
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's
Reports - Open

Dissertations, Master's Theses and Master's
Reports

2004

Algorithms for autonomous tandem operation of a dual M113 Algorithms for autonomous tandem operation of a dual M113

system system

Jared L. Dinkel
Michigan Technological University

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Mechanical Engineering Commons

Copyright 2004 Jared L. Dinkel

Recommended Citation Recommended Citation
Dinkel, Jared L., "Algorithms for autonomous tandem operation of a dual M113 system", Master's Thesis,
Michigan Technological University, 2004.
https://doi.org/10.37099/mtu.dc.etds/357

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Mechanical Engineering Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F357&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.mtu.edu%2Fetds%2F357&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.37099/mtu.dc.etds/357
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F357&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.mtu.edu%2Fetds%2F357&utm_medium=PDF&utm_campaign=PDFCoverPages

ALGORITHMS FOR AUTONOMOUS TANDEM

OPERATION OF A DUAL M113 SYSTEM

By

JARED L. DINKEL

A THESIS

submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

MICHIGAN TECHNOLOGICAL UNIVERSITY

2004

Copyright © Jared L. Dinkel 2004

 i

Abstract:

In mid-July 2003, the U.S. Army Tank-Automotive & Armaments Command

(TACOM) performed a series of experiments at Keweenaw Research Center (KRC), with

a remote operated mine roller system. This system, named Panther Lite, consists of two

M113 Armored Personnel Carriers (APC’s) connected by a Tandem Vehicle Linkage

Assembly (TVLA). The system has three sets of mine rollers, two of which are

connected to the front of the lead vehicle with one set trailing from the trail vehicle.

Currently, the system requires two joystick controllers. One regulates the braking of the

tracks, throttle, and transmission of the lead vehicle and the other controls the braking

and throttle of the rear vehicle. One operator controls both joysticks, attempting to

maneuver the lead vehicle along a desired path. At the same time, this operator makes

compensation maneuvers to reduce lateral loads in the TVLA and to guide the rear mine

rollers along the desired path.

The purpose of this project is to create algorithms that would allow the slave

(trail) vehicle to operate using inputs that maneuver the control (lead) vehicle. The

project will be completed by first reconstructing the experimental data. Kinematic models

will be generated and simulations created. The models will then be correlated with the

reconstructions of the experimental data. The successful completion of this project will

be a first step to eliminating the need for the second joystick.

 ii

Acknowledgements

This project represent one of the biggest ventures I have ever endured. There

have been many people who have supported me along the path to completion. First, I

would like to thank my research advisor, Jason Blough, and my project advisor, Scott

Bradley. Their guidance, knowledge, and understanding have inspired me to make this

the best I can make it.

I would like to thank my remaining committee members, Gordon Parker, Thomas

Grimm, and Gilbert Lewis for their efforts in this adventure. I would like to give a

special thanks to Russ Alger and Jay Meldrum for helping me choose graduate school.

I would like to express gratitude to my friends for supporting me and stimulating

my creativity.

Finally, I would like to thank my family. Joe and Amanda, your support and

inspiration have helped me strengthen my resolve. My parents have been the best

teachers I have ever had and their continued support has made all this possible. Mom and

Dad, this is for you!

 iii

Table of Contents

Abstract .. i
Acknowledgements .. ii
Table of Contents ... iii
List of Figures .. v
List of Tables.. vii

1. Introduction.. 1
1.1.Introduction .. 1
1.2.Project Outline.. 2
1.3.Assumptions ... 3

2. Background Information... 6
2.1.M113 Family of Vehicles ... 6

2.1.1. Vehicle History... 6
2.1.2. Vehicle Description.. 7

2.2.Saber System .. 10
2.2.1. Description ... 10
2.2.2. Panther Lite .. 10

2.3.TVLA .. 11
3. Experimental Testing... 14

3.1.Data Acquisition ... 14
3.1.1. Datron... 14
3.1.2. String Potentiometers ... 15
3.1.3. Optical Encoders .. 16
3.1.4. 5th Wheel .. 17
3.1.5. Motion Pack ... 17
3.1.6. Pressure Sensors... 18
3.1.7. Transducer Location... 18

3.2.Testing .. 22
3.2.1. Involved Personnel ... 22
3.2.2. Vehicle Setup ... 23
3.2.3. Control Setup.. 26
3.2.4. Test Schedule ... 27

3.2.4.1.Friday, July 11th, 20043... 28
3.2.4.2.Saturday, July 12th, 2003 ... 30
3.2.4.3.Monday, July 14th, 2003.. 30
3.2.4.4.Tuesday, July 15th, 2003.. 31
3.2.4.5.Wednesday, July 16th, 2003... 32

3.2.5. Handling Loops .. 35
3.2.5.1.Free Run.. 35
3.2.5.2.Narrowing Cone Test .. 35
3.2.5.3.Slalom ... 36
3.2.5.4.Modified Figure Eight ... 37

3.3.Reconstruction .. 39
3.3.1. Calculation Assumptions .. 39
3.3.2. File Structure and Catalog .. 42

 iv

Table of Contents (cont…)

3.3.3. Reconstruction Algorithms... 44
3.3.3.1.Track Speeds ... 45
3.3.3.2.Acceleration and Yaw Rate ... 47
3.3.3.3.5th Wheel and Yaw Rate.. 48

3.3.4. Visualization... 48
3.3.5. Trackslip... 55

4. Theory and Correlation... 63
4.1.Model Generation... 63

4.1.1. Theory .. 63
4.1.2. Calculation ... 63
4.1.3. Simulation .. 67

4.2.Correlation.. 74
4.2.1. Experimental Aspect .. 76
4.2.2. Theoretical Aspect.. 77
4.2.3. Correlation Results ... 77

5. Results And Conclusions ... 87
5.1.Conclusions .. 87
5.2.Recommendations... 88

References .. 91
Appendix A: Acronyms .. 92
Appendix B: Instrumentation .. 93
Appendix C: Testing Information ... 94
Appendix D: Program Code... 98

D.1. modcat.m ..98
D.2. allplot.m..100
D.3. mplot4b.m ...101
D.4. mplot5.m ...107
D.5. trkslpcalc.m ..112
D.6. tscalc.m...133
D.7. crvwrite.m...136
D.8. pscalc1.m..143
D.9. corrcalc.m...144
D.10. ts_least_sq2.m ... 147

 v

Figures

 1.1: Block diagram of Panther Lite automation process. Functions within the
dashed-line box are developed in this report.

 2.1: M113A3 and M113A2. All dimensions are in inches.
 2.2: ProEngineer Saber model. (Translucent parts are part of the Panther Lite

system and were not attached during Tacom testing, 07-2003.)
 2.3: ProEngineer Panther Lite model.
 2.4: ProEngineer model of the TVLA. The hydraulic manifold is the light blue

object.
 2.5: ProEngineer model of the installed TVLA. The lead vehicle is on the left side

and the trail vehicle is on the right.
 3.1: Basic schematic of a string potentiometer.
 3.2: Mounting bracket for 2” string pots on the lead vehicle.
 3.3: Mounting bracket for 10” string pots on the trail vehicle.
 3.4: Wheel speed monitor attached to the right sprocket of the trail vehicle.
 3.5: 5th wheel mounting position.
 3.6: Installed pressure sensor with electrical tape protecting data connections.
 3.7: JPO M113A2 with “I” designation on side of hull.
 3.8: Forward facing camera of lead M113 and centering pole.
 3.9: Complete vehicle setup before application of numerical designators. Note: The

transceiver is secured for travel.
 3.10: TVLA hydraulic pressures during the Sabre8 test run.
 3.11: Narrowing cone test setup.
 3.12: Slalom cone setup.
 3.13: Modified figure eight dimensional layout.
 3.14: Guide Cone Configuration 1.
 3.15: Guide Cone Configuration 2.
 3.16: Speed Data for the high-speed tests Sabre11 (left) and Sabre7 (right). Compares

the track speeds with the 5th wheel speed.
 3.17: Diagram of M113 used for calculating yaw rate and speed from track speeds.
 3.18: Screen shots of the allplot.m windows loaded with sabre9 data from 07/15/03

and showing 5th wheel displacements and speed (left) and 5th wheel and track
speeds (right).

 3.19: Screen shots of allplot.m showing hydraulic cylinder displacements (left) and
pressure (right).

 3.20: Screen shot of allplot.m showing string pot displacements of the brake sticks.
 3.21: Screen shots of allplot.m showing linear acceleration (left) and rotational

velocity (right) from the motion pack.
 3.22: Screen shot of mplot4.m using speed and yaw to calculate vehicle trajectory.
 3.23: Screen shot of mplot4b.m showing vehicle paths calculated from speed and yaw

(blue) as well as unadjusted track speeds, r2trk and l2trk (black).
 3.24: Screen shot of mplot5.m in mid-run (178.75 sec. of 524.84 sec.).
 3.25: Screen shot of trkslpcalc.m after initial startup showing vehicle paths using

speed and yaw (blue) and track speeds, r2trk and l2trk (black).
 3.26: Screen shot of trkslpcalc.m after trackslip calculation and implementation.

 vi

Figures (cont…)

 3.27: Screen shot of crvwrite.m GUI with “Curve Type” pull down menu exposed.
 3.28: Error in trackslip and best-fit surface for left tracks during left turns.
 3.29: Error in trackslip and best-fit surface for right tracks during left turns.
 3.30: Error in trackslip and best-fit surface for right tracks during right turns.
 3.31: Error in trackslip and best-fit surface for left tracks during right turns.
 4.1: Kinematic model of the setup as tested.
 4.2: Vehicle path results for the Oval Track simulation.
 4.3: Plots of vehicle angles from Oval Track simulation results.
 4.4: Vehicle path results for the Slalom simulation.
 4.5: Plots of vehicle angles from Slalom simulation results.
 4.6: Vehicle path results for the Modified Figure Eight simulation.
 4.7: Plots of vehicle angles from Modified Figure Eight simulation results.
 4.8: Flow of calculations leading to generation of theoretically optimal values from

experimental measurements.
 4.8: The corrcalc.m results for sabre2 from 07/15/03.
 4.9: The corrcalc.m results for sabre3 from 07/15/03.
 4.10: The corrcalc.m results for sabre4 from 07/15/03.
 4.11: The corrcalc.m results for sabre5 from 07/15/03.
 4.12: The corrcalc.m results for sabre6 from 07/15/03.
 4.13: The corrcalc.m results for sabre7 from 07/15/03.
 4.14: The corrcalc.m results for sabre8 from 07/15/03.
 4.15: The corrcalc.m results for sabre9 from 07/15/03.
 4.16: The corrcalc.m results for sabre10 from 07/15/03.
 4.17: The corrcalc.m results for sabre11 from 07/15/03.
 4.18: The corrcalc.m results for sabre1 from 07/16/03.
 4.19: The corrcalc.m results for sabre2 from 07/16/03.
 4.20: The corrcalc.m results for sabre3 from 07/16/03.
 4.21: The corrcalc.m results for sabre4 from 07/16/03.
 4.22: The corrcalc.m results for sabre5 from 07/16/03.
 4.23: The corrcalc.m results for sabre6 from 07/16/03.
 4.24: The corrcalc.m results for sabre7 from 07/16/03.
 4.25: The corrcalc.m results for sabre8 from 07/16/03.
 5.1: Flow chart of several viable control techniques and related measurements.
 C.1: Cone layout for the narrowing cone test conducted on 07/15/03.
 C.2: Cone layout of Slalom test conducted on 07/16/03.
 C.3: Cone layout for Modified Figure Eight test as conducted on 07/16/03.

 vii

Tables
 2.1: Vehicle weight distribution for each track system.
 3.1: Summary of test data from 07/11/03.
 3.2: Summary of test data from 07/15/03.
 3.3: Summary of test data from 07/16/03.
 3.4: Test data channel list and descriptions.
 4.1: Numerical index descriptions for Oval Track simulation results.
 4.2: Numerical index descriptions for Slalom simulation results.
 4.3: Numerical index descriptions for Modified Figure Eight simulation results.
 5.1: Maneuver content of experimental data.

 1

Chapter 1. Introduction

1.1 Introduction

Military technologies are developed out of a need to increase the safety and

effectiveness, both tactically and financially, of the United States Armed Forces. It was

through this necessity that TACOM developed the Sabre system as a low-cost

lightweight alternative to larger single-vehicle applications. This system opened several

opportunities that allowed readily available vehicles to perform functions that were

normally reserved for a select few vehicles specific to those unique tasks. These few

vehicles are expensive and restrictive in terms of mobility and transportation. The Sabre

is a system created by attaching two M113 tracked vehicles together by a special linkage.

This allows the rear vehicle to add its power to the lead vehicle to perform functions that

cannot usually be done by a single M113. The Sabre is a platform for special application

systems.

One of these applications is mine clearing. Anti-personnel and anti-tank mines

are potential threats to human life and military property. The Panther Lite system was

developed to combat these threats. The system is a remote-operated version of the Sabre

platform and is mounted with battalion countermine roller sets. The Panther Lite system

requires two human controller inputs. These inputs can be controlled with two people,

one controlling each input, or one person controlling both inputs. Both setups have

drawbacks. Two individuals require complicated communication as well as the expense

of needing the secondary worker. A single individual requires extra concentration to

control both vehicles simultaneously.

 2

1.2 Project Outline

The final result of the Panther Lite automation project will be a series of functions

that lead to the autonomous control of the rear vehicle. A block diagram of this series of

functions is shown in Figure 1.1. The dashed-line box contains the parts of the process

that I developed, of which are described in this report.

Figure 1. 1: Block diagram of Panther Lite automation process. Functions within the dashed-line box
are developed in this report.

This report is the first step towards creating a control system that maneuvers the

trail vehicle in an intelligent manner, thus removing the need for the second controller.

The goal is the development of the algorithms that will drive that control system. Based

on kinematic models, these algorithms are developed with the continued purpose of

reducing stresses in the Tandem Vehicle Linkage Assembly (TVLA). The algorithms

will have modifiable variables that will allow flexibility for future path-coverage

development as well as potential component alterations.

 3

My part in the generation of these algorithms was extensive. The next two

paragraphs detail my part of the project. For the testing process, the available data

acquisition resources were analyzed. From these the best data acquisition system (DAQ)

was chosen based on what was decided to be the most useful information. The system

was then installed. Special mounting brackets were designed to mount the brake lever

string potentiometers within the engine compartment (described in Section 3.1.2).

During testing, my role was to control the DAQ and recorded all of the data sets.

All of the data analysis was conducted using Matlab R6.5. Each custom Matlab

program discussed in this report was created by myself. My part also included the

derivation and development of the all the algorithms and correlation procedures with the

assistance of the references listed.

1.3 Assumptions

In order to make this project feasible, several critical assumptions had to be

formed. Correction for each assumption would require an entirely new set of tests,

calculations, and conclusions. The following is a list of assumptions and a brief

discussion of each:

• Vehicle paths are two-dimensional. All of the experimental tests were

conducted on relatively flat ground. Because of this, there was little variation

in the vehicles’ vertical bearings. Therefore, the system will be assumed to

move only along the horizontal frame and all rotations are about their vertical

axes. The consequences of “non-flat ground” would be inaccuracies in the

 4

speed and yaw rate measurements. The measurements would be have an error

equal to the sine of the vertical angle of the ground.

• Individual M113 mass properties are consistent with M113A3 documentation.

The M113 is one of the most used and most widely modified military vehicles

in the world. The mass properties, therefore, vary from vehicle to vehicle.

The mass properties listed in the M113 transport guidance technical manual,

(see Reference [1]) will be used in all calculations. Potential variations and

the validity of this assumption will be covered in Section 2.1.2 and Section

5.2.

• The lateral center of mass lies on the vehicle centerline. The mass properties

listed in the M113 transport guidance technical manual did not have a lateral

center of mass location. The powerplant on the M113 is located off-center to

the right side of the vehicle, as will be explained in more detail in Section

2.1.2. The vehicle’s centerline will be used in all calculations and this

assumption’s validity will be discussed in the same section.

• Uniform ground characteristics for each test run. The sprocket on a tracked

vehicle moves the track and, therefore, the vehicle, such that the top part of

the track is moving in the direction of the vehicle’s motion at twice the

vehicle’s speed. The bottom part of the track is in contact with the ground and

thus, has little to no velocity. The little velocity it may have is called

trackslip. Trackslip is a function of many variables including vehicle mass,

velocity, acceleration, turn rate, and ground consistency. When the algorithms

are put into a control system, a variable relating specific ground types must be

 5

also be implemented. This will be covered more in Section 3.3.5 and Section

5.2. For the purposes of this project, it will be assumed that ground

characteristics remain uniform within individual test runs. It is, however,

understood that different test runs are in different locations and thus, have

different ground properties. The consequence of variation in ground

characteristics within the a test run would create inconsistency in trackslip

characterization.

 6

Chapter 2. Background

2.1 M113 Family of Vehicles

 2.1.1 Vehicle History

The M113A3 is the main vehicle used in the Panther Lite project. The

following section is a summary of information provided by References [1] and [2].

Introduced in 1960, the M113 was a breakthrough Armored Personnel Carrier (APC)

created by Food Machinery Corporation (FMC). Air transportable, low-velocity air-

droppable, and able to move over water (at a speed of 4 knots), the M113 could carry up

to eleven armed soldiers as well as the driver and track commander. This was a platform

that could carry troops in an armored shell over a battlefield with difficult terrain. The air

transportable and air droppable qualities of the M113 increased the range of combat and

supported “rapid deployment” scenarios. So successful was this vehicle that it began its

own family of vehicles. Over 40 variants have been identified including the M577

Command Post Carrier and the M1064 Self-propelled 120mm Mortar.

In 1964, the M113A1 upgrade package was developed. This package

included a 212 horsepower diesel engine that replaced the old gasoline engine. The

package could be installed into an old M113 and was automatically installed with the new

vehicles being built, now under the M113A1 name. This upgrade package also spawned

a line of unarmored variants such as the M548 Cargo Carrier and the M667 “Lance”

Missile carrier. These unarmored versions were successful for non-direct-combat.

During the mid-70’s, government officials concluded that the current

vehicle was in need of more improvements. In 1979, the M113A2 package was

 7

developed. This package featured enhancements in both cooling and suspension.

Torsion bars were stiffer, allowing for greater ground clearance and an extra shock

absorber was added to the second road wheel on each side. The fuel tanks on the

M113A2 were moved externally and armored. This freed up 16 cubic feet of cargo space

on the interior. This did, however, increase the overall weight of the vehicle. Because

this extra weight reduced the vehicles’ freeboard when afloat, the swimming requirement

of the vehicle was lifted. Swimming with the M113A2 during training was then banned.

Once again, the package increased the M113 family of vehicles (FOV).

The most recent upgrade was introduced in 1989. It included vast

improvements over the previous model. A newer turbocharged diesel engine increased

the vehicles power to 275 horsepower. A Kevlar lining was installed in the crew

compartment as extra protection in case of armor penetration. As with the M113A2, the

fuel was stored in the external fuel tanks on the M113A3.

As of September of 1998, the M113 FOV made up 46% of the vehicles in

the U.S. Army armored division. Nearly half of those are M113’s. The next upgrade is

scheduled for 2006 and would include mostly computer-based enhancements. At this

time, there are no foreseeable replacements being produced or developed, so the M113

program will continue far into the future.

2.1.2 Vehicle Description

The M113A3 is a front sprocket drive vehicle and has two track systems.

Each track is made up of either the T130E1 or the T150 track shoe. Both shoe types are

center guide, single pin metal shoes with detachable rubber pads. Due to the forward

offset of the right sprocket, the right track has sixty-four shoes, while the left track has

 8

sixty-three shoes. Each track system has five equally spaced roadwheels covering 105

inches by 15 inches of ground area. The roadwheels are individually supported by

torsion bars for suspension. Shock absorbers are installed on the first, second, and fifth

roadwheels. An individually adjustable idler tensions each track. The M113 track

systems do not have support rollers. After the suspension upgrade included with the

M113A2 package, the vehicle had 15 inches of clearance. Figure 2.1 shows profile

drawings of the M113A3. The external fuel tanks have been omitted, but the overall

length measurement shows the length with the tanks.

Figure 2.1 shows that the center of mass of an M113 is located 93 inches

behind the front edge of the hull. The vehicles used in the Panther Lite system will be

operated via remote control units that utilize hydraulic pumps to control the vehicles.

They will also have partially supported mine rollers attached, as well as the Tandem

Vehicle Linkage Assembly (TVLA). Therefore, depending on where everything is

installed internally and how much the external attachments are supported by the M113,

Figure 2. 1: M113A3 and M113A2. All dimensions are in inches.

 9

the center of mass may shift several inches. Recommendations for this are located in

Section 5.2.

A test measuring weight per track was used to determine the vehicles

lateral center of mass and determine the legitimacy of declaring the centerline an

acceptable approximation. Keweenaw Research Center engineer, Chris Green, conducted

this test in May 2003. The results of this test can be found in Table 2.1. An initial

discrepancy was that the total weight of the trail vehicle was less than 22,000 pounds.

This was due to the trail vehicle being completely empty when tested. During actual

operation, the trail vehicle will have ballast weight. Nonetheless, with a distance of 85

inches between the centerlines of the two tracks, the center of mass of the lead vehicle is

only 0.6 inches, or 0.05 feet to the right of centerline. The center of mass of the trail

vehicle is only 1.7 inches or 0.14 feet to the right of centerline. These values are very

small and the error resulting from the variation from centerline would be a small fraction

of the values themselves and would fall within a resonable error margin. Therefore, the

centerline of the vehicles can be assumed to be a viable location for the center of mass.

The M113 is steered using a system of brake clutches. The vehicle is

propelled through a transmission that includes three forward gears. The system was in

first gear for the entire test period described in Section 3.2. When the vehicle is in gear,

both tracks are powered using the throttle pedal. Steering is controlled by slowing down

the tracks independently using brake sticks. This technique is called “skid steer.” The

Lead Vehicle
 Left Track 15,070 lbs. Right Track 15,550 lbs.
Trail Vehicle
 Left Track 10,490 lbs. Right Track 11,380 lbs.

Table 2. 1: Vehicle weight distribution for each track system.

 10

brake sticks are connected by mechanical linkages to a series of clutches on the drive axel

that adds braking force to either track. These linkages will be used to measure system

input. (See Section 3.1.7.)

2.2 M113 Saber System

 2.2.1 Description

The Saber system was developed to allow two M113A3s to work together

to perform a function reserved for a larger vehicle. The term Saber was adopted to

describe any system that is composed such as this. The testing described in Section 3.2

was done with a generic remote Saber system. This means that with the exception of the

remote control components, the system consisted of only two M113A3s and a TVLA.

There were no other components, such as rollers, added to this vehicle.

2.2.2 Panther Lite

The Panther system is an existing method of mine clearing. The Panther

consisted of little more than an M60 chassis, without a turret, and a mine-clearing device.

These devices came in many forms, from mine plows to chains that slam into the ground

to heavy metal rollers. One such roller set was called the battalion countermine roller set

Figure 2. 2: ProEngineer Saber model. (Translucent parts are part of the Panther Lite
system and were not attached during Tacom testing, 07-2003.)

 11

and will play a crucial part in the Panther Lite system. The Panther was big and heavy.

It could only be transported by air via the C5 Galaxy and it was not air droppable.

When it was determined that a replacement had to be developed, the Saber

system was considered. Not only is the Saber system smaller, lighter, and air droppable,

but it is also transportable via smaller aircraft such as the C130 Hercules. In addition,

since the Saber system uses M113’s, standard versions may be modified in the field in an

emergency. When a battalion countermine roller set is attached in front of each track of

the lead vehicle and a modified set of rollers cover the gap between the two, the Saber

system becomes the specialized Panther Lite system. Named for being a lighter version

of its predecessor, the Panther Lite is prepared to replace the Panther as the mine

clearance method of choice.

2.3 TVLA

When TACOM began to develop the Sabre system, Keweenaw Research Center

was contracted to develop the tandem vehicle linkage assembly to join the two M113A3s.

The development of the TVLA was U.S. Army contract number DAAE07-00-L05

Figure 2. 3: ProEngineer Panther Lite model.

 12

(WD011). The TVLA had to be strong enough to handle the stresses imbued by the

M113A3s and any potential components that may be installed in the system. The result

was an A-frame design that connected the rear of the lead vehicle via three uni-axial

horizontal hinges.

The TVLA is connected to the trail vehicle at the narrow end of the A-frame by

means of a large universal joint. This setup created a vertical pivot point between the

lead vehicle and the TVLA as well as between the TVLA and the trail vehicle. It also

created only one horizontal pivot between the TVLA and the trail vehicle. Therefore,

given the first assumption of two-dimensional motion, the lead vehicle and TVLA can be

considered a rigid unit.

Figure 2. 4: ProEngineer model of the TVLA. The hydraulic manifold is the light blue object.

 13

Figure 2. 5: ProEngineer model of the installed TVLA. The lead vehicle is on the left side and the
trail vehicle is on the right.

To add extra stability, two heavy-duty, horizontal, hydraulic cylinders were added

connecting the TVLA to the trail vehicle. Another cylinder was angled vertically from

the top centerline of the TVLA to the trail vehicle. These cylinders were connected to an

adjustable hydraulic control manifold. By adjusting the relief valves, the horizontal pivot

could be made more or less stiff. The cylinders provide a potential measuring point for

vehicle orientation, as will be discussed in Section 3.1.2.

Testing was conducted at Keweenaw Research Center between July 7 and

July 16, 2003. The purpose of the tests was to determine the effectiveness of a remote

operation system. Though the remote operation system was designed for the Panther Lite

project, the vehicle test setup only contained the two M113s and the TVLA. There were

no rollers, carriages, or support arms. The testing will be explained in detail in Section

3.2.

 14

Chapter 3. Experimental Testing

3.1 Data Acquisition

 This algorithm generation project was pitched two weeks before the two-week

July 2003 testing period. This left very little time to investigate the scope of the project

and determine what measurements were needed on the system. Therefore, measurements

were made on as many characteristics as possible, even if they seemed irrelevant.

3.1.1 Datron

One of the limiting factors was the data acquisition system. The best available

system was the Datron AEP-2 (Acquisition Evaluation for PC). A compact modular

designed DAQ system, the AEP-2 is a dedicated platform for on-board testing and the

system power is compatible with a vehicle’s 12-volt battery. One convenient aspect of

the AEP-2 system is the DAVIT-bus, which allows for a data link between the Datron

and the serial port on a computer. This allows the system to be controlled via a

specialized program on a PC.

The system had thirty-two differential analog channels each independently

adjustable from ±1 volt to ±15 volts in 1-volt increments. Six digital counters allowed

pulse quantity measurements. Three inputs were reserved for strain gage inputs. The

system had a sample rate of 10 milliseconds or 100 Hz. Due to the low speeds the

vehicles are expected to maintain, analysis of vibration characteristics is not expected.

Therefore, the sample rate should be more than adequate for the requirements of the

project.

 15

The Datron program is highly customizable. Carl Keranen, a research associate at

KRC, developed a unique program for this test setting. This program recorded all

channels as will be described in the following sections as well as displayed each channel

real-time during each test run. Each set of data was given a unique name and then after

the tests, all of the data could be retrieved in the form of comma separated variable

(CSV) files. These files were loaded into Microsoft Excel or Matlab for processing.

Also within this program, calibration values could be entered, such as volt/degree for the

roll, pitch, or yaw measurements from motion pack. This allowed the CSV file values to

be in calibrated units.

3.1.2 String Potentiometers

A string potentiometer, also known as a string pot, is a displacement transducer.

Based around a linear variable resistor, a string pot makes use of Ohm’s law:

RIV ×= (3.1)

The basic schematic of a string pot is shown in Figure 3.1.

Figure 3. 1: Basic schematic of a string potentiometer.

 16

Given a specific voltage source, Vs, of 5 volts, the voltage loss, Vc, between the variable

resistor common and contact is determined by the resistance, Rc, and the current flow, i.

The current remains the same no matter where the contact is. This current is, therefore a

known quantity that is calculated using Ohm’s law (Eq. 3.1) from Vs and the total

resistance of the potentiometer, Rp. The contact resistance, Rc, can then be calculated

using the following equations:

s

pc
c V

RV
R = (3.2)

Notice that the contact resistance is linearly dependent to the contact voltage, Vc.

 A string is connected to the contact. This gives the string pot its name. The string is

spring-loaded to retract into the transducer. As the string is extended, the contact

increases the contact resistance. This increase is linear and the electrical technicians at

KRC measured the coefficient during a caliper calibration. These coefficients were

entered into the Datron test program as necessary. String potentiometers produced

analog signals.

 3.1.3 Optical Encoders

It was necessary to measure the speeds of all four tracks. At several points in the

system, speed needed to be measured. Made by Correvit, optical encoders are used to

accomplish this by measuring rotation of the drive sprocket, which is directly related to

the track speed. Incorporating a flexible driveshaft that is connected to the face of the

sprocket, the encoders create a pulse signal of 1000 pulses per revolution. The

calibration factor, cf, can be calculated using this value and the effective radius, re, of the

drive sprocket according to the following equation:

 17

revpulses

r
cf e

1000
2π

= (3.3)

 The calibration factor can then be entered in to the Datron program. The Datron system

uses the counters to input the pulse signals.

3.1.4 5th Wheel

The 5th wheel is another way to calculate vehicle speed. Consisting of a 600 pulse

per revolution (ppr) optical encoder, made by Labeco, connected to a bicycle tire, the 5th

wheel is designed to measure the speed of the ground relative to a vehicle. The tire and

encoder are connected to a support frame via a simple spring/shock absorber suspension.

This frame can then be attached to the surface of a vehicle. Like the encoders described

in Section 3.1.3, the 5th wheel produces a pulse signal and is read using the Datron signal.

The calibration factor for the 5th wheel is 86.9565 pulses per foot, calculated by dividing

the 600 ppr by the tires circumference.

3.1.5 Motion Pack

The Systron Donner motion pack is actually six transducers in one. Six internal

accelerometers measure three orthogonal accelerations as well as roll, pitch, and yaw.

The system was meant to give precise vehicle motion. However, there was an error in the

program that added an unknown offset to the linear accelerations. Fortunately, there was

no such error in the rotational velocities. A third party company that specializes in

calibration of such devices calculated the correction factors for converting from voltage

to g’s of accelerometer. Motion pack signals were measured as analog signals.

 18

3.1.6 Pressure Sensors

It was determined that pressures within the hydraulic system of the TVLA may

give a qualitative measurement of how well the entire system was performing. For this

purpose, two Sensotec pressure sensors were selected to make such measurements. The

sensors are appropriately named strain-type sensors due to the fact that the signal created

behaved like a strain gage. Therefore, the strain gage inputs in the Datron system can be

used to record these signals.

3.1.7 Transducer Location

The lead vehicle of this system contained the remote control systems for the

vehicles, including high-pressure hydraulic pumps for its linear actuators. The lead

vehicle also was used to power this control system as well as the camera setup mounted

on the vehicles. Because of this, it was decided that the Datron system be located in the

rear vehicle. This not only allowed plenty of room and power for the system, but also

allowed extra room for myself, the operator of the DAQ system.

 19

Figure 3. 2: Mounting bracket for 2” string pots on the lead vehicle.

There were a total of six potentiometers used in the experiment. Two 2-inch

string pots were mounted in the engine compartment of the lead vehicle. These string

pots were used to measure the lever arms connected to the brake stick levers and going

into the clutch-pack-braking differential. The purpose of these string potentiometers was

to measure input into the system. A special bracket built from an 8-inch C-channel was

used to place the string pots in position to most effectively measure the lever motion.

The bracket was mounted directly to the top of the differential casing.

Figure 3. 3: Mounting bracket for 10” string pots on the trail vehicle.

Likewise, two similar 10-inch string pots were mounted on a matching bracket on

the trail vehicle. There were only two 2-inch string pots and two 10-inch string pots

 20

available for use. Therefore, it was decided that both of the 2-inch string pots would go

into the lead vehicle and both of the 10-inch string pots would go into the trail vehicle.

The 10-inch string pots are externally identical to the 2-inch string pots. They perform

the same function, to measure the braking inputs to the trail vehicle. The wiring for the

two string pots in the lead vehicle was run through the back of the engine compartment

and out to the Datron system in a manner so as to not cut or bind the cables..

 The other two potentiometers were mounted on the TVLA. A 24-inch string pot

was mounted along the vertical hydraulic cylinder. The purpose of this was to measure

the vertical angle between the two vehicles. The last string pot was a 5-foot model

mounted to the left horizontal cylinder. This allowed the measurement of the horizontal

angle between the two. The cabling for the two string pots were attached up to the front

of the trailing M113 as were the other cables.

Figure 3. 4: Wheel speed monitor attached to the right sprocket of the trail vehicle.

Four optical encoders measured track speed. One encoder was attached to the

sprocket of each track system. Specially built brackets mounted to pre-existing holes in

the hulls of the M113s supported the encoders. The flexible driveshaft bolted directly to

the outside face of the sprocket. Wiring for the lead vehicle encoders ran down the sides

 21

of the vehicle, and combined with the string pot cables. The rear encoders’ wiring ran up

the side of the vehicle to the Datron system.

Figure 3. 5: 5th wheel mounting position. Rear end of the trail vehicle.

The 5th Wheel attached off the left side of the trail vehicle to pre-existing holes

drilled in its hull. See Figure 3.5. Wiring ran onto the top of the rear vehicle and down

through the port to the DAQ system.

Figure 3. 6: Installed pressure sensor with electrical tape protecting data connections.

As stated in Section 3.1.6, pressure sensors were selected to monitor the hydraulic

pressures in the TVLA. The hydraulic manifold was designed with measuring ports.

These allowed the hydraulic pressure to be monitored efficiently with no alterations to

 22

the system itself. The pressure sensors’ wiring followed the same path of the 10-inch

string pots to the Datron system.

3.2 Testing

 TARDEC Vehicle Sensor Integration Group requested assistance from the Joint

Programs Office (JPO) Unmanned Ground Vehicles for integrating a Legacy Omnitech

Teleop Kit onto the Panther Lite. JPO, with the help of Titan System Corporation,

designed the teleop system. The purpose of the tests was to integrate the system into the

Panther Lite system.

3.2.1 Involved Personnel

The test was a collaboration between a group from TACOM and several KRC

personnel. The test coordinator was Andy Vogeli of TARDEC Vehicle Sensor

Integration Group, VSIG, from TACOM. Also from TARDEC VSIG was Keith

Kamysiak, who was the computer specialist. He was in charge of setting up the camera

network on the vehicles and control program display. During testing, Kamysiak

documented the experiments via video recording with audio narration. Andrew Smith

was the remote control operator from Titan Systems Corporation through Robotics

Systems/Joint Programs Office, RS/JPO. Also from RS/JPO, was Mike Moeller. Moeller

was the driver of the lead vehicle. When the remote control was not in operation, the

drivers manually controlled the vehicle. This was done mainly to move the system from

the main facility to the test areas. While the vehicles were in remote control operation,

the drivers’ functions were to communicate information and control the emergency stop

 23

mechanisms. It was permissible for the vehicles to be manned, as there was no blast

testing for these experiments. Vehicle occupants are not permitted for blast tests because

of the danger. Chris Green, a KRC senior research engineer, initially drove the trail

vehicle. After the first two days of testing, the aforementioned Carl Keranen took over as

driver. Dave Fredrick was the TARDEC VSIG supervisor. Supervising for the JPO

Unmanned Ground Vehicles was Danny Price. Scott Bradley was the KRC supervisor.

As mentioned in Section 1.2, my part in the testing included controlling the data

acquisition software, recording the data sets, and communicating related information to

the aforementioned team members.

3.2.2 Vehicle Setup

The system tested was a Saber system, the Panther Lite without the mine rollers

or mine roller attachments with some minor differences. Instead of an M113A3, the lead

vehicle was an M113A2 supplied by JPO. The rear vehicle was an M113A1 supplied by

KRC. Though the vehicles were not M113A3s, the differences in operation would be

minimal. For easy designation during testing, a large “I” was marked in duct tape on

both sides of the lead vehicle and a large “II” was marked on both sides of the trail

vehicle.

Both the M113A1 and the M113A2 are controlled via brake sticks, whereas the

M113A3 has a yoke. This has no effect on the remote control systems. The hydraulic

actuators that control vehicle braking and turning are connected to linkages in the engine

compartment. These linkages are the same for all models of M113.

 24

Three cameras were installed on the system. These allowed the controller to

navigate the system as well as observe the condition of the TVLA, and all three video

feeds were visible on the control program at all time. One camera was mounted on top of

the lead vehicle on the centerline. The cameral pointed forward and was the main

navigation camera. In order to assist with orientation, a small pole was installed several

inches directly in front of the camera, with the top portion painted. The purpose of the

pole was similar to that of the sights on a gun. The distance was determined from the

front of the vehicle to the spot on the ground that the top of the pole “pointed at”. This

gave the controller a defined point of reference.

Figure 3. 7: JPO M113A2 with “I” designation on side of hull.

 25

Figure 3. 8: Forward facing camera of lead M113 and centering pole.

Another camera was mounted on top of the lead vehicle on the right-rear quarter.

This camera was positioned to observe the entire TVLA. The third camera was mounted

on top of the trail vehicle on the left-rear quarter facing rearward. The purpose of this

camera was to observe everything behind the system. It also allowed the controller to

determine if cones were knocked over during the tests that required path motion. Lastly,

the remote transceiver was installed on the top right-rear quarter of the lead vehicle. This

antenna sent system information to the controller and received command functions for the

control system.

 26

Figure 3. 9: Complete vehicle setup before application of numerical designators. Note: The
transceiver is secured for travel.

3.2.3 Control Setup

The original test plan included multiple control scenarios relating to the vehicle

system and the command vehicle. The command vehicle (CV) was an M998 HMMWV.

The vehicle was outfitted with a transceiver matching the one on the Sabre system.

The first scenario involved a static CV while the Sabre was maneuvered through

an open-field refered to as the “spin-up, packed snow area”, SUPSA. Though not

actually covered with snow, this area was an open flat field, half of which was composed

of crushed asphalt. The other half of the field was a softer grass covered soil. This was a

breaking in period that allowed the controller to get used to the system. For the purpose

of this paper, the term “controller” will refer to the person operating the remote system.

This period presented the group with an opportunity to check the system for problems

before the critical tests were conducted. Later in testing, the scenario was repeated with a

mobile CV. However, since the goal of this project is to correlate algorithms with viable

 27

experimental data, it was decided not to acquire data from the mobile CV test due to the

greater chance for extraneous commands to be input into the system.

The remote communication was tested in three more scenarios. All three were

conducted with the CV stationary. The first two involved driving the Sabre behind trees

and then hills in order to determine what would disrupt the communication. The system

would shut down if communications were interrupted. The third scenario in this series

was a maximum communication distance test. This involved driving the Sabre in a line-

of-sight path away from the CV until communication was disrupted. Due to the fact that

the successful completion of these scenarios involved the disruption of the

communication of the controller and the shutdown of the vehicle, data were not acquired.

When the controller had become more comfortable with the system, handling

loops were constructed. These were first run with a static CV and then repeated with the

mobile CV. More in-depth descriptions of these handling loops are described in

Section 3.2.5. As with the open-field maneuvers, data from the mobile CV tests were not

acquired.

3.2.4 Test Schedule

The test was scheduled to take two weeks to complete, from Monday, 07/07/03 to

Friday, 07/18/03. The first week’s agenda was to prepare the vehicle setup. This

included drilling all necessary holes for the TVLA, attaching the TVLA, and installing

the teleop system. Also included during this time was the installation of the

instrumentation and DAQ system. The second week was scheduled to contain all of the

tests. Monday and Tuesday were intended to be the static CV tests and the Wednesday

 28

and Thursday, the mobile CV test. This would allow the controller the necessary time to

become used to the system before attempting control in the unstable mobile environment.

The vehicle setup and installation began on schedule. The groups involved

proved efficient enough to finish this stage by the end of Thursday, 07/10/03. The

morning of the following Friday was spent fine-tuning the system. By afternoon, the

system was moved outside. A comprehensive check of the safety systems followed. It

was critical to assure guaranteed safety. There were no problems found on the safety

inspection, so the system was moved manually to the SUPSA for testing.

3.2.4.1 Friday, July 11, 2003

The testing began with a safety check. This safety check would be repeated

anytime that the vehicles were turned off for any length of time. The controller would

begin the check by testing the emergency stop that was part of the control program. After

the emergency stops were reset, the observer would test his emergency stop. The

observer gave a third person aspect to safety, as he was not involved in the operation of

the vehicle. Andy Vogeli functioned as the observer for the tests. Again, after all

emergency stops were reset, the driver of the lead vehicle would trip his emergency stop.

Lastly, the driver of the trail vehicle would test his emergency stop. Each safety check

successfully passed without incident.

Tests conducted on this day were considered to be a “warm-up” period for both

the system and the controller. The CV was parked on the east border of the SUPSA in

order to stay clear of the Sabre maneuvers. The maneuvers consisted of movements

along non-predetermined paths. These paths included combinations of turns. A total of

nine measurements were made during this time. Each measurement was of the form,

 29

Sabre#, where the # symbol designated the test number. This numbering convention was

repeated for each separate day of testing where the number reset each day.

During these tests, the most prominent problem the controller had was the

inability to maneuver the vehicles out of a turn. The system had a tendency to keep the

system locked at the angle needed for the turn and the vehicles would have to give

individual effort to straighten themselves out. Otherwise, the lead vehicle would use the

TVLA to jerk the trail vehicle sideways off of a turn. It was hypothesized that this may

be due to too much restriction of the fluid flow between the hydraulic cylinders, caused

by having the relief valves set too high. Part of the way through the test designated

Sabre4, the string end of the string pot attached to the left hydraulic cylinder on the

TVLA came loose. It was secured before the Sabre6 test was conducted. Therefore the

Sabre4 and Sabre5 tests were immediately labeled as unusable data for any calculations

that include cylinder displacement.

At the end of the day, it was determined that none of the data were acceptable for

use in calculations. This was due to the fact that the test added high stresses to the

TVLA, the hydraulic cylinders, and all attachments. This was not the quality of data that

was desired for correlation. It was also determined that the solution to the TVLA

stiffness problem must be resolved before the more intensive tests began the next week.

Therefore more testing was conducted on Saturday, 07/12/03.

 30

Test Data – Friday, 07/11/03
Sabre1 Driving out to the SUSPSA.
Sabre2 Random driving on the SUPSA.
Sabre3 Random driving on the SUPSA.
Sabre4 Random driving on the SUPSA.
Sabre5 Random driving on the SUPSA.
Sabre6 Random driving on the SUPSA.
Sabre7 Random driving on the SUPSA.
Sabre8 Random driving on the SUPSA.
Sabre9 Random driving on the SUPSA.
Table 3. 1: Summary of test data from 07/11/03.

3.2.4.2 Saturday, July 12, 2003

The sole purpose of this day of testing was to resolve the TVLA problem. As

stated earlier, it was hypothesized that the high pressure setting on the relief valve caused

the stiffness problem. To correct this problem, the relief valve was slowly opened,

incrementally. After each increment, the system would be driven via remote control to

assess the effect of the adjustment. It was only when the relief valve was completely

open that the controller felt satisfied with the response of the system. For the rest of

testing the relief valve was left in the open position. Due to the inefficient nature of the

system behavior in the tests on this day, no data were recorded.

3.2.4.3 Monday, July 14, 2003

This day marked the beginning of the testing that was intensive on validation of

the teleop system. Testing began with free runs of the system with a static CV to

reacquaint the controller with the system. Then the interference and maximum distance

communication specific testing was conducted. There was no data acquired on this date.

 31

3.2.4.4 Tuesday, July 15, 2003

The first of the beneficial data were recorded on this date. However, before the

testing, a newly positioned camera setup had to be measured and tested. Following this,

the first set of runs consisted of “warm-up” free runs, the act of which at this time became

known as “meandering”. Then, several handling loops were set up by the TACOM group

for static CV testing. The first series was of a narrowing cone test. This test was

repeated five times. The goal for this test was for each consecutive attempt, to complete

it faster and more accurately. More detailed information on the special maneuvering

loops can be found in Section 3.2.5.

The second series was a slalom run. This test was repeated three times. Like the

narrowing cone test, the goal of the slalom tests were to consecutively improve on speed

and the quality of the turning. On the first run of this test, extra cones were skipped at

times. The second run did not skip any cones, but turns were very sharp, such that when

the system reached the coneline, its path was nearly perpendicular to that line. The third

run was much faster with better, less angled turns.

Finally, a simple high-speed test was conducted. This was over rough terrain, so

the 5th wheel speed accuracy was questionable. It was also in the SUPSA, which is too

small of an area for the system to reach its full speed. A total of eleven sets of data were

acquired, however, the first set, Sabre1, had an error while acquiring, so the data were

corrupted and could not be uploaded to the PC. More testing was conducted on this date,

mostly pertaining to mobile CV testing. Therefore, no more data were obtained.

 32

Test Data – Tuesday, 07/15/03
Sabre1 Data corrupted. Not used.
Sabre2 New camera position test. Meandering
Sabre3 More Meandering.
Sabre4 Narrowing Cone Test. 2x (Circles around first.)
Sabre5 Narrowing Cone Test. 2x
Sabre6 Narrowing Cone Test. (Circles around first.)
Sabre7 Maneuvering to slalom cones.
Sabre8 First slalom.
Sabre9 Second slalom.
Sabre10 Third slalom.
Sabre11 High-speed test.

Table 3. 2: Summary of test data from 07/15/03.

3.2.4.5 Wednesday, July 16, 2003

By this day, testing was well ahead of schedule. The only remaining test that the

TACOM group needed to conduct was the high-speed test. Since the high-speed test was

a highly stressful test, it was reserved for the end of the testing. Before that, there was

time for a test specific to this project. The modified figure eight test was developed and

set up. The test layout can be found, described in detail, in Section 4.5.4. Initially, when

the circuit was first run with the cones lining the inside of the figure-eight (Guide Cone

Configuration 1), the controller could not see the cone while turning. As a result, the

system path was erratic and many cones were trampled under-track.

To correct for this problem, the cones were all moved to the outside of the figure

eight (Guide Cone Configuration 2). This drastically increased visibility and helped with

navigation. The circuit was run six times, three times in each direction. With the newer

cone configuration, the system’s motion through the curves was much faster and

smoother. Fewer cones were crushed.

 33

After the figure eight testing, the vehicles were maneuvered manually to what is

referred to as the “ice rink”. During winter testing, this area is covered with a large slab

of ice for vehicle handling tests. In the summer, however, this area is just a long stretch

of flat ground with a slight slope towards one end. This made for a perfect high-speed

test location. The CV was parked on the top of a set of slopes next to the ice rink. This

location gave the vehicle a good observation point over the system during the test. The

test was conducted twice. The first test was moving up the slope and the second test was

moving down the slope. After the second run, the system was turned around for a third

run. At this time, the TVLA was noticed dragging on the ground. The apex spindle,

which allows the trail vehicle to roll separately from the lead vehicle, became clogged

with dirt and debris. This caused the spindle to seize and then, with the stresses of the

test, break apart. The rut caused by the dragging of the a-frame was used to determine

the point of failure. The rut began after the system had slowed down, about halfway

through its turnaround for the third run. This means that the Sabre8 data file is a viable

source of information. Also, test data (see Figure 3.10) showed that there were no

pressure spikes toward the end of the run. During the testing on Friday, July 11 (see

Section 3.2.4.1), when the TVLA stiffness was too high, there were spikes of between

600 and 800 psi. If the connection had begun to fail during the run, spikes of similar

magnitude would have been recorded.

 34

After the failure, the vehicles were disconnected and manually driven back to the

shop for component cleanup and removal. The TVLA was loaded onto a front-end loader

and returned as well for analysis. This marked the end of testing for the week. A total of

eight data sets were acquired on this date. The most notable are Sabre3 and Sabre4,

which were the modified figure eight tests with cone configuration 2. These are expected

to be the most beneficial data sets used in model correlation and validation.

Test Data – Wednesday, 07/16/03
Sabre1 Meandering.
Sabre2 Modified figure eight. Large loop CCW #1
Sabre3 Modified figure eight. Large loop CCW #2,3,4 (#3 @ 200 s.) (#4 @ 365 s.)
Sabre4 Modified figure eight. Large loop CW #1,2,3 (#2 @ 195 s.) (#3 @ 355 s.)
Sabre5 Maneuvering to ice rink.
Sabre6 Maneuvering to ice rink.
Sabre7 High-speed test #1. Up slope.
Sabre8 High-speed test #2. Down slope.

Table 3. 3: Summary of test data from 07/16/03.

Figure 3. 10: TVLA hydraulic pressures during the
Sabre8 test run.

 35

3.2.5 Handling Loops

This section covers the handling loops used during data acquisition and their

locations. Maneuvers conducted that were not part of the data acquisition process, such

as mobile CV and communications tests will not be covered in this section. Where

possible, diagrams will be used to assist in understanding the usefulness of these

maneuvers. Larger and more in-depth diagrams can be found in Appendix D.

3.2.5.1 Free Run

Though not specifically a handling loop, free runs were combinations of basic

maneuvers such as straightaways, left and right turns, and s-curves. A nice aspect of a

free run is that it allows investigation into the transition between these basic maneuvers.

Since the free runs are non-directed maneuvers and vehicle control is under the discretion

of the controller, the basic maneuver content of each free run is different.

3.2.5.2 Narrowing Cone Test

The narrowing cone test is a handling loop designed to improve controller

familiarity with the system by forcing the controller to navigate a set of narrowing cones.

The test was intended to be run multiple times for continuous improvement. The Sabre

system is parked between two cones separated by 21 feet. This is the “starting line” for

the test. Two rows of eleven cones begin 75 feet in front of the system at the start.

Consecutive cones are separated by 10 feet for column lengths of 100 feet. The first set

of cones is spaced 22 feet apart. Each consecutive set is spaced one foot less apart from

the set before. This gives the last set of cones a clearance of 12 feet. Keep in mind that

the total width of the vehicles with the 5th wheel attached is slightly less than 10 feet.

 36

The goal for the controller is to continually complete the test run with higher speeds and

more control.

Figure 3. 11: Narrowing cone test setup.

3.2.5.3 Slalom

The slalom is a run designed to test the turning capabilities of the controller as

well as the system. The clear definition of each turn makes this test an ideal source of

data for this project. Like the narrowing cone test, this handling loop is meant to be

performed several times, until the controller becomes comfortable with the behavior of

the system. The test was set up by placing eleven cones in a row, each separated by

50 feet. The object of the test was to drive past the first cone on its left side, turn and past

the next cone on its right side. The vehicle would continue the sinusoidal motion through

the cones. On the first slalom test conducted on July 15 (see Section 3.2.4.4), it was

necessary for the controller to skip a cone in order to widen the turn. As the controller

repeated the test, the turns became smoother, faster, and more efficient.

Figure 3. 12: Slalom cone setup.

 37

3.2.5.4 Modified Figure Eight

The modified figure eight was an attempt to measure the basic maneuvers in one

circuit. It was designed to have a relatively small-, medium-, and large-radius turn, as

well as a straightaway and an s-curve. The small loop of the figure eight was composed

of a circle whose radius was 45 feet. This loop connected to a semicircular arc with a

radius of 90 feet. The other end of this arc was connected to another 75-foot arc. This

produced a gap between the free end of the 45-foot arc and the free end of the 75-foot

arc. This proved to be an ideal location for a straightaway. Therefore, if the circuit was

navigated in a CCW route about the large loop, the maneuvers would include the

following: Straightaway, medium left turn, large left turn, left-to-right s-curve, and a

small right turn. If the circuit was navigated in a CW route about the large loop, the

maneuvers would include: Straightaway, small left turn, left-to-right s-curve, large right

turn, and a medium right turn.

Figure 3. 13: Modified figure eight dimensional layout.

 38

Guide Cone Configuration 1

Initially, during the tests on July 16, (see Section 3.2.4.5), it was decided that

cones would be placed inside the path. This would make sure that the controller would

not turn overly sharp. The cones were placed 7.5 feet from the path. This would result in

a lane that was 15 feet wide. Problems arose when the controller was unable to see the

cones on the inside of a turn. This was because the navigational camera was pointing

straight forward, which is outward when making a turn. Because of this, the first test was

slow and lopsided. Many cones were crushed.

Figure 3. 14: Guide Cone Configuration 1.

Guide Cone Configuration 2

A new configuration placed the cones on the outside of the path. As with Guide

Cone Configuration 1, the cones were place 7.5 feet from the path. Thus the lane

remained 15 feet wide. Several cones were placed inside the loops at the intersection to

aid in navigation of the straightaway and the s-curve. This new configuration provided

the controller with a much better visual to base maneuvers off of. After implementation

 39

of the Guide Cone Configuration 2, the Sabre moved through the circuit in a faster, more

controlled manner.

Figure 3. 15: Guide Cone Configuration 2.

3.3 Reconstruction

 After testing was concluded, it was necessary to reproduce the data for several

reasons. Reproduction of the data into a visual format allows immediate error detection.

All programs involving the experimental test data use at least some portion of the

reconstruction algorithms. Comparison of reconstruction methods will also be used to for

determining trackslip. Visual confirmation of expected vehicle paths is used to add

confidence to the reproduction algorithms.

3.3.1 Calculation Assumptions

The reconstruction of the experimental data required assumptions. These

assumptions are generated due to the fact that the condition of the testing was not perfect

for the acquisition of data. Each of the following assumptions will also discuss

conditions that would improve the validity of each assumption.

 40

• The speed measured by the 5th wheel is accurate. The 5th wheel had a basic

suspension composed of a coil spring and a shock absorber. This simple type of

suspension tends to compromise tire contact over rough terrain. This loss of contact over

similar terrain increases as speed increases. The assumption being used is that any lack

of contact causes a negligible effect to speed. A good check for the validity of this

assumption is to look at the data from the high-speed tests. A characteristic of a high-

speed test is that the system is driven along a linear path. This minimizes the slip of the

track systems and, therefore, allows the track speeds to be a viable comparison with the

5th wheel speed. Figure 3.16 shows speeds from the Sabre11 test of 07/15/03 and the

Sabre7 test of 07/16/03. The Sabre11 high-speed test was over a rougher terrain,

whereas the Sabre7 high-speed test was over a relatively smooth surface. At lower

speeds, both the 5th wheel speeds of both tests were very close to the track speeds. It

wasn’t until the system reached speeds greater than 20 mph on the Sabre11 test that the

speed of the 5th wheel began to fluctuate. Since all of the handling tests maintained

speeds less than 20 mph, many of which never even reached 10 mph, this assumption

proved reasonable. The best way to decrease contact loss would be to rerun the tests on a

smoother terrain. This was not a feasible alternative for July 2003.

 41

Figure 3. 16: Speed Data for the high-speed tests Sabre11 (left) and Sabre7 (right).
Compares the track speeds with the 5th wheel speed.

• The pivot radius for each track system is located at the centerline of each

track. The pivot radius dictates the point of reference for the speed of each

track. The centerline of the track systems is located 42.5 inches from the

vehicles’ centerlines. This value is used to calculate trackslip, Section 3.3.5,

by relating measured track speeds with theoretical track speeds calculated

from yaw rate and 5th wheel speed. Since this is a reference point, there is no

need to improve the value. However, it is important that it is noted. Future

calculations, such as those discussed in Section 5.2, will use this value. It

may become necessary to standardize this value.

• Uniform ground characteristics for each test run. This assumption was

covered in detail in Section 1.2. It was necessary to re-note it because this is

the chapter that the assumption will be utilized. As with the previous

assumption, this assumption primarily affects trackslip calculations and

therefore, will not be utilized in the concluded algorithms.

 42

3.3.2 File Structure and Catalog

The Datron system had a file type unique to the system. To help with this, Datron

supplied a program that converted all files to files with the extension “.asc”. This

tab-delimited ASCII file type is good, because such files can be easily imported to

common programs such as Microsoft Excel and Matlab for processing.

Name Unit Description
time sec. Time data.
dist ft. Vehicle distance from 5th wheel
speed mph Vehicle speed from 5th wheel.
l1trk mph Left side track speed of the lead vehicle.
r1trk mph Right side track speed of the lead vehicle.
l2trk mph Left side track speed of the trail vehicle.
r2trk mph Right side track speed of the trail vehicle.
tdist in. String pot distance of the top, center cylinder.
ldist in. String pot distance of the left side cylinder.
press1 psi Pressure in MP1.
press2 psi Pressure in MP2.
r1 in. Right hand brake lever in the lead vehicle.
l1 in. Left hand brake lever in the lead vehicle.
r2 in. Right hand brake lever in the trail vehicle.
l2 in. Left hand brake lever in the trail vehicle.
fwdbk g Longitudinal accelerations of the motion pack.
rtlft g Lateral accelerations of the motion pack.
updwn g Vertical accelerations of the motion pack.
roll °/s Roll rate of the motion pack.
pitch °/s Pitch rate of the motion pack.
yaw °/s Yaw rate of the motion pack.

Table 3. 4: Test data channel list and descriptions.

All of the recorded test data were converted using this program and put into

directories representing the respective test date, 030711, 030715, and 030716. Each file

has an identical layout of twenty-one columns. Each column represents a Datron

channel. All of the columns for each individual test are the same length and are

dependant on the length of time of the test that was recoreded. A list of each channel’s

name, unit, and decription of these channels can be found in Table 3.4. The table is set

 43

up so the channels listed first to last are respectively located left to right in the files. The

names of the channels are listed in a form compatible with program variables because

they will be used in all of the reconstruction programs.

 It was foreseen from the beginning of analysis that the data were going to be used

in many applications. To make those applications simpler, a catalog program was

designed. The original program was called catalog.m and was designed to load a

specified test data file as a matrix and then slice the matrix into 21 column vectors.

These vectors were labeled with their proper name and saved to the workspace for use

with other programs. A benefit of using this program was that the other programs could

input only the vectors they needed. This would potentially save a good deal of time on

some of the larger programs.

 The catalog file was modified to add upgrades that would help future calculations

even more. The new program, called modcat.m, did everything that the original

catalog.m did, but had extra features. The first addition was a moving average filter that

allowed a value, x, to be input and each channel would be digitally filtered using the

following equation:

x

ch
ch

x

n
nm

m

∑
−

=
−

=

1

0 (3.4)

Here, ch stand for the channel data and m stands for the channel index. This filter would

be used on each channel for all indices greater than x and would be used to smooth out

the data. However, the filter could be bypassed by not entering a value for x.

In addition to the filter, correction factors were also included. The yaw rate zero

offset was calculated from a specific test run and entered in to the program. Also

 44

included were track over sprocket expansion factors. When the vehicles move, the track

shoes push outward on the sprockets. The resultant errors are track speeds measuring

slower than they should. These factors were calculated by comparing the 5th wheel speed

to the track speeds over a very flat, straight track. The vehicles maintained constant

speed to prevent trackslip. Then, the speeds were compared and the correction factors

were calculated:

tracks

wheel

speed
speed

fc
th5.. = (3.5)

The factors corrected a 9.39% error in track speeds. Theses factors were also included in

modcat.m.

Lastly, three new outputs were included. The first, called dt, is a single value that

represents the time step. This value was 0.01 seconds for all of the test data, but this was

added so the program could be used for data not covered in this report. A variable

labeled filt_size was merely the filter size that was input into the program as x. The last

output is the name of the loaded file minus the extension. This output, labeled

loaded_file, is used mostly for plotting titles and reports.

3.3.3 Reconstruction Methods

Vehicle path was calculated from speed and yaw rate. Speed was integrated to

determine the distance the vehicle traveled. The Matlab command, cumtrapz, was used

to calculate integrals using the trapezoidal approximation of a definite integral. Given

that the speeds of the vehicles did not change very quickly and that the time step was

very small, 0.001 sec., the error produced by this method should be very low. Using the

 45

diff command with the distance matrix, another matrix, ∆diff, was created that showed the

distance the vehicle traveled each time step. The yaw rate was integrated to determine

the vehicle bearing, θ. The bearing matrix and the ∆diff matrix were used in the

following equations to determine time step-difference matrices of Cartesian

displacement.

() mmm diffX θsin∆=∆ (3.5)

() mmm diffY θcos∆=∆ (3.6)

Using the cumsum command, these difference matrices can be summed to give the time

dependant Cartesian vectors of the vehicle path.

As mentioned earlier, there are three ways of calculating the vehicle speed and

yaw. The following subsections will describe these methods, and the pros and cons of

each will be discussed. Equations will also be formulated where necessary.

3.3.3.1 Track Speeds

The tracks are the vehicles’ method of locomotion. Without considering

trackslip, calculation of speed and yaw rate from the track speeds is a simple matter.

Figure 3.17 can be used as reference for calculation. Vehicle speed is calculated by

averaging the two track speeds.

2
LTRT

CG
speedspeedspeed +

= (3.7)

The yaw rate can be calculated via the geometric constraint of Eq. (3.8). However, this

calculation will produce yaw rate with the units of radians per second, unlike the motion

pack yaw rate units of degrees per second. Likewise, reverse calculations must be in the

same units.

 46

()rateCGLT yawinspeedspeed .5.42=− (3.8)

.5.42 in
speedspeedyaw CGLT

rate
−= (3.9)

When Eq. (3.7) is substituted in, Eq. (3.9) becomes as follows.

.85in
speedspeedyaw RTLT

rate
−= (3.10)

However, the speed units used in the equations will be feet per second. Thus, it would be

wise to convert the length from inches to feet. This will result in the following final

solution.

()
.85

12
ft

speedspeedyaw RTLT
rate

−= (3.11)

The problem with using track speeds, is that the tracks slip. This slip

causes discrepancies between measured track speeds and those as would be expected

from vehicle speed and yaw rate.

()measspeedTSspeed =exp (3.12)

In this case, speedexp is the speed that would be used in Eqs. (3.7) and (3.11). The

trackslip coefficient, TS, is a function of track speed, terrain properties, and

vehicle/system mass properties. Section 3.3.5 will go into more depth on calculating the

TS coefficient.

Another problem with using track speed as a method of calculating vehicle

speed and orientation is that there are no built-in track speed monitors. Monitors were

added for this experiment, but they were attached directly to the outside of the sprocket

and would be vulnerable to driving obstacles. Therefore, unless a better way can be

 47

found to accurately determine track speeds, they will remain a questionable source of

data in field conditions.

Figure 3. 17: Diagram of M113 used for calculating yaw rate and speed from track speeds.

3.3.3.2 Acceleration and Yaw Rate

Using a motion pack, like the one used in testing, or a similar transducer

pack to get accelerations and yaw rate is potentially a compact method for determining

vehicle speed and yaw rate. There are several downsides to this method, however. The

pack must be located very close to the center of mass of the vehicle. Otherwise, the

measurements will be compromised. Speed must be calculated by integrating the

accelerometer signal. An initial speed offset must be implemented to make sure the

speed calculation is correct. The measurement pack would have to be robust enough to

not be damaged by the severe jostling of the system during transit and operation.

Minimizing calibrations would be beneficial.

 48

During these tests, there was a calibration error with the linear

accelerometers. This corrupted the data, making it unusable. As a result, this method of

calculation was not used in the reconstruction of the test data.

3.3.3.3 5th Wheel and Yaw Rate

The main method of calculation for the reconstruction of data for these

tests was the 5th wheel speed and the motion pack yaw rate. A nice feature of this method

is that there is very little calculation needed and if the 5th wheel is set up properly, there

would be no calculation needed. As tested, the 5th wheel was displaced 63 inches off the

right side of the trail vehicle. Because of this, the yaw rate affects the measured 5th wheel

speed such that it differs from the vehicle speed.

()rateCGwhl yawftspeedspeed
12

63
5 −= (3.13)

This equation can be rewritten to allow for correction of 5th wheel speed using yaw rate.

()ratewhlCG yawftspeedspeed
12

63
5 += (3.14)

In order to remove the need for this correction, the 5th wheel would need to be positioned

in line with the vehicles center of mass, preferable beneath the yaw rate transducer. If

this were done, the yaw rate and vehicle speed would be at hand with no calculations.

3.3.4 Visualization

During the development of this project, there were several programs that were

developed for the purpose of visualization. These programs not only served to visually

reproduce the experimental tests of the system, but visually check for calculation errors.

 49

The following paragraphs will detail these visualization programs and, where necessary,

figures will be included to assist in the description. All were created in Matlab.

The allplot.m program was created for the sole purpose of viewing the data of all

channels within a test set. The program creates seven windows. Each window displays

data from related channels for easy viewing and comparison. The first window contains

two subplots, 5th wheel distance and 5th wheel speed. All other windows contain single

plots. The second window contains all five speed measurements, 5th wheel and track

speed. See Figure 3.18 for examples of the first and second windows using a slalom test,

sabre9 from 07/15/03. The third and fourth windows, Figure 3.19, contained the TVLA

data elements. The third contained the cylinder displacements. These were

measurements relative to the location in which they were attached to the cylinders. The

fourth window contained the hydraulic pressures in the manifold.

Figure 3. 18: Screen shots of the allplot.m windows loaded with sabre9 data from 07/15/03 and
showing 5th wheel displacements and speed (left) and 5th wheel and track speeds (right).

 50

Figure 3. 19: Screen shots of allplot.m showing hydraulic cylinder displacements (left) and pressure
(right).

 The fifth window, Figure 3.20, is the plot of the brake stick string pot

displacements. Figure 3.21 shows the sixth and seventh windows. These contain the

motion pack measurements. The sixth holds the linear accelerations and the seventh

holds the rotational velocities.

Figure 3. 20: Screen shot of allplot.m showing string pot displacements of the brake sticks.

 51

Figure 3. 21: Screen shots of allplot.m showing linear acceleration (left) and rotational velocity (right)
from the motion pack.

The next programs created were the so-called mplot programs. In this case, mplot

stands for “motion plot” as they were designed to generate partial real-time

reconstructions of the data. They are not exactly time coordinated because to do so in

Matlab would require more programming and would not give much more to the

recreations.

The first of these programs was called mplot.m. It used fwdbk and rtlft

accelerations along with yaw to calculate the vehicle trajectory. Please refer to Table 3.4

for descriptions of italicized data. Shortly after the program was created, the flow in the

acceleration was made apparent and the program was abandoned. Its successor,

mplot4.m, calculated the vehicle path using speed and yaw. Also included, in this

program and all future mplot programs, was a frame skip option. This allowed the

recreations to be viewed at an accelerated frame rate and was particularly helpful when

viewing the longer test runs of over five minutes. Figures 3.22-24 will use the data

sabre4 from 07/16/03.

 52

Figure 3. 22: Screen shot of mplot4.m using speed and yaw to calculate vehicle trajectory.

This program was modified to also plot a vehicle path as calculated from the track

speeds, r2trk and l2trk. Renamed mplot4b.m, the new program made no trackslip

calculations (ts=1, see Section 3.3.5), but did allow for adjustment of the pivot radius

which is 42.5 inches in Figure 3.23 Therefore, mplot4b.m give a good overview as to the

effect trackslip has on vehicle track systems.

 53

Figure 3. 23: Screen shot of mplot4b.m showing vehicle paths calculated from speed and yaw (blue) as
well as unadjusted track speeds, r2trk and l2trk (black).

The mplot4.m program was further developed to include both vehicles. The ldist

channel was used to calculate the γ angle between the TVLA and the trail vehicle. This

version was named mplot5.m. Boxes were generated to represent the two M113s and a

triangle was created as the TVLA. From this, two more similar programs were created.

The program mplot6.m was developed to record an AVI video file of the same animation

generated by mplot5.m. In mplot7.m, data were generated showing the area the system

covered during the run. Trails were drawn from outside points on each vehicles hull

directly out sideways from the vehicles’ centers of mass. This was intended to be a step

 54

toward a study in mine path coverage, but turned out to be of little benefit due to the fact

that the system was not installed with mine rollers.

Figure 3. 24: Screen shot of mplot5.m in mid-run (178.75 sec. of 524.84 sec.).

 55

3.3.5 Trackslip

The vehicles are controlled by adjusting track speeds. It is obvious that trackslip

will play a critical part in the implementation of the algorithms developed in this project.

It was this understanding that started the development of the trackslip calculation

program, trkslpcalc.m.

The trackslip coefficient, TS, is calculated by taking an accepted value of speed

and yaw, in this case, using the 5th wheel speed and motion pack yaw, and reverse

calculating an expected set of track speeds that would theoretically produce that speed

and yaw. Using Eq. (3.8) and (3.10):

() ()rateCGEXPLT yawinspeedspeed .5.42+= (3.15)

()).(5.42 rateCGEXPRT yawinspeedspeed −= (3.16)

The trackslip coefficient for each track can be calculated by using the following function

as calculated from Eq. (3.12):

MEASURED

EXP

speed
speedTS = (3.17)

During its development trkslpcalc.m became more than just a simple calculation

program. Multiple new features were added and the complexity of the program began.

Making use of a graphical user interface (GUI), trkslpcalc.m is an interactive display

program (see Figure 3.25).

 56

Figure 3. 25: Screen shot of trkslpcalc.m after initial startup showing vehicle paths using speed and
yaw (blue) and track speeds, r2trk and l2trk (black).

As in the mplot4b.m program, trkslpcalc.m also implements a user-variable pivot

radius. The paths need to be manually redrawn after adjusting the pivot radius by

clicking the “Regenerate” button. The top button on the lower right corner is a trackslip

calculation button. Using the equations found in Section 3.3.3.1, the trackslip variables,

TSL and TSR, are found for every time step. When the track speeds reach zero, the TS

value approaches infinity. In these cases, the calculator rounds to a lower value. These

values are then saved to a file of the user’s choice. The “Load Trackslip File” button can,

then, be used to load the file. Regenerating the data will show a corrected track speed

curve.

 57

Figure 3. 26: Screen shot of trkslpcalc.m after trackslip calculation and implementation.

At any point, the “Trackslip Plotter” button can be clicked to show the trackslip

coefficient values that are currently loaded. All trackslip coefficients are initialized to 1.0

at startup. The values can also be saved to a file using the “Write Trackslip File” button.

One of the most important functions of the trkslpcalc.m program is the dissection

function. Sections of the test can be saved independently of the rest. The sliders below

the main display can be used to move the cursors on the paths. The green asterisk marks

the beginning of the segment. The red asterisk marks the end of the segment and the

orange asterisk marks the midpoint of an s-curve. This asterisk is irrelevant if the curve

is not an s-curve. When the desired segment is selected, the “Curve Writer” button can

be clicked to run crvwrite.m, bringing up its GUI.

 58

Figure 3. 27: Screen shot of crvwrite.m GUI with “Curve Type” pull down menu exposed.

After entering a proper title and description, the type of curve must be selected.

The curve type selected will only affect the information file generated by crvwrite.m.

Then the curve can be written to disk. When a file name is given, the program makes two

files. Under that file name is all of the raw data for that time segment. The file shares the

same name with a prefix of “info_”. This file includes the title and description as well as

the variables included in the other file. Also included in the info file is curve specific

data such as straightaway length, curve length, curve angle, curve radius, and/or average

turn rate. If the curve type was an s-curve, there would be data on both halves of the

s-curve, as defined by the orange asterisk from trkslpcalc.m. The info file can be easily

read into Microsoft Excel for review.

As will be discussed in the Section 5.2, use of the trackslip function, Eq. (3.12),

and computation of the trackslip coefficient, TS, will be needed. It was concluded that,

even though TS could be computed, the data recorded was unacceptable for use in

generalizing TS. Most of the measurements from 07/15/03 were conducted on the Spin-

Up Packed Snow Area. Half of the area has a packed-down broken asphalt surface. The

other half has a softer, grass-covered soil. The 07/16/03 measurements were conducted

on the Spin-Up Packed Snow Area, the gravel access roads, and the “ice rink”. There

 59

was too much variation in ground type between tests to use the data for the

characterization of trackslip properties.

To show the variation in trackslip, a trackslip program was created. The final

version of this program, ts_least_sq2.m, loaded all of the left or right turns, listed in

Table 5.1, and calculated the average trackslip for each track. This version of the

program also calculates a best-fit surface using all of the average values. The best-fit

equation used is:

() () TSavamramrvarvf ≈++−+−= 4321 lnln),((5.1)

In this equation, v stands for average velocity and r stand for average radius of curvature.

The variable, m, represents the expected minimum turning radius as observed by looking

at trackslip as function of radius. The m variable was 22.4170 ft. for left turns and

25.7639 ft. for right turns.

Figures 5.1 – 5.4 are the results of the trackslip program. The three-dimensional

plot in the upper right corner of each figure shows the data points relative to the best-fit

surface calculated from Eq. (5.1). The other two plots are the mean squared error

between the data and the best-fit equivalents. The plots on the left show the data as a

function of radius of curvature and the right plots show the data as a function of average

velocity.

 60

Figure 3. 28: Error in trackslip and best-fit surface for left tracks during left turns.

Figure 3. 29: Error in trackslip and best-fit surface for right tracks during left turns.

 61

Figure 3. 30: Error in trackslip and best-fit surface for right tracks during right turns.

Figure 3. 31: Error in trackslip and best-fit surface for left tracks during right turns.

 62

The error of the best-fit surface decreases as the radius of curvature increases as

can be seen in the previous pictures. There is too much variation to make any conclusions

on trackslip values. Further steps in determining trackslip will be recommended in

Section 5.2.

 63

Chapter 4. Theory and Correlation

4.1 Model Generation

4.1.1 Theory

As stated in Section 1.1, this project is the first step in order to automate the trail

vehicle in the Panther Lite system and that first step is the generation of algorithms that

control the motion of the trail vehicle. The algorithms will use the state of the lead

vehicle and the TVLA in order to calculate the necessary trail vehicle response. The

algorithms were generated with the purpose of reducing stress to the TVLA.

Keeping the idea of reducing stress in mind, the trail vehicle was considered to be

a trailer. This means that the system will be looked at as if the lead vehicle were towing

the trail vehicle. Obviously, if this was truly happening, there would be larger stresses in

the TVLA. However, this motion is natural, and if the trail vehicle could be made to

imitate the trailer motion, there would be very little stress in the system. The key to this

is the connection point between the TVLA and the trail vehicle. With the assumption of

two-dimensional motion as described in Section 1.2, the lead vehicle and the TVLA form

a single rigid body. Therefore, the motion of the lead vehicle defines the trajectory of this

connection point.

4.1.2 Calculation

Plane kinematics states that any point on a rigid body has a calculable

instantaneous velocity. The velocity of a specific point is a vector sum of the velocity of

the body’s center of mass and the velocity of the point relative to the center of mass.

 64

This relative velocity can be measured as the cross product of the body’s rotation about

that center of mass and the position vector of the measured point to the center of mass

(ex. Eq. (4.1)). The connection point between the TVLA and the trail vehicle is part of

two rigid bodies. They are the lead vehicle/TVLA and the trail vehicle. See Figure 4.1

for reference.

Figure 4. 1: Kinematic model of the setup as tested.

Because the connection point is part of two rigid bodies, two equations can be set

up. The first calculating the connection point velocity, CPV , from the lead vehicle. The

second will calculate CPV from the trail vehicle.

11 CPCP VVV += (4.1)

22 CPCP VVV += (4.2)

Substituting Eq. (4.1) into Eq. (4.2) forms:

 65

2211 CPCP VVVV +=+ (4.3)

In component form, Eq. (4.3) becomes:









Ω
Ω

+








−
=









Ω−
+









γ
γ

γ
γ

cos
sin

sin
cos0

0 22

22

2

2

11

1

l
l

v
v

l
v

 (4.4)

In this equation ν1 and ν2 are scalar magnitudes of the velocity vectors, V1 and V2,

respectively. Viewing the equation in this form allows orthogonal parts of the vector to

be split into separate equations.

γγ sincos 2221 Ω+= lvv (4.5)

γγ cossin 22211 Ω+−=Ω− lvl (4.6)

The next series of equations will show the progression of using Eqs. (4.5) and (4.6) to

calculate the functions for ν2(γ,ν1,Ω1) and Ω2(γ,ν1,Ω1). From Eq. (4.5):

γ
γ

γ cos
sin

cos
221

2
Ω

−=
lvv (4.7)

γγ tansec 2212 Ω−= lvv (4.8)

Substituting Eq. (4.8) into Eq. (4.6):

γγγγ costansintan 2222111 Ω+Ω+−=Ω− llvl (4.9)

() 111222 tancostansin lvll Ω−=+Ω γγγγ (4.10)

γγγ
γ

costansin
tan

22

111
2 ll

lv
+
Ω−

=Ω (4.11)

 66

Eqs. (4.11) is the desired function. However, it is a fairly complex equation. Reduced

equations improve calculation time. This is beneficial when algorithms are implemented

and need to make real-time calculations. Eq. (4.11) can be reduced using basic

trigonometric identities. The following equations show this process.

γ
γ
γ
γ
γ

cos
cos
sin

cos
sin

2

2

2

111

2

ll

lv

+

Ω−
=Ω (4.12)









+

Ω−
=Ω

γ
γ

γ
γ
γ
γ

cos
cos

cos
sin

cos
sin

22

2

111

2

l

lv
 (4.13)

γγ
γ

coscos
sin

2

111

2 l

lv Ω−
=Ω (4.14)

2

111
2

cossin
l

lv γγ Ω−
=Ω (4.15)

Trail vehicle speed can then be found by substituting Eq. (4.15) into Eq. (4.8):








 Ω−
−=

2

111
212

cossin
tansec

l
lvlvv γγγγ (4.16)

This equation can be reduced as follows.

γ
γ
γ

γ
sin

cos
sin

cos
1

11

2

112 lvvv Ω+−= (4.17)

γ
γ
γ

γ
sin

cos
sin

cos
1

11

2

12 lvv Ω+







−= (4.18)

γγ sincos 1112 lvv Ω+= (4.19)

 67

Given the speed of the center of mass of the lead vehicle, the rotational velocity of the

lead vehicle, and the angle between the lead vehicle and the trail vehicle, Eqs. (4.15) and

(4.19) calculate the speed and rotation of the trail vehicle. The equations were reduced to

sums of basic trigonometric functions, all of gamma, with coefficients. These

calculations require very little calculation time. The units for speed, length, and

rotational velocity are feet per second, feet, and radians per second, respectively.

However, this equation will still work using meters per second and meters as the units for

speed and length. All other units would have to be converted before use in the equations.

4.1.3 Simulation

With the algorithms calculated, simulations were conducted. These were

prepared because they could show what should be close to the expected results from the

experiments. However, the experimental results were expected to be different because

the lead vehicle was constantly changing speed and rotational velocity. In case of the

simulations, the lead vehicle speed was maintained at a constant rate of 15 feet per

second and the rotational velocities remained constant over discrete curves and zero when

moving down a straightaway.

The simulations were done using Matlab. A program called pscalc.m was created

as a template for all the simulations. Within this program were the calculations that took

vectors of the lead vehicle speed and rotational velocity and using the algorithms, Eqs.

(6.15) and (6.19), produced the speed and rotational velocity of the trail vehicle. The

template file was used to create three unique programs for simulation of different vehicle

maneuvers. All of these files are identical with two exceptions. Toward the beginning of

 68

each file, the lead vehicle rotational velocity vector is designated. Because of the simple

nature of the simulations, these vectors tended to be step functions in order to maintain

the desired vehicle path. There are also labeling variations in the plots that assist in

distinguishing between the maneuvers simulated.

The first simulation program was called pscalc1.m. It simulated the system

traveling around a straight-sided oval track. The sides of the track were 90 feet long.

The semicircular ends had a 60-foot radius. The lead vehicle started 30 feet before the

first turn to the right. The vehicle then proceeded around the track, past the starting point

to stop at the beginning of the turn. With the lead vehicle travelling at the designated 15

feet per second, the simulated time was 39.13 seconds.

Figure 4. 2: Vehicle path results for the Oval Track simulation.

 69

The numbered indexing in Figure 4.2 and repeated in Figure 4.3 marks changes in

rotational velocity steps. They are described in detail in Table 4.1.

Index Description
1 Beginning of first 60-foot radius semicircular turn.
2 Beginning of first full 90-foot straightaway.
3 Beginning of second 60-foot radius semicircular turn.
4 Beginning of second full 90-foot straightaway.

Table 4. 1: Numerical index descriptions for Oval Track simulation results.

Figure 4. 3: Plots of vehicle angles from Oval Track simulation results.

These results show that when the lead vehicle began a turn, it would take about a

second for the trail vehicle to match the lead vehicle’s rotational velocity. At this point,

the inter-vehicular angle, γ, would reach a steady state value of approximately 18

 70

degrees. It took approximately the same amount of time for the system to straighten out

for the straightaway.

The program, pscalc2.m, simulated a slalom test similar to the sabre8, sabre9,

and sabre10 tests on 07/15/03. The simulated system made a 30-foot straight approach at

a 30-degree angle to the virtual line of cones. Then the system began a series of 60-

degree arcs of 50-foot radius beginning with a left turn, then a right and so on. The

system slalomed around nine virtual cones, each spaced 50 feet apart. The simulation

recorded 64.82 second of run time.

Figure 4. 4: Vehicle path results for the Slalom simulation.

 71

As with the oval track test, Table 4.2 includes the description of the numerical indexing

as found in Figure 4.4 and Figure 4.5. Indices 2 and 3 are repeated three more times

throughout the run, but there was no need to repeat the labeling.

Index Description
1 Beginning of first 60-foot radius left turn from approach.
2 Beginning of 60-foot radius right turn.
3 Beginning of 60-foot radius left turn.

Table 4. 2: Numerical index descriptions for Slalom simulation results.

Figure 4. 5: Plots of vehicle angles from Slalom simulation results.

The behavior of the system in this simulation looks similar to the results from the

oval track simulation. It is noticeable, however, that the steady state γ angles are around

±21 degrees unlike the 18 degrees from the previous simulation. This is due to the tighter

 72

turns, 50-foot radius instead of 60-foot radius. The greater the turn radius, the closer to

zero the steady state γ angle will become.

The last program was called pscalc3.m. This program simulated the modified

figure eight test that the system was navigated through for the sabre2, sabre3, and sabre4

tests on 07/16/03. Virtually, the system began at the point where the straightaway

connected to the 75-foot radius curve. The system followed the straightaway and made a

tight left turn around a 45-foot radius arc. After approximately 300 degrees of rotation,

the lead vehicle began a 90-foot radius right turn that lasted for 180 degrees. At this

point, the 90-foot radius right turn became a 75-foot radius right turn. This arc continued

until it reached the beginning of the straightaway. At this point, it retraces its path for the

length of the straightaway. With the designated speed, the system ran for a simulated

time of 60.25 seconds.

 73

Figure 4. 6: Vehicle path results for the Modified Figure Eight simulation.

The results were predicted to be similar to the previous two simulation results.

The steady state γ angle is expected to have a magnitude greater that 21 degrees on the

45-foot radius turn. The value should be negative because it is a left turn. The angle

should be less than 18 degrees on the 75-foot radius curve and even lower than that for

the 90-foot radius curves. Again, the descriptions for the numerical indexing in Figure

4.6 and Figure 4.7 can be found in Table 4.3.

Index Description
1 Beginning of 45-foot radius left turn.
2 Beginning of 90-foot radius right turn.
3 Beginning of 75-foot radius right turn.
4 Beginning of straightaway.

Table 4. 3: Numerical index descriptions for Modified Figure Eight simulation results.

 74

Figure 4. 7: Plots of vehicle angles from Modified Figure Eight simulation results.

The results were as expected. The γ angle reached a steady state value of around

-24 degrees on the 45-foot radius curve, around 14 degrees on the 90-foot radius curve,

and around 16 degrees on the 75-foot radius curves. Since the simulation results came

back as expected and appear acceptable, it was time to implement the algorithms into the

experimental data and correlate the theoretical results with the experimental results.

4.2 Correlation

Theory is validated by correlating calculated values with experimental data. In

the case of this project, the theoretical data is supposed to be close to the experimental

data, but not exactly. This is because the theoretical data represents the optimal reactions

 75

of the trail vehicle. During the experiments, the trail vehicle was controlled

independently from the lead vehicle. It was not known, during these tests, how to

maintain optimal operation of the trail vehicle.

Matlab was used to create the correlation program. This program, called

corrcalc.m uses data from the tests described in Section 3.2.4.4 and Section 3.2.4.5. The

catalog program, modcat.m, was utilized to load the test data before corrcalc.m was used.

The correlation program produces two output graphs per test. The first plot shows three

center of mass paths. The first belongs to the lead vehicle. The second belongs to the

trail vehicle as from the experimental data. The third path is from the trail vehicle as

calculated by the theoretical algorithms. This path is labeled “Opt. TV” which stands for

“optimal trail vehicle”. The second graph is a set of time plots of the inter-vehicular

angle, γ, both experimental theoretical (again labeled as “optimal”).

 76

Figure 4. 8: Flow of calculations leading to generation of theoretically optimal values from
experimental measurements.

4.2.1 Experimental Aspect

The technique used to reconstruct the experimental data was the 5th wheel speed

and yaw technique described in Section 3.3.3.3. Using this technique, the trajectory of

the trail vehicle center of mass was calculated. This set of data was used as part of the

first set of plots. Also using the left cylinder displacement value, the trajectory of the

lead vehicle center of mass was calculated. This was accomplished by using the trail

vehicle’s position and bearing as well as the angle, γ, to calculate the lead vehicle

position and bearing by way of system geometry. This trajectory was used as part of the

first set of plots, as well, but it also provided the speed and rotational velocity vectors of

the lead vehicle center of mass. The speed and yaw vectors were calculated using the

reverse of the techniques discussed in Section 3.3.3. The Cartesian coordinates were

 77

broken down into time step-difference vectors. The Pythagorean theorem was then used

to create the ∆diff vector, which was summed up. The derivative of this summation is the

lead vehicle speed. The derivative of the bearing is the lead vehicle yaw. These two

vectors, speed and yaw, are the key to correlation. As will be explained in the next

section, speed and rotational velocity are the experimental quantities that are used to

drive the theoretical calculations. The left cylinder displacement was also used to

calculate the angle, γ, which was used in the second set of plots.

4.2.2 Theoretical Aspect

After the speed and rotational velocity vectors of the lead vehicle were calculated

from the experimental data, the theoretical algorithms utilized them. The theoretical

model had the same initial speed, rotational velocity, and γ angle as the system did for the

experimental tests. Then, using the experimental calculated vectors and Eqs. (4.15) and

(4.19), the optimal speed, rotational velocity, and γ angle vectors were calculated. The γ

angle vector was used in the second set of plots to compare with the experimental γ

angles. The new speed and rotational velocity vectors were used to calculate the path of

the rear vehicle center of mass that was optimal in terms of stress reduction to the TVLA.

This path was included in the first set of plots to compare the lead vehicle path and the

trail vehicle path from the experiments.

4.2.3 Correlation Results

After the correlation program was completed, all eighteen test sets from 07/15/03

and 07/16/03 were processed. The results of the correlation program are presented on the

 78

following pages. The figures are described and discussed where necessary. The path

plots have circles and cross marks designating the start and finish, respectively, of the

runs.

Figure 4. 9: The corrcalc.m results for sabre2 from 07/15/03.

Figure 4. 10: The corrcalc.m results for sabre3 from 07/15/03.

Figure 4.8 and Figure 4.9 both cover tests that involved the driver moving

around in an undirected path. This was referred to as meandering. In Figure 4.8, the

vehicle system basically circled around to the left to end up behind its original position.

The vehicles were constantly turning left. For this reason, the γ plot was always negative.

As can be seen, the two curves differ. The optimal angle tends to be approximately one

 79

to two degrees higher than the experimental data. On the steep declines and inclines of

the downward spikes that are indicative of a sharp left turn, the optimal and experimental

are very close to each other, only a 1-2 degree difference. In Figure 4.9, the optimal and

experimental γ curves do not differ that much. The difference is less obvious than the last

example. However, on the sharp upward spike, the experimental data reaches a higher

angle and on the downward spike, optimal data reaches a greater magnitude.

Figure 4. 11: The corrcalc.m results for sabre4 from 07/15/03.

Figure 4. 12: The corrcalc.m results for sabre5 from 07/15/03.

 80

Figure 4. 13: The corrcalc.m results for sabre6 from 07/15/03.

Figures 4.10, 4.11, and 4.12 are all plots correlating narrowing cone test data. In

the first two γ plots, the optimal value of γ tends to be slightly greater than the

experimental values. The third plot does not have such a variance. However, the γ

values tend to vary at the apex of spikes in the data. Sometimes, the experimental data

has a greater magnitude. Sometimes, the experimental and optimal values are the same.

Usually, though, the optimal data has a higher magnitude at these segments.

Figure 4. 14: The corrcalc.m results for sabre7 from 07/15/03.

 81

Figure 4.13 shows a maneuver that moved the vehicle system from the narrowing

cone test to the slalom test. The experimental and optimal γ plots are very similar. Once

again, the main differences occur during turns.

Figure 4. 15: The corrcalc.m results for sabre8 from 07/15/03.

Figure 4. 16: The corrcalc.m results for sabre9 from 07/15/03.

 82

Figure 4. 17: The corrcalc.m results for sabre10 from 07/15/03.

Figures 4.14, 4.15, and 4.16 are slalom test plots. Each consecutive slalom run

was an improvement over the last. This can be seen through the γ plots. The first has a

sloppy cyclic pattern. The second is an improvement, and the last has fairly defined

cycles. All three have well correlated γ values for the majority of time.

Figure 4. 18: The corrcalc.m results for sabre11 from 07/15/03.

Figure 4.17 is a high-speed test plot. The experimental γ value is lower than the

optimal value for the most of the run. However, for undetermined reasons, that

difference diminishes during the last ten seconds of the run.

 83

Figure 4. 19: The corrcalc.m results for sabre1 from 07/16/03.

Another meandering run, this test was the first of the day. The γ plots appear to

vary more than any as of yet seen. It should be noted that the range on the vertical axis is

considerably smaller that previous figures. The difference between the two γ values plots

averages between one and two degrees, which is comparable to previous plots.

Figure 4. 20: The corrcalc.m results for sabre2 from 07/16/03.

 84

Figure 4. 21: The corrcalc.m results for sabre3 from 07/16/03.

Figure 4. 22: The corrcalc.m results for sabre4 from 07/16/03.

These three figures, 4.19, 4.20, and 4.21, show the modified figure eight tests.

The first run was very sloppy due to the nature of cone configuration #1. Nonetheless,

the γ values are closely correlated for a majority of the run. There are some differences.

Given the vertical axis scale, the differences appear to be close to those in Figure 4.18.

The other plots show three cycles of the vehicles running the course. Figure 4.20 has the

same γ differences. These differences show up less, however, in Figure 4.21.

 85

Figure 4. 23: The corrcalc.m results for sabre5 from 07/16/03.

Figure 4. 24: The corrcalc.m results for sabre6 from 07/16/03.

These two sets of plots, 4.22 and 4.23, show the transit from the Spin-Up Packed

Snow Area to the Ice Rink for the high-speed tests. A note about these runs is the fact

that the vehicles were in manual control. The optimal γ value offset is present in both

tests. There is very little visible difference in these paths compared to when the system is

remote operated. The paths were, for the most part, fairly linear. At the end of the

sabre6 run in Figure 4.23, the vehicles make a slight right turn, followed by a sharp left

turn, and end with a mild right turn. It is at the sharp left turn that the γ angle has the

greatest discrepancy. The difference at this point is around ten degrees. Since this is the

 86

only sharp turn made while in manual control, the inconsistency can most likely be

attributed to non-optimal performance while controlling the vehicles.

Figure 4. 25: The corrcalc.m results for sabre7 from 07/16/03.

Figure 4. 26: The corrcalc.m results for sabre8 from 07/16/03.

These, 4.24 and 4.25, were the high-speed tests. The paths were very linear and

because of this, there was very little variation in γ angles. That is why the offset looks

inflated. The end of the data defined in Figure 4.24 may be corrupted because it is near

the time that the TVLA began to fail. Otherwise, this data has similar properties to the

other runs.

 87

Chapter 5. Conclusions

5.1 Conclusions

Overall, the theoretical calculated data correlates well with the experimental data.

The biggest variations occurred at times when the system is midway through sharp turns.

At these points, the operator made sharper turns than was calculated as optimal. The only

other major deviation was a fairly consistent offset of about 1.5 degrees. The offset could

be due to a higher pressure in one of the hydraulic lines than in the other. The TVLA

hydraulic system is set up so the pressure line connected to the rod side of one of the side

cylinders is on the same circuit as the line connected to the chamber side of the other side

cylinder. If one of these pressure lines is different than the other, the resistant force in the

cylinder may be just enough to keep the trail vehicle 1.5 degrees from its optimal

position. This would also explain how the γ values match well during changes in

rotation, because that change would have enough energy to overcome that resistance.

Less than a week of experimental testing was originally scheduled. Only three of

these days were scheduled to contain tests that were viable for data acquisition. Concerns

surfaced that there were not going to be enough tests to provide enough information for

the project. These concerns were further compounded when the TVLA failed. The data

were acquired and dissected to determine the test content of basic maneuvers. After this,

it was concluded that the tests were adequate sources of these maneuvers.

Test Date Left Turns Right Turns Straightaways Left to Right
S-curves

Right to Left
S-curves

07/15/03 13 5 18 9 12
07/16/03 13 11 12 4 1

Total 26 16 30 13 13
Table 5. 1: Maneuver content of experimental data.

 88

5.2 Recommendations

Figure 5. 1: Flow chart of several viable control techniques and related measurements.

This report marks the first step to automating the trail vehicle in the

Sabre/Panther Lite setup. More steps will need to be taken to finish the project. The

following describe some of the steps that will lead to project completion.

Control System – A control system will be needed to implement the

algorithms developed in this report. There are several ways this control

 89

system could work. Acquiring the lead vehicle motion can be made by

monitoring the inputs to the system, via remote operation signals or brake

stick displacements and throttle positions, or the speed and rotation can be

measured directly. In a similar fashion, the control system could either

calculate and implement necessary track speeds, or the trail vehicle motion

could be measured and the track speeds would be controlled until the

motion was as desired. The latter would remove the necessity to perform

trackslip studies. The best choice will depend on which input

measurement will produce the most accurate lead vehicle trajectory.

Figure 5.1 is a flow chart showing these possible methods of control.

Trackslip Studies – If track speed measurement or control is used, a trackslip

study will have to be conducted. The study will have to develop a method

for determining the TS coefficient for various ground type. The ground

types will have to be categorized in great detail so there will be no need

for ground sampling and testing on the battlefield before use.

Brake Stick Displacements and Throttle – If brake stick displacement and

throttle are used to calculate the lead vehicle motion, added transducers

would need to be installed to measure throttle position. For the tests

described in this report, there were not enough resources to measure the

throttle position. Without that, the brake stick displacements are less

useful, as they calculate track speed as a percentage of throttle.

Additional Load – As a first step, the algorithms generated in this report

calculate the optimal speed and rotation for the trail vehicle to follow the

 90

lead vehicle. The main purpose for the Sabre development was to link the

two M113s together because the work was too great for one of them to

handle alone. Therefore, future work should contain more studies on how

to modify the algorithms in order to add more force when necessary.

Three-Dimensional Analysis – One of the main assumptions used while

measuring data and generating the algorithms was that the terrain could be

considered two-dimensional. In future applications, it is feasible that the

system will encounter terrain that is decidedly three-dimensional and the

aforementioned assumption will be no longer valid. Therefore, more tests

will need to be conducted to generate and validate 3D versions of these

algorithms.

 91

References

[1] "Transport Guidance: M113 Family of Vehicles," Technical Manual TM 55-

2350-224-14, Washington D.C., February 1993

[2] Federation of American Scientists. "M113A1 Armored Personnel Carrier." DOD

101. 5 Feb 2000

[3] LTC David Ogg, “M113 FOV Overview”, Combat Vehicle Conference, Sep 1998

[4] Baladi, George Y., and Behzad Rohani, "Analysis of Steerability of Tracked

Vehicles; Theoretical Predictions Versus Field Measurements," Final Report, U.S.
Army Engineer Waterways Experiment Station - Structures Laboratory,
Miscellaneous Paper SL-81-3, Vicksburg, Miss., March 1981

[5] Ahmedova, N.K., V.B. Kolmanovskii and A.I. Matasov, "Constructive Filtering

Algorithms for Delayed Systems With Uncertain Statistics," Journal of Dynamic
Systems, measurement and Control. June 2003, Vol. 125. pp. 229-235

[6] Winsauer, Sharon A., "A Program and Documentation for Simulation of a

Tracked Feller/Buncher," U.S. Department of Agriculture - Forest Service, North
Central Forest Experiment Station, St. Paul, Minn., 1980

[7] Ridley, Peter, and Peter Corke, "Load Haul Dump Vehicle Kinematics and

Control," Journal of Dynamic Systems, Measurement and Control, March 2003

[8] Craig, John J. Introduction to Robotics. 2nd Ed. New York: Addison-Wesley,

1989

[9] Mabie, Hamilton H., and Charles F. Reinholtz. Mechanisms and Dynamics of

Machinery. 2nd Ed. New York: Wiley, 1987

[10] Baruh, Haim. Analytical Dynamics. New York: McGraw-Hill, 1999

[11] A. Deshpande and J. Luntz." Enhancing mobility of a group of mobile robots via

physical co-operation among the robots" In Proceedings of SPIE Conference on
Un-manned Ground Vehicle Technology V, 2003.

 92

Appendix A. Acronyms

Companies/Organizations
FMC Food Machinery Corporation

JPO Joint Programs Office

KRC Keweenaw Research Center

MTU Michigan Technological University

TACOM Tank Automotive and Armaments Command

TARDEC Tank-Automotive Research, Design, and Engineering Center

UDLP United Defense Limited Partnership

VSIG Vehicle Sensor Integration Group

Military
APC Armored Personnel Carrier

CLAMS Clearance Lane Marking System

CV Command Vehicle

FOV Family of Vehicles

HMMWV High-Mobility Multi-purpose Wheeled Vehicle

TVLA Tandem Vehicle Linkage Assembly

Electronic/Computer
ADC Analog to Digital Converter

CSV Comma Separated Variable

DAQ Data Acquisition

MIPS Million Instructions Per Second

MP Measuring Ports

WSM Wheel Speed Monitor

Other
CCW Counter Clockwise

CW Clockwise

SUPSA Spin-up, Packed Snow Area

 93

 Appendix B. Instrumentation

Sensor Type /
Brand

Serial # Location

Wheel Speed Encoders
 Correvit 4 818 227 A Lead Vehicle Left Sprocket
 Correvit 4 806 368 A Lead Vehicle Right Sprocket
 Correvit 4 806 370 A Trail Vehicle Left Sprocket
 Correvit 4 806 365 A Trail Vehicle Right Sprocket

2" String Pot
 UniMeasure A26754 Lead Vehicle Left Differential Arm
 UniMeasure A18913 Lead Vehicle Right Differential Arm

10" String Pot
 UniMeasure A25166 Trail Vehicle Left Differential Arm
 UniMeasure A27974 Trail Vehicle Right Differential Arm

24" String Pot
 UniMeasure 32090354 TVLA Vertical Cylinder

5' String Pot
 Research Inc. 2116 TVLA Left Horizontal Cylinder

Motion Pack
 Systron Donner 0198 Approx. Center of Mass of Trail Vehicle
Strain Type Pressure Sensor
 Sensotec 307753 MP1 of the TVLA Hydraulic System
 Sensotec 307757 MP2 of the TVLA Hydraulic System
5th Wheel
 Labeco (Mod.) 1561 Off the Rear Right Side of the Trail Vehicle

Table B.1: Instrumentation List

 94

Appendix C. Testing Information

Date (YYMMDD) Name Description
030711

 Sabre1 Driving out to the Spin Up Packed Snow Area.
 Sabre2 Random driving around the SUPSA.
 Sabre3 Random driving around the SUPSA.
 Sabre4 Random driving around the SUPSA.
 Sabre5 Random driving around the SUPSA.
 Sabre6 Random driving around the SUPSA.
 Sabre7 Random driving around the SUPSA.
 Sabre8 Random driving around the SUPSA.
 Sabre9 Random driving around the SUPSA.

030715
 Sabre2 Meandering. New camera position test.
 Sabre3 More meandering
 Sabre4 Narrowing Cone Test. 2x (Circles around first)
 Sabre5 Narrowing Cone Test. 2x
 Sabre6 Narrowing Cone Test. (Circles around first)
 Sabre7 Maneuvering to slalom cones.
 Sabre8 First slalom.
 Sabre9 Second slalom.
 Sabre10 Third slalom.
 Sabre11 High-Speed Test.

030716
 Sabre1 Meandering.
 Sabre2 Modified Figure Eight Test. Large Loop CCW #1.
 Sabre3 Modified Figure Eight Test. Large Loop CCW #2,#3,#4.

(#3 @ 200s) (#4 @ 365s)
 Sabre4 Modified Figure Eight Test. Large Loop CW #1,#2,#3.

(#2 @ 195s) (#3 @ 355s)
 Sabre5 Maneuvering to ice track in manual mode.
 Sabre6 Maneuvering to ice track in manual mode.
 Sabre7 High-Speed Test #1. Up slope.
 Sabre8 High-Speed Test #2. Down slope.

Table C.1: Test Result File Names and Descriptions

 95

Figure C. 1: Cone layout for the narrowing cone test conducted on 07/15/03.

 96

Figure C. 2: Cone layout of Slalom test conducted on 07/16/03.

 97

Figure C. 3: Cone layout for Modified Figure Eight test as conducted on 07/16/03.

 98

Appendix D. Program Code

modcat.m

1 %MODCAT - File loader and separator.
2 % Loads an ASCII file and separates the multi dimensional array
3 % into individual vector components. Corrects for the yaw rate
4 % offset inherent in the test conducts between 07/11/03 and 07/16/03.
5 % Also corrects speed error caused by track extension due to sprocket
6 % rotational velocity.
7 %
8 %Ex.
9 %[dt,t,dist,speed,l1trk,r1trk,l2trk,r2trk,tdist,ldist,press1,press2,r1,l1,r2,l2,fwdbk,

rtlft,updwn,roll,pitch,yaw,loaded_file,filt_size] = modcat('filename.asc',x);
10
11 function

[dt,t,dist,speed,l1trk,r1trk,l2trk,r2trk,tdist,ldist,press1,press2,r1,l1,r2,l2,fwdbk,r
tlft,updwn,roll,pitch,yaw,loaded_file,filt_size] = modcat(flnm,x)

12 if nargin==1
13 x=1;
14 end;
15
16 filt_size=x;
17 a=find(flnm=='.');
18 loaded_file=flnm(1:a-1);
19
20 m=dlmread(flnm);
21 t=m(:,1);
22 dist=m(:,2);
23 speed=m(:,3);
24 l1trk=1.0939.*m(:,4); % Track over sprocket expansion factor
25 r1trk=1.0939.*m(:,5); % Track over sprocket expansion factor
26 l2trk=1.0939.*m(:,6); % Track over sprocket expansion factor
27 r2trk=1.0939.*m(:,7); % Track over sprocket expansion factor
28 tdist=m(:,8);
29 ldist=m(:,9);
30 press1=m(:,10);
31 press2=m(:,11);
32 r1=m(:,12);
33 l1=m(:,13);
34 r2=m(:,14);
35 l2=m(:,15);
36 fwdbk=32.2*m(:,16);%+0.8936; %0.6882;
37 rtlft=32.2*m(:,17);%+0.6111;
38 updwn=32.2*m(:,18);%-.4985;
39 roll=m(:,19);
40 pitch=m(:,20);
41 yaw=m(:,21)-.24; % Correction factor of the yaw zero. Old 0.23
42 dt=mean(diff(t));
43
44 if x~=1
45 len=length(t);
46 a=filter(ones(1,x)/x,1,dist);
47 b=mean(dist(1:x)).*ones(size(dist(1:x)));
48 dist(1:x)=b;
49 dist(x:len)=a(x:len);
50 a=filter(ones(1,x)/x,1,speed);
51 b=mean(speed(1:x)).*ones(size(speed(1:x)));
52 speed(1:x)=b;
53 speed(x:len)=a(x:len);
54 a=filter(ones(1,x)/x,1,l1trk);
55 b=mean(l1trk(1:x)).*ones(size(l1trk(1:x)));
56 l1trk(1:x)=b;
57 l1trk(x:len)=a(x:len);
58 a=filter(ones(1,x)/x,1,r1trk);
59 b=mean(r1trk(1:x)).*ones(size(r1trk(1:x)));
60 r1trk(1:x)=b;

 99

61 r1trk(x:len)=a(x:len);
62 a=filter(ones(1,x)/x,1,l2trk);
63 b=mean(l2trk(1:x)).*ones(size(l2trk(1:x)));
64 l2trk(1:x)=b;
65 l2trk(x:len)=a(x:len);
66 a=filter(ones(1,x)/x,1,r2trk);
67 b=mean(r2trk(1:x)).*ones(size(r2trk(1:x)));
68 r2trk(1:x)=b;
69 r2trk(x:len)=a(x:len);
70 a=filter(ones(1,x)/x,1,tdist);
71 b=mean(tdist(1:x)).*ones(size(tdist(1:x)));
72 tdist(1:x)=b;
73 tdist(x:len)=a(x:len);
74 a=filter(ones(1,x)/x,1,ldist);
75 b=mean(ldist(1:x)).*ones(size(ldist(1:x)));
76 ldist(1:x)=b;
77 ldist(x:len)=a(x:len);
78 a=filter(ones(1,x)/x,1,press1);
79 b=mean(press1(1:x)).*ones(size(press1(1:x)));
80 press1(1:x)=b;
81 press1(x:len)=a(x:len);
82 a=filter(ones(1,x)/x,1,press2);
83 b=mean(press2(1:x)).*ones(size(press2(1:x)));
84 press2(1:x)=b;
85 press2(x:len)=a(x:len);
86 a=filter(ones(1,x)/x,1,r1);
87 b=mean(r1(1:x)).*ones(size(r1(1:x)));
88 r1(1:x)=b;
89 r1(x:len)=a(x:len);
90 a=filter(ones(1,x)/x,1,l1);
91 b=mean(l1(1:x)).*ones(size(l1(1:x)));
92 l1(1:x)=b;
93 l1(x:len)=a(x:len);
94 a=filter(ones(1,x)/x,1,r2);
95 b=mean(r2(1:x)).*ones(size(r2(1:x)));
96 r2(1:x)=b;
97 r2(x:len)=a(x:len);
98 a=filter(ones(1,x)/x,1,l2);
99 b=mean(l2(1:x)).*ones(size(l2(1:x)));
100 l2(1:x)=b;
101 l2(x:len)=a(x:len);
102 a=filter(ones(1,x)/x,1,fwdbk);
103 b=mean(fwdbk(1:x)).*ones(size(fwdbk(1:x)));
104 fwdbk(1:x)=b;
105 fwdbk(x:len)=a(x:len);
106 a=filter(ones(1,x)/x,1,rtlft);
107 b=mean(rtlft(1:x)).*ones(size(rtlft(1:x)));
108 rtlft(1:x)=b;
109 rtlft(x:len)=a(x:len);
110 a=filter(ones(1,x)/x,1,updwn);
111 b=mean(updwn(1:x)).*ones(size(updwn(1:x)));
112 updwn(1:x)=b;
113 updwn(x:len)=a(x:len);
114 a=filter(ones(1,x)/x,1,roll);
115 b=mean(roll(1:x)).*ones(size(roll(1:x)));
116 roll(1:x)=b;
117 roll(x:len)=a(x:len);
118 a=filter(ones(1,x)/x,1,pitch);
119 b=mean(pitch(1:x)).*ones(size(pitch(1:x)));
120 pitch(1:x)=b;
121 pitch(x:len)=a(x:len);
122 a=filter(ones(1,x)/x,1,yaw);
123 b=mean(yaw(1:x)).*ones(size(yaw(1:x)));
124 yaw(1:x)=b;
125 yaw(x:len)=a(x:len);
126 end

 100

allplot.m

1 %ALLPLOT - Plot Data.
2 % Plots all of the data relative
3 % to the first array defined.
4 %
5 %Ex.
6 %allplot(t,dist,speed,l1trk,r1trk,l2trk,r2trk,tdist,ldist,press1,press2,r1,l1,r2,l2,fw

dbk,rtlft,updwn,roll,pitch,yaw);
7
8 function

allplot(t,dist,speed,l1trk,r1trk,l2trk,r2trk,tdist,ldist,press1,press2,r1,l1,r2,l2,fwd
bk,rtlft,updwn,roll,pitch,yaw)

9
10 close all;
11 figure('Name','5th Wheel',...
12 'NumberTitle','off',...
13 'Units','pixels',...
14 'Position',[0,0,1024,768],...
15 'Backingstore','off','Color','w');
16 movegui(gcf,'center');
17 subplot(2,1,1);
18 plot(t,dist);
19 xlabel('Time (s)');
20 ylabel('Distance (ft)');
21 title('5th Wheel Distance');
22 subplot(2,1,2);
23 plot(t,speed);
24 xlabel('Time (s)');
25 ylabel('Speed (mph)');
26 title('5th Wheel Speed');
27 figure('Name','Speeds',...
28 'NumberTitle','off',...
29 'Units','pixels',...
30 'Position',[0,0,1024,768],...
31 'Backingstore','off','Color','w');
32 movegui(gcf,'center');
33 plot(t,speed,t,l1trk,t,r1trk,t,l2trk,t,r2trk);
34 xlabel('Time (s)');
35 ylabel('Speed (mph)');
36 title('Speeds')
37 legend('5th Wheel','Lead Left','Lead Right','Trail Left','Trail Right',0);
38 figure('Name','Hydraulic Displacements',...
39 'NumberTitle','off',...
40 'Units','pixels',...
41 'Position',[0,0,1024,768],...
42 'Backingstore','off','Color','w');
43 movegui(gcf,'center');
44 plot(t,tdist,t,ldist);
45 xlabel('Time (s)');
46 ylabel('Displacement (in)');
47 title('Hydraulic Cylinder Displacements');
48 legend('Top Cylinder','Left Cylinder',0);
49 figure('Name','Hydraulic Pressures',...
50 'NumberTitle','off',...
51 'Units','pixels',...
52 'Position',[0,0,1024,768],...
53 'Backingstore','off','Color','w');
54 movegui(gcf,'center');
55 plot(t,press1,t,press2);
56 xlabel('Time (s)');
57 ylabel('Pressure (psi)');
58 title('Hydraulic Cylinder Pressures');
59 legend('MP1','MP2',0);
60 figure('Name','Brake Displacements',...
61 'NumberTitle','off',...
62 'Units','pixels',...
63 'Position',[0,0,1024,768],...
64 'Backingstore','off','Color','w');

 101

65 movegui(gcf,'center');
66 plot(t,l1,t,r1,t,l2,t,r2);
67 xlabel('Time (s)');
68 ylabel('Displacement (in)');
69 title('Braking String Pot Displacements');
70 legend('Lead Left','Lead Right','Trail Left','Trail Right',0);
71 figure('Name','Linear Accelerations',...
72 'NumberTitle','off',...
73 'Units','pixels',...
74 'Position',[0,0,1024,768],...
75 'Backingstore','off','Color','w');
76 movegui(gcf,'center');
77 plot(t,fwdbk,t,rtlft,t,updwn);
78 xlabel('Time (s)');
79 ylabel('Acceleration (g)');
80 title('Motion Pack Linear Accelerations');
81 legend('Fwd/Bk','Rt/Lft','Up/Dwn',0);
82 figure('Name','Rotational Velocities',...
83 'NumberTitle','off',...
84 'Units','pixels',...
85 'Position',[0,0,1024,768],...
86 'Backingstore','off','Color','w');
87 movegui(gcf,'center');
88 plot(t,roll,t,pitch,t,yaw);
89 xlabel('Time (s)');
90 ylabel('Rotational Velocity (°/s)');
91 title('Motion Pack Rotational Velocities');
92 legend('Roll','Pitch','Yaw',0);

mplot4b.m

1 %MPLOT4B - M113 plotter.
2 % Similar to MPLOT4, but compares the path generated
3 % using the rear vehicle track speeds with the path generated
4 % using the yaw rate and 5th Wheel speed.
5 %
6 % Ex.
7 % mplot4b(t,speed,yaw,l2trk,r2trk,10);
8
9
10 function mplot4b(t,speed,yaw,l2trk,r2trk,skipnum,action);
11
12 if nargin<5
13 error('You must input the five variables!')
14 return;
15 elseif nargin<6
16 skipnum=1;
17 action='initialize';
18 elseif nargin<7
19 action='initialize';
20 end;
21
22 if strcmp(action,'initialize')
23
24
25 figNumber=figure(...
26 'Name','M113 Plotter (comparing SPEED and YAW with L2TRK and R2TRK)',...
27 'NumberTitle','off',...
28 'BackingStore','off',...
29 'Units','normalized',...
30 'Position',[0.1 0.1 0.8 0.8],...
31 'Visible','off');
32 colordef(figNumber,'black');
33 axes('Units','normalized',...
34 'Position',[0.05 0.15 0.75 0.80],...
35 'Visible','off');
36 textHndl=text(0,0,'Press the "Run" button to see the vehicle motion',...

 102

37 'HorizontalAlignment','center');
38 axis([-1 1 -1 1]);
39
40 %===================================
41 % Information for button
42 labelColor=[0.8 0.8 0.8];
43 yInitPos=0.50;
44 xPos=0.85;
45 btnLen=0.10;
46 btnWid=0.10;
47 txtWid=0.05;
48 txtLen=0.2;
49 spacing=0.05;
50
51 %===================================
52 % The CONSOLE frame
53 frmBorder=0.02;
54 yPos=0.5-2*spacing-2.5*btnWid-frmBorder;
55 frmPos=[xPos-frmBorder yPos btnLen+2*frmBorder

4*spacing+5*btnWid+2*(frmBorder)];
56 h=uicontrol('Style','frame',...
57 'Units','normalized',...
58 'Position',frmPos,...
59 'BackgroundColor',[0.5 0.5 0.5]);
60
61 %===================================
62 % The TIME box
63 btnNumber=1;
64 yPos=0.5+1.5*spacing+btnWid;
65 labelStr=['0.000 : ' num2str(max(t))];
66 cmdStr='run';
67
68 %Generic button information
69 btnPos=[.425-.1 0.05 txtLen txtWid];
70 timeHndl=uicontrol(...
71 'Style','edit',...
72 'Units','normalized',...
73 'Position',btnPos,...
74 'String',labelStr,...
75 'Enable','off');
76
77 %===================================
78 % The RUN button
79 btnNumber=2;
80 yPos=0.5+1.5*btnWid+2*spacing;
81 labelStr='Run';
82 cmdStr='run';
83 callbackstr='mplot4b(t,speed,yaw,l2trk,r2trk,1,''run'');';
84
85 %Generic button information
86 btnPos=[xPos yPos btnLen btnWid];
87 runHndl=uicontrol(...
88 'Style','pushbutton',...
89 'Units','normalized',...
90 'Position',btnPos,...
91 'String',labelStr,...
92 'Interruptible','on',...
93 'Callback',callbackstr);
94
95 %===================================
96 % The PAUSE button
97 btnNumber=3;
98 yPos=0.5+0.5*btnWid+spacing;
99 labelStr='Pause';
100 cmdStr='pause';
101 callbackstr='set(gca,''Userdata'',-1);';
102
103 %Generic button information
104 btnPos=[xPos yPos btnLen btnWid];
105 pauseHndl=uicontrol(...
106 'Style','pushbutton',...

 103

107 'Units','normalized',...
108 'Position',btnPos,...
109 'String',labelStr,...
110 'Interruptible','on',...
111 'Callback',callbackstr,...
112 'Enable','off');
113
114 %===================================
115 % The UNPAUSE button
116 btnNumber=4;
117 yPos=0.5-0.5*btnWid;
118 labelStr='Unpause';
119 cmdStr='unpause';
120 callbackstr='set(gca,''Userdata'',0);';
121
122 %Generic button information
123 btnPos=[xPos yPos btnLen btnWid];
124 unpauseHndl=uicontrol(...
125 'Style','pushbutton',...
126 'Units','normalized',...
127 'Position',btnPos,...
128 'String',labelStr,...
129 'Interruptible','on',...
130 'Callback',callbackstr,...
131 'Enable','off');
132
133 %===================================
134 % The STOP button
135 btnNumber=5;
136 yPos=0.5-1.5*btnWid-1*spacing;
137 labelStr='stop';
138 cmdStr='stop';
139 callbackstr='set(gca,''Userdata'',-3);';
140
141 %Generic button information
142 btnPos=[xPos yPos btnLen btnWid];
143 stopHndl=uicontrol(...
144 'Style','pushbutton',...
145 'Units','normalized',...
146 'Position',btnPos,...
147 'String',labelStr,...
148 'Interruptible','on',...
149 'Callback',callbackstr,...
150 'Enable','off');
151
152 %===================================
153 % The Close button
154 btnNumber=6;
155 yPos=0.5-2.5*btnWid-2*spacing;
156 labelStr='Close';
157 cmdStr='close';
158 callbackstr='close(gcf);';
159
160 %Generic button information
161 btnPos=[xPos yPos btnLen btnWid];
162 closeHndl=uicontrol(...
163 'Style','pushbutton',...
164 'Units','normalized',...
165 'Position',btnPos,...
166 'String',labelStr,...
167 'Interruptible','on',...
168 'Callback',callbackstr);
169
170 %===================================
171 % The Pivot Radius bar
172 btnNumber=7;
173 yPos=0.5+2.5*btnWid+3*spacing;
174 labelStr='50';
175 cmdStr='prad';
176 callbackstr='mplot4b(t,speed,yaw,l2trk,r2trk,1,''prad'');';
177

 104

178 %Generic button information
179 btnPos=[xPos yPos btnLen/2 txtWid/2];
180 pradHndl=uicontrol(...
181 'Style','edit',...
182 'Units','normalized',...
183 'Position',btnPos,...
184 'String',labelStr,...
185 'Interruptible','on',...
186 'Callback',callbackstr,...
187 'Userdata',50,...
188 'Enable','on');
189
190 %Uncover the figure
191 hndlList=[timeHndl runHndl pauseHndl unpauseHndl stopHndl closeHndl pradHndl

skipnum textHndl];
192 set(figNumber,'Visible','on',...
193 'UserData',hndlList);
194
195 figure(figNumber);
196
197
198
199
200 elseif strcmp(action,'run')
201
202 axHndl=gca;
203 figNumber=gcf;
204
205 hndlList=get(figNumber,'UserData');
206 timeHndl=hndlList(1);
207 runHndl=hndlList(2);
208 pauseHndl=hndlList(3);
209 unpauseHndl=hndlList(4);
210 stopHndl=hndlList(5);
211 closeHndl=hndlList(6);
212 pradHndl=hndlList(7);
213 skipnum=hndlList(8);
214 textHndl=hndlList(9);
215
216 set(pradHndl,'Enable','off');
217
218 if strcmp('off',get(axHndl,'Visible'))
219 set(textHndl,'String','Processesing... Please wait.');
220 end;
221 prad=get(pradHndl,'Userdata');
222
223 speed=speed.*88/60;
224 l2trk=l2trk.*88/60;
225 r2trk=r2trk.*88/60;
226
227 speed2=(l2trk+r2trk)./2;
228
229 % Calculates the angular position array.
230 L=size(t,1);
231 if L==1
232 L=size(t,2);
233 end;
234 yaw=pi.*yaw./180;
235
236 theta=cumtrapz(t,yaw);
237 theta2=cumtrapz(t,(6./prad).*(l2trk-r2trk));
238
239 % for n=1:L;
240 % while theta(n)>180
241 % theta(n)=theta(n)-360;
242 % end
243 % while theta(n)<=-180
244 % theta(n)=theta(n)+360;
245 % end;
246 % end;
247

 105

248
249
250 fpos=cumtrapz(t,speed);
251 fpos2=cumtrapz(t,speed2);
252
253
254 fpos=[fpos(1);diff(fpos)];
255 fpos2=[fpos2(1);diff(fpos2)];
256
257 % for n=L:-1:2
258 % fpos(n)=fpos(n)-fpos(n-1);
259 % fpos2(n)=fpos2(n)-fpos2(n-1);
260 % end;
261 % cgx(1)=0;
262 % cgy(1)=0;
263 % cgx2(1)=0;
264 % cgy2(1)=0;
265 % for n=2:L;
266 % set(progHndl,'String',[num2str(round(100*n/L)) '%']);
267 % drawnow;
268 %
269 % cgx(n)=cgx(n-1)+fpos(n)*sin(theta(n));
270 % cgy(n)=cgy(n-1)+fpos(n)*cos(theta(n));
271 % cgx2(n)=cgx2(n-1)+fpos2(n)*sin(theta2(n));
272 % cgy2(n)=cgy2(n-1)+fpos2(n)*cos(theta2(n));
273 %
274 % end;
275
276 cgx=cumsum(fpos.*sin(theta));
277 cgy=cumsum(fpos.*cos(theta));
278 cgx2=cumsum(fpos2.*sin(theta2));
279 cgy2=cumsum(fpos2.*cos(theta2));
280
281
282 xmin=min([min(cgx) min(cgx2)]);
283 xmax=max([max(cgx) max(cgx2)]);
284 ymin=min([min(cgy) min(cgy2)]);
285 ymax=max([max(cgy) max(cgy2)]);
286
287
288
289
290 set([runHndl closeHndl],'Enable','off');
291 set(timeHndl,'Enable','inactive');
292 set([pauseHndl stopHndl],'Enable','on');
293
294 set(axHndl,...
295 'XLim',[xmin xmax],'YLim',[ymin ymax],...
296 'Drawmode','fast',...
297 'Visible','on',...
298 'NextPlot','add');
299
300 cla;
301 head=line('color','r',...
302 'Marker','.',...
303 'markersize',25,...
304 'erase','xor',...
305 'xdata',cgx(1:50),'ydata',cgy(1:50));
306 body=line('color','y',...
307 'LineStyle','-',...
308 'erase','none',...
309 'xdata',[],'ydata',[]);
310 tail=line('color','b',...
311 'LineStyle','-',...
312 'erase','none',...
313 'xdata',[],'ydata',[]);
314 head2=line('color','w',...
315 'Marker','.',...
316 'markersize',25,...
317 'erase','xor',...
318 'xdata',cgx2(1:50),'ydata',cgy2(1:50));

 106

319 body2=line('color','w',...
320 'LineStyle','-',...
321 'erase','none',...
322 'xdata',[],'ydata',[]);
323 tail2=line('color','w',...
324 'LineStyle','-',...
325 'erase','none',...
326 'xdata',[],'ydata',[]);
327 n=51;
328 while n<=L
329 x=get(gca,'Userdata');
330 set(head,'xdata',cgx(n),'ydata',cgy(n));
331 set(body,'xdata',cgx(n-50:n),'ydata',cgy(n-50:n));
332 set(tail,'xdata',cgx(1:n-50),'ydata',cgy(1:n-50));
333 set(head2,'xdata',cgx2(n),'ydata',cgy2(n));
334 set(body2,'xdata',cgx2(n-50:n),'ydata',cgy2(n-50:n));
335 set(tail2,'xdata',cgx2(1:n-50),'ydata',cgy2(1:n-50));
336 set(timeHndl,'String',[num2str(t(n)) ' : ' num2str(max(t))]);
337 drawnow;
338 while(x~=1)
339 x=get(gca,'Userdata');
340 switch x
341 case -1
342 set(pauseHndl,'Enable','off');
343 set(unpauseHndl,'Enable','on');
344 set(gca,'Userdata',-2);
345 case 0
346 set(unpauseHndl,'Enable','off');
347 set(pauseHndl,'Enable','on');
348 set(gca,'Userdata',1);
349 case -3
350 set(gca,'Userdata',1);
351 n=L;
352 otherwise
353 pause(0.01);
354 end;
355
356 end;
357 n=n+skipnum;
358 end;
359 set([runHndl closeHndl pradHndl],'Enable','on');
360 set([timeHndl pauseHndl unpauseHndl stopHndl],'Enable','off');
361
362
363
364 elseif strcmp(action,'prad')
365 axHndl=gca;
366 figNumber=gcf;
367
368 hndlList=get(figNumber,'UserData');
369 timeHndl=hndlList(1);
370 runHndl=hndlList(2);
371 pauseHndl=hndlList(3);
372 unpauseHndl=hndlList(4);
373 stopHndl=hndlList(5);
374 closeHndl=hndlList(6);
375 pradHndl=hndlList(7);
376 skipnum=hndlList(8);
377 textHndl=hndlList(9);
378
379 a=get(pradHndl,'Userdata');
380 b=get(pradHndl,'String');
381 c=str2double(b);
382 if (~isequalwithequalnans(NaN,c)&c>0)
383 set(pradHndl,'Userdata',c);
384 else
385 set(pradHndl,'String',num2str(a));
386 end;
387 end;

 107

mplot5.m

1 %MPLOT5 - M113 plotter.
2 % Similar to MPLOT4, but also adds
3 % green outlines to represent the body
4 % of the two M113's and a yellow triangle
5 % to represent the TVLA.
6 %
7 % Ex.
8 % MPLOT5(t,speed,ldist,yaw,frmskp);
9
10
11 function mplot5(t,speed,ldist,yaw,skipnum,action);
12
13 if nargin<4
14 error('You must input the four variables!')
15 return;
16 elseif nargin<5
17 skipnum=1;
18 action='initialize';
19 elseif nargin<6
20 action='initialize';
21 end;
22
23 if strcmp(action,'initialize')
24
25
26 figNumber=figure(...
27 'Name','M113 Plotter (using SPEED for speed and YAW for yaw rate)',...
28 'NumberTitle','off',...
29 'BackingStore','off',...
30 'Units','normalized',...
31 'Position',[0.1 0.1 0.8 0.8],...
32 'Visible','off');
33 colordef(figNumber,'black');
34 axes('Units','normalized',...
35 'Position',[0.05 0.15 0.75 0.80],...
36 'Visible','off');
37 textHndl=text(0,0,'Press the "Run" button to see the vehicle motion',...
38 'HorizontalAlignment','center');
39 axis([-1 1 -1 1]);
40
41 %===================================
42 % Information for button
43 labelColor=[0.8 0.8 0.8];
44 yInitPos=0.50;
45 xPos=0.85;
46 btnLen=0.10;
47 btnWid=0.10;
48 txtWid=0.05;
49 txtLen=0.2;
50 spacing=0.05;
51
52 %===================================
53 % The CONSOLE frame
54 frmBorder=0.02;
55 yPos=0.5-2*spacing-2.5*btnWid-frmBorder;
56 frmPos=[xPos-frmBorder yPos btnLen+2*frmBorder

4*spacing+5*btnWid+2*(frmBorder)];
57 h=uicontrol('Style','frame',...
58 'Units','normalized',...
59 'Position',frmPos,...
60 'BackgroundColor',[0.5 0.5 0.5]);
61
62 %===================================
63 % The TIME box
64 btnNumber=1;
65 yPos=0.5+1.5*spacing+btnWid;

 108

66 labelStr=['0.000 : ' num2str(max(t))];
67 cmdStr='run';
68
69 %Generic button information
70 btnPos=[.425-.1 0.05 txtLen txtWid];
71 timeHndl=uicontrol(...
72 'Style','edit',...
73 'Units','normalized',...
74 'Position',btnPos,...
75 'String',labelStr,...
76 'Enable','off');
77
78 %===================================
79 % The RUN button
80 btnNumber=2;
81 yPos=0.5+1.5*btnWid+2*spacing;
82 labelStr='Run';
83 cmdStr='run';
84 callbackstr='mplot5(t,speed,ldist,yaw,1,''run'');';
85
86 %Generic button information
87 btnPos=[xPos yPos btnLen btnWid];
88 runHndl=uicontrol(...
89 'Style','pushbutton',...
90 'Units','normalized',...
91 'Position',btnPos,...
92 'String',labelStr,...
93 'Interruptible','on',...
94 'Callback',callbackstr);
95
96 %===================================
97 % The PAUSE button
98 btnNumber=3;
99 yPos=0.5+0.5*btnWid+spacing;
100 labelStr='Pause';
101 cmdStr='pause';
102 callbackstr='set(gca,''Userdata'',-1);';
103
104 %Generic button information
105 btnPos=[xPos yPos btnLen btnWid];
106 pauseHndl=uicontrol(...
107 'Style','pushbutton',...
108 'Units','normalized',...
109 'Position',btnPos,...
110 'String',labelStr,...
111 'Interruptible','on',...
112 'Callback',callbackstr,...
113 'Enable','off');
114
115 %===================================
116 % The UNPAUSE button
117 btnNumber=4;
118 yPos=0.5-0.5*btnWid;
119 labelStr='Unpause';
120 cmdStr='unpause';
121 callbackstr='set(gca,''Userdata'',0);';
122
123 %Generic button information
124 btnPos=[xPos yPos btnLen btnWid];
125 unpauseHndl=uicontrol(...
126 'Style','pushbutton',...
127 'Units','normalized',...
128 'Position',btnPos,...
129 'String',labelStr,...
130 'Interruptible','on',...
131 'Callback',callbackstr,...
132 'Enable','off');
133
134 %===================================
135 % The STOP button
136 btnNumber=5;

 109

137 yPos=0.5-1.5*btnWid-1*spacing;
138 labelStr='stop';
139 cmdStr='stop';
140 callbackstr='set(gca,''Userdata'',-3);';
141
142 %Generic button information
143 btnPos=[xPos yPos btnLen btnWid];
144 stopHndl=uicontrol(...
145 'Style','pushbutton',...
146 'Units','normalized',...
147 'Position',btnPos,...
148 'String',labelStr,...
149 'Interruptible','on',...
150 'Callback',callbackstr,...
151 'Enable','off');
152
153 %===================================
154 % The Close button
155 btnNumber=6;
156 yPos=0.5-2.5*btnWid-2*spacing;
157 labelStr='Close';
158 cmdStr='close';
159 callbackstr='close(gcf);';
160
161 %Generic button information
162 btnPos=[xPos yPos btnLen btnWid];
163 closeHndl=uicontrol(...
164 'Style','pushbutton',...
165 'Units','normalized',...
166 'Position',btnPos,...
167 'String',labelStr,...
168 'Interruptible','on',...
169 'Callback',callbackstr);
170
171 %===================================
172 % The PROGRESS bar
173 btnNumber=7;
174 yPos=0.5+2.5*btnWid+3*spacing;
175 labelStr='0%';
176 cmdStr='progress';
177
178 %Generic button information
179 btnPos=[xPos yPos btnLen txtWid];
180 progHndl=uicontrol(...
181 'Style','edit',...
182 'Units','normalized',...
183 'Position',btnPos,...
184 'String',labelStr,...
185 'Interruptible','on',...
186 'Enable','off');
187
188 %Uncover the figure
189 hndlList=[timeHndl runHndl pauseHndl unpauseHndl stopHndl closeHndl progHndl

skipnum textHndl];
190 set(figNumber,'Visible','on',...
191 'UserData',hndlList);
192
193 figure(figNumber);
194
195
196
197
198 elseif strcmp(action,'run')
199
200 axHndl=gca;
201 figNumber=gcf;
202
203 hndlList=get(figNumber,'UserData');
204 timeHndl=hndlList(1);
205 runHndl=hndlList(2);
206 pauseHndl=hndlList(3);

 110

207 unpauseHndl=hndlList(4);
208 stopHndl=hndlList(5);
209 closeHndl=hndlList(6);
210 progHndl=hndlList(7);
211 skipnum=hndlList(8);
212 textHndl=hndlList(9);
213
214 if strcmp('off',get(axHndl,'Visible'))
215 set(textHndl,'String','Processing... Please Wait.');
216 end
217
218 x1=73/12; %Distance from front of vehicle to CM.
219 x2=101/12; %Distance from rear of vehicle to CM.
220 x3=50/12; %Distance from left of vehicle to CM.
221 x4=50/12; %Distance from right of vehicle to CM.
222
223 speed=speed.*88/60;
224
225 % Calculates the angular position array.
226 L=size(t,1);
227 if L==1
228 L=size(t,2);
229 end;
230 theta=cumtrapz(t,yaw);
231 theta=theta.*pi./180;
232
233 %TVLA Constants
234 L1=sqrt(4.10^2+2.05^2);
235 alpha_o=atan(2);
236 gamma=(pi/2)-alpha_o;
237
238
239 fpos=cumtrapz(t,speed);
240 for n=L:-1:2
241 fpos(n)=fpos(n)-fpos(n-1);
242 end;
243 cgx(1)=0;
244 cgy(1)=0;
245
246 rbodyx(1,:)=[-x4 -x4 x3 x3 -x4];
247 rbodyy(1,:)=[x1 -x2 -x2 x1 x1];
248
249 set(progHndl,'Enable','inactive');
250 % for n=2:L;
251 % set(progHndl,'String',[num2str(round(100*n/L)) '%']);
252 % drawnow;
253 % % fpos(n)=.5*(fvel(n-1)+fvel(n)).*(t(n)-t(n-1));
254 %
255 % cgx(n)=cgx(n-1)+fpos(n)*sin(theta(n));
256 % cgy(n)=cgy(n-1)+fpos(n)*cos(theta(n));
257 %
258 % c1x=cgx(n)-x3*cos(theta(n))+x1*sin(theta(n));
259 % c1y=cgy(n)+x3*sin(theta(n))+x1*cos(theta(n));
260 % c2x=cgx(n)+x4*cos(theta(n))+x1*sin(theta(n));
261 % c2y=cgy(n)-x4*sin(theta(n))+x1*cos(theta(n));
262 % c3x=cgx(n)+x4*cos(theta(n))-x2*sin(theta(n));
263 % c3y=cgy(n)-x4*sin(theta(n))-x2*cos(theta(n));
264 % c4x=cgx(n)-x3*cos(theta(n))-x2*sin(theta(n));
265 % c4y=cgy(n)+x3*sin(theta(n))-x2*cos(theta(n));
266 %
267 % rbodyx(n,:)=[c1x c2x c3x c4x c1x];
268 % rbodyy(n,:)=[c1y c2y c3y c4y c1y];
269 % end;
270
271 cgx=cumsum(fpos.*sin(theta));
272 cgy=cumsum(fpos.*cos(theta));
273
274
275 set(progHndl,'Enable','off');
276 xmin=min(cgx);
277 xmax=max(cgx);

 111

278 ymin=min(cgy);
279 ymax=max(cgy);
280 x_sep=xmax-xmin;
281 y_sep=ymax-ymin;
282 sep=max([x_sep 1200*y_sep/907]);
283 x_diff=(sep-x_sep)/2;
284 y_diff=((907*sep/1200)-y_sep)/2;
285 xmin=xmin-x_diff;
286 xmax=xmax+x_diff;
287 ymin=ymin-y_diff;
288 ymax=ymax+y_diff;
289
290 set([runHndl closeHndl],'Enable','off');
291 set(timeHndl,'Enable','inactive');
292 set([pauseHndl stopHndl],'Enable','on');
293
294 set(axHndl,...
295 'XLim',[xmin xmax],'YLim',[ymin ymax],...
296 'Drawmode','fast',...
297 'Visible','on',...
298 'NextPlot','add');
299
300 cla;
301 head=line('color','r',...
302 'Marker','.',...
303 'markersize',25,...
304 'erase','xor',...
305 'xdata',cgx(1:50),'ydata',cgy(1:50));
306 body=line('color','y',...
307 'LineStyle','-',...
308 'erase','none',...
309 'xdata',[],'ydata',[]);
310 tail=line('color','b',...
311 'LineStyle','-',...
312 'erase','none',...
313 'xdata',[],'ydata',[]);
314 rm113=line('color','g',...
315 'LineStyle','-',...
316 'erase','xor',...
317 'xdata',[],'ydata',[]);
318 tvla=line('color','y',...
319 'LineStyle','-',...
320 'erase','xor',...
321 'xdata',[],'ydata',[]);
322 fm113=line('color','g',...
323 'LineStyle','-',...
324 'Erase','xor',...
325 'xdata',[],'ydata',[]);
326
327 n=51;
328 while n<=L
329 x=get(gca,'Userdata');
330 set(head,'xdata',cgx(n),'ydata',cgy(n));
331 set(body,'xdata',cgx(n-50:n),'ydata',cgy(n-50:n));
332 set(tail,'xdata',cgx(1:n-50),'ydata',cgy(1:n-50));
333 set(timeHndl,'String',[num2str(t(n)) ' : ' num2str(max(t))]);
334 set(rm113,...
335 'xdata',[cgx(n)-x4*cos(theta(n))+x1*sin(theta(n)),...
336 cgx(n)+x4*cos(theta(n))+x1*sin(theta(n)),...
337 cgx(n)+x4*cos(theta(n))-x1*sin(theta(n)),...
338 cgx(n)-x4*cos(theta(n))-x1*sin(theta(n)),...
339 cgx(n)-x4*cos(theta(n))+x1*sin(theta(n))],...
340 'ydata',[cgy(n)+x4*sin(theta(n))+x1*cos(theta(n)),...
341 cgy(n)-x4*sin(theta(n))+x1*cos(theta(n)),...
342 cgy(n)-x4*sin(theta(n))-x1*cos(theta(n)),...
343 cgy(n)+x4*sin(theta(n))-x1*cos(theta(n)),...
344 cgy(n)+x4*sin(theta(n))+x1*cos(theta(n))]);
345 theta2=acos((L1^2+1.25^2-(sqrt(4.1^2+0.80^2)+(ldist(n)-

32.7)/12)^2)/(2.5*L1))-alpha_o;
346 TVLA1x=cgx(n)+6.09*sin(theta(n));
347 TVLA1y=cgy(n)+6.09*cos(theta(n));

 112

348 TVLA2x=TVLA1x+5.53*sin(theta(n)+theta2)+1.79*cos(theta(n)+theta2);
349 TVLA2y=TVLA1y+5.53*cos(theta(n)+theta2)-1.79*sin(theta(n)+theta2);
350 TVLA3x=TVLA2x-3.58*cos(theta(n)+theta2);
351 TVLA3y=TVLA2y+3.58*sin(theta(n)+theta2);
352 fm1131x=TVLA3x-2.38*cos(theta(n)+theta2);
353 fm1131y=TVLA3y+2.38*sin(theta(n)+theta2);
354 fm1132x=fm1131x+14.51*sin(theta(n)+theta2);
355 fm1132y=fm1131y+14.51*cos(theta(n)+theta2);
356 fm1133x=fm1132x+8.33*cos(theta(n)+theta2);
357 fm1133y=fm1132y-8.33*sin(theta(n)+theta2);
358 fm1134x=fm1133x-14.51*sin(theta(n)+theta2);
359 fm1134y=fm1133y-14.51*cos(theta(n)+theta2);
360 set(tvla,...
361 'xdata',[TVLA1x TVLA2x TVLA3x TVLA1x],...
362 'ydata',[TVLA1y TVLA2y TVLA3y TVLA1y]);
363 set(fm113,...
364 'xdata',[fm1131x fm1132x fm1133x fm1134x fm1131x],...
365 'ydata',[fm1131y fm1132y fm1133y fm1134y fm1131y]);
366 % set(progHndl,...
367 % 'String',['L1=' num2str(L1) ...
368 % '; alpha_o=' num2str(alpha_o*180/pi) ...
369 % '; gamma=' num2str(gamma*180/pi)]);
370 drawnow;
371 while(x~=1)
372 x=get(gca,'Userdata');
373 switch x
374 case -1
375 set(pauseHndl,'Enable','off');
376 set(unpauseHndl,'Enable','on');
377 set(gca,'Userdata',-2);
378 case 0
379 set(unpauseHndl,'Enable','off');
380 set(pauseHndl,'Enable','on');
381 set(gca,'Userdata',1);
382 case -3
383 set(gca,'Userdata',1);
384 n=L;
385 otherwise
386 pause(0.01);
387 end;
388
389 end;
390 n=n+skipnum;
391 end;
392 set([runHndl closeHndl],'Enable','on');
393 set([timeHndl pauseHndl unpauseHndl stopHndl],'Enable','off');
394 end;

trkslpcalc.m

1 % TRKSLPCALC - Track Slip Calculator
2 % Plots the vehicle paths as calculated by YAW/SPEED
3 % and L2TRK/R2TRK. Allows user to change the time and
4 % adjust the track slip of each track individually. Will
5 % then replot the data. Allows writing and loading of
6 % track slip data files.
7 %
8 % Ex.
9 % trkslpcalc(t,speed,yaw,l2trk,r2trk);
10
11 function trkslpcalc(t,speed,yaw,l2trk,r2trk,action)
12
13 if nargin<5
14 error('You must input the five variables!')
15 return;
16 elseif nargin<6
17 action='initialize';

 113

18 end;
19
20 if strcmp(action,'initialize');
21
22 figNumber=figure(...
23 'Name','M113 Trackslip Determination Program',...
24 'NumberTitle','off',...
25 'BackingStore','off',...
26 'Visible','off',...
27 'Units','normalized',...
28 'Position',[0.1 0.1 0.8 0.8]);
29 colordef(figNumber,'black');
30 axHndl = axes('Units','normalized',...
31 'Position',[0.05 0.2 0.75 0.75],...
32 'Visible','off');
33 textHndl=text(0,0,'Press the "Plot" button to plot the vehicle paths.',...
34 'HorizontalAlignment','center');
35 axis([-1 1 -1 1]);
36
37 %===================================
38 % Information for button
39 labelColor=[0.8 0.8 0.8];
40 yInitPos=0.50;
41 xPos=0.85;
42 btnLen=0.10;
43 btnWid=0.10;
44 txtWid=0.02;
45 sliderLen=0.2;
46 txtLen=0.05;
47 spacing=0.05;
48
49 %===================================
50 % The CONSOLE frame #1
51 frmBorder=0.02;
52 yPos=0.5+1.5*spacing;
53 frmPos=[xPos-frmBorder yPos btnLen+2*frmBorder spacing+2*btnWid+2*frmBorder];
54 h=uicontrol('Style','frame',...
55 'Units','normalized',...
56 'Position',frmPos,...
57 'BackgroundColor',[0.5 0.5 0.5]);
58
59 %===================================
60 % The CONSOLE frame #2
61 frmBorder=0.02;
62 yPos=0.045-frmBorder;
63 frmPos=[0.1-frmBorder yPos spacing+txtLen+sliderLen+2*frmBorder

spacing+2*txtWid+2*frmBorder];
64 h=uicontrol('Style','frame',...
65 'Units','normalized',...
66 'Position',frmPos,...
67 'BackgroundColor',[0.5 0.5 0.5]);
68
69 %===================================
70 % The CONSOLE frame #3
71 frmBorder=0.02;
72 yPos=0.045-frmBorder;
73 frmPos=[0.5-frmBorder yPos .33 spacing+2*txtWid+2*frmBorder];
74 h=uicontrol('Style','frame',...
75 'Units','normalized',...
76 'Position',frmPos,...
77 'BackgroundColor',[0.5 0.5 0.5]);
78
79 %===================================
80 % The CONSOLE frame #4
81 frmBorder=0.02;
82 yPos=0.5-2.5*spacing-2*frmBorder-2*btnWid;
83 frmPos=[xPos-frmBorder yPos btnLen+2*frmBorder spacing+2*btnWid+2*frmBorder];
84 h=uicontrol('Style','frame',...
85 'Units','normalized',...
86 'Position',frmPos,...
87 'BackgroundColor',[0.5 0.5 0.5]);

 114

88
89 %===================================
90 % The TIME slider #1
91 btnNumber=1;
92 cmdStr='time1';
93 callbackstr='trkslpcalc(t,speed,yaw,l2trk,r2trk,''ts1'');';
94
95 %Generic button information
96 btnPos=[.1 0.04+txtWid+spacing sliderLen txtWid];
97 time1Hndl=uicontrol(...
98 'Style','slider',...
99 'Units','normalized',...
100 'Position',btnPos,...
101 'SliderStep',[.001 .05],...
102 'Max',max(t),...
103 'Min',min(t),...
104 'Value',t(1),...
105 'Enable','off',...
106 'Callback',callbackstr);
107
108 %===================================
109 % The TIME slider #2
110 btnNumber=2;
111 cmdStr='time2';
112 callbackstr='trkslpcalc(t,speed,yaw,l2trk,r2trk,''ts2'');';
113
114 %Generic button information
115 btnPos=[.1 0.04 sliderLen txtWid];
116 time2Hndl=uicontrol(...
117 'Style','slider',...
118 'Units','normalized',...
119 'Position',btnPos,...
120 'SliderStep',[.001 .05],...
121 'Max',max(t),...
122 'Min',min(t),...
123 'Value',max(t),...
124 'Enable','off',...
125 'Callback',callbackstr);
126
127 %===================================
128 % The TIME edit #1
129 btnNumber=2;
130 cmdStr='time1';
131 callbackstr='trkslpcalc(t,speed,yaw,l2trk,r2trk,''te1'');';
132
133 %Generic button information
134 btnPos=[.1+sliderLen+spacing 0.04+txtWid+spacing txtLen txtWid];
135 time1edHndl=uicontrol(...
136 'Style','edit',...
137 'Units','normalized',...
138 'Position',btnPos,...
139 'String',num2str(t(1)),...
140 'Enable','off',...
141 'Callback',callbackstr);
142
143 %===================================
144 % The TIME edit #2
145 btnNumber=2;
146 cmdStr='time2';
147 callbackstr='trkslpcalc(t,speed,yaw,l2trk,r2trk,''te2'');';
148
149 %Generic button information
150 btnPos=[.1+sliderLen+spacing 0.04 txtLen txtWid];
151 time2edHndl=uicontrol(...
152 'Style','edit',...
153 'Units','normalized',...
154 'Position',btnPos,...
155 'String',num2str(max(t)),...
156 'Enable','off',...
157 'Callback',callbackstr);
158

 115

159 %===================================
160 % The Plot button
161 btnNumber=3;
162 yPos=0.5+frmBorder+2.5*spacing+btnWid;
163 labelStr='Plot';
164 cmdStr='plot';
165 callbackstr='trkslpcalc(t,speed,yaw,l2trk,r2trk,''plot'');';
166
167 %Generic button information
168 btnPos=[xPos yPos btnLen btnWid];
169 plotHndl=uicontrol(...
170 'Style','pushbutton',...
171 'Units','normalized',...
172 'Position',btnPos,...
173 'String',labelStr,...
174 'Interruptible','on',...
175 'Callback',callbackstr);
176
177 %===================================
178 % The Close button
179 btnNumber=4;
180 yPos=0.5+frmBorder+1.5*spacing;
181 labelStr='Close';
182 cmdStr='close';
183 callbackstr='close(gcf);';
184
185 %Generic button information
186 btnPos=[xPos yPos btnLen btnWid];
187 closeHndl=uicontrol(...
188 'Style','pushbutton',...
189 'Units','normalized',...
190 'Position',btnPos,...
191 'String',labelStr,...
192 'Interruptible','on',...
193 'Callback',callbackstr);
194
195 %===================================
196 % The Load button
197 btnNumber=8;
198 yPos=0.5-frmBorder-1.5*spacing-btnWid;
199 labelStr='Load Trackslip File';
200 cmdStr='load';
201 callbackstr='trkslpcalc(t,speed,yaw,l2trk,r2trk,''load'');';
202
203 %Generic button information
204 btnPos=[xPos yPos btnLen btnWid];
205 loadHndl=uicontrol(...
206 'Style','pushbutton',...
207 'Units','normalized',...
208 'Position',btnPos,...
209 'String',labelStr,...
210 'Interruptible','on',...
211 'Enable','off',...
212 'Callback',callbackstr);
213
214 %===================================
215 % The Write button
216 btnNumber=9;
217 yPos=0.5-frmBorder-2.5*spacing-2*btnWid;
218 labelStr='Write Trackslip File';
219 cmdStr='write';
220 callbackstr='trkslpcalc(t,speed,yaw,l2trk,r2trk,''write'');';
221
222 %Generic button information
223 btnPos=[xPos yPos btnLen btnWid];
224 writeHndl=uicontrol(...
225 'Style','pushbutton',...
226 'Units','normalized',...
227 'Position',btnPos,...
228 'String',labelStr,...
229 'Interruptible','on',...

 116

230 'Enable','off',...
231 'Callback',callbackstr);
232
233 % %===================================
234 % % The Track Slip Left edit
235 % btnNumber=5;
236 % cmdStr='time2';
237 %
238 % %Generic button information
239 % btnPos=[.515 0.04+txtWid+spacing txtLen txtWid];
240 % tslHndl=uicontrol(...
241 % 'Style','edit',...
242 % 'Units','normalized',...
243 % 'Position',btnPos,...
244 % 'String','1',...
245 % 'Enable','off');
246 %
247 % %===================================
248 % % The Track Slip Right edit
249 % btnNumber=6;
250 % cmdStr='time2';
251 %
252 % %Generic button information
253 % btnPos=[.62 0.04+txtWid+spacing txtLen txtWid];
254 % tsrHndl=uicontrol(...
255 % 'Style','edit',...
256 % 'Units','normalized',...
257 % 'Position',btnPos,...
258 % 'String','1',...
259 % 'Enable','off');
260 %
261 % %===================================
262 % % The Set button
263 % btnNumber=7;
264 % labelStr='Set';
265 % cmdStr='Set';
266 % callbackstr='trkslpcalc(t,speed,yaw,l2trk,r2trk,''set'');';
267 %
268 % %Generic button information
269 % btnPos=[.568 .04 btnLen/2 btnWid/3];
270 % setHndl=uicontrol(...
271 % 'Style','pushbutton',...
272 % 'Units','normalized',...
273 % 'Position',btnPos,...
274 % 'String',labelStr,...
275 % 'Interruptible','on',...
276 % 'Enable','off',...
277 % 'Callback',callbackstr);
278
279 %===================================
280 % The Pivot Radius button
281 btnNumber=9;
282 yPos=0.5-txtWid/2;
283 labelStr='50';
284 cmdStr='prad';
285 callbackstr='trkslpcalc(t,speed,yaw,l2trk,r2trk,''prad'');';
286
287 %Generic button information
288 btnPos=[xPos+btnLen/2 yPos btnLen/2 txtWid];
289 pradHndl=uicontrol(...
290 'Style','edit',...
291 'Units','normalized',...
292 'Position',btnPos,...
293 'String',labelStr,...
294 'Interruptible','on',...
295 'Enable','off',...
296 'Userdata',50,...
297 'Callback',callbackstr);
298
299 %===================================
300 % The tscalc button

 117

301 btnNumber=10;
302 yPos=0.1;
303 labelStr='Trackslip Calculator';
304 cmdStr='tscalc';
305 callbackstr='trkslpcalc(t,speed,yaw,l2trk,r2trk,''tscalc'');';
306
307 %Generic button information
308 btnPos=[xPos yPos btnLen txtWid];
309 tscalcHndl=uicontrol(...
310 'Style','pushbutton',...
311 'Units','normalized',...
312 'Position',btnPos,...
313 'String',labelStr,...
314 'Interruptible','on',...
315 'Enable','off',...
316 'Callback',callbackstr);
317
318 %===================================
319 % The tsplot button
320 btnNumber=11;
321 yPos=0.07;
322 labelStr='Trackslip Plotter';
323 cmdStr='tsplot';
324 callbackstr='trkslpcalc(t,speed,yaw,l2trk,r2trk,''tsplot'');';
325
326 %Generic button information
327 btnPos=[xPos yPos btnLen txtWid];
328 tsplotHndl=uicontrol(...
329 'Style','pushbutton',...
330 'Units','normalized',...
331 'Position',btnPos,...
332 'String',labelStr,...
333 'Interruptible','on',...
334 'Enable','off',...
335 'Callback',callbackstr);
336
337 %===================================
338 % The Curve Write button
339 btnNumber=12;
340 yPos=0.04;
341 labelStr='Curve Writer';
342 cmdStr='cwrite';
343 callbackstr='crvwrite;';
344
345 %Generic button information
346 btnPos=[xPos yPos btnLen txtWid];
347 cwriteHndl=uicontrol(...
348 'Style','pushbutton',...
349 'Units','normalized',...
350 'Position',btnPos,...
351 'String',labelStr,...
352 'Interruptible','on',...
353 'Enable','off',...
354 'Callback',callbackstr);
355
356 %===================================
357 % The TIME slider #3
358 btnNumber=13;
359 cmdStr='time3';
360 callbackstr='trkslpcalc(t,speed,yaw,l2trk,r2trk,''ts3'');';
361
362 %Generic button information
363 btnPos=[.495 0.07 sliderLen txtWid];
364 time3Hndl=uicontrol(...
365 'Style','slider',...
366 'Units','normalized',...
367 'Position',btnPos,...
368 'SliderStep',[.001 .05],...
369 'Max',max(t),...
370 'Min',min(t),...
371 'Value',t(round(.5.*max(size(t)))),...

 118

372 'Enable','off',...
373 'Callback',callbackstr);
374
375 %===================================
376 % The TIME edit #3
377 btnNumber=14;
378 cmdStr='time3';
379 callbackstr='trkslpcalc(t,speed,yaw,l2trk,r2trk,''te3'');';
380
381 %Generic button information
382 btnPos=[.495+sliderLen+spacing 0.07 txtLen txtWid];
383 time3edHndl=uicontrol(...
384 'Style','edit',...
385 'Units','normalized',...
386 'Position',btnPos,...
387 'String',num2str(t(round(.5.*max(size(t))))),...
388 'Enable','off',...
389 'Callback',callbackstr);
390
391 %===================================
392 % Text
393 btnPos=[xPos-.5*btnLen/2 0.5-.0075 .7*btnLen .015];
394 uicontrol(...
395 'Style','text',...
396 'Units','normalized',...
397 'Position',btnPos,...
398 'String','Pivot Radius (in.)',...
399 'BackgroundColor',[.5 .5 .5]);
400
401 btnPos=[.09 .132 .04 .015];
402 uicontrol(...
403 'Style','text',...
404 'Units','normalized',...
405 'Position',btnPos,...
406 'String',t(1),...
407 'BackgroundColor',[.5 .5 .5]);
408
409 btnPos=[.27 .132 .04 .015];
410 uicontrol(...
411 'Style','text',...
412 'Units','normalized',...
413 'Position',btnPos,...
414 'String',num2str(t(max(size(t))-2)),...
415 'BackgroundColor',[.5 .5 .5]);
416
417 btnPos=[.09 .062 .04 .015];
418 uicontrol(...
419 'Style','text',...
420 'Units','normalized',...
421 'Position',btnPos,...
422 'String',num2str(t(3)),...
423 'BackgroundColor',[.5 .5 .5]);
424
425 btnPos=[.27 .062 .04 .015];
426 uicontrol(...
427 'Style','text',...
428 'Units','normalized',...
429 'Position',btnPos,...
430 'String',num2str(t(max(size(t)))),...
431 'BackgroundColor',[.5 .5 .5]);
432
433 btnPos=[.15 .132 .1 .015];
434 uicontrol(...
435 'Style','text',...
436 'Units','normalized',...
437 'Position',btnPos,...
438 'String','Start Time Marker',...
439 'ForegroundColor','g',...
440 'BackgroundColor',[.5 .5 .5]);
441
442 btnPos=[.15 .062 .1 .015];

 119

443 uicontrol(...
444 'Style','text',...
445 'Units','normalized',...
446 'Position',btnPos,...
447 'String','End Time Marker',...
448 'ForegroundColor','r',...
449 'BackgroundColor',[.5 .5 .5]);
450
451 btnPos=[.355 .132 .04 .015];
452 uicontrol(...
453 'Style','text',...
454 'Units','normalized',...
455 'Position',btnPos,...
456 'String','Value',...
457 'BackgroundColor',[.5 .5 .5]);
458
459 btnPos=[.355 .062 .04 .015];
460 uicontrol(...
461 'Style','text',...
462 'Units','normalized',...
463 'Position',btnPos,...
464 'String','Value',...
465 'BackgroundColor',[.5 .5 .5]);
466
467 btnPos=[.484 .092 .04 .015];
468 uicontrol(...
469 'Style','text',...
470 'Units','normalized',...
471 'Position',btnPos,...
472 'String',num2str(t(2)),...
473 'BackgroundColor',[.5 .5 .5]);
474
475 btnPos=[.664 .092 .04 .015];
476 uicontrol(...
477 'Style','text',...
478 'Units','normalized',...
479 'Position',btnPos,...
480 'String',num2str(t(max(size(t))-1)),...
481 'BackgroundColor',[.5 .5 .5]);
482
483 btnPos=[.749 .092 .04 .015];
484 uicontrol(...
485 'Style','text',...
486 'Units','normalized',...
487 'Position',btnPos,...
488 'String','Value',...
489 'BackgroundColor',[.5 .5 .5]);
490
491 btnPos=[.544 .092 .1 .015];
492 uicontrol(...
493 'Style','text',...
494 'Units','normalized',...
495 'Position',btnPos,...
496 'String','S-Curve Center Marker',...
497 'ForegroundColor',[1 0.7 0],...
498 'BackgroundColor',[.5 .5 .5]);
499
500 trkslpl = ones(size(t));
501 trkslpr = ones(size(t));
502
503 set(figNumber,'Visible','on');
504 set(closeHndl,'UserData',[trkslpl trkslpr]);
505 set(axHndl,'UserData',[figNumber axHndl textHndl time1Hndl ...
506 time2Hndl...
507 time1edHndl...
508 time2edHndl...
509 plotHndl...
510 closeHndl...
511 loadHndl...
512 writeHndl,...
513 pradHndl,...

 120

514 tscalcHndl,...
515 tsplotHndl,...
516 cwriteHndl,...
517 time3Hndl,...
518 time3edHndl]);
519
520 %===

==
521 %===

==
522
523 elseif strcmp(action,'plot')
524 Hndllist = get(gca,'Userdata');
525 figNumber = Hndllist(1);
526 axHndl = Hndllist(2);
527 textHndl = Hndllist(3);
528 time1Hndl = Hndllist(4);
529 time2Hndl = Hndllist(5);
530 time1edHndl = Hndllist(6);
531 time2edHndl = Hndllist(7);
532 plotHndl = Hndllist(8);
533 closeHndl = Hndllist(9);
534 % ts1Hndl = Hndllist(10);
535 % tsrHndl = Hndllist(11);
536 % setHndl = Hndllist(12);
537 loadHndl = Hndllist(10);
538 writeHndl = Hndllist(11);
539 pradHndl = Hndllist(12);
540 tscalcHndl = Hndllist(13);
541 tsplotHndl = Hndllist(14);
542 cwriteHndl = Hndllist(15);
543 time3Hndl = Hndllist(16);
544 time3edHndl = Hndllist(17);
545
546 prad=get(pradHndl,'Userdata');
547
548 set(textHndl,'Visible','off');
549 set(axHndl,'Visible','on');
550 set(plotHndl,'String','Regenerate',...
551 'Callback','trkslpcalc(t,speed,yaw,l2trk,r2trk,''regen'');');
552 set(Hndllist(4:7),'Enable','on');
553 set(Hndllist(10:17),'Enable','on');
554
555 trkslp = get(closeHndl,'Userdata');
556 trkslpl=trkslp(:,1);
557 trkslpr=trkslp(:,2);
558 %==============================
559 %Calculations
560
561 l2trk=l2trk./trkslpl;
562 r2trk=r2trk./trkslpr;
563
564 speed=88.*speed./60;
565 l2trk=88.*l2trk./60;
566 r2trk=88.*r2trk./60;
567
568 speed=(63/12).*pi.*yaw./180+speed; %Corrects for 5th wheel offset.
569
570 speed2=(l2trk+r2trk)./2;
571
572 theta=cumtrapz(t,yaw);
573 theta2=cumtrapz(t,(6./prad).*(l2trk-r2trk));
574 theta=pi*theta./180;
575
576 fpos=cumtrapz(t,speed);
577 fpos2=cumtrapz(t,speed2);
578
579
580 fpos=[fpos(1);diff(fpos)];
581 fpos2=[fpos2(1);diff(fpos2)];
582

 121

583
584 cgx=cumsum(fpos.*sin(theta));
585 cgy=cumsum(fpos.*cos(theta));
586 cgx2=cumsum(fpos2.*sin(theta2));
587 cgy2=cumsum(fpos2.*cos(theta2));
588
589 set(axHndl,'XLim',[-10+min(min([cgx cgx2])) 10+max(max([cgx cgx2]))],...
590 'YLim',[-10+min(min([cgy cgy2])) 10+max(max([cgy cgy2]))]);
591
592 val1 = get(time1Hndl,'Value');
593 val2 = get(time2Hndl,'Value');
594 val3 = get(time3Hndl,'Value');
595
596 indx1=round(mean(find(t==val1)));
597 indx2=round(mean(find(t==val2)));
598 indx3=round(mean(find(t==val3)));
599
600
601 body=line('color','b',...
602 'LineStyle','-',...
603 'xdata',cgx,'ydata',cgy);
604 body2=line('color','w',...
605 'LineStyle','-',...
606 'xdata',cgx2,'ydata',cgy2);
607 head=line('color','g',...
608 'Marker','*',...
609 'markersize',10,...
610 'xdata',cgx(indx1:indx1+1),'ydata',cgy(indx1:indx1+1));
611 head2=line('color','g',...
612 'Marker','*',...
613 'markersize',10,...
614 'xdata',cgx2(indx1:indx1+1),'ydata',cgy2(indx1:indx1+1));
615 mid=line('color',[1 .7 0],...
616 'Marker','*',...
617 'Markersize',10,...
618 'xdata',cgx(indx3:indx3+1),'ydata',cgy(indx3:indx3+1));
619 mid2=line('color',[1 .7 0],...
620 'Marker','*',...
621 'Markersize',10,...
622 'xdata',cgx2(indx3:indx3+1),'ydata',cgy2(indx3:indx3+1));
623 tail=line('color','r',...
624 'Marker','*',...
625 'markersize',10,...
626 'xdata',cgx(indx2-1:indx2),'ydata',cgy(indx2-1:indx2));
627 tail2=line('color','r',...
628 'Marker','*',...
629 'markersize',10,...
630 'xdata',cgx2(indx2-1:indx2),'ydata',cgy2(indx2-1:indx2));
631
632 set(plotHndl,'Userdata',[body body2 head head2 tail tail2 mid mid2]);
633 set(time1Hndl,'Userdata',[cgx cgy cgx2 cgy2]);
634 set(cwriteHndl,'Userdata',[t cgx2 cgy2 trkslpl trkslpr speed yaw]);
635
636
637 %===

==
638 %===

==
639
640 elseif strcmp(action,'ts1')
641 Hndllist = get(gca,'Userdata');
642 figNumber = Hndllist(1);
643 axHndl = Hndllist(2);
644 textHndl = Hndllist(3);
645 time1Hndl = Hndllist(4);
646 time2Hndl = Hndllist(5);
647 time1edHndl = Hndllist(6);
648 time2edHndl = Hndllist(7);
649 plotHndl = Hndllist(8);
650 closeHndl = Hndllist(9);
651 % ts1Hndl = Hndllist(10);

 122

652 % tsrHndl = Hndllist(11);
653 % setHndl = Hndllist(12);
654 time3Hndl = Hndllist(16);
655 time3edHndl = Hndllist(17);
656
657 linelist = get(plotHndl,'Userdata');
658 body = linelist(1);
659 body2 = linelist(2);
660 head = linelist(3);
661 head2 = linelist(4);
662 tail = linelist(5);
663 tail2 = linelist(6);
664 mid = linelist(7);
665 mid2 = linelist(8);
666
667 cglist = get(time1Hndl,'Userdata');
668 cgx = cglist(:,1);
669 cgy = cglist(:,2);
670 cgx2 = cglist(:,3);
671 cgy2 = cglist(:,4);
672
673 val=get(time1Hndl,'Value');
674 indx=round(mean(find(t>=val-0.05 & t<=val+0.05)));
675 if val>=get(time2Hndl,'Value')
676 set(time1Hndl,'Value',t(round(mean(find(t==get(time2Hndl,'Value'))))-2));
677 set(time1edHndl,'String',num2str(get(time1Hndl,'Value')));
678 set(time3Hndl,'Value',t(round(mean(find(t==get(time2Hndl,'Value'))))-1));
679 set(time3edHndl,'String',num2str(get(time3Hndl,'Value')));
680 elseif val<t(4)
681 set(time1edHndl,'String',num2str(min(t)));
682 set(time1Hndl,'Value',min(t));
683 else
684 set(time1edHndl,'String',num2str(t(indx)));
685 set(time1Hndl,'Value',t(indx));
686 end
687 if get(time3Hndl,'Value')<=get(time1Hndl,'Value')
688 set(time3Hndl,'Value',t(round(mean(find(t==get(time1Hndl,'Value'))))+1));
689 set(time3edHndl,'String',num2str(get(time3Hndl,'Value')));
690 end
691 indx1=round(mean(find(t==get(time1Hndl,'Value'))));
692 set(head,'XData',cgx(indx1:indx1+1),'YData',cgy(indx1:indx1+1));
693 set(head2,'XData',cgx2(indx1:indx1+1),'YData',cgy2(indx1:indx1+1));
694 indx3=round(mean(find(t==get(time3Hndl,'Value'))));
695 set(mid,'XData',cgx(indx3:indx3+1),'YData',cgy(indx3:indx3+1));
696 set(mid2,'XData',cgx2(indx3:indx3+1),'YData',cgy2(indx3:indx3+1));
697
698 %===

==
699 %===

==
700
701 elseif strcmp(action,'ts2')
702 Hndllist = get(gca,'Userdata');
703 figNumber = Hndllist(1);
704 axHndl = Hndllist(2);
705 textHndl = Hndllist(3);
706 time1Hndl = Hndllist(4);
707 time2Hndl = Hndllist(5);
708 time1edHndl = Hndllist(6);
709 time2edHndl = Hndllist(7);
710 plotHndl = Hndllist(8);
711 closeHndl = Hndllist(9);
712 % ts1Hndl = Hndllist(10);
713 % tsrHndl = Hndllist(11);
714 % setHndl = Hndllist(12);
715 time3Hndl = Hndllist(16);
716 time3edHndl = Hndllist(17);
717
718 linelist = get(plotHndl,'Userdata');
719 body = linelist(1);
720 body2 = linelist(2);

 123

721 head = linelist(3);
722 head2 = linelist(4);
723 tail = linelist(5);
724 tail2 = linelist(6);
725 mid = linelist(7);
726 mid2 = linelist(8);
727
728 cglist = get(time1Hndl,'Userdata');
729 cgx = cglist(:,1);
730 cgy = cglist(:,2);
731 cgx2 = cglist(:,3);
732 cgy2 = cglist(:,4);
733
734 val=get(time2Hndl,'Value');
735 indx=round(mean(find(t>=val-0.05 & t<=val+0.05)));
736 if val<=get(time1Hndl,'Value')
737 set(time2Hndl,'Value',t(round(mean(find(t==get(time1Hndl,'Value'))))+2));
738 set(time2edHndl,'String',num2str(get(time2Hndl,'Value')));
739 set(time3Hndl,'Value',t(round(mean(find(t==get(time1Hndl,'Value'))))+1));
740 set(time3edHndl,'String',num2str(get(time3Hndl,'Value')));
741 elseif val>t(max(size(t))-4)
742 set(time2edHndl,'String',num2str(max(t)));
743 set(time2Hndl,'Value',max(t));
744 else
745 set(time2edHndl,'String',num2str(t(indx)));
746 set(time2Hndl,'Value',t(indx));
747 end
748 if get(time3Hndl,'Value')>=get(time2Hndl,'Value')
749 set(time3Hndl,'Value',t(round(mean(find(t==get(time2Hndl,'Value'))))-1));
750 set(time3edHndl,'String',num2str(get(time3Hndl,'Value')));
751 end
752 indx1=round(mean(find(t==get(time2Hndl,'Value'))));
753 set(tail,'XData',cgx(indx1-1:indx1),'YData',cgy(indx1-1:indx1));
754 set(tail2,'XData',cgx2(indx1-1:indx1),'YData',cgy2(indx1-1:indx1));
755 indx3=round(mean(find(t==get(time3Hndl,'Value'))));
756 set(mid,'XData',cgx(indx3:indx3+1),'YData',cgy(indx3:indx3+1));
757 set(mid2,'XData',cgx2(indx3:indx3+1),'YData',cgy2(indx3:indx3+1));
758
759 %===

==
760 %===

==
761
762 elseif strcmp(action,'ts3')
763 Hndllist = get(gca,'Userdata');
764 figNumber = Hndllist(1);
765 axHndl = Hndllist(2);
766 textHndl = Hndllist(3);
767 time1Hndl = Hndllist(4);
768 time2Hndl = Hndllist(5);
769 time1edHndl = Hndllist(6);
770 time2edHndl = Hndllist(7);
771 plotHndl = Hndllist(8);
772 closeHndl = Hndllist(9);
773 % ts1Hndl = Hndllist(10);
774 % tsrHndl = Hndllist(11);
775 % setHndl = Hndllist(12);
776 time3Hndl = Hndllist(16);
777 time3edHndl = Hndllist(17);
778
779 linelist = get(plotHndl,'Userdata');
780 body = linelist(1);
781 body2 = linelist(2);
782 head = linelist(3);
783 head2 = linelist(4);
784 tail = linelist(5);
785 tail2 = linelist(6);
786 mid = linelist(7);
787 mid2 = linelist(8);
788
789 cglist = get(time1Hndl,'Userdata');

 124

790 cgx = cglist(:,1);
791 cgy = cglist(:,2);
792 cgx2 = cglist(:,3);
793 cgy2 = cglist(:,4);
794
795 val=get(time3Hndl,'Value');
796 indx=round(mean(find(t>=val-0.05 & t<=val+0.05)));
797 if val<=get(time1Hndl,'Value')
798 set(time3Hndl,'Value',t(round(mean(find(t==get(time1Hndl,'Value'))))+1));
799 set(time3edHndl,'String',num2str(get(time3Hndl,'Value')));
800 elseif val>=get(time2Hndl,'Value')
801 set(time3Hndl,'Value',t(round(mean(find(t==get(time2Hndl,'Value'))))-1));
802 set(time3edHndl,'String',num2str(get(time3Hndl,'Value')));
803 else
804 set(time3edHndl,'String',num2str(t(indx)));
805 set(time3Hndl,'Value',t(indx));
806 end
807 indx3=round(mean(find(t==get(time3Hndl,'Value'))));
808 set(mid,'XData',cgx(indx3:indx3+1),'YData',cgy(indx3:indx3+1));
809 set(mid2,'XData',cgx2(indx3:indx3+1),'YData',cgy2(indx3:indx3+1));
810
811 %===

==
812 %===

==
813
814 elseif strcmp(action,'te1')
815 Hndllist = get(gca,'Userdata');
816 figNumber = Hndllist(1);
817 axHndl = Hndllist(2);
818 textHndl = Hndllist(3);
819 time1Hndl = Hndllist(4);
820 time2Hndl = Hndllist(5);
821 time1edHndl = Hndllist(6);
822 time2edHndl = Hndllist(7);
823 plotHndl = Hndllist(8);
824 closeHndl = Hndllist(9);
825 time3Hndl = Hndllist(16);
826 time3edHndl = Hndllist(17);
827
828 linelist = get(plotHndl,'Userdata');
829 body = linelist(1);
830 body2 = linelist(2);
831 head = linelist(3);
832 head2 = linelist(4);
833 tail = linelist(5);
834 tail2 = linelist(6);
835 mid = linelist(7);
836 mid2 = linelist(8);
837
838 cglist = get(time1Hndl,'Userdata');
839 cgx = cglist(:,1);
840 cgy = cglist(:,2);
841 cgx2 = cglist(:,3);
842 cgy2 = cglist(:,4);
843
844 val=str2double(get(time1edHndl,'String'));
845
846 if val>=get(time2Hndl,'Value')
847 set(time1Hndl,'Value',t(round(mean(find(t==get(time2Hndl,'Value'))))-2));
848 set(time1edHndl,'String',num2str(get(time1Hndl,'Value')));
849 set(time3Hndl,'Value',t(round(mean(find(t==get(time2Hndl,'Value'))))-1));
850 set(time3edHndl,'String',num2str(get(time3Hndl,'Value')));
851 elseif val<t(4)
852 set(time1edHndl,'String',num2str(min(t)));
853 set(time1Hndl,'Value',min(t));
854 else
855 indx=round(mean(find(t>=val-0.05 & t<=val+0.05)));
856 set(time1edHndl,'String',num2str(t(indx)));
857 set(time1Hndl,'Value',t(indx));
858 end

 125

859 if get(time3Hndl,'Value')<=get(time1Hndl,'Value')
860 set(time3Hndl,'Value',t(round(mean(find(t==get(time1Hndl,'Value'))))+1));
861 set(time3edHndl,'String',num2str(get(time3Hndl,'Value')));
862 end
863 indx3=round(mean(find(t==get(time3Hndl,'Value'))));
864 set(mid,'XData',cgx(indx3:indx3+1),'YData',cgy(indx3:indx3+1));
865 set(mid2,'XData',cgx2(indx3:indx3+1),'YData',cgy2(indx3:indx3+1));
866 indx1=round(mean(find(t==get(time1Hndl,'Value'))));
867 set(head,'XData',cgx(indx1:indx1+1),'YData',cgy(indx1:indx1+1));
868 set(head2,'XData',cgx2(indx1:indx1+1),'YData',cgy2(indx1:indx1+1));
869
870 %===

==
871 %===

==
872
873 elseif strcmp(action,'te2')
874 Hndllist = get(gca,'Userdata');
875 figNumber = Hndllist(1);
876 axHndl = Hndllist(2);
877 textHndl = Hndllist(3);
878 time1Hndl = Hndllist(4);
879 time2Hndl = Hndllist(5);
880 time1edHndl = Hndllist(6);
881 time2edHndl = Hndllist(7);
882 plotHndl = Hndllist(8);
883 closeHndl = Hndllist(9);
884 time3Hndl = Hndllist(16);
885 time3edHndl = Hndllist(17);
886
887 linelist = get(plotHndl,'Userdata');
888 body = linelist(1);
889 body2 = linelist(2);
890 head = linelist(3);
891 head2 = linelist(4);
892 tail = linelist(5);
893 tail2 = linelist(6);
894 mid = linelist(7);
895 mid2 = linelist(8);
896
897 cglist = get(time1Hndl,'Userdata');
898 cgx = cglist(:,1);
899 cgy = cglist(:,2);
900 cgx2 = cglist(:,3);
901 cgy2 = cglist(:,4);
902
903 val=str2double(get(time2edHndl,'String'));
904
905 if val<=get(time1Hndl,'Value')
906 set(time2Hndl,'Value',t(round(mean(find(t==get(time1Hndl,'Value'))))+2));
907 set(time2edHndl,'String',num2str(get(time2Hndl,'Value')));
908 set(time3Hndl,'Value',t(round(mean(find(t==get(time1Hndl,'Value'))))+1));
909 set(time3edHndl,'String',num2str(get(time3Hndl,'Value')));
910 elseif val>t(max(size(t))-4)
911 set(time2edHndl,'String',num2str(max(t)));
912 set(time2Hndl,'Value',max(t));
913 else
914 indx=round(mean(find(t>=val-0.05 & t<=val+0.05)));
915 set(time2edHndl,'String',num2str(t(indx)));
916 set(time2Hndl,'Value',t(indx));
917 end
918 if get(time3Hndl,'Value')>=get(time2Hndl,'Value')
919 set(time3Hndl,'Value',t(round(mean(find(t==get(time2Hndl,'Value'))))-1));
920 set(time3edHndl,'String',num2str(get(time3Hndl,'Value')));
921 end
922 indx3=round(mean(find(t==get(time3Hndl,'Value'))));
923 set(mid,'XData',cgx(indx3:indx3+1),'YData',cgy(indx3:indx3+1));
924 set(mid2,'XData',cgx2(indx3:indx3+1),'YData',cgy2(indx3:indx3+1));
925
926 indx1=round(mean(find(t==get(time2Hndl,'Value'))));
927 set(tail,'XData',cgx(indx1-1:indx1),'YData',cgy(indx1-1:indx1));

 126

928 set(tail2,'XData',cgx2(indx-1:indx1),'YData',cgy2(indx1-1:indx1));
929
930 %===

==
931 %===

==
932
933 elseif strcmp(action,'te3')
934 Hndllist = get(gca,'Userdata');
935 figNumber = Hndllist(1);
936 axHndl = Hndllist(2);
937 textHndl = Hndllist(3);
938 time1Hndl = Hndllist(4);
939 time2Hndl = Hndllist(5);
940 time1edHndl = Hndllist(6);
941 time2edHndl = Hndllist(7);
942 plotHndl = Hndllist(8);
943 closeHndl = Hndllist(9);
944 time3Hndl = Hndllist(16);
945 time3edHndl = Hndllist(17);
946
947 linelist = get(plotHndl,'Userdata');
948 body = linelist(1);
949 body2 = linelist(2);
950 head = linelist(3);
951 head2 = linelist(4);
952 tail = linelist(5);
953 tail2 = linelist(6);
954 mid = linelist(7);
955 mid2 = linelist(8);
956
957 cglist = get(time1Hndl,'Userdata');
958 cgx = cglist(:,1);
959 cgy = cglist(:,2);
960 cgx2 = cglist(:,3);
961 cgy2 = cglist(:,4);
962
963 val=str2double(get(time3edHndl,'String'));
964
965 if val<=get(time1Hndl,'Value')
966 set(time3Hndl,'Value',t(round(mean(find(t==get(time1Hndl,'Value'))))+1));
967 set(time3edHndl,'String',num2str(get(time3Hndl,'Value')));
968 elseif val>=get(time2Hndl,'Value')
969 set(time3Hndl,'Value',t(round(mean(find(t==get(time2Hndl,'Value'))))-1));
970 set(time3edHndl,'String',num2str(get(time3Hndl,'Value')));
971 else
972 indx=round(mean(find(t>=val-0.05 & t<=val+0.05)));
973 set(time3edHndl,'String',num2str(t(indx)));
974 set(time3Hndl,'Value',t(indx));
975 end
976 indx3=round(mean(find(t==get(time3Hndl,'Value'))));
977 set(mid,'XData',cgx(indx3:indx3+1),'YData',cgy(indx3:indx3+1));
978 set(mid2,'XData',cgx2(indx3:indx3+1),'YData',cgy2(indx3:indx3+1));
979
980 %===

==
981 %===

==
982
983 elseif strcmp(action,'regen')
984 Hndllist = get(gca,'Userdata');
985 figNumber = Hndllist(1);
986 axHndl = Hndllist(2);
987 textHndl = Hndllist(3);
988 time1Hndl = Hndllist(4);
989 time2Hndl = Hndllist(5);
990 time1edHndl = Hndllist(6);
991 time2edHndl = Hndllist(7);
992 plotHndl = Hndllist(8);
993 closeHndl = Hndllist(9);
994 % ts1Hndl = Hndllist(10);

 127

995 % tsrHndl = Hndllist(11);
996 % setHndl = Hndllist(12);
997 pradHndl = Hndllist(12);
998 cwriteHndl = Hndllist(15);
999 time3Hndl = Hndllist(16);
1000 time3edHndl = Hndllist(17);
1001
1002
1003 prad=get(pradHndl,'Userdata');
1004
1005 linelist = get(plotHndl,'Userdata');
1006 body = linelist(1);
1007 body2 = linelist(2);
1008 head = linelist(3);
1009 head2 = linelist(4);
1010 tail = linelist(5);
1011 tail2 = linelist(6);
1012 mid = linelist(7);
1013 mid2 = linelist(8);
1014
1015 trkslp = get(closeHndl,'Userdata');
1016 trkslpl=trkslp(:,1);
1017 trkslpr=trkslp(:,2);
1018 %==============================
1019 %Calculations
1020
1021 l2trk=l2trk./trkslpl;
1022 r2trk=r2trk./trkslpr;
1023
1024 speed=88.*speed./60;
1025 l2trk=88.*l2trk./60;
1026 r2trk=88.*r2trk./60;
1027
1028 speed=(63/12).*pi.*yaw./180+speed; %Corrects for 5th wheel offset.
1029
1030 speed2=(l2trk+r2trk)./2;
1031
1032 theta=cumtrapz(t,yaw);
1033 theta2=cumtrapz(t,(6./prad).*(l2trk-r2trk));
1034 theta=pi*theta./180;
1035
1036 fpos=cumtrapz(t,speed);
1037 fpos2=cumtrapz(t,speed2);
1038
1039
1040 fpos=[fpos(1);diff(fpos)];
1041 fpos2=[fpos2(1);diff(fpos2)];
1042
1043
1044 cgx=cumsum(fpos.*sin(theta));
1045 cgy=cumsum(fpos.*cos(theta));
1046 cgx2=cumsum(fpos2.*sin(theta2));
1047 cgy2=cumsum(fpos2.*cos(theta2));
1048
1049 set(axHndl,'XLim',[-10+min(min([cgx cgx2])) 10+max(max([cgx cgx2]))],...
1050 'YLim',[-10+min(min([cgy cgy2])) 10+max(max([cgy cgy2]))]);
1051
1052 val1 = get(time1Hndl,'Value');
1053 val2 = get(time2Hndl,'Value');
1054 val3 = get(time3Hndl,'Value');
1055
1056 indx1=round(mean(find(t==val1)));
1057 indx2=round(mean(find(t==val2)));
1058 indx3=round(mean(find(t==val3)));
1059
1060 set(body,'XData',cgx,'Ydata',cgy);
1061 set(body2,'XData',cgx2,'Ydata',cgy2);
1062 set(head,'XData',cgx(indx1:indx1+1),'Ydata',cgy(indx1:indx1+1));
1063 set(head2,'XData',cgx2(indx1:indx1+1),'Ydata',cgy2(indx1:indx1+1));
1064 set(tail,'XData',cgx(indx2-1:indx2),'Ydata',cgy(indx2-1:indx2));
1065 set(tail2,'XData',cgx2(indx2-1:indx2),'Ydata',cgy2(indx2-1:indx2));

 128

1066 set(mid,'XData',cgx(indx3-1:indx3),'Ydata',cgy(indx3-1:indx3));
1067 set(mid2,'XData',cgx2(indx3-1:indx3),'Ydata',cgy2(indx3-1:indx3));
1068
1069 set(time1Hndl,'Userdata',[cgx cgy cgx2 cgy2]);
1070 set(cwriteHndl,'Userdata',[t cgx2 cgy2 trkslpl trkslpr speed yaw]);
1071
1072 %===

==
1073 %===

==
1074
1075 elseif strcmp(action,'set')
1076 Hndllist = get(gca,'Userdata');
1077 figNumber = Hndllist(1);
1078 axHndl = Hndllist(2);
1079 textHndl = Hndllist(3);
1080 time1Hndl = Hndllist(4);
1081 time2Hndl = Hndllist(5);
1082 time1edHndl = Hndllist(6);
1083 time2edHndl = Hndllist(7);
1084 plotHndl = Hndllist(8);
1085 closeHndl = Hndllist(9);
1086 % tslHndl = Hndllist(10);
1087 % tsrHndl = Hndllist(11);
1088 % setHndl = Hndllist(12);
1089
1090
1091 trkslp = get(closeHndl,'Userdata');
1092 trkslpl=trkslp(:,1);
1093 trkslpr=trkslp(:,2);
1094
1095 val1=get(time1Hndl,'Value');
1096 val2=get(time2Hndl,'Value');
1097
1098 indx1=round(mean(find(t==val1)));
1099 indx2=round(mean(find(t==val2)));
1100
1101 tslval=str2double(get(tslHndl,'String'));
1102 tsrval=str2double(get(tsrHndl,'String'));
1103
1104
1105 if (isnan(tslval)|tslval<=0) & ~(isnan(tsrval)|tsrval<=0)
1106 tslval=1;
1107 set(tslHndl,'String','1');
1108 lerrNumber=figure(...
1109 'Name','Value Error',...
1110 'NumberTitle','off',...
1111 'BackingStore','off',...
1112 'Visible','on',...
1113 'Units','normalized',...
1114 'Position',[0.44 0.45 0.12 0.1],...
1115 'MenuBar','none');
1116
1117 %===================================
1118 % The Set button
1119 btnNumber=7;
1120 labelStr='Ok';
1121 cmdStr='Close';
1122 callbackstr='close(gcf);';
1123
1124 %Generic button information
1125 btnPos=[.25 .15 .5 .25];
1126 setHndl=uicontrol(...
1127 'Style','pushbutton',...
1128 'Units','normalized',...
1129 'Position',btnPos,...
1130 'String',labelStr,...
1131 'Interruptible','on',...
1132 'Enable','on',...
1133 'Callback',callbackstr);
1134

 129

1135 %===================================
1136 % Text
1137 btnPos=[.01 .45 .98 .5];
1138 uicontrol(...
1139 'Style','text',...
1140 'Units','normalized',...
1141 'Position',btnPos,...
1142 'String',['''Left Track Slip Value'' is not an '...
1143 'acceptable value. Value must be a NUMBER greater'...
1144 ' than zero. Track slip not modified.'],...
1145 'BackgroundColor',[.8 .8 .8]);
1146
1147 elseif (isnan(tsrval)|tsrval<=0) & ~(isnan(tslval)|tslval<=0)
1148 tsrval=1;
1149 set(tsrHndl,'String','1');
1150 lerrNumber=figure(...
1151 'Name','Value Error',...
1152 'NumberTitle','off',...
1153 'BackingStore','off',...
1154 'Visible','on',...
1155 'Units','normalized',...
1156 'Position',[0.44 0.45 0.12 0.1],...
1157 'MenuBar','none');
1158
1159 %===================================
1160 % The OK button
1161 btnNumber=7;
1162 labelStr='Ok';
1163 cmdStr='Close';
1164 callbackstr='close(gcf);';
1165
1166 %Generic button information
1167 btnPos=[.25 .15 .5 .25];
1168 setHndl=uicontrol(...
1169 'Style','pushbutton',...
1170 'Units','normalized',...
1171 'Position',btnPos,...
1172 'String',labelStr,...
1173 'Interruptible','on',...
1174 'Enable','on',...
1175 'Callback',callbackstr);
1176
1177 %===================================
1178 % Text
1179 btnPos=[.01 .45 .98 .5];
1180 uicontrol(...
1181 'Style','text',...
1182 'Units','normalized',...
1183 'Position',btnPos,...
1184 'String',['''Right Track Slip Value'' is not an '...
1185 'acceptable value. Value must be a NUMBER greater'...
1186 ' than zero. Track slip not modified.'],...
1187 'BackgroundColor',[.8 .8 .8]);
1188 elseif (isnan(tslval)|tslval<=0) & (isnan(tsrval)|tsrval<=0)
1189 tslval=1;
1190 tsrval=1;
1191 set([tslHndl tsrHndl],'String','1');
1192 lerrNumber=figure(...
1193 'Name','Value Error',...
1194 'NumberTitle','off',...
1195 'BackingStore','off',...
1196 'Visible','on',...
1197 'Units','normalized',...
1198 'Position',[0.44 0.45 0.12 0.1],...
1199 'MenuBar','none');
1200
1201 %===================================
1202 % The Set button
1203 btnNumber=7;
1204 labelStr='Ok';
1205 cmdStr='Close';

 130

1206 callbackstr='close(gcf);';
1207
1208 %Generic button information
1209 btnPos=[.25 .05 .5 .25];
1210 setHndl=uicontrol(...
1211 'Style','pushbutton',...
1212 'Units','normalized',...
1213 'Position',btnPos,...
1214 'String',labelStr,...
1215 'Interruptible','on',...
1216 'Enable','on',...
1217 'Callback',callbackstr);
1218
1219 %===================================
1220 % Text
1221 btnPos=[.01 .35 .98 .6];
1222 uicontrol(...
1223 'Style','text',...
1224 'Units','normalized',...
1225 'Position',btnPos,...
1226 'String',['Neither the ''Left Track Slip Value'' nor the '...
1227 '''Right Track Slip Value" is an acceptable value. ' ...
1228 'Value must be a NUMBER greater'...
1229 ' than zero. Track slip not modified.'],...
1230 'BackgroundColor',[.8 .8 .8]);
1231 else
1232 trkslpl(indx1:indx2)=trkslpl(indx1:indx2).*tslval;
1233 trkslpr(indx1:indx2)=trkslpr(indx1:indx2).*tsrval;
1234
1235 set(closeHndl,'Userdata',[trkslpl trkslpr]);
1236 set([tslHndl tsrHndl],'String','1');
1237 end;
1238
1239 %===

==
1240 %===

==
1241
1242 elseif strcmp(action,'load')
1243 Hndllist = get(gca,'Userdata');
1244 figNumber = Hndllist(1);
1245 axHndl = Hndllist(2);
1246 textHndl = Hndllist(3);
1247 time1Hndl = Hndllist(4);
1248 time2Hndl = Hndllist(5);
1249 time1edHndl = Hndllist(6);
1250 time2edHndl = Hndllist(7);
1251 plotHndl = Hndllist(8);
1252 closeHndl = Hndllist(9);
1253 % tslHndl = Hndllist(10);
1254 % tsrHndl = Hndllist(11);
1255 % setHndl = Hndllist(12);
1256 pradHndl = Hndllist(12);
1257
1258 trkslp = get(closeHndl,'Userdata');
1259 trkslpl=trkslp(:,1);
1260 trkslpr=trkslp(:,2);
1261 a=ones(size(trkslpr));
1262 [filename,pathname] = uigetfile('*.asc','Select ASCII file to LOAD');
1263 if filename~=0
1264 m=dlmread([pathname filename],'\t');
1265 if isequal(size(m),size([t trkslp a]))
1266 trkslpl=m(:,2);
1267 trkslpr=m(:,3);
1268 prad=m(1,4);
1269 set(closeHndl,'Userdata',[trkslpl trkslpr]);
1270 set(pradHndl,'Userdata',prad,'String',num2str(prad));
1271 else
1272 lerrNumber=figure(...
1273 'Name','File Size Error',...
1274 'NumberTitle','off',...

 131

1275 'BackingStore','off',...
1276 'Visible','on',...
1277 'Units','normalized',...
1278 'Position',[0.44 0.45 0.12 0.1],...
1279 'MenuBar','none');
1280
1281 %===================================
1282 % The OK button
1283 btnNumber=7;
1284 labelStr='Ok';
1285 cmdStr='Close';
1286 callbackstr='close(gcf);';
1287
1288 %Generic button information
1289 btnPos=[.25 .25 .5 .25];
1290 setHndl=uicontrol(...
1291 'Style','pushbutton',...
1292 'Units','normalized',...
1293 'Position',btnPos,...
1294 'String',labelStr,...
1295 'Interruptible','on',...
1296 'Enable','on',...
1297 'Callback',callbackstr);
1298
1299 %===================================
1300 % Text
1301 btnPos=[.01 .55 .98 .3];
1302 uicontrol(...
1303 'Style','text',...
1304 'Units','normalized',...
1305 'Position',btnPos,...
1306 'String',['Imported trackslip data is incompatible '...
1307 'with this vehicle data.'],...
1308 'BackgroundColor',[.8 .8 .8]);
1309 end;
1310 end;
1311
1312 %===

==
1313 %===

==
1314
1315 elseif strcmp(action,'write')
1316 Hndllist = get(gca,'Userdata');
1317 figNumber = Hndllist(1);
1318 axHndl = Hndllist(2);
1319 textHndl = Hndllist(3);
1320 time1Hndl = Hndllist(4);
1321 time2Hndl = Hndllist(5);
1322 time1edHndl = Hndllist(6);
1323 time2edHndl = Hndllist(7);
1324 plotHndl = Hndllist(8);
1325 closeHndl = Hndllist(9);
1326 % tslHndl = Hndllist(10);
1327 % tsrHndl = Hndllist(11);
1328 % setHndl = Hndllist(12);
1329 pradHndl = Hndllist(12);
1330
1331 prad=get(pradHndl,'Userdata');
1332 trkslp = get(closeHndl,'Userdata');
1333 trkslpl=trkslp(:,1);
1334 trkslpr=trkslp(:,2);
1335 pradvect=zeros(size(trkslpr));
1336 pradvect(1)=prad;
1337
1338 [filename,pathname] = uiputfile('*.*','Select ASCII file to LOAD');
1339
1340 if filename~=0
1341 dlmwrite([pathname filename],[t trkslp pradvect],'\t');
1342 end;
1343

 132

1344 %===
==

1345 %===
==

1346
1347 elseif strcmp(action,'prad')
1348 Hndllist = get(gca,'Userdata');
1349 figNumber = Hndllist(1);
1350 axHndl = Hndllist(2);
1351 textHndl = Hndllist(3);
1352 time1Hndl = Hndllist(4);
1353 time2Hndl = Hndllist(5);
1354 time1edHndl = Hndllist(6);
1355 time2edHndl = Hndllist(7);
1356 plotHndl = Hndllist(8);
1357 closeHndl = Hndllist(9);
1358 % ts1Hndl = Hndllist(10);
1359 % tsrHndl = Hndllist(11);
1360 % setHndl = Hndllist(12);
1361 loadHndl = Hndllist(10);
1362 writeHndl = Hndllist(11);
1363 pradHndl = Hndllist(12);
1364
1365 a=get(pradHndl,'Userdata');
1366 b=get(pradHndl,'String');
1367 c=str2double(b);
1368
1369 if (~isequalwithequalnans(NaN,c)&c>0)
1370 set(pradHndl,'Userdata',c);
1371 else
1372 set(pradHndl,'String',num2str(a));
1373 end;
1374
1375 %===

==
1376 %===

==
1377
1378 elseif strcmp(action,'tscalc')
1379 Hndllist = get(gca,'Userdata');
1380 figNumber = Hndllist(1);
1381 axHndl = Hndllist(2);
1382 textHndl = Hndllist(3);
1383 time1Hndl = Hndllist(4);
1384 time2Hndl = Hndllist(5);
1385 time1edHndl = Hndllist(6);
1386 time2edHndl = Hndllist(7);
1387 plotHndl = Hndllist(8);
1388 closeHndl = Hndllist(9);
1389 % ts1Hndl = Hndllist(10);
1390 % tsrHndl = Hndllist(11);
1391 % setHndl = Hndllist(12);
1392 loadHndl = Hndllist(10);
1393 writeHndl = Hndllist(11);
1394 pradHndl = Hndllist(12);
1395
1396 a=get(pradHndl,'Userdata');
1397 tscalc(t,speed,yaw,l2trk,r2trk,a);
1398
1399 %===

==
1400 %===

==
1401
1402 elseif strcmp(action,'tsplot')
1403 Hndllist = get(gca,'Userdata');
1404 closeHndl = Hndllist(9);
1405 pradHndl = Hndllist(12);
1406
1407 prad=get(pradHndl,'Userdata');
1408

 133

1409 trkslp = get(closeHndl,'Userdata');
1410 trkslpl = trkslp(:,1);
1411 trkslpr = trkslp(:,2);
1412
1413 figure('Name','Trackslips',...
1414 'NumberTitle','off',...
1415 'BackingStore','off',...
1416 'Visible','on',...
1417 'Units','normalized',...
1418 'Position',[0.05 0.05 0.9 0.9]);
1419 plot(t,trkslpl,t,trkslpr);
1420 legend('Left Track','Right Track');
1421 title(['Track Speed Ratios (' num2str(prad) ' in. Pivot Radius)']);
1422 xlabel('Time (s)');
1423 ylabel('Speed Ratio');
1424
1425 %===

==
1426 %===

==
1427
1428 elseif strcmp(action,'cwrite')
1429 Hndllist = get(gca,'Userdata');
1430 closeHndl = Hndllist(9);
1431 pradHndl = Hndllist(12);
1432
1433 prad=get(pradHndl,'Userdata');
1434
1435 trkslp = get(closeHndl,'Userdata');
1436 trkslpl = trkslp(:,1);
1437 trkslpr = trkslp(:,2);
1438
1439 figure('Name','Trackslips',...
1440 'NumberTitle','off',...
1441 'BackingStore','off',...
1442 'Visible','on',...
1443 'Units','normalized',...
1444 'Position',[0.05 0.05 0.9 0.9]);
1445 plot(t,trkslpl,t,trkslpr);
1446 legend('Left Track','Right Track');
1447 title(['Track Speed Ratios (' num2str(prad) ' in. Pivot Radius)']);
1448 xlabel('Time (s)');
1449 ylabel('Speed Ratio');
1450 end;

tscalc.m

1 % TSCALC - Track Slip Calculator
2 % Plots the vehicle paths as calculated by YAW/SPEED
3 % and L2TRK/R2TRK. Allows user to change the time and
4 % adjust the track slip of each track individually. Will
5 % then replot the data. Allows writing and loading of
6 % track slip data files.
7 %
8 % Ex.
9 % tscalc(t,speed,yaw,l2trk,r2trk);
10
11 function tscalc(t,speed,yaw,l2trk,r2trk,action)
12 if nargin==5
13
14 L=max(size(t));
15 % for m=1:floor(L/100)-1
16 % t_(m)=mean(t(100*(m-1)+1:100*m));
17 % speed_(m)=mean(speed(100*(m-1)+1:100*m));
18 % yaw_(m)=mean(yaw(100*(m-1)+1:100*m));
19 % l2trk_(m)=mean(l2trk(100*(m-1)+1:100*m));
20 % r2trk_(m)=mean(r2trk(100*(m-1)+1:100*m));

 134

21 % end;
22
23 pradNumber=figure(...
24 'Name','Pivot Radius',...
25 'NumberTitle','off',...
26 'BackingStore','off',...
27 'Visible','on',...
28 'Units','normalized',...
29 'Position',[0.44 0.45 0.12 0.1],...
30 'MenuBar','none');
31
32
33 %===================================
34 % The Pivot Radius button
35 btnNumber=7;
36 labelStr='50';
37 cmdStr='Close';
38 callbackstr='tscalc(t,speed,yaw,l2trk,r2trk,''prad'');';
39
40 %Generic button information
41 btnPos=[.25 .25 .5 .25];
42 pradHndl=uicontrol(...
43 'Style','edit',...
44 'Units','normalized',...
45 'Position',btnPos,...
46 'String',labelStr,...
47 'Interruptible','on',...
48 'Enable','on',...
49 'Userdata',50,...
50 'Callback',callbackstr);
51
52 %===================================
53 % Text
54 btnPos=[.01 .55 .98 .3];
55 uicontrol(...
56 'Style','text',...
57 'Units','normalized',...
58 'Position',btnPos,...
59 'String',['Enter Pivot Radius in ''inches''.'],...
60 'BackgroundColor',[.8 .8 .8]);
61
62 set(gcf,'Userdata',pradHndl)
63
64 elseif strcmp(action,'calc')
65 pradNumber=get(gcf,'Userdata');
66 prad=get(pradNumber,'Userdata');
67
68 close(gcf);
69
70 speed=speed.*88./60;
71
72 yaw=pi.*yaw./180;
73 speed=(63./12)*yaw+speed;
74
75 sl=speed+prad.*yaw./12;
76 sr=speed-prad.*yaw./12;
77 a=find(sl<0.005&sl>-0.005);
78 b=find(sr<0.005 & sr>-0.005);
79
80 sl=sl.*60./88;
81 sr=sr.*60./88;
82
83 tsl=l2trk./sl;
84 tsr=r2trk./sr;
85
86 c=find(tsl<0.005&tsl>-0.005);
87 d=find(tsr<0.005&tsr>-0.005);
88
89 tsl(a)=1e+0;
90 tsr(b)=1e+0;
91 tsl(c)=1e-10;

 135

92 tsr(d)=1e-10;
93
94 pradvect = zeros(size(tsl));
95 pradvect(1) = prad;
96
97 % tsl=spline(t_,tsl,t);
98 % tsr=spline(t_,tsr,t);
99
100 [filename,pathname] = uiputfile('*.ASC','Select ASCII file to SAVE');
101
102 lerrNumber=figure(...
103 'Name','Saving...',...
104 'NumberTitle','off',...
105 'BackingStore','off',...
106 'Visible','on',...
107 'Units','normalized',...
108 'Position',[0.44 0.45 0.12 0.1],...
109 'MenuBar','none');
110
111 %===================================
112 % Text
113 btnPos=[.01 .55 .98 .3];
114 uicontrol(...
115 'Style','text',...
116 'Units','normalized',...
117 'Position',btnPos,...
118 'String',['Saving to disk. Please Wait'],...
119 'BackgroundColor',[.8 .8 .8]);
120
121 if filename~=0
122 dlmwrite([pathname filename],[t tsl tsr pradvect],'\t');
123 end;
124
125 close(gcf);
126
127 elseif strcmp(action,'prad')
128
129 pradNumber=get(gcf,'Userdata');
130 a=get(pradNumber,'Userdata');
131 b=get(pradNumber,'String');
132 c=str2double(b);
133
134 if (isequalwithequalnans(NaN,c) | c<=0)
135
136 lerrNumber=figure(...
137 'Name','Pivot Radius Error',...
138 'NumberTitle','off',...
139 'BackingStore','off',...
140 'Visible','on',...
141 'Units','normalized',...
142 'Position',[0.44 0.45 0.12 0.1],...
143 'MenuBar','none');
144
145 %===================================
146 % The OK button
147 btnNumber=7;
148 labelStr='Ok';
149 cmdStr='Close';
150 callbackstr='close(gcf);';
151
152 %Generic button information
153 btnPos=[.25 .25 .5 .25];
154 setHndl=uicontrol(...
155 'Style','pushbutton',...
156 'Units','normalized',...
157 'Position',btnPos,...
158 'String',labelStr,...
159 'Interruptible','on',...
160 'Enable','on',...
161 'Callback',callbackstr);
162

 136

163 %===================================
164 % Text
165 btnPos=[.01 .55 .98 .3];
166 uicontrol(...
167 'Style','text',...
168 'Units','normalized',...
169 'Position',btnPos,...
170 'String',['Given radius is not a positive real number. '...
171 'Do not use units. Please retry.'],...
172 'BackgroundColor',[.8 .8 .8]);
173
174 set(pradNumber,'String',num2str(a));
175 else
176 set(pradNumber,'Userdata',c);
177 tscalc(t,speed,yaw,l2trk,r2trk,'calc');
178 end;
179 else
180 pradNumber=figure(...
181 'Name','Pivot Radius',...
182 'NumberTitle','off',...
183 'BackingStore','off',...
184 'Visible','off',...
185 'Units','normalized',...
186 'Position',[0.44 0.45 0.12 0.1],...
187 'MenuBar','none');
188
189
190 %===================================
191 % The Pivot Radius button
192 btnNumber=7;
193 labelStr='50';
194 cmdStr='Close';
195 callbackstr='tscalc(t,speed,yaw,l2trk,r2trk,''prad'');';
196
197 %Generic button information
198 btnPos=[.25 .25 .5 .25];
199 pradHndl=uicontrol(...
200 'Style','edit',...
201 'Units','normalized',...
202 'Position',btnPos,...
203 'String',labelStr,...
204 'Interruptible','on',...
205 'Enable','on',...
206 'Userdata',50,...
207 'Callback',callbackstr);
208
209
210 set(pradNumber,'Userdata',pradHndl);
211 set(pradHndl,'Userdata',action);
212 tscalc(t,speed,yaw,l2trk,r2trk,'calc');
213 end;

crvwrite.m

1 % CRVWRITE - Curve Writer
2 % Writes selected portions of the curve as a separate file
3 % with time, X-Y, and track slip data. Also writes a separate
4 % info file that describes the data file. CRVWRITE is only to
5 % be used by TRKSLPCALC.
6
7 function crvwrite(action)
8 if nargin==0
9 oldFig=gcf;
10 Hndllist = get(gca,'Userdata');
11 figNumber = Hndllist(1);
12 axHndl = Hndllist(2);
13 textHndl = Hndllist(3);

 137

14 time1Hndl = Hndllist(4);
15 time2Hndl = Hndllist(5);
16 time1edHndl = Hndllist(6);
17 time2edHndl = Hndllist(7);
18 plotHndl = Hndllist(8);
19 closeHndl = Hndllist(9);
20 loadHndl = Hndllist(10);
21 writeHndl = Hndllist(11);
22 pradHndl = Hndllist(12);
23 tscalcHndl = Hndllist(13);
24 tsplotHndl = Hndllist(14);
25 cwriteHndl = Hndllist(15);
26 time3Hndl = Hndllist(16);
27 time3edHndl = Hndllist(17);
28
29 mainmat = get(cwriteHndl,'Userdata');
30
31 t1 = get(time1Hndl,'Value');
32 t2 = get(time2Hndl,'Value');
33 t3 = get(time3Hndl,'Value');
34
35 t=mainmat(:,1);
36
37 indx1=round(mean(find(mainmat(:,1)==get(time1Hndl,'Value'))));
38 indx2=round(mean(find(mainmat(:,1)==get(time2Hndl,'Value'))));
39 indx3=round(mean(find(mainmat(:,1)==get(time3Hndl,'Value'))));
40
41
42 set(oldFig,'Visible','off');
43
44 newFig=figure(...
45 'Name','Curve Writer Information Selection',...
46 'NumberTitle','off',...
47 'MenuBar','none',...
48 'BackingStore','off',...
49 'Visible','off',...
50 'Units','normalized',...
51 'Position',[0.2 0.4 0.6 0.2],...
52 'CloseRequestFcn','');
53 colordef(newFig,'black');
54
55 %===================================
56 % Information for buttons
57 labelColor=[0.8 0.8 0.8];
58 yInitPos=0.50;
59 xPos=0.05;
60 btnLen=0.10;
61 btnWid=0.10;
62 txtWid=0.065;
63 editWid=0.09;
64 sliderLen=0.2;
65 txtLen=0.05;
66 spacing=0.05;
67
68
69
70 %===================================
71 % The CONSOLE frame #1
72 frmBorder=0.02;
73 yPos=.285;
74 frmPos=[xPos-.025 yPos .95 .665];
75 h=uicontrol('Style','frame',...
76 'Units','normalized',...
77 'Position',frmPos,...
78 'BackgroundColor',[0.5 0.5 0.5]);
79
80 %===================================
81 % The Close button
82 btnNumber=1;
83 yPos=0.1;
84 labelStr='Close';

 138

85 cmdStr='close';
86 callbackstr='crvwrite(''close'');';
87
88 %Generic button information
89 btnPos=[.9-.5*btnLen yPos btnLen btnWid];
90 closeHndl=uicontrol(...
91 'Style','pushbutton',...
92 'Units','normalized',...
93 'Position',btnPos,...
94 'String',labelStr,...
95 'Interruptible','on',...
96 'Callback',callbackstr);
97
98 %===================================
99 % The Write button
100 btnNumber=2;
101 yPos=0.1;
102 labelStr='Write';
103 cmdStr='write';
104 callbackstr='crvwrite(''write'');';
105
106 %Generic button information
107 btnPos=[.9-1.5*btnLen-spacing yPos btnLen btnWid];
108 writeHndl=uicontrol(...
109 'Style','pushbutton',...
110 'Units','normalized',...
111 'Position',btnPos,...
112 'String',labelStr,...
113 'Interruptible','on',...
114 'Enable','off',...
115 'Callback',callbackstr);
116
117 %===================================
118 % The Title edit
119 btnNumber=3;
120 yPos=0.1;
121 labelStr='*Replace with acceptable title*';
122 cmdStr='title';
123
124 %Generic button information
125 btnPos=[xPos .735 .9 editWid];
126 titleHndl=uicontrol(...
127 'Style','edit',...
128 'Units','normalized',...
129 'Position',btnPos,...
130 'String',labelStr,...
131 'HorizontalAlignment','left',...
132 'Interruptible','on');
133
134 %===================================
135 % The Description edit
136 btnNumber=4;
137 yPos=0.1;
138 labelStr='*Replace with description of enclosed data*';
139 cmdStr='desc';
140
141 %Generic button information
142 btnPos=[xPos .535 .9 editWid];
143 descHndl=uicontrol(...
144 'Style','edit',...
145 'Units','normalized',...
146 'Position',btnPos,...
147 'String',labelStr,...
148 'HorizontalAlignment','left',...
149 'Interruptible','on');
150
151 %===================================
152 % The Curve Type Popup
153 btnNumber=5;
154 yPos=0.1;
155 labelStr='Straightaway|Left Curve|Right Curve|S-Curve(L-R)|S-Curve(R-L)';

 139

156 cmdStr='desc';
157
158 %Generic button information
159 btnPos=[xPos .335 .3 editWid];
160 ctypeHndl=uicontrol(...
161 'Style','popup',...
162 'Units','normalized',...
163 'Position',btnPos,...
164 'String',labelStr,...
165 'Interruptible','on');
166
167 %===================================
168 % The Ready Checkbox
169 btnNumber=5;
170 yPos=0.08;
171 cmdStr='desc';
172 callbackstr='crvwrite(''ready'');';
173
174 %Generic button information
175 btnPos=[.625-.07*btnLen yPos .14*btnLen .6*btnWid];
176 readyHndl=uicontrol(...
177 'Style','checkbox',...
178 'Units','normalized',...
179 'Position',btnPos,...
180 'Max',1,'Min',0,...
181 'Interruptible','on',...
182 'Callback',callbackstr);
183
184 %===================================
185 % Text
186 btnPos=[xPos 0.835 2.*btnLen txtWid];
187 uicontrol(...
188 'Style','text',...
189 'Units','normalized',...
190 'Position',btnPos,...
191 'HorizontalAlignment','left',...
192 'String','Title (First line of information file):',...
193 'BackgroundColor',[.5 .5 .5]);
194
195 btnPos=[xPos 0.635 2.*btnLen txtWid];
196 uicontrol(...
197 'Style','text',...
198 'Units','normalized',...
199 'Position',btnPos,...
200 'HorizontalAlignment','left',...
201 'String','Description:',...
202 'BackgroundColor',[.5 .5 .5]);
203
204 btnPos=[xPos 0.435 2.*btnLen txtWid];
205 uicontrol(...
206 'Style','text',...
207 'Units','normalized',...
208 'Position',btnPos,...
209 'HorizontalAlignment','left',...
210 'String','Curve Type:',...
211 'BackgroundColor',[.5 .5 .5]);
212
213 btnPos=[.6 .15 txtLen txtWid];
214 uicontrol(...
215 'Style','text',...
216 'Units','normalized',...
217 'Position',btnPos,...
218 'String','Ready?',...
219 'BackgroundColor',[.5 .5 .5]);
220
221 set(newFig,'Visible','on','Userdata',[closeHndl,writeHndl,...
222 titleHndl descHndl ctypeHndl readyHndl]);
223 set(closeHndl,'Userdata',[oldFig, newFig]);
224 set(writeHndl,'Userdata',mainmat);
225 set(ctypeHndl,'Userdata',[t1 t2 t3 indx1 indx2 indx3]);
226

 140

227 %===
==

228 %===
==

229
230 elseif strcmp(action,'close')
231 Hndllist = get(gcf,'Userdata');
232 closeHndl = Hndllist(1);
233 figHndl = get(closeHndl,'Userdata');
234
235 oldFig = figHndl(1);
236 newFig = figHndl(2);
237
238 delete(newFig);
239 set(oldFig,'Visible','on');
240
241 %===

==
242 %===

==
243
244 elseif strcmp(action,'ready')
245 Hndllist = get(gcf,'Userdata');
246 writeHndl = Hndllist(2);
247 readyHndl = Hndllist(6);
248
249 if get(readyHndl,'Value')==0
250 set(writeHndl,'Enable','off');
251 elseif get(readyHndl,'Value')==1
252 set(writeHndl,'Enable','on');
253 end
254
255 %===

==
256 %===

==
257
258 elseif strcmp(action,'write')
259 Hndllist = get(gcf,'Userdata');
260 closeHndl = Hndllist(1);
261 writeHndl = Hndllist(2);
262 titleHndl = Hndllist(3);
263 descHndl = Hndllist(4);
264 ctypeHndl = Hndllist(5);
265 readyHndl = Hndllist(6);
266
267 figHndl = get(closeHndl,'Userdata');
268 oldFig = figHndl(1);
269 newFig = figHndl(2);
270
271 mainmat = get(writeHndl,'Userdata');
272
273 tindx = get(ctypeHndl,'Userdata');
274 t1=tindx(1);
275 t2=tindx(2);
276 t3=tindx(3);
277 indx1=tindx(4);
278 indx2=tindx(5);
279 indx3=tindx(6);
280
281 t=mainmat(:,1);
282 cgx2=mainmat(:,2);
283 cgy2=mainmat(:,3);
284 trkslpl=mainmat(:,4);
285 trkslpr=mainmat(:,5);
286 speed=mainmat(:,6);
287 yaw=mainmat(:,7);
288
289 [filename,pathname] = uiputfile('*.ASC','Select ASCII file to SAVE');
290
291 if filename==0

 141

292 crvwrite('close');
293 return;
294 end
295 lerrNumber=figure(...
296 'Name','Saving...',...
297 'NumberTitle','off',...
298 'BackingStore','off',...
299 'Visible','on',...
300 'Units','normalized',...
301 'Position',[0.425 0.48 0.15 0.04],...
302 'MenuBar','none',...
303 'CloseRequestFcn','');
304
305 %===================================
306 % Text
307 btnPos=[.01 .55 .98 .3];
308 uicontrol(...
309 'Style','text',...
310 'Units','normalized',...
311 'Position',btnPos,...
312 'String',['Saving to disk. Please Wait...'],...
313 'BackgroundColor',[.8 .8 .8]);
314
315 fid = fopen([pathname 'info_' filename],'w');
316 fprintf(fid,['Information File Relating to ''' filename '''.\n\n']);
317 fprintf(fid,['Title:\t' get(titleHndl,'String') '\n\n']);
318 fprintf(fid,['Description:\t' get(descHndl,'String') '\n\n']);
319 fprintf(fid,['Start Time:\t' num2str(t1) '\ts\n']);
320 fprintf(fid,['End Time:\t' num2str(t2) '\ts\n\n']);
321 fprintf(fid,'Curve Specific Data:\n');
322 fprintf(fid,'********************\n');
323
324
325
326 switch get(ctypeHndl,'Value')
327 case 1
328 fprintf(fid,'Curve Type:\tStraightaway\n');
329 a=cumtrapz(t(indx1:indx2),speed(indx1:indx2));
330 fprintf(fid,['Length of Straightaway:\t' num2str(max(a)) '\tft\n']);
331 fprintf(fid,['Average Speed:\t' num2str(mean(speed(indx1:indx2))) ...
332 '\tft/s\n\t' num2str(60*mean(speed(indx1:indx2))/88)

'\tmph\n']);
333 case 2
334 fprintf(fid,'Curve Type:\tLeft Curve\n');
335 r=-mean(speed(indx1:indx2))/mean(yaw(indx1:indx2));
336 fprintf(fid,['Radius of Curvature:\t' num2str(r) '\tft\n']);
337 theta=max(-cumtrapz(t(indx1:indx2),yaw(indx1:indx2)));
338 fprintf(fid,['Total Angle Covered:\t' num2str(theta) '\tdeg\n']);
339 fprintf(fid,['Average Speed:\t' num2str(mean(speed(indx1:indx2))) ...
340 '\tft/s\n\t' num2str(60*mean(speed(indx1:indx2))/88)

'\tmph\n']);
341 case 3
342
343
344
345 end
346
347
348
349
350
351 %
352 %
353 % close(gcf);
354 %
355 % speed=speed.*88./60;
356 %
357 % yaw=pi.*yaw./180;
358 %
359 % sl=speed+prad.*yaw./12;
360 % sr=speed-prad.*yaw./12;

 142

361 % a=find(sl<0.005&sl>-0.005);
362 % b=find(sr<0.005 & sr>-0.005);
363 %
364 % sl=sl.*60./88;
365 % sr=sr.*60./88;
366 %
367 % tsl=l2trk./sl;
368 % tsr=r2trk./sr;
369 %
370 % c=find(tsl<0.005&tsl>-0.005);
371 % d=find(tsr<0.005&tsr>-0.005);
372 %
373 % tsl(a)=1e+0;
374 % tsr(b)=1e+0;
375 % tsl(c)=1e-10;
376 % tsr(d)=1e-10;
377 %
378 % pradvect = zeros(size(tsl));
379 % pradvect(1) = prad;
380 %
381 % % tsl=spline(t_,tsl,t);
382 % % tsr=spline(t_,tsr,t);
383 %
384 % [filename,pathname] = uiputfile('*.ASC','Select ASCII file to SAVE');
385 %
386 % lerrNumber=figure(...
387 % 'Name','Saving...',...
388 % 'NumberTitle','off',...
389 % 'BackingStore','off',...
390 % 'Visible','on',...
391 % 'Units','normalized',...
392 % 'Position',[0.44 0.45 0.12 0.1],...
393 % 'MenuBar','none');
394 %
395 % %===================================
396 % % Text
397 % btnPos=[.01 .55 .98 .3];
398 % uicontrol(...
399 % 'Style','text',...
400 % 'Units','normalized',...
401 % 'Position',btnPos,...
402 % 'String',['Saving to disk. Please Wait'],...
403 % 'BackgroundColor',[.8 .8 .8]);
404 %
405 % if filename~=0
406 % dlmwrite([pathname filename],[t tsl tsr pradvect],'\t');
407 % end;
408 %
409 % close(gcf);
410 %
411 % elseif strcmp(action,'prad')
412 %
413 % pradNumber=get(gcf,'Userdata');
414 % a=get(pradNumber,'Userdata');
415 % b=get(pradNumber,'String');
416 % c=str2double(b);
417 %
418 % if (isequalwithequalnans(NaN,c) | c<=0)
419 %
420 % lerrNumber=figure(...
421 % 'Name','Pivot Radius Error',...
422 % 'NumberTitle','off',...
423 % 'BackingStore','off',...
424 % 'Visible','on',...
425 % 'Units','normalized',...
426 % 'Position',[0.44 0.45 0.12 0.1],...
427 % 'MenuBar','none');
428 %
429 % %===================================
430 % % The OK button
431 % btnNumber=7;

 143

432 % labelStr='Ok';
433 % cmdStr='Close';
434 % callbackstr='close(gcf);';
435 %
436 % %Generic button information
437 % btnPos=[.25 .25 .5 .25];
438 % setHndl=uicontrol(...
439 % 'Style','pushbutton',...
440 % 'Units','normalized',...
441 % 'Position',btnPos,...
442 % 'String',labelStr,...
443 % 'Interruptible','on',...
444 % 'Enable','on',...
445 % 'Callback',callbackstr);
446 %
447 % %===================================
448 % % Text
449 % btnPos=[.01 .55 .98 .3];
450 % uicontrol(...
451 % 'Style','text',...
452 % 'Units','normalized',...
453 % 'Position',btnPos,...
454 % 'String',['Given radius is not a positive real number. '...
455 % 'Do not use units. Please retry.'],...
456 % 'BackgroundColor',[.8 .8 .8]);
457 %
458 % set(pradNumber,'String',num2str(a));
459 % else
460 % set(pradNumber,'Userdata',c);
461 % tscalc(t,speed,yaw,l2trk,r2trk,'calc');
462 status = fclose(fid);
463 delete(lerrNumber);
464 end;

pscalc1.m

1 % PSCALC1 - Perfect Simulation Calculator
2 % Simulates an oval track with 90 ft. straightaways and
3 % 60 ft. radius turns using algorithms.
4
5
6 function pscalc
7 t=(0:0.01:39.13);
8 dt=0.01;
9 v1=15*ones(size(t));
10 w1=zeros(size(t));
11 w1(201:1457)=15/60*ones(size(w1(201:1457)));
12 w1(2058:3314)=15/60*ones(size(w1(2058:3314)));
13 v2(1)=15;
14 w2(1)=0;
15 gam(1)=0;
16 a=pwd;
17 udatmat=csvread([a '\pathclear.csv']);
18 l1=udatmat(2)+udatmat(3);
19 l2=udatmat(4);
20
21 for n=2:length(t)
22 v2(n)=cos(gam(n-1))*v1(n)+sin(gam(n-1))*l1*w1(n);
23 w2(n)=(sin(gam(n-1))*v1(n)-cos(gam(n-1))*l1*w1(n))/l2;
24 gam(n)=gam(n-1)+dt*(w1(n)-w2(n));
25 end;
26
27 % subplot(2,1,1);
28 % plot(t,v1,t,v2);
29 % subplot(2,1,2);
30 % plot(t,w1,t,w2);
31

 144

32 dist1=dt*cumtrapz(v1);
33 ddist1=[dist1(1),diff(dist1)];
34 dist2=dt*cumtrapz(v2);
35 ddist2=[dist2(1),diff(dist2)];
36
37 th1=dt*cumtrapz(w1);
38 th2=dt*cumtrapz(w2);
39
40 dx1=ddist1.*sin(th1);
41 dy1=ddist1.*cos(th1);
42 dx2=ddist2.*sin(th2);
43 dy2=ddist2.*cos(th2);
44
45 x1=cumsum(dx1);
46 y1=cumsum(dy1);
47 x2=cumsum(dx2);
48 y2=cumsum(dy2)-l1-l2;
49
50 figure('Name','Vehicle Path (Oval Track)','NumberTitle','off',...
51 'Position',[0 0 1024 768]);
52 movegui('center');
53 lv=line(x1,y1,'Color',[0 0 .5]);
54 tv=line(x2,y2,'Color',[0 .5 0]);
55 strtpt=line(x1(1),y1(1),'Color',[.5 0 0],...
56 'LineStyle','none','Marker','o');
57 endpt=line(x1(3914),y1(3914),'Color',[.5 0 0],...
58 'LineStyle','none','Marker','x','MarkerSize',12);
59 axis equal;
60 legend('Lead Vehicle CM','Trail Vehicle CM','Start','Finish');
61 title('Vehicle Path (Oval Track)');
62 xlabel('(ft.)');
63 ylabel('(ft.)');
64
65 figure('Name','Angles (Oval Track)','NumberTitle','off',...
66 'Position',[0 0 1024 768]);
67 movegui('center');
68 subplot(2,1,1);
69 plot(t,180/pi*th1,t,180/pi*th2);
70 title('Vehicle Angles');
71 xlabel('Time (s.)');
72 ylabel('Angle (deg.)');
73 legend('Lead Vehicle','Trail Vehicle');
74 subplot(2,1,2);
75 plot(t,180*gam/pi);
76 title('Intervehicular Angle (\gamma)');
77 xlabel('Time (s.)');
78 ylabel('Angle (deg.)');

corrcalc.m

1 % CORRCALC - Correlation Program
2 % Correlates the instantaneous center theory with experimental data
3 % collected during the teleop testing on July 15th and 16th, 2003.
4 % Use the MODCAT program to load experimental data. Type HELP MODCAT
5 % for assistance.
6 %
7 % Ex.
8 %

[v1,v2_1,v2,gam,gam2,omega1,omega2,gam_dot,gam_dot2,x1,y1,x2,y2]=corrcalc(t,dt,speed,y
aw,ldist,loaded_file,'yes');

9
10 function

[v1,v2_1,v2,gam,gam2,omega1,omega2,gam_dot,gam_dot2,x1,y1,x2,y2]=corrcalc(t,dt,speed,y
aw,ldist,loaded_file,prntopt)

11
12 if nargin==6
13 prntopt='nosave/nocut';

 145

14 end;
15
16 %%%
17 % Experimental Calculations
18 %%%
19 a=pwd;
20 a=a(1:max(find(a=='\')));
21 udatmat=csvread([a 'pathclear.csv']);
22 l2=udatmat(2);
23 l3=udatmat(3);
24 l4=udatmat(4);
25 yaw=yaw*pi/180;
26 speed=88/60*speed;
27 speed=63/12*yaw+speed;
28 v2_1=speed;
29 dist=dt*cumsum(speed);
30 th2=dt*cumsum(yaw);
31
32
33 ddist=[dist(1);diff(dist)];
34 dx=ddist.*sin(th2);
35 dy=ddist.*cos(th2);
36 x2=cumsum(dx);
37 y2=cumsum(dy);
38
39
40 l_1=sqrt(4.10^2+2.05^2);
41 alph=acos((l_1^2+1.25^2-(sqrt(4.1^2+0.80^2)+(ldist-32.7)/12).^2)/(2.5*l_1));
42 alph_o=atan(2);
43 gam=alph-alph_o;
44
45 th1=th2+gam;
46
47 x1=x2+l4*sin(th2)+(l2+l3)*sin(th1);
48 y1=y2+l4*cos(th2)+(l2+l3)*cos(th1);
49
50
51 %%%
52 % Theoretical Calculations
53 %%%
54
55 a=diff(gam)/dt;
56 gam_dot=[a(1);a];
57 a=diff(x1);
58 b=diff(y1);
59 c=(a.^2+b.^2).^.5;
60
61 v1=[c(1);c];
62 v1=v1./dt;
63 omega1=yaw+gam_dot;
64
65 % omega2=(v1.*sin(gam)-omega1.*(l2+l3).*cos(gam))/l4;
66 %
67 % v2=v1.*cos(gam)+omega1.*(l2+l3).*sin(gam);
68 %
69 % gam_dot2=omega1-omega2;
70 po=length(prntopt);
71 tl=length(t);
72
73 if strcmp(prntopt(po-3:po),'/cut')
74 t=t(100:tl);
75 x1=x1(100:tl);
76 x2=x2(100:tl);
77 y1=y1(100:tl);
78 y2=y2(100:tl);
79 v2_1=v2_1(100:tl);
80 yaw=yaw(100:tl);
81 omega1=omega1(100:tl);
82 gam=gam(100:tl);
83 th1=th1(100:tl);
84 end;

 146

85
86
87 v2(1)=v2_1(1);
88 omega2(1,1)=yaw(1);
89 gam2(1)=gam(1);
90 gam_dot2(1)=omega1(1)-omega2(1);
91
92 figure('NumberTitle','off','Name','Progress...','MenuBar','none',...
93 'Position',[0 0 200 100]);
94 movegui(gcf,'center');
95 h=uicontrol('Style','Text','Position',[25 40 150 20],...
96 'HorizontalAlignment','center','String','0%',...
97 'BackgroundColor',get(gcf,'Color'));
98
99 for n=2:length(t)
100 gam2(n,1)=gam2(n-1)+dt*gam_dot2(n-1);
101 v2(n,1)=v1(n).*cos(gam2(n))+omega1(n).*(l2+l3).*sin(gam2(n));
102 omega2(n,1)=(v1(n).*sin(gam2(n))-omega1(n)*(l2+l3).*cos(gam2(n)))/l4;
103 gam_dot2(n,1)=omega1(n)-omega2(n);
104 set(h,'String',[num2str(n/length(t)*100,'%3.0f') '%']);
105 set(gcf,'Name',['Progress... ' num2str(n/length(t)*100,'%3.0f') '%']);
106 drawnow;
107 end;
108 close(gcf);
109
110 th2_2=th1-gam2;
111 x2_2=x1-l4*sin(th2_2)-(l2+l3)*sin(th1);
112 y2_2=y1-l4*cos(th2_2)-(l2+l3)*cos(th1);
113
114 figure('Name','Close All','NumberTitle','off','Menubar','none',...
115 'Position',[50 50 200 100]);
116 % movegui(gcf,'center');
117 uicontrol('Style','Pushbutton','Position',[25 25 150 50],...
118 'String','Close All','Callback','close all');
119
120 % figure('Name','Second Vehicle Speeds','NumberTitle','off',...
121 % 'Menubar','none','Position',[0 0 1024 768]);
122 % plot(t,speed,t,v2);
123 % legend('Measured Speed','Theoretical Speed');
124 % movegui(gcf,'center');
125 %
126 % figure('Name','Second Vehicle Speed Difference','NumberTitle','off',...
127 % 'Menubar','none','Position',[0 0 1024 768]);
128 % plot(t,speed-v2);
129 % movegui(gcf,'center');
130 %
131 % figure('Name','Second Vehicle Yaw Rates','NumberTitle','off',...
132 % 'Menubar','none','Position',[0 0 1024 768]);
133 % plot(t,yaw,t,omega2);
134 % legend('Measured Yaw','Theoretical Yaw');
135 % movegui(gcf,'center');
136 %
137 % figure('Name','Second Vehicle Yaw Difference','NumberTitle','off',...
138 % 'Menubar','none','Position',[0 0 1024 768]);
139 % plot(t,yaw-omega2);
140 % movegui(gcf,'center');
141 %
142
143 a=figure('Name','Vehicle Path','NumberTitle','off',...
144 'Position',[0 0 1024 768]);
145 plot(x1,y1,x2,y2,x2_2,y2_2);
146 axis equal;
147 movegui(gcf,'center');
148 legend('L.V.','Exp. T.V.','Opt. T.V.');
149 title('Vehicle Path');
150 xlabel('(ft.)');
151 ylabel('(ft.)');
152
153
154
155 if strcmp(prntopt(1:4),'save')

 147

156 b=figure('Name','Saving...','NumberTitle','off',...
157 'Position',[0 0 200 100],'MenuBar','none');
158 uicontrol('Style','Text','Position',[25 40 150 20],...
159 'HorizontalAlignment','center',...
160 'String',['Saving ' loaded_file '_path.jpg'],...
161 'BackgroundColor',get(gcf,'Color'));
162 movegui(gcf,'center');
163 print(['-f' num2str(a)],'-djpeg','-r72',[loaded_file '_path.jpg']);
164 close(b);
165 end;
166
167
168 %
169 a=figure('Name','gam_dot2','NumberTitle','off',...
170 'Position',[0 0 1024 768]);
171 plot(t,180/pi*gam,t,180/pi*gam2);
172 movegui(gcf,'center');
173 legend('Experimental','Optimal');
174 title('Gamma comparison');
175 xlabel('Time (sec.)');
176 ylabel('Angle (deg.)');
177
178
179 if strcmp(prntopt(1:4),'save')
180 b=figure('Name','Saving...','NumberTitle','off',...
181 'Position',[0 0 200 100],'MenuBar','none');
182 uicontrol('Style','Text','Position',[25 40 150 20],...
183 'HorizontalAlignment','center',...
184 'String',['Saving ' loaded_file '_gamma.jpg'],...
185 'BackgroundColor',get(gcf,'Color'));
186 movegui(gcf,'center');
187 print(['-f' num2str(a)],'-djpeg','-r72',[loaded_file '_gamma.jpg']);
188 close(b);
189 end;

ts_least_sq2.m

1 %TS_LEAST_SQ2 Least Squares Calculator
2 % Calculates the least squares solution for
3 % trackslip as a function of velocity and radius
4 % of curvature implementing the logarithmic
5 % value calculated with the function "ts_least_sq_calc".
6 % To see the trackslip approximation function,
7 % type: "ts_least_sq2('equation')" at the command
8 % prompt.
9
10 function ts_least_sq2(fname);
11 if nargin==0
12 close all;
13 ts_least_sq2('lt_filelist.txt');
14 ts_least_sq2('rt_filelist.txt');
15 elseif strcmp('equation',fname);
16 figure('Units','normalized',...
17 'Position',[.25 .4 .5 .2],...
18 'MenuBar','none',...
19 'NumberTitle','off',...
20 'Name','Trackslip Approximation Function');
21 axes('Units','normalized',...
22 'Position',[0 0 1 1],'Visible','off');
23 text('FontSize',14',...
24 'units','normalized',...
25 'Position',[.5 .9],...
26 'HorizontalAlignment','center',...
27 'String','For Inside Left Turn: \bff(\nu,(\itr))=a_(1)\nuln((\itr)-

22.4170)+a_(2)ln((\itr)-22.4170)+a_(3)\nu+a_(4)\approx(\itTS_(left))');
28 text('FontSize',14',...
29 'units','normalized',...
30 'Position',[.5 .75],...
31 'HorizontalAlignment','center',...

 148

32 'String','For Inside Right Turn: \bff(\nu,(\itr))=a_(1)\nuln((\itr)-
25.7639)+a_(2)ln((\itr)-25.7639)+a_(3)\nu+a_(4)\approx(\itTS_(right))');

33 text('FontSize',14',...
34 'units','normalized',...
35 'Position',[.5 .6],...
36 'HorizontalAlignment','center',...
37 'String','For Outside Turns: \bff(\nu,(\itr))=a_(1)\nuln((\itr)-

25.7639)+a_(2)ln((\itr)-25.7639)+a_(3)\nu+a_(4)\approx(\itTS_(right))');
38 text('units','normalized',...
39 'Position',[.35 .4],...
40 'HorizontalAlignment','left',...
41 'String','where:');
42 text('units','normalized',...
43 'Position',[.4 .32],...
44 'HorizontalAlignment','left',...
45 'String','\epsilon');
46 text('units','normalized',...
47 'Position',[.43 .32],...
48 'HorizontalAlignment','left',...
49 'String','=');
50 text('units','normalized',...
51 'Position',[.45 .32],...
52 'HorizontalAlignment','left',...
53 'String','error');
54 text('units','normalized',...
55 'Position',[.4 .24],...
56 'HorizontalAlignment','left',...
57 'String','\nu');
58 text('units','normalized',...
59 'Position',[.43 .24],...
60 'HorizontalAlignment','left',...
61 'String','=');
62 text('units','normalized',...
63 'Position',[.45 .24],...
64 'HorizontalAlignment','left',...
65 'String','velocity');
66 text('units','normalized',...
67 'Position',[.4 .16],...
68 'HorizontalAlignment','left',...
69 'String','(\itr)');
70 text('units','normalized',...
71 'Position',[.43 .16],...
72 'HorizontalAlignment','left',...
73 'String','=');
74 text('units','normalized',...
75 'Position',[.45 .16],...
76 'HorizontalAlignment','left',...
77 'String','radius of curvature');
78 else
79 filelist=textread(fname,...
80 '%s','delimiter','\t','whitespace','');
81 filelist=char(filelist);
82
83 if strcmp(fname,'lt_filelist.txt')
84 turndir='Left Turn';
85 intrkside='Left';
86 outtrkside='Right';
87 m=22.4170;
88 else
89 turndir='Right Turn';
90 intrkside='Right';
91 outtrkside='Left';
92 m=25.7639;
93 end;
94
95 main=zeros(round(max(size(filelist))/2),4);
96
97 for n=1:round(max(size(filelist))/2);
98 test=dlmread([pwd filelist(2*n-1,:) filelist(2*n,:)],'\t');
99 main(n,1)=mean(test(:,4));
100 main(n,2)=mean(test(:,5));

 149

101 test=textread([pwd filelist(2*n-1,:) 'info_' filelist(2*n,:)],...
102 '%s','delimiter','\t','whitespace','');
103 test=char(test);
104 chk=regexp(test,'Radius of Curvature');
105 chk=cellfun('length',chk);
106 a=find(chk>0);
107 main(n,3)=str2double(test(a+1,:));
108 chk=regexp(test,'Average Speed');
109 chk=cellfun('length',chk);
110 a=find(chk>0);
111 main(n,4)=str2double(test(a+1,:));
112 end;
113
114 v=main(:,4);
115 r=main(:,3);
116 if strcmp(turndir,'Left Turn');
117 tsi=main(:,1);
118 tso=main(:,2);
119 else
120 tsi=main(:,2);
121 tso=main(:,1);
122 end;
123
124 length=max(size(main(:,2)));
125
126 v2l2=v.^2.*log(r-m).^2;
127 vl2=v.*log(r-m).^2;
128 v2l=v.^2.*log(r-m);
129 vl=v.*log(r-m);
130 l2=log(r-m).^2;
131 l=log(r-m);
132 v2=v.^2;
133 vltsi=v.*log(r-m).*tsi;
134 ltsi=log(r-m).*tsi;
135 vtsi=v.*tsi;
136 v2r2=v.^2.*r.^2;
137 v2r=v.^2.*r;
138 vr2=v.*r.^2;
139 vr=v.*r;
140 r2=r.^2;
141 vrtso=v.*r.*tso;
142 vtso=v.*tso;
143 rtso=r.*tso;
144
145 a=inv([sum(v2l2),sum(vl2),sum(v2l),sum(vl);...
146 sum(vl2),sum(l2),sum(vl),sum(l);...
147 sum(v2l),sum(vl),sum(v2),sum(v);...
148

sum(vl),sum(l),sum(v),length])*[sum(vltsi);sum(ltsi);sum(vtsi);sum(tsi)];
149 a1=a(1);
150 a2=a(2);
151 a3=a(3);
152 a4=a(4);
153
154 b=inv([sum(v2r2),sum(v2r),sum(vr2),sum(vr);...
155 sum(v2r),sum(v2),sum(vr),sum(v);...
156 sum(vr2),sum(vr),sum(r2),sum(r);...
157

sum(vr),sum(v),sum(r),length])*[sum(vrtso);sum(vtso);sum(rtso);sum(tso)];
158 b1=b(1);
159 b2=b(2);
160 b3=b(3);
161 b4=b(4);
162
163
164 rvar=(m+.01:200);
165 vvar=(2:.1:20);
166
167 for n1=1:max(size(rvar));
168 for n2=1:max(size(vvar));

 150

169 tsisurf(n2,n1)=a1*vvar(n2)*log(rvar(n1)-
m)+a2*log(rvar(n1))+a3*vvar(n2)+a4;

170 tsosurf(n2,n1)=b1*vvar(n2)*log(rvar(n1)-
m)+b2*log(rvar(n1))+b3*vvar(n2)+b4;

171 end;
172 end;
173
174 for n=1:length;
175 ei2(n)=abs(tsi(n)-a1*v(n)*log(r(n)-m)-a2*log(r(n)-m)-a3*v(n)-a4);
176 eo2(n)=abs(tso(n)-b1*v(n)*log(r(n)-m)-b2*log(r(n)-m)-b3*v(n)-b4);
177 end;
178
179 if size(ei2,1) == 1;
180 ei2=ei2';
181 end;
182 if size(eo2,1) == 1;
183 eo2=eo2';
184 end;
185
186 figure('Color','w','Position',[0 0 1024 768]);
187 movegui('center');
188 subplot(2,2,2);
189 points=plot3(r,v,tsi,'b*');
190 hold on;
191 crv=surf(rvar,vvar,tsisurf,'EdgeColor','none');
192 hold off;
193 xlabel('Radius of Curvature (ft.)');
194 ylabel('Velocity (ft/s)');
195 zlabel('Trackslip');
196 title(['Track Slip 3D Plots']);
197 subplot(2,2,1);
198 set(gca,'Visible','off');
199 text(.5,.8,...
200 ['\bfInner (' intrkside ') Track Slip Data for ' turndir],...
201 'HorizontalAlignment','center');
202 for n=2:4;
203 if a(n)>=0
204 snl(n-1)='+';
205 else
206 snl(n-1)='-';
207 end;
208 end;
209 text(.5,.6,...
210 ['TS = ' num2str(abs(a1)) '\nuln(\it(r)-' num2str(m) ')'...
211 snl(1) num2str(abs(a2)) 'ln(\it(r)-' num2str(m) ')' snl(2)...
212 num2str(abs(a3)) '\nu' snl(3)

num2str(abs(a4))],'HorizontalAlignment','center');
213
214
215
216
217 % legend(['TS=' num2str(abs(a1)) '\nuln((\itr)-' num2str(m) ')' snl(1)

num2str(abs(a2))...
218 % 'ln((\itr)-' num2str(m) ')' snl(2) num2str(abs(a3)) '\nu' snl(3)

num2str(abs(a4))],0);
219
220 % figure('Color','w');
221 subplot(2,2,3);
222 stem(r,ei2,'-bs');
223 % eps2=mean((tsl-a1.*v.*log(r)+a2.*log(r)+a3.*v+a4).^2);
224 xlabel('Radius of Curvature (ft.)');
225 ylabel('(\epsilon)');
226 title(['Error Plot Compared to Radius of Curvature']);
227 subplot(2,2,4);
228 stem(v,ei2,'-bs');
229 % eps2=mean((tsl-a1.*v.*log(r)+a2.*log(r)+a3.*v+a4).^2);
230 xlabel('Velocity (ft/s)');
231 ylabel('(\epsilon)');
232 title(['Error Plot Compared to Velocity']);
233
234 figure('Color','w','Position',[0 0 1024 768]);

 151

235 movegui('center');
236 subplot(2,2,2);
237 points=plot3(r,v,tso,'b*');
238 hold on;
239 crv=surf(rvar,vvar,tsosurf,'EdgeColor','none');
240 hold off;
241 xlabel('Radius of Curvature (ft.)');
242 ylabel('Velocity (ft/s)');
243 zlabel('Trackslip');
244 title(['Track Slip 3D Plots']);
245 subplot(2,2,1);
246 set(gca,'Visible','off');
247 text(.5,.8,...
248 ['\bfOuter (' outtrkside ') Track Slip Data for ' turndir],...
249 'HorizontalAlignment','center');
250
251 for n=2:4;
252 if b(n)>=0
253 snr(n-1)='+';
254 else
255 snr(n-1)='-';
256 end;
257 end;
258 text(.5,.6,...
259 ['TS = ' num2str(abs(b1)) '\nu\it(r)'...
260 snr(1) num2str(abs(b2)) '\nu' snl(2)...
261 num2str(abs(b3)) '\it(r)' snr(3)

num2str(abs(b4))],'HorizontalAlignment','center');
262
263 % legend(['TS=' num2str(b1) '\nuln[\itr]' snr(1) num2str(abs(b2))...
264 % 'ln[\itr]' snr(2) num2str(abs(b3)) '\nu' snr(3)

num2str(abs(b4))],0);
265
266 % figure('Color','w');
267 subplot(2,2,3);
268 stem(r,eo2,'-bs');
269 % eps2=mean((tsl-a1.*v.*log(r)+a2.*log(r)+a3.*v+a4).^2);
270 xlabel('Radius of Curvature (ft.)');
271 ylabel('(\epsilon)');
272 title(['Error Plot Compared to Radius of Curvature']);
273 subplot(2,2,4);
274 stem(v,eo2,'-bs');
275 % eps2=mean((tsl-a1.*v.*log(r)+a2.*log(r)+a3.*v+a4).^2);
276 xlabel('Velocity (ft/s)');
277 ylabel('(\epsilon)');
278 title(['Error Plot Compared to Velocity']);
279 end;

	Algorithms for autonomous tandem operation of a dual M113 system
	Recommended Citation

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1. Introduction
	1.1 Introduction
	1.2 Project Outline
	1.3 Assumptions

	Chapter 2. Background
	2.1 M113 Family of Vehicles
	2.1.1 Vehicle History
	2.1.2 Vehicle Description

	2.2 M113 Sabre System
	2.2.1 Description
	2.2.2 Panther Lite

	2.3 TVLA

	Chapter 3. Experimental Testing
	3.1 Data Acquisition
	3.1.1 Datron
	3.1.2 String Potentiometers
	3.1.3 Optical Encoders
	3.1.4 5th Wheel
	3.1.5 Motion Pack
	3.1.6 Pressure Sensors
	3.1.7 Transducer Location

	3.2 Testing
	3.2.1 Involved Personnel
	3.2.2 Vehicle Setup
	3.2.3 Control Setup
	3.2.4 Test Schedule
	3.2.4.1 Friday, July 11, 2003
	3.2.4.2 Saturday, July 12, 2003
	3.2.4.3 Monday, July 14, 2003
	3.2.4.4 Tuesday, July 15, 2003
	3.2.4.5 Wednesday, July 16, 2003

	3.2.5 Handling Loops
	3.2.5.1 Free Run
	3.2.5.2 Narrowing Cone Test
	3.2.5.3 Slalom
	3.2.5.4 Modified Figure Eight

	3.3 Reconstruction
	3.3.1 Calculation Assumptions
	3.3.2 File Structure and Catalog
	3.3.3 Reconstruction Methods
	3.3.3.1 Track Speeds
	3.3.3.2 Acceleration and Yaw Rate
	3.3.3.3 5th Wheel and Yaw Rate

	3.3.4 Visualization
	3.3.5 Trackslip

	Chapter 4. Theory and Correlation
	4.1 Model Generation
	4.1.1 Theory
	4.1.2 Calculation
	4.1.3 Simulation

	4.2 Correlation
	4.2.1 Experimental Aspect
	4.2.2 Theoretical Aspect
	4.2.3 Correlation Results

	Chapter 5. Conclusions
	5.1 Conclusions
	5.2 Recommendations

	References
	Appendices
	Appendix A. Acronyms
	Appendix B. Instrumentation
	Appendix C. Testing Information
	Appendix D. Program Code
	modcat.m
	allplot.m
	mplot4b.m
	mplot5.m
	trkslpcalc.m
	tscalc.m
	crvwrite.m
	pscalc1.m
	corrcalc.m
	ts_least_sq2.m

