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ABSTRACT

We used differential GPS measurements from a 13 station GPS network spanning the
Santa Ana Volcano and Coatepeque Caldera to characterize the inter-eruptive activity
and tectonic movements near these two active and potentially hazardous features.
Caldera-forming events occurred from 70-40 ka and at Santa Ana/lzalco volcanoes
eruptive activity occurred as recently as 2005. Twelve differential stations were
surveyed for 1 to 2 hours on a monthly basis from February through September 2009
and tied to a centrally located continuous GPS station, which serves as the reference site
for this volcanic network. Repeatabilities of the averages from 20-minute sessions taken
over 20 hours or longer range from 2-11 mm in the horizontal (north and east)
components of the inter-station baselines, suggesting a lower detection limit for the
horizontal components of any short-term tectonic or volcanic deformation.
Repeatabilities of the vertical baseline component range from 12-34 mm. Analysis of
the precipitable water vapor in the troposphere suggests that tropospheric decorrelation
as a function of baseline lengths and variable site elevations are the most likely sources
of vertical error. Differential motions of the 12 sites relative to the continuous reference
site reveal inflation from February through July at several sites surrounding the caldera
with vertical displacements that range from 61 mm to 139 mm followed by a lower
magnitude deflation event on 1.8-7.4 km-long baselines. Uplift rates for the inflationary
period reach 300 mm/yr with 1o uncertainties of +/- 26 — 119 mm. Only one other
station outside the caldera exhibits a similar deformation trend, suggesting a localized
source. The results suggest that the use of differential GPS measurements from short
duration occupations over short baselines can be a useful monitoring tool at sub-tropical

volcanoes and calderas.



1. INTRODUCTION

1.1. Tectonic Setting

The Santa Ana Volcanic Complex (SAVC) is located in western El Salvador (figure 1)
along the southern edge of the Median Trough, or Central Graben, which is an extension
of the Nicaraguan Depression. The Median Trough could be defined as a series of
bookshelf and transtensional faults formed by the right-lateral motion of the Central
American Forearc sliver (Funk et al. 2009). It is postulated that the 14 +/- 2 mm/yr,
counter clockwise, northwest motion of the forearc sliver is driven by transpressional
forces caused by obligue subduction of the Cocos Plate under the Caribbean Plate along
a concave subduction zone offshore of Nicaragua (DeMets 2001, Funk et al. 2009,
Alvarado et al. 2010). The Santa Ana Volcanic Complex is comprised of the composite
volcano Santa Ana — locally known as Illamatepec — Izalco volcano, Coatepeque
Caldera as well as a NW-SE, linear system of parasitic vents and cinder cones (Pullinger
1998). Itis likely that this NW-SE trend is the manifestation of a series of extensional,
normal faults that dissect Santa Ana volcano, which is likely a pull-apart zone due to the
right-lateral motion of the forearc sliver/Caribbean plate interaction (Stoiber and Carr
1977, Carr and Feigenson 2003, Funk et al. 2009).



1.2. Eruptive History

Coatepeque Caldera is a 7 x 8 km collapse caldera and contains a lake of the same name.
It is one of several large, active, collapse calderas in El Salvador and has produced
approximately 24 km3 of pyroclastic materials in three events between 40-70 ka
(Pullinger 1998, Rose et al. 1999). lzalco volcano erupted almost continuously for
nearly 200 years until 1966 (Rose and Stoiber 1969), while Santa Ana experienced a
small eruption (VEI 3) in 2005. Debate exists over the mechanism of the 2005 eruption;
Olmos et al. (2007) consider the eruption to have been strictly phreatic due to
hydrothermal/gas interaction while Scolamacchia (2010) and Colvin (2010 et al. in
review) suggests that it was phreato-magmatic driven by a small, shallow rhyolitic
intrusion. Petrologic studies of volcanic complex by Carr and Pointier 1981 and Halsor
and Rose 1988 suggest the presence of a substantial magma body below the volcanic
complex. Currently, all three volcanoes demonstrate fumarolic or hydrothermal activity,
suggesting a still present heat source. While this eruptive history is brief it demonstrates
the nature of activity at the SAVC and illustrates the need for instrumentation and

continuous monitoring.

1.3. Deformation Monitoring with GPS

The application of GPS to volcano monitoring offers unique capabilities that allow us to
track and monitor deformation (Dzurisin, 2000). Differential GPS is a technique based
on the employment of two or more receivers where one receiver functions as a base
station and is fixed at a location of known coordinates while the position of the remote-
receiver, or rover, is determined from measurements relative to the base (Hoffmann-
Wellenhof et al. 2001). With this type of GPS survey it is possible to eliminate or
reduce multiple sources of error over short baselines and yield precise relative position
estimates with short occupation durations. It is therefore feasible to establish and
occupy multiple sites within a short time span. Furthermore, the data processing
strategy is much less difficult using commercially available software than for high-
precision absolute positioning.

10
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Figure 1. Map of El Salvador and the study area.

(SM) San Miguel, (SV) San Vicente, (IL) llopango, (SS) San Salvador, (CO) Coatepeque, (LN) Los
Naranjos, (1Z) lzalco. Inset is the Santa Ana Volcanic Complex and the Coatepeque Caldera. Solid black
lines show faults while black dotted lines show assumed faults identified and mapped by Weber and
Wiesemann (1977) Yellow dotted lines represent regional tectonics identified by the author as distinct
lineaments on the 25 m DEM with the exception of valleys radiating outward from the peaks of volcanoes.
Circles represent micro-seismic events during the time period of this investigation. Diameters smallest to
largest represent magnitudes < 1, 1-2, 2-3 respectively. Color gradient represents depths in km. Seismic
data provided by SNET.
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This initial investigation was designed as a pilot project for the Servicio Nacional de
Estudios Territoriales (SNET) of El Salvador, to augment their monitoring capabilities at
SAVC and to explore new strategies for monitoring active strato-volcanoes in
subtropical regions. The goals of this study are to determine the feasibility of short
occupation times in a dense GPS network (~ 100 km2 footprint) on a sub-tropical
composite volcano, to determine the achievable measurement precision and accuracy,
and to monitor the inter-eruptive characteristics of the volcanic complex and caldera
system at Santa Ana and Coatepeque Caldera. Our approach for the design of this
network was to take advantage of a conveniently located continuously operating GPS
(CGPS) station on the flanks of Santa Ana and utilize it as our fixed-position base

station.

In section 2 we describe the methodologies of the network development and field
measurements. In section 3 the results of our repeatability experiments, uncertainty
versus baseline-distance, the possible error caused by tropospheric delay and evidence
for a deformation event around the caldera are discussed. The possible deformation at
the caldera is examined in section 4. In section 5 we make recommendations for the

advancement of this project. We make our conclusions about this study in section 6 .

12



2. METHODS

2.1. Network and Field Measurements

During the spring and summer of 2008 a 13-stations GPS network was established on
and around Santa Ana volcano and Coatepeque Caldera. Twelve of the stations are tied
to the continuously operating GPS base-station SNJE in the center of the network and
were surveyed using differential GPS (dGPS). Data were collected during monthly
campaigns, which usually occurred during the last week of each month from February
through September, 2009 (table 2). During data collection campaigns, the rover antenna
was positioned and leveled on a spike mount tripod with a fixed height of 55 cm (figure
2).

We used a Trimble 5700 as our roving receiver and Trimble NetRS as our continuous
GPS, base receiver. Both are 24-channel, dual frequency receivers with a Trimble
Zephyr Geodetic choke ring antenna. During monthly campaigns we occupied each
station from one to two hours and collected data at a 30-second sample rate.

2.2. Data Processing and Reduction

We initially began our data processing strategy using Trimble GPSurvey and then
examined whether other software options would produce significant differences in our
results. A comparison was made between Trimble GPSurvey and Trimble Geomatics
Office 1.6 (TGO). Both processing software packages were available to us and both
produced results in close agreement with one another — we found the standard deviations
of the 20-minute averages calculated by GPSurvey to be slightly less than those
calculated by TGO by a maximum of 5mm in the vertical — however, we opted for the
most current software, TGO as we found the user interface optimized and more

convenient when resolving questionable baselines.
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Table 1. GPS station information and occupation history.

AGLA and FSEL columns are shaded as the two end member baseline distances. Darker shaded cells
indicate the long duration occupations in 2008 and 2009. Because the data files from the base-station,
SNJE, come in 24-hour files beginning at 00:00:00 UTC we were required to divide our long occupations
into two separate files for each day. Measurement campaigns are distinguished by thick black lines.
Baseline distances are relative to the fixed base station SNJE at 13.8682 N, 89.6007 E, 1660.191 m.

Standard deviation is the misfit about the best fit line for all occupations.

AGLA ESCL MLPA MTBL LSPL FESP TSBL PDRF LAKE CRSW |CRSE FSEL
Baseline dist. (m) 9656.809) 7974.08| 7437.288| 6581.848| 4834.812) 4772.375| 4591.005| 4408.605| 4063.393| 4001.219) 3674.222| 1888.905

N Latitude 13.8359| 13.8757| 13.8962| 138273 138829 13.883| 13.8362| 138308 138524 138467] 13.8471] 138543
E Longitude 89.6834 89.674| 1895385 805569 89.5504| 189.6422| 89.6276) B89.5878| 89.5679| 89.8298| 189.6262| 89.6108)
Elevation (m) 1022.517| 1449.291| 919.041| 1043.675] 770.553| 1592.912| 1870.077| 1259.262| 742.850| 2293.387| 2288.74| 1717.99
Stand dev. N (mm) 6 9 19 4 14 4 4 8 5 2 4 4
Stand dev. E (mm) 8 14 [ & 16 6 3 2 17 5 7 4
Stand dev. U (mm) 40 31 40 21 38 21 15 21 35 8 20 9
Date QOccupation Duraticn - hours and minutes

9/18/2008 6:03]

9/19/2008 16:23|

9/22/2008 5:08
9/23/2008 16:42
2/23/2009 1:04 1:03
2/24/2009 1:00 1:02 1:05)
2/25/2009 1:01 1:00
2/28/2009 1.00 1:05 1:00
3/12/2009 1:03
3/21/2009 1:00 1:01 1:00
3/22/2009 1:00 1:03 1:01 0:51
3/23/2009 1.06 11 1:01
3/27/2009 0:59 1:01
4/30/2009 0:58 1.02

5/3/2009 1:.01 1:05 1:00 1:06 1:05

5/4/2009 1:03 1:01 1:02 1:00 1:01
5/29/2009 1:00
5/30/2009 1:02 1.07 1:01 112 0:58
5/31/2009 0:36 1:01 1:01 1:03 1:00}
6/26/2009 1.00 1:00
6/27/2009 1:19 13 1:34
6/28/2008 1:01 1:04 0:46 1:03 1:02
6/29/2009 1:06 1:01
7/25/2009 1.04 101 1.04 1:00}
7/26/2009 2:16 2:07 2:07
8/27/2009 1.00 1:01
8/30/2009 2:02 2:00 2:00
8/31/2009 1:01 1:02 1:02 1:01

9/1/2009 1:01 1:00
9/10/2009 6:21
9/11/2009 15:45

9/19/2009 6:22|

9/20/2009 17:38]

9/24/2009 1:01 1:01

9/27/2009 2:02 2:01 2:15

9/28/2009 1:01 1:02 1:08 1:03 1:02 1:01
Total Occupations 10 8 7 7 6 8 8 8 7 6 7 10]

14



Figure 2. GPS equipment.

(a) Spike mount tripod with Trimble Zephyr Geodetic antenna. Tripod has a fixed height of 55 cm from
pin to bottom of antenna mount. The spike on the tripod was placed in a 0.5 mm dimple on an anchored
bench mark. (b) Trimble 5700, choke ring antenna and associated equipment. Photo by author.
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All TGO baseline solutions were determined by a single-site-pair calculation from base
to rover with a minimally constrained network adjustment. The 3-D — vector
components — estimates in baseline difference between the fixed base-station and the
rover along with the calculated 1-c uncertainties for each coordinate component were
taken from TGO and statistically reduced to find the weighted mean. The weighted

mean is determined by:

n

Z(Xi /O-iz)
X = i

n

Z(l/aiz)

i=1

Where X is the difference in positional component (NEV) between rover and reference
station for each baseline observation and o is the standard error of each positional
component calculated by TGO. Various efforts were employed to improve questionable
baselines — those flagged by TGO. However, if the flags remained they were noted but

not removed.

2.3. Measurements of Achievable Accuracy

2.3.1. Continuous GPS station — SNJE

The daily coordinates of our fixed continuous GPS station SNJE were determined in the
International Terrestrial Reference Frame 2005 using GIPSY processing software. The
repeatability of the daily and monthly average positions of the CGPS station SNJE
(figure3 a-c) demonstrates that our base exhibited very stable behavior, with a standard
deviation in the horizontal of 2 mm and 4 mm for the north and east components
respectively, and 8 mm standard deviation in the vertical during the time period of this

investigation.
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SNJE - north averages. Standard Deviation =2(mm)
10,

e daily residuals
* monthly position with 2¢ error

Departure from mean lat. mm

2008-2009
Daily Position 30-Day Average
. : . 5 .
. . 4 1
3
2
. . | I I
L 0 5 0, 0 2
Deviation mm Deviation mm

Figure 3. Daily and monthly position averages for SNJE.

Above, (a) north component at the SNJE fixed base station. East (b) and vertical (c), components on the
following two pages. Daily averages (red) and monthly averages (black) with a 2-c error were determine
with GIPSY processing software and reduced from a best fitting slope. Standard deviations of daily
position averages are 2mm in the north, 4mm in the east and 8mm in the vertical.
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SNJE - east averages. Standard Deviation =4(mm)

N
o

¢ daily average
* monthly position with 2c error

Departure from mean long. mm

2008-2009

Daily Position 30-Day Average

80"
3 L ]
60
40 2
20 1 I
1 o 10 0 5 0 5
Deviation mm Deviation mm

(b).
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(©).

Departure from mean vert. mm

SNJE - vertical averages. Standard Deviation =8(mm)

F-S
o

e daily average
* monthly position with 2c error

N
o

o

N
(=]

B
(=)

Daily Position

-20 0 20
Deviation mm

2008-2009

30-Day Average

2.5

2
1.5

1 L ]
0.5 I

0" 5 0 5

Deviation mm
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2.3.2 Repeatability of interstation baselines

Our measure of repeatability for baseline accuracy is the scatter of residuals about a
mean value from long duration (overnight) occupations (20-24 hours). In September
2008, we occupied the sites FSEL and AGLA for 22.43 hours and 21.8 hours
respectively. Relative to SNJE, these two sites represent the shortest and longest
baselines within the network at distances of 1888 m and 9656 m. The data were divided
into 20-minute-long segments, and each 20-minute segment was used to estimate a
baseline to the reference site SNJE. The standard deviations from the 22.43-hour mean
for our closest site, FSEL, are 3 mm in the horizontal and 7 mm in the vertical, while at
AGLA, the farthest station, the standard deviations relative to the 21.8 hour mean are 8
mm horizontal and 27 mm vertical. Based on these results we determine that one or
two-hour occupation times would allow us to achieve a measure of accuracy that should
be sufficient to capture any volcanic signal and possibly tectonic signal in excess of 10
mm horizontal and 30 mm vertical. We repeated this experiment in September, 2009
with 24-hour and 22.1-hour occupations and post processed using (TGO). We also
reprocessed the original 2008 data with TGO to maintain continuity and ensure that the
results were repeatable from one software package to another. The scatter about the 24-
hour mean for the 2008 and 2009 overnight occupations (figure 4 a-c) was calculated by
differencing the average position from each session from the weighted mean. From

these residuals, and using built-in MATLAB tools, we calculated the standard deviation

by

20
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3. RESULTS

3.1. Repeatability

After dividing the 2008 and 2009 20+ hour RINEX files into 20-min segments and then
processing with TGO, we found that for the shortest baseline the 20-min repeatabilities
are 4 mm and 5mm in the north, 5 mm and 6 mm in the east and 12 mm to 13 mm in the
vertical. Conversely, for our longest baseline, we were able to repeat the baseline
components to component to 7 mm and 11 mm in the north 9 mm to 10 mm in the east
and 30 mm to 34 mm in the vertical. The standard deviations at FSEL data increased in
2009 by Imm in NEV components, while at AGLA they are 4 mm, 1 mm and 4 mm
greater in the NEV than those from 2008. Having produced results from two separate
experiments which are consistent with each other we are confident that our measure of
accuracy is repeatable under 5 mm in the vertical component. Furthermore, the
repeatability of the 2008 and 2009 averages provides evidence that the above accuracies

can be achieved with a minimal observation time of 20-minutes.

We also assessed the repeatability of baselines estimated from one-hour observation
sessions, which was the typical duration of most of our differential measurements. At
FSEL standard deviations are 3 mm, 3 mm and 5 mm, while at AGLA they are 6 mm, 8
mm and 23 mm for the NEV respectively. These results further enforce our measure of
accuracy and justify our decision to observe sites for one to two hours by confirming

that positional errors do average down over longer sessions.

3.2. Scatter relative to Linear Fit

Each observation for each baseline was processed independently and further reduced

using the statistics described above. A weighted least-squares regression from built-in

MATLAB tools was used to find a best fit trend line for the difference from the

weighted mean of each observation. From the linear regression we plotted the scatter
24



about the best-fit line (figure 5). The slopes of the lines in figure 5 (a-c) show the signal
of deformation in each directional component. A notable feature appears to be an
outlier, or misfit data point with significant error, in the north and east components
(figure 5 a,b) for proximally located stations MLPA, LSPL and LAKE on 5/4/09. This
is interesting not only because of their proximity to one another but because these
stations were always observed in sequential order, when accessible, on the same day

during each campaign.

Examination of the time series reveals several possible overall trends: 1) a positive slope
in the east for CRSW, CRSE, FESP, MLPA, MTBL, LSPL and PDRF ; 2) a negative
north slope for CRSW, CRSE, FESP, TSBL, MLPA, MTBL, PDRF and LAKE suggest
that these sites are moving south and east relative to SNJE; 3) the most obvious trend is
seen in the vertical component for stations surrounding the Coatepeque caldera: MLPA,
MTBL, LSPL, PDRF and LAKE. In no other data set or cluster of stations is the
vertical signal so pronounced, however, station AGLA — the most distal site — also
exhibits a substantial vertical signal. While the overall vertical trend of the five caldera
stations is a positive slope through the entire time series, looking at the scatter of the

data points there also appears to be negative trend that occurs after July.
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3.3. Hourly vs. 20-Minute Observations

We calculated the Root Mean Square (RMS) of the best-fit residuals from the total
occupations from each station and compared it to the standard deviation about the mean
from a sample of 20-minute sessions for each station (figure 6). We observe a decrease
of accuracy as a function of both baseline length and site elevation. We make this
comparison in an effort to determine whether baseline distance or site elevation plays a
greater role in positional error. We also look for a distance or elevation threshold where
the signal error exceeds our desired accuracy. In both plots, in all three components, we
see the RMS of the total observations has a greater deviation from the mean compared to
the standard deviation from 20-minute samples. However the magnitude from the trend
lines in both horizontal components is of equivalent magnitude. We also see in the
vertical for baseline distances under 5000 m, the standard deviation from the 20-minute
sessions stays between 10 mm and 30 mm for distances under 10000 m, with the
exception of one outlier. We also see the same pattern in the vertical component of plot
(b). The 20-minute sessions exhibit a standard deviation between 10 mm and 30 mm
with the exception of one outlier. We tabulated the magnitude of the misfit from the
trend line for both RMS and standard deviations for baseline length (table 2) and site
elevation (table 3). In the table we can see that the large outlier mentioned above in both
vertical plots can be identified as station FESP. We see that in both vertical plots (a and
b) and tables 1 and 2 the 20-minute sessions do not exhibit large magnitude scatter about
the trend line and the standard deviation rarely exceeds 30 mm. This suggests to us the
cause of our vertical uncertainty is possibly related to the decorrelation of the

tropospheric zenith delay between base station and rover.
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Table 2. Misfit of the RMS and standard deviations over baseline distance.
Absolute magnitude of the data points about the trend lines from figure 6 (a). Data is arranged by greatest
distance at top and shortest distance at the bottom. The average differences in the north and east from the
RMS line (left) are slightly greater than those of the standard deviations of the 20-minute sessions. Which
suggests that both our month-to-month and 20-minute sessions are equally repeatable. The magnitude of
station FESP in the vertical component of the 20-min. plots is highlighted to show the large outlier.

Residuals differences RMS Residuals differences 20-min

Station |Distance |N E \Y N E Vv

AGLA 9656.81 4.8 2.4 0.8 1.5 0.4 3.5
ESCL 7974.08 0.6 5.4 3.4 0.2 2 1.8
MLPA 7437.29 10.2 2.4 7.7 1.5 0.5 8.2
MTBL 6581.85 3.6 2.5 8.9 3.6 2.3 6.8
LSPL 4834.81 7.2 8.2 15.3 3.1 0.4 6.2
FESP 4772.38 1.9 1.3 1.7 1.7 10.5 33.1
TSBL 4591.01 2.2 4.5 7.8 0.2 5.8 9.2
PDRF 4408.61 1.5 5.2 0.6 0.3 5 6.6
LAKE 4063.39 1.1 9.3 14.4 8.3 41 8.1
CRSW 4001.22 4.1 2.3 12 0.7 0.9 2.4
CRSE 3674.22 0.9 0.2 1.2 3.5 0.4 5.6
FSEL 1888.91 0.2 2.5 3.5 1.7 1.6 2.3
average 5323.71] 3.19167 3.85| 6.44167| 2.19167 2.825| 7.81667

Table 3. Misfit of the RMS and standard deviation over station elevation
Absolute magnitude of the data points about the trend lines from figure 6 (b). Data is arranged with
greatest elevation difference on top and lowest elevation difference on bottom. The average differences in
the north and east from the RMS line (left) are slightly greater than those of the standard deviations of the
20-minute sessions. Which suggests that both our month-to-month and 20-minute sessions are equally
repeatable. The magnitude of station FESP in the vertical component of the 20-min. plots is highlighted to
show the large outlier.

Residuals differences RMS Residuals differences 20-min

Station |A height |N E Vv N E V

LAKE 918 4.6 5.4 0.8 6.1 3.2 5.2
LSPL 891 4.5 4.8 5.1 1 1 10.4
MLPA 742 10.7 3.4 10.1 2.6 0.1 0.3
AGLA 638 1.7 1.6 11.8 1.1 1.1 14.7
CRSW 633 6 3.9 19.6 1.5 1.6 3.4
CRSE 629 3.1 1.6 7.5 4.3 1.1 7.4
MTBL 617 3.1 2.9 6.9 41 2.7 2.5
PDRF 401 1.3 4.8 1.7 0.7 5.2 9.9
ESCL 211 3.5 8.9 12.5 1.5 0.6 3.6
TSBL 210 1.2 2.4 41 1.3 5.8 14.8
FESP 68 0.1 1.9 5.7 0.5 10.7 26
FSEL 58 0.4 0.4 6.2 0.4 2.5 11.1
average 501.333 3.35 3.5] 7.66667| 2.09167| 2.96667| 9.10833

30



4611 8Y) UO UMOYS aJe () UOITRAS|S 31IS SNSIBA SIAIY PUB SUOITRIASD pJepuelS L8| 8yl U0 umoys aie ()

90UEISIP 8UI|9seq SNSIBA SIAIY pUe SUOITRIASP PJepuelS "UOITe]S oes WOoJ) SUONBAISSJO €10 JO aul| Bumii-1sag ayl Wolj sjenpisal ayl Jo SINY
8yl MOUS S3]2J19 an|g "UOIe]S Yoes WoJy s)uswbas ainuiw-0z Jo ajdwes & Jo Uesw ay) Woi) SUCITRIASP pJepuels ayl Juasaidal sajbueln pay
"yBiay pue Y16us| suljaseq sNSIaA 10448 SN "9 aunbiq

e
w IrNS wouy Jybray v @ w JrNS 03 aouejsip (&)
0001 008 009 ooy 00z co 0000L 0006 0008 000. 0009 000S O000F 000S ocouo
— w oL m
4 VAR 0z =
] ® R ; o
- 3 0¢ 3
¢ . . “0v 3 .- or 3
: s 05
0001 008 009 ooy 1114 co 00001 0006 0008 oo.oh 0009 000S oo.ov 000¢ oooNc
o
2 R g 3
»I : -y . I S o
S oL _.w e a4 . oL ...w
. ’ 5 . . 513
L] " A L]
-0¢2 (114
0001 008 009 ooy 002 oo 00001 0006 0008 000L 0009 000 O0O0OF o000¢€ ooomo
‘ 3 .. NP de 3
’ — S . A — =18 §
S . A Pll|11.1.l.|||..1.|1.ll L e S5
101 ..W ............ aen oL -.W
‘e 3 « s 3
3 Sk 3
¢ 0c . 0z

JyBiay v a)njosqe ‘SA UOlJBIASP piepue}s JrNS O} 92UB)SIp "SA UOIJRIASP piepuels

31



3.4. Tropospheric Water Vapor Delay

Using a linear carrier-code combination we have effectively eliminated the error caused
by the total electron content in the ionosphere. The delay caused by the neutral
troposphere and to a lesser degree the stratosphere, on the other hand, cannot be
eliminated as easily. Tropospheric delay is the result of refraction of the signal as it
passes through water vapor and other gas species in the lower atmosphere. During data
processing we employed the Hopfield tropospheric model to eliminate the signal bias
caused by the hydrostatic or “dry” troposphere and reduce error to sub-centimeter
accuracy (Cove et al. 2004, Satirapod and Chalermawattanachai 2005). TGO software
assumes that both base and rover antennas are sampling an equivalent column of the
troposphere and that variations in signal propagation are equal. Base-station SNJE sits
at an elevation of 1660.191 m. The elevations for FSEL and AGLA are found in table 1.
The absolute A elevation for FSEL is 57 m and 637 m A elevation for AGLA. This type
of antenna height difference can introduce a signal bias as high as 2-5 mm per 100 m of
elevation difference (Satirapod and Chalermawattanachai 2005). Assuming the
maximum bias of 5 mm per 100 m of elevation, AGLA could demonstrate 32 mm of
vertical error and FSEL would demonstrate less than 3 mm. This is in strong agreement
with the results from our repeatability experiments. Lawrence (2006) has shown that
atmospheric errors for a differential network increase over baseline length due to
“spatial decorrelation of the atmospheric delay.” We also know that variations in the
“wet” troposphere, precipitable water vapor (PWV), will have a more pronounced effect
on vertical position as the PWV is more difficult to model, especially in tropical
environments with variable topography (Mendes 1998, Satirapod and
Chalermawattanachai 2005, Collins & Langley 1997).
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Figure 9. 2009 precipitation totals, PWV and positional scatter.

The red line shows the daily variation in signal delay in millimeters propagated by the precipitable water
vapor (PWV) estimated by GIPSY through a vertical column of troposphere above the base station SNJE.
Also plotted is total monthly rainfall (black line), and total daily rainfall in the black histogram at Santa
Ana. Misfits about the best-fit of the vertical position for stations around the caldera are shown in blue
and green lines.
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Using GIPSY processing software, we were able to estimate the delay, in millimeters,
caused by the PWYV at rover stations AGLA and FSEL as well as the reference station
SNJE for the dates of the overnight occupations in 2008 and 2009 (figure 7). We can
see how the PWV not only varies through time of day, but appears very well correlated
at FSEL and SNJE and quite decorrelated at AGLA and SNJE.

While the vertical water column varies over time, the average difference between base
and rover remains fairly constant. We calculated the difference from SNJE to each rover
station and plotted the variance about the mean and the vertical scatter about the 24-hour
mean (figure 8). It should be noted that because SNJE data is collected in 24 hour files
starting at 00:00 UTC each day and are processed independently, and the rover station
data collection began at late-morning (local) and ended at late-morning the following
day, we are unable to correlate a complete 24-hour file. Figure 8 shows us the deviation
in tropospheric delay from the mean at AGLA is roughly +/- 20mm, while at FSEL the
deviation rarely exceeds +/- 5mm for only brief intervals of time. This is in agreement
with Satirapod and Chalermawattanachai (2005) and Lawrence (2006) and further
demonstrates more tropospheric induced noise at AGLA than FSEL and thus longer
baselines, or greater differences in site elevation, are more susceptible to wet,
tropospheric delay and thus greater uncertainty in positional accuracy. The correlation
coefficients between tropospheric delay and deviation of vertical position for FSEL are -
0.0065 in 2008 and -0.1245 in 2009, whereas for AGLA they are 0.6976 and 0.6123.
During the 2009 observation at FSEL the records indicate there were scattered showers
during the first several hours and cloud cover through the night. We know from direct
observation that there overcast conditions but no showers during the 2008, FSEL
occupation. FSEL and SNJE undoubtedly experienced the same climatic conditions
during the two overnight observations, which reinforces the lack of correlation between
tropospheric delay and positional error for those two sites. At AGLA we know there
was heavy cloud cover for the duration of the 2009 observation unfortunately we have
no record of the weather conditions at the base-station, but it is possible that SNJE was

experiencing different conditions due to distance and variable topography.
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There appears to be a causal correlation between seasonal changes in PWV and vertical
signal (figure 9). The rainy season in El Salvador typically begins in May and lasts
through October and often into November with the highest levels of precipitation
coming in June through September. In figure 9, the daily and monthly totals can be seen
increasing seasonally in step with the increase of PWV at SNJE. This follows closely
with the changes in vertical positions seen in the differential stations surrounding the
caldera. We must point out that the bulk of our data set begins in February and we see
consistent vertical change from the start at MLPA and PDRF followed by change at the
remaining caldera sites beginning in March which precedes the onset of the large PWV
increase. Furthermore, the stations in figure 9 begin a negative vertical trend roughly
four months before the decrease in PWV. This suggests that the observed vertical signal
is more than just an artifact of tropospheric delay.

While there is undoubtedly a correlation between tropospheric delay and vertical error,
between 10 mm and 30 mm, at the longer baselines, we are still convinced that this
dGPS technique has captured a large vertical signal — which exceeds the possible error —

at sites around the volcano and the Coatepeque Caldera.
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3.5. Evidence of Surface Deformation
We observed a significant vertical signal at stations LAKE, LSPL, MLPA, MTBL and

PDRF — around the caldera — from the initiation of data collection in February through
June after which a deflationary trend through the end of data collection in October can
be seen in the data (figure 5¢). The two end members from the caldera sites, LAKE and
MTBL exhibit a maximum and minimum vertical signal of 139 mm and 61 mm
respectively (table 4). It should also be noted that stations AGLA and ESCL, while a
considerable distance outside of the caldera, exhibit a similar vertical trend with a
magnitude of vertical inflation (99 mm and 34 mm respectively) on the same order as
those sites around the caldera. Because the large vertical signal at sites around the
caldera can be more than an order of magnitude greater than the maximum apparent
error we take this as measurable evidence that we have captured true vertical

displacement around the caldera and as well as some sites around the volcano.

The symmetry and consistency of the vertical signal at these sites, especially at sites
LAKE PDRF and MTBL is another compelling indicator that a real inflation/deflation
event was measured using dGPS. It is also interesting to note a possible connection
between magnitudes of deformation as a function of the spatial relationship relative to
Volcano Santa Ana. All above mentioned stations are situated off the flanks of the
volcano at more than 5 km from the crater and exhibit an inflationary trend of same
order of magnitude. Conversely, FSEL, CRSE, and TSBL, situated within 2 km of the
crater, show a very small magnitude negative vertical signal for the same time period.
FESP and CRSW represent an inconsistency in this trend and exhibit a small magnitude
positive vertical signal during the same time period.
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Table 4. Station velocities and observed displacements.
Station velocities and observed displacement from February 27 through June 29, 2009. Velocities north
(n), east (e) and up (u) are relative to the fixed base-station SNJE and were determined using a weighted
least-squares linear regression. Error was calculated by multiplying the weighted error by the number of
days in the observation period.

Observed Station Velocities and total vertical displacement error+/-  |# of days/

Station  [Vnmm/yr [Vemm/yr [Vumm/yr |on oe ov Av(mm)  [mm obs.

AGLA -32 -10 291 15 2 49 99 16 124/5
CRSE -37 19 8 19 26 62 3 20 121/5
CRSW -6 2 23 9 25 17 8 6 125/4
ESCL 10 45 99 39 52 55 34 19 124/5
FESP -20 9 20 27 39 58 6 19 121/5
FSEL -4 -7 -28 17 26 36 -9 12 124/5
LAKE -12 10 466 20 52 109 139 29 97/4
LSPL 25 23 277 46 45 119 92 40 122/5
MLPA 5 54 248 37 11 69 83 23 122/5
MTBL -1 25 181 16 15 40 61 14 125/5
PDRF -3 34 228 27 7 26 78 9 125/5
TSBL -26 -26 -28 19 8 45 9 15 124/5
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A linear regression for the time period July through September shows that almost all
stations exhibit a reverse in vertical direction after July (appendix E). Unfortunately,
due to seasonal agriculture, which would increase the likelihood of multipath error, the
following stations were not measured during these campaigns: MLPA in July and
August, MTBL in July, LSPL in July and September. Therefore, we are forced to make

assumptions about the observed deflationary velocities for MLPA and LSPL.

The slope of the regression line for the north and east components allowed us to
determine the horizontal velocity vectors for the time periods coinciding with the
inflation event. The horizontal vectors reveal outward movement of the stations inside
the caldera. Stations LSPL and MLPA on the north and southeast side appear to moving
northeast and southwest, while LAKE, PDRF and MTBL, located on the southwest side
of the caldera, all show south easterly horizontal trend. The horizontal vectors at PDRF

and MTBL do conform to the inferred right lateral faults seen in figure 1.
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Figure 10. Vertical velocities.
Velacities for the GPS networks during the time period of February 27 through June 29, 2009 relative to
SNJE. Error bars in grey represent 1-c error. Sites around the caldera showed a large inflationary trend

during this time period.
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Figure 11. Horizontal velocity vectors.
Velocities for the time period of February 27 through June 29, 2009 relative to SNJE. Ellipses represent
1-c error.

43



4. DISCUSSION

Unrest at calderas is often a composite of multiple causes — tectonic, magmatic and
hydrothermal - and they often exhibit subtle uplift and subsidence (Newhall and
Dzurisin 1988). Another possible source of the observed deformation is the expansion
of clay rich strata under the observed sites. There are likely some lacustrine deposits at
lower elevations near the lake, however; we consider this an unlikely scenario, as very
few expansive clays have been observed in the study area (D. Escobar, 2010 personal
communication). Furthermore, site PDRF is located on a recent lava flow (most likely
from the San Marcelino eruption in 1722) and would not likely demonstrate deformation
due to soil expansion. Figure 1 shows station locations, the mapped and inferred
regional tectonic features of that area, shallow micro-seismicity (> magnitude 3.0 and >
15km depth) and figure 12 shows the daily RSAM averages for the study period. From
the two figures we can see that very few seismic events occurred in or near the caldera,

suggesting that the observed deformation is not likely tectonic.

The regional tectonic setting, of the Santa Ana complex is in an area of graben
formation, or a pull-apart zone (Williams and Meyer-Abich 1955, Funk et al. 2009,
Burkart and Self 1985, Stoiber and Carr 1973). It is not known with certainty if the
faults identified in figure 1 are normal but it is a likely assumption. Pullinger (1998)
suggests that the NW-SE trending volcanic features are the fissure eruptions which
further imply a transtenstional, or pull apart setting. This then presents the possibility
that the base station SNJE experienced subsidence independent of, or relative to, the
other stations in the network thereby producing an artificial inflationary signal. This
scenario could explain the significant vertical signal seen at AGLA and to a lesser extent
ESCL (figure 10). If we consider that the stations with considerable inflationary signal
are situated either east (AGLA and ESCL) or west (caldera stations) of the cross-cutting
fault zone and those stations with a small negative vertical signal (TSBL, CRSE, CRSW,
FESP, FSEL) are found within the fault zone we can envision the movement relative to
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SNJE that could produce our deformation signal. Of course, this also seems unlikely as
we have demonstrated the stability of our base relative to ITRF2005 as well as the low

frequency of seismic activity within the study area.

This leaves us with three alternative possibilities: seasonal barometric pressure changes,
path delay induced error caused by the PWV or volcanic deformation. Rabbel and
Zschau (1985) have shown that a relationship between surface deformation, +/- 5 mm in
the vertical, and variations in atmospheric pressure exist. It may be possible that the
floor of the caldera is more sensitive to atmospheric pressure changes and produces
variable vertical velocities relative to sites outside the caldera. However, isolating this
possibility to the caldera would not explain the deformation seen at AGLA and ESCL
and especially PDRF. Also, the deflationary event begins before the middle of the rainy
season, which is clearly linked to the highest rainfall and PWV and would likely
correspond with the greater number of low pressure atmospheric perturbations.
Furthermore the magnitudes of deformation related to atmospheric pressure do not
correspond with the magnitude of observed deformation. The PWV could certainly be
an influential factor on the degree of vertical signal actually measured in this study.
Based on the bias estimates from Satirapod and Chalermawattanachai (2005), our sites
with the greatest antenna height differences, could exhibit up to 45mm vertical signal
error propagated by the wet zenith delay. However, as previously noted the vertical
signal does not fully move in lock step with seasonal variability of the PWV and the
deformation signal is up to an order of magnitude greater than the potential error. This

leaves us with the likelihood of a volcanic signal.
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Figure 12. Daily RSAM averages for 2009.

The shaded area is the study period February 27 — September 29. Amplitude is on the y-axis, months of
2009 are on the x-axis. RSAM is the measured seismic amplitude from a seismometer located near station
TSBL. Data provided by SNET.
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Magma influx and volatile build up would almost certainly be accompanied by surface
deformation (Van der Laat 1996, Dzurisin 2000) and it this type of behavior occurs at
many calderas during non-eruptive phases (Newhall and Dzurisin, 1988). We know
with almost absolute certainty that at one point there was a similarly sized magma body
beneath the location of the Coatepeque Caldera. The existence of domes and cones
within the caldera demonstrates that volcanic activity continued after the caldera
forming event and the current hydrothermal activity in the southwest quadrant of the
caldera confirms the presence of an existing heat source. A correlation between the
hydrothermal vents and the vertical signal should not be ruled out. It has been shown
that hydrothermal activity at Campi Flegri and at Yellowstone calderas is associated
with ground surface deformation (Battaglia 2006, Hurwitz et al. 2007, Waite and Smith
2002). We also know that as recently as 1966 volcano lzalco was extruding lava, which
clearly indicates an active magma body beneath that particular vent. Lastly, we know
that in 2005 Santa Ana produced a phreatic or phreatomagmatic eruption. Colvin (in
review) has outlined two eruption mechanism scenarios for the 2005 event at Santa Ana:
1) overpressure of the hydrothermal system caused by a crystallizing magma body, 2)
overpressure caused by a magmatic intrusion. Olmos et al (2007) observed increased
SO, emissions prior to the 2005 Santa Ana eruption, and believes it to be a combination
of volatile accumulation at shallow levels and convective circulation within the magma

conduit.

We cannot assume that a magmatic intrusion at Santa Ana volcano would have an
influence on deformation at Coatepeque caldera unless we assume that there is a shared
plumbing system or magma chamber. Carr and Pointier 1981 suggest there may be
three separate magma bodies beneath the Santa Ana complex while Halsor and Rose
(1988) postulate that closely spaced volcanoes can share a common parental magma
chamber with separate plumbing systems and point to Izalco/Santa Ana as an example.
Either stance would allow us to assume that a magma body currently exists beneath part

or all of the SAVC and may or may not have influence on the behavior the caldera.
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Obviously, a more time expansive data set is required to further investigate the true
nature of this deformation. By increasing the frequency of observations and thus
increasing the number of observations we could eliminate noise and glean clearer picture
of the true signal. However, it seems evident that this type of GPS survey can be
effectively used to measure large deformation (greater than 35mm vertical) on volcanoes
with short occupation times on sub-10km baselines. This type of study is also an
important tool to the monitoring and characterization efforts of quiescent or dormant
composite volcanoes but should require monthly or bi-monthly measurements.
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5. FUTURE WORK

The current study discusses the use of differential GPS as monitoring tool on VVolcano
Santa Ana and the Coatepeque Caldera. However, the short term of this study and the
small number of observations has not permitted us to fully realize the potential of our
GPS network. The following are suggestions to future students and scientists who are
willing and able to reoccupy our differential sites and use the GPS observations to gain

greater insight into the behavior of the Santa Ana Volcanic Complex.

1. Correlate lake level measurements with observed deformation. A study of vertical
deformation around Lake Coatepeque correlated with lake level monitoring could
provide insight into the nature of the deformation within the caldera. Is there differential

uplift from one side to the other and how is the shore line affected?

2. Correlate deformation observations with hydrothermal and gas fluctuations. This
would require frequent and long term GPS monitoring as well as DOAS, COSPEC or
remote sensing techniques that capture gas flux. We could investigate whether increases

in gas flux produce measureable deformation at sites on the volcano.

3. Three dimensional forward modeling such as Mogi. Deformation modeling provides
a unique insight into the character of the source of deformation and is an excellent

compliment to any GPS or deformation study.

4. Install a second continuous GPS station on the western flanks of the volcano. A
strategically located CGPS station would not only improve our monitoring efforts on the
volcano by reducing many baseline lengths but could also prove useful in monitoring the

regional tectonics as well as tectonic plate movements.
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6. CONCLUSIONS

During the course of this investigation we have established the achievable accuracy of
differential GPS as a function of baseline distance, determined a repeatable level of
accuracy as a function of observation time, developed an appropriate data processing
and reduction strategy and identified a major source of error. Furthermore, we believe
that we have captured a significant inflationary signal at sites around the Coatepeque

Caldera.

Repeated differential GPS surveys at the Santa Ana Volcanic Complex from September
2008 to September 2009 reveal horizontal accuracy of roughly 10mm at a 10km and
5mm at baseline lengths under 2km. The achievable vertical accuracy is 30-35mm at
10km and 12-13mm under 2km. A likely cause of error is the decorrelation of the
tropospheric delay over baseline distance caused by PWV. Based on these accuracies,
an inflationary and deflationary trend was observed at sites within the Coatepeque
Caldera from February through September 2009. This type of deformation is not
uncommon at calderas and could indicate an accumulation of volatiles and magma
convection at depth or gas-rich hydrothermal-fluid over-pressurization. Regional
tectonics may also be responsible for the vertical signal and may indicate subsidence of
the reference station relative to the differential stations. A strategically placed second
reference station on the western side of the volcano would reduce most baseline
distances to under 5km and almost guarantee sub-centimeter accuracy as well as reduce
the ambiguity related to the regional tectonics. A more time expansive data set would be
useful to determine the nature of the deformation, whether or not it is cyclical, and
potentially to infer if it is an artifact of atmospheric noise, volcanic activity, or

tectonically induced.
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This type of GPS network can serve as an effective tool at sub-tropical volcanoes to
monitor inter-eruptive activity. It may not be entirely suitable during a volcanic crisis
due the risk of operator’s presence for equipment installation and management, but it
can provide an inexpensive and accurate means to augment monitoring efforts for
agencies and researchers with limited financial resources. The data obtained from GPS
observations could be correlated with other data and modeled (e. g. with Mogi
deformation model) to infer some characteristics of the source causing the deformation.
As GPS equipment continues to become less expensive and data reduction methods
improve it is likely that more and more volcanoes will be observed using these or similar

techniques.
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APPENDIX A: NETWORK DEVELOPMENT

During 2008 we reconnoitered and installed 14 GPS benchmarks on and around the
SAVC. Two of these sites were later abandon due to poor accessibility or poor sky

view. The criteria for site selection were:
1. On the volcano close to the crater
2. Circumferentially at various levels
3. Span the fault zone
4. Cover the caldera
5. Clear sky view in 360°.
6. Elevation angle ~ 15°
7. Multi path free: absence of trees, bushes, fences or other obstacles

8. Solid ground or foundation with little obvious susceptibility to deformation

caused by soil compaction, creep or erosion.
9. Accessibility and permission.

Using a hammer-drill, we drilled holes into the solid rock, rock walls or concrete slab
and installed a custom-made steel pin and fixed it in place using epoxy anchor. The pins
are roughly 16 x 1cm and have a 0.5mm dimple or pin hole on the top. Installing these
pins flush with the host material is advantageous because they remain relatively discreet
and unobtrusive which helps prevent them from becoming a target for theft or

vandalism.
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Drilling into rock. Using a hamer drill we perforaterock to install our benchmarks pins. Photo by
author.

Anchoring the benchmark. Using Hilti epoxy we anchored the benchmark in the rock. Setting the pin
flush with the surface discourages theft and vandalism. Photo by author.
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APPENDIX B: FIELD MEASUREMENTS

Campaigns style measurements took place once a month, usually during the last week of
each month, from February 27 through September 28, 2009. Campaigns usually lasted
several days due to the remote setting of some sites and logistical issues in reaching
them. The climb up the volcano and occupation of the sites at the crater was always
done with the accompaniment of colleagues from SNET. We would then return to San
Salvador to rent a 4x4 truck to access the remaining 10 sites. Below is a typical

campaign schedule:

e Day 1. CRSE and CRSW. These are the two sites located at the crater of Santa
Ana.

e Day 2. FESP, ESCL and AGLA. These are the sites on the far side (north and
east slopes) of Santa Ana and required several hours of travel time to reach. If
weather and time permitted we would occupy MTBL and PDRF on this same

day.
e Day3. MLPA, LSPL, LAKE, FSEL, TSBL.

e Day 4 (if needed). MTBL and TSBL.

Initially we occupied all sites for 1-hour only. Starting in July we began to occupy sites
FESP, ESCL, and AGLA for two hours. As AGLA and ESCL have baseline distance
greater than 5km we knew that we should occupy them for longer duration. This should
have also been the case with MLPA and MTBL, unfortunately, due to a logistical

miscalculation the latter two sites were never measured for more than an hour.
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For all but one differential occupation we employed the Trimble 5700 dual frequency
receiver with a Zephyr Geodetic Choke Ring antenna. The exception occurred on April
30, 2009 when the two sites CRSE and CRSW were measured using a Trimble R7 dual
frequency receiver. Data was always gathered at 30-second sample rate. The receiver
was powered with either an internal battery or a 12v car battery depending on site

accessibility.

We employed a fixed elevation spike-mount tripod. From point to bottom of antenna
mount measured exactly 55cm. The tripod was designed so that precise leveling
techniques could be employed. The tripod pin was placed into the pin-hole at each
benchmark and then leveled to millimeter accuracy. These methods ensured that the
antenna was placed in the exact same position during each campaign and reduced setup
error to almost zero.

Tripod setup. A fixed elevation tripod with precise leveling can be assembled and by one person and
practically eliminates setup error. Photo by author.
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APPENDIX C: BASELINE PROCESSING

For this survey we initially tried processing baselines using Trimble GPSurvey. We

eventually switched to Trimble Geomatics Office (TGO) as it was more user-friendly

and provided more processing options. Both baseline processing programs perform the

interferometric differencing operations needed to solve the integer ambiguities, perform

network adjustments and display baseline vectors and accuracy statistics. Both software

packages also contained the Weighted Ambiguity Vector Estimator (WAVE) function.

C.1. Project Setup

The following section describes the methodology used in this study for baseline

processing with TGO.

1.

Download raw data from the receiver to a desktop computer.

Convert data into a Receiver Independent Exchange format (RINEX).

Identify and name each data file based on its site identification code (e.g. FSEL)
Store each data file in a folder for that month’s campaign.

Using TGO, develop a project template to maintain consistency with all

baselines.
Create a new project for each station.
Download precise orbits (ephemerides) for the dates of observation.

Transfer all RINEX data, .dat-files and precise ephemerides into each projects

individual “check-in” folder.

Open project and import base-station data followed by rover data (*.obs, *.met
files) for all observations at each independent station. During importation ensure
that all files have the proper name, antenna height and measurement criteria. For
this project the four letter station code was input as name. Import settings were

as follows:
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Data import settings in TGO

Name | Receiver | Antenna Measured to
height
BASE NetRS 0.00mm Bottom of antenna
mount
ROVER 5700 0.00mm | Bottom of antenna
mount

10. Import precise ephemeris data *.SP3 format.

11. Set processing style (we changed the following settings to force an L3 solution):

a. elevation mask: 15°

b. solution type: Fixed

c. Global: frequency type - L2

d. lono:

1. Ambiguity resolution pass — 10km

2. Final pass — Okm

12. Process baselines

13. Fix base station with precise coordinates in WGS84

14. Perform network adjustment

15. Review baselines.

16. Make changes and reprocess questionable baselines.

Raw GPS data, which was taken from the receivers, was first converted into a Receiver
Independent Exchange (RINEX) format. The raw data from the Trimble 5700 and the
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NetRS was downloaded in *.TOO binary format. Data was downloaded and converted

after each campaign.

For this project we used the Metric template with default systems zones and WGS 1984
datum. When each station had a project file | placed all the *.obs, *.nav, *.met, and
*.dat data from each campaign for that station into the “Check In” folder, which is found
on under the TGO program files, sub-folder “projects.” The IGS precise ephemerides in
*.5p3 format for every day of each month’s campaign plus one day before and after the
campaign’s start and finish dates began were imported to ensure that any overlap would
be covered. Precise ephemerides are usually published within two weeks after the date.

Review all processed baselines for quality. A baseline will be identified by TGO as
acceptable, flagged but acceptable, or unacceptable. TGO determines acceptable
baseline solutions based on the quality control settings within the advanced settings of
processing styles. For this study we used TGO’s default settings for dual frequency

processing.

TGO baseline criteria.
These are the default settings in TGO for passing, flagging or failing a baseline solution.

Acceptance Single Frequency Dual Frequency
Criteria Flag Fail Flag Fail

If RMS > 0.03 0.04 0.02 0.03
If Ratio < 3 1.5 3 1.5
If Reference Variance > 10 20 5 10

After running the WAVE baseline processor the baseline solution, or vector, is produced
after differencing the carrier phase observations to solve the integer ambiguity. To force
an “iono-free fixed” solution we changed the “Global” tab to L2 and in the “lono” tab

“Ambiguity resolution pass” is set to 10 km and “Final pass” is set to Okm. By applying
these settings we are forcing a linear combination of the L1 and L2 frequencies that will

eliminate the ionospheric delay and produce a fixed-integer baseline solution.
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a. RMS is the quality factor that is used to determine which solution to use in a
network adjustment. It is dependent on observation time and baseline length and is a
measure (units of cycles or meters) of the data quality. A high RMS value is a good
indicator of signal interference from the ionosphere, troposphere, multipath error, or

other EMF interference.

b. Ratio or variance ratio, when acceptable, indicates that the ambiguities have
been successfully resolved. It is the ratio of the lowest integer ambiguity solution to the

next best solution.

c. Reference variance indicates the quality of the program’s computed error
compared with the estimated (apriori) error for a baseline. High values in reference

variance indicate that the baseline data is below average.

C.2. L1 vs. lono-Free Fixed

An lonospheric free fixed solutions, “iono-free” are produced using dual frequency,
L1/L2 linear combination and can eliminate signal delay caused by the ionosphere.
Fixed solutions indicate that the integer ambiguity has been solved sufficiently. While
it is recommended to use L1-fixed solutions on baselines shorter than 50km as the iono-
free solution may not cancel the error between stations through single differencing; we
found that our baselines longer than 5km were producing “float” solutions in the L1
frequency. We therefore, set TGO to force an iono-free fixed solution for all baselines

and compared the results to the L1-float solutions.
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While the standard deviations for the L1-fixed solutions were generally better than those
of the lono-free fixed solutions, we discovered that the L3, linear combination produced

more acceptable baselines whereas, L1 produced more flagged or failed baselines.

Each data file was identified and renamed with its unique station ID during download
and conversion. The data was saved in a folder for that month’s campaign. In TGO a
project template was created that set the units and decimal places outputs as well as the

coordinate system and datum.
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lono-free fixed versus L1.

FSEL and AGLA.

This table shows the weighted standard deviations of the baseline solutions from all occupations from

Station FSEL 1.8km baseline

lono Free Fixed

North mm

East mm

Vertical mm

3.260690929

2.564616416

7.571244635

L1 Fixed

North mm

East mm

Vertical mm

2.971473542

1.33878136

4.2886436

Station AGLA 9.7km baseline

lono Free Fixed

North mm

East mm

Vertical mm

3.831989206

4.304958735

39.597684

L1 Fixed

North mm

East mm

Vertical mm

3.340486281

4.678766453

34.9417666
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C.3. Baseline Solution Improvements

During the processing of the baselines in this study we employed two primary
techniques to improve baseline solutions and remove flags. The majority of baseline
solutions were improved to the point of acceptability. If we were unsuccessful at
removing the flags the baselines were noted but not removed. While we did not
encounter any failed baselines solutions in the lono-free fixed that we were unable to
resolve there were several in the L1 solution. However, as we did not use the L1

solutions for further statistical reduction those baselines were noted but not removed.

The first technique was the most simple and often improved baselines with unacceptable
ratio or reference variance. When we encountered a poor, or flagged baseline solution
due to ratio or variance our first step was to change the elevation mask from 15° to 17°
and then reprocess the baseline. Often times that simple strategy would resolve most
baseline solutions. If improvements were made but still not acceptable, we would
change the elevation again to 20° and reprocess. We did not attempt to increase the

elevation mask beyond 20°.

The second technique is more time consuming and complicated. An evaluation of the
satellite residual plots, which are found on the baseline processing reports, show data
quality of individual satellite signals. Satellites that have been chose by the processor
for double differencing do not show residual plots in the baseline processing report. If
there are gaps in the residual plot that indicates that the satellite was used for double
differencing during that time period. Variance about the x-axis is an indication of noise

for that particular satellite. For this study we chose 0.02 meters variance as a cutoff.
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SV is the satellite vehicle. Black and white bars along the x-axis indicate time increments (10 minutes in

this example). The number at the bottom left indicates the nearest to the start of observation. The residual
plot on the top represents an almost ideal plot of the received satellite signal. The plot in the middle
exhibits an SV that doesn’t meet our acceptance criteria of 0.02 meters. The bottom plot shows the same
satellite as after removing the majority of high residuals.
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By examining the satellite residual plots we were able to determine the time when the
variance of a particular satellite was beyond our established cutoff. From here we would
return to the TGO project window and, using the timeline function, remove those
sections of satellite signal that had unacceptable residuals. Occasionally, the entire time
series for a particular satellite was outside our acceptance criteria, in which case we
would disable the entire satellite. After this we would reprocess the one particular
baseline that was problematic. We would repeat this process until we achieved an
acceptable baseline solution. Occasionally as we approached an acceptable solution; we
reached a certain threshold were any changes only made the solution’s quality
deteriorate. In this case we would go back to our last best solution and save that

baseline. If a flag still remained it was noted but not removed.
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APPENDIX D: STATISTICAL REDUCTION

After baseline processing was complete we took the 3-dimensional differential distances
— north, east and vertical (NEV) — and the standard NEV error as well as the RMS,
reference variance, ratio, and start and stop time from the baseline summaries produced
by TGO. This data was put into an excel spread sheet in order to further reduce the

positional error. Here we determined the weighted mean using

(X; /O-iz)
X — i=1

n

Z(llo'iz)

i=1

We then found the weighted standard deviation using
1
1 2 )2
s=| — X, —X)?
=

We then used built in MATLAB tools to determine a least squares linear regression for
each directional component. The slope of this line was used as the velocity vector.
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lono free fixed solution

d Morth/eN? 1/oN? d East/oN? 1/oE? d Vertfov* 1fov?
-6527932188 1562500 2115489375 1562500 -91016258.5 226757.3696
-5157883210 1234567.901 2763089184 2040816.327 -123880617.3 3086419753
-5157888025 1234567.901 1671502469 1234567.901 -29316559.53 73046.01859
-5157870247 1234567.901 1671506173 1234567.901 -100329400 250000
-5157390741 1234567.901 940226805.6 694444.4444 -64210208 160000
-6527961563 1562500 1671512222 1234567.901 -51189528.06 127551.0204
-6527951875 1562500 2115504063 1562500 -111171772.9 277008.3102
-4177875300 1000000 1353923800 1000000 -32763591.84 81632.65306
¥ dNorth/oN?> |} 1foN* SdEast/oE* y1/oE* ¥ dvert/oV* Y1/ov?
-14393253147 10625771.6 14302754091 10563964.47 -603877936.1 1.50463?.349:

East Av. M Elevation Av. M
1353.920225 -401.3425

Baseline Length Av. M |North Av. M
-4177.8847

BL std. m North std. m East std. m Elevation std. m

0.007415958 0.008041322 0.005117128 0.025314?05‘
Residuals {m) = {d_x)-xbar |

segment start time {UTC) Baseline Length North East Elevation
PDRF0552 2/24/2009 -0.006325 0.008526628 -0.005977332 -0.03?191956‘
PDRF0O811 3/22/2009 0.001475 -0.000273372 -0.005477332 -0.028691956
PDRF1235 5/3/2009 0.003375 -0.004173372 -0.002177332 0.000808044
PDRF1504 5/30/2009 -0.011625 0.010226628 0.000822668 0.026508044
PDRF1801 6/29/2009 0.005875 -0.006373372 0.007422668 0.030708044
PDRF2065 7/25/2009 0.010075 -0.010273372 0.005722668 0.018608044
PDRF2441 9/1/2009 0.003875 -0.004073372 0.003422668 0.014408044
PDRF2714 9/28/2009 -0.006725 0.009826628 0.004622668 -0.009491956

Standard Deviation of Weighted Residuals mm
MNorth East Vertical
8.058213207 5.148304156 28.08523709
Standard Deviation mm
Morth std East std Vertical std
8.041321853 5.117128101 25.31470493
Residuals {mm)
Morth {(mm] IFF East (mm) IFF Vertical {(mm) IFF
8.526028421 -5.977332474 -37.19195581]
-0.273371579 -5.477332474 -28.69195581
-4.173371579 -2.177332475 0.808044186
10.22662842 0.822667520 26.90804415
-6.373371579 7.422667526 30.70804419
-10.27337158 5.722667526 18.60804415
-4.073371579 3.422667520 1440804415
9.826628421 4.622667526 -9.491955814

Excel spreadsheet with the formula to determine the weighted mean of the positional components.
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REGRESSION PLOTS

APPENDIX E
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