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Abstract 

 

Mount Etna, Italy, is one of the most active volcanoes in the world, and is also 

regarded as one of the strongest volcanic sources of sulfur dioxide (SO2) emissions to 

the atmosphere. Since October 2004, an automated ultraviolet (UV) spectrometer 

network (FLAME) has provided ground-based SO2 measurements with high temporal 

resolution, providing an opportunity to validate satellite SO2 measurements at Etna. 

The Ozone Monitoring Instrument (OMI) on the NASA Aura satellite, which makes 

global daily measurements of trace gases in the atmosphere, was used to compare SO2 

amount released by the volcano during paroxysmal lava-fountaining events from 2004 

to present. We present the first comparison between SO2 emission rates and SO2 

burdens obtained by the OMI transect technique and OMI Normalized Cloud-Mass 

(NCM) technique and the ground-based FLAME Mini-DOAS measurements. In spite 

of a good data set from the FLAME network, finding coincident OMI and FLAME 

measurements proved challenging and only one paroxysmal event provided a good 

validation for OMI. Another goal of this work was to assess the efficacy of the 

FLAME network in capturing paroxysmal SO2 emissions from Etna, given that the 

FLAME network is only operational during daylight hours and some paroxysms occur 

at night. OMI measurements are advantageous since SO2 emissions from nighttime 

paroxysms can often be quantified on the following day, providing improved 

constraints on Etna’s SO2 budget. 
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1. Introduction 

 

Sulfur dioxide (SO2) is an atmospheric trace gas emitted by natural sources 

such as volcanic eruptions, oxidation of oceanic dimethyl sulphide (DMS) (Berresheim 

et al. 1995) and anthropogenic sources from the industry. It is dangerous for human 

health (Ware et al. 1986; Katsouyanni et al. 1997; Hansell and Oppenheimer 2004) and 

causes acid rain (Likens and Bormann 1974). The lifetime of SO2 in the lower 

troposphere is approximately one day at this latitude, where after which it begins to be 

deposited or oxidized to sulfate (Stevenson et al. 2003). Sulfate aerosol, which has a 

long lifetime in the stratosphere, reflects incoming solar radiation, causing the cooling 

of the atmosphere below it (Charlson et al. 1992). 

SO2 is typically the third most abundant volcanic gas species after H2O and CO2, so 

the amount released into the atmosphere during an eruption can be significant and have 

impacts on climate and environment on both local and regional scales. Monitoring 

volcanic SO2 is also very important for volcanologists as it reflects the activity of a 

volcano. Indeed, changes in SO2 emission rates show variations within volcanic 

systems, and such changes can be precursors of an eruption (Casadevall et al. 1981; 

Caltabiano et al. 1994; Young et al. 1998; Watson et al. 2000; Sutton et al. 2001). 

 Ash emissions are often coupled with gas emissions during an eruption, which means 

that ash might be also emitted in the atmosphere. Ash particles, coupled with sulfate 

aerosol, are known to be a significant hazard to aviation, as the 2010 Eyjafjallajökull 

eruption demonstrated, and remote sensing of SO2 provides an effective means of 

tracking drifting volcanic clouds.  

 

Remote sensing of atmospheric SO2 is possible due to the low background 

concentration of the specie in the atmosphere and its strong absorption features in the 

ultraviolet (UV) region of the electromagnetic spectrum. The first satellite sensor used to 

measured volcanic SO2 emissions was the Total Ozone Mapping Spectrometer (TOMS), 
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after the observation of the 1982 El Chichon eruption cloud (Krueger 1983). 

Technology has been recently improved, leading to satellites with better spectral and 

spatial resolutions, such as the Global Ozone Monitoring Equipment (GOME and 

GOME-2) and the Scanning Imaging Absorption Spectrometer for Atmospheric 

Cartography (SCIAMACHY). 

The spatial and temporal resolutions of the Ozone Monitoring Instrument (OMI) are 

the best currently available for space-based measurement of volcanic SO2 emissions in 

the UV. OMI is a UV/visible sensor launched in July 2004 on the Earth Observing 

System Aura satellite by NASA. Validation of its trace gas measurements is critical to 

ensure high-quality SO2 data. Validation of SO2 measurements in volcanic clouds is 

more difficult than for anthropogenic sources, mostly because volcanic eruptions are 

unpredictable and plume trajectories can be uncertain, and also because of the 

heterogeneity within the cloud itself. Although some successful validation has been 

achieved, (Spinei et al. 2010; Carn and Lopez 2011a), ongoing validation is still 

required, especially for volcanoes with different eruptive styles. 

Validation efforts typically require comparison of satellite data and ground-based 

remote measurements, derived from instruments such as the correlation spectrometer 

(COSPEC), used for volcanic SO2 fluxes measurement since the early 1970s 

(Newcomb and Millán 1970; Moffat and Millán 1971; Stoiber and Jepsen 1973) or 

more recently Differential Optical Absorption Spectroscopy (DOAS) SO2 

measurements (Noxon 1975; Platt 1994; Platt and Stutz 2008). Because of the 

unpredictable and hazardous character of volcanic eruptions, ground-based 

measurements are not always easy. Furthermore, scientists have to be ready to quickly 

deploy the equipment in places that may not be easily accessible. 

 

Mount Etna, Italy, is known for its globally significant SO2 release into the 

atmosphere (Caltabiano et al. 1994; Allard 1997). As well as continuous passive 

degassing, explosive eruptions generate plumes with a high content of SO2. A 

scanning UV spectrometer network, FLAME (FLux Automatic MEasurements), 
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permits automatic measurement of SO2 fluxes with high time resolution (~6 min), with 

data available since October 2004 (Burton et al. 2004; Salerno et al. 2009a). 

The aim of this study is to compare OMI SO2 data with ground-based data from the 

FLAME network for some paroxysmal events of Mount Etna, and to improve 

constraints on Etna’s SO2 emissions by quantification of paroxysmal SO2 discharge.  
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2. Geological settings 

 

Mount Etna, located on the eastern coast of Sicily (Italy), is a composite 

stratovolcano 3330 m-high and 0.5 Ma old (Gillot et al. 1994; Corsaro and Cristofolini 

1997; Schiano et al. 2001). It is only 30 kilometers from Catania, the second biggest 

city in Sicily and although the activity is rarely explosive, particle and ash emissions in 

the atmosphere regularly lead to the closure of the International Airport Fontanarossa. 

 

2.1 Tectonic and Geology 
 

Mount Etna is surrounded by three different geological units: 1) The Calabro-

Peloritan unit to the east, which is part of the Alpine-Appenninic orogenic belt; 2) the 

northern part of the African plate to the south, called the Hyblean Plateau; 3) and to the 

west, the Appennine-Maghrebian chain. A major fault trending SSE-NNW, the 

Tindari-Letojanni-Malta fault, crosses this area (Figure 2.1). This is the most likely 

source for the strongest earthquakes in the area, while the NE-SW fault system in the 

Hyblean Plateau is active, but with events with weaker magnitudes (Azzaro R. and 

Barbano M.S. 2000). 
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Figure 2.1: Location of Mount Etna and simplified tectonic map of the area. Source: 

modified from Scarfi et al., 2009. 

 

 

2.2 Volcanic activity 
 

Mount Etna is the most active volcano in Europe and one of the world’s 

strongest sources of SO2 emissions (Caltabiano et al. 1994; Allard 1997) derived from 

continuous degassing of volatile-rich alkaline basalts (Métrich and Clocchiatti 1989; 

Métrich 1993) at the summit craters: Voragine, Bocca Nuova, South-East and North-

East (Figure 2.2). The activity is mainly effusive, with paroxysmal events 

characterized by strong strombolian explosions that can evolve into pulsating or 

continuous lava-fountains. However, some sub-plinian and plinian eruptions have been 

identified in Etna’s historic record (Guest et al. 1984; Chester et al. 1987; Coltelli et al. 

1995, 1998).  
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 Some of the paroxysmal events that occurred in the last twelve years were 

studied in order to have a better knowledge of the mechanisms that drive basaltic lava-

fountain episodes. There are two physical models to explain this type of activity: 1) the 

Collapsing Foam (CF) model (Jaupart and Vergniolle 1988, 1989; Vergniolle and 

Jaupart 1990) that implies the collapse of a foam layer at the top of a shallow magma 

chamber which causes bubble coalescence and an annular flow that ascend the conduit 

and feed the lava fountain (previous gas-magma separation); 2) the Rise Speed 

Dependent (RSD) model (Parfitt 2004) that implies increase of the magma ascent rate, 

rapid exsolution of volatiles and bubble coalescence during the magma ascent in the 

conduit (syneruptive degassing).  

The 2000 southeast crater lava fountains were the most studied and all the results agree 

for the foam collapse model with the top of the shallow magma reservoir at 1.5-1.8 km 

(Allard et al. 2005; Spilliaert et al. 2006; Andronico and Corsaro 2011). More recently, 

some other lava-fountain events have been explained by this model: the 10 May 2008 

eruption (Bonaccorso et al. 2011a), the 11-13 January 2011 eruption, (Calvari et al. 

2011), and the 10 April 2011 eruption (Bonaccorso et al. 2011b). 

The average flux of SO2 supplied by passive degassing varies with time 

depending on the type of activity: 4000-5500 tons per day from 1975 to 1999 (Allard 

1997; Bruno et al. 2001), around 1000 tons per day in 2002 (McGonigle et al. 2003) 

and around 3500 tons per day during the period 2005-2008 (Salerno et al. 2009b). The 

SO2 flux can reach 10000-15000 tons per day during vigorous strombolian activity and 

more than 20000 tons per day during continuous lava fountaining (Allard 1997). 
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Figure 2.2: Map of Mount Etna with the four summit craters. VOR: Voragine; BN1 

and BN2: Bocca Nuova 1 and 2; SEC: South-East Crater; NEC: North-East Crater. 

The cavity on the east flank of the SEC is the New South-East Crater, formed since the 

beginning of the 2011 activity. Courtesy of Istituto Nazionale di Geofisica e 

Vulcanologia, Osservatorio Etneo, Italy. 

 

 

The origin of the volcanism in this area is still not well understood, mostly 

because it is located near the subduction of the African plate under the European plate 

and also above the mantle-plume beneath Sicily. Different theories exist: 1) volcanism 

related to a backarc marginal basin (Barberi et al. 1974); 2) the rollback motion of the 

Ionian slab associated with decompression melting of upper mantle material 

(Gvirtzman and Nur 1999); 3) the rise of a mantle plume from the 670 km 

discontinuity (Marone et al. 2004; Montelli et al. 2006; Cadoux et al. 2007) or 4) from 

the deep mantle (Schiano et al. 2001). However, geochemical studies of magma show 

evidences of a transition from a predominant mantle-plume source to subduction 

related basalts (Tanguy et al. 1997; Gvirtzman and Nur 1999; Schiano et al. 2001, 
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Clocchiatti et al. 2004) probably due to the southward migration of the Ionian slab 

leading to the juxtaposition with the mantle plume beneath Sicily (Schiano et al. 2001). 

Because the activity of a subduction related volcano can be more explosive than one in 

a hotspot setting, monitoring and study of Mount Etna’s activity is crucial. 

 

2.3 Eruptive history 
 

Mount Etna started to form around 0.5 Ma. Some lahar and tephra deposits 

give evidence of explosive activity at different periods throughout the volcano’s 

history. The oldest is a tephra deposit estimated to be 150-100 ka old (Condomines et 

al. 1982; Coltelli et al 2000) followed by evidence of plinian, sub-plinian and 

strombolian activity until the 15 ka Ellittico caldera formation (Kieffer 1973, 1985; 

Duncan 1976; Romano and Guest 1979; Guest et al. 1984; Chester et al. 1987; Coltelli 

1994, 2000). Some strong eruptions occurred in historic time, including the 122 BC 

plinian eruption (Coltelli et al. 1998) and the 1669 eruption which killed 15 000 people 

(Corsaro et al. 1996; Ciuccarelli 2001, 2004; Branca and Del Carlo 2004).  

Mount Etna exhibited low activity after the 2001 and 2002-2003 eruptions until 

2006. Table 2.1 is a summary of all the paroxysmal events from 2004 to present. 

Some big eruptions occurred in 2007 and 2008 after which the activity calmed down. 

January 2011 was the beginning of a new eruptive cycle, which is still going on. This 

new eruptive cycle began with the January 12
th

 eruption. Twenty-five paroxysms had 

occurred since that time, with the last one on April 24
th

, 2012. The episodes lasted 

from ~1h30 to ~14h30 and were separated by quiescent intervals ranging from 5 days 

to 58 days. The paroxysms are characterized by strong strombolian activity and lava 

fountains. 
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Table 2.1 

Paroxysmal events at Mount Etna from 2004 to present. SEC: South-East crater. Sources: Istituto Nazionale di Geofisica e 

Vulcanologia (http://www.ct.ingv.it/), Smithsonian and USGS (http://www.volcano.si.edu/world/volcano.cfm?vnum=0101-

06=&volpage=weekly). The SO2 mass emitted was estimated using the Normalized Cloud-Mass technique from the OMIplot 

software. 

Date 
Onset 
time 

Duration Area of activity Description of activity 
Lava flow 

length 

Plume 
height & 

Ash 
erupted 

SO2 mass 

emitted 

(t) 

07/09/04 10:30 1 day 
Radial fissure eruption Base of 

SEC 
Effusive eruption 

2.5 km                
4 * 10

7
 m

3
  

 

16/12/05 
  

Central vent eruption Bocca 
Nuova 

Explosive eruption strombolian 
activity, ash plume   

 

22/12/05 
  

Central vent eruption Bocca 
Nuova 

Explosive eruption strombolian 
activity, ash plume drifted E   

 

Eruption 14/07 to 14/12/06 Total volume produced : 1.8 ± 0.3 * 10
7
 m

3
  

14/07/06 23:30 10 days 
Radial fissure eruption E flank of 

SEC 
Explosive eruption strombolian 

activity, small ash falls, lava flow 
3 km 

 
 

31/08/06 
 

16 days Central vent eruption SEC 
Explosive eruption strombolian 
activity, lava flows, lapilli and 
bombs, ash plume on 10/09 

3 km 
 

 

22/09/06 afternoon 5 days Central vent eruption SEC 
Explosive eruption strombolian 

activity, lava flows   
 

03/10/06 
Late 

afternoon 
3 days Central vent eruption SEC 

Explosive eruption strombolian 
activity, lava flows   

 

10/10/06 Evening 1 day Central vent eruption SEC 
Explosive eruption strombolian 

activity, lava flows 
2 km 

 
 

 



 

 

1
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Table 2.1, continued 

Date 
Onset 
time 

Duration Area of activity Description of activity 
Lava flow 

length 

Plume 
height & 

Ash 
erupted 

SO2 mass 

emitted (t) 

 
20/10/06 

06:00 
~ 14 

hours 
Central vent eruption SEC 

Explosive eruption strombolian 
activity, lava flows 

< 1 km 
 

 

23/10/06 07:00 10h50 Central vent eruption SEC 
Explosive eruption strombolian 
activity, pulsating lava fountain, 
ash plume at 17:00 drifted ESE 

2.5 km 
 

 

05/11/06 20:04 
~ 9 

hours 
Central vent eruption SEC 

Explosive eruption strombolian 
activity, lava flows, ash plume   

 

16/11/06 05:07 10h30 
Central vent eruption SEC 

Radial fissure eruption SSE and 
SE flank of SEC 

Explosive eruption strombolian 
activity, lava flow, ash plume 

drifted ENE then NE, rock falls 
and avalanches 

3 km 
4 km                

7*10
6
 kg 

1450 

21/11/06 12:00 9h 
Central vent eruption SEC 

Radial fissure eruption SSE and 
SE flank of SEC 

Explosive eruption strombolian 
activity, lava fountain 300m high 
at 19:00, ash plume at 15:00, lava 

flow 
 

4.8 km                 
10

8
 kg 

7810 

24/11/06 02:19 13h10 
Central vent eruption SEC 

Radial fissure eruption SSE flank 
of SEC 

Explosive eruption  strombolian 
activity, ash plume drifted SE, 

lava flows 
 

5.3 km                   
10

8
 kg 

 

30/11/06 16:00 7h Central vent eruption SEC 
Explosive eruption strombolian 

activity, lava fountain, ash plume, 
lava flow 

4.7 km 
 

 

11/04/07 03:00 5h Central vent eruption SEC 
Explosive eruption  strombolian 

activity, lava fountain, ash plume 
drifted E, 2 lava flows 

3 km and < 1 
km 

5 km 
5480 
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Table 2.1, continued 

Date 
Onset 
time 

Duration Area of activity Description of activity 
Lava flow 

length 

Plume 
height & 

Ash 
erupted 

SO2 mass 

emitted (t) 

29/04/07 15:00 9h Central vent eruption SEC 
Explosive eruption strombolian 

activity, lava fountain, ash plume, 
lava flows 

 
6 km 

3860 

04/09/07 16:00 13h Central vent eruption SEC 

Explosive eruption strombolian 
activity, continuous lava fountain 

400-600m high, lava flows, ash 
plume drifted E 

4.6 km 
4.2 km               

3.9-4.9*10
 

5
 m

3
 

12120 

23/11/07 20:20 8h 
Central vent eruption SEC and 

Bocca Nuova 

Explosive eruption strombolian 
activity, continuous lava fountain 
600m high, lava flows, ash plume 

drifted NE 

4.2 km 6.5 km 
14730 

10/05/08 14:00 4h Central vent eruption SEC 
Explosive eruption strombolian 

activity, ash plume drifted N, lava 
flows 

6.4 km           
4.5*10

6
 m

3
 

6.4 km 
18300 

13/05/08 11:15 6h45 
Radial fissure eruption E base of 

NEC, E flank and base of SEC 

Explosive eruption strombolian 
activity, ash plume drifted NNE, 

continuous lava fountain 100-150 
m high for few hours, lava flows 

6 km 4.6-5.3 km 
26500 

14/05/08 
  

Radial fissure eruption E base of 
NEC, E flank and base of SEC 

Explosive eruption strombolian 
activity, ash plume drifted NE 

then S, lava fountain 100 m high, 
lava flows 

5 km 4.5 km 
1970 

15/05/08 
  

Radial fissure eruption E flank 
of SEC 

Explosive eruption  strombolian 
activity, ash plume drifted SE 

from 02:50 to 14:17, lava flows 
6 km 
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Table 2.1, continued 

Date 
Onset 
time 

Duration Area of activity Description of activity 
Lava flow 

length 

Plume 
height & 

Ash 
erupted 

SO2 mass 

emitted (t) 

16/05/08 
  

Radial fissure eruption E base of 
NEC, E flank and base of SEC 

Explosive eruption strombolian 
activity, ash plume after 14:06, 

lava fountain in the morning, lava 
flows 

  
 

17/05/08 
  

Radial fissure eruption E base of 
NEC, E flank and base of SEC 

Explosive eruption strombolian 
activity, lava flows, ash plume 

drifted N 
 

max 4 km 
 

11/07/08 morning 1 day 
Radial fissure eruption E flank 

of SEC 
Explosive eruption strombolian 

activity, lava flow   
 

25/08/10 15:09 20 min 
Central vent eruption Bocca 

Nuova 
Explosive eruption strombolian 

activity, ash plume drifted E  
4.3 km 

 

12/01/11 21:10 3h40 
Radial fissure eruption E flank 

of SEC 

Explosive eruption strombolian 
activity, lava flows, ash plume 
drifted SSW, continuous lava-

fountain 800 m high 

4.3 km 7.3 km 
 

18/02/11 04:30 8h50 
Radial fissure eruption E flank 

of SEC 

Explosive eruption strombolian 
activity, lava flow, ash emission, 

pulsating lava fountain 
 

8 km 
2600 

10/04/11 10:00 6h 
Radial fissure eruption E flank 

of SEC 

Explosive eruption strombolian 
activity, lava fountain 300 m high, 
gas and ash plume drifted SE, lava 

flows 

2.5 km 5.3 km 
1540 

12/05/11 03:20 2h50 
Radial fissure eruption E flank 

of SEC 

Explosive eruption strombolian 
activity, lava fountain 300 m high, 
ash plume drifted SSE, lava flow 

 
5.3 - 6.3 

km 
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Table 2.1, continued 

Date 
Onset 
time 

Duration Area of activity Description of activity 
Lava flow 

length 

Plume 
height & 

Ash 
erupted 

SO2 mass 

emitted (t) 

09/07/11 13:15 4h25 
Radial fissure eruption E flank 

of SEC 

Explosive eruption strombolian 
activity, lava flow, continuous 

lava fountain, ash plume drifted 
SSE 

 
6.8 km 

1750 

19/07/11 02:00 3h 
Radial fissure eruption E flank 

of SEC 

Explosive eruption strombolian 
activity, lava flows, lava fountain 
250 m high, ash and gas plume 

drifted E 
 

5 km 
 

25/07/11 04:00 4h 
Radial fissure eruption E flank 

of SEC 

Explosive eruption strombolian 
activity, lava flows, pulsating lava 
fountain 350 m high, ash and gas 

plume drifted E 
 

7 km 
4070 

30/07/11 10:00 14h30 
Radial fissure eruption E flank 

of SEC 

Explosive eruption strombolian 
activity, lava flows, continuous 

lava fountain 450-500 m high, ash 
and gas plume drifted E 

3 km 5.7 km 
7230 

05/08/11 22:30 3h45 
Central vent eruption New SEC 
Radial fissure E flank of the old 

SEC 

Explosive eruption strombolian 
activity, lava flows, lava fountain 
500m high, ash plume drifted SE 

 
10.7 km 

2700 

12/08/11 09:00 4h Central vent eruption New SEC 
Explosive eruption strombolian 
activity, pulsating lava fountain 

100 m high, lava flows, ash plume 
 

3.7 km 
3370 

20/08/11 04:55 5h Central vent eruption New SEC 

Explosive eruption strombolian 
activity, ash and gas plume 
drifted SW, continuous lava 

fountain, lava flows, avalanches 
 

9 km 
2990 
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Table 2.1, continued 

Date 
Onset 
time 

Duration Area of activity Description of activity 
Lava flow 

length 

Plume 
height & 

Ash 
erupted 

SO2 mass 

emitted (t) 

29/08/11 05:46 4h 
Central vent eruption New SEC 
Radial fissure eruption SE flank 

of SEC 

Explosive eruption strombolian 
activity, lava flow, lava fountain 
100 m high, ash plume drifted 

SSE 
 

9.5 km 
3150 

08/09/11 08:30 2h15 
Central vent eruption New SEC 
Radial fissure eruption SE and N 

flank of SEC 

Explosive eruption strombolian 
activity, lava flow, pulsating lava 

fountain, ash plume 
 

10 km 
3210 

19/09/11 12:20 2h40 Central vent eruption New SEC 
Explosive eruption strombolian 

activity, lava flows, lava fountain, 
gas plume drifted NE 

 
7.5 km 

780 

28/09/11 19:30 2h40 Central vent eruption New SEC 

Explosive eruption strombolian 
activity, lava flows, continuous 
lava fountain 800 m high, ash 

plume drifted SW 
 

10.5 km 
3710 

08/10/11 13:00 4h45 
Central vent eruption New SEC 
Radial fissure eruption SE and N 

flank of SEC 

Explosive eruption strombolian 
activity, lava flows, continuous 

lava fountain, ash and gas plume 
drifted E 

  
 

23/10/11 19:40 3h35 
Central vent eruption New SEC 
Radial fissure eruption SE flank 

of SEC 

Explosive eruption strombolian 
activity, lava flows, continuous 
lava fountain 300 m high, ash 
plume drifted ESE, avalanches 

 
5.5 km 

2130 

15/11/11 10:20 4h30 
Central vent eruption New SEC 
Radial fissure eruption SE and N 

flank of SEC 

Explosive eruption strombolian 
activity, lava flows, lava fountain 

800 m high, ash drifted SE 
< 4 km 10.5 km 

4770 
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Table 2.1, continued 

Date 
Onset 
time 

Duration Area of activity Description of activity 
Lava flow 

length 

Plume 
height & 

Ash 
erupted 

SO2 mass 

emitted (t) 

05/01/12 03:45 4h15 
Central vent eruption New SEC 
Radial fissure eruption SE and N 

flank of SEC 

Explosive eruption strombolian 
activity, lava flows, continuous 

lava fountain 150 m high, ash and 
gas plume drifted SSW, small 

lahar, pyroclastic flow and 
phreatomagmatism 

2 km 9 km 
6520 

09/02/12 00:00 11h Central vent eruption New SEC 

Explosive eruption, strombolian 
activity, lava flows, continuous 
lava fountain 500 m high, ash 

plume drifted W 

< 3 km 9.3 km 
1110 

04/03/12 05:30 5h 
Central vent eruption New SEC, 
Radial fissure eruption SW and 

N flank of SEC 

Explosive eruption strombolian 
activity, lava flows, continuous 

lava fountain, ash plume drifted 
NE, pyroclastic flows, lahar, 

phreatic explosion 

3.5 km 7.5 km 
 

18/03/12 08:00 3h10 
Central vent eruption New SEC, 
Radial fissure eruption N flank 

of SEC 

Explosive eruption strombolian 
activity, lava fountain, lava flows, 
avalanches, ash plume drifted E, 
lahar, pyroclastic flow, phreatic 

explosion 

4 km 7.5 km 
6770 

01/04/12 03:30 3h10 
Central vent eruption New SEC, 
Radial fissure eruption SE flank 

of SEC 

Explosive eruption strombolian 
activity, lava fountain, lava flows, 

gas and ash plume drifted SE, 
pyroclastic flows, phreatic 

explosion 

< 4km 10.5 km 
8270 
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Table 2.1, continued 

Date 
Onset 
time 

Duration Area of activity Description of activity 
Lava flow 

length 

Plume 
height & 

Ash 
erupted 

SO2 mass 

emitted (t) 

12/04/12 14:16 3h45 Central vent eruption New SEC 
Explosive eruption strombolian 

activity, lava fountain, lava flows, 
gas and ash plume drifted E 

 
6.3 km 

 

24/04/12 03:10 1h30 Central vent eruption New SEC 
Explosive eruption strombolian 

activity, lava fountain, lava flows, 
gas and ash plume drifted E 

 
5.5 km 

13170 
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3. OMI 

3.1 The Ozone Monitoring Instrument 
 

OMI is a Dutch-Finnish polar-orbiting hyperspectral ultraviolet-visible (270-

500 nm) spectrometer launched in July 15, 2004 on the Earth Observing System Aura 

satellite by the NASA. It provides daily, global contiguous mapping of ozone and trace 

gases including SO2, NO2, BrO, HCOH, and OClO. The two-dimensional charge 

couple device (CCD) detectors that measure backscattered radiances permit acquisition 

of spectral and spatial information at the same time. It has a 2600 km swath, spatial 

resolution of 13×24 km at nadir and a local afternoon equatorial crossing time at 13:45 

which make it one of the best satellite sensors for SO2 measurements launched to date 

(Levelt et al. 2006). 

SO2 is detected using its well-characterized differential absorption structure in the UV 

wavelength region, which must be separated from that due to stratospheric ozone in 

the same region. The OMI channel used to detect SO2 is UV-2, from 310 nm to 365 

nm, with a spectral resolution of 0.45 nm (Levelt et al. 2006). It also provides 

measurements of gas traces column amounts, aerosol index (AI), UV reflectivity, 

cloud top pressure and cloud fraction. 

Since June 2007, an anomaly has been observed in the OMI data, called the 

row anomaly, affecting different cross-track scenes. Radiances measured within the 

row anomaly are not useable for trace gas retrievals, leading to stripes without data in 

each OMI swath. This row anomaly data gap prevented measurement of the Etna 

plume for some eruptions in 2011 and 2012, precluding calculation of the SO2 mass in 

the volcanic cloud ( 

http://so2.gsfc.nasa.gov/Documentation/OMSO2Readme_V111_0818.htm ).  

 

http://so2.gsfc.nasa.gov/Documentation/OMSO2Readme_V111_0818.htm
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3.2 OMI data analysis 
 

The operational OMI SO2 data products (OMSO2) are free to download from 

the NASA GES DISC website ( http://mirador.gsfc.nasa.gov/cgi-

bin/mirador/collectionlist.pl?keyword=omso2 ). We used the OMIplot software (Carn 

2011b) to analyze them, which is written in Interactive Data Language (IDL). Several 

different algorithms have been used for retrieval of SO2 from OMI measurements: the 

Band Residual Difference (BRD) algorithm (Krotkov et al. 2006), the Linear Fit (LF) 

algorithm (Yang et al. 2007), the Iterative Spectral Fitting (ITF) (Yang et al. 2009), 

and the Extended Iterative Spectral Fitting (EITF) (Yang et al. 2010). The LF 

algorithm is used for operational SO2 retrievals, provided in the public available 

OMSO2 dataset. 

We used the LF algorithm data in this study, which permits generation of daily maps 

of SO2 vertical column densities (VCD) ( http://so2.gsfc.nasa.gov ) by converting the 

satellite slant column densities (SCD) using an air mass factor (AMF). The LF 

algorithm uses 10 OMI wavelengths that correlate with local maximum and minimum 

absorption of SO2 (Yang et al. 2007). By making assumptions about the vertical 

distribution of SO2, it provides three estimates of the SO2 VCD in Dobson Units (1 DU 

= 2.69 × 10
16 

molecules/cm
2
): the Lower Tropospheric SO2 column (TRL), which 

corresponds to a center of mass altitude (CMA) of 2.5 km; the Middle Tropospheric 

SO2 column (TRM), which corresponds to a CMA of 7.5 km; and the Upper 

Tropospheric and Lower Stratospheric SO2 column (STL), which corresponds to a 

CMA of 17 km. The LF algorithm generates SO2 VCD for these three a-priori SO2 

vertical distributions, which are then analyzed manually with the OMIplot software. 

The BRD algorithm is also used operationally to generate SO2 VCDs assuming a CMA 

of 0.9 km, for SO2 confined to the Planetary Boundary Layer (PBL). 

Plume height was either provided by the Istituto Nazionale di Geofisica e 

Vulcanologia (INGV) of Catania, which monitors Mount Etna, or estimated with the 

READY system and the HYSPLIT trajectory model ( 

http://mirador.gsfc.nasa.gov/cgi-bin/mirador/collectionlist.pl?keyword=omso2
http://mirador.gsfc.nasa.gov/cgi-bin/mirador/collectionlist.pl?keyword=omso2
http://so2.gsfc.nasa.gov/
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http://ready.arl.noaa.gov/HYSPLIT.php ). Figure 3.1 is an example of the HYSPLIT 

trajectory model for the August 29
th

, 2011 paroxysm. Because the plume was covered 

by the row anomaly on that day, we used the OMI picture of the day after to calculate 

the SO2 mass. The plume location is known with the OMI picture, at the overpass 

time. We then find the right plume height, the one which has a trajectory that passes 

above Mount Etna. The model also permits to compare the onset time of eruption. 

Moreover, we can see in this case that the plume height varies a lot as it is drifted away 

from the vent.  

Once we had the plume height, we interpolated the OMI-derived SO2 VCDs for the 

four CMAs to the actual reported or estimated plume altitude. 

 

 

Figure 3.1: Figure from the HYSPLIT trajectory model on August 30
th

, 2011. 

http://ready.arl.noaa.gov/HYSPLIT.php
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We used the Transects technique to calculate SO2 fluxes and the Normalized 

Cloud-mass technique (NCM) for SO2 mass calculation from OMI SO2 data. These 

techniques are described below. 

 

 

3.2.1. SO2 Transect technique 

 

The SO2 transect technique is used for calculation of SO2 fluxes in the plume 

from the daily OMI images. The technique is essentially the same as the technique 

commonly used to derive SO2 emission rates from ground-based measurements of SO2 

column amounts in volcanic plumes (e.g. Stoiber et al. 1983). For satellite data 

validation during the Etna paroxysmal eruptions it is only useful for specific 

conditions: the eruption has to have happened a short time before the OMI image 

acquisition in order to have plume transects geometry and meteorological conditions 

similar to those of the ground-based measurements. 

Transects are drawn perpendicular to the observed plume direction and the software 

calculates automatically the plume width and average SO2 column in the plume cross-

section. The flux is then calculated based on a wind speed entered by the user. Fluxes 

are obtained in metric tons per day (t/d) for the different SO2 CMAs (PBL, TRL, TRM 

and STL). 

 

3.2.2. Normalized Cloud-mass (NCM) technique 

 

This technique consists of selecting a box in the daily OMI SO2 image that 

contains the volcanic plume, in order to calculate the uncorrected SO2 mass. Because 

of the OMI SO2 background noise, another box is also selected, with a similar size and 
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meteorological conditions to the plume box (if possible), but free of volcanic SO2. The 

NCM technique calculates the SO2 mass of the two boxes and then subtracts the 

background SO2 mass to have the corrected SO2 mass of the volcanic plume, using the 

following equation: 

 

SO2 Cloud Mass = SO2
 
Cloud – ((Area

 
BG /Area

 
Cloud) x SO2 BG Mass) 

 

Where SO2 Cloud Mass is the SO2 mass in the volcanic plume after correction; SO2 Cloud is 

the uncorrected SO2 mass in the plume; Area Cloud
 
is the area of the box containing the 

volcanic plume; Area BG is the area of the background box and SO2 BG Mass
 
the SO2 

mass (retrieval noise) in the background box. Masses are obtained in tons (t). 

The NCM technique was used to estimate the SO2 mass emitted reported in Table 2.1. 

For some recent eruptions, the row anomaly previously mentioned affects the OMI 

data coverage of the Etna plume, preventing the SO2 mass calculation. However, if the 

SO2 plume persists in the atmosphere for a few days, we were able to measure the SO2 

mass on a subsequent day. 

 

3.2.3 Error calculation 

 

 There are different error sources for the SO2 flux and mass calculation.  

The main error sources for the flux calculation are the wind speed and the plume 

height. The distance measurement between the vent and the transect in the Transect 

technique is another error source, but minor compare to the other ones. The presence 

of clouds and ash are also minor errors. We estimated an error of ± 30% for SO2 flux. 

The main error source for the mass calculation is the plume height. The presence of 

clouds and ash are also minor errors. We estimated an error of ± 20% for the SO2 mass. 
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4. Ground-based measurements 

4.1 FLAME Network 
 

The FLAME network is an automatic scanning array designed, built and 

installed at Etna in October 2004 by the INGV. It was composed of 5 UV scanning 

spectrometers (mini-DOAS) until 2009. Since 2010, 4 more stations have been added 

to the network to increase the probability of detecting and tracking the plume, and 

improve monitoring of Etna’s SO2 emissions (Figure 4.1). Data from the spectrometers 

are used to measure the SO2 flux automatically and in real time (Burton et al. 2004). 

 

 

 

Figure 4.1: Location of the 9 UV spectrometer stations of the FLAME network. 

Courtesy of Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Italy. 
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A filter for visible light (HOYA U330) receives the diffuse sky radiation. It is then 

reflected into a telescope with a 8 mrad instrumental field-of-view (FOV) by a 45º 

plane mirror. Fiber optic cables (1000 µm) focus the beams and connect the telescope 

to an Ocean Optics S2000 spectrometer. This spectrometer has a spectral resolution of 

0.6-0.9 nm (full width at half maximum) and a wavelength range of 295-375 nm. The 

instrument scans the sky from 12º to 168º in a vertical plane in around 6 minutes, 

generating 105 spectra per scan (104 spectra with angular spacing of 1.5º and a dark-

spectrum) (McGonigle et al. 2003; Salerno et al. 2009a, 2009b). The data acquisition 

period depends on the season, with almost 9 hours typical during the summer. 

 

4.2 Mini-DOAS Data Analysis 
 

Column amounts (CA) are retrieved automatically on site using a DOAS-type 

retrieval based on the Rodgers (1976, 2000) optimal estimation algorithm. Spectra are 

first processed with a low-pass filter in order to suppress the noise, and then 

transformed into optical depth. CA are calculated from the optical depth and 

transmitted to the INGV Observatory in Catania by FreeWave radio modem (Salerno 

et al. 2009a, 2009b). 

Fluxes are calculated in Catania following the technique described by Stoiber et al. 

(1983). CAs permit calculation of SO2 column cross-sections, which are then 

multiplied by the plume-transport speed. The wind speed at plume height is estimated 

using the LAMI model (Limited Area Model Italy) from the European Center for 

Medium-Range Weather Forecasts (ECMWF, http://www.ecmwf.int/ ) (Salerno et al. 

2009b). 

The INGV Observatory of Catania provided the ground-based data. 

 

http://www.ecmwf.int/
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4.3 Error calculation 
 

The uncertainty for the SO2 flux calculation was estimated by Salerno et al. 

(2009b) as -22%, +30%. The Matlab code we used for the SO2 mass calculation didn’t 

change this error as we just integrated the fluxes to calculate the mass.  
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5. Results and comparison 

5.1. OMI Results 

5.1.1. Transects Technique 

 

The cloud fraction image provided by OMIplot permits an assessment of the 

presence or absence of significant meteorological cloud at the volcanic plume location 

(Figure 5.1). Depending on the relative position of clouds and the volcanic plume, the 

SO2 mass calculated may be overestimated (if the SO2 is above the clouds) or 

underestimated(if the cloud is obscuring part or all the SO2 plume). Furthermore, they 

can modify the rate of SO2 depletion via aqueous phase reactions, leading to an 

underestimation of SO2 if the volcanic plume is entrained into cloud (Jaeschke et al. 

1982). Therefore, cloud coverage is an important parameter to take into account.  

The OMI-derived cloud fraction is available for any single pixel and the 

OMSO2 data product also provides a cloud top pressure. It is then possible to calculate 

the estimated height of the cloud and compare it with the (known or estimated) 

volcanic plume height. We used the U.S. Standard Atmosphere, 1976 published by the 

U.S. Government Printing Office, Washington, D.C. ( http://www.pdas.com/m1.html ) 

to estimate the cloud height. 

Visible images from the Moderate Resolution Imaging Spectroradiometer (MODIS) on 

the Aqua satellite are also useful to assess cloud coverage as the sensor is in the A-

train satellite constellation with Aura and overpasses the area a few minutes before 

OMI (http://lance-

modis.eosdis.nasa.gov/imagery/subsets/?project=aeronet&subset%20=ETNA ) (Figure 

5.2). 

 

 

 

 

 

http://www.pdas.com/m1.html
http://lance-modis.eosdis.nasa.gov/imagery/subsets/?project=aeronet&subset%20=ETNA
http://lance-modis.eosdis.nasa.gov/imagery/subsets/?project=aeronet&subset%20=ETNA
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Figure 5.1: Cloud fraction image on 05/14/08. 

 



 

27 

 

 

Figure 5.2: Aqua MODIS image above Sicily on 05/14/08. The blue circle is the Etna 

location. 

 

Figures 5.1 and 5.2 show a good agreement in cloud locations. The volcanic plume is 

also visible on the Aqua image, drifted South-East by the wind. 

 

The INGV provided the wind speed at the location of the ground-based 

stations. As it can easily vary as the plume drifts away, we used the READY Hysplit 

model to have another value of it. The Archived Meteorology data provides an 

estimation of the wind speed depending on the location and altitude 

(http://ready.arl.noaa.gov/READYamet.php ). The READY Trajectory model was also 

used to compare the results. It gives us the onset and end times of the eruption. These 

combined with the plume length calculated with OMIplot, allow us to have another 

http://ready.arl.noaa.gov/READYamet.php
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estimation of the wind speed. The most true value was used to calculate the flux, 

depending on the location of the transect. 

The plume height can be found for some eruptions in the INGV reports of 

activity (http://www.ct.ingv.it/index.php?option=com_docman&Itemid=344&lang=it 

). However, this is the height at the vent, and as the plume drifts away, the altitude 

might change. We used the READY Trajectory model to have another estimation of 

the height at the plume location. 

Wind speed and plume height are two important parameters as they are used in the flux 

calculation. When these two data sets are more accurate, the approximation for flux is 

more accurate. 

 

The OMIplot distance calculation technique was used to calculate the distance 

between each transects and the vent. Using the wind speed data, we were then able to 

calculate the corresponding time range of the flux emission. 

Figures 5.3 to 5.6 show the transect images of the days used for the 

comparison. 

We didn’t calculate flux too close from the volcano. Indeed, because of the large OMI 

pixel size, the plume needs to have dispersed enough to cover a sufficient fraction of it, 

and avoid an underestimation of SO2.  

 

 

 

 

 

 

 

 

 

 

 

http://www.ct.ingv.it/index.php?option=com_docman&Itemid=344&lang=it
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Figure 5.3: OMI picture with transects used to calculate the SO2 fluxes for the 

11/16/06 paroxysmal event. 
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Figure 5.4: OMI picture with transects used to calculate the SO2 fluxes for the 

05/14/08 paroxysmal event. 
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Figure 5.5: OMI picture with transects used to calculate the SO2 fluxes for the 

04/10/11 paroxysmal event. 
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Figure 5.6: OMI picture with transects used to calculate the SO2 fluxes for the 

08/12/11 paroxysmal event. 
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5.1.2. Cloud-Normalized Mass Technique 

 

The CNM technique was used to calculate the SO2 mass. As described before, 

we chose two different boxes, one with the volcanic plume and one for the background 

(figures 5.7 to 5.10). 

 

 

Figure 5.7: OMI image with the boxes used for the SO2 mass calculation on 11/16/06 

paroxysmal event. 
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Figure 5.8: OMI image with the boxes used for the SO2 mass calculation on 05/14/08 

paroxysmal event. 
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Figure 5.9: OMI image with the boxes used for the SO2 mass calculation on 04/10/11 

paroxysmal event. 

 

The grey bands in Figure 13 are the row anomaly. We can see that it cuts a part 

of the volcanic plume, which means there is no data for this part. It is, in this case, 

really important to take it into account for the SO2 flux and mass calculation. 
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Figure 5.10: OMI image with the boxes used for the SO2 mass calculation on 08/12/11 

paroxysmal event. 
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The July 9
th

, 2011 eruption occurred in the afternoon, after the OMI overpass 

above Mount Etna. We calculated the SO2 mass of the volcanic plume using the image 

of July 10
th

, so that almost 24 hours after the emission (Figure 5.11). We see on the 

picture that the end of the plume is cut by the row anomaly. However, we were able to 

estimate with HYSPLIT that a very short part of the plume is cut by the anomaly. The 

SO2 mass calculated is then very close to the real one. This technique allows us to 

compare data for events which occur during the afternoon. However, because of the 

lapse time, an underestimation of SO2 is most likely due to its oxidation into sulfate 

aerosols. 

 

 

Figure 5.11: OMI image with the boxes used for the SO2 mass calculation on 07/09/11 

paroxysmal event. 
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5.2. Ground-based results 
 

The SO2 fluxes were provided by the INGV of Catania with the wind speed at 

the station location. For each flux calculated with OMIplot, we had the corresponding 

time of emission. Because the distance between the transects and the vent and the wind 

speed values are not hundred percent accurate, we calculated an average of the DOAS 

fluxes for the comparison, ± 10 minutes of the flux emission time. We also reported 

the maximum and minimum fluxes during this time lapse in our comparison. 

We estimated the SO2 mass erupted for each paroxysmal event with a Matlab 

code. SO2 fluxes from the beginning of the eruption until its end were integrated in 

order to have the SO2 mass erupted during this time lapse. 

 

5.3. Comparison 
 

The conditions were adequate for comparisons of both flux and mass between 

the OMI and FLAME measurements for four paroxysmal events during the period 

2004 to present. Because of its occurrence in the afternoon, only the mass comparison 

was possible for a fifth eruption. 

 

5.3.1. November 16
th

, 2006 

 

The November 16
th

, 2006 eruption occurred between 04:07 and 14:00 GMT. 

As the FLAME network only measures during daytime, there is no ground-based data 

for the beginning of the event. The first measure was at 07:39, so we compared the 

data from this time to the OMI overpass time, at 13:27. The data for this day are 

presented in Table 5.1 and plotted in Figure 5.12. 
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Considering the plume height at 4 km, we used the TRL and TRM values to 

calculate the SO2 fluxes and total SO2 masses. 

The conditions for this day were quite favorable, with an almost constant wind-speed, 

between 4.67 m/s and 6.18 m/s, and a cloud-free background. However, the satellite 

was not near nadir, so had larger pixel dimensions.  

 

Table 5.1 

SO2 fluxes in t/d obtained by OMI transects and Mini-DOAS on 11/16/06. 

Transect 
Distance from 

the vent (km) 
OMI 

DOAS 

Average 

DOAS 

Maximum 

DOAS 

Minimum 

% 

Difference 

1 17 3064.44 5419.38 5824.05 5208.65 43.45 

2 29 3922.84 6951.55 7615.45 6381.28 43.57 

3 44 4915.37 8079.29 8254.72 7820.51 39.16 

4 60 5421.08 11080.97 11157.76 11002.05 51.08 

5 75 5427.74 10032.57 10231.55 9843.55 45.90 

6 92 5528.00 8270.64 9293.61 7472.14 33.16 

 

 



 

40 

 

 

Figure 5.12: SO2 fluxes obtained by OMI transects, blue line, compared to SO2 fluxes 

obtained by Mini-DOAS, red line, on 11/16/06. The DOAS value is the average flux of 

the 20 minutes around the OMI flux emission time. 

 

 

The two curves in Figure 5.12 show a same trend, an increase of SO2 fluxes with 

the distance from the vent. However, the results show a disagreement, with the best OMI 

estimation 33% smaller for transect 6. Various errors could account for this difference. 
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The first cause must be an error ranging between 5% and 20% for the Mini-DOAS 

measurements (Edmonds et al, 2003), depending on the SO2 concentration of the plume 

and the background noise, and varying during the day.  Furthermore, clouds may have 

been present earlier in the morning, leading to erroneous values of Mini-DOAS fluxes. 

However, the underestimation is around 40% for all the results, which rules out those 

errors, more or less important depending on the time. The wind speed and/or the plume 

height estimations are then the most likely errors. 

Table 5.2 presents the total SO2 masses calculated with both techniques. In 

opposition to the fluxes, the OMI value is 64% larger than the DOAS one. This could be 

explained by the fact that the eruption starts at 04:07 GMT and DOAS measurements at 

07:39. The OMI picture takes into account the SO2 erupted from the beginning of the 

eruption whereas the Mini-DOAS starts measuring more than three hours later. We 

estimated the fluxes from 04:07 until 07:39 for Mini-DOAS and obtained a SO2 mass 

closer than the OMI mass. 

 

 

Table 5.2 

Total SO2 mass in tons obtained by OMI CNM technique and Mini-DOAS on 

11/16/06. The second row is with the SO2 flux estimation for DOAS. 

OMI DOAS % Difference 

1452.40 ± 290.48 
887.23 -195.19, 

+266.17 
63.70 

1452.40 ± 290.48 
1090.90 -240.00, 

+327.27 
33.14 
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5.3.2. May 14
th

, 2008 

 

We compared the SO2 fluxes from the beginning of the DOAS measurements, 

at 05:47 GMT until the OMI overpass at 12:24. As said before, some clouds were 

present above Sicily around noon. However, the cloud fraction is very low, 0.84% for 

transect 1 and 0.25% for transect 2. The cloud altitude estimated with the U.S. 

Standard Atmosphere, 1976, is 4-5 km and 5-6 km respectively. The plume height at 

the vent is 4 km, which means that the volcanic plume is either mixed or under the 

clouds, which could lead to an underestimation of SO2. As there is no cloud above the 

Ionian Sea, the other transects are not affected by this possible error. 

The wind speed given by the INGV was almost constant at the vent, ranging between 6 

m/s and 7 m/s and the satellite near nadir. The wind speed obtained with the READY 

Trajectory model was however a bit lower, around 5.5 m/s.  

The plume height varies, around 4 km at the vent and 5 km at its end. 

 

Table 5.3 

SO2 fluxes in t/d obtained by OMI transects and Mini-DOAS on 05/14/08. 

Transect 
Distance from 

the vent (km) 
OMI 

DOAS 

Average 

DOAS 

Maximum 

DOAS 

Minimum 

% 

Difference 

1 21 14135.33 7430.87 7698.69 7161.89 90.22 

2 29 9791.38 10819.58 11888.16 10140.34 9.50 

3 47 5977.24 11278.95 11831.39 10726.50 47.01 

4 58 4478.01 12119.31 13174.50 11064.12 63.05 

5 86 3028.77 15030.79 15910.99 14150.59 79.85 

6 106 3095.05 11723.60 12853.04 10502.62 73.60 

7 119 2187.77 5139.90 5553.04 4724.16 57.44 

8 145 2013.07 4075.89 4826.28 2813.78 50.61 
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The error difference is very high for all the transects except the second and 

OMI fluxes are always smaller than DOAS fluxes except for the first transect (Table 

5.3). As showed in Figure 5.13, OMI fluxes decrease when DOAS fluxes tend to 

increase. This gap could be explained by an erroneous wind speed. The strongest 

fluxes occurred later for OMI than for DOAS. As there is no information about the 

onset time of the eruption, we were just able to estimate it with the READY Trajectory 

model, around 05:00 GMT.  

The total SO2 mass is almost the same for both techniques (Table 5.4). The DOAS 

measurement began at 05:47, less than an hour after the estimated onset of the 

eruption. Furthermore, fluxes are generally weak at the beginning of an eruption and 

tend to have a normal distribution. As a result, the SO2 mass from DOAS must be a 

little bit higher, then closer than the OMI one.  

The good agreement between SO2 masses reinforces the fact that the gap 

between the strongest fluxes may be due to an erroneous wind speed. If the masses are 

in the same range, fluxes should not be that different. 
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Figure 5.13: SO2 fluxes obtained by OMI transects, blue line, compared to SO2 fluxes 

obtained by Mini-DOAS, red line, on 05/14/08. The DOAS value is the average flux of 

the 20 minutes around the OMI flux emission time. 

 

Table 5.4 

Total SO2 mass in tons obtained by OMI CNM technique and Mini-DOAS on 

05/14/08. 

OMI DOAS % Difference 

1754.00 ± 350.80 
1637.00 -360.14, 

+491.10 
7.15 
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5.3.3. April 10
th

, 2011 

 

We compared the SO2 fluxes from the beginning of the DOAS measurements, 

at 07:19 GMT until the OMI overpass at 12:42. A part of the volcanic cloud is cut by 

the ROW anomaly for that day. Comparing the image with the anomaly (Figure 5.14) 

and the one with the estimated plume (Figure 5.15) allows us to assume that around 

half of the plume is covered by the anomaly. Furthermore, the shape of transects 

obtained by the CNM technique reinforces this hypothesis. Figure 5.16 shows the 

transect 6. We found with the distance calculation tool from OMIplot, that the plume 

width is around 80 km at this location. We see in the figure that the plume is cut at the 

highest SO2 amount, and around 43 km from the west edge, which is almost half of its 

width.   
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Figure 5.14: OMI picture with the ROW anomaly on 04/10/11. 
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Figure 5.15: OMI picture without the ROW anomaly on 04/10/11. 
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Figure 5.16: Plume transect for transect 6 on 04/10/11. 

 

 

 

The conditions were favorable, with a cloud-free background. The wind speed 

at the vent varies from 6.7 to 8.3 m/s. However, the wind speed estimated with 

READY is a little bit higher, around 9 m/s, which is also closer to the one calculated 

with the plume length and duration of the emission. We used this value of 9 m/s for the 

OMI flux calculation. The plume height given by the INGV is 5.3 km, which is 

consistent with the one estimated by the trajectory model. 
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Table 5.5 

SO2 fluxes in t/d obtained by OMI transects and Mini-DOAS on 04/10/11. 

Transect 

Distance 

from the 

vent (km) 

OMI OMI*2 DOAS 

Average 

DOAS 

Maximum 

DOAS 

Minimum 

% 

Difference 

1 18 4191.88 8383.76 8582.96 10084.82 6958.71 2.32 

2 41 6430.93 12861.86 12479.15 14604.33 10277.14 3.07 

3 45 5739.70 11479.41 14009.73 15382.56 11524.14 18.06 

4 49 5167.10 10334.19 14521.67 15482.66 13667.55 28.84 

5 57 3807.19 7614.37 11026.48 13156.89 9266.87 30.94 

6 70 3407.86 6815.71 9104.01 9676.80 8222.14 25.14 

7 107 1392.21 2784.42 1961.28 2013.64 1726.33 41.97 

8 112 1195.76 2391.52 2004.15 2365.79 1726.33 19.33 

9 117 964.39 1928.78 2237.18 2625.11 1979.47 13.79 

10 122 669.29 1338.58 1919.11 2095.48 1834.42 30.25 

 

 

 

Assuming that half of the plume is covered by the row anomaly, we multiplied 

the OMI data by two before comparing. As showed in Table 5.5, the best agreement is 

for transects 1 and 2, with a low percent difference, 2.32 and 3.07 respectively. 

Transects 3, 8 and 9 also show a decent agreement, with percent difference inferior to 

20. Furthermore, the two curves on Figure 5.17 have the same trend and OMI fluxes 

on the range of DOAS fluxes for transects 1, 2, 3, 9 and 10. 

The SO2 masses are also really close (Table 5.6), with only 2.95 percent difference, 

calculated from 08:00 GMT, beginning of the event, until 12:43, overpass of the 

satellite. 
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Figure 5.17: SO2 fluxes obtained by OMI transects, blue line, compared to SO2 fluxes 

obtained by Mini-DOAS, red line, on 04/10/11. The DOAS value is the average flux of 

the 20 minutes around the OMI flux emission time. 
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Table 5.6 

Total SO2 mass in tons obtained by OMI CNM technique and Mini-DOAS on 

04/10/11. 

OMI OMI * 2 DOAS % Difference 

768.80 1493.60 ± 307.52 
1537.60 -328.59, 

+448.08 
2.95 

 

 

5.3.4. August 12
th

, 2011 

 

The paroxysmal event on August 12
th

, 2011 occurred between 07:00 and 11:30 

GMT, during daytime and before the OMI overpass, with a cloud-free background and 

a plume height around 3.7 km. These conditions are favorable for the comparison. 

However, the satellite is not near nadir, and the average wind speed at the vent is very 

different from the one at the plume location, 4.9 m/s and ~8 m/s respectively. There is 

then a big difference between the wind speeds used to calculate DOAS and OMI 

fluxes.  

The results presented in Table 5.7 and plotted in Figure 5.18 show a big 

difference between the fluxes, with OMI estimation being ~ 300% larger, and until 

1058% larger for transect 6. Transect 1 is the only one under 100% larger. The trend is 

the same for the mass comparison, with 502 percent difference (Table 5.8). 
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Table 5.7 

SO2 fluxes in t/d obtained by OMI transects and Mini-DOAS on 08/12/11. 

Transect 
Distance from 

the vent (km) 
OMI 

DOAS 

Average 

DOAS 

Maximum 

DOAS 

Minimum 

% 

Difference 

1 36 2818.26 1536.11 2225.88 1052.76 83.47 

2 55 8103.45 1920.91 3427.85 1321.31 321.85 

3 69 18365.24 3591.23 5010.16 2045.37 411.39 

4 94 14948.17 3483.89 3810.79 2987.05 329.07 

5 114 18434.54 5388.92 6372.85 4734.96 242.08 

6 136 17189.70 1484.21 2778.73 826.50 1058.17 

 

 

As showed in Figure 5.18, OMI fluxes are, except for transect 1, never in the 

range of DOAS fluxes. This eruption is characterized by pulsating lava fountains 100m 

high for two hours and strong strombolian activity at the beginning and end of the 

event. If we compare with the DOAS data of the other eruptions, fluxes are usually 

between 6000 t/d and 14000 t/d during fountaining activity while they are between 

2000 t/d and 5000 t/d on that day. We can assume that the DOAS data were 

underestimated. Indeed, accuracy of fluxes depends on the geometry of the plume and 

constancy of the plume transport direction. Their variation can lead to under or 

overestimation from -22% to +36% (Salerno et al. 2009b). The plume also might have 

been at the spatial limit of the scanner-network, with only part of it on the field of 

view. 

The OMI picture (Figure 5.10) shows a plume drifted toward two main directions, east 

and south-east, which highlights a variation of the plume transport direction with time. 

The geometry of cloud could then be affected, resulting in erroneous fluxes. As said 

before, wind speed estimated with READY is much higher than the one given by the 

INGV. A wrong wind speed and/or plume height also may account for the 

discrepancy.  
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On the other hand, we measured fluxes by drawing transects in the OMI picture, with a 

plume that has not the same shape as near the vent when DOAS fluxes are measured. 

The volcanic cloud is dispersed by the variation of wind direction and an 

overestimation of SO2 by OMI is likely. 

 

 

Figure 5.18: SO2 fluxes obtained by OMI transects, blue line, compared to SO2 fluxes 

obtained by Mini-DOAS, red line, on 08/12/11. The DOAS value is the average flux of 

the 20 minutes around the OMI flux emission time. 
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Table 5.8 

Total SO2 mass in tons obtained by OMI CNM technique and Mini-DOAS on 

08/12/11. 

OMI DOAS % Difference 

3367.60 ± 673.52 
559.86 -123.17, 

+167.96 
501.51 

 

 

5.3.5. July 9
th

, 2011 

 

The July 9
th

, 2011 eruption occurred from 12:15 to 16:40 GMT according to 

the INGV report, with a plume height of 6.8 km and a cloud-free background. 

As the eruption occurred after the OMI overpass on July 9
th

, we had to process the 

image of the following day. It was then not possible to make a flux comparison.  

We assumed that the OMI SO2 mass takes into account SO2 emission from 

12:15 to 16:40. DOAS measurements stop at 16:21, while fluxes are still high, ~ 5700 

t/d. We calculated the DOAS SO2 mass assuming the fluxes from 16:21 until 17:00 

(Figure 5.19). The result shows a better agreement with OMI, even if the percent 

difference is still 35.57 (Table 5.9). 
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Figure 5.19: DOAS flux versus time graph on 07/09/11. The red line is the assumed 

trend of the curve when DOAS measurement stops. 

 

 

Table 5.9 

Total SO2 mass in tons obtained by OMI CNM technique and Mini-DOAS on 

07/09/11. The second line shows the SO2 mass calculated with DOAS data until 17:00. 

OMI DOAS % Difference 

1747.56 ± 349.51 
1224 - 269.28, 

+367.20 
42.77 

1747.56 ± 349.51 
1289 - 283.58, 

+386.70 
35.57 
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6. Conclusion 

 

This kind of comparison between satellite and ground-based sensors is always 

tricky as it requires finding overlapping ground-satellite days. In the case of Mount 

Etna, it was really challenging as the OMI satellite has an overpass time around 12:45.  

Only the events that occurred in the morning were comparable, as the FLAME 

network, having UV-spectrometers using sun radiation, does not measure during 

nighttime. The afternoon eruptions could be compared if the volcanic plume was still 

visible the day after, with a likely SO2 underestimation due to chemical reactions in the 

atmosphere.  

Although Mount Etna is a very active volcano, especially since the beginning 

of 2011, it was difficult to find good data for both sensors. Furthermore, the degassing 

rate is not big enough to be detected by the OMI satellite, so only the paroxysmal 

events were used for the comparison. Out of eleven days of Mini-DOAS data, only 

five of them were comparable with the OMI data.  

The row anomaly present in the northern hemisphere since June 2007 was another 

difficulty as it often appears to be above the volcano, preventing the use of OMI data. 

Otherwise, there were only five ground-based stations until 2010, located south, south-

east and east of Mount Etna. As a result, measurements were not possible when the 

plume was drifted in other directions. The improvement of the FLAME network after 

2010 helped to cover a bigger area, with stations all around the volcano. However, the 

plume is still sometimes at the spatial limit or outside of the scanner network, and 

measurements are not possible when there is a cloud cover above the volcano. 

Furthermore, we began the comparison after all the paroxysmal events occurred. Wind 

speed and plume height could have been better estimated if the project was known at 

that time.  
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The comparison was in good agreement only for April 10
th

, 2011 event, with 

both SO2 flux and mass in the same range. Results of May 14
th

, 2008 highlight the 

importance of accurate wind speed data. The flux comparison shows a discrepancy 

between both sensors whereas the mass comparison, which does not require transport 

rate for its calculation, has a good agreement. Plume height is also important, as the 

November 16
th

, 2006 event shows it. Fluxes have the same trend but values with 

different magnitudes. After the emission, the plume is drifted away by winds of which 

speed and altitude may vary with time.  

The plume transport direction is another important parameter to take into account as 

the geometry of the plume affects the flux calculation for the Mini-DOAS. The 

ground-based results of August 12
th

, 2011 eruption are likely underestimated because 

of a variation in the plume transport direction during the event. 

  

Further research should be conducted with better wind speed and plume height 

measurements for paroxysmal events occurring in the morning. Those parameters and 

their variations with time and space should be better constrained and included in 

OMIplot to have more accurate results. More data are required to continue this 

comparison, make a validation of OMI volcanic SO2 retrievals and improve the next 

generation of this kind of space-based sensors. Moreover, different techniques than the 

transects one should be used to estimate the flux with OMIplot in order to have several 

results which do not take into account the same parameters for the calculation, and 

especially wind speed and plume height. A better knowledge of SO2 lifetime with the 

atmospheric conditions above Mount Etna would also permit to compare the eruptions 

that occur in the afternoon with more accuracy. 
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8. Appendix 

 

A: Copyright for Figure 2.2 (Personal communication 

through e-mail) 
 

Giuseppe Salerno giuseppe.salerno@ct.ingv.it           23 avril 

 

Dear Celine, 

  

I know, it's not easy to find overlapped ground-satellite days, maybe just few case studies it's a 

good start, why the results retrieved from the compared days are not good? 

  

Flame: right now the UV scanning network consists of nine scanners all stations have the 

same technology (attached fig). no problme, about the INGV map, state the appropiate 

reference (e.g., courtesy of Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, 

Italy) 

If you have a skype account we can make a plan to have a chat, though it's not easy due to 

the time zone, anway we can try it. 

  

all the best 

Giuseppe 

----------------------------------------------------------------------------------------------------------------  

 

Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Italy 

Piazza Roma, 2  - 95123, Catania - Italy 

office:  +39 095 716 5829; mobile: +39 347 80 48788; fax: +39 095 716 5829 

website: www.ingv.it; www.ct.ingv.it 

 

mailto:giuseppe.salerno@ct.ingv.it
tel:%2B39%20095%20716%205829
tel:%2B39%20095%20716%205829
http://www.ingv.it/
http://www.ct.ingv.it/


 

66 

 

B: Copyright for Figure 4.1 (Personal communication 

through e-mail) 
 

 

céline mandon                15 aout   

Hey Giuseppe, 

 

As you noticed I used the GoogleEarth map with the FLAME stations location in my thesis. 

The problem is that I would need GoogleEarth's permission to use it. 

I found one of your map of the network in your paper: Three-years of SO2 flux measurements 

of Mt. Etna using an automated UV scanner array: Comparison with conventional traverses 

and uncertainties in flux retrieval. I added the 4 new stations on it. 

I now need your permission to use it in my thesis. 

I attach it so you can see the changes I made. 

Hope you are enjoying your summer. 

 

Celine 

 

Giuseppe Salerno giuseppe.salerno@ct.ingv.it           16 aout   
 

 

 
 hello Celine, nice to hear from you,  

 

the picture is fine, you got the permission.  

 

Please remember that flame data has been provided just for the the thesis, since these data 

results from a team work any official report, article and/or presentation at conferences, should 

involve my team as co-author. 

 

Please if you need other help do not hesitate to contact me 

mailto:giuseppe.salerno@ct.ingv.it
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all the best 

 

Giuseppe 
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C: Copyright for Figure 2.1 (Personal communication 

through e-mail) 
 

 

céline mandon                15 aout   

 

Hello, 

 

I'm student at Michigan Technological University in the USA and I made my master's thesis on  

SO2 fluxes at Mount Etna, in collaboration with Giuseppe Salerno from the INGV. 

I would like to use in my thesis a figure from one of your paper: Seismicity, seismotectonics 

and crustal velocity structure of the Messina Strait (Italy), figure 1a, the simplified tectonic map. 

I modified it a little bit but I still need your permission to publish it in my thesis. 

Waiting for your answer, 

Best regards. 

 

Céline Mandon 

 

Luciano Scarfì scarfi@ct.ingv.it               19 aout   

 

Hello Céline, 

 

I'm sorry for the late reply but I'm on holidays. 

If you cite the source I have nothing against it. 

 

Bye 

 

Luciano Scarfì 

 

mailto:scarfi@ct.ingv.it
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