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MODEL BASED EXPERIMENTAL INVESTIGATION
ON POWERED GAIT ORTHOSIS (PGO)

Huojin Cheng

Department of Mechanical Engineering - Engineering Mechanics

Michigan Technological University, 2005

ABSTRACT

Research on rehabilitation showed that appropriate and repetitive mechanical move-

ments can help spinal cord injured individuals to restore their functional standing and

walking. The objective of this paper was to achieve appropriate and repetitive joint move-

ments and approximately normal gait through the PGO by replicating normal walking, and

to minimize the energy consumption for both patients and the device. A model based

experimental investigative approach is presented in this dissertation.

First, a human model was created in Ideas and human walking was simulated in

Adams. The main feature of this model was the foot ground contact model, which had dis-

tributed contact points along the foot and varied viscoelasticity. The model was validated

by comparison of simulated results of normal walking and measured ones from the litera-

ture. It was used to simulate current PGO walking to investigate the real causes of poor

function of the current PGO, even though it had joint movements close to normal walking.

The direct cause was one leg moving at a time, which resulted in short step length and no

clearance after toe off. It can not be solved by simply adding power on both hip joints.

In order to find a better answer, a PGO mechanism model was used to investigate dif-

ferent walking mechanisms by locking or releasing some joints. A trade-off between

energy consumption, control complexity and standing position was found.
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Finally a foot release PGO virtual model was created and simulated and only foot

release mechanism was developed into a prototype. Both the release mechanism and the

design of foot release were validated through the experiment by adding the foot release on

the current PGO. This demonstrated an advancement in improving functional aspects of

the current PGO even without a whole physical model of foot release PGO for compari-

son.
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With God all things are possible.
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1 INTRODUCTION

1.1 Motivation

How to restore the functional standing and ambulation to spinal cord injured individu-

als has been a major task for many researchers in rehabilitation. The most progress has

been made in rehabilitation theory. Recent research (Harkema 2001) has suggested that

the spinal cord network has the intrinsic capability to interpret complex sensory informa-

tion, such as what position the legs are in and how much load is being borne by the legs.

With that information, the spinal cord can generate activation patterns for standing, step-

ping and other actions. And because the neural pathways are very plastic, patients are able

to teach the spinal cord to learn the motor task through the appropriate and repetitive

mechanical movements. Several mechanical devices have been developed to accomplish

this task. The recent developed Lokomat (Colombo 2000; 2001) and AutoAmbula-

tor(healthsouth.com) are using computer controlled normal gait patterns to drive patients’

legs. These machines can provide patients with accurate mechanical movements; however,

they are very expensive and patients can not move around. The construction for a light-

weight, simple, inexpensive Powered Gait Orthosis (PGO) (Ruthenberg 1994; 1997) was

developed even earlier than these machines, however, it is still in the experiment stage. A

prototype was developed a few years ago. From the experiment, it was observed that joint

movements of hip and knee close to normal walking did not bring in close normal gait. It

proposed some new problems like one leg moving at a time, short step or stride, body

twisting forward, big ground friction or no clearance and so on. Even if the leg sequence
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is solved, the toe-off friction problem is still there. Thus, the purpose or the main task of

this project is to improve the function of the current PGO.

First, a better understanding of normal walking, PGO walking and the difference

between them is needed; the true causes of the poor function of the current PGO needs to

be found. Then the design can be modified to replicating the normal gait more accurately.

Model simulation is convenient and insightful tool for investigating biomechanics or

mechanics of human walking and PGO walking. Therefore in this paper a model based

experimental investigative approach is presented to simulate the normal walking and PGO

walking to visualize the different walking mechanism, predict the function and optimize

the structure of the modified PGO, and validate the design through the experiment. On the

other hand, with an ideal simulation, design questions could be answered using the com-

puter model, reducing dependency on costly prototypes and avoiding unnecessary loss

from some misunderstanding or mistake.

The final goals of this paper are to achieve appropriate and repetitive joint movements

and approximate normal gait through the PGO, and to minimize the energy consumption

for both patients and the device. Before the approach to achieve these goals is discussed, a

look back at what have been done in the area of rehabilitation devices and simulation of

human walking is presented.

1.2 Overview on Rehabilitation Devices

Many devices have been employed in the effort to restore functional standing and

ambulation to spinal cord injured individuals. They can be classified into three categories:

mechanical, Functional Electrical Stimulation (FES) and hybrid of these two. Many-chan-
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nel FES-only systems are currently impractical clinical alternatives because of the strength

limitations and rapid fatigue associated with FES-activated muscle as well as the complex-

ity of required FES controllers (Tashman 1995). Hybrid systems produce jerky gait

because of manual stimulation, although these systems utilize FES-activated lower-

extremity musculature to provide propulsive force while taking advantage of the weight-

bearing support and stability offered by orthosis. Mechanical devices seem to provide

more normal gait and are controlled by computer. Passive orthosis have several differenti-

ating features. The main characteristic of the Hip Guidance Orthosis (HGO) shown in Fig-

ure (1 - 1) or the “Parawalker”, is that its hip joints are free to flex and extend between

stops. The Reciprocating Gait Orthosis (RGO) (Figure (1 - 1)) differs in that a cable or

linkage system coupling two hip joints ensures extension on one side, causing flexion on

the other side (Douglas 1983; Jefferson 1990; Whittle 1991). The main feature of

Moorong Medial Linkage Orthosis (Moorong MLO) is a low friction linkage to prevent

abduction of the swing-through leg while the body is tilted to create ground clearance for

the swing leg. At the same time, this prevents abduction of the stance leg under body

weight (Middleton 1998).
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Arguably, the most effective of currently available passive devices is the Reciprocating

Gait Orthosis (RGO) (Jefferson 1990; Whittle 1991). Walking in RGO is achieved by pull-

ing the trunk forward, using crutches or rollator, then tipping the pelvis so that the trailing

leg is lifted clear of the ground, thus allowing it to move forward and take a step. However,

for individuals to ambulate with the RGO, even for short distances at low speeds with the

assistance of crutches or rollator, the high energy or upper body strength demanded

restricts their widespread use. Compared to a normal individual, the typical RGO user

walks approximately one third as fast and consumes four times as much energy per meter

travel (Tashman 1995). It is also pointed out that an RGO user walking at 1 ms-1 would

have to do 14 times more work than a normal person (Bernardi 1995). The causes of the

Figure (1 - 1)  HGO, RGO (Jefferson 1990)
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high energy consumption can be shown through gait analysis. In the case of paraplegic

walking, the needed movement of the hip joint and pelvis is much greater than that of a

healthy subject. This is of course a necessary consequence of the patient having to lift and

rotate the pelvis to swing a leg through its swing phase due to the necessary locking of the

knee joint, while Bowden cables on the orthosis connecting the hip joints transfer the

reverse motion to the stance leg, propelling the subject forward. This action is, of course,

extremely tiring (Downes 1994). In fact, the tilt of pelvis and the jerky gait make the cen-

ter of gravity swing widely and the acceleration of the center of gravity not as smooth as

normal people. These also cause more energy consumption.

To solve these problems, many external powered devices have been developed. The

Powered Hip Orthosis (PHO) shown in Figure (1 - 2) is a modified RGO by applying

external power to the hip joints while disconnecting the transfer cable but leaving the

knees still locked (Downes 1994). Motors are controlled by microprocessor. Walking in

this device, the user still has problem of foot/ground clearance.
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The weight bearing control (WBC) orthosis shown in Figure (1 - 3) is also a modified

RGO with two variable sole-plates for foot/ground clearance during walking (Yano 1997).

The variable sole-plates are powered by a CO2 liquid air gas tank. During the swing phase,

the sole-plate retracts to provide foot/ground clearance; before the swing foot touches the

ground, the sole-plate extents to the original thickness. However, the hip joints are still

manual.

Figure (1 - 2) Powered Hip Orthosis (PHO) (Downes 1994)
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The Powered Gait Orthosis (PGO) is developed by Dr. Beard and his team (Ruthen-

berg 1994; 1997). The current PGO prototype is one degree of freedom for each leg. The

hip joint is powered by a DC motor through a four-bar mechanism; the knee joint is actu-

ated with the use of a cam-modulated linkage, the cam profile being machined into the

face of the lower gear (driven by the motor). Since the cam follower is captured in a slot-

ted cam profile, it always remains in contact with the cam during flexion or extension.

Hopefully the motor can drive hip joint to move swinging leg forward and at the same

time flex the knee joint to make clearance for the swinging leg. In fact, because two joints

are coupled and only one leg moves at a time, it is only an approximation of real biped

Figure (1 - 3) WBC Orthosis
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walking, still having some problems that can be seen from the simulation results of the

current PGO.

Recently, more new devices have been developed. Lokomat(Figure (1 - 4)) (Colombo

2000; 2001) is a treadmill training device with a driven gait orthosis (DGO). The orthosis

has four revolute joints that accommodate hip and knee flexion/extension for each leg. The

joints are driven by precision ball screws connected to DC motors. Parameters such as the

hip width, thigh length and shank length can be manually adjusted to fit individual

patients. The weight of the orthosis is supported by a parallelogram mechanism that

moves in the vertical direction and is counterbalanced by a gas spring. A harness system

can partially unload the patient’s weight and control the upper body’s balance. The hip and

knee motors are controlled by computer using gait pattern which is generated by tracking

the four reference angle trajectories recorded in another experiment, where a healthy sub-

ject was walking in the orthosis.
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The AutoAmbulator (Figure (1 - 5)) (healthsouth.com) is also a sophisticated treadmill

device that is unparalleled in its ability to help patients accurately replicate normal walk-

ing patterns. While no detailed report on it is available, the sophisticated features include:

• An overhead harness system to fully support the patient

• Mechanically powered brace to move the patient’s legs

• Numerous computerized sensors to track vital signs, movement and contact speed

• Automatic speed adjustments based on contact speed

• An emergency button that allows the patient or therapist to stop the machine if

needed

Figure (1 - 4) Lokomat
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The Mechanized Gait Trainer (MGT) (Figure (1 - 6)) (Hesse 2000) is a different

device. The gait trainer is based on a doubled crank and rocker gear system. It consists of

two footplates positioned on two bars (couplers), two rockers, and two cranks that pro-

vides the propulsion. The low backward movement of the footplates simulates the stance

phase while the forward movement simulates the swing phase. The system generates a dif-

ferent movement at the tip and at the rear of the footplate during the swing. The tip of the

plate follows an arc-like movement corresponding to the length of the rocker. The rear end

is lifted during swing so that the footplate itself is inclined during swing. Furthermore, the

crank propulsion is modified by a planetary gear system to provide a ratio of 60 percent to

40 percent between stance and swing phases. However, there is no direct control for knee

movement.

Figure (1 - 5) AutoAmbulator (healthsouth.com)
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.

Another similar device called Robotic Walking Simulator (Schmidt 2002a; 2002b) has

been developed by the same group. It consists of two robots. In each robot there are two

independently driven electrical linear motors moving on a common rail, which are used

for the two linear base joints to achieve the dynamic performance. The linkage principle is

similar to a crank and slider mechanism. At the crank pivot, a short robot arm is attached.

The footplate is mounted the distal end of the robot arm. The horizontal and vertical posi-

tion of the footplate depends on the position of both linear motors, whereas the angular

position is determined by a rotatory motor located inside the robot arm. To some degree,

this device can achieve more accurate trajectories of feet and stair climbing training.

Figure (1 - 6) Mechanized Gait Trainer (MGT)
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Bio-Responsive Motion System (BRMS) (Figure (1 - 7)) (Hirata 2002) is a novel exer-

ciser for two hip, knee, and ankle joints of spastic patients. It is composed of a link mech-

anism, bed for the patient to lie on, an operating/monitoring panel, a patient’s monitoring

panel, and control unit. One pair of two mechanical arms of the BRMS move the targeted

lower extremity. The link mechanism comprises one pair of actuated arm mechanisms and

splints. One of the mechanism supports the thigh of the patient, giving two-degree-of-free-

dom rotating/linear motion. The another drives the lower leg, giving three-degree-of-free-

dom rotating/linear motion. The other drives the ankle joint. Hip, knee, and ankle have a

wide range of motion with the BRMS.

The Hybrid Assistive Leg (HAL) (Figure (1 - 8)) (Kawamoto 2002; Kasaoka 2001;

Lee 2002a; Lee 2002b) is an EMG-based power assistant system for walking aid. It is

composed of three main parts: skeleton and actuator, controller, and sensor. The skeletal

system of HAL consists of an exoskeletal frame with six joints (hip, knee and ankle joints

for each leg; each joint is 1 DOF) and four actuators driving hip and knee joints. The actu-

Figure (1 - 7) Bio-Responsive Motion System (BRMS)
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ator has a DC servo motor with the harmonic drive gear. The control system consists of

compact PC, driver circuits, power supply, and measuring module which are packed in the

back pack. The sensor systems are used to detect HAL and operator’s condition and esti-

mate the assist force. The rotary encorder is prepared to measure the each joint angle,

force sensors are installed in the front and rear sole of the foot to measure the floor reac-

tion force (FRF) sensor, and the myoeletricity sensors are attached on the surface of the

skin of leg to estimate torques for knee and hip joints.

Figure (1 - 8) HAL
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1.3 Overview on Simulation of Human Walking

Simulation of human walking is relevant to three fields: computer graphics, robotics

and biomechanics. Researchers in computer graphics have explored the animation tech-

nique, including: keyframing, kinematic, dynamic, hybrid of kinematic and dynamic, and

motion editing. Keyframing technique provides motion by specifying the joint angles over

time. The joint angle is interpolated from the initial configuration to the final one, with

several intermediate configurations if necessary. It is hard to find the interpolation func-

tions in human walking that require a large amount of non-linear coordination among the

body parts.

Bruderlin and Calvert (Bruderlin 1989;1988) built a keyframeless animation of walk-

ing system. Dynamic simulation provides the low-level control detail necessary to define a

motion; kinematic algorithms are applied to calculate all the body angles from the motion

of the dynamic model. The system can generate a wide range of walking pattern by chang-

ing the three primary parameters.

Ko (Ko 1994) also used kinematic and dynamic techniques in animation. Kinematic

technique was used to initiate and generate goal oriented intentional motion, and dynamic

technique was applied at each frame to adjust the kinematic motion to achieve dynamic

soundness without affecting the goal achievement.

The foot ground contact is rarely considered. Vasilonikolidakis and Clapworthy per-

formed inverse Lagrangian dynamics on articulated models, focusing on the ground reac-

tion force during the locomotion case (supposed to be the only external force).

Researchers in robotics have explored control techniques for legged robots that walk,

run, balance and perform other activities. McGeer (McGeer 1990; 1993) was the first to
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study passive dynamic walking. It was shown that the passive walkers can walk smoothly

and stably down a shallow incline without any sensing, control, or actuation, and the walk-

ing cycle was smooth, efficient and natural.That means the gait can be sustained simply by

interaction of gravity and inertia in a limited cycle.

Honda P2 (Hirai 1998) and P3 each has 12 actuated degrees of freedom in the lower

body -- three in each hip, one in each knee, and two in each ankle. The robot is primarily

controlled by playing back pre-recorded joint trajectories acquired from direct measure-

ments of human subjects. Three additional controllers modify the trajectory in order to

maintain balance in light of disturbances, terrain, or modelling errors. A ground reaction

force controller modifies joint angle trajectories to achieve the desired zero moment point

(ZMP) and thus conform to uneven terrain. A model ZMP controller shifts the desired

ZMP by changing the ideal body trajectory when the robot is about to tip over. A foot

landing position controller changes the stride length to compensate for changes in the

body trajectory made by the model ZMP controller. With this control scheme, the robot

can walk fairly fast, walk up and down stairs, and turn in place. An intelligent walking

technology featured with a predicted movement control is added to a new generation

ASIMO (asimo.honda.com). ASIMO can walk more smoothly and more naturally.

Researchers in biomechanics have been exploring the mechanism of human walking

physiologically and physically. In their reviews (Zajac 2002; 2003), Zajac et. al provided

insight into muscle coordination of human walking from simple models to complicated

neuro-musculo-skeletal models. In our review, however, the focus is on approaches for

modelling and simulation of human walking to solve problems in this area. Chow et. al

(Chow 1971) used a model of two-link lower extremity (a ball foot was fastened to the
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shank) combined with optimization theory to simulate normal gait. The performance crite-

rion is to minimize the sum total of mechanical energy expenditure by the muscle-activat-

ing system which is proportional to the integral of the square of the net moment. Onyshko

and Winter (Onyshko 1980) modelled the human body with three segments. The three seg-

ments are two lower limbs, and the head, arms and trunk (HAT) as one segment. Heel, toe

or ankle was pivoted on the floor for four different walking phases. In their later studies

(Gilchrist 1996; 1997), they presented a nine-segment three-dimensional model, including

a two-part foot. Ju et al (Ju 1988) only simulated the double support phase of human gait.

Amirouche et al (Amirouche 1990) modelled the human body using five segments with

the ankle of the stance leg pivoted on the floor. Koopman (Koopman 1995) used an eight-

segment model combined with optimization to reconstruct and predict the bipedal walk-

ing. Pandy et al (Pandy 1988a;1988b; 1989a; 1989b) simulated single stance phase of

human walking to quantify the influence of individual gait determinants on the ground

reaction forces generated during normal, level walking. In their recent research (Anderson

1999; 2001a; 2001b; 2002;Pandy 2001), they presented a more complicated musculo-skel-

etal model combined with dynamic optimization to predict muscle excitations and thus

reproducing the features of normal gait or jumping. Neptune et al (Neptune 2001) used a

musculo-skeletal model to study the contributions of individual muscles to trunk support

and progression. Wright et al (Wright 1998; 2000) also used a musculo-skeletal model to

study the joint and muscle loading and investigate the injury mechanism of ankle sprains.

Taga (Taga 1998; 2000) used a neuro-musculo-skeletal model to investigate the dynamic

interaction between the neural system, the musculo-skeletal system and the environment

in the maintanence of stable gait. Hase (Hase 2002a; 2002b; 2002c; 2002d) used the same
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method to study human locomotion, but his model is with 14 rigid links and 60 muscles,

and the neural system was presented by the rhythm generator system, the sensory feed-

back system and the peripheral system. Some others were interested in pathologic gait.

Tashman (Tashman 1995) simulated swing phase of paraplegic ambulation in a RGO to

study the dynamics of RGO-assisted gait and to explore FNS control strategies for the

design of hybrid RGO/FNS systems. Englbrecht (Englbrecht 2001) simulated crutch

walking with measured foot ground reaction force and crutch ground reaction force to

determine the moments and power on elbow and shoulder joints.

Our purpose to simulate human walking is to understand the kinematics and dynamics

of human walking and validate some models which will be used for the simulation and the

design of the PGO, through comparing the simulation results with measured data. Thus we

are more interested in the segment model and the forward & inverse dynamic approach.

Because the foot ground contact model is important for this research.

Gilchrist and Winter (Gilchrist 1996; 1997) used a two-part, viscoelastic foot model. A

total of nine contact elements, arranged down the midline of the foot, were used; the verti-

cal ground reaction forces resulted from linear spring/damper systems in each of the con-

tact elements. The damping coefficient was modelled non-linearly as a function of the

amount of spring compression to prevent large step increases in force as each damper was

brought into play. The shear forces were modelled as linear functions of the velocity of the

contact points.

Van Den Bogert (Van Den Bogert 1989) used foot ground contact model for simula-

tion of quadrupedal locomotion. The GRF were approximated vertically by a linear vis-

coelastic model and horizontally by a pseudo-Coulomb friction model.
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Wojtyra (Wojtyra 2000) also used a linear viscoelastic model for vertical force, the

damping c is nonlinear function of penetration. In fact, in ADAMS a step function is used

to prevent discontinuity at the contact starting point (zero penetration). A pseudo-Cou-

lomb friction model was used for horizontal force. To prevent singularity, a small constant

was added to the denominator.

Gerritsen (Gerritsen 1995) used a nonlinear model for vertical force in simulation of

impact in heel-toe running and a Coulomb friction model for horizontal force. Ouezdou

and Bruneau (Ouezdou 1998; Bruneau 1999) used a distributed nonlinear model for verti-

cal force and a linear model for horizontal force. Silva (Silva 2001) modelled the contact

through a linear spring-damper in the horizontal direction and a linear spring with a non-

linear damper in the vertical direction.

Wright and Neptune (Wright 1998; Neptune 2000) modelled the contact through 66

discrete independent contact elements. A nonlinear spring and a nonlinear damper were

used for vertical force, and a pseudo-Coulomb friction model was used for horizontal

direction.

Anderson (Anderson 1999) modelled foot in two parts. Five spring-damper units are

distributed over the sole of each foot. The vertical force is exponential to the height of the

foot above the ground; the horizontal force is linear.

Most of them did not show the values of the penetration and sliding through which the

accuracy of modeling can be shown. Also, contact models were used to simulate different

conditions including walking, running and jumping. However, we can start with a simple

one, then refine the model to minimize penetration and sliding.
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1.4 Model Based Experimental Investigative Approach

It is told in section 1.1 why we wanted to use the model based experimental investiga-

tion approach. It can visualize the walking mechanism, provide us insight into biomechan-

ics or mechanics of human walking and PGO walking, help us to better understand normal

walking and PGO walking, predict the function and optimize the structure of the modified

PGO. The model based experimental investigative approach presented in this paper is the

investigation based on dynamic simulation of human walking model and human in PGO

walking mode, and validation through experiment. The details are:

• Through dynamic simulation of human walking, to validate the foot ground con-

tact model and the balance control strategy of upper body by comparing the calcu-

lated foot ground contact force and the movement of COM with measurements; To

obtain forces and energy consumptions for joint’s movements while human was

treated as a non-living physical body like a robot;

• Applying the same foot ground contact model and upper body balance control

strategy to the current PGO physical model to show its performance and find the

difference by comparing the results of normal walking with those of current PGO

walking;

• Applying the same foot ground contact model, upper body balance control strategy

and some joint’s movements to different PGO mechanism model to explore the

final scheme of the modified PGO;

• To size and design the modified PGO virtual model and simulate the virtual model

to refine the design and predict its function;

• To validate the virtual model through the experiment.
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1.5 Thesis Outline

Human walking is overviewed in Chapter 2. It provides us a direct and simple look

into the normal gait, kinematics and dynamics of human walking based on the measure-

ment, which will be used in the next chapters to provide joint motions as driving power in

the simulation and also to provide a basis or standard to validate the simulation. It includes

normal gait, energy consumption, kinematics and kinetics of human walking.

Simulation of human walking is presented in Chapter 3. It shows us how to make a

model in I_DEAS then simulate it in ADAMS. An average Hanavan male model is used as

human model. The data of joint motions of lower extremities is from Winter’s book (Win-

ter 1991). Foot ground contact model is the nucleus of this part and is also the basis for the

simulation of other models. By comparison of simulated results and the measured data

from Chapter 2, this model is validated. It includes human model, joint motion functions,

foot-ground contact model, upper body balance control and simulation results analysis.

Current PGO physical model is simulated in Chapter 4. The same foot ground contact

model and upper body control strategy as those validated in Chapter 3 are used in the sim-

ulation. It provides insight into the current PGO walking. By comparing the simulation

results with those of normal walking, the true causes of poor function of the current PGO

are explored. It includes current PGO model, human in current PGO model, joint motion

function, simulation results analysis and problem discussion.

Simulation of PGO mechanism models is described in Chapter 5 Three PGO mecha-

nism models are compared to find a trade-off between energy expenditure, control sim-

plicity and functions.
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Chapter 6 presents the design of the foot-release PGO, a trade-off found in Chapter 5.

The design is detailed, including solid models and drafts. Only the foot-release mecha-

nism is physically realized. The driving power for the foot-release mechanism is a step

motor which can be started by a push button and stopped at the exact position by inner

control program.

Both mechanism and design of foot-release are validated in Chapter 7. The ground

reaction forces in both conditions, walking in current PGO with foot release and without

it, are measured and compared to show the effectiveness of the mechanism and design of

foot release. The simulation of current PGO with foot-release further proves the effective-

ness of the mechanism of foot release.

A final conclusion is summed up in Chapter 8.
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2 HUMAN WALKING

Before modeling started, a thorough understanding of the mechanism, kinematics and

dynamics of human walking which is based on the measurement and observation is

needed. They are the basis to the modeling and simulation. Therefore, some important

conception and data on human walking are summed up in this overview.

2.1 Normal Gait

The gait cycle is a time interval or sequence of motion occurring from heelstrike to

heelstrike of the same foot. The gait cycle has been broadly divided into two phases:

stance phase and swing phase. These phases can then be further subdivided and discussed

in terms of percentage of each within the gait cycle. This is diagrammatically represented

in Figure (2 - 1) by Verne T.   Inman (Inman 1981).
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The stance phase is about 60 percent of the gait cycle and can be subdivided into dou-

ble-leg and single-leg stance. In double-leg stance, both feet are in contact with the

ground. At an average walking speed, it represents 10 percent of the entire gait cycle, but

decreases with increased walking speed and ultimately disappears as one begins to run. At

slower walking velocities the double-leg support times are greater. Single-leg stance com-

prises up to 40 percent of the normal gait cycle.

The swing phase is described when the limb is not weight bearing and represents 40

percent of a single gait cycle. It is subdivided into three phases: initial swing (accelera-

tion), midswing, and terminal swing (deceleration). Acceleration occurs as the foot is

lifted from the floor and, during this time, the swing leg is rapidly accelerated forward by

hip and knee flexion along with ankle dorsiflexion. Midswing occurs when the accelerat-

Figure (2 - 1)  Time dimensions of the gait cycle (Inman, 1981)

0% 10% 50% 60% 100%

0% 40% 50% 90% 100%
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ing limb is aligned with the stance limb. Terminal swing then occurs as the decelerating

leg prepares for contact with the floor.

2.2 Kinematics

The joint kinematics describes the relative position and orientation of one body seg-

ment to the adjoining one. The relative orientation of one body segment to another defines

the joint angles. Four joints angles are shown in Figure (2 - 2) (CGA Normative database,

http://guardian.curtin.edu.au/cga/). Large movements happen in sagittal plane. That is the

partial reason for why the model walking only in sagittal plane is simulated. Because PGO

restricts the motion in this plane, the simulation in this plane make it comparable to PGO

walking. The joint angles in sagittal plane are used as driving power in the simulation. The

curves are shown in Figure (2 - 3). The data is from Winter (Winter 1991).
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2.3 Kinetics

Kinetics mainly deals with the individual muscle forces, the moment generated by

those muscles across a joint, the mechanical power patterns (rate of generation or absorp-

tion by muscles, or rate of transfer between segments), or energy patterns (segment or

Figure (2 - 2)  Kinematics (from MAC system by Andreas Kranzl, Vienna
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total body). The data of joint moments and power from Winter’s book is normalized. It is

converted to that of an average adult male (73.5 kg) by timing 73.5 kg. The curves are

shown in Figure (2 - 3).

2.4 Energy Expenditure

The ultimate source of energy for bodily work is the oxidation of foodstuffs. Conse-

quently, the measurement of the oxygen consumption of the body provides a measure of

the energy expenditure of the body.

During gait, three main events occur in which energy is consumed. This includes con-

trolling forward movement during deceleration toward the end of swing phase, shock

Figure (2 - 3) Joint moments and power (Normalized data is from
Winter’s book)
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absorption at heelstrike, and in propulsion during push off (when the center of gravity is

propelled up and forward).

In natural walking, from Inman (Inman 1981), energy expenditure is

 (cal/min/kg), (2-1)

Where average E0 = 28, V is the speed and Vu is the limit of V, Vu = 240 m/min.

From Perry’s book, the energy expenditure for an adult at the Customary Walking

Speed (CWS) is 12.1 ml/kg/min. Converted to calorie, E =12.1*5 = 60.5 cal/min/kg. The

CWS for male adult is 82 m/min. In terms of Eqn (2-1), Ew = 64.61 cal/min/kg.

For an average male adult (73.5 kg) the energy expenditure is 73.5*60.5*4.1868(J)/60

= 310 Watts. It is estimated that roughly one quarter of that is mechanical power (Rose

1994). It is 77.5 Watts. This data will be used to validate the model.

A human’s center of mass (COM) is located just anterior to the second sacral vertebra,

midway between both hip joints. The COM deviates from the straight line in vertical and

lateral sinusoidal displacements. The net effect is a smooth, sinusoidal translation of the

COM through space along a path that requires the least amount of energy. The least

amount of energy is required when a body moves along a straight line, with the COM

deviating neither up nor down, nor side to side, but that is not the case for walking.

With respect to vertical displacement: the COM goes through rhythmic upward and

downward motion as it moves forward. The highest point occurs at midstance; the lowest

point occurs at time of double support. The average amount of vertical displacement in the

adult male is approximately 5 cm.

With respect to lateral displacements: as weight is transferred from one leg to the

other, there is shift of the pelvis to the weight-bearing side. The oscillation of the COM

Ew

E0

1 V V u⁄–( )2
-------------------------------=
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amounts to a side-to-side displacement of approximately 5 cm. The lateral limits are

reached at midstance.

2.5 Ground Reaction Forces

2.5.1 Vertical Reaction Force

Let us consider each component of the GRF separately. The largest is the vertical com-

ponent and accounts for the acceleration of the body’s center of mass in the vertical direc-

tion during walking. A typical plot of the vertical ground-reaction force is shown in Figure

(2 - 4), where the vertical reaction force is expressed as percent of body weight (%BW).

This curve is sometimes called the M curve because it resembles that letter. During

the first 100 ms, the GRF goes to a maximum of 120% BW during the double stance

Figure (2 - 4) Vertical ground reaction force (GRF) during walking (Soutas-
Little, http://www.vard.org/mono/gait/soutas.htm)



Human walking

29

phase. During single stance phase, the vertical GRF drops to about 80% BW and for the

more dynamic walker the vertical GRF drops to 60 to 70% BW. At first, it seems unusual

that the GRF should be less than body weight during single stance when only one foot is

on the ground. This is made clearer if the vertical position of the center of mass of the

body during the gait cycle is examined. The center of mass is located around the center of

the pelvis, ignoring changes due to arm position, and executes a sinusoidal motion rising

and falling about 10 cm in space during walking, as shown in Figure (2 - 5).

The acceleration of the center of mass in the vertical direction is shown below the dis-

placement of the center of mass. It can be seen that this is opposite in sign at each point in

Figure (2 - 5) Vertical displacement and acceleration of the center of grav-
ity (c.g.) of the body during walking
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the gait cycle. If the entire body is treated as a mass on a spring, the magnitude of the GRF

can be more easily understood.

2.5.2 Anterior-posterior (AP) GRF

The anterior-posterior (AP) GRF is first a braking force to mid-stance, followed by

propulsion. It usually represents a sine curve with an amplitude of 25% BW, as shown in

Figure (2 - 6). The AP GRF is braking for approximately 50 percent of stance phase fol-

lowed by propulsion. The area under any segment of this curve represents the impulse or

the time integral of the force.

The braking impulse should be approximately equal to the propulsion impulse for bal-

anced gait left to right. The total impulse in the AP direction for a full gait cycle should be

zero, as the impulse is equal to the change in momentum in the forward direction.

Figure (2 - 6) Anterior-posterior (AP) ground reaction force (GRF)
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The data from Winter’s book is normalized by the weight. For an average male adult

(73.5 kg used in simulation), both vertical and horizontal reaction forces are shown in Fig-

ure (2 - 7).

2.6 Summary

This chapter gave us a simple look into the data prepared for simulation. The stance

phase is 60% of gait cycle, COM is up and down 5 cm, mechanical power is 77.5 Watts for

an average adult male (73.5 kg). The data of hip, knee and ankle angles from Winter’s

book will be used as driving power in the simulation. Other data like joint moments,

Figure (2 - 7) Ground reaction forces (Normalized data is from
Winter’s book)
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power and ground reaction forces are prepared from normalized data by multiplying 73.5

to validate the simulation.
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3 SIMULATION OF HUMAN WALKING

3.1 Human Model

A personalized mathematical model of the human body for evaluating inertial proper-

ties based on anthropological data and body mass distribution has been developed by

Hanavan (Hanavan 1964). The human model adopted in this project was based on this

model. The model can be used to evaluate the inertial parameters of the human body in

any desired body configuration. These parameters are (Seireg 1989):

1. mass of body segments

2. centers of mass of body segments

3. mass moments of inertia of body segments

4. center of gravity of the whole body

5. principal axes of inertia of the whole body

The dimension of the model used here is a 50th percentile male (weight = 161.9 lb. or

73.5 kg, height = 69.1 in. or1.755 m) and some properties are shown in Table 3 - 1 on

page 33.

Table (3 - 1): Dimension of Human Model

Half length
of minor

axis

Half length
of major

axis

Segment
length

Segment
weight

Segment
density

Segment
R

(inches)
RR

(inches)
SL

(inches)
SW
(lbs)

D

(lb/in.3)

Head 6.25 3.58 12.5 12.8 0.040
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The model shown in Figure (3 - 1) consists of 14 rigid segments shown in Table 3 - 1

on page 33 to ensure correct position of center of gravity and inertial properties of each

segment. It is built in the IDEAS, then imported into ADAMS. It also has 3 fixed joints

and 10 revolute joints. Revolute joints constrain the model to move only in the sagittal

plane. The reasons to make this simplification are:

1. Almost all mechanical devices to restore ambulation are designed this way to control

the balance of the upper body

2. Flexion and extension represent the major movements at most joints. Therefore they

contribute significantly to performance in most tasks.

3. Simulation of normal walking in the sagittal plane make it comparable with device

assisted walking, especially PGO.

Upper torso 6 4.25 7.9 22.5 0.036

Lower torso 6.6 4.18 15.6 52.2 0.039

Hand 1.85 1.85 3.7 1.16 0.043

Upper arm 1.98 1.74 13.5 5.0 0.034

Forearm 1.74 1.08 10.9 3.0 0.043

Upper leg 3.57 2.29 15.1 16.4 0.040

Lower leg 2.29 1.42 15.1 7.9 0.048

Foot 1.45 0.94 10.5 2.37 0.050

Table (3 - 1): Dimension of Human Model

Half length
of minor

axis

Half length
of major

axis

Segment
length

Segment
weight

Segment
density

Segment
R

(inches)
RR

(inches)
SL

(inches)
SW
(lbs)

D

(lb/in.3)
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.

3.2 DOFs and Constraints

A totally unconstrained rigid part has 6 DOFs, fixed joint has 6 constraints, and revo-

lute joint has 5 constraints. The model has 14 rigid parts, 3 fixed joints and 10 revolute

joints. Then DOF of the model is 16 (6*14-3*6-10*5 = 16). Therefore, enough forces or

motions or joints must be assigned to constrain the model. Ten joint motion functions will

constrain 10 DOFs, leaving 6 DOFs. Three ground reaction forces control 3 translate

DOFs. In order to control 3 rotational DOFs, more joints or torques are needed. Therefore

Figure (3 - 1)  Human model
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in Balance control two parallel primitive joints are used together to control 3 rotational

DOFs, even though one parallel joint has two rotational constraints. Then the model will

be fully constrained.

3.3 Joint Motion Functions

All moving joints are powered by motion functions. The data for lower extremities is

obtained from measurement. The data for shoulder and arm are obtained through Bezier

curve fitting by estimating some important positions of these joints. All the data from mea-

surement were discrete. However, for the simulation purpose, a continuous and periodical

function is needed, which is approximated by Fourier series.

For angle data of three joints, hip, knee and ankle from Winter’s book (Winter 1991),

the natural cadence is used. It is assumed that the right leg is symmetric to the left leg. The

walking patterns are also symmetric, only a step behind. Therefore, data for the other leg

can be obtained by shifting a step of the data from measurement. The curves are shown in

Figure (3 - 2). Solid lines are from Winter’s book; the dash lines are Fourier series.
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3.4 Foot-Ground Contact Model

The impact and friction effects are considered in the foot-ground contact model. The

ground reaction forces (GRF) are approximated vertically by a linear viscoelastic model

and horizontally by a pseudo-Coulomb friction model (Van den Bogert, 1989). Later a

nonlinear viscoelastic model and distributed contact model are used to refine the model.

Figure (3 - 2) Fourier series and measured data of three joint angles
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3.4.1 Linear Viscoelastic Model

This model is used to calculate the impact force. Mathematically, the impact force is

given as a function of position (x, y) and velocity of ( , ) of the ground contact point,

which is allowed to penetrate into the ground.

, when( ); , when (y > 0) (3-1)

where, Fy is the impact force

In ADAMS, some refinements are needed. The force FZ is

IMPACT(Disp, Vel, Disp_trigger, K, Exp, C, Ramp_dist), substituted by letters

FZ= IMPACT(q, , q1, ke, e, Cmax, d), the true meaning of this function is

FZ=0, if

, if (3-2)

A large number of test simulations were performed to choose the appropriate value of

K and Cmax. The values are: k =10000 to 25000 N/m, Cmax = 10 to 1500 Ns/m.

3.4.2 Pseudo-Coulomb friction Model

The typical Coulomb friction model introduces some discontinuities into the model,

because it consists of two separate models for the stiction phase and for the sliding phase.

The pseudo-Coulomb friction model (Badoux 1964) was described as ,

where Fx is the horizontal component of a GRF and γ is the coefficient of friction.

Because  may be zero, which will cause numerical singularity, the model was approxi-

ẋ ẏ

F y ky λυ ẏ–= y 0≤ F y 0=

q̇

q q1>

F z k q1 q–( )e
Cmaxq̇ STE× P q q1 d 1 q1 0, , ,–,( )–= q q1≤

F x γF y
ẋ
ẋ

-----–=

ẋ
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mated by . but it still causes numerical singularity in

ADAMS simulation, for Fy is zero during the swinging phase. A little change is made as

below:

, (3-3)

In three dimension,

, (3-4)

where ε is small constant value to ensure that denominator is not zero.

The value of these coefficients are: γ = 0.3, ε = 1*10-5 m/s

3.4.3 Contact points

 The contact points shown in Figure (3 - 3) are distributed along the foot with elastic

and damping coefficients changed. The reason to use the distributed contact points is to

minimize the penetration of the feet and to maximally approximate the simulation results

to the measurements. This contact points plan comes up after many attempts with two con-

tact points in which the simulated ground reaction force failed to agree with the measure-

ments.

The other reason to change the elastic and damping coefficients is the changed foot

pressure (Perry 1992). From Perry’s book we can see the pressure distribution. For a non-

linear spring, different deformation will give a different elastic coefficient.

F x
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3.5 Upper Body Balance Control

Before the model is ready for simulation, a way must be found to control the balance

of upper body. Two primitive joints, Parallel axes (two white lines shown in Figure (3 -

Figure (3 - 3)  Contact points

Figure (3 - 4) Primitive joints

CS1

CS1’

CS2

CS2’
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4)), are added between the torso and the ground to constrain 3 rotational DOFs. The Z

axes of CS1 and CS1’ are parallel and perpendicular to the ground. It leaves the body to

rotate on Z axis. Then the parallel Z axes of CS2 and CS2’ are added to constrain the left

freedom, because Z axes of CS2 and CS2’ are in the walking direction and perpendicular

to the Z axes of CS1 and CS1’. It is possible to use three control torques in three axes to

constrain the 3 rotational DOFs. However, it is difficult to find the right coefficients in

torque Eqn (3-5).

(3-5)

Where θdesired is the desired angle of the upper body to any axis, θactual is the actual

angle of the upper body to any axis.

Compared to this method, adding two joints is much easier.The fully constrained

model is shown in Figure (3 - 5).

T k θdesired θactual–( ) kλ θ̇desired θ̇actual–( )+=
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3.6 Analysis of Simulation Results

To validate the model, we need to compare the results of simulation with those mea-

sured data described in Chapter 2. Simulation is executed in ADAMS. From the animation

shown in Figure (3 - 6), we can observe sliding on stance foot and penetrations of both feet

to the ground, which are directly derived from the pseudo-Coulomb friction model and

Figure (3 - 5)  Constrained human model
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linear viscoelastic model respectively. The following section examines the results in detail.

3.6.1 Ground Reaction Force

Ground reaction forces results directly from foot ground contact model. Compared

with measured forces (Winter 1991), the simulated forces can show us the accuracy of the

ground contact model. By changing any of the values of K and C in Eqn (3-2), γ in Eqn (3-

4), the position of contact points or contact model itself (from linear to nonlinear) the

ground reaction forces will vary. Sometimes there are small change in forces, but it may

change other parameters greatly. That is why at the same time the ground reaction forces

are checked other parameters are also checked to ensure the model is reliable or reason-

able.

Obtaining appropriate values for coefficients K and C in Eqn (3-2) is time consuming.

If initial K is estimated on the weight divided by the desired penetration, then the model

may jump off the floor, and C must be added to adjust. Of course, the values other authors

Figure (3 - 6)    Simulation of human walking
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provided in their models which were shown in Chapter 1 can provide an initial guess.

After many tries, simulation results were obtained and will be shown in the remaining

parts of this chapter. For details regarding K and C, please see Adams model.

As previously stated, the contact points under the foot are distributed along the foot in

the sagittal plane. The ground reaction forces shown in Figure (3 - 7) are the sum of forces

from all contact points on one foot.

From the figure, the following conclusions were made:

• Impact force, top on Figure (3 - 7), agrees with the measurement very well. The

maximum force from measurement is 795.27 N. The maximum force from simula-

tion is 849.5 N, which is 6.8% higher than the measured one. That is a very close

result.

Figure (3 - 7)  Ground reaction force
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• The stance phase can be measured from initial touching point to last touching point

on the stance foot, or the duration of impact force. The calculated stance phase is

60% of the gait cycle, while the measured is 64% of the cycle.

• Between two impact forces, there is one small touching force. This is the direct

result of the penetration of the stance foot. Because of the penetration of the stance

leg, the clearance for swing leg is not enough during the middle swing. The swing

foot will bump the ground. From the simulation the exact case can be observed.

• Large error can be found in progressional force (bottom one on Figure (3 - 7)),

especially the first step. As previously stated, the motion assigned for each joint is

from steady walking, but the first step is a transition from resting to steady walk-

ing. There is no initial dropping velocity like that in steady walking and no braking

period, only propulsion. That’s why in this transitional period there is no backward

force. This serves as a reminder that the dynamic simulation is different from kine-

matic simulation. A non zero initial movement to a joint can be assigned, but this

movement depends on force. It is easy to be numerical singular for the force or

acceleration. The denominator for acceleration is almost zero. That is why in

Adams simulation a large non zero initial movement can not be assigned. To solve

this problem, a STEP function can be added or multiplied to make the initial move-

ment be zero or close to zero. It only affects the results for a short period with the

STEP function, but has no affect on the remaining simulation.

• The progressional force of second stride looks better than that of the first stride.

But the problem here is that on heel strike there has a forward force, that means

not braking first. The direct cause can be seen from Figure (3 - 8). While the
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touching force declines to zero there is the largest sliding velocity on stance foot.

This results in the whole body moving backward. That is why some sliding on that

position is observed during the simulation. The sliding is derived from friction

model and will be explored in next part.

• The closest progressional force is propulsion force. The maximum measured force

is 161 N. The maximum calculated force is 187 N, 16% over measured data, and

the shape looks very alike. The largest error is from braking force.

3.6.2 Sliding and Penetration

The sliding is shown in Figure (3 - 8). Let’s look at the second stride. The force, dis-

placement and velocity are from the same foot.

It can be seen that during stance phase (non zero force), the velocity is not zero. The

reason for this can be explained directly from friction model. In Eqn (3-3), the Pseudo

friction is

Figure (3 - 8)  Sliding of normal walking
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(3-6)

It is shown in Figure (3 - 9), where γ = 0.3, ε = 1/100000. When  = 0, µ = 0, that

means Fx = 0. This is not true for static period. The true friction is also shown in Figure (3

- 9). Where

µ = -µ0 to µ0, when  = 0, i.e. Fx = -µ0*Fy to µ0∗ Fy (3-7)

 where µ0 is the static friction.

Although the friction force of some value is there, the true friction value can not be

determined from Eqn (3-7), but it can be calculated from force balance equation, or New-

ton’s second law.

In other words, from Eqn (3-6), if  = 0, then Fx = 0, that means the force on stance

foot is zero because of no movement. However, if there is no force on stance foot how can

µ γ ẋ
ẋ ε+

--------------–=

ẋ

ẋ

Figure (3 - 9)  Friction comparison

ẋ
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movement occur? Force is the cause; movement is the result. It also means that for move-

ment to occur, the stance foot must move in opposite direction to pick up force to move the

whole body. This is not true for real walking, because during the static period, force is

picked up from -µ0*Fy to µ0∗ Fy.  Summed up, the sliding is inevitable and necessary.

Minimizing slide is a question to be answered for the future. Maybe some change in the

model for static period can be made. The motions for all joints were assigned, why not use

F = ma to simulate the force? If this equation is used, how to deal with double support? If

the contact period can be divided into static and sliding period that may solve the double

support problem. From Figure (3 - 7) the calculated force in sliding period agrees very

well with that of measured one. Is this force so important? Later it can be observed that

this force will have large affects on joint moment and power consumption.

From the combined areas of vertical force, foot displacement and velocity in progres-

sional direction, the maximum sliding speed is 0.43 m/s, the whole sliding displacement

during the stance is 0 mm, displacement on contact force ending point (1.0196 m) minus

that of starting point (1.0196 m), and the stride is 1.0429 m, displacement on force starting

point (2.0625 m) minus that on last ending point (1.0196 m).

Figure (3 - 10) Step length of normal walking
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Step length can be more accurate from Figure (3 - 10). The step length at the heel

strike is 0.4673 m. It can also be obtained from toe off, but the displacement of both toes is

needed to be plotted out. Because it is measured at the same moment from the figure, it

does not include the affect of sliding.

The penetration shown in Figure (3 - 11) is resulted from impact model. If there is no

penetration, then there is no force, although there is no undefined force problem like fric-

tion in static period. Thus penetration is also necessary, just make it as small as possible to

decrease its affects on the swing leg. Because the penetration in stance leg will decrease

the clearance of the swing leg, this will make the swing foot bump into the ground in mid-

dle swing. That is why there is force in swing phase, as seen in Figure (3 - 11).

From the combined areas of vertical force and foot displacement in vertical direction,

assuming the displacement of the initial position is zero, the maximum penetration is 43

mm.

3.6.3 The Center of Mass

Now the displacement of center of mass (COM) in sagittal plane shown in Figure (3 -

12) will be examined. There is no measured data to compare. The shape looks like a sinu-

Figure (3 - 11) Penetration of normal walking
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soidal curve. The total rising and falling is 21.9 mm. The initial position (double support)

is supposed to be the lowest point during the walking. The displacement below this point

is the affects of the penetration on the COM. It is 7.6 mm.

3.6.4 Joint Motions

As previously stated, joint angles are used as driving power in the simulation. The sim-

ulated results are the exact input. The only errors of these input are from Fourier series. At

most 9 items of the whole Fourier series were used. The joint angles are shown in Figure

(3 - 13). The curves for the other leg just shift half the cycle.

Figure (3 - 12) Displacement of COM
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3.6.5 Joint Moment and Power Consumption

The torque and power required to drive hip joint, knee joint and ankle joint are shown

in Figure (3 - 14), Figure (3 - 15) and Figure (3 - 16) respectively. The second stride,

steady walking is examined. The first is transitional. Looking at the shapes of the calcu-

lated moment and power, they looks like the shape of friction. As previously stated, the

moment equals force time the length of arm. The longer the arm, the bigger the moment.

Therefore, the friction has the biggest affect on the hip joint, because of the longest arm.

The moment and power of ankle joint agrees very well with the measurements. The max-

Figure (3 - 13) Angles of three joints
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imum and the average moment and power are summed up as shown in Table 3 - 2 on

page 52.

The total power for both legs are shown in Figure (3 - 17). Only power for one leg was

known, then shift a step to get the power for the other leg. The total measured power for

both legs were added together, which can be compared with the simulated power. Their

shape looks alike, but values have large errors. The average for one leg in the table con-

flicts with the total average of three joints. In order to compare steady walking, the first

step was removed. However, this was not comparable to the other simulation. Therefore

the data including the first step was still needed. Then the average power for one leg is

56.2 W.

In Chapter 2, mechanical power estimation was 77.5 W. Therefore the simulation

results are creditable.

Table (3 - 2): Calculated and Measured Power and Moment in Normal Walking

Joints

Torque (Nm) Power (W)

Calculated Measured Calculated Measured

Max Ave Max Ave Max Ave Max Ave

Hip 179.68 27.6 44.1  -1.9 290 41.6 52.4  5.9

Knee 87 17 45.2  1.3 213 8 54.8 -10.87

Ankle 106.6 33.78 119.7  32.5 265 6.6 244.8 14.7

One leg (First step in account) 56.2

One leg (First step not included) 343 40 236 9.8

Two legs (First step not included) 565 80 293 19.6
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Figure (3 - 14) Torque and power for hip

Figure (3 - 15) Torque and power for knee
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Figure (3 - 16) Torque and power for ankle

Figure (3 - 17) Power for normal walking
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3.6.6 Control Torque

As stated, two parallel axes joints were used to control the upper body’s balance. They

worked together to constrain 3 rotational DOF. The torque shown in Figure (3 - 18) are the

sum of these two joints respectively in three directions. Torque in the sagittal plane is the

largest; its cycle is a step, 50% of a stride. Which leg is swinging does not matter. Torque

in coronal plane is the second, and torque in transverse plane is the smallest. The curve

shape of each one looks the same but in opposite directions. That means which leg is in

swing matters here. This makes sense for human symmetric to the sagittal plane.The max-

imum, minimum and average values are shown inTable 3 - 3 on page 55.

Table (3 - 3): Control Torque of Normal Walking

Plane Maximum (Nm) Minimum (Nm) Average (Nm)

Sagittal 279.5 -124.9  40.9

Coronal  75.53 -72.18 -0.5

Transverse  17 -19.6 -2.4

Figure (3 - 18) Balance control moment
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3.7 Summary

The simulated results were compared with measured data to validate the model. The

result from impact model agreed well with the measured. That is, impact model and con-

tact points distribution are reliable. Friction model resulted in sliding, but the total sliding

displacement was zero. This model did result in some error in progressional force, which

had affects on joint moments and power consumption. The construction of a new friction

model was proposed.
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4 SIMULATION OF CURRENT PGO PHYSICAL

MODEL

4.1 Current PGO Model

The current PGO shown in Figure (4 - 1) is a one degree of freedom system for each

leg with both hip and knee motion coupled. The coupling gears are not shown in the fig-

ure.

Figure (4 - 1)  PGO model
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The motion of the hip joint is approximated with a four-bar mechanism and the motion

of the knee with a cam-modulated slider crank mechanism. The cam profile is machined

into the face of the lower gear which is driven by the upper gear, the crank of the four-bar

mechanism. The lower gear in turn drives the cam-modulated linkage. Since the cam fol-

lower is captured in a slotted cam profile, it always remains in contact with the cam during

flexion or extension.

A cam profile can be derived from the normal knee joint angle function. Thus the same

knee function as in the human model is set in knee joint to simulate the model first to get

the correct cam profile. This is accomplished by creating Trace Spline on the cam, the cam

running in opposite direction to the crank of four-bar mechanism. Then the correct cam

profile is used to make a cam follower joint to drive the knee joint and at the same time the

knee function is deactivated.

The hip function and knee function generated by these two mechanism of the PGO are

shown in Figure (4 - 2). The hip function of the PGO shows a significant difference from

that of normal walking, while both PGO and normal knee functions are exactly the same

as shown in Figure (4 - 3).
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Figure (4 - 2) Joint angles of PGO

Figure (4 - 3)  Comparison of hip and knee angles of PGO with
those of human walking
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4.2 Human in Current PGO Model

The model above is just one leg of the PGO. The previous research was more focused

on single leg, like the design of four-bar mechanism and cam-modulated slider crank

mechanism, time ratio and strength of the PGO (Ruthenberg, 1997). Here a patient walk-

ing in the PGO was simulated to fully investigate the function of the entire device includ-

ing both legs. Full understanding of the function of the whole device will make the

requirement for single leg or single part clearer. That will make the single part to easily

satisfy the demand of the entire function. The PGO walking model is shown in Figure (4 -

4). The hip joints of human model are in line with those of the PGO, and deactivated. The

knee joints of the human model are also deactivated, and they are not in the line with those

of the PGO, because the length of the thigh of human model is not the same as that of the

PGO. The whole weight of the human model is supported by the PGO.
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4.3 Joint Motion Function

The hip joint of the PGO is powered by a DC motor through a four-bar mechanism. It

seems simple just to input a steady rotation function for the crank. In fact, only one leg

moves at a time, so the rotation function is not continuous. This is the problem to execute

the simulation, so Fourier series is also used to form a continuous motion function. For the

sake of accuracy of Fourier transformation, the velocity, not the angle of the crank is the

input (Both were tried, but the angle resulted in large errors in the simulation, especially

Figure (4 - 4)    Human in PGO
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for the initial condition. This caused the model to jump or walk backward in the simula-

tion). The curves are shown in Figure (4 - 5).

4.4 Analysis of Simulation Results

The foot-ground contact model and the joints to control the upper body’s balance vali-

dated in Chapter 3 were used here. The shoulder and elbow joints were fixed because in

real walking the arms were used to control the upper body’s balance. Upper body was 10

degree leaned forward. Otherwise the swing leg can not touch the ground. The simulation

was shown in Figure (4 - 6). To find the real causes of poor function of the current PGO,

the simulation of walking in PGO was compared with the simulation of human walking.

The results corresponding to Chapter 3 were shown below.

Figure (4 - 5)  Fourier series of motor rotation speed of PGO
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4.4.1 Ground Reaction Force

Compared with the simulation of normal walking, the vertical reaction force shown in

Figure (4 - 7) has three peaks. This is different from normal walking which has only two

peaks, and the value is much higher than normal walking. The contact model may bring

larger error in the simulation of PGO walking. If measured ground reaction force of PGO

walking were obtained, the contact model could be refined. But here the same contact

model is used as that used in the simulation of normal walking as a basis for comparison.

The maximum impact force is 1587.7 N, 86% over normal walking, of course the

weight now is the sum of human model and PGO. The stance phase is 64% of gait cycle,

and the double support shown in the bottom plot of Figure (4 - 7) is 14% of gait cycle.

Because larger error in progressional force even in the simulation of normal walking, here

the values are not compared. The force is shown in Figure (4 - 8). This will aid an under-

standing why there is a big sliding after the heel strike.

Figure (4 - 6)    Simulation of PGO walking
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4.4.2 Sliding and Penetration

The sliding is shown in Figure (4 - 9). Compared with Figure (3 - 8), on heel strike,

the starting point of impact force, the progressional velocity is 0.3 m/s. During stance

Figure (4 - 7)  Vertical ground reaction force in PGO walking

Figure (4 - 8)  Progressional force in PGO walking
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phase velocity changed back and forth, but the total sliding displacement is zero. In Figure

(4 - 9), on heel strike, the progressional velocity is -1.1 m/s. That is why after heel strike

the stance foot is drawn backward 0.26 m. For real PGO walking this is not true. As seen

from the tape that after the heel strike, no power acts on that foot. The power is switched to

the trailing leg, to try to bring the trailing leg to the front of that stance leg. The problem

here is that without changing the position of stance leg it is hard to bring the trailing leg to

the front. In normal walking the motion on stance leg is to reposition the stance leg and the

position of COM. The walking depends on the force of the stance leg. Because no power

works on stance leg, it seems that the device just moved swing leg. That is why it is hard to

move forward.

If the power on the stance foot is like the simulation, why it can not move the trailing

body forward instead of drawing the stance leg backward? From time period 0.9 to 1s in

Figure (4 - 9), after the heel strike, there is the double support. Both feet have forces on

them until both feet reach the same position. That means no initial swing and no clearance

for the trailing foot to move forward. From the curve of progressional displacement in Fig-

ure (4 - 9), at the same time trailing body moves forward, the stance leg is drawn back.

Because weight is larger for trailing body, it moves slower. That is why the sliding of the

stance leg is seen.

If the upper body does not lean forward, there is no movement forward. The step

length on heel strike depends on the leaning of upper body.

In normal walking, after heel strike there is also a double support, but after the double

support there is pre-swing and initial swing. The trailing body has power to make clear-

ance to bring it to or over the stance leg.
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The penetration is shown in Figure (4 - 10). The penetration is 38.6 mm.

4.4.3 The Center of Mass

The normal walking COM line in Figure (4 - 11) is the line in Figure (3 - 12) shift half

step to adjust them to start in the same position. Now we can see the displacement in PGO

Figure (4 - 9)  Sliding of PGO walking

Figure (4 - 10) Penetration of PGO walking
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walking is bigger than in normal walking. That also suggests that the same contact model

may cause some error in PGO walking.

4.4.4 Joint Motions

Hip joint and knee joint angles are shown in Figure (4 - 12). Red solid lines are from

measured normal walking, and the blue dash lines are the simulation of PGO walking.

Although the joint functions of one leg of the PGO in Figure (4 - 3) looks very close to

those of normal walking, but when put two legs together we will find a big difference

between them. As far as the whole cycle is concerned, they are not similar any more.

• The joints only work in half gait cycle

• No negative angle for hip joint; no extension for the hip

The main cause is that only one leg moves at a time. If we change it to move both legs

at the same time, there is problem for hip joint. It will need a negative angle. With hip and

Figure (4 - 11) Displacement of COM in PGO walking
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knee coupled it can not get standing position. This will be explained in detail in later chap-

ter.

4.4.5 Joint Torque and Power Consumption

The joint torque and power consumption are shown in Figure (4 - 13) and Figure (4 -

14). The total power consumption is in Figure (4 - 15). The maximum and average torque

and power excerpted from these figures are shown in Table 4 - 1 on page 68.

Table (4 - 1): Torque and Power of Current PGO

Joints
Torque (Nm) Power (W)

Maximum Average Maximum Average

Hip 128.5  12  1660 135

Knee  120  14.7 515 -50

Total (hip + knee) 1507 85

Figure (4 - 12) Hip and knee angles in PGO walking
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Figure (4 - 13) Torque and power of hip joint in PGO walking

Figure (4 - 14)Torque and power of knee joint in PGO walking
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4.4.6 Control Torque

The balance control torque is shown in Figure (4 - 16). Because the body leans for-

ward, most of the torque in the sagittal plane is used to balance the torque of weight. The

data from the figure is shown in Table 4 - 2 on page 71.

Figure (4 - 15) Total power of hip and knee in PGO walking
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4.5 Discussion

From the simulation there are some problems need to be discussed in detail.

1. Only one leg moving at a time. This is determined in joint motion function. The real

PGO walking situation is like that. Maybe sometimes both leg move to adjust the posi-

tion of legs, but it is restricted in structure. When there is no negative angle for hip

Table (4 - 2): Control Torque

Plane Maximum (Nm) Minimum (Nm) Average (Nm)

Sagittal 307.4 -595.2  -105.7

Coronal  489  -283  -3.1

Transverse 90.8 -114  0.7

Figure (4 - 16) Control torque in PGO walking
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joint, then hips can not extend. Without extension of the trailing leg, it will not result in

a normal continuous smooth biped walking.

2. To move forward, the patient must lean forward, and the step length depends on the

leaning angle. This results from only one leg moving at a time. Because stance leg

does not move, nor flex or extend, the swing leg can not touch the ground, except in

the original position. Just like the normal human stands straight with one leg and mov-

ing the other leg, he can not walk forward. When leaning forward, the upright height

between hip and ground is less than the length of stance leg, then the swing leg can

touch another place except the original. The upright height depends on the leaning

angle as does the step length.

3. Close to normal joint angles of hip and knee did not bring in close to normal gait.

This is also the result of one leg moving at a time. Because of that, even though the

joints move with exact angle, it does not happen at the time it should like normal walk-

ing. In normal walking the swing leg moves in a stride as shown in Figure (4 - 17).

Here both legs’ differences are taken into account, because two legs move at the same

time. The stride length is 1.0429 m, the hip angle for toe off is -29.6o, the hip angle for

heel strike is 29o, the total angle is 54.6o. However, in PGO walking the leg just moves

in step as shown in Figure (4 - 18). The step length is 0.3259 m, the hip angle for toe

off is 1.35o, the hip angle for heel strike is 18.84o, the total angle is 17.5o. The ratio

between angles (54.6/17.5 = 3.12) is almost the same as that of step length (1.0429/

0.3259 = 3.2).
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4. Short step length. It can be seen from above, the step length is 0.3259 m, and it

depends on leaning angle. From Figure (4 - 19) at the heel strike the step length is

0.282 m. From simulation it can also be observed that even though the swing leg

touches the ground, the mechanism is still moving. This brings the leg backward to

Figure (4 - 17) Relation of hip and stride in normal walking

Figure (4 - 18) Relation of hip and step in PGO walking



Simulation of current PGO physical model

74

make the short step even smaller. The effective step length is 0.06 m. It should have

brought the trailing body forward, but trailing leg can not lift up to make clearance, the

big resistance force under the foot makes it harder to move trailing body forward than

to bring one leg back because of weight. From the video (PGO4, BMES,1994)

recorded in the test, this is not true. After the heel strike, no power acts on that foot.

The power is switched to the trailing leg, and try to bring the trailing leg to the front of

that stance leg. But the trailing leg must first complete the remaining cycle (from heel

strike to the next starting point) then start the new cycle. Completing the remaining

cycle means the trailing leg extends and has no clearance. That makes trailing leg hard

to move forward, and that is why the user twisted his body and readjusted his upper

body’s position. He was just making clearance to move the trailing leg.

5. No clearance or big friction. The clearance here is after toe off clearance for trailing

leg. From Figure (4 - 9) It can be seen that there are forces under both feet from heel

strike through the trailing leg reaching the same position as forward leg. That means

there is no clearance for the trailing leg’s movement. The trailing leg has no pre-swing

Figure (4 - 19) Step length of PGO walking
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and initial swing. They are all counted into double support. And from Figure (4 - 20) a

big friction can be seen for both feet, if the same period from 0.9 to 1 second is exam-

ined. The blue solid line is for forward leg, red dash line is for trailing leg at that

moment. A big forward (positive) friction after heel strike can be seen, that means

moving backward, and a small backward (negative) friction on the trailing foot.

Because of big force on one leg and small force on the trailing body, the backward

sliding of the leg can only be seen. Whatever from simulation or test, the working con-

dition changed a little bit in test, this clearance problem is there. This no clearance

results from structure shortage, no power to change the clearance for the trailing leg at

that moment. Even though the swing leg has a big movement from stance to heel

strike, it has no help to increase the after heel strike clearance.

6. Mechanical reason for ineffective walking. From Figure (4 - 18) the effective step is

only 0.06 m. What is the mechanical reason? From Newton’s second law F = ma, the

walking depends on the friction force on stance foot. Only stance foot touches the

ground. From the tape observations, the PGO stopped working on the swing foot after

it touched the ground, then switched to move another leg. That means it does not help

Figure (4 - 20) Friction
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with friction force on the stance foot. Then the position of COM can not be changed,

because the friction and motion on the stance leg are the power to reposition the COM.

For example, if the friction coefficient on the stance foot is assumed to be zero, then

any motion on swing leg can not change the position of COM. Therefore, motion on

stance leg is necessary. That is why the user used his hands to pull his body forward

was observed. Even though the PGO continued to work after the heel strike, the total

working time for one leg is 50% of gait cycle. For the most stance phase (50% of gait

cycle), no force works on it. It is shown in Figure (4 - 21). The total stance phase is

60% of gait cycle, while 83% of stance phase has no force. This is the deepest

mechanical reason of ineffective PGO walking.

7. Higher power consumption. From Figure (4 - 15), the average power for one leg is

185 W. In normal walking the simulated average power for one leg is 40 W. When the

R Stance phase (60% of Cycle)

Right initial contact Right pre-swing

50% of Cycle no power

Figure (4 - 21)Stance phase
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leg swings, there is no friction force on it most of time. But the swing phase is 36% of

gait cycle. From Figure (4 - 20) during 1.5 to 2.0 s time period, the solid line shows a

large force peak on both ends. That happened on double support. The Most power was

consumed for these two peaks.

4.6 Summary

The direct cause of poor function of current PGO is one leg moving at a time. The

mechanical reason is no power working on most of stance phase to move COM forward.
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5 PGO MECHANISM INVESTIGATION

As discussed in the last chapter, the real cause of poor function of the current PGO is

only one leg moving at a time and no power on the stance phase. Simply adding power on

both legs fails to solve the problem. Because it is structurally not allowed negative angle of

hip joint, then both legs can not move at the same time. Is it possible to change the initial

installation position of both legs to get negative angle for it? Is it possible to merge stand-

ing and walking into the device? The initial position is standing. From standing to walking

is just walking in a step, but a steady walking is walking in a stride. They are different

types of motions. The device must merge these actions. All these can be answered by sim-

ulation. However, the best way to do these is to explore all possible solutions to obtain an

optimized or trade-off solution.

5.1 PGO Mechanism Model

The PGO mechanism model is based on normal walking. The normal gait is tried to be

replicated for the patient through the mechanism model. Therefore the main focus is on

motions and power consumption. The structure here just serves for these purpose. The real

design and how to achieve these motions will be discussed in next chapter. The mecha-

nism model is shown in Figure (5 - 1). The main features of this model are:
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• Both legs move at the same time.

• The system is of two degrees of freedom for each leg.

• Both hip joint and knee joint functions are approximated by cam-modulated slider

crank mechanism and both are coupled. Both joints can exactly replicate the func-

tions of normal walking.

• A foot release mechanism is used to replace ankle joint. The lower plate can retract

in the swinging phase and extend to its original length in the stance phase. This

motion is different from the ankle motion, but it can help to increase foot/ground

clearance.

• Knee or foot release can be locked to show different functions.

Figure (5 - 1)  PGO mechanism model
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5.2 Human in PGO Mechanism Model

To fully understand the function of the PGO mechanism model and without making

physical model, we use the same method as that in chapter 3 to simulate human walking in

PGO mechanism model. The human in PGO mechanism model is shown in Figure (5 - 2).

The PGO size is not the exact size of human model. The Hip joint of PGO is in line

with the hip joint of human model. Both hip joint and knee joint of the human model are

deactivated. The whole weight of a human is supported by PGO.

5.3 Joint Motion Function

The motion function of the hip and knee are exactly the same as those in the human

model. All these motions are input first to simulate the PGO to obtain the correct cam pro-

Figure (5 - 2)    Human in PGO mechanism model
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files, then use the correct cam profiles to make cam-follower joints. By providing a steady

continuous rotation function, both hip and knee joint motion functions can be exactly

modeled. A continuous rotation function means both legs move at the same time. This is

different from current PGO physical model, where only one leg moves at a time.

Now motion function for foot release mechanism needs to be created. This motion

must be continuous for the sake of ADAMS, thus Fourier series is still used here as shown

in Figure (5 - 3).

5.4 Simulation

To explore and compare functions of different type of PGO, both knee and ankle can

move, or knees are locked but ankles can move, or ankles are locked but knees can move.

They are called Foot-Knee Release PGO, Foot Release PGO and Knee Release PGO,

respectively. In order to choose a more reasonable PGO, simulations on these three types

Figure (5 - 3)  Fourier series of foot release mechanism
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of PGO, foot-knee release PGO, foot release PGO and knee release PGO are executed.

They are shown in Figure (5 - 4) and Figure (5 - 5). The simulation of knee release PGO

walking is not shown, it looks like foot knee release PGO walking.

Figure (5 - 4)    Simulation of foot knee release PGO walking

Figure (5 - 5)  Simulation of foot release PGO walking
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5.5 Analysis of simulation results

5.5.1 Ground reaction force

The ground reaction impact forces are shown in Figure (5 - 6). On the left are impact

forces. Corresponding frictions are on the right. Put together, it is easier to see the differ-

ence. The impact forces of PGO mechanism model, normal walking and current PGO are

shown in Figure (5 - 7). The detailed data is shown in Table 5 - 1 on page 83. It seams that

average force is half of the weight. Only current PGO walking has three peaks, highest

maximum force and longest stance phase.

The reason for higher impact forces and short stance phase in PGO mechanism results

mainly from:

• PGO adds weight to the whole model

• Legs are longer than in human model, therefore the position of COM is higher, and

mass distribution is changed

• Lower legs are not the same length as upper legs.

Table(5 - 1): Maximum force and Stance phase of PGO Mechanism Walking

Maximum
Force (N)

Average
(N)

Stance Phase
(% of cycle)

Normal walking 808.4 353.8 62

Current PGO walking 1672 343.4 66

Foot knee release walking 1197.3 389.4 52

Knee release walking 1278 398.9 54

Foot release walking 988.9 390.2 60
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Figure (5 - 6)  Ground reaction force on PGO mechanism model

Figure (5 - 7)  Impact force comparison
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Progressional force are put together in Figure (5 - 8), in order to demonstrate the dif-

ference of curve forms. Their values are not compared. The friction curve of foot release is

different. Before toe off there is no push forward force like in other models. That is why

the walking efficient of foot release is lower than other models as seen in step comparison.

5.5.2 Sliding and Penetration

Slidings are shown in Figure (5 - 9). Sliding has a big affect on step or stride length.

The sliding distances are measured from heel strike to toe off, in the duration of stance

phase. They are put in Table 5 - 2 on page 85.

Table(5 - 2): Sliding of PGO mechanism Walking

Sliding (M)

Foot knee release 0.153

Knee release 0.167

Foot release -0.075

Figure (5 - 8)  Friction comparison
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Penetration is shown in Figure (5 - 10). The displacement is for heel and toe on one

foot. For the stance leg it is called penetration; for the swing leg it is called clearance.

Because of the penetration of the stance leg, the clearance of the swing leg is decreased, it

appears as if the zero line moves up to increase penetration and decrease the clearance.

Because it depends on the motion you assign, it can not move like a human to intentionally

avoid obstacle.

Figure (5 - 9)  Sliding of PGO mechanism model
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5.5.3 The Center of Mass

The COM is shown in Figure (5 - 11). Compared with Normal walking, The COMs of

PGO mechanism walking have higher oscillation. From normal walking, we can see the

lowest points are in double support. But in PGO mechanism model walking they shift

slightly. That suggests after the double support there is a large penetration in the simula-

tion.

Figure (5 - 10) Penetration of PGO mechanism model
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5.5.4 Joint Motions

Figure (5 - 11) COM of PGO mechanism model

Figure (5 - 12) Joint angles of PGO mechanism model
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Joint motions are our final goal. The normal joint movement can be replicated to

achieve normal walking even though it costs more energy than normal walking. Figure (5

- 12) shows that foot knee release and knee release model can exactly replicate hip joint

and knee joint motions in sagittal plane. Foot release can replicate hip motion, but not

knee joint motion. Foot release in place of ankle joint means that translation replaces revo-

lution. It works only at the moment on toe off and before heel strike to make clearance for

swing phase. There is no movement in stance phase. The rip on the curve is from the Fou-

rier series. As discussed in last chapter, if it does not work in stance phase, it does not con-

tribute to move COM. The stance phase for foot release is 60% of the gait cycle.

5.5.5 Joint Moment and Power Consumption

The joint moment and power consumption of PGO mechanism model are shown in

Figure (5 - 13), Figure (5 - 14) and Figure (5 - 15). The total power for one leg is shown in

Figure (5 - 16). Be reminded that foot release only works at the moment on toe off and

before heel strike with no force acting on it. Therefore, it only needs a very small power to

overcome the joint friction and self weight of lower plate. From Figure (5 - 13) and Figure

(5 - 15) you can see the average power is negative. That is not true for the real case. Here

we want to compare the power consumption ignoring the foot release power. The data

excerpted from these figures is shown in Table 5 - 3 on page 90. The average power con-

sumption has no significant difference.
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(Continued)

Table(5 - 3): Torque and Power for Mechanism Model

Moment (Nm)

Hip Knee

Max Ave Max Ave

Foot knee
release

68.7 8.4 102 -5.4

Knee
release

80.45 8.4 78.7 -5.6

Foot
 release

77 12.9 0 0

Power (W)

Hip Knee Hip & Knee

Max Ave Max Ave Max Ave

Foot knee
release

432 53 642.6 34 688.6 87

Knee
release

505.5 52.8 494 35 648.7 88

Foot
 release

485.4 81 0 0 485.4 81
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Figure (5 - 13) Moment and power for foot knee release PGO

Figure (5 - 14) Moment and power for knee release PGO
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Figure (5 - 15) Moment and power for foot release PGO

Figure (5 - 16) Power comparison of PGO mechanism model
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5.5.6 Control Torque

The torques to keep upper body’s balance are shown in Figure (5 - 17) and comparison

of these torques is shown in Figure (5 - 18). The data from these figures is shown in

Table 5 - 4 on page 93.

Table(5 - 4): Control Torque of PGO Mechanism Model

Maximum (Nm) Minimum (Nm) Average (Nm)

F&K K F F&K K F F&K K F

Sagit-
tal

531.8 896 407 -376.5 -1072 -491 46.4 39.7 63

Coro-
nal

246.6 259 199.7 -218.8 -245 -181.5 1.04 -2.4 1.8

Trans-
verse

76.3 74 74.3 -86.3 -69 -82.7 -5.9 -5.4 -.0.54
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Figure (5 - 17) Control torque of PGO mechanism model

Figure (5 - 18) Comparison of control torque of PGO mechanism model
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5.6 Discussion

1. Power Ratio. The step length is measured at the starting point of the ground reaction

force, i.e. the heel strike point. The curves for measuring step length of the PGO mech-

anism model are shown in Figure (5 - 19). The walking distance in two cycles is shown

in Figure (5 - 20). The data is summed in Table 5 - 5 on page 95. The data demon-

strates the sliding indeed has an effect on stride. Because PGO increases the length of

legs, the step length is not comparable. The power ratio here is the average power con-

sumption of both legs in unit walking distance. The lower the better. Inarguably, nor-

mal walking is the most efficient.

Table(5 - 5): Comparison of Power Ratio

Step (m) Stride (m)
Distance in 2

sec. (m)
Power ratio

(W/m)

Foot knee release 0.4945 1.1105 2.2987 75.69

Knee release 0.5004 1.1179 2.3783 74

Foot release 0.394 0.703 1.1364 142.56

Current PGO 0.282 0.3259 0.10 1700

Normal walking 0.4673 1.0429 1.7772 63.25
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2. Clearance. The clearance is shown in Figure (5 - 10). Before the middle swing there

is bump in foot release walking. This is the result from the penetration of the other leg.

Figure (5 - 19) Step length of PGO mechanism model

Figure (5 - 20) Comparison of stride lengths or distances
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In the simulation of normal walking the same problem happened there. In real walk-

ing, there is no penetration, therefore the clearance for swing leg is enough. In current

PGO walking even though there is no bump in the swing phase, it still had a clearance

problem. Because it walked in step not in stride, and only one leg moved, the trailing

leg was pulled forward by the stance foot. There was no swing and thus no clearance

during this period.

3. Standing position. Any walking must begin from standing. Therefore the standing

position is very important for the device. As stated previously, the hip and knee are

coupled. Two legs moves at the same time and in relation; thus it is coupled in some

extent. With four joints coupled together, how can a standing position be achieved,

with all joints angles at the same time measured as zero or close to zero? Four joint

angles are shown in Figure (5 - 21). Both foot release movements are ignored because

they are separated and have no effect on standing position. From Figure (5 - 21) there

is no common intersection for all four curves close to zero. That means there is no

standing position for foot knee release and knee release. However, even though the two

hip angle curves do not intersect at zero, they intersect at a small angle 7.8o. In that

position the user can stand with help of hands and start his walking. This is the reason

the foot release PGO is chosen to be physically realized.
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4. Control. From the analysis above, it is known the whole PGO mechanism has only

three DOF, two foot releases (translate), and one for all hip and knee joint, regardless

of foot knee release or foot release. Knee release has only one DOF. If all hip and knee

are coupled, the device has no standing position. If decoupled then how are these Does

controlled? From the first chapter they can be controlled by computer. That makes the

device more complex. Thus only to couple two hip joints in foot release is the simplest

method of control.

5.7 Comparison of Foot Release PGO with RGO

1. No knee movement. Both orthoses have no knee movement. Knee movement for

healthy people involves making clearance and coordinates the movement of the whole

body to minimize the energy consumption. However, for the handicapped, to prevent

collapse of the whole body, the knee joints of the orthoses are locked during walking.

Figure (5 - 21) PGO mechanism model hip and knee angles
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2. Foot/ground clearance. The foot release device can retract to allow swinging leg

enough foot clearance in the sagittal plane for the user walking in the PGO, while the

user walking in the RGO has no clearance in the sagittal plane. The RGO user has to

tilt to the stance leg to make clearance for the swinging leg.

3. Hip movement. The PGO can exactly replicate the movement of the hip joint, while in

the RGO the transfer cable makes both the swinging leg and the stance leg move

almost the same angle but in opposite direction mechanically. In the normal gait the

positive angle (forward leg) is much greater than negative angle (trailing leg).

4. Energy consumption. The PGO user mostly consumes the external power to move

forward, while the internal energy is mainly to keep the balance of the upper body.

Because of the foot release device, the user does not need to tilt his body; thus the

energy consumption should be low. However, the RGO user has to consume a lot of

energy, because the movement of the hip joint and pelvis of RGO user is much greater

than that of a healthy subject. This is of course a necessary consequence of the patient

having to lift and rotate the pelvis to swing a leg through its swing phase due to the

necessary locking of the knee joint. The Bowden cables on the orthosis connecting the

hip joints transfer the reverse motion to the stance leg, propelling the subject forward.

This action is highly energy consuming. The tilt of pelvis and the jerky gait make the

center of gravity swing widely and the acceleration of the center of gravity not as

smooth as those in normal walking. These motions also cause more energy consump-

tion.
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5.8 Investigation on the Adjustment of Step Length of Foot Release PGO

How to easily adjust the step length to satisfy the need of the user during the PGO

walking is the main goal of this part. The simple way is to change the length of one link

only. However, without changing the cam profile, the hip function or other properties may

be abnormal. All these need to be further investigated. First examine what happens to the

hip angle when the position of jonit3 in Figure (5 - 22) move left and right just 0.2 cm and

0.5 cm.

.

Corresponding hip angles are shown in Figure (5 - 23). The blue curve is the original.

When the joint moves left, i.e, the link length is shorten, the hip angle moves down. While

Figure (5 - 22) Hip mechanism

Joint3



PGO mechanism investigation

101

the joint moves right, the hip angle moves up. When they are aligned to the start point of

the original curve, the hip angle increases when the joint moves left, as does the step

length. While the joint moves right, the hip angle decreases, as does the step length. The

corresponding step length adjustment is shown in Figure (5 - 24). However, compared

with normal walking (in page 29 of Winter’s book), decreasing step length is slightly

abnormal compared to slow walking (slow walking with a short stride length in page 12).

Figure (5 - 23) Adjustment of hip angles in foot release PGO

Figure (5 - 24) Adjustment of step length in foot release PGO
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5.9 Summary and Conclusion

5.9.1 Summary

1. Whatever the PGO is, it must be reciprocal.

2. Power ratio in order are: Current PGO, foot release, foot knee release, knee release and

normal walking.

3. Walking in the knee release PGO looks more natural, and needs less power. However,

if the knee and the hip are coupled, there is no standing position. If they are decoupled,

the control system for knee is very complex.

4. The foot release PGO can only replicate hip motion. But the foot release mechanism is

easier to develop than knee control system, and the user can get a standing position

with the foot release PGO.

5. The foot release PGO has more advantages than RGO.

6. Step length is adjustable and with the similarity of curve shapes of hip angles through

changing one link length.

5.9.2 Conclusion

Foot knee release and knee release are too complicated for a simple device. Even

though less power ratio is needed, the hip and knee joints must be decoupled and con-

trolled by computer. The foot release PGO is the trade-off of power ratio, standing posi-

tion and control complexity.
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6 DESIGN OF THE FOOT-RELEASE PGO

As stated in last chapter, foot release PGO mechanism is chosen to be physically real-

ized because of simplicity of control, standing position, even though energy cost is slightly

high. In mechanism simulation, all motions just exist in mathematical equations. In this

chapter the results from mechanism simulation will be used to design a virtual model and

then physically realize it. The forces, motions, and power consumption from the simula-

tion are the basis for the design.

6.1 Design of Hip joint

6.1.1 Cam Follower

From last chapter we know the hip joint is approximated by a cam-modulated slider

crank mechanism. The weakest part in this mechanism is the cam follower. To ensure the

follower can work properly, it must have enough strength. The cam follower’s contact

force shown in Figure (6 - 1) is the basis for the design or selection of the cam follower.

The highest force is 7245N. Then the diameter of cam follower is 0.6 in. This force is also

used to determine the diameter of the cam shaft. These two dimensions are used to deter-

mine the least distance between cam follower and the rotation center of the cam. In fact,

the dimension of cam follower’s installation seat is also taken into account. Next the cam

profile must be determined.
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6.1.2 Cam Profile

Cam profile can be calculated in Matlab by using the vector loop shown in Figure (6 -

2). It can also be obtained from ADAMS simulation, but link length must be determined

first. The working principle of the cam slider crank mechanism is simply put as:

Figure (6 - 1)  Contact force of cam and follower

r2

r1

r3

r4

Figure (6 - 2)  Vector loop

A
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Point A is the cam follower. It can translate along the seat’s guidance r1, and also have

to be on the cam profile. r2 is the distance from cam center to follower. When cam is rotat-

ing, r2 is changing, then changing the angle θ4, θ4 is the hip angle. The loop equation is

Loop: (6-1)

Where r1 represent seat, r2 is the distance from cam center to follower, r3 is just a link,

r4 is for leg. θ4 is the hip angle. In this equation r1, r3, r4, θ1 and θ2are knowns, and θ4 is

the hip angle which is the same as that used in the simulation. Now the unknowns are r2

and θ3.

After many tries, r1, r3 and r4 are determined. r1 = 5 in, r3 = 3.7 in, r4 = 2.6 in. X and Y

coordination of r2 are shown in Figure (6 - 3). This is the cam profile. The minimum r2 =

1.2325 in, maximum r2 = 2.8145 in. Maximum r2 is used to determine the diameter of the

cam.

r2 r3 r4– r1–+ 0=

Figure (6 - 3)  Cam profile
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6.1.3 Driving Power for Cam

From last chapter the maximum power for hip joint is 485.4 W, average power is 81W,

the maximum moment 77 Nm, the average moment is 12.9 Nm. These data can be used to

select motor and decide the ratio of the worm gear reducer. But here the motors was the

same as that used in current PGO. The hip virtual model is shown in Figure (6 - 4). The

maximum contact force between the cam and the follower will be checked in the later sim-

ulation.

Figure (6 - 4)  Hip virtual model
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6.2 Design of Foot Release

6.2.1 Release Mechanism

Foot release mechanism only works at the swing phase of the leg. When the user needs

to swing his either leg to move forward, the length of the swing leg must be shortened first

to make clearance for the swing leg. Right before the swing leg contacts the floor the foot

release is extended to its original length to prepare for stance phase. Therefore, there is no

force acting on the mechanism except for the weight of itself. The power to drive the

mechanism is very small. However, the mechanism must have enough strength to bear the

weight of the user and the impact force between the foot and floor occurred in walking. In

addition, the mechanism must be self locked at any position to keep the stability of the

user in any situation. The requirements for the foot mechanism can be simply put as:

• The thickness is as small as possible

• The ratio of contraction to extension the higher the better

• Self lock is needed at any position

• The weight must be small

• The power source can be easily carried and controlled by the user

The mechanism used in the previous simulation is shown in Figure (6 - 5). The big

advantage of this mechanism is that it reacts very quickly. However, it is not self locked,

and the power source is fluid and thus not easy to carry. If an electrical cylinder is used

then its quickness is gone. Therefore a new mechanism is developed. A self lock worm

gear is used to drive a crank slider to change thickness of the foot plates. The model is

shown in Figure (6 - 6). The main features of this mechanism are as:
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• The thickness is 100 mm

• The contraction ratio is 30/100

• Worm gear self lock

• Power source is battery

• Step motor to control the position

.

Figure (6 - 5)  Cylinder release mechanism

Figure (6 - 6)  Worm gear release mechanism
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 6.2.2 Worm Gear

Because there is no force acting on it when the worm gear is working, the power to

drive can be very small. However, during the stance phase when the user is standing on it,

the gear must have enough strength to overcome the locking force. The worm gear can not

be selected just according to the transfer power or torque when it is running. They must be

selected by checking the strength on self locking. The gear strength at this moment was

checked by the equation for the momentary overload capacity of worm gear (Stokes, A.,

1992). Now the model with new foot release is simulated and the running torque on the

gear are shown in Figure (6 - 7). The maximum torque is 9.68 Nm. As said above this

torque can not be used to choose worm gear. A self locking torque must be found on the

gear. To obtain maximum self locking, the foot release was simulated with maximum

ground reaction force acting on it in case it will stop at any position and still have enough

strength. The maximum ground reaction force is twice what obtained from the simulation

of worm gear release in case where the weight is above normal. It is 2200 N. Torque curve

from single foot release simulation is shown in Figure (6 - 8).

Figure (6 - 7)  Torque on gear in worm gear release model
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The maximum torque on gear is 40. 8 Nm or 361 lb.in. From Martin worm gear chart

we select a pair with self locking (helix angle less than 5o), ratio 20, center distance 1.625

in and output torque 470 lb.in. at 100 rpm. The parameters for worm and gear and gear

strength check are as below:

Ng:20, pressure angle: 14.5o, pitch diameter: 2 in,

Nw:1, helix angle: 4o34’, pitch diameter: 1.25 in.

Equation of momentary overload capacity is:

for strength: 4SbwlrDfmcos(λ) (lbf.in) (6-2)

Sbw -- bending stress factor (for bronze wheel, Sbw = 10000)

lr -- length of root wormwheel tooth (linear picth*0.3686)

Df -- wormwheel reference circle diameter

m -- axial module

λ -- lead angle of worm thread

p = Dg*π/Ng = 2π/20= 0.3142”

Figure (6 - 8)  Torque from single worm gear release simulation
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m = p/π = 0.1” = 2.54 mm

lr = 0.3142*0.3683= 0.1157”

T = 4*10000*0.11570*2*0.1*cos4o34’ = 923 lbf.in =104 Nm

Then the Safety Factor is 104/40.8 = 2.55. It seams a smaller one with the center dis-

tance 1.333 can be used.

6.2.3 Driving Power for Foot Release

The simulated torque and power on worm is shown in Figure (6 - 9). These are the

basis for selecting driving power of foot release. The maximum power is 51.7 W, the max-

imum torque is 0.48 Nm, 68.56 ounce.in.

Because the position of the low footplate worked always in two extreme positions, a

step motor was needed. AM23-150-2 step motor and DAX controller are selected from

Figure (6 - 9)  Driving torque and power on worm
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Advanced Micro Systems Inc. The maximum output torque is over 80 oz.in. The foot

release virtual model is shown in Figure (6 - 10).

6.3 Foot Release PGO Virtual Model

Put the hip joint and foot release together, it is one leg of the PGO virtual model. Then

make a copy, rename it and mirror it in sagittal plane, to obtain the other leg. The final

PGO virtual model is shown in Figure (6 - 11). This model did not include power source

and controller. They can be added on the frame used to connect two legs. The knee joint is

locked during walking, and can be unlocked when the patient needs to sit down.

Figure (6 - 10) Foot release virtual model
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Figure (6 - 11) Foot release PGO virtual model
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6.4 Simulation of Foot-release PGO Virtual Model

Before it is made into a prototype, the foot release PGO virtual model is simulated.

The main reasons are:

• To ensure the key parts do not fail

• To ensure the power and torque required are under the power supply

• To check the function of the final PGO virtual model after modification in the

design.

• To prepare calculated results for experimental validation

The simulation is shown in Figure (6 - 12).

.

Figure (6 - 12) Simulation of Foot release PGO virtual model
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6.5 Analysis of Simulation Results

6.5.1 Joint Motions

Joint motions are shown in Figure (6 - 13). A constant velocity of hip motor gear can

produce exact hip motion through the cam-modulated slider crank mechanism. The veloc-

ity for release motor is not continuous, but easily controlled by hand. It is approximated by

Fourier series in simulation. Compared with cylinder release shown in Figure (6 - 14), the

velocity of virtual model has the similar curve form with the displacement of cylinder

release. That make the responding velocity of the virtual model smaller than that of the

cylinder release. The maximum responding velocity is shown in Table (6 - 1) on page 115.

If the displacement of virtual model like that of cylinder release is wanted, then the motor

speed can be increased and stopped at the maximum release displacement. However, the

step motor can not respond so quickly.

Table (6 - 1): Comparison of Cylinder and Worm Gear Release

Responding
velocity Max. (m/s)

Release
displacement (m)

Width of curve
form (%)

Virtual model 0.24 0.031 36

Cylinder release 0.82 0.0385 44
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6.5.2 Ground Reaction Force

Ground reaction force is shown in Figure (6 - 15). Compared with that of the cylinder

release model, stance phase of the virtual model is longer. The detailed data is put in

Table (6 - 2) on page 117. The average force increase shows that the virtual model has

more weight than the mechanism model. The distinct increase in stance phase may result

from the difference of release mechanism. As it can be seen from joint motions that both

Figure (6 - 13) Joint motions in virtual model

Figure (6 - 14) Cylinder release displacement
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the responding velocity and the width of curve form have an effect on the length of stance

phase.

6.5.3 Sliding and Penetration

Sliding and penetration are shown in Figure (6 - 16). Sliding here decreases the stride

length. Penetration decreases the clearance of stance phase. Because of penetration, the

slow release response will increase the length of stance phase.

Table(6 - 2): Maximum force and Stance phase of Virtual Model

Maximum
Force (N)

Average
(N)

Stance Phase
(% of cycle)

Virtual model 1151.9 463.9 74

Cylinder release 988.9 390.2 60

Figure (6 - 15) Ground reaction force in virtual model
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6.5.4 The Center of Mass

The COM is shown in Figure (6 - 17). The oscillation is smaller than that in cylinder

release. The length of the leg and the stance phase may cause this difference.

Figure (6 - 16) Sliding and penetration of virtual model

Figure (6 - 17) COM of virtual model and cylinder release
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6.5.5 Moment and Power Consumption

The moment and power for both hip and foot release are shown in Figure (6 - 18). The

data from this figure is put in Table (6 - 3) on page 119. Compared with cylinder release,

there are almost no difference in maximum moment and power for hip joint, but averages

increase. That may be caused by an increase of the weight and stance phase. The maxi-

mum moment for foot release is 0.52 Nm or 74.3 oz.in., while still under the selected step

motor supply.

Table (6 - 3): Moment and Power for Virtual Model

Moment (Nm) Power

Max Ave Max Ave

Hip 77.5 23.3 486.8 97.5

Foot release 0.52 0.046 2.7 -13.9

Figure (6 - 18) Moment and power in virtual model
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6.5.6 Contact Force between Cam and Follower

The contact force between cam and follower is shown in Figure (6 - 19). The maxi-

mum force is 7044.4 N. This force is little bit smaller than that (7245 N) used to design the

follower. That means follower should have the strength we desired.

6.5.7 Moment on Gear

The moment on gear is shown in Figure (6 - 20). The maximum torque is 10.5 N. This

value is a little bit higher than 9.68 N. This moment is running moment. It is smaller than

the self locking moment. And you know the self locking torque used for design is 40.8

Nm. Thus the gear also have enough strength.

Figure (6 - 19) Contact force of cam and follower in virtual model
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6.5.8 Power Ratio

Power ratio is used to measure the walking efficiency. To get the power ration the

walking distance is needed. The step and distance are shown in Figure (6 - 21). The data is

shown in Table (6 - 4) on page 122. The stride length is almost the step length. That means

the sliding has a big affect on the stride, and slow release response causes contact with the

ground even when it is in initial swing. In real walking it will slow down the pace because

of slow release movement.

Figure (6 - 20) Running torque on gear in virtual model

Figure (6 - 21) Step length of virtual model
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6.5.9 Control Torque

The control torque is shown in Figure (6 - 22). The data is shown in Table (6 - 5) on

page 122.

Table(6 - 4): Power Ratio of Cylinder Release and Virtual Model

Step (m) Stride (m)
Distance in 2

sec. (m)
Power ratio

(W/m)

Cylinder release 0.394 0.703 1.1364 142.56

Virtual model 0.401 0.403 0.895 217.88

Table(6 - 5): Control Torque of Virtual Model

Maximum (Nm) Minimum (Nm) Average (Nm)

Sagittal 311 -466 12.7

Coronal 226.7 -213.3 -5.37

Transverse 83.4 -77 -0.3

Figure (6 - 22) Control torque in virtual model
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6.6 Physical Realization of Foot-release Mechanism

To save fund and time, only one part of the entire model was going to be made. It was

expected that the chosen part when added to the current PGO prototype can show the

improvement of the function of current PGO. This can be answered through the validation

experiment. If it does, it will give a strong hint that foot release PGO will be more effec-

tive than the current PGO even without experimental comparison on both physical models.

It may also show that the simulation results are reliable and respectable. Therefore, foot

release mechanism was chosen to be made into a prototype. With little modification, the

current PGO can be ready for experiment. The prototype of foot release is shown in Figure

(6 - 23).

6.7 Step motor and Control

Step motor AM23-150-2 is used to control foot release to ensure the mechanism

extend to its maximum position in stance phase and retract to minimum position in swing

Figure (6 - 23) Prototype of foot release
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phase. When using open loop control, there was no feed back. Just count how many revo-

lutions or steps for motor when lowerplate moves from minimum position to maximum

position. After start up, it will stop by itself after it rotates the exact steps set in. It is very

easy to adjust the original position of the footplate.Just step on it and turn the step motor

on then it will move under the weight and stay on the lowest position. It can not move

against the weight. That makes sure motor always starts at the right position. A stand-

alone controller DAX was used, which made the operation as simple as pushing a button.

More details on control are included in the following discussion.

Because the step motor is already wired in parallel, it is ready for use. Just connect it to

the controller. To work in stand alone, two things need to be set up first: storing code and

setting operating button.

1. Code set-up:

• According to the manual, correctly set up hardware and connect controller to

COM1 of the PC

• Set up communication between computer and controller through software EASI

• Enter a very short code started with P0, then R4000, then P0 end the code

2. Operating button set-up:

From the auxiliary I.O. connector, four pins for button operation are as:

P15 GND Power Common Ground

P17 Go Optically Isolated Input

P19 +5V Voltage Supply Output and

 P20 Opto Supply Opto-Isolator Power-in.

•  Connecting P19 and P20 to obtain power supply for P17



Design of the foot release PGO

125

• Put a momentary button between P17 and P15 to obtain “GO” input function. Each

time the “GO” button is pushed, the controller will execute the code stored from

address location 0.

6.8 Summary

A foot release PGO virtual model is developed. The strength of each key part is

checked and final functions are visualized through simulation. Foot release mechanism is

made into a prototype.
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7 VALIDATION OF THE MECHANISM AND

DESIGN OF FOOT-RELEASE

Because only one foot-release mechanism is made, it is hard to validate the whole sys-

tem. However, the mechanism and design of the foot-release can be validated by adding

the foot-release mechanism on the current PGO. It is necessary to know if the foot release

is a right approach and if the design can satisfy the need of the approach. Therefore some

experiments on this physical prototype are carried out to verify function. Before the exper-

iments, the current PGO with foot release will be simulated to show the functional

improvement of the current PGO. The results from the simulation can guide experiments,

and in return the experiments can validate the simulation.

7.1 Simulation of Current PGO with Foot-release

7.1.1 Simulation

To show the improvement of current PGO with foot release, it is necessary to simulate

it first then compare the results with those in Chapter 4. Because of addition of foot release

the model may be changed slightly. For instance, there may be changes in position of

COM and leg length of the model. That may make some error in comparison. However,

the PGO can be simulated with foot release mechanism on but no release movement. The-

oretically there is no error in the model. Simulation of current PGO with foot release

movement is shown in Figure (7 - 1), and that simulation without release movement is

shown in Figure (7 - 2). There is no significant difference between these figures, but the

power consumption is different. The detailed comparison follows.
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7.1.2 Ground Reaction Forces

Ground reaction forces are shown in Figure (7 - 3) and Table 7 - 1 on page 128. There

is no big difference after first cycle. The third peak in the curve of impact force with

Figure (7 - 1)  Simulation of current PGO with foot release movement

Figure (7 - 2)  Simulation of current PGO without release movement
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release movement is not supposed to exist. After the lower footplate retracts back, it will

not contact with ground any more. Then why does the contact still happen? The reason is

that the trailing leg is pulled forward faster than the release movement. Because the foot

can not penetrate into the ground in real walking, this will not happen. Only after the

release movement can the leg move forward. That will slow down the walking speed. To

make simulation more accurate, it is necessary to know the real walking speed.

Table(7 - 1): Comparison of Ground Reaction Forces

Maximum
Force (N)

Average
(N)

Stance Phase
(% of cycle)

Double
support (% of

cycle)

With release
movement

1665.9 371.95 62 12

Without release
movement

2264.6 370.96 62 12

Figure (7 - 3)  Comparison of ground reaction forces
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7.1.3 Moment and Power Consumption

Because there was no big difference in ground reaction forces, the other parameters

only changed slightly. However, the improvement can still be seen through the comparison

of power consumption. The moment and power consumption are in Table 7 - 2 on

page 129 and Figure (7 - 4).

Table(7 - 2): Moment and Power for Current PGO with Foot Release

Moment (Nm) Power (W)

Max Ave Max Ave

With release move-
ment

192.4 40.36 2825 116.2758

Without release
movement

199.3 41.06 3555 130.5053

Figure (7 - 4)  Comparison of moment and power consumption
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7.1.4 Power Ratio

The distances are shown in Figure (7 - 5).   The power ratios are shown in Table 7 - 3

on page 130. From the table it can seen that with release movement the power ratio

decreases 9%. The power ratio here can not be used to compare with those in chapter 5.

Here the simulation periods are 3 seconds. It can be simulated in 2 seconds, but simulation

shows the curves before 2 seconds are not very stable. That may produce large error.

Table(7 - 3): Power Ratio of Current PGO with or Without Release Movement

Distance in 3 sec.
(m)

Power ratio
(W/m)

With release move-
ment

.8878 261.94

Without release
movement

.9092 287.08

Figure (7 - 5)  Comparison of walking distance with or without release
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7.1.5 Control Torques

Control torques in three planes are shown in Figure (7 - 6) and Table 7 - 4 on page 131.

No significant differences are seen.

Table(7 - 4): Control Torque of Current PGO With or Without Release Movement

Maximum (Nm) Minimum (Nm) Average (Nm)

With Without With Without With Without

Sagittal 436.87 435.7 -961.4 964.47 -139.55 -138

Coronal 416.99 389 -315.7 -338 3.12 2.3

Transverse 155.94 158.56 -165.2 -168.9 -4.05 -3.85

Figure (7 - 6)  Comparison of control torque with or without release
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7.2 Testing System Set up

From Chapter 4 it was known the main cause of poor function is one leg moving at a

time, which results in short steps and no clearance. Short step should be improved with

new hip joints that allow both legs to move at the same time. Validation on this will be

done when a physical model is built. Clearance can be improved by adding the foot

release. The improvement will be validated as follows. Foot and ground contacting force

of the moving leg can tell if the foot touches the ground. Thus, the footplate is used to test

the contact force of the moving foot in both conditions, both with foot release movement

and without it.

From Chapter 4 and video tape on current PGO it was seen that there was no clearance

for trailing leg after toe off. Therefore, the testing system here is set up to test the ground

reaction force of the trailing leg. The maximum extension angle of normal walking for hip

is 10o. Thus the angle of trailing leg is adjustable from 0o to 10o. Because the weight is

usually supported by stance leg it is not needed to add force on the swing leg, only fasten

the hip position.

The final setup of the testing system is shown in Figure (7 - 7). Two Siglab blocks or 8

Channels are used in this test because the Force plate has 8 outputs, which are Z1, Z2, Z3,

Z4, X1+2, X3+4, Y1+4 and Y2+3. Then the impact force is Z1+Z2+Z3+Z4, the friction is

.

The calibration is done by putting a known weight on the force plate. It is assumed

there is no friction force under there, only vertical force. Then the calibration coefficient

is the weight divided by mean value of the sum Z1,Z2, Z3 and Z4.

X 1 2+ X 3 4++( )2
Y 1 4+ Y 2 3++( )+
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7.3 Measured Results

7.3.1 Ground Contact Force With No Extension of Swing Leg

In the condition of no extension of the swing leg the test is to check the forces starting

from standing position. For normal walking the flexion of ankle will help to start from

standing position. However in PGO the ankle is fixed. This may cause some friction on

swing leg. The test data in Figure (7 - 8) shows it did cause impact force and friction

climbing above the preload, while with release movement the force goes down below the

preload and as does the friction. That means without ankle flexion the foot release will

Figure (7 - 7)  Testing system of ground reaction force for trailing leg
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help to start from standing. In fact, the current PGO walking always walks from standing

for every step because of only one leg moving at a time.

7.3.2 Ground Contact Force With Five Degree Extension

In this condition the clearance at the toe off of the swing leg is interested. The data is

shown in Figure (7 - 9). Without release movement the impact force also climbs above the

preload and results in big friction. That means while swing at this angle the clearance is

decreasing. In fact the leg can not penetrate into the ground, the patient must lift his hip up

to make clearance. With release movement the impact force goes down below the preload.

That means the release mechanism can make clearance for the swing leg. It can be seen

that the release mechanism can work under preload even though the power is very small.

Figure (7 - 8)  Measured ground reaction force with no extension
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7.4 Discussion

1. Difference between measurement and simulation. The third peak of the curve with

release movement shown in Figure (7 - 3) means there is still penetration. However,

the measured data in Figure (7 - 9) shows that with the release movement the impact

force should be smaller than preload. If the preload is zero, there should have no force

after the release movement. The third peak of Figure (7 - 3) results from the penetra-

tion of the standing leg and relatively slower release movement. These two are the

main reasons to shorten the clearance of the swing leg.

2. Mechanism of the foot release. The measured results in Figure (7 - 8) and Figure (7 -

9) show that at least between 0o to 5o of extension of the swing leg foot release causes

impact force go down below the preload. That means it can make clearance if the pre-

Figure (7 - 9)  Measured ground reaction force with 5o extension
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load is zero at the toe off. That also means that the release mechanism can provide

some compensation for the locked knee and ankle.

3. Design of the foot release. The power consumption is very low for the mechanism. It

can self lock at any position. It can work under the preload but not against the preload.

and the release distance is about 30 mm.

7.5 Summary

In this chapter both simulation and measurement validated the mechanism and the

design of foot release.
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8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Summary and Conclusions

In the course of this study, a model based experimental investigative approach was

developed. First, a human model with 16 DOF was created and simulated. Foot ground

contact model and upper body balance control strategy were validated by comparison of

simulated results and measured data from Winter’s book. Then they were adopted through

this thesis. Real causes of poor function of current PGO were explored through the simula-

tion of PGO walking model, and a trade-off between energy consumption, control com-

plexity were found through the simulation of PGO mechanism model. Finally the foot

release PGO virtual model was developed and a foot release was made into a prototype.

The mechanism and design of foot release were validated through the experiment on cur-

rent PGO with foot release. The following conclusions can be drawn from this research:

• Human walking model with 16 DOF was accurate enough for the investigation by

comparison of simulated results and measured ones.

• Foot ground impact model was reliable and validated by measured impact forces

from Winter’s book.

• Foot ground friction model had some error, but total sliding was zero.

• Upper body balance control strategy was very simple and effective.

• The real causes of poor function of current PGO were found through the simula-

tion of current PGO. The direct cause of poor function of current PGO was one leg

moving at a time which resulted short steps and no clearance after toe off. The
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mechanical reason was no power working on most of stance phase to move the

COM forward.

• PGO must be reciprocal.

• Power ratio in order were: Current PGO, current PGO with foot release, foot

release, foot knee release, knee release and normal walking.

• Walking in the knee release PGO looks more natural and needs less power. How-

ever, if the knee and the hip are coupled, there is no standing position. If they are

decoupled, the control system for knee is very complex.

• Foot release PGO is the trade off between energy consumption, standing position

and control strategy. The foot release PGO can only replicate hip motion. How-

ever, the foot release mechanism is easier to develop than knee control system, and

the user can get into a standing position with the foot release PGO.

• The foot release PGO has more advantage than RGO.

• Foot release mechanism is validated to be effective and can provide some compen-

sation for the locked knee and ankle.

• Model based experimental investigation is very effective. It can reduce the cost of

prototyping. Also, before the model is prototyped, most of functions are already

known.

8.2 Contributions

Compared with previous work by others this thesis has produced several unique con-

tributions, including:
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• Model based experimental investigation approach. There are a lot of simulation in

human walking and a lot of simulation on robots in Chapter 1. This is the first time

that combines both approaches.

• Foot-ground contact model with varied viscoelasticity. This model requires much

more work. However, it makes the simulated results closer to the measured ones

• Upper body balance control strategy with two parallel primitive joints. This makes

control simple. Trying out coefficient for Eqn (3-5) is not needed.

• Foot release mechanism. This mechanism is self locked by worm gear and con-

trolled by step motor.

This approach can be applied to other areas. The models here can be used to investi-

gate design and function of shoes, moment and power consumption for robot design.

8.3 Recommendations for Future Work

It can be seen that the whole physical model is not developed. Therefore there is no

way to walk a patient in it. Some thing unforeseen even with the simulation may happen.

Thus, the following recommendations for future work in this area are put forward:

1. Make the whole prototype.

2. Experiment on a real patient walking in it. Then it can be seen that how effective it is

to restore the patient’s walking ability.

3. Theoretically there is a lot of ways to improve the simulation:

• A new friction model needs to explore to get more accurate friction force. A clue

for this was put forward in Chapter 3.
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• Upper body balance control can be replaced by whatever the patients use to keep

their balance like walker or cane. That will make the simulation more accurate.

• Decrease the penetration. Penetration on stance leg will affect the clearance of the

swing leg. This clearance does have effect on moment and power consumption.

• Speed the release movement. From the experiment there was no contact after

release movement. While in the simulation the contact was still there.It is smaller

than that with no release movement. That was the result of slower release move-

ment relative to leg movement.

• The accuracy of simulation of PGO walking will be improved if a real PGO walk-

ing speed is used. In this paper, the hip joint speeds of PGO walking are the same

as those of human walking.

• If the data for RGO walking is available, it can be simulated to compare energy

consumption between RGO walking and foot release PGO walking.
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APPENDIX A

Ideas Models

1. Normal walking model: healthyman.mf1, including healthyman and footreleasedpgo

two assemblies.

2. Current PGO model: pgophysicmodel.mf1, including oldpgophysicmodel, oldpgow-

ithfootrelease subassemblies.

3. PGO virtual model: PGOdesign.mf1. Main assembly is man_newPGO, including

human, NewPGOphysicalmodel, NewPGOphysicalmodel_L subassembly which is

also including foot_release_linear_bearing and PGOmodel (hip joint) subassembly.

Adams Models

1. Normal walking model: healthyman_distributed_force.bin

2. Current PGO model: oldphysicmodel_D.bin

3. PGO mechanism model: footreleasedpgo1_D.bin for knee release,

footreleasedpgo2_D.bin for foot release, footreleasedpgo4_D.bin for foot & knee

release

4. PGO virtual model: man_newPGO_virtual.bin, foot_release_linear_bearing.bin

for foot release, PGOmodel_1.bin for hip joint

5. Current PGO with foot release model: oldpgowithfootrelease.bin for release move-

ment, oldpgowithfootrelease_norelease.bin for no release movement
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APPENDIX B

Matlab Files

B.1 regression.m

This code is compiled to fit the test data from Winter’s book with Fourier series, then the data is

approximated with a periodical function.

%---------------------------------------------

% Regression of angles of hip, knee and ankle

%---------------------------------------------

clear all

close all

% Input data from David A. Winter

% The Biomechanics and Motor Control of Human Gait

% Table 3.32(b)

% Joint Angles(Deg)-Natural Cadence

Hip(1:10)=[19.33,18.92,18.45,17.94,17.30,16.40,15.18,13.67,11.97,10.21];

Hip(11:20)=[8.48, 6.74, 4.94, 3.13, 1.42,-0.13,-1.54,-2.87,-4.12,-5.30];

Hip([21:30])=[-6.4,-7.43,-8.39,-9.27,-10.02,-10.61,-10.95,-10.91,-10.31,-9];

Hip([31:40])=[-6.95,-4.25,-1.05,2.42,5.93,9.22,12.11,14.55,16.53,18.13];

Hip([41:51])=[19.45,20.54,21.38,21.84,21.87,21.50,20.84,20.09,19.50,19.18,19.01];

Knee([1:10])=[3.97,7.00,10.52,14.12,17.38,19.84,21.27,21.67,21.22,20.20];

Knee([11:20])=[18.86,17.35,15.73,14.08,12.50,11.09,9.91,8.97,8.28,7.86];

Knee([21:30])=[7.72,7.94,8.60,9.76,11.50,13.86,16.97,20.96,26.00,32.03];

Knee([31:40])=[38.74,45.60,52.05,57.54,61.66,64.12,64.86,63.95,61.59,57.97];

Knee([41:51])=[53.27,47.58,40.94,33.46,25.38,17.27,9.94,4.31,1.12,.54,2.21];

Ankle([1:10])=[.02,-2.06,-3.88,-4.60,-3.98,-2.40,-.45,1.45,3.04,4.27];

Ankle([11:20])=[5.13,5.71,6.10,6.43,6.76,7.12,7.54,7.99,8.44,8.86];

Ankle([21:30])=[9.23,9.51,9.62,9.43,8.70,7.20,4.69,1.15,-3.26,-8.17];

Ankle([31:40])=[-13.05,-17.13,-19.52,-19.77,-18.12,-15.29,-12.04,-8.85,-5.96,-3.51];

Ankle([41:51])=[-1.64,-.50,-.07,-.16,-.42,-.52,-.26,.36,1.00,1.20,.58];

N=length(Hip);
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k=1:N;

yh=fft(Hip)*2/N;

yk=fft(Knee)*2/N;

ya=fft(Ankle)*2/N;

t=1:N;

fh0=0;

for i=1:N-1

   fh0=fh0+Hip(i);

end

fh0=yh(1)/2;

fh=fh0+real(yh(2))*cos(2*pi*t/N)-imag(yh(2))*sin(2*pi*t/N);

fh=fh+real(yh(3))*cos(2*pi*2*t/N)-imag(yh(3))*sin(2*pi*2*t/N);

fh=fh+real(yh(4))*cos(2*pi*3*t/N)-imag(yh(4))*sin(2*pi*3*t/N);

fh=fh+real(yh(6))*cos(2*pi*5*t/N)-imag(yh(6))*sin(2*pi*5*t/N);

fh=fh+real(yh(9))*cos(2*pi*8*t/N)-imag(yh(9))*sin(2*pi*8*t/N);

fh=fh+real(yh(11))*cos(2*pi*10*t/N)-imag(yh(11))*sin(2*pi*10*t/N);

fk0=yk(1)/2;

fk=fk0+real(yk(2))*cos(2*pi*t/N)-imag(yk(2))*sin(2*pi*t/N);

fk=fk+real(yk(3))*cos(2*pi*2*t/N)-imag(yk(3))*sin(2*pi*2*t/N);

fk=fk+real(yk(4))*cos(2*pi*3*t/N)-imag(yk(4))*sin(2*pi*3*t/N);

fk=fk+real(yk(5))*cos(2*pi*4*t/N)-imag(yk(5))*sin(2*pi*4*t/N);

fk=fk+real(yk(6))*cos(2*pi*5*t/N)-imag(yk(6))*sin(2*pi*5*t/N);

fk=fk+real(yk(7))*cos(2*pi*6*t/N)-imag(yk(7))*sin(2*pi*6*t/N);

fk=fk+real(yk(9))*cos(2*pi*8*t/N)-imag(yk(9))*sin(2*pi*8*t/N);

fa0=ya(1)/2;

fa=fa0+real(ya(2))*cos(2*pi*t/N)-imag(ya(2))*sin(2*pi*t/N);

fa=fa+real(ya(3))*cos(2*pi*2*t/N)-imag(ya(3))*sin(2*pi*2*t/N);

fa=fa+real(ya(4))*cos(2*pi*3*t/N)-imag(ya(4))*sin(2*pi*3*t/N);

fa=fa+real(ya(5))*cos(2*pi*4*t/N)-imag(ya(5))*sin(2*pi*4*t/N);

fa=fa+real(ya(6))*cos(2*pi*5*t/N)-imag(ya(6))*sin(2*pi*5*t/N);

fa=fa+real(ya(8))*cos(2*pi*7*t/N)-imag(ya(8))*sin(2*pi*7*t/N);

fa=fa+real(ya(10))*cos(2*pi*9*t/N)-imag(ya(10))*sin(2*pi*9*t/N);

Fh=yh(1)/2;
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Fk=yk(1)/2;

Fa=ya(1)/2;

for i=1:N/2

   Fh=Fh+real(yh(i+1))*cos(2*pi*i*t/N)-imag(yh(i+1))*sin(2*pi*i*t/N);

   Fk=Fk+real(yk(i+1))*cos(2*pi*i*t/N)-imag(yk(i+1))*sin(2*pi*i*t/N);

   Fa=Fa+real(ya(i+1))*cos(2*pi*i*t/N)-imag(ya(i+1))*sin(2*pi*i*t/N);

end

figure(’position’,[0 0 600 600]);

grid on; hold on

plot(k-1,Hip,’r-’);hold on

plot(k-1,Knee,’k-’);

plot(k-1,Ankle,’g-’);

plot(t-1,fh,’r--’);

plot(t-1,fk,’k--’);

plot(t-1,fa,’g--’);

plot(t-1,Fh,’b--’);

plot(t-1,Fk,’c--’);

plot(t-1,Fa,’y--’);

legend(’Hip’,’Knee’,’Ankle’);

figure(’position’,[50 50 600 600]);

plot(k-1,abs(yh),’r-’);hold on

plot(k-1,abs(yk),’k-’);

plot(k-1,abs(ya),’g-’);

disp(’fh=fh0+real(yh(2))*cos(2*pi*t/N)-imag(yh(2))*sin(2*pi*t/N)’);

disp(’fh=fh+real(yh(3))*cos(2*pi*2*t/N)-imag(yh(3))*sin(2*pi*2*t/N)’);

disp(’fh=fh+real(yh(4))*cos(2*pi*3*t/N)-imag(yh(4))*sin(2*pi*3*t/N)’);

disp(’fh=fh+real(yh(6))*cos(2*pi*5*t/N)-imag(yh(6))*sin(2*pi*5*t/N)’);

disp(’fh=fh+real(yh(9))*cos(2*pi*8*t/N)-imag(yh(9))*sin(2*pi*8*t/N)’);

disp(’fh=fh+real(yh(11))*cos(2*pi*10*t/N)-imag(yh(11))*sin(2*pi*10*t/N)’);

fh0

%disp(’yh(2)=’);yh(2)

yh(2)

disp(’yh(3)=’);yh(3)
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disp(’yh(4)=’);yh(4)

disp(’yh(6)=’);yh(6)

disp(’yh(9)=’);yh(9)

disp(’yh(11)=’);yh(11)

disp(’fk=fk0+real(yk(2))*cos(2*pi*t/N)-imag(yk(2))*sin(2*pi*t/N)’);

disp(’fk=fk+real(yk(3))*cos(2*pi*2*t/N)-imag(yk(3))*sin(2*pi*2*t/N)’);

disp(’fk=fk+real(yk(4))*cos(2*pi*3*t/N)-imag(yk(4))*sin(2*pi*3*t/N)’);

disp(’fk=fk+real(yk(5))*cos(2*pi*4*t/N)-imag(yk(5))*sin(2*pi*4*t/N)’);

disp(’fk=fk+real(yk(6))*cos(2*pi*5*t/N)-imag(yk(6))*sin(2*pi*5*t/N)’);

disp(’fk=fk+real(yk(7))*cos(2*pi*6*t/N)-imag(yk(7))*sin(2*pi*6*t/N)’);

disp(’fk=fk+real(yk(9))*cos(2*pi*8*t/N)-imag(yk(9))*sin(2*pi*8*t/N)’);

fk0

disp(’yk(2)=’);yk(2)

disp(’yk(3)=’);yk(3)

disp(’yk(4)=’);yk(4)

disp(’yk(5)=’);yk(5)

disp(’yk(6)=’);yk(6)

disp(’yk(7)=’);yk(7)

disp(’yk(9)=’);yk(9)

disp(’fa=fa0+real(ya(2))*cos(2*pi*t/N)-imag(ya(2))*sin(2*pi*t/N)’);

disp(’fa=fa+real(ya(3))*cos(2*pi*2*t/N)-imag(ya(3))*sin(2*pi*2*t/N)’);

disp(’fa=fa+real(ya(4))*cos(2*pi*3*t/N)-imag(ya(4))*sin(2*pi*3*t/N)’);

disp(’fa=fa+real(ya(5))*cos(2*pi*4*t/N)-imag(ya(5))*sin(2*pi*4*t/N)’);

disp(’fa=fa+real(ya(6))*cos(2*pi*5*t/N)-imag(ya(6))*sin(2*pi*5*t/N)’);

disp(’fa=fa+real(ya(8))*cos(2*pi*7*t/N)-imag(ya(8))*sin(2*pi*7*t/N)’);

disp(’fa=fa+real(ya(10))*cos(2*pi*9*t/N)-imag(ya(10))*sin(2*pi*9*t/N)’);

fa0

disp(’ya(2)=’);ya(2)

disp(’ya(3)=’);ya(3)

disp(’ya(4)=’);ya(4)

disp(’ya(5)=’);ya(5)

disp(’ya(6)=’);ya(6)

disp(’ya(8)=’);ya(8)



Appendix B

155

disp(’ya(10)=’);ya(10)

%------------- Shift data for the other leg ---------------------

RHip(1:26)=Hip(26:51);

RHip(27:51)=Hip(1:25);

RKnee(1:26)=Knee(26:51);

RKnee(27:51)=Knee(1:25);

RAnkle(1:26)=Ankle(26:51);

RAnkle(27:51)=Ankle(1:25);

Ryh=fft(RHip)*2/N;

Ryk=fft(RKnee)*2/N;

Rya=fft(RAnkle)*2/N;

Rfh0=Ryh(1)/2;

Rfh=Rfh0+real(Ryh(2))*cos(2*pi*t/N)-imag(Ryh(2))*sin(2*pi*t/N);

Rfh=Rfh+real(Ryh(3))*cos(2*pi*2*t/N)-imag(Ryh(3))*sin(2*pi*2*t/N);

Rfh=Rfh+real(Ryh(4))*cos(2*pi*3*t/N)-imag(Ryh(4))*sin(2*pi*3*t/N);

Rfh=Rfh+real(Ryh(6))*cos(2*pi*5*t/N)-imag(Ryh(6))*sin(2*pi*5*t/N);

Rfh=Rfh+real(Ryh(9))*cos(2*pi*8*t/N)-imag(Ryh(9))*sin(2*pi*8*t/N);

Rfh=Rfh+real(Ryh(11))*cos(2*pi*10*t/N)-imag(Ryh(11))*sin(2*pi*10*t/N);

Rfk0=Ryk(1)/2;

Rfk=Rfk0+real(Ryk(2))*cos(2*pi*t/N)-imag(Ryk(2))*sin(2*pi*t/N);

Rfk=Rfk+real(Ryk(3))*cos(2*pi*2*t/N)-imag(Ryk(3))*sin(2*pi*2*t/N);

Rfk=Rfk+real(Ryk(4))*cos(2*pi*3*t/N)-imag(Ryk(4))*sin(2*pi*3*t/N);

Rfk=Rfk+real(Ryk(5))*cos(2*pi*4*t/N)-imag(Ryk(5))*sin(2*pi*4*t/N);

Rfk=Rfk+real(Ryk(6))*cos(2*pi*5*t/N)-imag(Ryk(6))*sin(2*pi*5*t/N);

Rfk=Rfk+real(Ryk(7))*cos(2*pi*6*t/N)-imag(Ryk(7))*sin(2*pi*6*t/N);

Rfk=Rfk+real(Ryk(9))*cos(2*pi*8*t/N)-imag(Ryk(9))*sin(2*pi*8*t/N);

Rfa0=Rya(1)/2;

Rfa=Rfa0+real(Rya(2))*cos(2*pi*t/N)-imag(Rya(2))*sin(2*pi*t/N);

Rfa=Rfa+real(Rya(3))*cos(2*pi*2*t/N)-imag(Rya(3))*sin(2*pi*2*t/N);

Rfa=Rfa+real(Rya(4))*cos(2*pi*3*t/N)-imag(Rya(4))*sin(2*pi*3*t/N);

Rfa=Rfa+real(Rya(5))*cos(2*pi*4*t/N)-imag(Rya(5))*sin(2*pi*4*t/N);

Rfa=Rfa+real(Rya(6))*cos(2*pi*5*t/N)-imag(Rya(6))*sin(2*pi*5*t/N);

Rfa=Rfa+real(Rya(8))*cos(2*pi*7*t/N)-imag(Rya(8))*sin(2*pi*7*t/N);
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Rfa=Rfa+real(Rya(10))*cos(2*pi*9*t/N)-imag(Rya(10))*sin(2*pi*9*t/N);

figure(’position’,[100 100 600 600]);

plot(k-1,RHip,’r-’);hold on

plot(k-1,RKnee,’k-’);

plot(k-1,RAnkle,’g-’);

plot(t-1,Rfh,’r--’);

plot(t-1,Rfk,’k--’);

plot(t-1,Rfa,’g--’);

figure(’position’,[150 150 600 600]);

plot(k-1,abs(Ryh),’r-’);hold on

plot(k-1,abs(Ryk),’k-’);

plot(k-1,abs(Rya),’g-’);

disp(’Angle data for rightfoot’);

Rfh0

disp(’Ryh(2)=’);Ryh(2)

disp(’Ryh(3)=’);Ryh(3)

disp(’Ryh(4)=’);Ryh(4)

disp(’Ryh(6)=’);Ryh(6)

disp(’Ryh(9)=’);Ryh(9)

disp(’Ryh(11)=’);Ryh(11)

Rfk0

disp(’Ryk(2)=’);Ryk(2)

disp(’Ryk(3)=’);Ryk(3)

disp(’Ryk(4)=’);Ryk(4)

disp(’Ryk(5)=’);Ryk(5)

disp(’Ryk(6)=’);Ryk(6)

disp(’Ryk(7)=’);Ryk(7)

disp(’Ryk(9)=’);Ryk(9)

Rfa0

disp(’Rya(2)=’);Rya(2)

disp(’Rya(3)=’);Rya(3)

disp(’Rya(4)=’);Rya(4)

disp(’Rya(5)=’);Rya(5)
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disp(’Rya(6)=’);Rya(6)

disp(’Rya(8)=’);Rya(8)

disp(’Rya(10)=’);Rya(10)

%---------------------------------------------------

% Negative of the data of hip and ankle

%---------------------------------------------------

NHip(1:N)=-Hip(1:N);

NAnkle(1:N)=-Ankle(1:N);

Nyh=fft(NHip)*2/N;

Nya=fft(NAnkle)*2/N;

Nfh0=Nyh(1)/2;

Nfh=Nfh0+real(Nyh(2))*cos(2*pi*t/N)-imag(Nyh(2))*sin(2*pi*t/N);

Nfh=Nfh+real(Nyh(3))*cos(2*pi*2*t/N)-imag(Nyh(3))*sin(2*pi*2*t/N);

Nfh=Nfh+real(Nyh(4))*cos(2*pi*3*t/N)-imag(Nyh(4))*sin(2*pi*3*t/N);

Nfh=Nfh+real(Nyh(6))*cos(2*pi*5*t/N)-imag(Nyh(6))*sin(2*pi*5*t/N);

Nfh=Nfh+real(Nyh(9))*cos(2*pi*8*t/N)-imag(Nyh(9))*sin(2*pi*8*t/N);

Nfh=Nfh+real(Nyh(11))*cos(2*pi*10*t/N)-imag(Nyh(11))*sin(2*pi*10*t/N);

Nfa0=Nya(1)/2;

Nfa=Nfa0+real(Nya(2))*cos(2*pi*t/N)-imag(Nya(2))*sin(2*pi*t/N);

Nfa=Nfa+real(Nya(3))*cos(2*pi*2*t/N)-imag(Nya(3))*sin(2*pi*2*t/N);

Nfa=Nfa+real(Nya(4))*cos(2*pi*3*t/N)-imag(Nya(4))*sin(2*pi*3*t/N);

Nfa=Nfa+real(Nya(5))*cos(2*pi*4*t/N)-imag(Nya(5))*sin(2*pi*4*t/N);

Nfa=Nfa+real(Nya(6))*cos(2*pi*5*t/N)-imag(Nya(6))*sin(2*pi*5*t/N);

Nfa=Nfa+real(Nya(8))*cos(2*pi*7*t/N)-imag(Nya(8))*sin(2*pi*7*t/N);

Nfa=Nfa+real(Nya(10))*cos(2*pi*9*t/N)-imag(Nya(10))*sin(2*pi*9*t/N);

figure(’position’,[400 400 600 600]);

plot(k-1,NHip,’r-’);hold on

plot(k-1,Knee,’k-’);

plot(k-1,NAnkle,’g-’);

plot(t-1,Nfh,’r--’);

plot(t-1,fk,’k--’);

plot(t-1,Nfa,’g--’);

legend(’Hip’,’Knee’,’Ankle’);
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disp(’Angle data for foot after the Negative of data of hip and ankle’);

Nfh0

disp(’Nyh(2)=’);Nyh(2)

disp(’Nyh(3)=’);Nyh(3)

disp(’Nyh(4)=’);Nyh(4)

disp(’Nyh(6)=’);Nyh(6)

disp(’Nyh(9)=’);Nyh(9)

disp(’Nyh(11)=’);Nyh(11)

fk0

disp(’Nyk(2)=’);yk(2)

disp(’Nyk(3)=’);yk(3)

disp(’Nyk(4)=’);yk(4)

disp(’Nyk(5)=’);yk(5)

disp(’Nyk(6)=’);yk(6)

disp(’Nyk(7)=’);yk(7)

disp(’Nyk(9)=’);yk(9)

Nfa0

disp(’Nya(2)=’);Nya(2)

disp(’Nya(3)=’);Nya(3)

disp(’Nya(4)=’);Nya(4)

disp(’Nya(5)=’);Nya(5)

disp(’Nya(6)=’);Nya(6)

disp(’Nya(8)=’);Nya(8)

disp(’Nya(10)=’);Nya(10)

RNHip(1:26)=NHip(26:51);

RNHip(27:51)=NHip(1:25);

RNAnkle(1:26)=NAnkle(26:51);

RNAnkle(27:51)=NAnkle(1:25);

RNyh=fft(RNHip)*2/N;

RNya=fft(RNAnkle)*2/N;

RNfh0=RNyh(1)/2;

RNfh=RNfh0+real(RNyh(2))*cos(2*pi*t/N)-imag(RNyh(2))*sin(2*pi*t/N);

RNfh=RNfh+real(RNyh(3))*cos(2*pi*2*t/N)-imag(RNyh(3))*sin(2*pi*2*t/N);
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RNfh=RNfh+real(RNyh(4))*cos(2*pi*3*t/N)-imag(RNyh(4))*sin(2*pi*3*t/N);

RNfh=RNfh+real(RNyh(6))*cos(2*pi*5*t/N)-imag(RNyh(6))*sin(2*pi*5*t/N);

RNfh=RNfh+real(RNyh(9))*cos(2*pi*8*t/N)-imag(RNyh(9))*sin(2*pi*8*t/N);

RNfh=RNfh+real(RNyh(11))*cos(2*pi*10*t/N)-imag(RNyh(11))*sin(2*pi*10*t/N);

RNfa0=RNya(1)/2;

RNfa=RNfa0+real(RNya(2))*cos(2*pi*t/N)-imag(RNya(2))*sin(2*pi*t/N);

RNfa=RNfa+real(RNya(3))*cos(2*pi*2*t/N)-imag(RNya(3))*sin(2*pi*2*t/N);

RNfa=RNfa+real(RNya(4))*cos(2*pi*3*t/N)-imag(RNya(4))*sin(2*pi*3*t/N);

RNfa=RNfa+real(RNya(5))*cos(2*pi*4*t/N)-imag(RNya(5))*sin(2*pi*4*t/N);

RNfa=RNfa+real(RNya(6))*cos(2*pi*5*t/N)-imag(RNya(6))*sin(2*pi*5*t/N);

RNfa=RNfa+real(RNya(8))*cos(2*pi*7*t/N)-imag(RNya(8))*sin(2*pi*7*t/N);

RNfa=RNfa+real(RNya(10))*cos(2*pi*9*t/N)-imag(RNya(10))*sin(2*pi*9*t/N);

figure(’position’,[450 450 600 600]);

plot(k-1,RNHip,’r-’);hold on

plot(k-1,RKnee,’k-’);

plot(k-1,RNAnkle,’g-’);

plot(t-1,RNfh,’r--’);

plot(t-1,Rfk,’k--’);

plot(t-1,RNfa,’g--’);

legend(’Hip’,’Knee’,’Ankle’);

disp(’Angle data for right foot after the Negative of data of hip and ankle’);

RNfh0

disp(’RNyh(2)=’);RNyh(2)

disp(’RNyh(3)=’);RNyh(3)

disp(’RNyh(4)=’);RNyh(4)

disp(’RNyh(6)=’);RNyh(6)

disp(’RNyh(9)=’);RNyh(9)

disp(’RNyh(11)=’);RNyh(11)

Rfk0

disp(’RNyk(2)=’);Ryk(2)

disp(’RNyk(3)=’);Ryk(3)

disp(’RNyk(4)=’);Ryk(4)

disp(’RNyk(5)=’);Ryk(5)



Appendix B

160

disp(’RNyk(6)=’);Ryk(6)

disp(’RNyk(7)=’);Ryk(7)

disp(’RNyk(9)=’);Ryk(9)

RNfa0

disp(’RNya(2)=’);RNya(2)

disp(’RNya(3)=’);RNya(3)

disp(’RNya(4)=’);RNya(4)

disp(’RNya(5)=’);RNya(5)

disp(’RNya(6)=’);RNya(6)

disp(’RNya(8)=’);RNya(8)

disp(’RNya(10)=’);RNya(10)

figure

subplot(3,2,1); plot((k-1)*2,NHip,’r-’);hold on

plot((t-1)*2,Nfh,’k--’);

legend (’Measured’,’Fourier’);

title(’Left Hip angle’);

xlabel(’Stride %’);

ylabel(’Degree’);

grid on;

subplot(3,2,3); plot((k-1)*2,Knee,’r-’);hold on

plot((t-1)*2,fk,’k--’);

legend (’Measured’,’Fourier’);

xlabel(’Stride %’);

ylabel(’Degree’);

title(’Left Knee angle’)

grid on;

subplot(3,2,5); plot((k-1)*2,NAnkle,’r-’);hold on

plot((t-1)*2,Nfa,’b--’);

legend (’Measured’,’Fourier’);

xlabel(’Stride %’);

ylabel(’Degree’);

grid on;

title(’Left Ankle angle’)
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subplot(3,2,2); plot((k-1)*2,RNHip,’r-’);hold on

plot((t-1)*2,RNfh,’k--’);

xlabel(’Stride %’);

ylabel(’Degree’);

grid on;

title(’Right Hip angle’)

legend (’Measured’,’Fourier’);

subplot(3,2,4); plot((k-1)*2,RKnee,’r-’); hold on

plot((t-1)*2,Rfk,’k--’);

xlabel(’Stride %’);

ylabel(’Degree’);

grid on;

title(’Right Knee angle’);

legend (’Measured’,’Fourier’);

subplot(3,2,6); plot((k-1)*2,RNAnkle,’r-’);hold on

plot((t-1)*2,RNfa,’b--’);

xlabel(’Stride %’);

ylabel(’Degree’);

legend (’Measured’,’Fourier’);

grid on;

title(’Right Ankle angle’);

B.2 bezier.m

This code is compiled to fit points of some key positions to  bezier curve. We have no data for

movement of arm and shoulder, but just estimate some key positions, then fit it to bezier curve.

%------------------------------------------------------------

%  Bezier of angles of joint hip,knee,ankle,shoulder and arm

%------------------------------------------------------------

%*************** walking **********************

clear all

close all

%read data

data=dlmread (’walking.txt’,’ ’,[0,0,9,12]);
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hipx(1:7)=data(1,[1:7]);

hipangle(1:7)=data(2,[1:7]);

kneex(1:13)=data(3,[1:13]);

kneeangle(1:13)=data(4,[1:13]);

anklex(1:13)=data(5,[1:13]);

ankleangle(1:13)=data(6,[1:13]);

shoulderx(1:7)=data(7,[1:7]);

shoulderangle(1:7)=data(8,[1:7]);

armx(1:7)=data(9,[1:7]);

armangle(1:7)=data(10,[1:7]);

%-----------------------------------------------

% compute curve

%-----------------------------------------------

%-----------------------------------------------

% Bezier for hip joint

%-----------------------------------------------

hipnumpoints=7;

cycle_size=100;

tinc=1/1000;

BBasis=[-1,3,-3,1;

    3,-6,3,0;

    -3,3,0,0;

    1,0,0,0];

for i=1:4

    pointset(3,i)=0;

end

lastindex=-1;

for ctlpoint=1:3:hipnumpoints-2

    t=0;

    for i=1:4

        pointset(1,i)=hipx(ctlpoint+i-1);

    end

    for i=1:4
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        pointset(2,i)=hipangle(ctlpoint+i-1);

    end

    prod=pointset*BBasis;

    while t<=1

        tm(1)=t*t*t;

        tm(2)=t*t;

        tm(3)=t;

        tm(4)=1;

        pos=prod*tm’;

        newindex=round(pos(1)*(cycle_size-1));

        if newindex > lastindex

            walk_cycle_hip(1,newindex+1)=pos(2);

            lastindex=lastindex+1;

        end

        t=t+tinc;

    end

end

%----------------------------------------------

% Bezier for knee joint

%----------------------------------------------

kneenumpoints=13;

cycle_size=100;

tinc=1/1000;

BBasis=[-1,3,-3,1;

    3,-6,3,0;

    -3,3,0,0;

    1,0,0,0];

for i=1:4

    pointset(3,i)=0;

end

lastindex=-1;

for ctlpoint=1:3:kneenumpoints-2

    t=0;
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    for i=1:4

        pointset(1,i)=kneex(ctlpoint+i-1);

    end

    for i=1:4

        pointset(2,i)=kneeangle(ctlpoint+i-1);

    end

    prod=pointset*BBasis;

    while t<=1

        tm(1)=t*t*t;

        tm(2)=t*t;

        tm(3)=t;

        tm(4)=1;

        pos=prod*tm’;

        newindex=round(pos(1)*(cycle_size-1));

        if newindex > lastindex

            walk_cycle_knee(1,newindex+1)=pos(2);

            lastindex=lastindex+1;

        end

        t=t+tinc;

    end

end

%----------------------------------------------

% Bezier for ankle joint

%----------------------------------------------

anklenumpoints=13;

cycle_size=100;

tinc=1/1000;

BBasis=[-1,3,-3,1;

    3,-6,3,0;

    -3,3,0,0;

    1,0,0,0];

for i=1:4

    pointset(3,i)=0;
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end

lastindex=-1;

for ctlpoint=1:3:anklenumpoints-2

    t=0;

    for i=1:4

        pointset(1,i)=anklex(ctlpoint+i-1);

    end

    for i=1:4

        pointset(2,i)=ankleangle(ctlpoint+i-1);

    end

    prod=pointset*BBasis;

    while t<=1

        tm(1)=t*t*t;

        tm(2)=t*t;

        tm(3)=t;

        tm(4)=1;

        pos=prod*tm’;

        newindex=round(pos(1)*(cycle_size-1));

        if newindex > lastindex

            walk_cycle_ankle(1,newindex+1)=pos(2);

            lastindex=lastindex+1;

        end

        t=t+tinc;

    end

end

%----------------------------------------------

% Bezier for shoulder joint

%----------------------------------------------

shouldernumpoints=7;

cycle_size=100;

tinc=1/1000;

BBasis=[-1,3,-3,1;

    3,-6,3,0;
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    -3,3,0,0;

    1,0,0,0];

for i=1:4

    pointset(3,i)=0;

end

lastindex=-1;

for ctlpoint=1:3:shouldernumpoints-2

    t=0;

    for i=1:4

        pointset(1,i)=shoulderx(ctlpoint+i-1);

    end

    for i=1:4

        pointset(2,i)=shoulderangle(ctlpoint+i-1);

    end

    prod=pointset*BBasis;

    while t<=1

        tm(1)=t*t*t;

        tm(2)=t*t;

        tm(3)=t;

        tm(4)=1;

        pos=prod*tm’;

        newindex=round(pos(1)*(cycle_size-1));

        if newindex > lastindex

            walk_cycle_shoulder(1,newindex+1)=pos(2);

            lastindex=lastindex+1;

        end

        t=t+tinc;

    end

end

%----------------------------------------------

% Bezier for arm joint

%----------------------------------------------

armnumpoints=7;
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cycle_size=100;

tinc=1/1000;

BBasis=[-1,3,-3,1;

    3,-6,3,0;

    -3,3,0,0;

    1,0,0,0];

for i=1:4

    pointset(3,i)=0;

end

lastindex=-1;

for ctlpoint=1:3:armnumpoints-2

    t=0;

    for i=1:4

        pointset(1,i)=armx(ctlpoint+i-1);

    end

    for i=1:4

        pointset(2,i)=armangle(ctlpoint+i-1);

    end

    prod=pointset*BBasis;

    while t<=1

        tm(1)=t*t*t;

        tm(2)=t*t;

        tm(3)=t;

        tm(4)=1;

        pos=prod*tm’;

        newindex=round(pos(1)*(cycle_size-1));

        if newindex > lastindex

            walk_cycle_arm(1,newindex+1)=pos(2);

            lastindex=lastindex+1;

        end

        t=t+tinc;

    end

end
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figure(’position’,[0 0 600 600]);

plot(hipx,hipangle,’r-’);hold on

plot([1:100]/100,walk_cycle_hip,’r--’);

plot(kneex,kneeangle,’k-’);

plot([1:100]/100,walk_cycle_knee,’k--’),

plot(anklex,ankleangle,’g-’);

plot([1:100]/100,walk_cycle_ankle,’g--’),

plot(shoulderx,shoulderangle,’b-’);

plot([1:100]/100,walk_cycle_shoulder,’b--’),

plot(armx,armangle,’c-’);

plot([1:100]/100,walk_cycle_arm,’c--’),

legend(’Hip’,’’,’Knee’,’’,’Ankle’,’’,’Shoulder’,’’,’Arm’);

%----------------------------------------------

%*************** running **********************

%----------------------------------------------

%read data

data=dlmread (’running.txt’,’ ’,[0,0,9,12]);

hipx(1:7)=data(1,[1:7]);

hipangle(1:7)=data(2,[1:7]);

kneex(1:7)=data(3,[1:7]);

kneeangle(1:7)=data(4,[1:7]);

anklex(1:13)=data(5,[1:13]);

ankleangle(1:13)=data(6,[1:13]);

shoulderx(1:7)=data(7,[1:7]);

shoulderangle(1:7)=data(8,[1:7]);

armx(1:7)=data(9,[1:7]);

armangle(1:7)=data(10,[1:7]);

%-----------------------------------------------

% compute curve

%-----------------------------------------------

%-----------------------------------------------

% Bezier for hip joint

%-----------------------------------------------
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hipnumpoints=7;

cycle_size=100;

tinc=1/1000;

BBasis=[-1,3,-3,1;

    3,-6,3,0;

    -3,3,0,0;

    1,0,0,0];

for i=1:4

    pointset(3,i)=0;

end

lastindex=-1;

for ctlpoint=1:3:hipnumpoints-2

    t=0;

    for i=1:4

        pointset(1,i)=hipx(ctlpoint+i-1);

    end

    for i=1:4

        pointset(2,i)=hipangle(ctlpoint+i-1);

    end

    prod=pointset*BBasis;

    while t<=1

        tm(1)=t*t*t;

        tm(2)=t*t;

        tm(3)=t;

        tm(4)=1;

        pos=prod*tm’;

        newindex=round(pos(1)*(cycle_size-1));

        if newindex > lastindex

            run_cycle_hip(1,newindex+1)=pos(2);

            lastindex=lastindex+1;

        end

        t=t+tinc;

    end
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end

%----------------------------------------------

% Bezier for knee joint

%----------------------------------------------

kneenumpoints=7;

cycle_size=100;

tinc=1/1000;

BBasis=[-1,3,-3,1;

    3,-6,3,0;

    -3,3,0,0;

    1,0,0,0];

for i=1:4

    pointset(3,i)=0;

end

lastindex=-1;

for ctlpoint=1:3:kneenumpoints-2

    t=0;

    for i=1:4

        pointset(1,i)=kneex(ctlpoint+i-1);

    end

    for i=1:4

        pointset(2,i)=kneeangle(ctlpoint+i-1);

    end

    prod=pointset*BBasis;

    while t<=1

        tm(1)=t*t*t;

        tm(2)=t*t;

        tm(3)=t;

        tm(4)=1;

        pos=prod*tm’;

        newindex=round(pos(1)*(cycle_size-1));

        if newindex > lastindex

            run_cycle_knee(1,newindex+1)=pos(2);
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            lastindex=lastindex+1;

        end

        t=t+tinc;

    end

end

%----------------------------------------------

% Bezier for ankle joint

%----------------------------------------------

anklenumpoints=13;

cycle_size=100;

tinc=1/1000;

BBasis=[-1,3,-3,1;

    3,-6,3,0;

    -3,3,0,0;

    1,0,0,0];

for i=1:4

    pointset(3,i)=0;

end

lastindex=-1;

for ctlpoint=1:3:anklenumpoints-2

    t=0;

    for i=1:4

        pointset(1,i)=anklex(ctlpoint+i-1);

    end

    for i=1:4

        pointset(2,i)=ankleangle(ctlpoint+i-1);

    end

    prod=pointset*BBasis;

    while t<=1

        tm(1)=t*t*t;

        tm(2)=t*t;

        tm(3)=t;

        tm(4)=1;
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        pos=prod*tm’;

        newindex=round(pos(1)*(cycle_size-1));

        if newindex > lastindex

            run_cycle_ankle(1,newindex+1)=pos(2);

            lastindex=lastindex+1;

        end

        t=t+tinc;

    end

end

%----------------------------------------------

% Bezier for shoulder joint

%----------------------------------------------

shouldernumpoints=7;

cycle_size=100;

tinc=1/1000;

BBasis=[-1,3,-3,1;

    3,-6,3,0;

    -3,3,0,0;

    1,0,0,0];

for i=1:4

    pointset(3,i)=0;

end

lastindex=-1;

for ctlpoint=1:3:shouldernumpoints-2

    t=0;

    for i=1:4

        pointset(1,i)=shoulderx(ctlpoint+i-1);

    end

    for i=1:4

        pointset(2,i)=shoulderangle(ctlpoint+i-1);

    end

    prod=pointset*BBasis;

    while t<=1
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        tm(1)=t*t*t;

        tm(2)=t*t;

        tm(3)=t;

        tm(4)=1;

        pos=prod*tm’;

        newindex=round(pos(1)*(cycle_size-1));

        if newindex > lastindex

            run_cycle_shoulder(1,newindex+1)=pos(2);

            lastindex=lastindex+1;

        end

        t=t+tinc;

    end

end

%----------------------------------------------

% Bezier for arm joint

%----------------------------------------------

armnumpoints=7;

cycle_size=100;

tinc=1/1000;

BBasis=[-1,3,-3,1;

    3,-6,3,0;

    -3,3,0,0;

    1,0,0,0];

for i=1:4

    pointset(3,i)=0;

end

lastindex=-1;

for ctlpoint=1:3:armnumpoints-2

    t=0;

    for i=1:4

        pointset(1,i)=armx(ctlpoint+i-1);

    end

    for i=1:4
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        pointset(2,i)=armangle(ctlpoint+i-1);

    end

    prod=pointset*BBasis;

    while t<=1

        tm(1)=t*t*t;

        tm(2)=t*t;

        tm(3)=t;

        tm(4)=1;

        pos=prod*tm’;

        newindex=round(pos(1)*(cycle_size-1));

        if newindex > lastindex

            run_cycle_arm(1,newindex+1)=pos(2);

            lastindex=lastindex+1;

        end

        t=t+tinc;

    end

end

figure(’position’,[50 50 600 600]);

plot(hipx,hipangle,’r-’);hold on

plot([1:100]/100,run_cycle_hip,’r--’);

plot(kneex,kneeangle,’k-’);

plot([1:100]/100,run_cycle_knee,’k--’),

plot(anklex,ankleangle,’g-’);

plot([1:100]/100,run_cycle_ankle,’g--’),

plot(shoulderx,shoulderangle,’b-’);

plot([1:100]/100,run_cycle_shoulder,’b--’),

plot(armx,armangle,’c-’);

plot([1:100]/100,run_cycle_arm,’c--’),

legend(’Hip’,’’,’Knee’,’’,’Ankle’,’’,’Shoulder’,’’,’Arm’);

save bezier_walk.mat walk_cycle_hip walk_cycle_knee walk_cycle_ankle walk_cycle_shoulder

walk_cycle_arm;

save bezier_run.mat run_cycle_hip run_cycle_knee run_cycle_ankle run_cycle_shoulder

run_cycle_arm;
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B.3 bezier_regression.m

This code is compiled to fit the bezier curve with Fourier series, then it can be a peoredical func-

tion.

%  Regression of angles of hip,knee,ankle,shoulder and arm

%----------------------------------------------------------

clear all

close all

%load data from bezeir calculation

load bezier_walk.mat;

Hip=walk_cycle_hip;

Knee=walk_cycle_knee;

Ankle=walk_cycle_ankle;

Shoulder=walk_cycle_shoulder;

Elbow=walk_cycle_arm;

N=length(Hip);

k=1:N;

yh=fft(Hip)*2/N;

yk=fft(Knee)*2/N;

ya=fft(Ankle)*2/N;

ys=fft(Shoulder)*2/N;

ye=fft(Elbow)*2/N;

t=1:N;

fh0=0;

for i=1:N-1

   fh0=fh0+Hip(i);

end

fh0=yh(1)/2;

fh=fh0+real(yh(2))*cos(2*pi*t/N)-imag(yh(2))*sin(2*pi*t/N);

fh=fh+real(yh(3))*cos(2*pi*2*t/N)-imag(yh(3))*sin(2*pi*2*t/N);

fh=fh+real(yh(4))*cos(2*pi*3*t/N)-imag(yh(4))*sin(2*pi*3*t/N);

fh=fh+real(yh(5))*cos(2*pi*4*t/N)-imag(yh(5))*sin(2*pi*4*t/N);

fh=fh+real(yh(6))*cos(2*pi*5*t/N)-imag(yh(6))*sin(2*pi*5*t/N);

fh=fh+real(yh(7))*cos(2*pi*6*t/N)-imag(yh(7))*sin(2*pi*6*t/N);
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fk0=yk(1)/2;

fk=fk0+real(yk(2))*cos(2*pi*t/N)-imag(yk(2))*sin(2*pi*t/N);

fk=fk+real(yk(3))*cos(2*pi*2*t/N)-imag(yk(3))*sin(2*pi*2*t/N);

fk=fk+real(yk(4))*cos(2*pi*3*t/N)-imag(yk(4))*sin(2*pi*3*t/N);

fk=fk+real(yk(5))*cos(2*pi*4*t/N)-imag(yk(5))*sin(2*pi*4*t/N);

fk=fk+real(yk(6))*cos(2*pi*5*t/N)-imag(yk(6))*sin(2*pi*5*t/N);

fk=fk+real(yk(7))*cos(2*pi*6*t/N)-imag(yk(7))*sin(2*pi*6*t/N);

fk=fk+real(yk(8))*cos(2*pi*7*t/N)-imag(yk(8))*sin(2*pi*7*t/N);

fa0=ya(1)/2;

fa=fa0+real(ya(2))*cos(2*pi*t/N)-imag(ya(2))*sin(2*pi*t/N);

fa=fa+real(ya(3))*cos(2*pi*2*t/N)-imag(ya(3))*sin(2*pi*2*t/N);

fa=fa+real(ya(4))*cos(2*pi*3*t/N)-imag(ya(4))*sin(2*pi*3*t/N);

fa=fa+real(ya(5))*cos(2*pi*4*t/N)-imag(ya(5))*sin(2*pi*4*t/N);

fa=fa+real(ya(6))*cos(2*pi*5*t/N)-imag(ya(6))*sin(2*pi*5*t/N);

fa=fa+real(ya(7))*cos(2*pi*6*t/N)-imag(ya(7))*sin(2*pi*6*t/N);

fa=fa+real(ya(8))*cos(2*pi*7*t/N)-imag(ya(8))*sin(2*pi*7*t/N);

fa=fa+real(ya(9))*cos(2*pi*8*t/N)-imag(ya(9))*sin(2*pi*8*t/N);

fa=fa+real(ya(10))*cos(2*pi*9*t/N)-imag(ya(10))*sin(2*pi*9*t/N);

fs0=ys(1)/2;

fs=fs0+real(ys(2))*cos(2*pi*t/N)-imag(ys(2))*sin(2*pi*t/N);

fs=fs+real(ys(3))*cos(2*pi*2*t/N)-imag(ys(3))*sin(2*pi*2*t/N);

fs=fs+real(ys(4))*cos(2*pi*3*t/N)-imag(ys(4))*sin(2*pi*3*t/N);

fs=fs+real(ys(5))*cos(2*pi*4*t/N)-imag(ys(5))*sin(2*pi*4*t/N);

fs=fs+real(ys(6))*cos(2*pi*5*t/N)-imag(ys(6))*sin(2*pi*5*t/N);

fe0=ye(1)/2;

fe=fe0+real(ye(2))*cos(2*pi*t/N)-imag(ye(2))*sin(2*pi*t/N);

fe=fe+real(ye(3))*cos(2*pi*2*t/N)-imag(ye(3))*sin(2*pi*2*t/N);

fe=fe+real(ye(4))*cos(2*pi*3*t/N)-imag(ye(4))*sin(2*pi*3*t/N);

fe=fe+real(ye(5))*cos(2*pi*4*t/N)-imag(ye(5))*sin(2*pi*4*t/N);

fe=fe+real(ye(6))*cos(2*pi*5*t/N)-imag(ye(6))*sin(2*pi*5*t/N);

Fh=yh(1)/2;

Fk=yk(1)/2;

Fa=ya(1)/2;



Appendix B

177

for i=1:N/2

   Fh=Fh+real(yh(i+1))*cos(2*pi*i*t/N)-imag(yh(i+1))*sin(2*pi*i*t/N);

   Fk=Fk+real(yk(i+1))*cos(2*pi*i*t/N)-imag(yk(i+1))*sin(2*pi*i*t/N);

   Fa=Fa+real(ya(i+1))*cos(2*pi*i*t/N)-imag(ya(i+1))*sin(2*pi*i*t/N);

end

figure(’position’,[0 0 600 600]);

plot(k-1,Hip,’r-’);hold on

plot(k-1,Knee,’k-’);

plot(k-1,Ankle,’g-’);

plot(k-1,Shoulder,’b-’);

plot(k-1,Elbow,’c-’);

plot(t-1,fh,’r--’);

plot(t-1,fk,’k--’);

plot(t-1,fa,’g--’);

plot(t-1,fs,’b*’);

plot(t-1,fe,’c*’);

plot(t-1,Fh,’b--’);

plot(t-1,Fk,’c--’);

plot(t-1,Fa,’y--’);

legend(’Hip’,’Knee’,’Ankle’,’Shoulder’,’Elbow’);

title(’Leftside of walking_cycle’);

grid on;

figure(’position’,[50 50 600 600]);

plot(k-1,abs(yh),’r-’);hold on

plot(k-1,abs(yk),’k-’);

plot(k-1,abs(ya),’g-’);

disp(’fh=fh0+real(yh(2))*cos(2*pi*t/N)-imag(yh(2))*sin(2*pi*t/N)’);

disp(’fh=fh+real(yh(3))*cos(2*pi*2*t/N)-imag(yh(3))*sin(2*pi*2*t/N)’);

disp(’fh=fh+real(yh(4))*cos(2*pi*3*t/N)-imag(yh(4))*sin(2*pi*3*t/N)’);

disp(’fh=fh+real(yh(5))*cos(2*pi*4*t/N)-imag(yh(5))*sin(2*pi*4*t/N)’);

disp(’fh=fh+real(yh(6))*cos(2*pi*5*t/N)-imag(yh(6))*sin(2*pi*5*t/N)’);

disp(’fh=fh+real(yh(7))*cos(2*pi*6*t/N)-imag(yh(7))*sin(2*pi*6*t/N)’);

fh0
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disp(’yh(2)=’);yh(2)

disp(’yh(3)=’);yh(3)

disp(’yh(4)=’);yh(4)

disp(’yh(5)=’);yh(5)

disp(’yh(6)=’);yh(6)

disp(’yh(7)=’);yh(7)

disp(’fk=fk0+real(yk(2))*cos(2*pi*t/N)-imag(yk(2))*sin(2*pi*t/N)’);

disp(’fk=fk+real(yk(3))*cos(2*pi*2*t/N)-imag(yk(3))*sin(2*pi*2*t/N)’);

disp(’fk=fk+real(yk(4))*cos(2*pi*3*t/N)-imag(yk(4))*sin(2*pi*3*t/N)’);

disp(’fk=fk+real(yk(5))*cos(2*pi*4*t/N)-imag(yk(5))*sin(2*pi*4*t/N)’);

disp(’fk=fk+real(yk(6))*cos(2*pi*5*t/N)-imag(yk(6))*sin(2*pi*5*t/N)’);

disp(’fk=fk+real(yk(7))*cos(2*pi*6*t/N)-imag(yk(7))*sin(2*pi*6*t/N)’);

disp(’fk=fk+real(yk(8))*cos(2*pi*7*t/N)-imag(yk(8))*sin(2*pi*7*t/N)’);

fk0

disp(’yk(2)=’);yk(2)

disp(’yk(3)=’);yk(3)

disp(’yk(4)=’);yk(4)

disp(’yk(5)=’);yk(5)

disp(’yk(6)=’);yk(6)

disp(’yk(7)=’);yk(7)

disp(’yk(8)=’);yk(8)

disp(’fa=fa0+real(ya(2))*cos(2*pi*t/N)-imag(ya(2))*sin(2*pi*t/N)’);

disp(’fa=fa+real(ya(3))*cos(2*pi*2*t/N)-imag(ya(3))*sin(2*pi*2*t/N)’);

disp(’fa=fa+real(ya(4))*cos(2*pi*3*t/N)-imag(ya(4))*sin(2*pi*3*t/N)’);

disp(’fa=fa+real(ya(5))*cos(2*pi*4*t/N)-imag(ya(5))*sin(2*pi*4*t/N)’);

disp(’fa=fa+real(ya(6))*cos(2*pi*5*t/N)-imag(ya(6))*sin(2*pi*5*t/N)’);

disp(’fa=fa+real(ya(7))*cos(2*pi*6*t/N)-imag(ya(7))*sin(2*pi*6*t/N)’);

disp(’fa=fa+real(ya(8))*cos(2*pi*7*t/N)-imag(ya(8))*sin(2*pi*7*t/N)’);

disp(’fa=fa+real(ya(9))*cos(2*pi*8*t/N)-imag(ya(9))*sin(2*pi*8*t/N)’);

disp(’fa=fa+real(ya(10))*cos(2*pi*9*t/N)-imag(ya(10))*sin(2*pi*9*t/N)’);

fa0

disp(’ya(2)=’);ya(2)

disp(’ya(3)=’);ya(3)
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disp(’ya(4)=’);ya(4)

disp(’ya(5)=’);ya(5)

disp(’ya(6)=’);ya(6)

disp(’ya(7)=’);ya(7)

disp(’ya(8)=’);ya(8)

disp(’ya(9)=’);ya(9)

disp(’ya(10)=’);ya(10)

fs0

disp(’ys(2)=’);ys(2)

disp(’ys(3)=’);ys(3)

disp(’ys(4)=’);ys(4)

disp(’ys(5)=’);ys(5)

disp(’ys(6)=’);ys(6)

fe0

disp(’ye(2)=’);ye(2)

disp(’ye(3)=’);ye(3)

disp(’ye(4)=’);ye(4)

disp(’ye(5)=’);ye(5)

disp(’ye(6)=’);ye(6)

%----------------------------- rightleg -----------------------

RHip(1:50)=Hip(51:100);

RHip(51:100)=Hip(1:50);

RKnee(1:50)=Knee(51:100);

RKnee(51:100)=Knee(1:50);

RAnkle(1:50)=Ankle(51:100);

RAnkle(51:100)=Ankle(1:50);

RShoulder(1:50)=Shoulder(51:100);

RShoulder(51:100)=Shoulder(1:50);

RElbow(1:50)=Elbow(51:100);

RElbow(51:100)=Elbow(1:50);

Ryh=fft(RHip)*2/N;

Ryk=fft(RKnee)*2/N;

Rya=fft(RAnkle)*2/N;
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Rys=fft(RShoulder)*2/N;

Rye=fft(RElbow)*2/N;

Rfh0=Ryh(1)/2;

Rfh=Rfh0+real(Ryh(2))*cos(2*pi*t/N)-imag(Ryh(2))*sin(2*pi*t/N);

Rfh=Rfh+real(Ryh(3))*cos(2*pi*2*t/N)-imag(Ryh(3))*sin(2*pi*2*t/N);

Rfh=Rfh+real(Ryh(4))*cos(2*pi*3*t/N)-imag(Ryh(4))*sin(2*pi*3*t/N);

Rfh=Rfh+real(Ryh(5))*cos(2*pi*4*t/N)-imag(Ryh(5))*sin(2*pi*4*t/N);

Rfh=Rfh+real(Ryh(6))*cos(2*pi*5*t/N)-imag(Ryh(6))*sin(2*pi*5*t/N);

Rfh=Rfh+real(Ryh(7))*cos(2*pi*6*t/N)-imag(Ryh(7))*sin(2*pi*6*t/N);

Rfk0=Ryk(1)/2;

Rfk=Rfk0+real(Ryk(2))*cos(2*pi*t/N)-imag(Ryk(2))*sin(2*pi*t/N);

Rfk=Rfk+real(Ryk(3))*cos(2*pi*2*t/N)-imag(Ryk(3))*sin(2*pi*2*t/N);

Rfk=Rfk+real(Ryk(4))*cos(2*pi*3*t/N)-imag(Ryk(4))*sin(2*pi*3*t/N);

Rfk=Rfk+real(Ryk(5))*cos(2*pi*4*t/N)-imag(Ryk(5))*sin(2*pi*4*t/N);

Rfk=Rfk+real(Ryk(6))*cos(2*pi*5*t/N)-imag(Ryk(6))*sin(2*pi*5*t/N);

Rfk=Rfk+real(Ryk(7))*cos(2*pi*6*t/N)-imag(Ryk(7))*sin(2*pi*6*t/N);

Rfk=Rfk+real(Ryk(8))*cos(2*pi*7*t/N)-imag(Ryk(8))*sin(2*pi*7*t/N);

Rfa0=Rya(1)/2;

Rfa=Rfa0+real(Rya(2))*cos(2*pi*t/N)-imag(Rya(2))*sin(2*pi*t/N);

Rfa=Rfa+real(Rya(3))*cos(2*pi*2*t/N)-imag(Rya(3))*sin(2*pi*2*t/N);

Rfa=Rfa+real(Rya(4))*cos(2*pi*3*t/N)-imag(Rya(4))*sin(2*pi*3*t/N);

Rfa=Rfa+real(Rya(5))*cos(2*pi*4*t/N)-imag(Rya(5))*sin(2*pi*4*t/N);

Rfa=Rfa+real(Rya(6))*cos(2*pi*5*t/N)-imag(Rya(6))*sin(2*pi*5*t/N);

Rfa=Rfa+real(Rya(7))*cos(2*pi*6*t/N)-imag(Rya(7))*sin(2*pi*6*t/N);

Rfa=Rfa+real(Rya(8))*cos(2*pi*7*t/N)-imag(Rya(8))*sin(2*pi*7*t/N);

Rfa=Rfa+real(Rya(9))*cos(2*pi*8*t/N)-imag(Rya(9))*sin(2*pi*8*t/N);

Rfa=Rfa+real(Rya(10))*cos(2*pi*9*t/N)-imag(Rya(10))*sin(2*pi*9*t/N);

Rfs0=Rys(1)/2;

Rfs=Rfs0+real(Rys(2))*cos(2*pi*t/N)-imag(Rys(2))*sin(2*pi*t/N);

Rfs=Rfs+real(Rys(3))*cos(2*pi*2*t/N)-imag(Rys(3))*sin(2*pi*2*t/N);

Rfs=Rfs+real(Rys(4))*cos(2*pi*3*t/N)-imag(Rys(4))*sin(2*pi*3*t/N);

Rfs=Rfs+real(Rys(5))*cos(2*pi*4*t/N)-imag(Rys(5))*sin(2*pi*4*t/N);

Rfs=Rfs+real(Rys(6))*cos(2*pi*5*t/N)-imag(Rys(6))*sin(2*pi*5*t/N);
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Rfe0=Rye(1)/2;

Rfe=Rfe0+real(Rye(2))*cos(2*pi*t/N)-imag(Rye(2))*sin(2*pi*t/N);

Rfe=Rfe+real(Rye(3))*cos(2*pi*2*t/N)-imag(Rye(3))*sin(2*pi*2*t/N);

Rfe=Rfe+real(Rye(4))*cos(2*pi*3*t/N)-imag(Rye(4))*sin(2*pi*3*t/N);

Rfe=Rfe+real(Rye(5))*cos(2*pi*4*t/N)-imag(Rye(5))*sin(2*pi*4*t/N);

Rfe=Rfe+real(Rye(6))*cos(2*pi*5*t/N)-imag(Rye(6))*sin(2*pi*5*t/N);

figure(’position’,[100 100 600 600]);

plot(k-1,RHip,’r-’);hold on

plot(k-1,RKnee,’k-’);

plot(k-1,RAnkle,’g-’);

plot(k-1,RShoulder,’b-’);

plot(k-1,RElbow,’c-’);

plot(t-1,Rfh,’r--’);

plot(t-1,Rfk,’k--’);

plot(t-1,Rfa,’g--’);

plot(t-1,Rfs,’b*’);

plot(t-1,Rfe,’c*’);

legend(’Hip’,’Knee’,’Ankle’,’Shoulder’,’Elbow’);

title(’Rightside of walking_cycle’);

grid on;

figure(’position’,[150 150 600 600]);

plot(k-1,abs(Ryh),’r-’);hold on

plot(k-1,abs(Ryk),’k-’);

plot(k-1,abs(Rya),’g-’);

disp(’Angle data for rightfoot’);

Rfh0

disp(’Ryh(2)=’);Ryh(2)

disp(’Ryh(3)=’);Ryh(3)

disp(’Ryh(4)=’);Ryh(4)

disp(’Ryh(5)=’);Ryh(5)

disp(’Ryh(6)=’);Ryh(6)

disp(’Ryh(7)=’);Ryh(7)

Rfk0
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disp(’Ryk(2)=’);Ryk(2)

disp(’Ryk(3)=’);Ryk(3)

disp(’Ryk(4)=’);Ryk(4)

disp(’Ryk(5)=’);Ryk(5)

disp(’Ryk(6)=’);Ryk(6)

disp(’Ryk(7)=’);Ryk(7)

disp(’Ryk(8)=’);Ryk(8)

Rfa0

disp(’Rya(2)=’);Rya(2)

disp(’Rya(3)=’);Rya(3)

disp(’Rya(4)=’);Rya(4)

disp(’Rya(5)=’);Rya(5)

disp(’Rya(6)=’);Rya(6)

disp(’Rya(7)=’);Rya(7)

disp(’Rya(8)=’);Rya(8)

disp(’Rya(9)=’);Rya(9)

disp(’Rya(10)=’);Rya(10)

Rfs0

disp(’Rys(2)=’);Rys(2)

disp(’Rys(3)=’);Rys(3)

disp(’Rys(4)=’);Rys(4)

disp(’Rys(5)=’);Rys(5)

disp(’Rys(6)=’);Rys(6)

Rfe0

disp(’Rye(2)=’);Rye(2)

disp(’Rye(3)=’);Rye(3)

disp(’Rye(4)=’);Rye(4)

disp(’Rye(5)=’);Rye(5)

disp(’Rye(6)=’);Rye(6)

B.4 hipcam.m

This code is compiled to calculate the cam profile

%-------- Cam profile for hip joint ------------
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%  Vector loop: r2 + r3 -r4 -r1 = 0

%-----------------------------------------------

close all

clear all

%-------Knowns ----------------

r1 = 5;

theta1 = -90*pi/180;

theta2 = -90*pi/180;

%----------- current PGO ------

%r1=4;

%r3 = 3.5;

%r4 = 2.429;

r3 = 3.7;

r4 = 2.6;

%------------------------------

%---- Unknown -----------------

%---- r2, theta3 --------------

%------------------------------

%------- guess values ----------

r2(1) = 1;

theta3 = 150*pi/180;

%-------------------------------

for i=1:101

    t=(i-1)/100;

    theta2cam(i)=theta2+2*pi*t;

    %---- theta4 is from Fourier series used in simulation ----

    theta4(i) = -7.2288+15.3460*cos(2*pi*t)-4.3600*sin(2*pi*t);

    theta4(i) = theta4(i)+3.0894*cos(4*pi*t)+1.0698*sin(4*pi*t);

    theta4(i) = theta4(i)-0.2965*cos(6*pi*t)+1.6455*sin(6*pi*t);

    theta4(i) = theta4(i)-0.2465*cos(10*pi*t)+0.2136*sin(10*pi*t);

    theta4(i) = theta4(i)-0.0674*cos(16*pi*t)-0.0017*sin(16*pi*t);

    theta4(i) = theta4(i)-0.0145*cos(20*pi*t)-0.0309*sin(20*pi*t);

    theta4(i) =-theta4(i)*pi/180;
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    ddtheta4(i) = -15.3460*2^2*pi^2*cos(2*pi*t)+4.3600*2^2*pi^2*sin(2*pi*t);

    ddtheta4(i) = ddtheta4(i)-3.0894*4^2*pi^2*cos(4*pi*t)-1.0698*4^2*pi^2*sin(4*pi*t);

    ddtheta4(i) = ddtheta4(i)+0.2965*6^2*pi^2*cos(6*pi*t)-1.6455*6^2*pi^2*sin(6*pi*t);

    ddtheta4(i) = ddtheta4(i)+0.2465*10^2*pi^2*cos(10*pi*t)-0.2136*10^2*pi^2*sin(10*pi*t);

    ddtheta4(i) = ddtheta4(i)+0.0674*16^2*pi^2*cos(16*pi*t)+0.0017*16^2*pi^2*sin(16*pi*t);

    ddtheta4(i) = ddtheta4(i)+0.0145*20^2*pi^2*cos(20*pi*t)+0.0309*20^2*pi^2*sin(20*pi*t);

    ddtheta4(i) =-ddtheta4(i)*pi/180;

    err1(i)=r3*cos(theta3(i))-r4*cos(theta4(i));

    err2(i)=-r2(i)+r3*sin(theta3(i))-r4*sin(theta4(i))+r1;

    while (abs(err1(i))>0.000001)|(abs(err2(i))>0.000001)

        %solve eqation [a]{out}=[b]

        a=[0, -r3*sin(theta3(i)); -1, r3*cos(theta3(i))];

        b=[-err1(i); -err2(i)];

        out=a•;

        r2(i) = r2(i) + out(1);

        theta3(i)=theta3(i)+out(2);

        err1(i)=r3*cos(theta3(i))-r4*cos(theta4(i));

        err2(i)=-r2(i)+r3*sin(theta3(i))-r4*sin(theta4(i))+r1;

    end

    r2(i+1)=r2(i);

    theta3(i+1)=theta3(i);

end

r2

min(r2)

max(r2)

figure(1);

plot(r2(1:101).*cos(theta2cam(1:101)),r2(1:101).*sin(theta2cam(1:101)));

axis equal;

grid on;

figure(2);

plot((1:101), theta4*180/pi);hold on

plot((1:101), ddtheta4);

for i=1:101
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    t=(i-1)/100;

    theta2cam(i)=theta2+2*pi*t;

    %---- theta4 is from Fourier series used in simulation ----

    theta4(i) = -7.2288-15.0485*cos(2*pi*t)+5.2965*sin(2*pi*t);

    theta4(i) = theta4(i)+3.1975*cos(4*pi*t)+0.6820*sin(4*pi*t);

    theta4(i) = theta4(i)-0.0109*cos(6*pi*t)-1.6720*sin(6*pi*t);

    theta4(i) = theta4(i)+0.1702*cos(10*pi*t)-0.2783*sin(10*pi*t);

    theta4(i) = theta4(i)-0.0602*cos(16*pi*t)+0.0304*sin(16*pi*t);

    theta4(i) = theta4(i)-0.0297*cos(20*pi*t)-0.0168*sin(20*pi*t);

    theta4(i) = -theta4(i)*pi/180;

    err1(i)=r3*cos(theta3(i))-r4*cos(theta4(i));

    err2(i)=-r2(i)+r3*sin(theta3(i))-r4*sin(theta4(i))+r1;

    while (abs(err1(i))>0.000001)|(abs(err2(i))>0.000001)

        %solve eqation [a]{out}=[b]

        a=[0, -r3*sin(theta3(i)); -1, r3*cos(theta3(i))];

        b=[-err1(i); -err2(i)];

        out=a•;

        r2(i) = r2(i) + out(1);

        theta3(i)=theta3(i)+out(2);

        err1(i)=r3*cos(theta3(i))-r4*cos(theta4(i));

        err2(i)=-r2(i)+r3*sin(theta3(i))-r4*sin(theta4(i))+r1;

    end

    r2(i+1)=r2(i);

    theta3(i+1)=theta3(i);

end

r2(1)

figure(3);

plot(r2(1:101).*cos(theta2cam(1:101)),r2(1:101).*sin(theta2cam(1:101)));

axis equal;

grid on;

figure(4);

plot((1:101), theta4*180/pi);
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B.5 Data_processing.m

%--------------------------------------------------

% Load data from Siglab

%--------------------------------------------------

clear all;

close all;

load calibration.mat;

x= slm.tdxvec;

y1=slm.scmeas(1).tdmeas; %z1

y2=slm.scmeas(2).tdmeas; %z2

y3=slm.scmeas(3).tdmeas; %z3

y4=slm.scmeas(4).tdmeas; %z4

y5=slm.scmeas(5).tdmeas; %x12

y6=slm.scmeas(6).tdmeas; %x34

y7=slm.scmeas(7).tdmeas; %y14

y8=slm.scmeas(8).tdmeas; %y23

Z= y1+y2+y3+y4;

Zmean = mean(Z);

weight =130; % calibration weight -lb(4.448222 N)

W=weight*4.448222;

Coeff=W/Zmean %N/V

figure;

plot(x,Z);

load 5_no_release1.mat;

x= slm.tdxvec;

y1=slm.scmeas(1).tdmeas; %z1

y2=slm.scmeas(2).tdmeas; %z2

y3=slm.scmeas(3).tdmeas; %z3

y4=slm.scmeas(4).tdmeas; %z4

y5=slm.scmeas(5).tdmeas; %x12

y6=slm.scmeas(6).tdmeas; %x34

y7=slm.scmeas(7).tdmeas; %y14

y8=slm.scmeas(8).tdmeas; %y23
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Z= y1+y2+y3+y4;

X=y5+y6;

Y=y7+y8;

Impact1=Z*Coeff;

Friction1=sqrt(X.^2+Y.^2)*Coeff;

load 5_with_release1.mat;

x= slm.tdxvec;

y1=slm.scmeas(1).tdmeas; %z1

y2=slm.scmeas(2).tdmeas; %z2

y3=slm.scmeas(3).tdmeas; %z3

y4=slm.scmeas(4).tdmeas; %z4

y5=slm.scmeas(5).tdmeas; %x12

y6=slm.scmeas(6).tdmeas; %x34

y7=slm.scmeas(7).tdmeas; %y14

y8=slm.scmeas(8).tdmeas; %y23

Z= y1+y2+y3+y4;

X=y5+y6;

Y=y7+y8;

Impact2=Z*Coeff;

Friction2=sqrt(X.^2+Y.^2)*Coeff;

figure;

subplot(2,1,1); plot(x, Impact1);hold on

plot(x, Impact2, ’r’);

title(’Impact force’);

xlabel(’time (S)’); ylabel(’Force (N)’);

legend(’Without release movement’, ’With release movement’);

grid on;

subplot(2,1,2); plot(x, Friction1);hold on

plot(x, Friction2, ’r’);

title(’Friction’);

xlabel(’time (S)’); ylabel(’Force (N)’);

legend(’Without release movement’, ’With release movement’);

grid on;
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