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Abstract 

We hypothesized that the spatial distribution of groundwater inflows through river 

bottom sediments is a critical factor associated with the selection of coaster brook trout (a 

life history variant of Salvelinus fontinalis,) spawning sites. An 80-m reach of the Salmon 

Trout River, in the Huron Mountains of the upper peninsula of Michigan, was selected to 

test the hypothesis based on long-term documentation of coaster brook trout spawning at 

this site. Throughout this site, the river is relatively similar along its length with regard to 

stream channel and substrate features. A monitoring well system consisting of an array of 

27 wells was installed to measure subsurface temperatures underneath the riverbed over a 

13-month period. The monitoring well locations were separated into areas where 

spawning has and has not been observed. 

Over 200,000 total temperature measurements were collected from 5 depths 

within each of the 27 monitoring wells. Temperatures within the substrate at the 

spawning area were generally cooler and less variable than river temperatures. Substrate 

temperatures in the non-spawning area were generally warmer, more variable, and 

closely tracked temporal variations in river temperatures. Temperature data were inverted 

to obtain subsurface groundwater velocities using a numerical approximation of the heat 

transfer equation. Approximately 45,000 estimates of groundwater velocities were 

obtained. Estimated velocities in the spawning and non-spawning areas confirmed that 

groundwater velocities in the spawning area were primarily in the upward direction, and 

were generally greater in magnitude than velocities in the non-spawning area.  In the non-

spawning area there was a greater occurrence of velocities in the downward direction, 

and velocity estimates were generally lesser in magnitude than in the spawning area. Both 
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the temperature and velocity results confirm the hypothesis that spawning sites 

correspond to areas of significant groundwater influx to the river bed.  
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1. INTRODUCTION 

Coaster brook trout are a unique life history variant of the brook trout species, 

Salvelinus fontinalis, which have been documented in Lake Superior for hundreds of 

years (Newman and Dubois 1996, Huckins et al. 2008). Currently, only a few 

populations of coaster brook trout remain in the Lake Superior basin and the Salmon 

Trout River is the only river on the southern shore of Lake Superior (Figure 1) that has a 

verified naturally reproducing population of adfluvial coasters (Huckins et al. 2008). A 

long term ecological study of coaster brook trout in the Salmon Trout River has 

investigated their adfluvial patterns, spawning density and distribution, behavioral 

characteristics, and genetic linkages (Huckins et al., 2008, Huckins and Baker, 2008).  

Coaster brook trout have been observed to reach their larges spawning densities during 

late October through mid November in the Salmon Trout River. To support conservation 

efforts within the Salmon Trout River, and rehabilitation efforts along the southern shore 

of Lake Superior, habitat conditions associated with a naturally reproducing coaster 

brook trout populations need to be characterized. 

Several studies have shown a relationship between groundwater seepage and 

brook trout spawning habitat (Fraser 1982, Curry and Noakes 1995, Ridgeway and 

Blanchfield, 1998). Groundwater seepage in permeable substrates functionally stabilizes 

critical biological water quality parameters such as temperature and oxygen availability 

in near-subsurface riverine environments (Curry et al. 1995, Fraser 1985).  Consistency 

of thermal and chemical properties is critical for the survival of developing embryos in 

climates which undergo drastic seasonal changes (Curry et al. 1995); exemplified in cold 



northern regions where formation of benthic ice layers are common during the winter 

months.  Given that groundwater seepage in riverine environments may be associated 

with the spatial distribution of brook trout spawning habitat, this study focuses on 

estimating groundwater fluxes in areas where coaster brook trout have been observed to 

spawn and in environmentally similar areas where no prior spawning activity has been 

observed. 

 

Various techniques have been implemented in order to determine sub-surface 

fluxes in stream beds, including estimates of differences between upstream and 

downstream discharge over lengths of stream bed using current meters (Becker et al., 

2004), pressure-head measurements acquired from in-stream monitoring wells (Curry et 

Figure 1. Salmon Trout River watershed map, Marquette County, MI. 
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al. 1994), chemical tracer injection experiments (Constantz et al. 2003), seepage meters 

(Blanchfield and Ridgeway 1996, Alexander and Caissie, 2003), and acquisition of 

vertical temperature profiles beneath streams (Stonestrom and Constantz, 2003, Silliman 

et al. 1995, Lapham 1989, Stallman 1965).   

The spatial distribution of groundwater discharges can have a significant impact 

on the distribution of benthic and hyporheic fauna (Brunke and Gonser, 1997; Storey et 

al., 2003) and the selection of spawning locations by fish (Curry et al. 1995). Temporal 

changes in water table and steam levels can alter the rate and direction of subsurface 

fluxes under stream beds (Wroblicky et al., 1998). Spatial patterns and magnitude of 

groundwater discharge can be critical when aquifer-stream transport and fate of 

contaminants is an issue (Conant, 2004). However, to our knowledge, no studies have 

involved measurement of groundwater fluxes under streambeds at small time and space 

scales and over long time periods (several months or greater), to evaluate ecological 

hypotheses.    

In this study, high resolution temperature data collection methods were 

implemented to quantify the interaction between groundwater and surface water in order 

to verify the presence or absence of groundwater discharge in the river at sites that 

support a reproducing population of coaster brook trout.  Networks of monitoring wells 

equipped with vertically stratified temperature sensors were installed into sections of 

river that both support and do not appear to support coaster brook trout spawning.  We 

hypothesize that the spatial distribution of groundwater inflows through river bottom 

sediments is a critical factor associated with the distribution of coaster brook trout 

spawning redds and activities.  
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2. METHODS 

Temperature measurements were collected to estimate sub-surface water 

velocities and gradients over a 13-month period (2007-2008) in a section of the Salmon 

Trout River where coaster brook trout spawning activity has been observed to recur and 

in adjacent upstream and downstream sections of the river where no spawning activity 

has been observed to occur.  A numerical solution to the one-dimensional convective-

diffusive heat transport equation was inverted to obtain best fit estimates of vertical sub-

surface water fluxes throughout the study period.    

2.1  Study Site 

The Salmon Trout River watershed drains approximately 12,690 ha of sub-boreal 

forestland, and descends approximately 245 meters in elevation between the headwaters 

and outlet (Bullen, 1986). Average annual precipitation in the area is 762 mm (NCDC, 

2009). Average annual snowfall is 2,900 mm, contributing to large spring snowmelt 

discharge events, while relatively dry summers produce low discharge, baseflow-

dominated periods (NCDC, 2009).  An average annual discharge of 0.16 m3/s was 

recorded over the period 2004-2008 (USGS, 2009). The gaging station is located 

approximately 15 kilometers upstream from the study site, and is upstream from major 

tributaries including the East Branch Salmon Trout River (see Figure 1). Temperatures in 

the Salmon Trout River vary between 0 °C in the winter and 18 to 24 °C in the summer 

(see Figure 2, Huckins, unpublished data). Several documented coaster brook trout 

spawning sites in the Salmon Trout River (Marquette County, Michigan) occur within 

approximately 12 river kilometers upstream from the river’s Lake Superior outlet 



(Huckins and Baker, 2008).  This section of the river is characterized by a relatively 

shallow gradient, unconsolidated bed material, wide riffles, and deep cut bank pools.   

Figure 2. Temperature as a function of time in the Salmon Trout River, Marquette 
County, MI.  
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The study site is located along a gradual meander in the river several river 

kilometers upstream from the mouth. The bed contains poorly sorted materials consisting 

of cobbles, gravel, and sand.  The site is characterized by environmental habitat features 

that have been previously correlated to suitable salmonid spawning habitat, including the 

occurrence of in-stream coarse woody debris, dense riparian vegetation, cutbanks, and 

coarse bed materials (e.g. Curry, 1993, Bernier-Bourgault and Magnan, 2000, Kondolf et 

al., 2008).  After thorough observation, it was determined that environmental habitat 
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conditions within the study site were sufficiently similar to permit isolation of sub-

surface water flux as an independent variable associated with the location of  naturally re-

occurring spawning habitat by the coaster brook trout. 

2.2  Network Design and Instrumentation 

A contiguous network of nine evenly spaced transects each containing three 

monitoring wells was installed into an 80-m section of the river.  Each transect included 

one monitoring well located on the in-stream side of each bank, and one at the midpoint 

between the two river banks.  The study site was separated into an active spawning 

section and a non-spawning section according to the observed locations of active redd 

building recorded during the 2007 and 2008 spawning seasons (see Figure 3). Location of 

bank-side monitoring wells permitted the collection of temperature data during active 

spawning periods. Each monitoring well consisted of a 1.8 m-long section of schedule 40 

PVC pipe with an inner diameter of 3.8 cm and a 1.5 m-long screen with 0.25 mm slot 

openings.  The monitoring wells were installed using a rod and casing apparatus to depths 

of approximately 1 m beneath the bed surface.  Each monitoring well was developed 

using a surge block technique.   



 

Figure 3. Locations of monitoring wells (triangles), and the region where coaster 
brook trout consistently have been observed to spawn (dashed line). 

 

Temperatures were measured with Thermochron iButton (Embedded Data 

Systems: Lawrenceburg, KY) temperature loggers capable of recording temperatures 

between -5 °C and 26 °C with a resolution of 0.125oC and an accuracy of 1oC.  Five 

loggers, spaced approximately 24 cm apart in the vertical direction, were attached to a 
7 
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1.25 cm diameter schedule 40 PVC pipe, and installed in each monitoring well (Figure 

4).  Each temperature assemblage consisted of one logger installed at a height 

corresponding to approximately 12 cm above the river bed, with the four remaining 

loggers located beneath the river bed. Depths of the temperature loggers for each 

monitoring well are reported in Table 1.  In order to prevent vertical mixing within 

monitoring wells, SantopreneTM rubber washer baffles were attached to the PVC pipe at 

the midpoint between individual loggers. In addition, the uppermost baffle consisted of 

three staggered rubber washers, to ensure exchange between the surface and sub-surface 

water did not occur.  Data collection began prior to the 2007 spawning season (October), 

and continued through the duration of the 2008 spawning season (November).   

A Water-temp-pro temperature logger (Onset Computer Corporation) was 

installed prior to this study at a well-mixed location approximately 10 meters downstream 

of the study site.  The temperature sensor was installed on the bed surface in the middle 

of the river and has a resolution of 0.02°C and an accuracy of 0.2°C.  



Figure 4. Monitoring well instrument configuration. 
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Table 1: Installed Depths of Temperature Loggers 
 

Temperature Logger Depth (cm below river bed) 

Monitoring 
Well 1 2 3 4 5 

1.1 -12 26 52 78 104
1.2 -12 28 56 84 112
1.3 -12 30 60 90 120
2.1 -12 26 50 76 100
2.2 -12 24 48 72 96
2.3 -12 26 50 74 98
3.1 -12 28 56 82 110
3.2 -12 24 48 72 94
3.3 -12 26 50 74 98
4.1 -12 28 56 84 112
4.2 -12 24 48 72 94
4.3 -12 24 48 72 94
5.1 -12 28 54 80 106
5.2 -12 20 38 56 74
5.3 -12 18 36 52 NA
6.1 -12 18 36 54 72
6.2 -12 22 44 66 88
6.3 -12 12 24 36 48
7.1 -12 24 48 72 96
7.2 -12 21 42 62 82
7.3 -12 20 40 60 80
8.1 -12 10 32 54 74
8.2 -12 20 38 56 74
8.3 -12 26 52 76 102
9.1 -12 10 32 54 NA
9.2 -12 18 36 54 72
9.3 -12 28 56 83 110

 

 



2.3 Numerical Methods for GroundwaterVelocity Estimation 

The one-dimensional, thermal convective-diffusive governing equation, assuming 

no internal generation or loss of heat and local thermal equilibrium between the solid-

fluid matrix, (Domenico and Schwartz, 1990) is   

                                     
2 T Tv c

t
ρ2 w w

Tk nc
z z

ρ∂ ∂ ∂
=−
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re k is thermal conductivity of the rock-fluid matrix (cal/sec-cm-Co), T is temperature 

e 

me finite 

differen e 

z 

                                                 

                       (1) 

whe

(Co),  z is vertical distance with a positive downward convention (cm), n is sediment 

porosity (dimensionless), v is groundwater velocity (cm/sec), cw is heat capacity of th

fluid (cal/g-Co), ρw is density of the fluid (g/cm3), c is heat capacity of the solid-fluid 

matrix (cal/g-Co), and ρ = wet bulk density of solid-fluid matrix (g/cm3).   

First-order, centered-difference in space and first-order implicit in ti

ce approximations were used to solve equation (1) using the computer softwar

MATLAB. Dirichlet boundary conditions were applied to the upper (z = zu) and bottom (

= zb) boundaries, as in 

1

5

( , )

( , )
u

b

T z t T

T z t T

=

=
                                                         (2) 

using the upper-most and bottom-most temperature measurements at a particular 

m was 

he 

observation time-step ( 1T and 5T , respectively). A Levenberg-Marquardt algorith

used to attain best fit estimates of groundwater velocity by minimizing the sum the 

squares of the residuals (SSR) between simulated vertical temperature profiles and t

remaining temperature observations (T2 , T3 and T4), as in        
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for each observation time step, where the superscripts obs and sim refer to observed and 

simulated temperatures, respectively.  The average error (oC) for each observation time 

step at each well is defined as  

           ( )2, ,
,

2,3,4

1
=

= −∑ obs sim
t w i i

iobs

e T
n

T                   (4)  

where et,w is the average error at a well and time step and nobs = 3 is the number of 

observations at a well. 

Equation (1) was solved at each time step Δ = Δ obst t m , where Δ is the interval 

between temperature measurements (3 hours) and m > 1 is the internal time step divider, 

in order to improve the performance of the numerical solution as the Dirichlet conditions 

(equation (2)) changed and were imposed.  Dirichlet boundary conditions were also 

applied to internal time steps and were estimated by linearly interpolating the boundary 

temperatures between the corresponding observation time steps, 

obst

Δ obst .The linear 

interpolation of boundary conditions enhanced the performance of the numerical solution 

during periods of large diurnal surface-water temperature fluctuations.   Validation of the 

numerical solution was performed by comparison to the analytical solution from Bear 

(1972) for the conservative form of the advective-dispersive transport equation with a 

Dirichlet upstream boundary condition and an no-flux downstream boundary condition. 

A spin-up approach was implemented for the purpose of simulating prior 

temperature conditions, and used as the initial condition for model simulations. Spatial 

discretizations ( ) and time steps were set to achieve values within the acceptable range zΔ
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of stability constraints defined by the Peclet ( Pe v z k= Δ ) and Courant numbers 

( Cr v t z= Δ Δ ), i.e. . A spatial discretization of Pe 2 and Cr 1≤ ≤ Δz

m/s

=1 cm and internal 

time step divider of m = 2700 were used for each simulation.  The Peclet and Courant 

number constraints constrained the velocity estimates to 0 . All 

temperature measurements that produced velocities outside this range were rejected.  

.023 c 0.023 cm/s≤ ≤ −v

Average dry bulk density (1.34 g/cm3) and porosity (0.314) of the bed sediments 

were determined using a graduated cylinder technique based on 8 replicate samples from 

three locations within the study site (Tan, 1995).  Thermal conductivity (k) and 

volumetric heat capacity (cρ, the effective heat capacity of the solid-fluid matrix per unit 

bulk volume (cal/cm3-Co) were estimated from empirical relationships found in literature 

(Lapham et al., 1989), and resulting in the following parameter values: k = 0.0036 

(cal/sec-cm-Co), and cρ = 0.68 (cal/cm3-Co). Fluid density ρw = 0.999 (g/cm3) and heat 

capacity cw = 1.00 (g/cm3) values were determined from temperature based formulations 

found in the literature (Snoeyink and Jenkins, 1980).  We assume that these parameters 

are constant in space and time 

 

3. RESULTS AND DISCUSSION 

Unanticipated hydrologic events, instrumentation errors, and the inability to 

retrieve data during fall spawning periods resulted in the loss or fragmentation of 

temperature data from particular monitoring wells during specific portions of the study 

period.  An average of approximately 12,000 temperature measurements, taken at three-

13 
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hour intervals, was recorded in each monitoring well over the course of the study period. 

Approximately 45,000 groundwater velocities were fitted over the study period from each 

of the remaining 22 monitoring wells, with 1.1% of the velocity estimates being 

eliminated as a result of Peclet or Courant number constraints. 

3.1 Temperatures 

Figure 5 summarizes the temperature data with the coefficient of variation of 

temperatures for the deepest temperature logger in each of the 22 monitoring wells and in 

the downstream river temperature measurement location. Temperature observations were 

recorded between 10/1/2007 and 11/18/2008. The results in Figure 5 show that 

temperatures measured in the deepest position in the wells in the spawning area are 

substantially less variable than wells in the non-spawning area and in the river, as 

measured by the coefficient of variation. For the most part, wells in the non-spawning 

area exhibit greater variation than in the spawning area and the temperature variation, as 

measured by the coefficient of variation, and approach the variation in temperatures 

exhibited in the river. These results indicate that subsurface temperatures in the spawning 

area are influenced significantly less by temperatures in the river, implying that upward 

groundwater fluxes in the spawning area are greater than those in the non-spawning area. 

The coefficient of variation in monitoring wells 7.3 and 9.3 in the non-spawning area is 

small, implying an exception to the general result of high temperature variability in the 

non-spawning area. However, poor spawning habitat features such the presence of fine 

sediments and detritus layers were observed adjacent to these well locations.   
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Figure 5. Coefficient of variation of temperature from the deepest sub-surface 
temperature loggers and from the river temperature location  
 

One representative well from the spawning area (MW 6.3) and one representative 

well from the non-spawning area (MW 8.1) were selected to demonstrate temperature 

variation with time over the period 6/14/08 to 10/1/08. Figures 6 and 7 show temperature 

as a function of depth below the river bed and time at these monitoring wells, along with 

the river temperature measured in the upstream temperature logger.  Observation data 

from June 2008 to November 2008 at five vertical locations in each monitoring well were 

contoured using the Kriging method to display results in figures 6 and 7. 

The river temperatures shown in Figures 6 and 7 show pronounced diurnal and 

seasonal fluctuations. Figure 6 indicates that sub-surface temperatures were only 

minimally impacted by river temperatures in the representative spawning area well. This 
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result confirms the results in Figure 5, in that groundwater fluxes are relatively high in 

the upward direction in the spawning area. Figure 7 on the other hand, indicates that for 

the representative non-spawning area well, fluctuations in groundwater temperatures 

below the riverbed closely correlate to fluctuations in river temperatures, confirming the 

assessment of the data in Figure 5. This correlation implies that river water was seeping 

downward into the river bed or that upward groundwater fluxes were low enough such 

that heat transfer was dominated by conduction from the river.  

 

 

Figure 6. Temperature as a function of time and depth below river bed (color plot) 
and temperature in the river as a function of time (line plot) for monitoring well 
6.3  
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Figure 7. Temperature as a function of time and depth below river bed (color plot) 
and temperature in the river as a function of time (line plot) for monitoring well 
8.1.  

3.2 Estimated Velocities 

The error associated with model fits (see Equation 4) averaged over the study 

period ranged between 0.05 and 0.2 degrees °C.  Comparison of observed temperatures 

and the simulated vertical temperature profiles as a function of depth at various times 

from representative monitoring wells from the spawning area (MW 6.3) and the non-

spawning area (MW 8.1) are presented in Figures 8 and 9. Observed and simulated 

temperatures displayed in Figure 8 and 9 represent mid-afternoon temperatures present 

on the 15th of each month, from June through November 2008.  Velocity estimates from 

all wells are summarized in Figure 10 as frequency distributions and arithmetic means.  

Note that groundwater velocities are reported as positive downward.   
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Figure 8. Observed and simulated vertical temperature profiles as a function of time at 
monitoring well 6.3. 
   

 

Figure 9. Observed and simulated vertical temperature profiles as a function of time at 
monitoring well 8.1.   
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The estimated velocities in Figure 10 indicate that most locations of wells in the 

spawning area (MW 3.2, MW 4.2, MW 5.2, MW 5.3, MW 6.2, MW 6.3, MW 7.2, and 

MW 8.2) exhibit primarily upward (negative) velocities as indicated by the velocity 

frequency distribution and average velocities, with the exception of well MW 6.2 and 

MW 8.2  However, temperatures in the deepest measurement point in well MW 6.2 and 

MW 8.2 were relatively consistent (see Figure 5), which implies that groundwater 

velocities at these location were high enough, in the upward direction, to counter 

temperature influences from the river. 

With the exception of MW 1.1, wells in the non-spawning areas (MW 1.1, MW 

1.2, MW 1.3, MW 2.1, MW 2.2, MW 2.3, MW 3.1, MW 3.3, MW 4.1, MW 4.3, MW 5.1, 

MW 6.1, MW 7.1, MW 7.2, MW 8.1, MW 8.3, MW 9.1, MW 9.2, and MW 9.3) exhibit 

primarily low upward or downward velocities.  It was observed that the areas surrounding 

MW 1.1 exhibited less than ideal spawning habitat features, such as the presence of fine 

sediments. 
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Figure 10. Distribution of estimated groundwater velocities in monitoring wells. Average 
velocities are reported in upper portion of charts. 
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Figure 10. Distribution of estimated groundwater velocities in monitoring wells. Average 
velocities are reported in upper-left portion of charts. 
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Estimates of groundwater velocities as a function of time from representative 

monitoring wells from the spawning area (MW 6.3) and the non-spawning area (MW 8.1) 

are presented in Figures 11 and 12.  All figures contain groundwater velocity estimates 

for the entire study period except for the spring of 2008.  Freeze-thaw cycles in the river 



removed MW 6.3 from the sub-surface in February 2008 and MW 8.1 in March 2008.  

All temperature loggers were removed from the study site in May 2008, and re-installed 

in June 2008.   

Figures 11 and 12 show that the velocities estimated from the spawning area 

(MW 6.3) are more consistently upward and greater in magnitude than the velocities 

estimated from temperature data in the non-spawning area (MW 8.1).   

 

Figure 11. Estimated velocities at monitoring well 6.3 as a function of time. 
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Figure 12. Estimated velocities at monitoring well 8.1 as a function of time. 
 

4. CONCLUSIONS 

A monitoring well system was installed to measure subsurface temperatures 

underneath a riverbed over a 13-month period. In total, over 200,000 temperature 

measurements were recorded at five vertical locations in 22 monitoring wells distributed 

aerially over approximately 80-m of river channel. The temperature data were inverted to 

obtain subsurface groundwater velocities using a numerical approximation of the heat 

transfer equation applicable to fluids in porous media. Approximately 45,000 values of 

groundwater velocities were estimated. 

Although, the study area was relatively homogenous with respect to substrate and 

habitat characteristics, coaster brook trout were consistently observed to return to spawn 

in specific areas within the 80-m river length study area. The monitoring well locations 

23 
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were defined as being either inside or outside the areas where spawning behavior 

occurred. Temperatures within the stream substrate in the spawning area were generally 

less variable than river temperatures, indicating that groundwater velocities in this area 

were high enough to minimize within substrate mixing of river and groundwater. 

Substrate temperatures in the non-spawning area were generally more variable, and 

closely tracked river temperatures as they varied temporally. 

Estimated velocities in the spawning and non-spawning areas confirmed that 

groundwater velocities in the spawning area were primarily in the upward direction. In 

the non-spawning area, groundwater velocities were mostly either in the downward 

direction or, if they were in the upward direction, the magnitude of the average velocity 

was generally lower. To our knowledge, no other study has implemented a high temporal 

and spatial resolution temperature network to quantify sub-surface water velocities over 

long time periods to evaluate an ecological hypothesis. The overall result of this work is 

to point out the significance of groundwater seepage in the selection of spawning area by 

coaster brook trout. This result is critical to recognize for the successful implementation 

of coaster brook trout rehabilitation.   
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