
34

Figure 3.2: This image represents Ellingham diagrams showing the stability of Al2O3 vs

SiO2 vs Y2O3, and was generated on the University of Cambridge online

resource (http://www.doitpoms.ac.uk/tlplib/ellingham_diagrams)

3.1.2 Setting up the Melt Spinner

Pieces of master alloys were weighed and combined in the correct ratios to create the

targeted alloys as described in Section 3.13, and the resulting charges were placed into

the prepared quartz crucibles individually. The crucibles were then inserted into the

induction coil of the melt spinner from above. Prior to this, the induction coil had been

40

Figure 3.4: Melt spun ribbon was briefly ground in a stainless steel SPEX mill vial,

shown above, containing four 0.635 cm diameter stainless steel balls. After

approximately 1.5 minutes, the ribbon was reduced to a flakey powder.

Through trial and error with X-ray diffraction lattice parameter analysis (Ch 3.6), it was

observed that the lattice parameter was reduced by a consistent amount over the course of

milling (Figure 3.5). Initially this was believed to be caused by a reduction in solute

concentration due to the formation of precipitate phase, but that theory was ruled out

when the effect was found to exist in pure Al melt spun ribbon as well. It is believed that

this effect is due to the reduction of lattice strain caused by rapid solidification. Because

of this effect, ribbon was always milled for at least 1 minute to ensure comparisons

between lattice parameters would have significance.

41

Figure 3.5: This graph demonstrates the lattice parameter change, as determined by XRD,

of melt spun ribbon after milling for different times in a SPEX mill. The blue

ribbon points represent pure Al ribbon, while the red represents Al-0.2at%Sc-

0.2at%Zr ribbon. A similar initial drop was seen in all alloys tested.

3.3 Additive Friction Stir Processing

Additive Friction Stir processing (AFS) is a method for mechanically combining two

solid materials without any localized melting. It is a derivative of the more traditional

friction stir welding, where a tool is used to join two workpieces together by applying

axial pressure and rotation as the tool moves along the adjacent edges of the workpieces

in question, blending them together. The main notable differences between friction stir

y = -6E-05ln(x) + 4.0501

y = -9E-05ln(x) + 4.0516

4.0495

4.05

4.0505

4.051

4.0515

4.052

4.0525

0 20 40 60 80 100 120 140

La
tt

ic
e

Pa
ra

m
et

er
 (Å

)

Mill Time (s)

Lattice Parameter Change with Milling

42

welding and AFS are that (A) the tool that is used is a consumable comprising of one of

the alloys that is to be combined, and (B) this is method is typically applied to the surface

of a single workpiece to create an affected surface layer instead of along a gap to join two

pieces together.

In this work, all AFS was performed off-site by our partners, Aeroprobe Inc. Melt spun

ribbons with varying levels of enhanced Al-Sc and Al-Zr supersaturation were fabricated

and cold compacted into suitable 0.9525 cm wide feedtock pellets at Michigan

Technological University and shipped to Aeroprobe for processing. There they were

stirred into 99.99% pure aluminum 0.635 cm plates and then sent back to Michigan Tech

for analysis. Images of the feedstock pellets and processing specifics are omitted from

this work at Aeroprobe’s request.

3.4 Heat Treating

Heat treating was performed on all samples in either box furnaces or a vacuum furnace.

The capabilities and procedures for each furnace are described in the following sections.

3.4.1 Box Furnaces

Box furnaces with no cover gas were used most frequently for heat treating operations in

this work. A representative of the box furnaces used is shown in Figure 3.6. Before

samples were inserted into a box furnace, a type K thermocouple was inserted into the

furnace so that the juncture rested exactly where the samples would sit. The furnace was

43

then heated up until the inserted thermocouple stabilized at the target temperature. The

PID controllers on these furnaces read temperature from internal thermocouples mounted

in the top of each furnace, and therefore must be set at higher temperatures than the target

temperature in order to compensate for thermal gradients in the box. Once the

temperature was acceptable, the box would be opened and the sample would be quickly

placed in the location of the thermocouple, touching the junction. In order to allow the

temperature to stabilize, 15 minutes were allowed for the sample in the furnace before the

time was started for the prescribed heat treatment. After the allotted time was complete,

the sample was removed and quenched immediately in room temperature water.

Figure 3.6: This image shows one of the box furnaces used for this experimentation.

Every furnace had some amount of temperature discrepancy, so external

thermocouple readers were used to monitor the temperature at each sample.

44

All heat treatments were run with limited numbers of samples in order to keep the

samples clustered tightly in the middle of the furnace next to the thermocouple. Because

of the nature of box furnaces, nearing the refractory walls on either side would increase

the temperature and potentially give misleading heat treatment information.

3.4.2 Vacuum Furnace

A Vacuum Industries, Inc vacuum furnace, shown in Figure 3.7, was used to heat treat

samples that were more sensitive to oxidation. Whereas bulk samples could be heat

treated in air and then polished quickly to remove the increased thickness of the alumina

layer, heat treating ribbons and cold compacted ribbon pellets did not offer these

flexibilities. With the ribbon only being 20 microns in places, it was deemed

unacceptable for the hardness testing, for the X-ray diffraction characterization (XRD),

and for the eventual integration into AFS substrate that the ribbon be heat treated in air.

The vacuum furnace can only be opened at temperatures below approximately 373K

(100°C), so it necessitates placing samples inside before the temperature is ramped up.

The ribbon samples were balled up and placed on a steel tray inside the chamber that

could be taken out of the furnace between trials for consistency and ease of positioning.

Before increasing the heat, the chamber was vacated to a vacuum level of approximately

1x10-5 Torr. At this point, the vacuum was ramped up to the desired temperature over the

course of 15-20 minutes and held for the allotted time. At the end of the required time,

the chamber was flooded with industrial purity argon to a level of ~500 Torr to allow for

45

faster cooling. The samples cooled down to a temperature below 373K (100°C) over the

course of ~30 minutes and were then removed.

Figure 3.7: These images show the vacuum furnace used for the heat treatment of melt

spun ribbon. The left image shows the actual vacuum chamber, which

contains resistance heating elements, and the image on the right shows the

control panel for the furnace’s operation.

196

xsolvuschecklow)+xsolvuschecklow*(1-
xsolvuschecklow)*(Aob+Aom*tempk);
 msolvuschecklow=(dGfp-gsolvuschecklow)/(xp-
xsolvuschecklow);

 %same as above, but with higher guess
(initially half distance
 %from middle guess to precipitate composition)

 xsolvuscheckhigh=xsolvuscheck+xsolvusstep;
 gsolvuscheckhigh=GoA*(1-
xsolvuscheckhigh)+GoB*xsolvuscheckhigh+gas*tempk*(xsolv
uscheckhigh*log(xsolvuscheckhigh))+(1-
xsolvuscheckhigh)*log(1-
xsolvuscheckhigh)+xsolvuscheckhigh*(1-
xsolvuscheckhigh)*(Aob+Aom*tempk);
 msolvuscheckhigh=(dGfp-gsolvuscheckhigh)/(xp-
xsolvuscheckhigh);

 %select the composition with the highest slope
out of the guess and
 %lower step (slopes are neg so the highest
slope is most shallow)

 if msolvuschecklow>msolvuscheckhigh
 msolvuscheck=msolvuschecklow;
 xsolvuscheck=xsolvuschecklow;
 end

 %select the composition with the highest slope
between the winner
 %of the last block and the higher step

 if msolvuscheckhigh>msolvuscheck
 msolvuscheck=msolvuscheckhigh;
 xsolvuscheck=xsolvuscheckhigh;
 end

197

 %halves the checkstep size, to focuse in on the
solvus composition

 xsolvusstep=xsolvusstep/2;

 end

 %sets the newly found solvus composition

 xsolvus(cookstepcount)=xsolvuscheck;

 %loop for every timestep within this heat treatment
step, nucleating,
 %growing, and dissolving precipitates

 while
cooksteptime(totalbinnumber)<cooktime(cookstepcount)

 %determine the gibbs free energy of
compositions slightly above
 %and below the matrix composition, and use
these values to find the
 %slope and intercept of a tangential line to
the energy curve. This
 %tangential line is used to determine the
change in gibbs energy
 %due to the formation of precipitate volume

 xmathigh=xmatrix(totalbinnumber)+dx;
 xmatlow=xmatrix(totalbinnumber)-dx;
 gmatrix=GoA*(1-
xmatrix(totalbinnumber))+GoB*xmatrix(totalbinnumber)+ga
s*tempk*(xmatrix(totalbinnumber)*log(xmatrix(totalbinnu
mber))+(1-xmatrix(totalbinnumber))*log(1-
xmatrix(totalbinnumber)))+xmatrix(totalbinnumber)*(1-
xmatrix(totalbinnumber))*(Aob+Aom*tempk);
 gmathigh=GoA*(1-
xmathigh)+GoB*xmathigh+gas*tempk*(xmathigh*log(xmathigh
)+(1-xmathigh)*log(1-xmathigh))+xmathigh*(1-
xmathigh)*(Aob+Aom*tempk);

198

 gmatlow=GoA*(1-
xmatlow)+GoB*xmatlow+gas*tempk*(xmatlow*log(xmatlow)+(1
-xmatlow)*log(1-xmatlow))+xmatlow*(1-
xmatlow)*(Aob+Aom*tempk);
 mmatrix=(gmathigh-gmatlow)/(xmathigh-xmatlow);
 bmatrix=gmatrix-
mmatrix*xmatrix(totalbinnumber);
 Gpm=mmatrix*xp+bmatrix;
 dGv(totalbinnumber)=(dGfp-Gpm)/molvol;
 dGs=3*misfit^2*dp*(1-1/(1+(3*dm*(1-
v))/(dp*(1+v))-dm/dp));

 %calculate the critical radius of nucleation,
based on surface
 %energy, which can vary at very low radii due
to preferential
 %formation of the most preferential interfaces.
Here it is assumed
 %to vary linearly up to a radius of
radsurfenchange

 rcritnuc(totalbinnumber)=-
2*isurfen/(dGv(totalbinnumber)+dGs+2*msurfen);

 if
rcritnuc(totalbinnumber)>=radsurfenchange||rcritnuc(tot
albinnumber)<0
 rcritnuc(totalbinnumber)=-
2*fsurfen/(dGv(totalbinnumber)+dGs);
 end

 %if dGv + dGs is neg, the crit radius will be
calculated as neg,
 %which should not be rewritten as dissolution
size, as
 %precipitation is extremely unlikely in this
scenario.

 if rcritnuc(totalbinnumber)<0

rcritnuc(totalbinnumber)=rcritnuc(totalbinnumber-1);

199

 end

 %Reset critical radius to the minimum possible
precipitate size if
 %it is impossibly small, so only realistic
precipitates form

 if rcritnuc(totalbinnumber)<dissolutionsize
 rcritnuc(totalbinnumber)=dissolutionsize;
 end

 %Calculate surface energy for precipitates with
critical radius.
 %Done now in case dissolution size was above
radsurfenchange and
 %rcritnuc was just reset

 if rcritnuc(totalbinnumber)>=radsurfenchange
 surfen=fsurfen;
 else

surfen=(msurfen*rcritnuc(totalbinnumber)+isurfen);
 end

 %Calculate nucleation of precips for the
current timestep

 atomvolm=(1-
xmatrix(totalbinnumber)/xp)/totalatomsam*(am^3)+xmatrix
(totalbinnumber)/xp*(ap^3)/totalatomsap;
 %calculating the average volume per atom in
the matrix,
 %assuming identical crystal structures and
that the lattice
 %stretches around each B atom as if it was
in precipitate phase

Z(totalbinnumber)=atomvolm*(dGv(totalbinnumber)+dGs)^2/
(8*pi*sqrt(surfen^3*boltz*tempk));
 %calculating the Zeldovich nonequilibrium
factor

200

Bstar(totalbinnumber)=(16*pi*surfen^2*xmatrix(totalbinn
umber)*Diff)/((dGv(totalbinnumber)+dGs)^2*(ap)^4);
 %calculating beta star, rate of atomic
attachment to an embryo

tau=(8*boltz*tempk*surfen*(ap)^4)/(atomvolm^2*(dGv(tota
lbinnumber)+dGs)^2*Diff*xmatrix(totalbinnumber));
 %calculating the incubation time required
for nucleation

nucrate(totalbinnumber)=(Binmatpercum(totalbinnumber)-
(4*xsolvus(cookstepcount))/(am^3))*Z(totalbinnumber)*Bs
tar(totalbinnumber)*exp((-
4*pi*surfen*rcritnuc(totalbinnumber)^2)/(3*boltz*tempk)
)*exp(-
tau/(tau*taufract(cookstepcount)+cooksteptime(totalbinn
umber)));
 %calculating the homogeneous nucleation
rate #/m^3/s

numberofnucleations(totalbinnumber)=timestep*nucrate(to
talbinnumber);
 %calculating the number of nucleations this
 %timestep, more useful if timestep is
variable #/m^3

 %If precipitates were formed during this time
step: store radius
 %(critical radius), calculate # of B atoms used
for each
 %precipitate and for the sum of all newly
formed precips

 if
numberofnucleations(totalbinnumber)>=1&&rcritnuc(totalb
innumber)>=dissolutionsize

steprad(totalbinnumber)=rcritnuc(totalbinnumber);
 %the radius of the precipitates formed
at this step

201

Binprecippercum(totalbinnumber)=Binprecippercumconst*nu
mberofnucleations(totalbinnumber)*steprad(totalbinnumbe
r)^3;
 %the amount of B atoms in all precips
per m^3
 numprecippercum(totalbinnumber) =
numberofnucleations(totalbinnumber);
 %number of precips per m^3, incomplete
at this point
 %because preexisting precips haven't
been added yet

 else

 steprad(totalbinnumber)=0;

 end

 %loop to calculate coarsening behavior of all
previously formed
 %precipitates, starting with first historical
timestep with
 %nucleation

 Iteratingbinnumber=1;

 while Iteratingbinnumber<totalbinnumber

 if
steprad(Iteratingbinnumber)>=dissolutionsize

 %if radius of precipitates nucleated at
time
 %Iteratingbinnumber is physically
possible, the precipitate
 %will grow/shrink depending on Gibbs-
Thomson relations

 if
steprad(Iteratingbinnumber)>=radsurfenchange

202

 surfen=fsurfen;
 else

surfen=(msurfen*steprad(Iteratingbinnumber)+isurfen);
 end

xar=xsolvus(cookstepcount)*exp(xarconst*surfen/(tempk*s
teprad(Iteratingbinnumber)));
 %the effective equilibrium
composition at edge of
 %precipitates in this bin,
accounting for gibbs-thomson

steprad(Iteratingbinnumber)=steprad(Iteratingbinnumber)
+timestep*(Diff*(xmatrix(totalbinnumber)-xar))/((xp-
xar)*steprad(Iteratingbinnumber));
 %calculated radius of precipitates
in this bin after
 %the current timestep
 numprecippercum(totalbinnumber) =
numprecippercum(totalbinnumber)+numberofnucleations(Ite
ratingbinnumber);

 else

 %dissolve precipitates if they are
below the minimal
 %physical precipitate size.

 steprad(Iteratingbinnumber)=0;
 end

Binprecippercum(totalbinnumber)=Binprecippercum(totalbi
nnumber)+Binprecippercumconst*numberofnucleations(Itera
tingbinnumber)*steprad(Iteratingbinnumber)^3;

 %look at the next historical timestep and
loop

 Iteratingbinnumber=Iteratingbinnumber+1;

203

 end

 %Calculate number of B atoms still in the
matrix after all
 %nucleation/coarsening and calculate the new
matrix composition

 if numprecippercum(totalbinnumber)>0

 aveBperprecip(totalbinnumber) =
Binprecippercum(totalbinnumber) /
numprecippercum(totalbinnumber);

 else
 aveBperprecip(totalbinnumber)=0;
 end

averad(totalbinnumber)=(averadconst*aveBperprecip(total
binnumber))^(1/3);

 Binmatpercum(totalbinnumber)=nvinitial-
(Binprecippercum(totalbinnumber));

xmatrix(totalbinnumber+1)=Binmatpercum(totalbinnumber)*
(am^3)/totalatomsam;

Binmatpercum(totalbinnumber+1)=Binmatpercum(totalbinnum
ber);

 %strengthening calculations

 phasefraction(totalbinnumber)=(xmatrix(1)-
xmatrix(totalbinnumber+1))/xp;

precipedgespacing(totalbinnumber)=averad(totalbinnumber
)*(sqrt(2*pi/(3*phasefraction(totalbinnumber)))-pi/2);

solidsolution(totalbinnumber)=solidsolutionconst*xmatri
x(totalbinnumber)^(2/3);

204

ordered(totalbinnumber)=orderedconst*sqrt(phasefraction
(totalbinnumber));

mismatch(totalbinnumber)=mismatchconst*sqrt(phasefracti
on(totalbinnumber)/gm)*(averad(totalbinnumber)/burgers)
^0.275;

coherency(totalbinnumber)=coherencyconst*sqrt(averad(to
talbinnumber)*phasefraction(totalbinnumber)/burgers);

mismatchandcoherency(totalbinnumber)=mismatch(totalbinn
umber)+coherency(totalbinnumber);

 if averad(totalbinnumber)>0

orowan(totalbinnumber)=(orowanconst*log(2*averad(totalb
innumber)/burgers))/(pi*precipedgespacing(totalbinnumbe
r)*sqrt(1-v));
 else

 %if no precipitates have formed, averad is
0, and the orowan
 %equation returns NaN because of log(0).
Therefore we bypass it
 %and set orowan strength to 0 so the code
can handle it

 orowan(totalbinnumber)=0;
 end

 %Determine which strengthening mechanism is
dominant (represented
 %by 1, 2, and 3) and record predicted effective
strengthening

 if
mismatchandcoherency(totalbinnumber)<orowan(totalbinnum
ber)&&mismatchandcoherency(totalbinnumber)<ordered(tota
lbinnumber)

205

strength(totalbinnumber)=solidsolution(totalbinnumber)+
mismatchandcoherency(totalbinnumber);
 dominantmechanism(totalbinnumber)=1;
 elseif
ordered(totalbinnumber)<orowan(totalbinnumber)

strength(totalbinnumber)=solidsolution(totalbinnumber)+
ordered(totalbinnumber);
 dominantmechanism(totalbinnumber)=2;
 else

strength(totalbinnumber)=solidsolution(totalbinnumber)+
orowan(totalbinnumber);
 dominantmechanism(totalbinnumber)=3;
 end

 totalbinnumber=totalbinnumber+1;

totaltime(totalbinnumber)=totaltime(totalbinnumber-
1)+timestep;

cooksteptime(totalbinnumber)=cooksteptime(totalbinnumbe
r-1)+timestep;

 %Loop unless the time for this heat treatment
step has expired

 end

 %Move to the next heat treatment step and loop
unless all of the heat
 %treatment steps have been run

taufract(cookstepcount+1)=taufract(cookstepcount)+cooks
teptime(totalbinnumber)/tau;

 outtab(cookstepcount,1)=cooktemp(cookstepcount);
 outtab(cookstepcount,2)=totaltime(totalbinnumber);
 outtab(cookstepcount,3)=xmatrix(totalbinnumber);
 outtab(cookstepcount,4)=taufract(cookstepcount+1);

206

 outtab(cookstepcount,5)=strength(totalbinnumber-1);

outtab(cookstepcount,6)=dominantmechanism(totalbinnumbe
r-1);

outtab(cookstepcount,7)=numprecippercum(totalbinnumber-
1);
 outtab(cookstepcount,8)=averad(totalbinnumber-1);
 outtab(cookstepcount,9)=rcritnuc(totalbinnumber-1);

 clc

End_of_Step_Table=array2table(outtab,'VariableNames',{'
Temp','Time','Matrix_Composition','Fraction_Tau_Complet
ed','Strength','Mechanism','Precipitates_per_m3','Avera
ge_Radius','Critical_Radius'})
 cookstepcount=cookstepcount+1; %moves to the next
heat treatment step

end

%For each array to be plotted, set all zeros to NaN so
they don't plot as 0

xmatrix(~xmatrix)=nan;
averad(~averad)=nan;
nucrate(~nucrate)=nan;
numprecippercum(~numprecippercum)=nan;
mismatchandcoherency(~mismatchandcoherency)=nan;
solidsolution(~solidsolution)=nan;
ordered(~ordered)=nan;
orowan(~orowan)=nan;
strength(~strength)=nan;

%Create a condensed matrix for the data and export it
to excel

row=2;
Iteratingbinnumber=1;

while Iteratingbinnumber<=totalbinnumber

 condenseddata(row,1)=totaltime(Iteratingbinnumber);

207

 condenseddata(row,2)=xmatrix(Iteratingbinnumber);
 condenseddata(row,3)=averad(Iteratingbinnumber);
 condenseddata(row,4)=nucrate(Iteratingbinnumber);

condenseddata(row,5)=numprecippercum(Iteratingbinnumber
);

condenseddata(row,6)=solidsolution(Iteratingbinnumber);

condenseddata(row,7)=mismatchandcoherency(Iteratingbinn
umber);
 condenseddata(row,8)=ordered(Iteratingbinnumber);
 condenseddata(row,9)=orowan(Iteratingbinnumber);
 condenseddata(row,10)=strength(Iteratingbinnumber);

condenseddata(row,11)=dominantmechanism(Iteratingbinnum
ber);

Iteratingbinnumber=Iteratingbinnumber+excelshortener;
 row=row+1;

end

xlswrite(filename,condenseddata,sheet)
xlswrite(filename,{'Total Time (s)','Concentration (at%
Sc)','Average Radius (nm)','Nucleation Rate
(#/s/m^3)','Number Density (#/m^3)','Solid Solution
Strength (Pa)','Mismatch and Coherency Strength
(Pa)','Ordered Strength (Pa)','Orowan Strength
(Pa)','Total Strength (Pa)','Dominant
Mechanism'},sheet)

Plot the chosen arrays (can choose other arrays as
suits your purpose)

figure

plot(totaltime,xmatrix)
title('Hist Matrix Sc Conc')
xlabel('Time (s)')
ylabel('Sc Conc (at%)')

208

set(gcf, 'units','normalized','outerposition',[0 0 1
1]); %Maximize figure.

figure

plot(totaltime,averad)
title('Hist Avg Radius (m)')
xlabel('Time (s)')
ylabel('Radius (m)')

set(gcf, 'units','normalized','outerposition',[0 0 1
1]); %Maximize figure.

figure

plot(totaltime,nucrate)
title('Hist Nuc Rate (per m3)')
xlabel('Time (s)')
ylabel('Nucleation Rate (/s/m^3)')

set(gcf, 'units','normalized','outerposition',[0 0 1
1]); %Maximize figure.

figure

plot(totaltime,numprecippercum)
title('Hist Number of Precips')
xlabel('Time (s)')
ylabel('Precipitates (/m^3)')

set(gcf, 'units','normalized','outerposition',[0 0 1
1]); %Maximize figure.

figure

plot(totaltime,solidsolution)
title('Solid Solution Strength')
xlabel('Time (s)')
ylabel('Strength (Pa)')

set(gcf, 'units','normalized','outerposition',[0 0 1
1]); %Maximize figure.

figure

209

plot(totaltime,mismatchandcoherency)
title('Mismatch and Coherency Strength')
xlabel('Time (s)')
ylabel('Strength (Pa)')

set(gcf, 'units','normalized','outerposition',[0 0 1
1]); %Maximize figure.

figure

plot(totaltime,ordered)
title('Ordered Strength')
xlabel('Time (s)')
ylabel('Strength (Pa)')

set(gcf, 'units','normalized','outerposition',[0 0 1
1]); %Maximize figure.

figure

plot(totaltime,orowan)
title('Orowan Strength')
xlabel('Time (s)')
ylabel('Strength (Pa)')

set(gcf, 'units','normalized','outerposition',[0 0 1
1]); %Maximize figure.

figure

plot(totaltime,solidsolution,'y',totaltime,mismatchandc
oherency,'r',totaltime,ordered,'g',totaltime,orowan,'b'
)
title('Precipitation Strength')
xlabel('Time (s)')
ylabel('Strength (Pa)')

set(gcf, 'units','normalized','outerposition',[0 0 1
1]); %Maximize figure.

figure

plot(totaltime,strength)

210

title('Precipitation Strength')
xlabel('Time (s)')
ylabel('Strength (Pa)')

set(gcf, 'units','normalized','outerposition',[0 0 1
1]); %Maximize figure.

A.3: Thermocalc Ternary Driving Force Data Extractor

Thermocalc has a great deal of useful data that can be difficult to ouput in an easily

useful manner. In order to extract a function dictating the driving forces of precipitation

in ternary alloys, a method has been developed to rapidly output relevant data using a

Thermocalc console mode program into multiple CSV files (A.3.1). These files are then

run through an Excel VBA program (A.3.2) that delimits them, extracts the data, closes

them, and organizes the data for ease of polynomial fitting in a third program. Bivariate

polynomial fitting is performed in Mathematica for each temperature (A.3.3), and then

the resulting functions are solved to adjust for temperature change.

A.3.1: Thermocalc - Driving Force Output

@@ Go to the Data module to get started
go data
@@ Switch the database to the latest Al one
switch
tcal4
@@ Define the system
def-sys
al sc zr
@@ 'Reject' all of the phases at first, and then 'restore' the ones we are interested in
rej pha *
res pha fcc_a1 al3sc al3zr_d023
@@ Tell TC to get the data for the defined system and phases

211

get
@@ Go to the Poly Module, for defining and calculating equilibriums
go pol
@@ Change the state of the precipitate phases to dormant, as the driving force depends
@@ on the solution atoms being entirely in solid solution
ch-st pha
al3sc al3zr_d023
dormant
@@ Set the conditions of the system, (x(zr)) means molar fraction of Zr in the alloy
s-c
n=1 p=101325 t=773.15 x(sc)=0.1e-2 x(zr)=0.0001
@@Define the driving force functions so they will output recognisable results
ent-sym funct df1=-8.3144*T*DGV(al3sc)

ent-sym funct df2=-8.3144*T*DGV(al3zr_d023)

@@ Compute equilibrium for the system
co-eq
@@ Set up compositional stepping of 1 solute atom for the simulation
s-a-v
1
x(sc)
0
0.004

@@ Now begin stepping
step

@@ Create a table for this temp with the variables of interest (composition, df, etc)
enter table
awesome
x(sc) x(zr) df1 df2

@@ Call the table and save it to a text file
tab
awesome
file \\mtucifs3.iso.mtu.edu\home\AlScZr\773_0001

@@ Repeat! I just made 40 variations of this code in Notepad (changing the two
@@ instances of "0001"), and then copy pasted it into console mode of TC. Then I
@@ would Ctrl+F, Replace all "773" with "748", and copy/paste it in again. This makes
@@ a large number of files.

go data
switch

212

tcal4
def-sys
al sc zr
rej pha *
res pha fcc_a1 al3sc al3zr_d023
get
go pol
ch-st pha
al3sc al3zr_d023
dormant
s-c
n=1 p=101325 t=773.15 x(sc)=0.1e-2 x(zr)=0.0002
ent-sym funct df1=-8.3144*T*DGV(al3sc)

ent-sym funct df2=-8.3144*T*DGV(al3zr_d023)

co-eq
s-a-v
1
x(sc)
0
0.004

step

enter table
awesome
x(sc) x(zr) df1 df2

tab
awesome
file \\mtucifs3.iso.mtu.edu\home\AlScZr\773_0002

(etc)

A.3.2: Excel VBA - Combine and rearrange TC data

Sub Importer()
'This sub imports and combines all of the data from the Thermocalc files that
were 'generated using the code in A.3.1. After this sub is ran in a workbook
(which does not 'have to be blank, but does have to have a "Sheet1") which shares
a location path with the 'Thermocalc files, that worksheet will accumulate all of
the data. The next sub, 'Organizer(), is used to organize the data perfectly for use
in Mathematica.

213

Dim sPath As String
Dim temp(1 To 11) As Integer
Dim ws As Worksheet

'Turn off alerts and updating, so the program runs faster and doesn't crash
Application.DisplayAlerts = False
Application.ScreenUpdating = False

'Delete all previously created sheets and data to make room for the next results
For Each ws In Worksheets
If ws.Name <> "Sheet1" Then ws.Delete
Next

'List the temperatures of interest so they can be recorded properly
temp(1) = 473
temp(2) = 523
temp(3) = 573
temp(4) = 598
temp(5) = 623
temp(6) = 648
temp(7) = 673
temp(8) = 698
temp(9) = 723
temp(10) = 748
temp(11) = 773

'This is the one's digit of the concentration of the second solute atom (the addition
'that is different in every TC output file). It is separated from the ten's digit to
'make calling filenames, etc easier (x10e-4 atomic fraction)

concones = 1
'This is the ten's digit of the second solute concentration (x10e-4 atomic fraction)

conctens = 0
 'This is the concentration of second solute addition in the file that is currently
being worked on, (x10e-4 atomic fraction)
conc = concones + 10 * conctens
 'This is the max concentration of solute addition observed (x10e-4 at. fraction)
maxconc = 40
 'Counters for keeping track of the different temperatures/data/etc
tempcount = 1
maxtempcount = 11
columncount = 2

 'This block adds the first sheets with names similar to the TC files

214

ThisWorkbook.Sheets.Add(After:=ThisWorkbook.Sheets(ThisWorkbook.Sheets.Count)).
Name = temp(tempcount) & " df1"
ThisWorkbook.Sheets.Add(After:=ThisWorkbook.Sheets(ThisWorkbook.Sheets.Count)).
Name = temp(tempcount) & " df2"

 'This block opens the first TC text file as a delimited spreadsheet
sPath = ThisWorkbook.Path & "\" & temp(tempcount) & "_00" & conctens & concones
Workbooks.OpenText Filename:= _
sPath, DataType:=xlDelimited, Space:=True, Local:=True

'This block copies the first solute concentration column from the first TC file into
'the main workbook

ActiveWorkbook.Sheets(temp(tempcount) & "_00" & conctens &
concones).Columns(4).Copy Destination:=ThisWorkbook.Sheets(temp(tempcount) & "
df1").Columns(1)
ActiveWorkbook.Sheets(temp(tempcount) & "_00" & conctens &
concones).Columns(4).Copy Destination:=ThisWorkbook.Sheets(temp(tempcount) & "
df2").Columns(1)

 'This loop is to ensure each temperature is represented
Do While tempcount <= maxtempcount

 'This loop is to cycle through all the required ten's digits
Do While conctens * 10 < maxconc

 'This loop is to cycle through the one's digits for every ten's digit
Do While concones <= 9

'This calculates the concentration (x10e-4 atomic fraction) of the second solute for
'the current operation

conc = concones + 10 * conctens

 'This kicks the code out of the loop as soon as the limit is reached
If conc > maxconc Then GoTo cheeseburger

 'This block opens the next TC file
sPath = ThisWorkbook.Path & "\" & temp(tempcount) & "_00" & conctens & concones
Workbooks.OpenText Filename:= _
sPath, DataType:=xlDelimited, Space:=True, Local:=True

 'This workbook copies the data out of the current TC file into the main workbook
ActiveWorkbook.Sheets(temp(tempcount) & "_00" & conctens &
concones).Columns(9).Copy Destination:=ThisWorkbook.Sheets(temp(tempcount) & "
df1").Columns(columncount)

215

ActiveWorkbook.Sheets(temp(tempcount) & "_00" & conctens &
concones).Columns(11).Copy Destination:=ThisWorkbook.Sheets(temp(tempcount) & "
df2").Columns(columncount)

 'This iterates to the next column, so the importing data does not overlap
columncount = columncount + 1

 'This closes the TC file, so they do not build up and slow the computer
ActiveWorkbook.Close

 'This iterates the one's digit to move to the next higher concentration TC file
concones = concones + 1

Loop

 'This iterates the ten's digit to continue moving to higher concentration TC files
concones = 0
conctens = conctens + 1

Loop

 'This is where the 'goto' kicks you if maximum concentration is reached
cheeseburger:

 'This 'goto' ends the program if the max temp is done, to avoid errors
If tempcount = maxtempcount Then GoTo pizza

 'This block iterates to begin copying data from the next temperature
tempcount = tempcount + 1
concones = 1
conctens = 0
columncount = 2

 'This block adds sheets for the new temp after each precipitate phase's last sheet
ThisWorkbook.Sheets.Add(After:=ThisWorkbook.Sheets(temp(tempcount - 1) & "
df1")).Name = temp(tempcount) & " df1"
ThisWorkbook.Sheets.Add(After:=ThisWorkbook.Sheets(temp(tempcount - 1) & "
df2")).Name = temp(tempcount) & " df2"

 'This block brings in the next temperature's file
sPath = ThisWorkbook.Path & "\" & temp(tempcount) & "_00" & conctens & concones
Workbooks.OpenText Filename:= _
sPath, DataType:=xlDelimited, Space:=True, Local:=True

216

'This block adds the column showing the first solute addition's concentration to
'the newly made sheet

ActiveWorkbook.Sheets(temp(tempcount) & "_00" & conctens &
concones).Columns(4).Copy Destination:=ThisWorkbook.Sheets(temp(tempcount) & "
df1").Columns(1)
ActiveWorkbook.Sheets(temp(tempcount) & "_00" & conctens &
concones).Columns(4).Copy Destination:=ThisWorkbook.Sheets(temp(tempcount) & "
df2").Columns(1)

Loop

 'This is where the 'goto' kicks to when the last temperature has been fully finished
pizza:

 'This re-enables alerts and screenupdating
Application.DisplayAlerts = True
Application.ScreenUpdating = True

End Sub

Sub Organizer()

'This sub takes the newly collected data straight from Importer() and organizes it
'for function fitting in Mathematica (and to avoid overflowing Excel by having
'too long of a column). This sub has a similar flow to the previous sub, so many of
'the blocks will be left undescribed. See Importer() for more descriptions

Dim sPath As String
Dim temp(1 To 11) As Integer

Application.DisplayAlerts = False
Application.ScreenUpdating = False

temp(1) = 473
temp(2) = 523
temp(3) = 573
temp(4) = 598
temp(5) = 623
temp(6) = 648
temp(7) = 673
temp(8) = 698
temp(9) = 723
temp(10) = 748
temp(11) = 773

concones = 1

217

conctens = 0
conc = concones + 10 * conctens
maxconc = 40
tempcount = 1
maxtempcount = 11
columncount = 2

Do While tempcount <= maxtempcount

 'This block deletes 3 blank rows at the top that were imported from the TC files
ThisWorkbook.Sheets(temp(tempcount) & " df1").Rows(2).Delete
ThisWorkbook.Sheets(temp(tempcount) & " df1").Rows(3).Delete
ThisWorkbook.Sheets(temp(tempcount) & " df1").Rows(4).Delete
ThisWorkbook.Sheets(temp(tempcount) & " df2").Rows(2).Delete
ThisWorkbook.Sheets(temp(tempcount) & " df2").Rows(3).Delete
ThisWorkbook.Sheets(temp(tempcount) & " df2").Rows(4).Delete

'This counter references row numbers, and the following loop aims at rearranging
'the imported TC data from low concentration to high, as TC decides to take the
'smallest concentrations and put them at the end of the data in reverse order.

i = 39

Do While i <= 55

 'This line adds a blank row in row 2, shifting all other rows down
ThisWorkbook.Sheets(temp(tempcount) & " df1").Rows(2).Insert shift:=xlShiftDown
 'This line cuts the target row and inserts it into te blank row just created at 2
ThisWorkbook.Sheets(temp(tempcount) & " df1").Cells(i, 1).EntireRow.Cut
Destination:=ThisWorkbook.Sheets(temp(tempcount) & " df1").Cells(3, 1)

 'This block does the same as the last, but for the driving force of the second solute
ThisWorkbook.Sheets(temp(tempcount) & " df2").Rows(2).Insert shift:=xlShiftDown
ThisWorkbook.Sheets(temp(tempcount) & " df2").Cells(i, 1).EntireRow.Cut
Destination:=ThisWorkbook.Sheets(temp(tempcount) & " df2").Cells(3, 1)

 'This iterates to the next offending row
i = i + 2

Loop

'This block tidies up from the last operation and adds a header denoting which
'concentration runs vertical and which horizontal (Sc and Zr in this example)

ThisWorkbook.Sheets(temp(tempcount) & " df1").Rows(2).Delete
ThisWorkbook.Sheets(temp(tempcount) & " df2").Rows(2).Delete

218

ThisWorkbook.Sheets(temp(tempcount) & " df1").Cells(1, 1).Value = "Sc\Zr"
ThisWorkbook.Sheets(temp(tempcount) & " df2").Cells(1, 1).Value = "Sc\Zr"

'This loop adds the concentration of the second solute atom (Zr in the above
'example) to the top row as column headers

Do While conctens * 10 < maxconc

Do While concones <= 9

conc = concones + 10 * conctens

If conc > maxconc Then GoTo cheeseburger

ThisWorkbook.Sheets(temp(tempcount) & " df1").Cells(1, columncount).Value = conc *
10 ^ -4
ThisWorkbook.Sheets(temp(tempcount) & " df2").Cells(1, columncount).Value = conc *
10 ^ -4

columncount = columncount + 1
concones = concones + 1

Loop

concones = 0
conctens = conctens + 1

Loop

cheeseburger:

If tempcount = maxtempcount Then GoTo pizza

tempcount = tempcount + 1
concones = 1
conctens = 0
columncount = 2

Loop

pizza:

Application.DisplayAlerts = True
Application.ScreenUpdating = True

End Sub

219

A.3.3: Mathematica - Fitting the Data

data=Import["desktop/AlScZr Importer.xls"][[1]];
dims=Dimensions[data]

{40,40}

axisx=Transpose[data][[1]][[2;;dims[[1]]]];
axisy=data[[1]][[2;;dims[[2]]]];

plotdata=Take[data,-dims[[1]]+1,-dims[[2]]+1];
ListPlot3D[plotdata,InterpolationOrder→3,DataRange→{{F
irst[axisx],Last[axisx]},{First[axisy],Last[axisy]},Aut
omatic},MeshStyle→Opacity[0.4],InterpolationOrder→3,Co
lorFunction→"Rainbow"]

plotdata[[2,1]]

-4.02297×108

ListPlot3D[plotdata,PlotTheme→"Scientific",InterpolationOrd

er→3,DataRange→{{0.0001,0.004},{0.0001,0.0039},Automatic},

MeshStyle→Opacity[0.4],InterpolationOrder→3,ColorFunction→

"Rainbow"]

General::ivar:

_{0.0001,0.0002,0.0003,0.0004,0.0005,0.0006,0.0007,0.0008,0.

0009,0.001,0.0012,0.0013,0.0014,0.0015,0.0016,0.0017,0.0018

,0.0019,�3�,0.0023,0.0024,0.0025,0.0026,0.0027,0.0028,0.002

220

9,0.003,0.0031,0.0032,0.0033,0.0034,0.0035,0.0036,0.0037,0.

0038,0.0039,0.004}_ is not a valid variable. �

(*data2={{axisx[[1]],axisy[[1]],plotdata[[1,1]]}};*)
data2={};
For[i=1,i<40,i++,
 For
[j=1,j<40,j++,AppendTo[data2,{axisx[[i]],axisy[[j]],plo
tdata[[j,i]]}]]]
data2

{{0.0001,0.0001,-3.35426×108},{0.0001,0.0002,-

4.02297×108},{0.0001,0.0003,-4.4162×108},{0.0001,0.0004,-

4.69665×108}, ≡1514≡ ,{0.004,0.0037,-

7.17936×108},{0.004,0.0038,-7.20907×108},{0.004,0.0039,-

7.23815×108}}

fit=NonlinearModelFit[data2,a1*x+a2*y+a3*x*y+a4*x^2+a5*
y^2+a6*x^3+a7*y^3+a8*x*y^2+a9*y*x^2+a10,{a1,a2,a3,a4,a5
,a6,a7,a8,a9,a10},{x,y}];
original=ListPlot3D[plotdata,InterpolationOrder→3,Data
Range→{{First[axisx],Last[axisx]},{First[axisy],Last[a
xisy]},Automatic},MeshStyle→Opacity[0.4],Interpolation
Order→3,ColorFunction→"Rainbow"];
Show[original,Plot3D[fit["BestFit"],{x,0,0.004},{y,0,0.004}

]]

Normal[fit]

-3.46474×108-3.77158×109 x-1.10753×1011 x2+6.55504×1012 x3-

3.08377×1011 y+1.67575×1010 x y+3.28663×1011 x2 y+1.06633×1014

y2-2.96439×1011 x y2-1.33531×1016 y3

http://reference.wolfram.com/mathematica/ref/message/General/ivar.html

