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Figure 3.2: This image represents Ellingham diagrams showing the stability of Al2O3 vs 

SiO2 vs Y2O3, and was generated on the University of Cambridge online 

resource (http://www.doitpoms.ac.uk/tlplib/ellingham_diagrams) 

 

3.1.2 Setting up the Melt Spinner 

Pieces of master alloys were weighed and combined in the correct ratios to create the 

targeted alloys as described in Section 3.13, and the resulting charges were placed into 

the prepared quartz crucibles individually. The crucibles were then inserted into the 

induction coil of the melt spinner from above. Prior to this, the induction coil had been 
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Figure 3.4: Melt spun ribbon was briefly ground in a stainless steel SPEX mill vial, 

shown above, containing four 0.635 cm diameter stainless steel balls. After 

approximately 1.5 minutes, the ribbon was reduced to a flakey powder. 

 

Through trial and error with X-ray diffraction lattice parameter analysis (Ch 3.6), it was 

observed that the lattice parameter was reduced by a consistent amount over the course of 

milling (Figure 3.5). Initially this was believed to be caused by a reduction in solute 

concentration due to the formation of precipitate phase, but that theory was ruled out 

when the effect was found to exist in pure Al melt spun ribbon as well. It is believed that 

this effect is due to the reduction of lattice strain caused by rapid solidification. Because 

of this effect, ribbon was always milled for at least 1 minute to ensure comparisons 

between lattice parameters would have significance. 
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Figure 3.5: This graph demonstrates the lattice parameter change, as determined by XRD, 

of melt spun ribbon after milling for different times in a SPEX mill. The blue 

ribbon points represent pure Al ribbon, while the red represents Al-0.2at%Sc-

0.2at%Zr ribbon. A similar initial drop was seen in all alloys tested. 

 

3.3 Additive Friction Stir Processing 

Additive Friction Stir processing (AFS) is a method for mechanically combining two 

solid materials without any localized melting. It is a derivative of the more traditional 

friction stir welding, where a tool is used to join two workpieces together by applying 

axial pressure and rotation as the tool moves along the adjacent edges of the workpieces 

in question, blending them together. The main notable differences between friction stir 
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welding and AFS are that (A) the tool that is used is a consumable comprising of one of 

the alloys that is to be combined, and (B) this is method is typically applied to the surface 

of a single workpiece to create an affected surface layer instead of along a gap to join two 

pieces together. 

 

In this work, all AFS was performed off-site by our partners, Aeroprobe Inc. Melt spun 

ribbons with varying levels of enhanced Al-Sc and Al-Zr supersaturation were fabricated 

and cold compacted into suitable 0.9525 cm wide feedtock pellets at Michigan 

Technological University and shipped to Aeroprobe for processing. There they were 

stirred into 99.99% pure aluminum 0.635 cm plates and then sent back to Michigan Tech 

for analysis. Images of the feedstock pellets and processing specifics are omitted from 

this work at Aeroprobe’s request. 

 

3.4 Heat Treating 

Heat treating was performed on all samples in either box furnaces or a vacuum furnace. 

The capabilities and procedures for each furnace are described in the following sections. 

 

3.4.1 Box Furnaces 

Box furnaces with no cover gas were used most frequently for heat treating operations in 

this work. A representative of the box furnaces used is shown in Figure 3.6. Before 

samples were inserted into a box furnace, a type K thermocouple was inserted into the 

furnace so that the juncture rested exactly where the samples would sit. The furnace was 
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then heated up until the inserted thermocouple stabilized at the target temperature. The 

PID controllers on these furnaces read temperature from internal thermocouples mounted 

in the top of each furnace, and therefore must be set at higher temperatures than the target 

temperature in order to compensate for thermal gradients in the box. Once the 

temperature was acceptable, the box would be opened and the sample would be quickly 

placed in the location of the thermocouple, touching the junction. In order to allow the 

temperature to stabilize, 15 minutes were allowed for the sample in the furnace before the 

time was started for the prescribed heat treatment. After the allotted time was complete, 

the sample was removed and quenched immediately in room temperature water. 

 

 

Figure 3.6: This image shows one of the box furnaces used for this experimentation. 

Every furnace had some amount of temperature discrepancy, so external 

thermocouple readers were used to monitor the temperature at each sample. 
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All heat treatments were run with limited numbers of samples in order to keep the 

samples clustered tightly in the middle of the furnace next to the thermocouple. Because 

of the nature of box furnaces, nearing the refractory walls on either side would increase 

the temperature and potentially give misleading heat treatment information.  

 

3.4.2 Vacuum Furnace 

A Vacuum Industries, Inc vacuum furnace, shown in Figure 3.7, was used to heat treat 

samples that were more sensitive to oxidation. Whereas bulk samples could be heat 

treated in air and then polished quickly to remove the increased thickness of the alumina 

layer, heat treating ribbons and cold compacted ribbon pellets did not offer these 

flexibilities. With the ribbon only being 20 microns in places, it was deemed 

unacceptable for the hardness testing, for the X-ray diffraction characterization (XRD), 

and for the eventual integration into AFS substrate that the ribbon be heat treated in air. 

 

The vacuum furnace can only be opened at temperatures below approximately 373K 

(100°C), so it necessitates placing samples inside before the temperature is ramped up. 

The ribbon samples were balled up and placed on a steel tray inside the chamber that 

could be taken out of the furnace between trials for consistency and ease of positioning. 

Before increasing the heat, the chamber was vacated to a vacuum level of approximately 

1x10-5 Torr. At this point, the vacuum was ramped up to the desired temperature over the 

course of 15-20 minutes and held for the allotted time. At the end of the required time, 

the chamber was flooded with industrial purity argon to a level of ~500 Torr to allow for 
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faster cooling. The samples cooled down to a temperature below 373K (100°C) over the 

course of ~30 minutes and were then removed. 

 

 

Figure 3.7: These images show the vacuum furnace used for the heat treatment of melt 

spun ribbon. The left image shows the actual vacuum chamber, which 

contains resistance heating elements, and the image on the right shows the 

control panel for the furnace’s operation. 
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xsolvuschecklow)+xsolvuschecklow*(1-
xsolvuschecklow)*(Aob+Aom*tempk); 
        msolvuschecklow=(dGfp-gsolvuschecklow)/(xp-
xsolvuschecklow); 
         
         
        %same as above, but with higher guess 
(initially half distance  
        %from middle guess to precipitate composition) 
         
        xsolvuscheckhigh=xsolvuscheck+xsolvusstep;  
        gsolvuscheckhigh=GoA*(1-
xsolvuscheckhigh)+GoB*xsolvuscheckhigh+gas*tempk*(xsolv
uscheckhigh*log(xsolvuscheckhigh))+(1-
xsolvuscheckhigh)*log(1-
xsolvuscheckhigh)+xsolvuscheckhigh*(1-
xsolvuscheckhigh)*(Aob+Aom*tempk); 
        msolvuscheckhigh=(dGfp-gsolvuscheckhigh)/(xp-
xsolvuscheckhigh); 
         
         
        %select the composition with the highest slope 
out of the guess and 
        %lower step (slopes are neg so the highest 
slope is most shallow) 
         
        if msolvuschecklow>msolvuscheckhigh  
            msolvuscheck=msolvuschecklow; 
            xsolvuscheck=xsolvuschecklow; 
        end 
         
         
        %select the composition with the highest slope 
between the winner  
        %of the last block and the higher step 
         
        if msolvuscheckhigh>msolvuscheck  
            msolvuscheck=msolvuscheckhigh; 
            xsolvuscheck=xsolvuscheckhigh; 
        end 
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        %halves the checkstep size, to focuse in on the 
solvus composition 
         
        xsolvusstep=xsolvusstep/2;  
     
    end 
     
     
    %sets the newly found solvus composition 
     
    xsolvus(cookstepcount)=xsolvuscheck; 
     
     
    %loop for every timestep within this heat treatment 
step, nucleating, 
    %growing, and dissolving precipitates 
     
    while 
cooksteptime(totalbinnumber)<cooktime(cookstepcount)  
         
         
        %determine the gibbs free energy of 
compositions slightly above 
        %and below the matrix composition, and use 
these values to find the 
        %slope and intercept of a tangential line to 
the energy curve. This 
        %tangential line is used to determine the 
change in gibbs energy 
        %due to the formation of precipitate volume 
         
        xmathigh=xmatrix(totalbinnumber)+dx; 
        xmatlow=xmatrix(totalbinnumber)-dx; 
        gmatrix=GoA*(1-
xmatrix(totalbinnumber))+GoB*xmatrix(totalbinnumber)+ga
s*tempk*(xmatrix(totalbinnumber)*log(xmatrix(totalbinnu
mber))+(1-xmatrix(totalbinnumber))*log(1-
xmatrix(totalbinnumber)))+xmatrix(totalbinnumber)*(1-
xmatrix(totalbinnumber))*(Aob+Aom*tempk); 
        gmathigh=GoA*(1-
xmathigh)+GoB*xmathigh+gas*tempk*(xmathigh*log(xmathigh
)+(1-xmathigh)*log(1-xmathigh))+xmathigh*(1-
xmathigh)*(Aob+Aom*tempk); 
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        gmatlow=GoA*(1-
xmatlow)+GoB*xmatlow+gas*tempk*(xmatlow*log(xmatlow)+(1
-xmatlow)*log(1-xmatlow))+xmatlow*(1-
xmatlow)*(Aob+Aom*tempk); 
        mmatrix=(gmathigh-gmatlow)/(xmathigh-xmatlow); 
        bmatrix=gmatrix-
mmatrix*xmatrix(totalbinnumber);  
        Gpm=mmatrix*xp+bmatrix; 
        dGv(totalbinnumber)=(dGfp-Gpm)/molvol; 
        dGs=3*misfit^2*dp*(1-1/(1+(3*dm*(1-
v))/(dp*(1+v))-dm/dp)); 
         
         
        %calculate the critical radius of nucleation, 
based on surface  
        %energy, which can vary at very low radii due 
to preferential 
        %formation of the most preferential interfaces. 
Here it is assumed 
        %to vary linearly up to a radius of 
radsurfenchange 
         
        rcritnuc(totalbinnumber)=-
2*isurfen/(dGv(totalbinnumber)+dGs+2*msurfen); 
         
        if 
rcritnuc(totalbinnumber)>=radsurfenchange||rcritnuc(tot
albinnumber)<0 
            rcritnuc(totalbinnumber)=-
2*fsurfen/(dGv(totalbinnumber)+dGs);             
        end 
         
         
        %if dGv + dGs is neg, the crit radius will be 
calculated as neg, 
        %which should not be rewritten as dissolution 
size, as 
        %precipitation is extremely unlikely in this 
scenario. 
         
        if rcritnuc(totalbinnumber)<0 
            
rcritnuc(totalbinnumber)=rcritnuc(totalbinnumber-1); 
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        end 
         
        %Reset critical radius to the minimum possible 
precipitate size if 
        %it is impossibly small, so only realistic 
precipitates form  
         
        if rcritnuc(totalbinnumber)<dissolutionsize 
            rcritnuc(totalbinnumber)=dissolutionsize; 
        end 
         
         
        %Calculate surface energy for precipitates with 
critical radius. 
        %Done now in case dissolution size was above 
radsurfenchange and  
        %rcritnuc was just reset 
         
        if rcritnuc(totalbinnumber)>=radsurfenchange 
            surfen=fsurfen; 
        else 
            
surfen=(msurfen*rcritnuc(totalbinnumber)+isurfen); 
        end 
     
         
        %Calculate nucleation of precips for the 
current timestep 
         
        atomvolm=(1-
xmatrix(totalbinnumber)/xp)/totalatomsam*(am^3)+xmatrix
(totalbinnumber)/xp*(ap^3)/totalatomsap; 
            %calculating the average volume per atom in 
the matrix, 
            %assuming identical crystal structures and 
that the lattice 
            %stretches around each B atom as if it was 
in precipitate phase 
        
Z(totalbinnumber)=atomvolm*(dGv(totalbinnumber)+dGs)^2/
(8*pi*sqrt(surfen^3*boltz*tempk));  
            %calculating the Zeldovich nonequilibrium 
factor 
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Bstar(totalbinnumber)=(16*pi*surfen^2*xmatrix(totalbinn
umber)*Diff)/((dGv(totalbinnumber)+dGs)^2*(ap)^4);  
            %calculating beta star, rate of atomic 
attachment to an embryo 
        
tau=(8*boltz*tempk*surfen*(ap)^4)/(atomvolm^2*(dGv(tota
lbinnumber)+dGs)^2*Diff*xmatrix(totalbinnumber));  
            %calculating the incubation time required 
for nucleation 
        
nucrate(totalbinnumber)=(Binmatpercum(totalbinnumber)-
(4*xsolvus(cookstepcount))/(am^3))*Z(totalbinnumber)*Bs
tar(totalbinnumber)*exp((-
4*pi*surfen*rcritnuc(totalbinnumber)^2)/(3*boltz*tempk)
)*exp(-
tau/(tau*taufract(cookstepcount)+cooksteptime(totalbinn
umber)));  
            %calculating the homogeneous nucleation 
rate        #/m^3/s 
        
numberofnucleations(totalbinnumber)=timestep*nucrate(to
talbinnumber);  
            %calculating the number of nucleations this 
            %timestep, more useful if timestep is 
variable      #/m^3 
  
             
        %If precipitates were formed during this time 
step: store radius 
        %(critical radius), calculate # of B atoms used 
for each 
        %precipitate and for the sum of all newly 
formed precips 
         
        if 
numberofnucleations(totalbinnumber)>=1&&rcritnuc(totalb
innumber)>=dissolutionsize 
             
            
steprad(totalbinnumber)=rcritnuc(totalbinnumber);  
                %the radius of the precipitates formed 
at this step 
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Binprecippercum(totalbinnumber)=Binprecippercumconst*nu
mberofnucleations(totalbinnumber)*steprad(totalbinnumbe
r)^3; 
                %the amount of B atoms in all precips 
per m^3 
            numprecippercum(totalbinnumber) = 
numberofnucleations(totalbinnumber); 
                %number of precips per m^3, incomplete 
at this point 
                %because preexisting precips haven't 
been added yet 
             
        else 
                         
            steprad(totalbinnumber)=0; 
             
        end 
  
         
        %loop to calculate coarsening behavior of all 
previously formed 
        %precipitates, starting with first historical 
timestep with 
        %nucleation 
         
        Iteratingbinnumber=1; 
         
        while Iteratingbinnumber<totalbinnumber 
             
            if 
steprad(Iteratingbinnumber)>=dissolutionsize 
                 
                 
                %if radius of precipitates nucleated at 
time  
                %Iteratingbinnumber is physically 
possible, the precipitate 
                %will grow/shrink depending on Gibbs-
Thomson relations 
                 
                if 
steprad(Iteratingbinnumber)>=radsurfenchange 
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                    surfen=fsurfen; 
                else 
                    
surfen=(msurfen*steprad(Iteratingbinnumber)+isurfen); 
                end 
                               
                
xar=xsolvus(cookstepcount)*exp(xarconst*surfen/(tempk*s
teprad(Iteratingbinnumber)));  
                    %the effective equilibrium 
composition at edge of  
                    %precipitates in this bin, 
accounting for gibbs-thomson  
                
steprad(Iteratingbinnumber)=steprad(Iteratingbinnumber)
+timestep*(Diff*(xmatrix(totalbinnumber)-xar))/((xp-
xar)*steprad(Iteratingbinnumber));  
                    %calculated radius of precipitates 
in this bin after 
                    %the current timestep 
                numprecippercum(totalbinnumber) = 
numprecippercum(totalbinnumber)+numberofnucleations(Ite
ratingbinnumber);  
             
            else 
                 
                %dissolve precipitates if they are 
below the minimal 
                %physical precipitate size. 
                 
                steprad(Iteratingbinnumber)=0; 
            end            
                       
            
Binprecippercum(totalbinnumber)=Binprecippercum(totalbi
nnumber)+Binprecippercumconst*numberofnucleations(Itera
tingbinnumber)*steprad(Iteratingbinnumber)^3; 
                         
            %look at the next historical timestep and 
loop 
             
            Iteratingbinnumber=Iteratingbinnumber+1; 
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        end 
  
         
        %Calculate number of B atoms still in the 
matrix after all 
        %nucleation/coarsening and calculate the new 
matrix composition 
         
        if numprecippercum(totalbinnumber)>0 
             
            aveBperprecip(totalbinnumber) = 
Binprecippercum(totalbinnumber) / 
numprecippercum(totalbinnumber); 
                 
        else 
            aveBperprecip(totalbinnumber)=0; 
        end 
         
        
averad(totalbinnumber)=(averadconst*aveBperprecip(total
binnumber))^(1/3); 
                 
        Binmatpercum(totalbinnumber)=nvinitial-
(Binprecippercum(totalbinnumber)); 
        
xmatrix(totalbinnumber+1)=Binmatpercum(totalbinnumber)*
(am^3)/totalatomsam; 
        
Binmatpercum(totalbinnumber+1)=Binmatpercum(totalbinnum
ber); 
         
        %strengthening calculations 
         
        phasefraction(totalbinnumber)=(xmatrix(1)-
xmatrix(totalbinnumber+1))/xp; 
        
precipedgespacing(totalbinnumber)=averad(totalbinnumber
)*(sqrt(2*pi/(3*phasefraction(totalbinnumber)))-pi/2); 
        
solidsolution(totalbinnumber)=solidsolutionconst*xmatri
x(totalbinnumber)^(2/3); 
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ordered(totalbinnumber)=orderedconst*sqrt(phasefraction
(totalbinnumber)); 
        
mismatch(totalbinnumber)=mismatchconst*sqrt(phasefracti
on(totalbinnumber)/gm)*(averad(totalbinnumber)/burgers)
^0.275; 
        
coherency(totalbinnumber)=coherencyconst*sqrt(averad(to
talbinnumber)*phasefraction(totalbinnumber)/burgers); 
        
mismatchandcoherency(totalbinnumber)=mismatch(totalbinn
umber)+coherency(totalbinnumber);      
         
        if averad(totalbinnumber)>0  
            
orowan(totalbinnumber)=(orowanconst*log(2*averad(totalb
innumber)/burgers))/(pi*precipedgespacing(totalbinnumbe
r)*sqrt(1-v)); 
        else 
             
            %if no precipitates have formed, averad is 
0, and the orowan  
            %equation returns NaN because of log(0). 
Therefore we bypass it 
            %and set orowan strength to 0 so the code 
can handle it 
             
            orowan(totalbinnumber)=0;  
        end 
         
         
        %Determine which strengthening mechanism is 
dominant (represented 
        %by 1, 2, and 3) and record predicted effective 
strengthening 
         
        if 
mismatchandcoherency(totalbinnumber)<orowan(totalbinnum
ber)&&mismatchandcoherency(totalbinnumber)<ordered(tota
lbinnumber) 
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strength(totalbinnumber)=solidsolution(totalbinnumber)+
mismatchandcoherency(totalbinnumber); 
            dominantmechanism(totalbinnumber)=1; 
        elseif 
ordered(totalbinnumber)<orowan(totalbinnumber) 
            
strength(totalbinnumber)=solidsolution(totalbinnumber)+
ordered(totalbinnumber); 
            dominantmechanism(totalbinnumber)=2; 
        else 
            
strength(totalbinnumber)=solidsolution(totalbinnumber)+
orowan(totalbinnumber); 
            dominantmechanism(totalbinnumber)=3; 
        end 
         
        totalbinnumber=totalbinnumber+1; 
         
        
totaltime(totalbinnumber)=totaltime(totalbinnumber-
1)+timestep; 
        
cooksteptime(totalbinnumber)=cooksteptime(totalbinnumbe
r-1)+timestep; 
         
        %Loop unless the time for this heat treatment 
step has expired 
     
    end                    
     
    %Move to the next heat treatment step and loop 
unless all of the heat 
    %treatment steps have been run 
     
    
taufract(cookstepcount+1)=taufract(cookstepcount)+cooks
teptime(totalbinnumber)/tau; 
     
    outtab(cookstepcount,1)=cooktemp(cookstepcount);        
    outtab(cookstepcount,2)=totaltime(totalbinnumber); 
    outtab(cookstepcount,3)=xmatrix(totalbinnumber); 
    outtab(cookstepcount,4)=taufract(cookstepcount+1); 
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    outtab(cookstepcount,5)=strength(totalbinnumber-1); 
    
outtab(cookstepcount,6)=dominantmechanism(totalbinnumbe
r-1); 
    
outtab(cookstepcount,7)=numprecippercum(totalbinnumber-
1); 
    outtab(cookstepcount,8)=averad(totalbinnumber-1); 
    outtab(cookstepcount,9)=rcritnuc(totalbinnumber-1); 
     
    clc 
    
End_of_Step_Table=array2table(outtab,'VariableNames',{'
Temp','Time','Matrix_Composition','Fraction_Tau_Complet
ed','Strength','Mechanism','Precipitates_per_m3','Avera
ge_Radius','Critical_Radius'}) 
    cookstepcount=cookstepcount+1; %moves to the next 
heat treatment step 
     
end 
  
%For each array to be plotted, set all zeros to NaN so 
they don't plot as 0 
  
xmatrix(~xmatrix)=nan; 
averad(~averad)=nan; 
nucrate(~nucrate)=nan; 
numprecippercum(~numprecippercum)=nan; 
mismatchandcoherency(~mismatchandcoherency)=nan; 
solidsolution(~solidsolution)=nan; 
ordered(~ordered)=nan; 
orowan(~orowan)=nan; 
strength(~strength)=nan; 
  
%Create a condensed matrix for the data and export it 
to excel 
  
row=2; 
Iteratingbinnumber=1; 
  
while Iteratingbinnumber<=totalbinnumber 
  
    condenseddata(row,1)=totaltime(Iteratingbinnumber); 
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    condenseddata(row,2)=xmatrix(Iteratingbinnumber); 
    condenseddata(row,3)=averad(Iteratingbinnumber); 
    condenseddata(row,4)=nucrate(Iteratingbinnumber); 
    
condenseddata(row,5)=numprecippercum(Iteratingbinnumber
); 
    
condenseddata(row,6)=solidsolution(Iteratingbinnumber); 
    
condenseddata(row,7)=mismatchandcoherency(Iteratingbinn
umber); 
    condenseddata(row,8)=ordered(Iteratingbinnumber); 
    condenseddata(row,9)=orowan(Iteratingbinnumber); 
    condenseddata(row,10)=strength(Iteratingbinnumber); 
    
condenseddata(row,11)=dominantmechanism(Iteratingbinnum
ber); 
     
    
Iteratingbinnumber=Iteratingbinnumber+excelshortener; 
    row=row+1; 
     
end 
  
xlswrite(filename,condenseddata,sheet) 
xlswrite(filename,{'Total Time (s)','Concentration (at% 
Sc)','Average Radius (nm)','Nucleation Rate 
(#/s/m^3)','Number Density (#/m^3)','Solid Solution 
Strength (Pa)','Mismatch and Coherency Strength 
(Pa)','Ordered Strength (Pa)','Orowan Strength 
(Pa)','Total Strength (Pa)','Dominant 
Mechanism'},sheet) 
  
Plot the chosen arrays (can choose other arrays as 
suits your purpose) 
  
figure 
  
plot(totaltime,xmatrix) 
title('Hist Matrix Sc Conc') 
xlabel('Time (s)') 
ylabel('Sc Conc (at%)') 
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set(gcf, 'units','normalized','outerposition',[0 0 1 
1]); %Maximize figure. 
  
figure 
  
plot(totaltime,averad) 
title('Hist Avg Radius (m)') 
xlabel('Time (s)') 
ylabel('Radius (m)') 
  
set(gcf, 'units','normalized','outerposition',[0 0 1 
1]); %Maximize figure. 
  
figure 
  
plot(totaltime,nucrate) 
title('Hist Nuc Rate (per m3)') 
xlabel('Time (s)') 
ylabel('Nucleation Rate (/s/m^3)') 
  
set(gcf, 'units','normalized','outerposition',[0 0 1 
1]); %Maximize figure. 
  
figure 
  
plot(totaltime,numprecippercum) 
title('Hist Number of Precips') 
xlabel('Time (s)') 
ylabel('Precipitates (/m^3)') 
  
set(gcf, 'units','normalized','outerposition',[0 0 1 
1]); %Maximize figure. 
  
figure 
  
plot(totaltime,solidsolution) 
title('Solid Solution Strength') 
xlabel('Time (s)') 
ylabel('Strength (Pa)') 
  
set(gcf, 'units','normalized','outerposition',[0 0 1 
1]); %Maximize figure. 
  
figure 
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plot(totaltime,mismatchandcoherency) 
title('Mismatch and Coherency Strength') 
xlabel('Time (s)') 
ylabel('Strength (Pa)') 
  
set(gcf, 'units','normalized','outerposition',[0 0 1 
1]); %Maximize figure. 
  
figure 
  
plot(totaltime,ordered) 
title('Ordered Strength') 
xlabel('Time (s)') 
ylabel('Strength (Pa)') 
  
set(gcf, 'units','normalized','outerposition',[0 0 1 
1]); %Maximize figure. 
  
figure 
  
plot(totaltime,orowan) 
title('Orowan Strength') 
xlabel('Time (s)') 
ylabel('Strength (Pa)') 
  
set(gcf, 'units','normalized','outerposition',[0 0 1 
1]); %Maximize figure. 
  
figure 
  
plot(totaltime,solidsolution,'y',totaltime,mismatchandc
oherency,'r',totaltime,ordered,'g',totaltime,orowan,'b'
) 
title('Precipitation Strength') 
xlabel('Time (s)') 
ylabel('Strength (Pa)') 
  
set(gcf, 'units','normalized','outerposition',[0 0 1 
1]); %Maximize figure. 
  
figure 
  
plot(totaltime,strength) 
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title('Precipitation Strength') 
xlabel('Time (s)') 
ylabel('Strength (Pa)') 
  
set(gcf, 'units','normalized','outerposition',[0 0 1 
1]); %Maximize figure. 

 

A.3: Thermocalc Ternary Driving Force Data Extractor 

Thermocalc has a great deal of useful data that can be difficult to ouput in an easily 

useful manner. In order to extract a function dictating the driving forces of precipitation 

in ternary alloys, a method has been developed to rapidly output relevant data using a 

Thermocalc console mode program into multiple CSV files (A.3.1). These files are then 

run through an Excel VBA program (A.3.2) that delimits them, extracts the data, closes 

them, and organizes the data for ease of polynomial fitting in a third program. Bivariate 

polynomial fitting is performed in Mathematica for each temperature (A.3.3), and then 

the resulting functions are solved to adjust for temperature change. 

 

A.3.1: Thermocalc - Driving Force Output 

@@ Go to the Data module to get started 
go data 
@@ Switch the database to the latest Al one 
switch 
tcal4 
@@ Define the system 
def-sys 
al sc zr 
@@ 'Reject' all of the phases at first, and then 'restore' the ones we are interested in 
rej pha * 
res pha fcc_a1 al3sc al3zr_d023 
@@ Tell TC to get the data for the defined system and phases 
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get 
@@ Go to the Poly Module, for defining and calculating equilibriums 
go pol 
@@ Change the state of the precipitate phases to dormant, as the driving force depends 
@@ on the solution atoms being entirely in solid solution 
ch-st pha 
al3sc al3zr_d023 
dormant 
@@ Set the conditions of the system, (x(zr)) means molar fraction of Zr in the alloy 
s-c 
n=1 p=101325 t=773.15 x(sc)=0.1e-2 x(zr)=0.0001 
@@Define the driving force functions so they will output recognisable results 
ent-sym funct df1=-8.3144*T*DGV(al3sc) 
 
ent-sym funct df2=-8.3144*T*DGV(al3zr_d023) 
 
@@ Compute equilibrium for the system 
co-eq 
@@ Set up compositional stepping of 1 solute atom for the simulation 
s-a-v 
1 
x(sc) 
0 
0.004 
 
@@ Now begin stepping 
step 
 
@@ Create a table for this temp with the variables of interest (composition, df, etc) 
enter table 
awesome 
x(sc) x(zr) df1 df2 
 
@@ Call the table and save it to a text file 
tab 
awesome 
file \\mtucifs3.iso.mtu.edu\home\AlScZr\773_0001 
 
@@ Repeat! I just made 40 variations of this code in Notepad (changing the two  
@@ instances of "0001"), and then copy pasted it into console mode of TC. Then I  
@@ would Ctrl+F, Replace all "773" with "748", and copy/paste it in again. This makes 
@@ a large number of files. 
 
go data 
switch 
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tcal4 
def-sys 
al sc zr 
rej pha * 
res pha fcc_a1 al3sc al3zr_d023 
get 
go pol 
ch-st pha 
al3sc al3zr_d023 
dormant 
s-c 
n=1 p=101325 t=773.15 x(sc)=0.1e-2 x(zr)=0.0002 
ent-sym funct df1=-8.3144*T*DGV(al3sc) 
 
ent-sym funct df2=-8.3144*T*DGV(al3zr_d023) 
 
co-eq 
s-a-v 
1 
x(sc) 
0 
0.004 
 
step 
 
enter table 
awesome 
x(sc) x(zr) df1 df2 
 
tab 
awesome 
file \\mtucifs3.iso.mtu.edu\home\AlScZr\773_0002 
 
(etc) 
 

A.3.2: Excel VBA - Combine and rearrange TC data 

Sub Importer() 
'This sub imports and combines all of the data from the Thermocalc files that 
were 'generated using the code in A.3.1. After this sub is ran in a workbook 
(which does not 'have to be blank, but does have to have a "Sheet1") which shares 
a location path with the 'Thermocalc files, that worksheet will accumulate all of 
the data. The next sub, 'Organizer(), is used to organize the data perfectly for use 
in Mathematica. 
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Dim sPath As String 
Dim temp(1 To 11) As Integer 
Dim ws As Worksheet 

'Turn off alerts and updating, so the program runs faster and doesn't crash 
Application.DisplayAlerts = False 
Application.ScreenUpdating = False 
 

'Delete all previously created sheets and data to make room for the next results 
For Each ws In Worksheets 
If ws.Name <> "Sheet1" Then ws.Delete 
Next 
 

'List the temperatures of interest so they can be recorded properly 
temp(1) = 473 
temp(2) = 523 
temp(3) = 573 
temp(4) = 598 
temp(5) = 623 
temp(6) = 648 
temp(7) = 673 
temp(8) = 698 
temp(9) = 723 
temp(10) = 748 
temp(11) = 773 
 
 

'This is the one's digit of the concentration of the second solute atom (the addition 
'that is different in every TC output file). It is separated from the ten's digit to 
'make calling filenames, etc easier (x10e-4 atomic fraction) 

concones = 1 
'This is the ten's digit of the second solute concentration (x10e-4 atomic fraction) 

conctens = 0 
 'This is the concentration of second solute addition in the file that is currently 
being worked on, (x10e-4 atomic fraction) 
conc = concones + 10 * conctens 
 'This is the max concentration of solute addition observed (x10e-4 at. fraction) 
maxconc = 40 
 'Counters for keeping track of the different temperatures/data/etc 
tempcount = 1 
maxtempcount = 11 
columncount = 2 
 
 'This block adds the first sheets with names similar to the TC files 
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ThisWorkbook.Sheets.Add(After:=ThisWorkbook.Sheets(ThisWorkbook.Sheets.Count)).
Name = temp(tempcount) & " df1" 
ThisWorkbook.Sheets.Add(After:=ThisWorkbook.Sheets(ThisWorkbook.Sheets.Count)).
Name = temp(tempcount) & " df2" 
 
 'This block opens the first TC text file as a delimited spreadsheet 
sPath = ThisWorkbook.Path & "\" & temp(tempcount) & "_00" & conctens & concones 
Workbooks.OpenText Filename:= _ 
sPath, DataType:=xlDelimited, Space:=True, Local:=True 
 

'This block copies the first solute concentration column from the first TC file into 
'the main workbook 

ActiveWorkbook.Sheets(temp(tempcount) & "_00" & conctens & 
concones).Columns(4).Copy Destination:=ThisWorkbook.Sheets(temp(tempcount) & " 
df1").Columns(1) 
ActiveWorkbook.Sheets(temp(tempcount) & "_00" & conctens & 
concones).Columns(4).Copy Destination:=ThisWorkbook.Sheets(temp(tempcount) & " 
df2").Columns(1) 
 
 'This loop is to ensure each temperature is represented 
Do While tempcount <= maxtempcount 
 
 'This loop is to cycle through all the required ten's digits 
Do While conctens * 10 < maxconc 
 
 'This loop is to cycle through the one's digits for every ten's digit 
Do While concones <= 9 
 

'This calculates the concentration (x10e-4 atomic fraction) of the second solute for 
'the current operation 

conc = concones + 10 * conctens 
 
 'This kicks the code out of the loop as soon as the limit is reached 
If conc > maxconc Then GoTo cheeseburger 
 
 'This block opens the next TC file 
sPath = ThisWorkbook.Path & "\" & temp(tempcount) & "_00" & conctens & concones 
Workbooks.OpenText Filename:= _ 
sPath, DataType:=xlDelimited, Space:=True, Local:=True 
 
 'This workbook copies the data out of the current TC file into the main workbook 
ActiveWorkbook.Sheets(temp(tempcount) & "_00" & conctens & 
concones).Columns(9).Copy Destination:=ThisWorkbook.Sheets(temp(tempcount) & " 
df1").Columns(columncount) 
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ActiveWorkbook.Sheets(temp(tempcount) & "_00" & conctens & 
concones).Columns(11).Copy Destination:=ThisWorkbook.Sheets(temp(tempcount) & " 
df2").Columns(columncount) 
 
 'This iterates to the next column, so the importing data does not overlap 
columncount = columncount + 1 
 
 'This closes the TC file, so they do not build up and slow the computer 
ActiveWorkbook.Close 
 
 'This iterates the one's digit to move to the next higher concentration TC file 
concones = concones + 1 
 
Loop 
 
 'This iterates the ten's digit to continue moving to higher concentration TC files 
concones = 0 
conctens = conctens + 1 
 
Loop 
 
 'This is where the 'goto' kicks you if maximum concentration is reached 
cheeseburger: 
 
 'This 'goto' ends the program if the max temp is done, to avoid errors 
If tempcount = maxtempcount Then GoTo pizza 
  
 'This block iterates to begin copying data from the next temperature 
tempcount = tempcount + 1 
concones = 1 
conctens = 0 
columncount = 2 
 
 'This block adds sheets for the new temp after each precipitate phase's last sheet 
ThisWorkbook.Sheets.Add(After:=ThisWorkbook.Sheets(temp(tempcount - 1) & " 
df1")).Name = temp(tempcount) & " df1" 
ThisWorkbook.Sheets.Add(After:=ThisWorkbook.Sheets(temp(tempcount - 1) & " 
df2")).Name = temp(tempcount) & " df2" 
 
 'This block brings in the next temperature's file 
sPath = ThisWorkbook.Path & "\" & temp(tempcount) & "_00" & conctens & concones 
Workbooks.OpenText Filename:= _ 
sPath, DataType:=xlDelimited, Space:=True, Local:=True 
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'This block adds the column showing the first solute addition's concentration to 
'the newly made sheet 

ActiveWorkbook.Sheets(temp(tempcount) & "_00" & conctens & 
concones).Columns(4).Copy Destination:=ThisWorkbook.Sheets(temp(tempcount) & " 
df1").Columns(1) 
ActiveWorkbook.Sheets(temp(tempcount) & "_00" & conctens & 
concones).Columns(4).Copy Destination:=ThisWorkbook.Sheets(temp(tempcount) & " 
df2").Columns(1) 
 
Loop 
 
 'This is where the 'goto' kicks to when the last temperature has been fully finished 
pizza: 
 
 'This re-enables alerts and screenupdating 
Application.DisplayAlerts = True 
Application.ScreenUpdating = True 
 
End Sub 
 
Sub Organizer() 

'This sub takes the newly collected data straight from Importer() and organizes it 
'for function fitting in Mathematica (and to avoid overflowing Excel by having 
'too long of a column). This sub has a similar flow to the previous sub, so many of 
'the blocks will be left undescribed. See Importer() for more descriptions 

 
Dim sPath As String 
Dim temp(1 To 11) As Integer 
 
Application.DisplayAlerts = False 
Application.ScreenUpdating = False 
 
temp(1) = 473 
temp(2) = 523 
temp(3) = 573 
temp(4) = 598 
temp(5) = 623 
temp(6) = 648 
temp(7) = 673 
temp(8) = 698 
temp(9) = 723 
temp(10) = 748 
temp(11) = 773 
 
concones = 1 
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conctens = 0 
conc = concones + 10 * conctens 
maxconc = 40 
tempcount = 1 
maxtempcount = 11 
columncount = 2 
 
 
Do While tempcount <= maxtempcount 
 
 'This block deletes 3 blank rows at the top that were imported from the TC files 
ThisWorkbook.Sheets(temp(tempcount) & " df1").Rows(2).Delete 
ThisWorkbook.Sheets(temp(tempcount) & " df1").Rows(3).Delete 
ThisWorkbook.Sheets(temp(tempcount) & " df1").Rows(4).Delete 
ThisWorkbook.Sheets(temp(tempcount) & " df2").Rows(2).Delete 
ThisWorkbook.Sheets(temp(tempcount) & " df2").Rows(3).Delete 
ThisWorkbook.Sheets(temp(tempcount) & " df2").Rows(4).Delete 
 

'This counter references row numbers, and the following loop aims at rearranging 
'the imported TC data from low concentration to high, as TC decides to take the 
'smallest concentrations and put them at the end of the data in reverse order. 

i = 39 
 
Do While i <= 55 
 
 'This line adds a blank row in row 2, shifting all other rows down 
ThisWorkbook.Sheets(temp(tempcount) & " df1").Rows(2).Insert shift:=xlShiftDown 
 'This line cuts the target row and inserts it into te blank row just created at 2 
ThisWorkbook.Sheets(temp(tempcount) & " df1").Cells(i, 1).EntireRow.Cut 
Destination:=ThisWorkbook.Sheets(temp(tempcount) & " df1").Cells(3, 1) 
 
 'This block does the same as the last, but for the driving force of the second solute 
ThisWorkbook.Sheets(temp(tempcount) & " df2").Rows(2).Insert shift:=xlShiftDown 
ThisWorkbook.Sheets(temp(tempcount) & " df2").Cells(i, 1).EntireRow.Cut 
Destination:=ThisWorkbook.Sheets(temp(tempcount) & " df2").Cells(3, 1) 
 
 'This iterates to the next offending row 
i = i + 2 
 
Loop 
 

'This block tidies up from the last operation and adds a header denoting which 
'concentration runs vertical and which horizontal (Sc and Zr in this example) 

ThisWorkbook.Sheets(temp(tempcount) & " df1").Rows(2).Delete 
ThisWorkbook.Sheets(temp(tempcount) & " df2").Rows(2).Delete 
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ThisWorkbook.Sheets(temp(tempcount) & " df1").Cells(1, 1).Value = "Sc\Zr" 
ThisWorkbook.Sheets(temp(tempcount) & " df2").Cells(1, 1).Value = "Sc\Zr" 
 

'This loop adds the concentration of the second solute atom (Zr in the above 
'example) to the top row as column headers 

Do While conctens * 10 < maxconc 
 
Do While concones <= 9 
 
conc = concones + 10 * conctens 
 
If conc > maxconc Then GoTo cheeseburger 
 
ThisWorkbook.Sheets(temp(tempcount) & " df1").Cells(1, columncount).Value = conc * 
10 ^ -4 
ThisWorkbook.Sheets(temp(tempcount) & " df2").Cells(1, columncount).Value = conc * 
10 ^ -4 
 
columncount = columncount + 1 
concones = concones + 1 
 
Loop 
 
concones = 0 
conctens = conctens + 1 
 
Loop 
 
cheeseburger: 
 
If tempcount = maxtempcount Then GoTo pizza 
 
tempcount = tempcount + 1 
concones = 1 
conctens = 0 
columncount = 2 
 
Loop 
 
pizza: 
 
Application.DisplayAlerts = True 
Application.ScreenUpdating = True 
 
End Sub 
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A.3.3: Mathematica - Fitting the Data 

data=Import["desktop/AlScZr Importer.xls"][[1]]; 
dims=Dimensions[data] 
 
{40,40} 

axisx=Transpose[data][[1]][[2;;dims[[1]]]]; 
axisy=data[[1]][[2;;dims[[2]]]]; 
 
plotdata=Take[data,-dims[[1]]+1,-dims[[2]]+1]; 
ListPlot3D[plotdata,InterpolationOrder→3,DataRange→{{F
irst[axisx],Last[axisx]},{First[axisy],Last[axisy]},Aut
omatic},MeshStyle→Opacity[0.4],InterpolationOrder→3,Co
lorFunction→"Rainbow"] 
 
plotdata[[2,1]] 

 

-4.02297×108 

ListPlot3D[plotdata,PlotTheme→"Scientific",InterpolationOrd

er→3,DataRange→{{0.0001,0.004},{0.0001,0.0039},Automatic},

MeshStyle→Opacity[0.4],InterpolationOrder→3,ColorFunction→

"Rainbow"] 

 

General::ivar: 

_{0.0001,0.0002,0.0003,0.0004,0.0005,0.0006,0.0007,0.0008,0.

0009,0.001,0.0012,0.0013,0.0014,0.0015,0.0016,0.0017,0.0018

,0.0019,�3�,0.0023,0.0024,0.0025,0.0026,0.0027,0.0028,0.002
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9,0.003,0.0031,0.0032,0.0033,0.0034,0.0035,0.0036,0.0037,0.

0038,0.0039,0.004}_ is not a valid variable. � 

(*data2={{axisx[[1]],axisy[[1]],plotdata[[1,1]]}};*) 
data2={}; 
For[i=1,i<40,i++, 
 For 
[j=1,j<40,j++,AppendTo[data2,{axisx[[i]],axisy[[j]],plo
tdata[[j,i]]}]]] 
data2 

{{0.0001,0.0001,-3.35426×108},{0.0001,0.0002,-

4.02297×108},{0.0001,0.0003,-4.4162×108},{0.0001,0.0004,-

4.69665×108}, ≡1514≡ ,{0.004,0.0037,-

7.17936×108},{0.004,0.0038,-7.20907×108},{0.004,0.0039,-

7.23815×108}} 

fit=NonlinearModelFit[data2,a1*x+a2*y+a3*x*y+a4*x^2+a5*
y^2+a6*x^3+a7*y^3+a8*x*y^2+a9*y*x^2+a10,{a1,a2,a3,a4,a5
,a6,a7,a8,a9,a10},{x,y}]; 
original=ListPlot3D[plotdata,InterpolationOrder→3,Data
Range→{{First[axisx],Last[axisx]},{First[axisy],Last[a
xisy]},Automatic},MeshStyle→Opacity[0.4],Interpolation
Order→3,ColorFunction→"Rainbow"]; 
Show[original,Plot3D[fit["BestFit"],{x,0,0.004},{y,0,0.004}

]] 

 

Normal[fit] 

-3.46474×108-3.77158×109 x-1.10753×1011 x2+6.55504×1012 x3-

3.08377×1011 y+1.67575×1010 x y+3.28663×1011 x2 y+1.06633×1014 

y2-2.96439×1011 x y2-1.33531×1016 y3 

http://reference.wolfram.com/mathematica/ref/message/General/ivar.html

