the difficulty in obtaining 25% (required by 2025), 50%, and 100% 

compliance with hardening of electrical security at these strategic level 1 facilities, FY 

2014 Federal spending budget was collected to determine funds allocated towards 

DOD federal contracting services. A list of the top 25 federal contractors was obtained 

from the Federal Procurement Data System and is arranged by the total federal 

contracting spending (and percentage) on services for each company for fiscal year 
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2014 (FPDS, 2015). Technical skills of three of the top 25 U.S. defense contractors 

(Lockheed Martin, GE and the Bechtel Group) is reviewed and analyzed for a 

potential contracting transition to grid fortification and case studies are presented. A 

cost sensitivity is performed and the potential revenue increase for the current defense 

contracts of the top 20 U.S. contractors for 2013 is presented. Then, reviewing policy 

relevant to military deployment of PV, policy recommendations are summarized to 

demonstrate a path to PV-powered microgrids for the necessary national security 

measures made possible by grid fortification. 

 
 
 
Nameplate capacity (Np) in GW for p=25%, 50%, and 100% solar PV generation is 

given by: 

 PC            

−6
 

 ( p∗C )             −6

N p =( f  )∗10 [ GW / kW ]=( f     )∗10 [GW / kW ]                                                                                        (1)

 

Where the percent capacity (PC) [MWH/day], is given by p is the percent calculated 

here for 25, 50, and 100% of the total capacity (C, in kWh/day from Table 1). 

Assuming that the average solar flux (f) in the U.S. is approximately 4.5kWh/m2/day 

for non-tracking flat plate PV tilted south at the latitude to optimize yearly energy 

production (NREL, 2015), the investment (I) sensitivity for 25%, 50%, and 100% solar 

PV generation was given by: 
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I = Npw [US$]                                                                                                (2) 

Where N is given by equation 1, and w is the cost per Watt, which ranges from 

$4.00/W to $0.50/W in 

$0.25/W increments. 

 
 
 
 

2.3 Results 
 

Historic Effects of U.S. Blackouts and Scale of Strategic Components 
Table 1 illustrates the impact of four major U.S. grid failures along with the number 

of states effected, economic damages, population affected, cause of grid failure, and 

average number of days without power. 

 
Table 1. Recent Major U.S. Power Blackouts. Compiled from (Andersson et al, 2005, 
Blake et al, 2013). 
Year Number 

of States 
Affected 

Affected 
Population 
(Millions) 

Costs (U.S. 
$ Billions) 

Cause Days 
without 
Power 

2003 8 50 6 Tree 
Trimming 

4 

2011 13 3 15 Early Snow 
Strom 

10 

2012 14 8.2 65 Hurricane 14 
2012 7 4.2 2.9 Wind 10 
 
Table 1 illustrates the electrical use for six levels of strategic importance. Data were 

obtained from the EIA for Fiscal Year (FY) 2013. Table 2 shows solar-PV capacity (in 

GW) required to provide 100% of the electrical needs by each military branch. 

Overall, to meet the electrical needs of the three branches, about 2,140 GW is needed. 

To put these values in perspective, the U.S. solar industry has installed a total 22.7 

GW of solar capacity across the U.S (SEIA, 2014). There are currently 216 microgrid 
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deployments across the U.S. with 1.948 GW renewable energy capacity (Saadeh, 

2015). This represents 0.09% of the U.S. total installed solar capacity. 

 
Table 2.  Electrical use size and calculated PV capacity for six levels of strategic 
importance in the U.S. for Fiscal Year 2013. 
 
Level Electrical Load Electricity 

Uses 
[MWH/day] 

Calculated PV 
to Meet 
Demand 
[GW] 

1 Militar 81399.4 16.3 
2 Government *  
3 Critical 

Infrastructure 
*  

4 Industrial 2620000 524 
5 Commercial 3720000 744 
6 Residnetial 3840000 768 
 
Military electrical use was obtained from the 2014 DOD Annual Energy Report 
(DOD, 2015), Electrical consumption for Industry, Commercial, and Residential 
sectors was obtained from (EIA, 2015). * Electrical consumption alone is not 
available for the Federal Government and Critical Infrastructure, but divisions of 
each are included in industrial and commercial values. 
 
The technical solutions to obtain compliance with hardening of electrical security at 

critical facilities is discussed below. For this review study, only level 1 (military base) 

loads are analyzed in more depth. 

 
Department of Defense 
The DOD operates over 300 military installations (not including air strips, outlying 

airfields, and training ranges) within the continental U.S. Of these, 27 active bases 

(9%) have implemented or have current plans to implement solar-PV systems for 

onsite renewable energy generation (Table 3). 

 
Table 3. Current Military Bases Solar-PV Systems 
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 Power (MW)* Population 
(Thousands)** 

Army   
Fort Benning 30` 110 
Fort Campbell 5 84 
Fort Carson 2 124 
Fort Detrick 15 10 
Fort Dix 0.8 7 
Fort Gordon 30` 94 
Fort Hood 1 322 
Fort Huachuca 17.2 33 
Fort Rucker 0.051 24 
Fort Stewart 30` 54 
Presidio 0.37 5 
West Point 0.56 10 
   
Navy   
China Lake 13.78 5 
Coronado 0.924 27 
Kings Bay 30 16 
Pearl Harbor 2.4 58 
Saufley Field-Pensacola 50` 14 
Holley Field- Whiting 40` 16 
   
Air Force   
U.S. AFA 6 7 
Davis-Monthan 16.4 16 
Edwards AFB 3.39 22 
Eglin AFB 30* 17 
Hill AFB 0.22 24 
LA AFB 0.36 5 
Luke AFB 15 12 
Nellis AFB 14.2 29 
   
Marine Corps   
Albany MC Logistics 46 23 
Twenty-Nine Palms 4.5` 58 
MC Air Station Miramar 0.204 12 
Barstow MCLB 1.2 2 
 

  * Data obtained from respective division databases (U.S. Army, 2015, U.S. Navy, 2015, 
U.S. Air Force, 2015). 
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** Data obtained from DOD Military Installations data bank represents proposals for 
upcoming solar PV generation capacities. 
` Future plans to increase current solar PV capacity. 
 
Following the renewable energy production mandates noted above, each branch 

generated individual renewable energy generation goals to improve efficiency and 

national security. For example, the Department of Navy plans to generate 50% of their 

electricity needs from renewable energy by 2020 (U.S. Navy, 2015) and the Army’s 

goal is 1 GW by 2025 (U.S. Army, 2015). By 2013, the DOD had 0.13GW of solar 

power up and running (SEIA, 2015) and by 2015, the DOD deployed 0.583GW of 

renewable energy with microgrids (Saadeh, 2015). Current solar energy generations 

for each military branch are as follows: Navy with 0.058GW, Army with 0.036GW, 

Air Force with 0.036 GW, and Marine Corps with 0.05194 (SEIA, 2015). With the 

addition of 0.12GW in upcoming solar projects (U.S. Navy, 2015, U.S. Army, 2015, 

U.S. Air Force, 2015), the U.S. DOD solar capacity accounts for only a small fraction, 

1.1%, of the current total U.S. solar capacity. This accounts for only a fraction (10%) 

of the 3GW solar capacity goal. 

 
Current Defense Vulnerabilities to Grid Failure 

 
The DOD is heavily reliant on the electrical grid; DOD operations and facilities’ 

electrical consumption is approximately 80% of total Federal energy consumption 

(DOD, 2015). Along with high energy costs, the DOD obtains a majority of its energy 

from foreign fossil fuels with vulnerable supply lines. Nearly all current bases are 

vulnerable to electricity generation disruption. Many bases are located within regions 

that have already experienced major power outages, as can be seen in Figure 2. 
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Extended power outages affect military operations: Failure in the electric grid renders 

equipment, weapons, and personnel defenseless to external attacks (U.S. Navy, 2015, 

U.S. Army, 2015, U.S. Air Force, 2015). 

 
Projected Solar PV Requirements for Military Grid Fortification 
 
Nameplate solar capacity was calculated utilizing previous DOD electrical demand 

(FY 2014). The varying percent capacities, 25% (required by 2025), 50%, and 

100%, represent the solar capacity necessary for the DOD to transition to grid 

fortification. The solar PV nameplate capacities are: N25=4.50GW, N50=9.04GW, 

and N100=18.09 GW. 

 
U.S. Military Microgrid Cost Sensitivity 

 
A cost-sensitivity analysis was performed to illustrate the expected costs of 

implementing a renewable energy policy or program for the U.S. DOD. Cost-

sensitivities were performed as a function of dollar per watt at each % capacity (25, 

50, and 100%). The linear curve begins at $4.00/W and decreases by $0.25/W until it 

reaches $0.50/W to reflect potential future market costs of a microgrid system (SEIA, 

2014). It should be noted here that these are projects as the cost of a large scale 

purchase of PV- powered microgrids on the order of tens of GW would benefit from 

considerable economics of scale both for the PV, storage system and any electronics 

or backup systems. 

 
Potential Microgrid Transition DOD Contractors 
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A list of funds allocated to the top twenty-five DOD contractors was compiled to 

gauge the potentiality of transitioning to a solar PV microgrid system. In FY 2014, 

the DOD awarded $286.41 billion, of total $526.6 billion (FY 2014) budget, in 

funds to 100 contractors (SEIA, 2014). The top 25 are listed in Table 4, with the 

top awardee, Lockheed Martin Corporation, receiving over US$25 billion. Bechtel 

Group Inc. was awarded almost US$2.5 billion, followed by General Electric 

Company with US$2.2 billion (SEIA, 2014). These three contractors were selected 

due to their existing penetration in renewable energy development programs and to 

illustrate existing specialized skills developed by defense contractors needed to aid 

the ease of transition to military grid fortification. 

Table 4. Top 25 Federal Defense Contractors by funding 
DOD Contractor Financial Obligation 

(USD) 
Number of 
Projects 

LOCKHEED MARTIN CORPORATION $25,065,461,247.84 18,634 
THE BOEING COMPANY $18,005,350,332.68 12,663 
GENERAL DYNAMICS CORPORATION $13,630,604,800.84 16,329 
RAYTHEON COMPANY $11,816,577,883.63 10,275 
NORTHROP GRUMMAN CORPORATION $9,213,821,365.01 10,194 
UNITED TECHNOLOGIES CORPORATION $6,117,086,747.69 9,296 
L-3 COMMUNICATIONS HOLDINGS INC. $5,288,631,065.98 8,499 
BAE SYSTEMS PLC $4,876,213,940.43 9,340 
HUNTINGTON INGALLS INDUSTRIES INC. $4,025,292,235.52 3,116 
HUMANA INC. $3,527,209,086.24 231 
UNITEDHEALTH GROUP INCORPORATED $3,203,771,598.01 243 

HEALTH NET INC. $3,086,459,475.28 129 
SAIC INC. $2,988,612,860.95 13,789 
UNITED LAUNCH ALLIANCE L.L.C. $2,519,158,433.33 89 
BECHTEL GROUP  INC. $2,476,019,275.51 153 
GENERAL ELECTRIC COMPANY $2,200,317,806.74 4,649 
BOOZ ALLEN HAMILTON HOLDING 
CORPORA- 
TION 

 
$2,166,187,575.84 

 
4,507 

EXELIS INC. $2,105,471,497.30 2,583 
BELL BOEING JOINT PROJECT OFFICE $2,018,971,983.94 2,859 
HEWLETT-PACKARD COMPANY $1,766,447,587.13 42,041 
MCKESSON CORPORATION $1,663,708,861.81 16,139 
ROYAL DUTCH SHELL PLC $1,606,631,098.63 489 
TEXTRON INC. $1,584,800,612.37 3,717 



 40 

GENERAL ATOMIC TECHNOLOGIES 
CORPORA- 
TION 

 
$1,577,207,888.26 

 
707 

 
Data was collected from the FY 2014 Federal Procurement data system (FPDS, 2015). 

The report includes the top 100 DOD contractors. 

 

Many current DOD contractors already have a proven capacity for designing, building 

and commissioning PV-powered microgrids. Here, three cases studies of companies 

that currently contract with the U.S. military on renewable energy projects and thus 

have demonstrated capacity for these projects are reviewed in order to clarify the 

ability of defense contractors to provide these services to the U.S. military. These 

companies were selected only to demonstrate the vast array of all defense contractor’s 

potential to bid on U.S. military solar PV research and development projects. 

 
Lockheed Martin Corporation 
Lockheed Martin, a global security and aerospace company that provides a plethora of 

services to the DOD, has a Microgrid Development Center to improve efficiency, 

reliability, and security of microgrid systems. A demonstration project was 

implemented at Fort Bliss with expectations to decrease energy consumption by 20% 

(Lockheed Martin, 2013, U.S. Army, 2013). Along with microgrid systems, Lockheed 

Martin has launched several solar power projects, including a back-up generation and 

storage unit for Fort Bliss. Lockheed Martin currently receives 8.7% funding of the 

total DOD Federal contracting budget. This amount of funding is significant when 

compared to the costs of U.S. military grid fortification. Even if this amount is held 

constant and shifted to microgrid deployment, as can be seen in Figure 3, Lockheed 
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could fortify the entire U.S. military electrical infrastructure in a single year of 

expenditures if the system costs can be reduced to US$1.50 or less. 

 
  General Electric Company 
GE provides, among its diverse portfolio of electric energy technologies, clean energy 

technology and solutions, and has been involved in solar PV research for decades. 

More recently, GE has evolved to provide funding for solar projects as well as 

partnering with solar manufacturers to bring realized solar projects to customers. GE 

worked with DOD to develop a demonstration microgrid project at the Twentynine 

Palms Marine Corps Base. GE has opened the door to DOD installations, partnering 

with SunPower to build a 14.2 MW solar-PV system on the Nellis Air Force Base 

(Kwartin, 2011, GEC, 2015). General Electric currently receives 0.8% funding from 

the DOD Federal contracting budget. 

 
Bechtel Group Inc. 
Bechtel Group is a worldwide engineering, construction, and project management 

company, with expertise in infrastructure, defense and security, and power. A leader 

in nuclear fuel for over 70 years, Bechtel has introduced renewable technologies into 

their engineering profile. Bechtel has completed three major solar generating 

facilities across California, each above 100 MW capacity, delivering power to a 

collective 275,000 homes (Bechtel, 2015). Bechtel currently receives 0.9% funding 

from the DOD Federal contracting budget. 

 

The DOD awards approximately $30 billion (10.4%) of the DOD Federal 

contracting budget to these three companies annually. Even using a relatively 
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conservative cost figure of US$4.00/W for an installed system of approximately 

18GW, these three companies working together could complete 100% U.S. military 

grid fortification in less than 2.5 years of current funding allotments. More 

realistically, such a massive infrastructure project would need to be spaced out over 

several years to control costs. Figure 4 illustrates a hypothetical model to fund 

compliance with 100% solar PV generation microgrids for U.S. military installations 

over 10 years. It should be noted the careful balance that must be determined 

between limiting costs by extending the installation period and maintaining military 

grid vulnerability for an extended time and the effects on national security interests 

is left for future work. The figure demonstrates projected financial obligations 

necessary to design and deploy renewable energy installations (utilizing Lockheed 

Martin, GE, and Bechtel Inc. as an example) to meet 100% solar PV capacity by 

2025. 

 
 
 
2.4 Discussion 
 

This study found the lack of electrical grid security poses significant risk to critical 

infrastructure systems. This section will discuss results that point to a need for 

increasing the U.S. military’s electrical system resilience. The limitations of the study 

are included along with proposals for necessary future studies. Policy suggestions are 

included to assist the U.S. military’s transition to aggressive solar PV generation. This 

review unveils one potential avenue to the military could take to improve components 

of national security, energy security, and energy costs. 
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Expanding U.S. Military Electrical System Resilience 
There are significant threats of natural disaster, physical attack, and cyberattack to the 

U.S. electrical grid, as previously noted. Failures in the power system can result in 

detrimental supply shortages, economic impacts (Arianos et al, 2009) and social costs 

(O’Brien and Hope, 2010). It is important to design resilient infrastructure systems to 

recover service levels in a timely manner (Avritzer et al, 2015) and address mitigation 

of these extreme events (McDaniels et al, 2008). Resilient technological systems are 

flexible, robust, prepared for change, and are essential to prosperous development of 

society (Marshall et al, 2007). Electrical system technology must improve, to provide 

increased energy security by preventing cascading grid failures (Ang et al, 2015). 

 
The majority of military bases are still connected to the U.S. electrical grid and the 

vulnerable nature of the grid poses a serious threat to national security as personnel, 

daily operations, weapons, and essential equipment can be compromised in a power 

outage (U.S. Army, U.S. Navy, U.S. Air Force, 2015). The DOD spends billions of 

dollars in annual energy costs with the current electrical system model (DOD, 2015). 

The DOD can transition to a more resilient system by installing decentralized 

automated microgrids primarily powered with solar PV at a one time, up front cost. 

This cost can be spread out over several years of deployment. If this is done, the cost 

of implementing solar PV installations will likely decrease because of the aggressive 

and protracted PV learning curve (Van der Zwaan and Rabl, 2003, Nemet, 2006, 

Candelise et al, 2013). It is important to note that regardless of the deployment 

schedule these upfront costs will be recouped within a few years from avoided annual 
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energy expenditures. The economics of this scale of deployment is left for future work 

as the focus of this study in on enhancing national security. Once disconnected, 

military base microgrids can provide sufficient generation by supplying enough 

energy to meet their electrical load and remain islanded in the event of grid failure 

(Katiraei et al, 2008). Additionally, with appropriate planning, military bases can 

extend grid protection to surrounding communities. In the event of a power outage, 

military solar PV powered microgrids can act as a backup system and export surplus 

power to surrounding communities, helping regional resilience to grid disruption. 

 
During times of low solar insolation, military operations still require power, and thus 

military microgrids will require adequate storage. Battery technology has been 

advancing rapidly, and now higher energy density (700Wh/l) storage with Li-ion is 

beginning to dominate. However, theoretical energy densities point to future 

improvements with nanostructures and new materials using abundant materials such 

as LiS (2600Wh/kg) and Li-air (11,000Wh/kg) technologies (Amine et al, 2014). 

Along with these technological advancements, battery costs are dropping, with 

current costs being between $600-1,000/kWh, and the DOE expects them to fall 

further to reach $225/kWh in 2020 and $150/kWh in the longer term (DOE, 2013). 

Economies of scale will also factor into future battery prices, especially with Tesla’s 

increased battery manufacturing plans through its GigaFactory, which plans to 

produce 500,000 batteries a year starting 2017 (Tesla, 2014). Shortly, battery packs 

(like the Power Wall), which will be ideal modular storage building blocks, are 

expected to be available for $350/kWh for home use (Tesla, 2014).  Until Tesla 
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batteries become available at the scale needed for the U.S. military, one temporary 

solution is the use of hybrid renewable energy systems to improve system efficiency 

and energy supply reliability (Erdinc and Uzunoglu, 2012). More specifically, 

military installations can use combined heat and power (CHP) systems. During these 

low solar influx times, a CHP system turns on to maintain constant load (Pearce, 

2009)  sufficient to cover even the most dynamic loads (e.g. a single family 

residences) (Nosrat et al, 2013, Shah et al, 2015). Although the economics of hybrid 

PV+CHP+battery systems are attractive (Aishwarya et al, 2016), CHP systems, are 

still subject to supply chain disruptions of the fuel source and should only be 

considered as temporary solutions. In addition, it is advisable to reduce loads as 

much as possible by instituting energy efficiency measures (as have been successful 

in the past at military bases) (NREL, 2015) and look at the potential for passive solar 

retrofits, which for example have worked for Department of Navy, creating energy 

savings (Wray and Miles, 1981, DOD, 2004). Although thermal savings are not 

directly equivalent to electric load demand reductions, they do result in savings, for 

example, from reduced blower loads. 

 
The DOD mandates 25% renewable generation by 2025, along with a goal of 3GW 

across three branches. In Fiscal Year 2014, the DOD spent $18.2 billion on all energy 

expenditures (DOD, 2015). A significant fraction of these operating expenses would 

be offset  by the capital expenditure of a PV- powered microgrid. Roughly 54% of 

the DOD budget is allocated to DOD contracting. As can be seen from the results, 

utilizing current skills of top defense contractors, the DOD could shift funds to 
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convert to 100% solar-PV microgrid systems across Army, Navy/Marine Corps, and 

Air Force military bases, resulting in decreased costs. The remaining budget excess 

could be allocated to further harden energy security. The DOD can submit request 

for proposals (RFPs) to current DOD contractors that include research into optimal 

physical and cyber protection of solar-PV microgrid farms. 

 
Limits of Study and Future Work: 
The military is the first line of strategic importance for energy security. The results in 

this paper show that the overall expense is manageable within existing total budgets, 

but more granular estimates of costs are needed. A major limitation to this study is lack 

of data to calculate, on a case-by-case basis, solar PV generation capacity. Detailed 

work is needed at each installation to determine the optimal solution for each base, 

which must take into account appropriate available areas for solar collection, current 

and future load profiles in small time steps and potential to reduce loads with energy 

efficiency retrofits. More precise and accurate estimates on the cost of PV-powered 

microrid system are needed at the GW scale, where, for example, industrial symbiosis 

benefits (Pearce, 2008) are likely to occur. Careful ramping up of scale could produce 

templated (or even open source (Buitenhuis and Peace, 2012)) designs that could be 

replicated in the future at much lower costs than the first round of demonstration 

systems. In addition, this analysis focused only on domestic DOD facilities and thus it 

should be expanded to all DOD facilities internationally. 

 

Future work must address the feasibility of converting energy generation to a 

renewable solar source to meet the needs of critical infrastructures beyond military 
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facilities addressing the other strategic areas shown in Figure 1. It is important to note 

that total Federal Government and Critical infrastructure electrical use is missing from 

the data set (Table 2) and future work is needed to quantify those values for strategic 

planning purposes. After this data is acquired, the additional loads and thus systems 

sizes for other government facilities would again increase the total scale of such 

systems, helping to attract more competition for contracts and better economies of 

scale on prices for both the defense and non- defense wings of the U.S. government. 

 
Policy 
Renewable energy policy in the DOD is still in its infancy, as Title 10 USC 2911 was 

implemented only in 2011 (GPO, 2011). The DOD partnered with the Department of 

Energy and the National Renewable Energy Lab to develop renewable energy 

technology to cut costs, provide energy security, and comply with DOD mandates 

(NREL, 2012). The DOD provides awards for research through the Strategic 

Environmental Research and Development program and energy projects through the 

Environmental Security Technology Certificate Program to fund military penetration 

into the renewable energy market (DOD, 2015). A majority of current PV at military 

bases are grid-tied, and the majority of the power generated leaves DOD facilities 

through power purchase agreements. There are limited policies in place to facilitate a 

transition to a dominant renewable energy generation system. Incentives to go off grid 

to owning, operating, and generatig DOD’s own capacity through distributed 

microgrid technology would allow the military independence, reliability, and energy 

efficiency.  Due to the critical nature of electrical power for the DOD policies should 

be examined to 1) minimize DOD electrical use by increasing efficiency wherever it 
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would not hamper operations, 2) on the shortest time line possible transition to 

distributed PV-powered microgrid systems domestically wherever technically feasible. 

Policies to either increase DOD contractor rates to accomplish these two goals or shift 

current allotments to these priorities should be investigated both for DOD 

infrastructure domestically, but also internationally. Additional funding opportunities 

could be obtained by reforming allocation of funds. Chief of Naval operations, 

Admiral Jonathan Greenert and Chief of Staff General, Raymond Odierno argue the 

military is required to spend millions on unnecessary equipment and machinery 

(Carter, 2015, Cox, 2015). The equipment accrues additional storage and maintenance 

costs. Suspending earmarked legislation would also provide funds to use for military 

solar PV development and implementation (Thornberry, 2015, Bucci et al, 2015).  It is 

well recognized that prioritization of defense contractor spending is a difficult task, 

but one that must occur while considering microgrids for U.S. military installations in 

order to achieve a better fortified electrical system. 

 
2.5 Conclusions 
 

The technical community recognizes the lack of electrical grid security and risks posed 

to critical infrastructure systems. Cascading grid failures elicit threats to national 

security, economic damages, and disruption to critical infrastructure systems. This 

paper compared the current geographic deployment of military installations to 

historical grid failures. A review of current solar-PV penetration into United States 

Military bases illustrates the potential to mitigate future power outages by (1) 

maintaining an independent energy source and (2) providing a backup of surplus 
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energy supply to civilians. The scale of electrical energy consumption and solar PV 

system necessary to meet electrical needs was analyzed for the United States Military. 

A minimal number of military bases have introduced solar PV systems to operate 

military operations, leaving large room for growth. A cost sensitivity was performed to 

estimate costs and potential savings in energy expenditures if the military transitions to 

100% solar-PV energy generation. Three of the top 25 defense contractors were 

reviewed due to their penetration in renewable energy generation markets. These 

companies represent U.S. defense contractors’ potential to respond to bids to complete 

solar PV research and development projects. The DOD can utilize a number of 

defense contracting companies technical skills to facilitate a national transition to 

renewable distributed generation microgrid systems. The technical and economic 

viability of this transition from the results of this review, indicate the DOD should 

investigate allocation of additional funds or shifting funds to utilize top defense 

contractors to begin a national transition to distributed solar PV generation. As the 

calculated costs of solar PV microgrid systems are a one-time upfront cost, the DOD 

can easily allocate funds across contracting companies, over ten years to meet 100% 

distributed renewable generation (rather than 25%) compliance by 2025. The military 

can evolve their energy system to protect national security, provide energy security, 

and decrease energy costs. 
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Figure 1. Interdependency of infrastructure systems and electrical grid. Data 
compiled from literature on critical infrastructure industries [7, 9, 12, 14, 21, 22]. 

 
 
 

  
 
 

Figure 2. Map of United States Military Bases with Solar-PV systems in 
historically vulnerable blackout zones. 

 



 60 

 
 
Figure 3. Total installation cost sensitivity as a function of installed cost and percent PV 
capacity on U.S. domestic military bases. Estimated solar PV costs were calculated as a 
function of cost per watt from $4.00-$0.50 reflecting current and expected market 
values for each percent capacity: a=25%, b=50%, c=100%. 
 

 

 
Figure 4. Total financial obligation spread across 10 years to design and deploy 100% 
solar PV capacity system. Total was calculated using US$72.4 billion (as a function 
of US$4.00/W in Figure 3. Projected DOD allocations include: US$ 6.29 billion to 
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Lockheed Martin, US$579 million to General Electric Co., and US$652 million to 
Bechtel Inc. each year for ten years. Total current obligations for the three companies 
totals $30 billion per year, reaching $300 billion after ten years. 
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Abstract: Adopters of residential PV systems are often conceptualized as sustainable 

consumers, meaning they are viewed as likely to be both environmentally motivated and 

economically advantaged. Conceptualizing the sustainable consumer as motivated by 

individual environmental values and mobilized through availability of individual 

economic resources fails to consider how the sustainable consumer is spatially and 

temporally situated within a particular policy context. By applying a logistic regression 

model to predict residential PV adoption in Michigan, this study attempts to examine 

regulatory and policy differences in utilities and the ways individual socioeconomics are 

contextualized via these utility policy contexts. This paper contributes to a broader 

conceptualization of energy policy as an issue of import for considerations of social 
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justice, as these structural economic and utility policy factors that shape PV adoption 

point to issues of procedural injustice, suggesting a need to include a procedural justice 

framework in the energy decision-making process. 

Keywords: solar energy; PV technology adoption; electric utilities; energy justice  

3.1 Introduction 

Solar photovoltaic (PV) technology is a popular and promising source of 

renewable energy production (Greenberg, 2009). Solar photovoltaic technology converts 

sunlight into electricity and it can be developed at various scales, from centralized utility 

scale plants to small-scale distributed systems. Distributed solar power refers to energy or 

electricity that is produced near the customers who use it, for example, rooftop or ground 

mounted installations (Pepermans et al, 2003). Solar radiation is widely abundant, yet 

both utility scale and residential solar PV adoption lags behind solar PV technology 

development (Reece, 1979, EIA, 2010). One reason for the relatively low rates of 

adoption of distributed residential solar is the high initial capital cost to purchase and 

install home PV systems (Branker et al, 2011, Borenstein, 2015).  

In recent years, however, the solar market has seen expedited growth along with 

dropping system costs (SEIA, 2016). Overall, the U.S. solar market saw an annual growth 

rate of 60% between 2006 and 2016 (SEIA, 2016), which corresponds to the 2006 

passage of the Solar Investment Tax Credit (ITC). However, utility scale solar PV 

installations represent 74% of solar installed capacity (GW) in 2015 (SEIA, 2016).  

Residential solar PV saw its largest growth rate of 66% between 2014 and 2015 

(SEIA, 2015) through mechanisms such as increased producer competition that facilitates 

decreasing costs and improved customer awareness of alternative energy options 
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(Sherwood, 2011). U.S. residential solar PV installations reached 1.1 million homes in 

2015 (SIA, 2016). The total solar market forecast is expected to grow 119% in 2016, with 

utility scale systems leading the way (SEIA, 2016).  

 Utility scale PV systems result in substantial monetary savings compared to the 

construction of conventional fossil fuel production facilities (IEA, 2010, IRENA, 2014). 

However, residential distributed generation has many uniquely valuable qualities 

(Borenstein, 2015). These include the evident increasing cost-effectiveness of residential 

PV compared to utility sourced electricity (Kantamneni et al, 2016), contributions to 

climate change mitigation through reduced carbon emissions (Heidari and Pearce, 2016), 

and energy security achieved through localized generation (Lovins, 1976; 1977; 1978; 

Schelly and Banerjee, 2016; Kantamneni et al, 2016).  

 In many states, residential solar technology is made possible through multiple 

ownership structures that include customers with diverse economic backgrounds 

(Rabago, 2013). These include owner financing (consumer purchase of residential solar 

PV system), third party ownership (solar lease or power purchase agreement with utility) 

(Davidson et al, 2014), the property tax assessment model (Coughlin and Cory, 2009), or 

monetizing the value of solar renewable energy credits creating monetary influx that can 

be used to repay solar loans (Coughlin and Cory, 2009). California, New York, 

Massachusetts, and Washington D.C., among others, instituted a solar initiative to fund 

solar energy (both PV and thermal) to customers on fixed or low incomes (Browning et 

al, 2016). These are only a few financial options that allow residents to lower the upfront 

financial burden associated with solar PV installations. Finally, policies can provide 

incentives to residential consumers that result in compensation for excess generation 
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(Rabago, 2013). While these policies present options that promote increased development 

of residential solar PV, limitations for expansion do exist. Government policies and 

falling investment costs can either facilitate or hinder widespread solar PV adoption 

(Bahadori and Nwaoha, 2013). High investment or capital costs may still play a role in 

limiting residential solar PV adoption if government policies fail to provide financial 

incentives for residential renewable projects (Bazen and Brown, 2009).  

Adopters of residential PV systems are often conceptualized as sustainable 

consumers, which means they are viewed as likely to be both environmentally motivated 

and economically advantaged. However, thinking about adopters as sustainable 

consumers fails to conceptualize them as actors spatially and temporally situated in a 

policy context. Policy here is used specifically to refer to policies that shape the PV 

adoption context, including the utility rates and regulations set by state policy as put forth 

by agencies such as state public service or public utility commissions. Utility rates, which 

are set by state regulatory policy, become meaningful to actual energy users only in the 

context of energy expenditures, more specifically the percentage of income dedicated to 

meeting energy provision needs. Therefore, this paper examines the extent to which 

utility structures operate as policy contexts, how utility type represents the kinds of 

requirements via renewable portfolio standards (RPS) or Public Service Commission 

(PSC) regulation utilities face, how utility type is related to income, and how utility rates 

become meaningful through a measure of energy expenditure via energy poverty. These 

measures allow us to situate the PV adopter in a utility policy context to understand the 

extent to which these local utility policy factors matter for predicting and shaping PV 

adoption at the residential scale.  
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This paper thus contributes to further understanding the motivations of residential 

PV adopters by situating them within a particular regulatory and policy context. This 

paper also contributes to a broader conceptualization of just energy policy, as these 

structural economic and utility policy factors that shape PV adoption point to potential 

issues related to procedural justice (Sovacool et al, 2013, Sovacool and Dworkin, 2014, 

Kramer and Tyler, 1996), suggesting the need to develop a procedural justice framework 

in the energy decision-making process. There is an established link between poverty and 

political disenfranchisement (Naples, 1998, Shipler, 2004), which illustrates a procedural 

injustice (MacCoun, 2005, Maguire and Lind, 2003) in energy policy decision-making 

because people who are living in energy poverty are less likely to have access to both the 

long term cost saving provided via PV adoption and are less likely to have access to 

influencing policy decision making processes. Given the role of situated policy context in 

shaping PV adoption, specifically the significance of energy poverty, these issues of 

procedural social justice should be considered when it comes to utility rate decision 

making and consideration of policies that would make savings on energy costs via solar 

PV leasing programs more accessible. Recommendations are made to facilitate policy 

decision making at the state level to further diversify Michigan’s renewable energy 

portfolio through residential PV adoption and to address issues of procedural injustice in 

utility regulatory regimes that shape possibilities for residential PV use.  

 

3.2 Background and Review 

From 2013-2015, Michigan fell from 32nd to 34th in a national state ranking of 

solar PV adoption levels (SEIA, 2016). This is despite the 2008 Michigan legislation 
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Public Act 295, a renewable portfolio standard program that requires utility companies to 

obtain 10% of electrical generation from renewable sources by 2015. While most 

Michigan utilities have far surpassed this goal, and done so with lower costs than 

expected, critics argue Michigan’s renewable portfolio standard is among the weakest in 

the nation (Institute for Energy Innovation, 2015). A component to P.A. 295 is net 

metering, which allows customers who wish to install an on-site renewable energy 

system to obtain compensation for any net excess generation. However, some utilities 

operating in the state are no longer allowing net metering access, based on interpretation 

of the regulatory provision provided by the state RPS (Maloney, 2016). Further, some 

Michigan residents pay utility rates that are very high, compared to US residents 

everywhere except Hawaii, given the complicated regulatory and geographical context in 

which electricity is supplied (EIA, 2014, MPSC, 2013; see Figure 1 below). This policy 

context makes the state a unique case study for studying PV adopters, as the regulatory 

environment first promoted and now works to limit the benefits of adoption, while the 

variation in utility rate pricing means that PV adoption creates differential amounts of 

long term savings via self-generation for state residents in different regions.  

The analysis here builds on previous analyses of structural and value-oriented 

factors and their ability to predict solar adoption in the U.S. (Zahran et al, 2008; Schelly, 

2010). Previous work focuses on solar thermal technology, as the US Census only 

collects information about solar technology used for water heating. However, as solar 

electric PV adoption becomes more widespread, data accessibility is improving, allowing 

for investigation into the predictors of residential PV adoption. Data regarding individual 
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net-metered PV installations is now available from the state of Michigan, although is not 

available for all US states.  

PV adopters are often viewed as environmentally motivated and economically 

secure enough to commit large upfront investments costs for PV installation (Zahran et 

al, 2008; Schelly 2010, and Kwan, 2012). In this way, they are often conceptualized as 

similar to other sustainable consumers (Truffer et al, 2001, Faiers and Neame, 2006). 

Utilizing the adoption and diffusion of innovations theory, several studies model the 

diffusion of solar power systems as they relate to attributes of the technology and the 

individual’s inclination towards acceptance of solar (Kaplan, 1999, Labay and Kinnear, 

1981, Velayudhan, 2002). The early adopting sustainable consumer is someone who 

incorporates improved social and environmental performance into his or her purchasing 

choices (Belz and Peattie, 2009). Gilg et al (2005) discuss three dimensions that 

ultimately help to characterize a “green” or sustainable consumer (2005). These include 

(1) environmental values and concerns, which focus on individual values that are strongly 

linked to considering the natural environment as extremely significant in someone’s life 

(Steel, 1996), (2) psychological factors, i.e. personal attitudes, sustainable consumption 

behaviors, and their impacts (Azjen and Fishbein, 1973, Heberlein, 2012), and (3) socio-

demographic variables, such as age, sex, education, political affiliation, and wealth that 

contribute to sustainable consumption (Hines et al, 1987).  

There is a large body of scholarship on the link between individual behaviors 

perceived as environmentally responsible, individual personal values, and variables 

related to individual political orientation (Van Liere and Dunlap, 1980, Lorenzoni et al, 

2005, Dunlap, 2008, Blankenkau et al, 2008, Kwan, 2012). Particularly in the U.S. 
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context, where environmental issues are highly polarized (Dunlap, 2016, McCright et al, 

2014, Gershtenson et al, 2006, Dunlap et al, 2001), individuals are not likely to engage in 

behaviors that are perceived as environmentally responsible if they do not identify with 

the politics of environmentalism (Gromet, Kunreuther, and Larrick, 2013; Goldstein et al, 

2008). Thus, the link between political orientation, environmental values, and behaviors 

perceived to be environmentally responsible is fairly well established, and is often 

conceptualized in terms of the sustainable consumer. In this study, the link is captured via 

a measure of political voting behavior; given the highly polarized context regarding 

environmental issues in the U.S. (Dunlap, 2016) and the framing of PV as an 

environmentally responsible technology (Schelly, 2014a), political behavior is used as a 

proxy measure to capture the relationship between individual values and adoption. 

 

Hypothesis 1: Zip codes with a higher Republican voting percentage will result in lower 

likelihood of adopting solar PV    

 

The sustainable consumer is also often characterized in terms of structural factors 

such as socio-demographics. The sustainable consumer must be economically secure 

enough to have income to expend on products considered to be more environmentally 

sustainable, which are often more expensive. In the case of residential PV adoption, while 

there are options for leasing panels and thus decreasing or eliminating the upfront costs, 

these options are not available in the case study state of Michigan, USA. Thus, it is 

consistent to view economic wellbeing as a predictor for residential PV adopters in 

Michigan, as they can be conceptualized as sustainable consumers who have the 
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expendable income to invest in sustainable electricity generation. The literature 

surrounding purchasing behaviors, including that reviewed above, suggests that socio-

demographic factors contribute to sustainable consumption (Gilg et al, 2005).  

Characteristics of a sustainable consumer include a higher education when 

compared to other consumers. Education provides an avenue to expand knowledge about 

the environment and technology. Increased education also results in a variety of job 

opportunities with higher income. Education has been indirectly but positively linked to 

income (Ganzeboom et al, 1992, Martinez et al, 1998). Higher education and wealth tend 

to align with characteristics found in sustainable consumers (Dunlap, 1975, Hines et al, 

1987). Median home value can be used as a general measure of disposable income. It has 

also been shown that sustainable consumers tend to be homeowners. This suggests the 

importance of using a home value measure (Gilg et al, 2005). Employment provides the 

economic means to purchase goods, including residential PV technology. Unemployed 

individuals in the U.S. receive only a tiny fraction of the monetary benefits when 

compared to working individuals (BLS, 2016). Thus, higher rates of unemployment result 

in a lower means for purchasing solar PV.  

 

Hypothesis 2: Higher education levels result in higher odds of adopting solar 

Hypothesis 3: Higher rates of home ownership and higher home values result in higher 

odds of adopting solar 

Hypothesis 4: Higher unemployment rate results in lower odds of adopting solar 

 



 71 

Yet the characterizations of a sustainable consumer listed above do not consider 

the policy context (i.e. federal, state, or local regulations and policies) in which a 

consumer chooses alternative technological development. Policy functions to influence or 

determine the behavior of a system, organization, or individual (Lewis, 2007, Collins et 

al, 2003). Governments utilize policy tools, legislation, regulations, sanctions, and 

incentives (Briggs, 2007) to influence behavior and societal outcomes. The purpose of 

this study is to interrogate the extent to which understandings of the sustainable consumer 

are improved by placing PV adoption decisions within a spatially and contextually 

specific policy context.  

Michigan energy policies are designed and implemented by a public utility 

commission and the state legislature. The Michigan Public Service Commission (MPSC) 

regulates investor-owned utilities. MPSC responsibilities include establishing utility 

rates, ensuring utilities provide reliable and adequate services, and ensuring fair 

conditions of service for utility customers. Regulated utilities can request approval from 

the MPSC to increase utility rates to compensate a rise in business costs. Municipal (city-

owned) and cooperative (member-owned) utilities set rates through elected board of 

directors. In most cases municipal and cooperative utilities are not regulated by the 

MPSC. In this study, utility rates are used as a proxy for energy policy context. As utility 

rates rise, individuals may search for alternative electrical options to help offset high-

energy costs (Sahu, 2008). Michigan residents (particularly in the Upper Peninsula) pay a 

higher (on average) utility rate for electrical services (see Figure 1 below). Residents may 

seek out alternative options (i.e. solar PV), to combat these high costs (see Kantamneni et 

al, 2016). 
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Hypothesis 5: Higher utility rates results in higher likelihood of adopting solar 

 

Further, we examine how utility rates become meaningful for consumers via 

utility expenditures as a percentage of income. Electricity provides individuals within a 

household a comfortable living space. In some instances, homes are unable to maintain a 

level of comfort, and are defined as living in fuel poverty. Fuel poverty is a calculation 

based on a household’s energy expenditure as a fraction the household income (Liddell 

and Morris, 2010). The World Health Organization defines the fuel poverty threshold as 

10%: any household that requires 10% or more of their income to meet their energy 

needs is in fuel poverty (Boardman, 1991, WHO, 2005). Households living in fuel 

poverty have limited means to purchase a residential solar PV system. Alongside this, 

those living in fuel poverty are unequally represented in energy and electricity 

discussions (Sovacool and Dworkin, 2014).  

State legislature and public utilities have the power to enact policies to make solar 

PV accessible to everyone. Yet there is a large discrepancy between existing legislation 

in states with growing residential solar adoption and those without. This is especially true 

in Michigan with the absence of state solar PV incentives such as tax exemptions, tax 

credits, or solar PV rebates (DSIRE, 2016). Arguably, policies should be targeted to 

address issues of procedural injustice (Sovacool et al, 2013), so that those living in fuel 

poverty can benefit from the distributed generation provided by residential PV 

technology. However, given the current policy context, we hypothesize that fuel poverty 

within a particular zip code will be associated with lower PV adoption rates.  



 73 

 

Hypothesis 6: As fuel poverty within a zip code increases, there will be a lower likelihood 

of solar PV adoption in those zip codes.  

 

 Conceptualizing the sustainable consumer as motivated by individual 

environmental values and mobilized through availability of individual economic 

resources to expend fails to consider how the sustainable consumer is spatially and 

temporally situated within a particular policy context. This policy context arguably is also 

likely to matter for shaping the decision to adopt residential PV technology (Schelly, 

2014a; Schelly, 2014b). This paper aims to understand residential PV adoption in 

Michigan in terms of the role of the established individual values and structural economic 

factors, but also in terms of the utility policy factors that create a situated context in 

which homeowners make decisions, including decisions about PV adoption. This study 

attempts to demonstrate how utility policy factors function to affect the sustainable 

consumer.  

This paper contributes to further theorizing of the sustainable consumer by 

considering the relative significance of local utility policy and utility context in predicting 

residential PV adoption, considering regulatory context as a system of provision 

(Spaargaren, 2003) that shapes the decision making of homeowners considering enacting 

their values as sustainable consumers via installation of solar technology. Findings do 

confirm that while solar PV adopters generally have individual values and economic 

correlating with sustainable consumption, the policy context (specifically operationalized 

here in terms of a descriptive analysis of utility type and an applied logistic regression 
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model considering utility rate and utility rate as made meaningful via fuel poverty) within 

which sustainable consumers make decisions also shapes solar PV adoption. Utilizing the 

findings from this study, Michigan energy policy can evolve to provide solar PV adoption 

opportunities to all Michigan residents, addressing issues of procedural injustice 

(Sovacool et al, 2013) and ultimately increasing the state’s use of distributed renewable 

energy resources.     

   

3.3 Data and Methods 

The data source for the dependent variable of PV adoption is the 2014 Michigan 

Public Service Commission net metering report. This is an annual report on net metering 

data collected from Michigan electric providers. As per Rule 20 (3), Michigan electric 

providers must submit information regarding their net metering customers, size of 

system, type of renewable technology, when they joined the net metering program, and 

geographic location (county and zip code level). This report also provides information 

based on utility type and utility rates.  

Voter information was obtained from the Michigan Secretary of State for the 

percent Republican variable construction (see below). Population estimates were obtained 

from the 2010 U.S. Census Bureau. Data on median income, median home value, 

unemployment rate, and education for Michigan zip codes was obtained through the 2014 

American Fact Finder reports through the U.S. Census Bureau. Finally, the average 

monthly electric bill in the state, used to calculate an estimated fuel poverty level for each 

Michigan zip code, was obtained from the 2014 Energy Information Administration 

report.  



 75 

The independent variables utilized in the analysis include voter information, 

education, median income, median home value, unemployment rates, utility rates, and 

fuel poverty (see Table 1). As noted above, education and home value are highly 

correlated with and represent indirect measures of income; education functions to 

influence the level of income and home value represents a measure of disposable income. 

Therefore, income was not included in the statistical regression model. Further, income 

only becomes meaningful in lived context, including contextual factors such as cost of 

living, including costs of utility rates; thus, leaving it out of the regression model is 

consistent with the argument being made here regarding the spatially contextualized 

policy factors that shape PV adoption. In this paper, income is used descriptively to 

consider the relationship between utility type as a measure of utility regulation and 

income, further demonstrating how income becomes a lived reality when applied to cost 

of living, more specifically, utility rates.  
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Table 5. Comparison of Means 

Variable 
Solar above or 

below mean 
N Mean 

Standard 

Deviation 

Percent Republican Above 

Below 

 

93 

504 

53.7% 

51.3% 

10.34% 

15.7% 

Education Above 

Below 

93 

504 

17.2% 

23.9% 

13.2% 

14.9% 

Home Value Above 

Below 

93 

504 

$118,431.87 

$129,603.19 

$70,669.03 

$61,088.80 

Unemployment Above 

Below 

93 

504 

11.7% 

11.4% 

7.5% 

5.5% 

Utility Rates Above 

Below 

93 

504 

$0.14/kWh 

$0.14/kWh 

$0.017/kWh 

$0.018/kWh 

Fuel Poverty Above 

Below 

93 

504 

2.8% 

2.4% 

1.7% 

0.9% 

 

 

Variable Construction  

To create the dichotomous dependent variable used in this study, PV adoption 

data were normalized. To normalize, the number of solar customers (MPSC, 2014) was 

taken as a percentage of the total population of each zip code (U.S. Census, 2010). The 

dependent variable is dichotomous and was recoded to (0) below mean adoption and (1) 

above mean adoption (SD=0.69). Mean adoption by zip code in the state of Michigan is 
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0.18%, meaning that the average level of adoption in each zip code is less than 2% of all 

households. The dichotomous dependent variable is defined based on zip copes with 

residential solar PV installation rates below and above this mean adoption level. 

A political orientation variable was used to address hypothesis 1. Michigan voter 

information from the 2014 state general election (SOS, 2015) was utilized to create 

percent Republican for each zip code. Average percent Republican for Michigan zip 

codes was 52.2% (SD=15.18%). To create the percent Republican variable, data were 

compiled from the Secretary of State Precinct Voter information online table. The 

number of individuals who voted for the Republican candidate for State Governor was 

normalized by population to create a variable of the percentage of the Republican voters 

in each zip code.    

Education was included to address hypothesis 2 and was defined as the percent of 

the population with a bachelor’s degree or higher. Average education for Michigan zip 

codes was 22.9% (SD=14.9%). Median home value was included in the logistic 

regression model to addresses hypothesis 3. Average median home value was 

$127,950.17 (SD=$62,683.93). Average unemployment rate for each Michigan zip code, 

11.5% (SD=5.9%), was included to address hypothesis 4. Utility rates were included to 

address hypothesis 5. Rates range from $0.10/kWh to $0.21/kWh, averaging roughly 

$0.14/kWh (SD= $0.02/kWh, see Figure 1 below).  

A measure of fuel poverty was calculated to address hypothesis 6. This is a 

measure of percentage of income spent on electricity. The average yearly Michigan 

electric bill, $1,134.24 (EIA, 2016), was used to determine the percentage of each zip 

code’s median income expenditures on electric bills.  A community lives in fuel poverty 
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if their electrical expenditure exceeds 10% of household income (Boardman, 1991). The 

average level of fuel poverty within Michigan is 2.5% (SD= 1.1%), meaning that a 

majority of Michigan residents are not defined as living in fuel poverty.  Only one zip 

code (48411 in Michigan lives in fuel poverty, 18.15%).   

 

Maps: Utility Rates and Solar Customers 

Data on utility rates for each zip code was collected from the 2014 MPSC report. 

A shapefile of Michigan zip codes was obtained from the ArcGIS database (ArcGIS, 

2016). Average Michigan utility rates (investor-owned, municipal, and cooperative) were 

geolocated with zip codes and transcribed using ArcMap version 10.4.1. 

 Data on number of solar PV adoption customers was collected from the 2014 

Michigan Public Service Commission report (2014 report). A shapefile of the Michigan 

zip codes was obtained from the ArcGIS database (ArcGIS, 2016). Total population of 

Michigan zip codes was obtained from the U.S. Census Bureau (U.S. Census, 2010). 

Dividing the number of solar PV customers by population in each zip code normalized 

total number of solar PV customers. This normalized data was then geolocated with 

Michigan zip codes. The data were then transcribed utilizing ArcMap version 10.4.1 to 

provide a map of percent above and below the average solar PV customers in each 

Michigan zip code.  

 

Analysis 

The final number of zip codes with solar PV adoption is 598 rather than 680. 

Some zip codes were omitted due to the lack of a residential population. In some 
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instances, a zip code showed solar PV adoption for a 20kw or less system that belonged 

to a small business, but within a zip code with no reported population. In other cases, a 

zip code was omitted if it had a renewable installation, but was something other than 

solar PV (i.e. wind or hydro). A logistic regression was conducted to determine the odds 

of the independent variables influencing the dependent variable. The results of the 

logistic regression test are discussed below. The results described below include a 

descriptive representation of utility types and the economic stratification of their 

customers, the GIS representation of PV adoption in Michigan, and the logistic regression 

analysis.  

 

3.4 Results 

The three main types of utilities in Michigan include (1) investor-owned, (2) 

cooperative, and (3) municipality. Investor-owned utilities service a larger number of zip 

codes compared to cooperative and municipal utilities combined. Municipal and 

cooperative utilities are not-for-profit entities and can structure their utility rates 

independent from the MPSC. Descriptive statistics illustrate the relationship between 

utility type as a means of representing utility regulatory regimes and the economic 

wellbeing of customers as illustrated by average incomes. An aggregate average median 

income is included for each utility type in Table 2.  
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Table 6. Frequency and aggregate average income of utilities in Michigan zip codes.  

Utility type Frequency (number 

of zip codes) 

Aggregate Average Income 

Investor Owned 471 $54,702.99 

Cooperative 97 $43,608.51 

Municipal 30 $26,704.97 

 

Figure 1 illustrates utility rate variation across the state of Michigan. As shown by 

the map, high utility rates (above the average $0.14/kWh) are concentrated in the Upper 

Peninsula and southeastern region of the Lower Peninsula. The utility rates correspond to 

utilities that service these particular areas. Average median income in the Upper 

Peninsula is $50,331.67, compared to $58,100.88 in the Lower Peninsula. This spatial 

representation demonstrates that geographies with the highest utilities rates make on 

average less than those living in regions with lower, below average utility rates. 

Furthermore, this spatial representation does not fully capture the extreme variation in 

rates across the state; while the state average in Michigan is higher than the US average 

rate,3 customers of the IOU operating in the Upper Peninsula currently pay $.27/kWh,4 an 

extremely high rate that is particularly meaningful in the context of low regional median 

incomes.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 https://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_6_a, 
accessed October 19, 2016.  
4 See http://www.dleg.state.mi.us/mpsc/electric/download/rates1.pdf, accessed October 
19, 2016.  
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Figure 5: Utility rate variation by Michigan zip code   

 

 

Figure 2 illustrates the normalized solar PV adoption for each zip code in 

Michigan. As shown by the map, solar PV adoption is concentrated in mid to eastern 

regions downstate. This correlates to the concentration of individual wealth in the state 

but not to the geographies with the highest utility rates. This is consistent with previous 

literature on the relationship between individual wellbeing and ability to adopt PV 

technology, supporting hypothesis 3 that zip codes with higher wealth will have a higher 

likelihood of PV adoption. The map shows lower PV adoption in areas of higher utility 

rates, contradicting previous literature as well as hypothesis 5. In the Upper Peninsula, 
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roughly 0.07% of zip codes, compared to the Lower Peninsula’s 0.14% of zip codes, are 

above the mean adoption rates.  

 

 

 

Figure 6: Geography of Household Solar PV Adoption in Michigan  

 

 

Table 3 reports the summary model for the logistic regression analysis. The 

analysis indicates that the variables percent Republican, education, median home value, 

and fuel poverty were significant predictors. This means that hypotheses 1 and 3 are 

confirmed, while hypotheses 2 and 6 are significant, but not in the hypothesized 

direction. Unemployment (hypothesis 4) and utility rates (hypothesis 5) were 

insignificant predictors in this model.  
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Table 7. Logistic Regression Output Summary Model  

Variable B S.E. Nagelkerke 

R-squared 

Percent Republican 0.049* 0.013  

Education -0.076* 0.018  

Median Home Value <0.001 <0.001  

Unemployment Rate -0.011 0.030  

Utility Rates 10.880 2.539  

Fuel Poverty 0.582* 7.065  

   0.170 

*p-value<0.05 

 Each unit increase in the percent Republican within a zip code decreases the odds 

of moving from the “0-below mean” to “1-above mean.” Each unit increase in education 

level resulted in a 0.076 level decrease in solar PV adoption. For median home value, for 

each unit change, the odds of moving from below average adoption to above average 

adoption is small but significant. Finally, a one-unit increase in fuel poverty results in a 

0.582 level increase in PV adoption.  

Zip codes with a higher percentage of republicans result in lower PV adoption, 

supporting the notion of environmental values in a sustainable consumer. Higher 
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education resulting in lower PV adoption suggests a unique case in Michigan. Median 

home value results are supported by previous literature. The directional change in 

adoption levels due to fuel poverty suggests consumer’s motivation to invest in solar PV, 

despite being the appearance economically disadvantaged. Overall, these results illustrate 

political orientation and certain socioeconomic factors predict solar PV adoption in 

Michigan. 

 

3.5 Discussion 

Results of this study support previous research on the sustainable consumer by 

demonstrating that the factors political orientation and median home value are significant 

in predicting residential PV adoption in predicted directions. In the US context, 

individuals with a Republican political orientation tend to favor balancing environmental 

protection with strong economic development (Dunlap, 2008); other research has found 

that Republicans generally support the development of renewable technology, but not at 

the expense of the economy or investment by tax payers (Lyon and Yin, 2010). The 

findings here suggest that political polarization (Dunlap, 2016) continues to shape 

identification as a sustainable consumer and the context of PV adoption. Median home 

value was statistically significant, also aligning with previous literature of sustainable 

consumer characteristics. 

Education was significant but in an unexpected direction, contradicting previous 

literature of characteristics of the sustainable consumer. Perhaps education has a different 

affect specifically in the state of Michigan. Some studies suggest conceptualizing 
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education as a barrier to technological adoption has only marginal effects (Uematsu, 

2010, Mwangi et al, 2015).  

In the logistic regression model presented above, the fuel poverty predictor was 

significant. A majority of Michigan zip codes do not live in fuel poverty; however, the 

relationship was still significant in the model. Yet the model contradicted the 

hypothesized relationship, that higher fuel poverty results in lower adoption. Perhaps the 

calculation of fuel poverty may not be capturing real fuel poverty levels in Michigan. 

Alternatively, residents in higher fuel poverty zip codes may take advantage of the net 

metering opportunity provided as part of the P.A. 295, contributing to this positive 

relationship. This is clearly an area for future research, as it demonstrates that the lived 

policy context as made meaningful through utility expenditures does correlate with 

residential PV adoption decisions, but in ways not yet fully understood.  

 

3.6 Conclusion and policy implications 

The weak to moderate overall strength of the regression model presented above 

indicates the potential role of other factors that may have more explanatory power. 

Variables not captured in the statistical model include other values-oriented variables, 

specific beliefs and attitudes towards solar PV, differences between seasonal and 

permanent residents, and other spending characteristics of zip codes (i.e. mortgage 

payments) that deplete disposable income stores.   

There are potential ways to improve the fuel poverty variable constructed for this 

analysis. Fuel poverty was calculated from the average Michigan electric bill and median 

income of each zip code. A more accurate depiction of fuel poverty in Michigan can be 
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created from individual utilities average monthly bills. When contacted individually via 

phone, some utilities indicated they do not collect this type of data.  

The results point to several areas for future research. One avenue would be to 

employ surveys, questionnaires, and/or interviews geared at obtaining information from 

homeowners. Building on this research would provide insight into the energy decision-

making process among Michigan residents.  

As stated above, policies function to influence behavior at a system, organization, 

local, or individual scale. The sustainable consumer has the economic means and 

environmental values to support residential PV technology, and this paper hypothesized 

that high utility rates would operate as a policy context to further encourage solar 

adoption. However, the utility rate predictor was insignificant in the regression analyses. 

Yet looking into how utility rates shape the lived experience of electricity by considering 

the relationship between utility expenditures and incomes (see Figure 1 and Table 2) 

suggests a need for further research into the contextualized policy factors that either help 

or hinder the renewable energy transition.  

Michigan’s lack of renewable state incentives represents situation of policy lock-

in, a term describing a system that perpetuates conventional practices, more specifically a 

continued reliance on policies that support fossil fuels (Unruh, 2000). Michigan’s RPS 

program attempts to promote renewable energy adoption and development at a system 

level, yet there are minimal incentives to lessen the burden of upfront solar PV system 

costs at the individual level. As a result, sustainable consumers who wish to adopt solar 

PV technology are hindered by the policy system in place in Michigan, or are prevented 

from doing so, either because of lacking economic resources or particularly by the policy 
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barriers for those consumers living in territories serviced by utility that are no longer 

allowing net metered installations (Maloney, 2016).   

These results also speak to a procedural energy injustice in Michigan renewable 

energy policy. Procedural justice considers fairness of the processes used in the decision 

making process (Kramer and Tyler, 1996). A second component includes the step beyond 

decision making to implementation of projects or policies. Under procedural justice, all 

individuals should have equal representation and equal opportunity for consideration in 

the decision making process (Shrader-Frechette, 2002). Yet in most cases, those with 

higher wealth have stronger bargaining capacity in decision-making (Sovacool and 

Dworkin, 2014). Communities, populations, or individuals with lower incomes or living 

in fuel poverty may not have access to meaningful participation in Michigan’s energy 

decision-making process. If equal access to participation is difficult, it is important to 

ensure proper representation in energy decision-making.  

Energy policies set by the state legislature and public utilities commission 

determine how easy accessible PV adoption is in each state. A first step to improve the 

solar PV market in Michigan would be an incremental increase to Michigan’s RPS 

program. Many other states incrementally increase their renewable energy targets with 

success (California, Massachusetts, Washington, to name a few) (DSIRE, 2015).  

Yet a RPS program is only one component of a state’s successful clean energy 

policy. Including state incentives can greatly expand renewable energy adoption 

(Menanteau, 2003, Butler and Neuhoff, 2008, Johnstone et al, 2010). Michigan currently 

does not have state incentives in the form of tax credits, tax exemptions, solar rebates, or 

programs to facilitate solar PV adoption for low-income consumers. Providing incentives 
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at the state level will ensure increased solar PV and other renewable energy adoption 

levels. Finally, providing alternative ownership structures extends solar PV accessibility 

beyond those with the individual economic means for adoption. Owner financing, third 

party ownership, property tax assessment model, or monetizing the value of renewable 

energy credits via solar installation are all possible models. Yet these options do not 

always extend to low or fixed income households.  

One option is to include targets for low and fixed income customers in state 

renewable energy policy portfolio mandates, by partially or fully funding household 

solar. Funding for this option could come from Michigan’s energy optimization 

surcharge, utility renewable energy funds strictly used for low-income solar PV 

installations, or community cooperative initiatives.  

 This paper attempted to understand the role of utility policy factors in 

contextualizing potential influences on solar PV adoption. Implementing a procedural 

justice framework can attempt to close the gaps found in information exchange, full 

participation, and adequate representation in the energy decision-making process. 

Without specific procedural justice considerations, certain Michigan populations will 

continue to be dominated by high utility costs and the lack of state renewable incentives 

that support residential solar PV adoption. 
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Abstract 

Poor air quality from coal combustion adversely impacts human health including 
mortality and morbidity effects on respiratory, cardiovascular, nervous, urinary, and 
digestive systems. However, the continued use of coal are no longer necessary to provide 
for society's electrical needs because of advances in solar photovoltaic (PV) technology. 
In order to inform health policy this paper reviews the data for quantifying the lives saved 
by a replacement of U.S. coal-fired electricity with solar PV systems. First the geospatial 
correlation with coal fired power plants and mortality is determined for the U.S. at the 
state level. Then, current life cycle mortality rates due to coal combustion are calculated 
and current energy generation data is collated. Deaths/kWh/year of coal and PV are 
calculated, and the results showed that 51,999 American lives/year could be saved by 
transitioning from coal to PV-powered electrical generation in the U.S. To accomplish 
this, 755GW of U.S. PV installations are needed. The first costs for the approach was 
found to be roughly $1.45 trillion. Over the 25 year warranty on the PV modules the first 
cost per life saved is approximately $1.1 million, which is comparable to the value of a 
human life used in other studies. However, as the solar electricity has value, the cost per 
life is determined while including the revenue of the solar electric generation using a 
sensitivity analysis on the value of the electricity. These results found that for most 
estimations of the value, saving a life by offsetting coal with PV actually saved money as 
well, in some cases several million dollars per life. It is concluded that it is profitable to 
save lives in the U.S. with the substitution of coal-fired electricity with solar power and 
that the conversion is a substantial health and environmental benefit. 

5	  The	  material	  contained	  in	  this	  chapter	  has	  been	  submitted	  to	  Renewable	  and	  
Sustainable	  Energy	  Reviews	  
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4.1 Introduction 
 

Coal combustion for electrical generation not only contributes to high levels of 

carbon dioxide emissions (Sims et al, 2003, Markandya and Wilkinson, 2007, Lockwood 

et al, 2009) with the concomitant climate disruption (Lockwood et al, 2009, Weisser, 

2007, Fenger, 2009, Gohlke et al, 2011), but also to conventional air pollution (Fenger, 

2009, Epstein et al, 2011). Coal fired electrical power plants released 23% of air 

pollutants [8] and the largest contributors to U.S. carbon dioxide emission is electrical 

generation (31%)  (EPA, 2014). While coal use is declining due to natural gas resources 

and renewable energy growth (Reboredo, 2015), coal combustion still accounts for 

roughly 30-40% of U.S. carbon dioxide pollution, contributing to ever-expanding climate 

change (Lockwood et al, 2009).  Air pollutants are classified into four groups: gaseous, 

persistent organic, heavy metals, and particulate matter (Kampa and Castanas, 2008). The 

literature shows a positive correlation between mortality and morbidity due to outdoor air 

pollution (Curtis et al, 2006, Hendryx, 2007, Hendryx and Zullig, 2009, Yim et al, 2012). 

Specifically coal combustion results in emissions of carbon dioxide, methane (gaseous 

pollutants), particulate matter, nitrogen and sulfur oxides (gaseous), and mercury (heavy 

metal) (Markandya and Wilkinson, 2007, Weisser, 2007, Epstein et al, 2011, Curtis et al, 

2006, Gaffney and Marley, 2009, Smith et al, 2013, Finkelman et al, 2002, Melod and 

Johnston, 2015). Poor air quality, from coal combustion is well known to adversely affect 

human health including: mortality and morbidity effects on respiratory, cardiovascular, 
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nervous, urinary, and digestive systems is summarized in Table 1.  This paper will focus 

on mortality due to emissions from coal-fired electrical generation. 

 

 

 
Table 8. Major health effects from coal combustion emissions. 
 

 
Medical 
Condition 

Estimated 
Affected  
Individuals*  

Coal 
Emissions  
Responsible  

Respiratory 
 
 
 
 

   
Asthma 22.9 million NOx, PMx* 
Chronic 
Obstructive    
  Pulmonary  
  Disease 12.1 million NOx, PMx 
Lung Cancer 159,217* PMx 

Cardiovascular 
 
 
 
 

   
Heart Attack 7.9 million PMx 
Congestive Heart  
   Failure 5.7 million PMx 
   
   

Neurological 
 
 
 
 

   

Ischemic Stroke 104,000 
NOx, PMx, 
SO2 

Developmental  
   delays 637,233 Mercury70 

   
   

*Estimated affected individuals include both mortality and morbidity rates. PMx 
(particulate matter) encompasses particulate matter size between 2.5 and 10 micrometers. 
NOx (nitrogen oxide) (Lockwood et al, 2009, Kampa and Castanas, 2008, Curtis et al, 
2006, Hendryx, 2007, Clancy et al, 2002). 
 

A full life cycle accounting of coal reveals an estimated $523.3 billion in damages 

(including social and environmental externalities), which is roughly $0.27/kWh generated 

(Epstein et al, 2011). Thus, the externalities of coal-fired electricity are more than double 
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the average cost of residential electricity in the U.S. of $0.12/kWh (EIA, 2016). Although 

coal is detrimental in all stages of its life cycle, combustion is the stage with the heaviest 

health burden (Gaffney and Marley, 2009) in the form of mortality and morbidity effects 

due to outdoor air pollutants/emissions.  

 Most research devoted to addressing issues of coal degraded air quality has 

focused on mitigation of coal plant emissions using regulations and mechanisms such as 

cap and trade through permits (Stavins, 2008), which are vigorously opposed by the coal 

industry (Stavins, 1998). These mechanisms decreased some gaseous pollutants by 

targeting sulfur and nitrogen oxides through a cap and trade regulatory policy (EPA, 

2013). Particulate matter (absorbed through inhalation and ingestion) and carbon dioxide 

(impacts climate processes) continue to pose severe risks (Smith et al, 2013, O’Neill et al, 

2012). Particulate matter is directly linked to increased mortality due to lung cancer and 

respiratory disease (Curtis et al, 2006, Gohlke et al, 2011).  

 Fortunately, the continued use of coal and the required complicated emissions 

controls are no longer necessary to provide for society's electrical needs because of 

advances in renewable energy sources such as solar photovoltaic (PV) technology (Sims 

et al, 2003, Weisser, 2007, Pearce, 2002). PV produces no emissions or generate liquid or 

solid wastes during use and has a well-established environmentally-friendly ecological 

balance sheet (Pearce and Lau, 2002, Fthenakis et al, 2006, Fthenakis et al, 2008, Evans 

et al, 2009, Fthenakis and Kim, 2011, Solangi et al, 2011). Integrating rooftop solar has 

potential to provide 39% of the total U.S. electrical generation (Gagnon et al, 2016) and 

with the potential to build solar farms on unused tracks of land (Nguyen and Pearce, 

2010), transitioning to solar PV has potential to replace coal as an energy source entirely 
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(Zweibel et al, 2008, Duan et al, 2016). Thus, by replacing coal-fired electricity with PV-

generated electricity there is an expected decrease in air and waste emissions (e.g. 

greenhouse gases and air pollution particulates) that affect overall air quality and would 

be expected to improve human health. However, how significant this health impact would 

be is not known. 

 In order to inform health policy this paper will quantify the American lives saved 

by a complete elimination of the domestic coal industry with the scale up of solar PV 

systems. First the geospatial correlation with coal fired power plants and mortality is 

determined for the U.S. at the state level. Then, current life cycle mortality and morbidity 

rates due to coal combustion are calculated and current energy generation data is used to 

determine the current lives saved by PV and the increase in U.S. PV installations to 

replace coal-fired electrical generation entirely. Then, American deaths/kWh of coal and 

PV per year are calculated, enabling health policy analysts to determine the number of 

lives currently saved by existing PV production and the potential for eliminating all 

premature deaths from coal combustion in the U.S. The first costs for the approach is 

calculated per lives saved over the life time of the PV systems. Finally, the cost per life is 

determined while including the revenue of the solar electric generation using a sensitivity 

analysis on the value of the electricity. Public health impact results and policy 

interventions are discussed. 

 

4.2 Methods 

 Coal-fired electricity emissions (EIA, 2010) were geolocated in the U.S to 

illustrate the geospatial relationship between coal emissions related mortality. Two 
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shapefiles were obtained from the ArcGis database to analyze current air pollution due to 

coal-fired electrical production in the United States: (1) a shapefile of the U.S. 

(Fitzpatrick, 2015), and (2) a shapefile of the current U.S. coal electrical plants (ArcGIS, 

2014). This data was then transcribed on a map utilizing ArcMap 10.3.1 to indicate 

potential areas for PV penetration. Then annual mortality due to coal emissions per 

100,000 people was added to the map (Schneider and Banks, 2010).  

Total U.S. electrical generation was obtained to quantify the percentage of kWh 

produced by coal and solar PV in the U.S. (EIA, 2013). Current U.S. solar penetration 

data was obtained to provide for the baseline of PV lives saved now and in order to 

calculate the amount of PV needed to replace coal-fired electrical generation entirely. 

Current solar PV penetration has reached roughly 27.4 GW (SEIA, 2015). This aggregate 

of solar PV produces 2.32x107 kWhrs/year (EIA, 2016). 

 In order for PV to completely eliminate coal, the total DC rated power of PV 

needed, ST, is calculated as follows: 

 

𝑆! =
!!

!×!"#
∗ 10!!  [GW]        

 (1) 

 

where CT is the total amount of coal-fired electricity produced per year (1.32 

x1012 kWh/year) (EIA, 2016), and I, which is measured in kWh/m2/day,  is the population 

weighted average U.S. peak sun hours per day that represents solar flux for solar PV 

generation and is determined by:  
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𝐼 = !!!!
!!

!"
!!!  [kWh/m2/day]       

 (2) 

Where Ps is the 2015 population of each state (U.S. Census, 2015), Is is the 

average solar flux in each state (NREL, 2007), and PT is the total 2015 U.S. population. I 

was found to be 4.79 kWh/m2/day.  

The contribution to mortality was quantified utilizing secondary sources for coal 

(Hendryx, 2007, Hendryx and Zullig, 2009,Cohen et al, 2005, Hendryx, 2008, Penney et 

al, 2009) and PV (Fthenakis et al, 2006, Fthenakis and Kim, 2011, Fthenakis and Chul-

Kim, 2007, Hirschberg et al, 2004).  A quantification of emissions throughout the entire 

life cycle of coal was necessary to determine the average U.S. number of premature 

deaths per year, Fc. The coal-fired electricity life cycle is divided into four components: 

extraction, transport, processing, and combustion (Epstein et al, 2011). The solar-

photovoltaic system life cycle is divided into 5 components: mining, purification, 

manufacturing, operation, and recycling (Fthenakis et al, 2008).  Waste, in the form of 

emissions, is calculated at each stage of the technologies life cycle and is aggregated.  

 Thus, the electricity generation death rate for coal, rc is given by: 

 

𝑟! =
!!"
!!

           [American deaths/kWh/year]     

 (3) 
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where DTC   is the total number of deaths due to coal fired electrical emissions, 

which is 52,000/year (Caiazzo et al, 2013).  

The electricity generation death rate for solar photovoltaic technology, rPV, is 

given by: 

 

𝑟!" =
!!"#
!!"#

      [U.S. deaths/kWh/year]     

 (4) 

 

where the total energy generated by PV, ETPV is 2.32x107 kWh/year (EIA, 2016) 

or 2.65x10-3 GW-year/year. The total deaths per year due to PV is more challenging to 

determine. For thin film amorphous silicon PV the value is currently zero based on the 

limited number of cases in the U.S. Environmental Protection Agencies Risk 

Management Program database (Fthenakis et al, 2006). The actual values of deaths from 

other PV materials is similarly not available. To remain conservative, the values for 

crystalline silicon-based PV will be estimated based on the values from a material used 

weighted number of deaths from chemical accidents in the larger chemical industry 

involving listed hazardous substances that are also used in solar cell or PV module 

manufacturing (e.g., AsH3, PH3, SiHCl3, H2Se, HF, HCl, SiH4). This provides less than 

10-4 deaths per GWyr, which is far safer than coal (Fthenakis et a, 2006, Fthenakis and 

Kim, 2011). The DTPV, deaths per year from PV, is currently amounts to 2.648x10-

7deaths/year (e.g. far less than 1).  
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The total lives (L) saved per kWh of solar PV electricity production offsetting 

coal-fired electrical generation is given by: 

 

𝐿 = 𝑟! − 𝑟!"     [U.S. lives saved/kWh]   

 (5) 

  

 

Utilizing current industrial PV costs, P, of $1.92/W (U.S. DOE, 2014), the first 

cost per life, CFL,  saved by purchasing a PV system to offset coal use nationally is 

calculated as follows: 

𝐶!" =
!!×!"!

!
!"×!

!!"×!!
    [First cost $ invested/U.S. lives saved in PV 

lifetime] (6) 

   

Where ST x 109 is total solar in GW converted to W, and Fc represents the number of 

fatalities due to coal combustion emissions per year and lpv is the lifetime of the PV. 

However, unlike conventional health policy interventions that only have a first cost, this 

policy would also generate revenue, which must be taken into account, which allows for a 

cost per life, CL, over a specific period, T: 

𝐶! 𝑇 =
!!×!"!

!
!"×! ! !!×!×!

!×!!
  [$/U.S. lives saved over T years] 

 (7) 
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Where v is the $/kW-hrs of the PV generated electricity replacing all of coal. A 

sensitivity analysis is run on v and to avoid complications the energy cost escalation rate 

is assumed to track with inflation. 

4.3 Results 

 

There is a clear correlation between annual mortality due to coal emissions and the 

geographic locations of coal-fired power plants in the U.S. as can be seen in Figure 1.  

Dense regions of mortality are correlated with high coal-fired electrical emissions in the 

central and northeast of the U.S. Emissions from coal-fired electricity total 1.57x109 

million metric tons in 2013 (EPA, 2014).  

 

 

Figure 7. Coal fired electricity facilities located in the U.S. and the annual mortality due 

to coal emissions per 100,000 people in each U.S. state. 
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Using equations 1 and 2, to completely replace coal-fired electricity would require 755 

GW of solar PV. As the death rate from coal is 3.9393939x10-8 deaths/kWh from 

equation 3 and that of PV is 1.14x10-14 deaths/kW-hr from equation 4. It is clear that 

from a human mortality standpoint PV is far safer than coal produced electricity. This is 

quantified in equation 5, which provides 3.9393927x10-8 lives saved per kW-hr as the 

respective death rates are 6 orders of magnitude larger for coal than PV. If the entire U.S. 

coal fired electricity production were switched to PV production. This would result in 

51,999 American lives saved per year.  

 

Installing 755GW of PV in the U.S. at $1.92/W (DOE, 2014), would cost the U.S roughly 

$1.45 trillion dollars. Following equation 6 and using a 25 year warranty on the PV 

modules as the lifetime this results in a first cost per American life saved of roughly $1.1 

million per life. However, there are several complicating factors, first the output 

efficiency of PV modules degrades with time. For most technical studies this has been 

shown to be 0.5% per year degradation rate or less and that is what is used in PV 

economic studies (Campbell et al, 2008, Branker et al, 2011). The warranty for PV and 

its effective lifetime is set at 25 years, although it is clear the real lifetime of the PV 

would be much greater than that. In general the 25 year warranty for PV guarantees the 

PV power is performing at 80% of the initial rated power or better. Thus, to remain 

conservative these factors both decrease and increase cost per life respectively, they have 

been assumed to roughly cancel out and be ignored. The far more important complicating 

factor of using PV replacement of coal as a public health policy measure is the value of 
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PV-generated electricity. Using 25 years again and equation 7 the cost per life varies 

substantially depending on the value assigned to the electricity as seen in Table 2, which 

ranges from over $1.1 million per life saved if the electricity has no value, through coal 

generation with zero value placed on externalities (IER, 2012), and net metering through 

various scenarios (EIA, 2016), the calculated value for solar (Farrell, 2014) to -$4.6m per 

life saved if the residential retail rate is used in an isolated rural community (Kantamneni 

et al, 2016). 

Table 9. The Value of solar PV-generated electricity and the impact on the cost per life 

saved. 

Method of Valuing Solar 

Electricity 

US$/kWhr Solar PV US$ 

value/year 

Cost per Life 

(US$/life) 

No value 0 0 $1,115,076 

Coal generation only [57] $0.0323 $4.26 x1010 $295,153 

Net metering industrial [58] $0.068 $8.98 x1010 -$611,077 

Net metering commercial [58] $0.1050 $1.39 x1011 -$1,550,308 

Net metering residential [58] $0.1261 $1.66 x1011 -$2,085,923 

Value of Solar Minnesota [59] $0.145 $1.91 x1011 -$2,565,693 

Net metering Houghton, MI 

[60] $0.2273 $3.00x1011 -$4,654,847 

 

4.4 Discussion 
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Although, Figure 1 illustrates areas of high emissions due to coal-production, it is 

important to note that air pollution can be dispersed through the air and affect regions at 

large distances from the source (Fenger, 2009, Yim and Barrett, 2012). Carbon dioxide 

indirectly results in premature death due to climate change events and according to WHO 

analyses, climate change is expected to cause 250,000 additional deaths per year between 

2030 and 2050 (Lockwood et al, 2009, Stoppato, 2008). Decreases in sulfur dioxides 

results from burning “clean coal”, washing coal, and utilizing scrubbers to chemically 

remove sulfur dioxide from coal burning smokestacks, resulted in decreasing sulfur 

dioxide levels from 15.7 m tons in 1990 to 10.2 m tons in 2005 (EPA, 2005). This was 

completed through cap and trade-based policy. The EPA issued control standards under 

clean air act, which includes NOx, SO2, and PMx. Decreases in particulate matter may not 

be correlated with decreased mortality as there is no well-defined safe threshold for 

particulate matter (Curtis et al, 2006). Particulate matter made up of smaller particles, 

which travel deep into respiratory tract and become lodged permanently (Buhre et al, 

2005). Thus, despite improvements coal emissions remain a significant threat to mortality 

rates in the U.S. This paper found that a large number of premature deaths, about 52,000 

in the U.S. due to coal-fired emissions during electrical generation, could be eliminated 

by a conversion to PV-based electrical generation.  

To accomplish this national health benefit the amount solar PV needed to mitigate 

premature death due to coal-fired electrical production was 755 GW. 755GW is a 

significant increase over current U.S. PV penetration levels (27.4GW). Thus, only 3.6% 

of the PV necessary to prevent the current life loss from coal pollution is available. It 

should also be pointed out that there are some lifecycle emissions from PV (Epstein et al, 
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2011, Fthenakis et al, 2008, Fthenakis and Chul-Kim, 2007, Sherwani et al, 2010). 

However, the full life cycle of PV produces a fraction of the carbon dioxide equivalent 

emissions when compared to coal (Fthenakis et al, 2008, Stoppato, 2008, Katzenstein and 

Apt, 2009). Air pollution throughout full life cycle of PV tends to vary with materials 

used during manufacture and mining (Sherwani and Usmani, 2010), however, the 

negative environmental impacts of PV generally involve accidental operation error 

(Hernandez et al, 2014, Turney and Fthenakis, 2011). In summary, the substitution of 

coal-fired electricity with solar power is a substantial health and environmental benefit 

and clear path towards a more sustainable state (Pearce, 2002). 

This study made several estimations to obtain these values, which should be 

pointed out. First, the population-weighted average of solar flux was used to determine 

the energy generation rather than a detailed analysis of the geographic variation of PV 

production potential across the U.S. For the purposes of this study the error introduced 

with this method is small, but more detailed studies on both the rooftop PV potential 

(Wiginton et al, 2010, Nguyen and Pearce, 2012, Kodysh et al, 2013) and the solar farm 

(Nguyen and Pearce, 2010) and even agrivoltaic (Dupraz et al, 2011, Dinesh and Pearce, 

2016) potential, would provide a more granular (e.g. including shading losses) estimates 

for decision makers (e.g. at the state or community level). Second, the premature deaths 

from coal related emissions are actually conservative. This study provided analyses of 

only the combustion step in coal electrical generation in the United States. To capture the 

full scope of mortality rates in the U.S., analyses must be expanded to include the full life 

cycle of coal; this includes sectors other than electrical (industry, manufacture of 

synthetic fuel, or manufacturing steel) that utilize coal. Other externalities exist for coal, 
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including land use, water pollution, natural resource depletion, habitat destruction 

(Tsoutsos et al, 2005). These uncertainties must be quantified for both coal and solar PV 

to determine accurate measure of lives saved by replacing one electrical generation 

source for another.  However, it is clear from the results that the potential American lives 

at stake, which can be saved by a policy intervention is warranted that encourages more 

rapid deployment of PV.  

Performing a similar analysis at a global scale could be of use to policy makers 

and the United Nations to satisfy Sustainable Development Goal #7: Ensure access to 

affordable, reliable, sustainable, and modern energy for all (UN, 2016), while 

significantly reducing global lives sacrificed to current coal combustion. Current global 

outdoor air pollution is concentrated in developing nations due to continued increase of 

coal use (Finkelman et al, 2002). As a result, larger mortality rates of developing nations 

are expected to continue (Curtis et al, 2006, Cohen et al, 2005). The World Health 

Organization estimates 7 million deaths per year due to air pollution (of these 2.6 million 

are linked to outdoor air pollution), making it the single largest environmental risk today 

(WHO, 2014). Air pollution related mortality outweighs global car accidents (1.3 million 

people (ASIRT, 2016)) by a factor of five and natural disasters by a factor of 28 

(mortality ranging from 20,000-250,000 people depending on the year) (IFRC, 2014). It 

can thus be assumed that the deaths per unit energy will be even more extreme on the 

global scale as the U.S. environmental protection standards are more advanced than much 

of the world. In addition, this does not take into account the potential premature deaths 

aggravated by climate change for which the Intergovernmental Panel on Climate Change 
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(IPCC) already recommends immediate action to reduce emissions by 2050 (IPCC, 

2011).  

 To meet the health-related demand of eliminating coal pollution with solar power 

in the U.S., $1.45 trillion dollars would need to be invested in new PV generation. This is 

the total cost to save all future lives in the U.S. from coal-related electricity over the next 

twenty-five years.  Even with no value the cost per life is only $1.1m, which is on the 

lower end of the values normally ascribed to human life (between $1 and $9 million)  

(Harrington, 2009, DOT, 2015, Partnoy, 2012). However, unlike other health policy 

interventions, which only cost money up front (Jamison et al, 2006), PV replacement of 

coal production also has the potential to generate significant revenue as shown in the 

third column of Table 2. Table 2 provides a sensitivity analysis on the value of the solar 

electricity, which is currently under intense debate in the electrical industry. PV is 

inherently distributed so using the centralized coal value of electricity of $0.03/kWhr is 

misleadingly pessimistic. In most of the U.S. PV is currently net metered making the 

values between $0.06-0.12/kWhr more realistic. As can be seen in Table 2, all of these 

values actually have a net economic benefit for saving lives from only the value of 

electricity. There has also been a strong case made (Farrell, 2014) that net metering 

actually represents a subsidy to electric utilities as the value of solar can be higher (e.g.  

$0.14/kWhr in Minnesota). When looking at the potential for isolated communities to 

adopt solar the current high costs of electricity turn the potential economic savings per 

life save truly substantial. As technology has progressed to such a point that PV, battery 

and cogen units can displace the use of the grid in even the most extreme circumstances 

(Nosrat et a, 2013, Mundada et al, 2016, Basrawi et al, 2014, Shah et al, 2015), these 
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levels of savings are possible for the small populations living in such regions 

(Kantamneni et al, 2016). The use of PV to offset coal-fired electricity compares 

exceptionally favorably to more conventional forms of health policy interventions, the 

best of which (e.g. helping children in developing nations (Murray and Chambers, 2015)) 

still costs a few thousand per life rather than conserving money. 

The results clearly show, premature deaths due to anthropogenic effects (coal 

combustion and pollution) can be mitigated through anthropogenic efforts (PV electrical 

energy conversion). Policies can be developed at many scales (international, federal, 

state, and local levels) to contribute to the concerted climate change mitigation efforts. 

There are several policy interventions that could accelerate PV adoption: 1) Effective 

renewable portfolio standards (RPS) programs (Yin and Powers, 2010) and Mandatory 

Green Power Option (MGPO) (Delmas and Montes-Sancho, 2011) can be implemented 

at the state level. As air pollution is not limited to state boundaries, as is shown in Figure 

1, requiring states to design RPS programs would decrease emissions from electrical 

generation. Federal agencies, such as the EPA, can strengthen particle pollution 

standards, which can indirectly lead the electrical industry to adopt renewable energy 

generation systems (Fischer and Newell, 2008, Acemoglu et al, 2012). An alternative 

strategy includes instituting state taxes or carbon trading mechanisms (Convery et al, 

2008, Bushnell et al, 2013) on coal usage. States and industries that continue coal usage 

would pay higher taxes to internalize environmental and health effects. EPA regulations 

such as Mercury and Air Toxics Standards, are responsible for the decommissioning of 

72 GW of coal electrical generating capacity (IER, 2012); this number is expected to rise 

by 2020. On the other hand, increasing federal incentives for solar PV will likely result in 
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a rapid transition to cleaner energy generation. It is important to note that a portfolio of 

these policy implementations will be more effective in reducing emissions and promoting 

renewables than any single policy or program (Fischer and Newell, 2008). In the context 

of mortality in the U.S., exploring and adapting wartime mobilization strategies (Delina 

and Diesendorf, 2013) to a national solar PV electrical transition may provide enough 

emission mitigation to slow anthropogenic climate change effects.  

Finally, this study has only explored the impact of coal-fired electricity 

conversion to solar PV on mortality. However, current air pollution costs also occur in 

medical costs and lost productivity. In 2010, OECD nations spent roughly $1.7 trillion in 

attempts to combat and treat effects from outdoor air pollution (OECD, 2014). The U.S. 

spends roughly $185 billion per year on coal emission effects; these represent only health 

related costs (Epstein et al, 2011). California alone spent $193 million in hospital care in 

2007 due to air pollution effects (Romley et al, 2013). It has long been established that 

energy policy creates horrendous public health problems and injustices (Wilkinson et al, 

2007), and this study makes clear large scale PV deployment to eliminate coal could help 

alleviate this historical problem. Future work can help quantify the values of these other 

effects from a transition from coal to solar based electrical generation. 

 

4.5 Conclusion 

 

The results of this study showed a clear geospatial correlation between coal fired 

power plants and mortality from air pollution is the U.S. at the state level. To reduce 

these deaths coal-fired electricity must be eliminated and the results showed that 51,999 
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American lives could be saved per year by transitioning from coal to PV-powered 

electrical generation in the U.S. To accomplish this, 755GW of U.S. PV are needed and 

the first costs for such an national array are $1.45 trillion. Over the 25 year warranty on 

the PV modules the first cost per life saved is approximately $1.1 million, which is 

comparable to the value of a human life used in other studies. However, as the solar 

electricity has value, the cost per life for offsetting coal with PV actually saved money as 

well, in some cases several million dollars per life. It is concluded that it is profitable to 

save lives in the U.S. with the substitution of coal-fired electricity with solar power and 

that the conversion is a substantial health and environmental benefit. Evolving the U.S. 

energy system utilizing clean, alternative technology will allow the U.S. to prevent 

thousands of premature deaths along with becoming a global leader in renewable 

technology adoption.  
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Chapter 5: Conclusion: Energy Justice and U.S. Energy Policy 

Introduction 

This thesis applies an energy justice framework to case studies to understand how 

specific U.S. energy policies reconcile with energy justice. Utilizing an energy justice 

framework provides guidance to analyzing existing policy to consider opportunities for 

changing and improving policy. Applying this framework can ultimately highlight 

opportunities for policy change as well as provide an avenue for a shift in policy goals 

from profit maximization to considerations of equity and equality in energy decision-

making.  

Chapter 2 presents a case study of distributive energy injustice in U.S. energy 

policy. Designing and implementing a federal RPS program will not only promote 

renewable energy adoption, but also to potentially provide equitable distribution of 

environmental burdens and benefits. While the paper demonstrates the real feasibility of 

military facilities transitioning to renewable energy sources, it also highlights the 

inequitable distribution of policies targeting both critical infrastructures and community 

resilience throughout the U.S.  

Chapter 3 discusses procedural and affirmative energy injustice by utilizing a 

state level case study of residential solar PV adoption in Michigan. While residential PV 

adopters do largely fit the characteristics of a sustainable consumer, individual value and 

socioeconomic variables fail to situate potential adopters in a lived policy context, which 

also influences the prevalence of adoption. Providing and extending renewable energy 

incentives to all demographics (including low to fixed income households) will begin to 

reconcile state energy policy with the affirmative principle. Creating a consumer 
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advocacy group that works alongside the state’s regulatory agencies could provide the 

opportunity for all relevant stakeholders to be represented in state energy decision-

making.  

Chapter 4 illustrates a violation of the prohibitive energy justice principle through 

a case study of adverse health affects due to coal-fired electrical production. Utilizing 

policy instruments such as carbon tax or carbon cap and trade can place responsibility for 

emissions on heavy fossil fuel users. Requiring users to account for the full social costs of 

fossil fuels will promote renewable energy adoption and encourage preliminary steps to 

restructure the U.S.’s reliance on a centralized, fossil fuel dependent energy 

infrastructural system.  

 

5.1 Turning to Cosmopolitan Justice  

Cosmopolitan justice is a concept that highlights environmental burdens and 

justice as global issues (Caney, 2005). It is focuses on the global scale of the energy 

systems and their impacts, questioning who should bear the burden of outcomes or 

consequences of energy production and its consequences in global climate change. This 

includes a consideration of intergenerational justice.  

As this thesis is an analysis of U.S. energy policy, the contention that developing 

renewable energy policies requires considering cosmopolitan justice applies in the sense 

that the U.S. can become a global leader in climate change mitigation through enhanced, 

developed, renewable energy policy. U.S. energy policy represents the consequences of 

unequal access and power, both internally and internationally. The concept of 

cosmopolitan justice also allows a re-conceptualization of U.S. energy policy within the 
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global scope; pollution that contributes to climate change is not geographically limited to 

the boundaries of a nation-state. Effects of energy policy and decision-making 

surrounding American energy usage have huge implications globally. 

Scholars posit several explanations as to why the U.S. does not have a federal 

renewable energy policy (Elliot, 2013, Bochner, 2014, Sovacool and Cooper, 2009, 

Michaels, 2008). These explanations revolve mainly around the deep seeded political 

structure, political culture (Elliot, 2013), and interstate economics (Michaels, 2008). This 

thesis does not attempt to provide insight as to why the U.S. is reluctant to instate a 

national renewable energy policy, but rather cite, with specific case studies, how a lack 

thereof does not reconcile with the energy justice theories and principles explained 

above.  

5.2 Policy Recommendations and Implications 

The first case study (Chapter 2) looks at renewable energy at domestic military 

installations. The U.S. military must comply with a federal mandate to begin adopting 

renewable energy systems (3GW by 2025). This case study speaks to the distributive 

principle. The centralized U.S. electrical grid is vulnerable to external threats. In the 

event of a physical, natural, or cyber-attack, the electrical system failure can impair social 

and economic functions of the nation. National and energy security in energy policy 

designs must incorporate an energy justice framework in the decision-making process, 

which would suggest a need for a policy that applies to all critical infrastructures or even 

all communities, not just military facilities. There are limited policies in place to facilitate 

a transition to a dominant renewable energy generation system and this lack of policies 

functions to potentially distribute environmental harms inequitably to U.S. citizens. The 
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Federal government needs to explore options that protect all citizens, including protection 

from grid vulnerabilities. The mandate for the military represents only a localized 

corporate interest that does not reflect the interest of the entire United States population. 

A proposed solution looks at creating a federal RPS program. There is speculation 

regarding utilizing a uniform national RPS (Michaels, 2008). Issues include the potential 

for some participants to free ride within a national system or interstate disruption due to 

enactment of a uniform RPS program. Therefore, legislation could mandate a federal RPS 

program that allows states flexibility in designing the RPS program specific to those 

state’s resources and needs.  

The second study (Chapter 3) focuses on procedural and affirmative energy 

injustice in adopting renewable energy systems, by examining regional issues with 

utilities and residential PV adoption in the context of existing utility policies in the state 

of Michigan. Understanding what predicts solar PV adoption at the residential scale can 

inform decision-makers to design policies that expand a state’s renewable energy 

portfolio. The results suggest a need to place the sustainable consumer in a lived policy 

context, and consider the extent to which that context operates to shape household 

decisions regarding energy. The results also speak to a gap in who is involved in 

decision-making. Those individuals living in or near fuel poverty (1) have less power in 

legislation regarding renewable energy technologies (Kramer and Tyler, 1996) and (2) 

have limited means to invest in renewable energy systems (Sovacool et al, 2013).To 

reconcile with procedural and affirmative energy justice concepts, the first solution is to 

supplement Michigan’s RPS program with state incentives such as tax credits, tax 

exemptions, rebates, and/or subsidies that extend to low-fixed income households. This 
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provides equal access to alternative technologies for all Michigan residents. Additionally, 

to ensure fair participation, the state could model Wisconsin Forestry Council’s creation 

of an advisory committee (Herrick et al, 2009). This committee includes all relevant 

stakeholders affected by issues related to biomass harvesting and use. An interesting 

component to this specific committee is the revolving door policy on stakeholder 

participants. Groups who feel their needs and opinions are not being recognized by 

legislation can join the committee’s deliberations. A creation of an energy advisory 

committee in Michigan would allow relevant stakeholders, including industry, non-profit 

organizations, environmental organizations, and local governments the capacity to 

deliberate and voice specific needs. The significance of including local governments in 

an advisory committee is their capacity to represent local resident’s needs in energy 

deliberations.        

Considering prohibitive energy justice issues provides another avenue to begin to 

help communities adapt and shift to acquire basic energy needs. The third case study 

(Chapter 4) illustrates a violation of the prohibitive energy justice principle. Again, 

expanding the focus at the national scale, this paper shows the externalities associated 

with energy generation through conventional fuels, specifically the harms to human life 

through the combustion of coal for energy generation. The U.S. energy system is 

currently centralized and fossil fuel dependent. The overarching solution is to promote 

the use of renewables in a distributed generation style electrical grid system (Zweible et 

al, 2008, Duan et al, 2016). This will begin a transition to replace heavy conventional 

fossil fuel use. Promoting renewable energy technology can result from implementing 

policy instruments such as a carbon tax or carbon cap and trade system. Legislation could 
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tax carbon dioxide emissions from heavy fossil fuel users to incentivize this shift to 

renewable energy generation. A carbon tax does not automatically result in decreased 

carbon dioxide emissions, as those industries that have the means to comply with a tax 

may not take steps to reduce their use. Cap and trade seems to provide a more practical 

solution; by placing targets on carbon dioxide emissions, heavy fossil fuel users have 

flexibility in how they decrease carbon dioxide emissions. A major caveat to carbon cap 

and trade is the difficulty in pinpointing the carbon emission source.  Renewable energy 

adoption could correspond to a decrease in negative environmental (air pollution, 

degradation, climate change) and human (morbidity, mortality, electric grid failure) 

impacts associated with continued reliance on a centralized, fossil fuel dependent 

electrical system. Instituting federal regulations, sanctions, or incentives discussed above 

can function to decrease the reliance on fossil fuels while simultaneously promoting a 

transition to renewable energy sources.     

Borrowing from Hall (1993), considering an energy justice framework in U.S. 

energy policy decision-making has the potential to cause first, second, and third order 

shifts at the federal level (Hall, 1993). First and second order policy shifts can be seen 

through changes in policy instruments and the settings of those instruments. Utilizing an 

energy justice framework could result in different policy instruments and targets that 

expand to all energy users, including military (Chapter 2), industry (Chapter 4), and 

residential (Chapter 3). However, a third order change results when the policy goals shift. 

By using an energy justice framework, U.S. energy policy can become less about 

maximizing profits and more concerned with equity and equality in distributing access to 
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energy systems that maximize social goods while minimizing environmental and social 

harms.  

5.3 Future Work 

Energy is the main way we produce and obtain basic goods and needs for our 

existence. Because energy is such a dominating force in our society, we cannot overlook 

the ends to justify the means. Energy problems that inform energy policy decision-

making can assist energy planners and consumers in making more informed energy 

choices to mitigate and prevent the negative consequences (i.e. harm to humans and the 

environment) that hinder our ability to obtain these basic needs and enjoy the 

indispensible goods of security and welfare.   

Each of these case studies presents opportunities for future research projects. One 

avenue would consider a military transition to dominant renewable energy systems 

(following chapter 2). This would include devising potential renewable energy capacity 

for domestic military bases corresponding to current energy load and usage. Treating the 

military as a first level for transition could provide the groundwork for other U.S. sectors 

(critical infrastructure, industry, and residential) to follow suit in renewable energy 

adoption. Chapter 3 presented adoption levels in Michigan as a function of 

socioeconomic, political, and policy indicators. Future research could construct and 

analyze true measures of fuel poverty among Michigan residents. Understanding and 

reporting accurate measures of fuel poverty can act as a catalyst to instituting state 

incentives for renewable technology adoption. Building on the applications in this thesis 

allows for specific examinations of U.S. energy policies the context of an energy justice 
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framework, opening the door for possibilities to change and improve policy through 

energy justice guided policy development. 
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