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ABSTRACT 

This project addresses the potential impacts of changing climate on dry-season water 
storage and discharge from a small, mountain catchment in Tanzania.  Villagers and 
water managers around the catchment have experienced worsening water scarcity and 
attribute it to increasing population and demand, but very little has been done to 
understand the physical characteristics and hydrological behavior of the spring 
catchment.  The physical nature of the aquifer was characterized and water balance 
models were calibrated to discharge observations so as to be able to explore relative 
changes in aquifer storage resulting from climate changes.     

To characterize the shallow aquifer supplying water to the Jandu spring, water quality 
and geochemistry data were analyzed, discharge recession analysis was performed, and 
two water balance models were developed and tested.  Jandu geochemistry suggests a 
shallow, meteorically-recharged aquifer system with short circulation times.  Baseflow 
recession analysis showed that the catchment behavior could be represented by a linear 
storage model with an average recession constant of 0.151/month from 2004-2010.  Two 
modified Thornthwaite-Mather Water Balance (TMWB) models were calibrated using 
historic rainfall and discharge data and shown to reproduce dry-season flows with Nash-
Sutcliffe efficiencies between 0.86 and 0.91.   

The modified TMWB models were then used to examine the impacts of nineteen, 
perturbed climate scenarios to test the potential impacts of regional climate change on 
catchment storage during the dry season.  Forcing the models with realistic scenarios for 
average monthly temperature, annual precipitation, and seasonal rainfall distribution 
demonstrated that even small climate changes might adversely impact aquifer storage 
conditions at the onset of the dry season.  The scale of the change was dependent on the 
direction (increasing vs. decreasing) and magnitude of climate change (temperature and 
precipitation).  

This study demonstrates that small, mountain aquifer characterization is possible using 
simple water quality parameters, recession analysis can be integrated into modeling 
aquifer storage parameters, and water balance models can accurately reproduce dry-
season discharges and might be useful tools to assess climate change impacts.  However, 
uncertainty in current climate projections and lack of data for testing the predictive 
capabilities of the model beyond the present data set, make the forecasts of changes in 
discharge also uncertain.  The hydrologic tools used herein offer promise for future 
research in understanding small, shallow, mountainous aquifers and could potentially be 
developed and used by water resource professionals to assess climatic influences on local 
hydrologic systems.
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1 INTRODUCTION 

The Intergovernmental Panel on Climate Change (IPCC) states that the availability and 
distribution of freshwater resources will be greatly affected by climate change and the 
vulnerability to water scarcity that populations currently experience could increase (Parry 
2007).  Studies relating climate change and hydrology are becoming prevalent (see 
Leavesley 1994; Xu 1999), but few published studies focus on changes in African 
groundwater and the populations dependent upon it.  The IPCC calls for expanded 
research on local impacts of climate change and finer-resolution assessments of changes 
in groundwater systems. 

As a Peace Corps volunteer in Tanzania (2008-2010), I lived in a rural village that is 
dependent on discharge from a single spring for their domestic water supply.  Personal 
interviews revealed villagers’ perceptions were that dry-season water scarcity, 
experienced each year since around 2000, is worsening, and this is primarily caused by 
increased population and irrigation near the distribution point.  An NGO is currently 
working to increase storage capacity and manage demand to alleviate the situation.  This 
should ease water scarcity in the near future, but it does not account for the impacts 
climate change could have on water supply.  According to the current climate data and 
analysis, East Africa will experience changes (the magnitude of which is uncertain) in 
regional climate (Parry 2007; Williams and Funk 2011). 

Climate change continues, and with it our ability to predict changes is refined, but there is 
a need to develop simple tools that empower water resource managers to use the 
predictions to better understand and manage water sources.  Complex models that 
generate outputs on continental scales are of little use for decision makers who are trying 
to allocate resources to alleviate local water scarcity.  Rather, decision makers require 
readily applicable tools that can use climate predictions to accurately forecast local 
hydrologic changes.   

Water balance models have been used to accurately simulate historical basin discharges 
(e.g., Xu and Singh 1998), forecast changes in discharges based on climate changes (e.g., 
Gleick 1987; Arnell 1992; Jiang et al. 2007), and are relatively straightforward to apply.  
Thus, water balance models could be an empowering tool for water resource managers to 
prepare for and mitigate the effects of regional climate change on their local hydrologic 
resources. 

This report offers insight into how such a tool is created.  The context for this 
development is a general physical characterization of a small catchment on Mt. Hanang, 
Tanzania and a method of incorporating discharge data into water balance models to 
improve model accuracy.  Two water balance models are developed, calibrated, and then 
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forced with perturbed climate scenarios to assess relative future changes in dry-season 
catchment storage.  

1.1 Literature Review 

This review briefly describes springs and groundwater research in Tanzania, water 
balance models, recession analysis, and East-African climate patterns. 

1.1.1 Groundwater & Springs 
Precipitation infiltrating the earth as groundwater can encounter many heterogeneous 
layers of rock and soil.  Porous and permeable layers that can store and transmit large 
volumes of groundwater are called aquifers.  Springs occur where groundwater moving 
through an aquifer intersects the land surface due to changes in geology and/or 
topography, and groundwater emerges from a discrete source or ‘seeps’ (Bryan 1919) as 
shown in Figure 1.1.  

Springs are characterized by many criteria, but the steep, mountainous site for this study 
is thought to be dominated by three types: fracture, contact, and depression springs.  
Fracture springs occur where fracture zones transmit water to the surface at some lower 

Figure 1.1  Conceptual diagram of springs 
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elevation.  Fractures can hold large amounts of water and transmit it quickly, so fracture 
springs can have high discharges, but only produce water for a relatively short time.  
Contact springs are caused when an aquifer is underlain by an impermeable layer and 
groundwater is forced to move laterally until it intersects the land surface.  Depression 
springs occur where the groundwater table meets the surface at a topographic low point 
and water is allowed to flow more easily along the surface (Fetter 2001).  More 
information about spring characteristics and types is described in Bryan (1919). 

Groundwater that emerges as a spring carries chemical and thermal signatures that 
provide insights about the aquifer(s) through which it passed, the altitude(s) at which it 
was recharged, and the depth(s) of and time spent in circulation (Manga 2001).  
Properties such as pH, electrical conductivity (EC), temperature, and isotopic abundance 
are routinely used to characterize the flow history and chemical evolution of spring water.  
Furthermore, the size and rate of spring discharge also indirectly describe local geology 
and aquifer recharge characteristics.  Studying springs offers insights about both local 
and regional geologic activity, aquifer properties, and the processes and environment that 
the water experienced from recharge to discharge. 

Groundwater research in Tanzania has primarily examined the characteristics of regional 
flow systems (Mul et al. 2007; Mckenzie et al. 2010) and the potential for groundwater 
resource development (JICA 2008).  Analyzing the geochemistry and isotopes of water 
on Mt. Kilimanjaro, Mckenzie et al. (2010) found evidence for multiple flow systems 
with varying water qualities and ages.  Mul et al. (2007), using chemical analysis and 
geological mapping, characterized the regional groundwater system in a mountain range 
and found evidence for two main components: a regional, tectonically controlled system, 
and a high-altitude, shallow system concentrated in debris-flow deposits.  The Japan 
International Cooperation Agency (JICA) conducted an evaluation of the groundwater 
resources and potential for development in the Internal Drainage Basin, an area that spans 
from Arusha to Dodoma and covers 16% of Tanzania.  JICA (2008) compiled 
meteorological, geological and hydrological data from various sources and concluded 
that areas along the Rift Valley and the adjacent volcanic mountains could be productive 
groundwater systems.   

1.1.2 Water Balance Models 
Water balances, which calculate catchment inputs and outputs, are another way of 
understanding the hydrologic setting and functioning of spring systems, as well as 
analyzing the sustainability of groundwater (Dingman 2002).  This section outlines water 
balance approaches for characterizing near-surface hydrology and its applications to 
climate-change research.   
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The basic water balance equation (Dingman 2002) for a catchment without surface water 
inflows and no water abstractions nor diversions is:  

 ( )in outP G Q ET G S+ − + + = ∆  (1) 

Where the variables represent input/output rates (volumetric fluxes) as volume of water 
per unit system area per unit time: 

P = precipitation (L t-1) 

Gin = groundwater inflow (L t-1) 

Q = surface-water runoff (L t-1) 

ET = evapotranspiration (L t-1) 

Gout = groundwater outflow (L t-1) 

 ΔS = change in storage (L t-1) 

Estimating the values for these parameters can be difficult, especially for incoming and 
outgoing fluxes of groundwater.  The boundaries of the water budget are usually 
delineated to deliberately coincide with the watershed boundaries and surface-water and 
groundwater inflows are assumed to be zero.  In addition, groundwater discharges are 
often thought to be small and are difficult to quantify, so they are commonly assumed to 
be negligible.  The equation is then simplified as: 

 Q P ET S= − −∆  (2) 

When solved for consecutive periods of time, or time steps, it is deemed a water balance 
model. 

Thornthwaite (1948) and Thornthwaite and Mather (1955) created some of the first water 
balance models, and since then many variations reflecting different applications, 
structures, and spatial and temporal scales have been developed (Leavesley 1994).  The 
literature abounds with variations in modeling theory and techniques, and the reader is 
referred to Beven (2006) and Xu and Singh (1998) for more thorough reviews.  In the 
Methods section of this report, the original Thornthwaite-Mather water balance model 
(TMWB) is reviewed.  Here, the modified versions that were developed for climate 
impact studies (Alley 1984; Gleick 1987) and those actually applied to forecasting 
impacts of climate change on hydrological systems (Arnell 1992; Jiang et al. 2007) are 
reviewed.  
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Alley (1984) notes several issues with the TMWB model, including how it simulates 
overland flow, responds to temporal rainfall distribution, estimates water surpluses, and 
produces runoff in dry months.  To account for runoff events during high-intensity 
storms, a parameter is added which immediately routes a portion of precipitation to 
runoff.  If precipitation is disproportionally high at the end of the month, a modeler can 
adjust rainfall distributions so runoff is accurately generated in the present and next 
month.  Alley (1984) incorporates a fraction, λ, which varies from catchment to 
catchment and represents the amount of monthly discharge carried over to the next month 
as surplus.  This parameter is included because it ameliorates the TMWB model’s 
inability to generate runoff unless soil moisture exceeds the field capacity.  In Alley’s 
simulations the TMWB model lacked the ability to simulate runoff in basins with 
consecutive months of soil moisture deficit, and while it reproduced annual flows well, 
monthly discharges were less accurate.  Errors during the calibration period were found 
to be nearly equal to the errors during the prediction period.  

Gleick (1987) modeled the Sacramento River Basin with a modified TMWB model that 
incorporates a storm runoff fraction and a watershed lag coefficient.  The runoff fraction 
attempts to reproduce runoff that never enters soil moisture storage.  Its value is a 
specified percentage of total precipitation: 10% in the first months of the rainy season as 
soil moisture is initially recharging.  After two months, soil moisture is assumed to have 
significantly recharged, then the fraction increases to 30%.  The basin is very large 
(41,000 km2), so the watershed lag function is added to account for delays between 
rainfall and runoff.  Gleick (1987) uses a maximum soil moisture capacity value of 150 
mm based on local estimates.  The model reproduced monthly flows to within 3-4% of 
observed values from a 50-year data set.   

Arnell (1992) incorporates a runoff fraction for initial precipitation and λ in a modified 
TMWB model to study 15 large, humid temperate catchments.  Seven arbitrarily selected 
scenarios were tested in which precipitation totals were incrementally increased and the 
seasonal distributions altered.  A strong correlation was observed between the overall 
impact of changing precipitation on discharge and the seasonal distribution of that 
precipitation. For example, when more precipitation occurs in winter when 
evapotranspiration is low, more recharge enters soil moisture storage than if that 
precipitation increase occurs during high ET periods.  When precipitation increased 10%, 
total discharge increased from 13-30%, and increases were higher still when precipitation 
increases were concentrated in the winter.  Arnell (1992) stresses two shortcomings of the 
methodology: 1) the inherent assumption that models calibrated to historic data will 
remain accurate under future climate conditions, and 2) a limitation of using historic 
precipitation records is that previous extreme events maintain their strong influence in the 
future scenarios.  
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Jiang et al. (2007) used the TMWB model to reproduce historical discharges from a large 
basin with 90% accuracy.  The model was forced with arbitrary climate scenarios 
(changes in precipitation and temperature), and the results were compared to outputs 
from five other hydrologic models.  The TMWB model and two others produced similar 
results that were always the most extreme of the models.  If temperature increased 1 °C 
and precipitation decreased 10% and 20%, mean annual flow decreased 20% and 40%, 
respectively.  An increase of 4 °C concomitant with precipitation decreases of 10% and 
20% lead to decreases in mean annual discharges of 32% and 50%, respectively.  Even 
with no changes in precipitation, discharges decreased 15% for a 4 °C increase.  Changes 
in runoff were found to be more sensitive to changes in precipitation than temperature.  
Jiang et al. (2007) concluded that different models will produce different results when 
forced with perturbed climate scenarios, and warn that results from a single model cannot 
be thought of as absolutely accurate representations.  

The TMWB was chosen for this research because it provides accurate estimations of 
surface runoff using only precipitation and temperature data.  It is a simple model with 
only two, easily calibrated parameters, and it has already been established as a tool for 
estimating the hydrological effects of climate change. 

1.1.3 Recession Analysis 
Analyzing a spring hydrograph, a plot of discharge versus time, is often done to 
determine aquifer properties and behavior.  Specifically, the rate of decrease, or 
recession, in discharge after a peak represents a summation of multiple catchment runoff 
and storage components: overland flow, interflow and baseflow (Smakhtin 2001) (see 
Figure 1.2).  After a given period of time (typically hours or days), depending on the 
catchment area and drainage network, it is assumed that the faster flow components of 
overland and interflow have completely drained and only baseflow from aquifer storage 
remains.  Once incidences of baseflow are confidently isolated in a hydrograph, recession 
analysis examines the rate of discharge reduction to make inferences about the physical 
characteristics of the aquifer and its storage properties.   

Boussinesq (1904) is credited with the first mathematical solutions to the baseflow 
recession problem.  In their extensive reviews of baseflow recession analysis, Hall (1968) 
and Tallaksen (1995) examine the various forms that Boussinesq equations may take.  
The linear solution, which is based on Dupuit’s assumptions1

                                                 
1 The Dupuit (1863) assumption simplified the analysis of aquifer drainage by assuming that groundwater 
only moves horizontally in an aquifer.  

 and assumes no capillary  
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Figure 1.2  Spring hydrograph example 

action, is the most common and simplest formulation to use for recession analysis, so it is 
the only solution described here (Hall 1968): 

 0
kt

tQ Q e−=  (3) 

where  

Qt = discharge at time t (m3 t-1) 

Q0 = initial (t=0) discharge (m3 t-1) 

k = recession constant (t-1) 

Boussinesq’s equations are for unconfined aquifers under ideal conditions, which assume 
no recharge, evapotranspiration, nor leakage.  This solution will only be valid for a 
system where the log-transformed discharge plots as a straight line against time (Hall 
1968).  The recession constant relates to a linear storage-outflow function as follows 
(Tallaksen 1995):  

 Q kS=  (4) 

where  

 S = catchment storage (m3) 

Using these equations to define aquifer characteristics implies that there is only one 
storage reservoir contributing to flow, but this is probably rarely the case (Tallaksen 
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1995).  While some research has shown that some reservoirs behave nonlinearly 
(Wittenberg 1999), Brandes et al. (2005) noted that on time scales longer than one week, 
reservoirs often behave linearly and are thus accurately represented with Eqs. (3) and (4).  

Many authors have used recession analysis to achieve a variety of aims.  Bako and 
Owoade (1988) were able to accurately forecast low flows for temperate catchments.  
Moore (1992) used recession analysis to estimate aquifer properties such as 
transmissivity (hydraulic conductivity multiplied by aquifer thickness) and specific yield.  
Wittenberg and Sivapalan (1999) were able to estimate all the parameters for a catchment 
water balance, and Lamb and Beven (1997) showed that recession analysis could be used 
to conceptualize catchment storage parameters and to calibrate hydrological models. 

The applicability of recession constants to catchments of varying geologic structure has 
also been explored.  Zecharias and Brutsaert (1988) found that recession constants in the 
Appalachian Mountains were well correlated to catchment geomorphic features.  
Mendoza et al. (2003) successfully calculated transmissivity in a mountainous, fractured, 
semi-arid basin with a version of Eq. (3).  Brandes et al. (2005) performed recession 
analysis for 24 small, morphologically diverse basins in Pennsylvania and found that 
recession constants were strongly correlated to drainage density and soil groups.  In 
general, the steeper the slope and the greater the drainage density of a catchment, the 
higher the recession constant will be (Zecharias and Brutsaert 1988; Brandes et al. 2005). 

1.1.4 East Africa Climate: Past and Future 
Analysis of historic trends in East African precipitation patterns demonstrate a largely 
stable system that has experienced moderately increased precipitation from the 1970s 
through 2000 (Hulme et al. 2001; Nicholson 2001).  Recent research correlates changes 
in regional precipitation to changes in Pacific and Indian Ocean sea-surface temperatures 
(SST) such as El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) 
anomalies (Paeth and Hense 2006; Abram et al. 2007).  ENSO and positive IOD events 
tend to increase precipitation in the early parts of the rainy season (October to January) 
(Schreck and Semazzi 2004; Ummenhofer et al. 2010) but show weaker influences later 
in the dry season (Ropelewski and Halpert 1996).  

The IPCC consolidated the limited research available about East African climate change 
and postulates a 7% net increase in precipitation occurring during December to February 
and a regional temperature increase of 3.7 °C by 2080 for moderate emissions scenarios.  
The panel notes the difficulty in simulating the contributing variables, and states that 
precipitation predictions are far more uncertain than temperature (Parry 2007).  

After the IPCC report was published, Conway et al. (2007) compared six general 
circulation models (GCM), based on temperature increases of 3.3 °C, that were coupled 
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to simulations of Indian Ocean SST anomalies.  The results exemplify the continued 
uncertainty of global climate predictions: two models showed increased precipitation, 
two decreased, and two produced stable regimes.  All of the increases and decreases were 
within 5-10% of historical mean annual rainfall.  Williams and Funk (2011) found that 
when a change in regional Walker circulation patterns related to warming Indian Ocean 
SST is incorporated in GCMs, precipitation increases over the oceans but decreases over 
East Africa from March to June.  The simulations suggest that East African climate will 
become drier as temperature increases but do not offer a single, quantified prediction. 

1.2 Objectives 

Livelihoods are greatly impacted by water scarcity, especially the health and well-being 
of women and children, and the following objectives are motivated by the need to address 
that water scarcity now and in the future.  This research aims to help ameliorate local 
water scarcity by characterizing the aquifer and modeling the catchment.   

Objective 1:  Conceptually characterize the aquifer system using basic water quality 
parameters and recession analysis. 

A basic understanding of the functionality of an aquifer, the origin of its water, and its 
recharge characteristics is necessary for water resource managers to appropriately protect 
and manage the supply.  This information can then be used to supplement traditional 
techniques to conceptualize and parameterize physically-based models of the catchment. 

Objective 2:  Create a water balance model that is conceptually sound and 
accurately reproduces the mean dry-season discharge of the project catchment. 

Parametrically simple water balance models are not often utilized in small catchments or 
parameterized with supplementary physical data.  The primary goal for this work is to 
demonstrate that such models can be applied at small scales and that parameterization is 
assisted by using geochemical data and recession analysis.   

Objective 3:  Use the water balance model to assess the relative effects of changes in 
temperature and precipitation on aquifer storage, offering some insight about how 
future climate conditions may impact spring flows. 

The ability to forecast changes in future groundwater supply from changes in climate has 
the potential to help water resource planners better allocate water resource development 
funds.  Water balance models are tools that, as climate predictions become more refined, 
could easily be used by managers in developing nations to regularly reevaluate 
community water supplies.  If a catchment is predicted to be significantly impacted by 
changing climate, development and assistance funds could be used to develop new 
sources or channeled to those affected before water scarcity occurs. 



 

 10   
 

2 PROJECT SITE (S 4°25’ E 35°20’) 

2.1 Geography & Geology  

Mt. Hanang (elevation 3,418 m) is located at the southernmost tip of the eastern branch 
of the Great Rift Valley in Hanang District, Manyara region, Tanzania (see Figure 2.1) 
(Greenway 1955).  The semi-arid climate is characterized by a highly variable rainy 
season from November through May, with an average rainfall of 600-900 mm and an 
average evapotranspiration of 2000 mm (JICA 2008).  Precipitation originates from 
Northeasterly winds and the Eastern slopes have considerably more vegetation and water 
availability than the Western side.  The Mt. Hanang Forest Reserve was established in 
1984 to protect mountain water sources from human encroachment, and this theoretically 
limits cultivation and logging to elevations below 2000 m (see Figure 2.2). 

 

Figure 2.1  Map of Tanzania (Courtesy of the University of Texas Libraries, The 
University of Texas at Austin, see Appendix 8.1 for usage information) 
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Mt. Hanang is an extinct stratovolcano, thought to have last erupted during the 
Pleistocene (Dawson 2008).  The core of Hanang is composed of nephelinitic tuffs and 
agglomerates, whereas the slopes are characterized by nephelinitic lavas and carbonatitic 
tuffs (Dawson 2008) (see Figure 2.3).  The body of the mountain is defined by a large, 
south-sloping valley, hypothesized to be the remnants of a crater collapse (Thomas 1966).  
The surrounding red clay and sandy soils are mostly weathered material from these 
formations (Thomas 1966).  Steep ravines carve Hanang’s circumference, and Figure 2.2 
is a photograph from a ravine that shows lithographic units that exhibit variable 
thicknesses and fracturing. 

2.2 People 

Census data from 2002 estimates the Hanang District population is 225,000 and growing 
annually at a rate of 4%.  The villages surrounding the mountain are inhabited by two 
tribal groups: the agricultural Iraqq and pastoralist Barabaig.  Historically the area was 
dominated by cattle-raising, semi-nomadic Barabaig, but as fertile lands to the north 
became overpopulated, the Iraqq migrated to Hanang and began cultivating its fertile 
soils.  Both tribes now practice a balanced agro-pastoralism that is animal-powered and 
focuses on maize and bean production.  Some Barabaig have been reluctant, though, to 
adopt this sedentary life, and still migrate seasonally in search of scarce water and 
pasture. 

Figure 2.2  Map of the Hanang district 
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Figure 2.3  Hanang geologic map (Courtesy of the Geological Survey of Tanzania, see 
Appendix 8.2 for usage information) 

2.3 Hydrology 

Hanang District lies in the Bahi Sub-Basin in Tanzania’s Internal Drainage Basin (IDB).  
In their assessment of groundwater resources in the IDB, JICA (2008) estimated the sub-
basin area as 26,500 km2.  The Northern boundary of Bahi Sub-Basin is defined by the 
rift valley wall, which, after being uplifted some 500 m, created depressions where 
seasonal salt lakes develop.  Infiltration rates are near zero for the IDB due to low annual 
precipitation and high potential evapotranspiration.  Rainy season runoff in the sub-basin 
averages only 2-11% of precipitation (JICA 2008). Mt. Hanang is only briefly mentioned 
in the JICA report, and although deemed an unimportant site for development of 
groundwater resources (i.e., wells), its many springs and streams are the only source of 
domestic freshwater for almost half the residents of Hanang District. 

The Tanzania Ministry of Water conducted an inventory of local water supplies (titled 
Arusha Region Water Master Plan or AWMP 2000) and concluded that within the forest 
area of Mt. Hanang there are ten significant springs and spring-dominated streams, and 
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many others below the forest boundary (see Figure 2.4).  Personal observations suggest 
that most of the springs are contact and depression springs caused by loose deposits on 
Hanang’s steep slopes, the heavily-fractured volcanic core, and the heterogeneous 
permeability of its stratigraphic profile.  Two main drainage components were identified: 
low-discharge, gravitational seepage from saturated slopes and high-discharge 
transmission through fractured volcanic rocks.  

 

 

 

Figure 2.4  Mt. Hanang contour map, spring locations, and Jandu catchment outline 
(Courtesy of the U.S. Geological Survey, 2011, see Appendix 8.3 for usage information)  
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Most springs were sampled by the author and found to be fresh with pH ranges from 7.1 
to 8.5 and electrical conductivities between 116 and 396 µS.  All springs and streams are 
captured with concrete spring boxes and gravity-fed to surrounding villages, supplying a 
total of about 100,000 people with domestic freshwater (AWMP 2000).  Himet stream, 
which drains the central crater, is the most productive with an average discharge of 2000 
m3d-1 and supplies water to 22,000 residents in Katesh Town.  AWMP (2000) notes that 
Jandu stream, the second most productive stream on the mountain, is the only one with 
long-term, continuous discharge records.  

2.4 Jandu Stream 

Jandu stream flows year round from a small catchment on the Northwest slope of Mt. 
Hanang (see Figure 2.5).  Assuming that spring recharge zone boundaries coincide with 
topographic boundaries, ArcGIS9.2 was used to calculate the catchment area and gave a 
value of 2.03 km2 using an ASTER digital elevation model (30 m resolution).   

The ravine in which Jandu flows is steep, and the thick vegetation repels efforts to enter 
the watershed area, especially during the wet season.  Vegetation in the catchment valley 
is composed of sparse, large hardwoods and dense thickets, and upslope it transitions to 
Acacia scrubland.  The entire watershed is within the Hanang Forest Reserve, and 
although instances of illegal logging were observed, the catchment shows minimal 
impacts from human development.  

Field investigations of the lower-catchment area revealed numerous small streams 
coalescing from seeps all along the ravine.  It is hypothesized that further up the 
catchment, there are areas of fractured rock that contribute larger water volumes to these 
streams near their headwaters.  This hypothesis stems from two pieces of evidence: 1) 
Some water at other Hanang streams, which the author was able to observe near the 
source, emerges from large fissures and fractures, often at the base of a large rock face, 
and 2) Jandu catchment has multiple waterfalls at higher elevations, along open rock 
faces, that were observed draining water during the wet season and then ceasing in the 
dry season.  

In 1989, a Canadian organization developed a concrete reservoir and gravity distribution 
system that transports water from Jandu stream to seven farms above the rift valley wall.  
Pictured in Figure 2.6, the reservoir (S 4° 25’ 23”, E 35° 22’ 25”, 2050 mamsl) 
incorporates a v-notch weir, a slotted-intake pipe, and a 150 m3 storage tank.  AWMP 
(2000) states that the system capacity is 847 m3d-1 and serves an estimated population of 
4,000.  The system captures most catchment runoff, but the intake pipe clogs with 
organic debris, so a full-time maintenance manager cleans the intake and records daily 
weir levels.  These records are the basis for the analysis in this report. 



 

 15   
 

 

 

Figure 2.6  Jandu reservoir and weir.  This photo was taken during the wet season. 
 

 

 

 

Figure 2.5  Jandu catchment area seen from caretaker's home 
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3 METHODS 

3.1 Field Data Collection  

Collected field data includes basic water quality parameters, water samples for isotope 
and geochemical analysis, historic discharge and precipitation measurements, and 
personal interviews.  Basic water quality parameters of pH, electrical conductivity (EC), 
and temperature were measured monthly from February to September 2010 with a Hanna 
Instruments™ 98129 Combo Meter (Woonsocket, RI).  Precisions are within pH ±0.05, 
temperature ±0.5°C, and EC ±2% F.S.     

Spring water samples collected in May and September 2010 were analyzed in November 
2010 by the Michigan Department of Community Health (Houghton, MI) for alkalinity 
and hardness and some anions and cations (Cl-, F-, Na+, SO4 

2-).  In March, May, and 
September 2010, spring samples were collected following Kendall and McDonnell 
(1998) for isotope analysis. In December 2010 the samples were analyzed for 2H and 18O 
isotope compositions by the Department of Earth and Space Sciences at the University of 
Washington (Seattle, WA) using a Picarro L1102-i Cavity Ringdown Laser (Sunnyvale, 
CA).  Isotope data and discussion is found in Appendix 8.4 and is not mentioned further 
in the report. 

Figure 3.1  Field data tools 
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Jandu stage-height measurements at the v-notch weir were recorded each morning by the 
maintenance manager, and records from 2004-2010 were copied from his notebook.  
Stage-height measurements (cm) are converted to flow (discharge) in liters per second 
(Lps) using the stage-discharge equation given by AWMP (2000):  

 2.51.382Q h=  (5) 

where:  

 
Q = discharge (m3 s-1) 

h = stage height (cm) 

Katesh precipitation data is from the Department of Agriculture in Katesh (S 4°31’5”, E 
35°22’36”) where the station elevation is 1721 m.  Daily records were available from 
2007 to 2010 and monthly records from 1985-2010.  The 2003 records were absent.  The 
same data was found in AWMP (2000) but with some discrepancies, so the Department 
of Agriculture records are used in this research  

Semi-structured, personal interviews were conducted in June 2010 under Michigan 
Technological University IRB Approval M0570.  Questions concerned water 
consumption, the current state of water infrastructure, a current project to improve the 
water distribution system, and opinions on paying for water.  The data is not discussed 
further, but helped the author to better understand local water scarcity and its causes.   

3.2 Recession Analysis 

The recession curve of a hydrograph represents a continuum of discharge components: 
surface runoff, interflow, and baseflow.  By splitting the discharge record into two 
periods, one in which recharge occurs (wet season) and one with negligible recharge (dry 
season), the baseflow component is isolated, and decreases in discharge over time 
represent groundwater draining from aquifer storage. 

Daily discharge measurements from 2004 to 2010 were aggregated to monthly 
discharges, and the logarithm of discharge plotted as a function of time in Microsoft 
Excel™.  An exponential trend line was fit to the data, and the average recession constant 
(as given in Eq. 3) was derived from the trend line equation (see Figure 12).  This is an 
average recession constant for all years, but was found to be identical when each dry 
season was computed individually and averaged. 
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Figure 3.2  Graph of baseflow recession curve and fitted trend line 

3.3 Thornthwaite-Mather Water Balance 

The Thornthwaite-Mather Water Balance (TMWB) is a comprehensive water balance 
model for the rootzone of a homogenous catchment.  This research applies a version of 
the TMWB, adapted from Dingman (2002), that uses the Hamon method to determine 
potential evapotranspiration.  Appendix 8.5 outlines the governing equations.  This 
section describes the primary logic conceptually. 

The TMWB requires inputs of precipitation (P), temperature, latitude, and rootzone 
thickness and field capacity.  The day length (based on latitude and month) and 
temperature are used to estimate monthly potential evapotranspiration (PET).  Actual 
evapotranspiration (ET) will equal PET if sufficient water is available from P and soil 
moisture, otherwise the Hamon method is used to estimate ET from PET.   When P 
exceeds PET, water enters soil moisture storage.  Once the field capacity of the soil is 
exceeded, the excess becomes runoff/recharge (see Figure 3.3).  The water remaining in 
soil moisture storage at the end of the month carries over to the next month.  

The soil parameters are rootzone thickness and soil field capacity, which are present in 
the model only as a product and can thus be calibrated as a single entity.  Rootzone 
thickness reflects the average depth of vegetation roots, and corresponds to the effective 
depth from which ET occurs.  Soil field capacity, related to porosity and soil-water 
tension, is defined as “the water content below which further decrease occurs at a 
‘negligible’ rate” (p235, Dingman, 2002). These parameters are multiplied and lumped 
together to estimate a maximum soil moisture storage capacity, henceforth referred to as 
TMWB soilmax.  This becomes the total soil moisture storage volume of the system.  
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Figure 3.3  Thornthwaite-Mather model (TMWB) conceptualization.  Note that runoff is 
only produced when soil moisture storage exceeds capacity. 

While the TMWB provides estimates of evapotranspiration, the inputs and outputs of 
each month must balance.  The runoff of excess precipitation is treated as immediate and 
does not allow the precipitation in a given month to contribute to discharge in subsequent 
months, essentially ignoring any discharge from aquifer storage.  Hence, there is no 
mechanism to generate runoff in months without precipitation.  The Jandu catchment has 
stream flow during the dry season, so two alternative models were developed to address 
the lack of storage.   

3.3.1 Model 1 

An aquifer storage component was first added to the TMWB model to simulate 
catchment interflow and baseflow.  All of the TMWB-estimated runoff is routed to 
aquifer storage, which drains according to a single baseflow-recession-constant parameter 
(α).  There is no maximum capacity for aquifer storage and it is not affected by 
evapotranspiration.  This function allows temporally variable drainage of soil moisture, 
but wet-season flows are not well represented and the initial volume of water in storage is 
exaggerated.   

Improved simulation of wet-season flows and water storage was obtained by 
incorporating a wet-season, rainfall-runoff component that more effectively generates 
rapid runoff, which is observed during rains (see Figure 3.4).  The ‘runoff constant’ 
function (RC) is calculated for each year as a percentage of total annual precipitation, and 
all TMWB runoff is routed through this function before entering aquifer storage.  This is 
an appropriate model addition because the annual wet-season precipitation and mean wet-
season discharge at Jandu are minimally correlated (r2=0.54).  The RC is only active in 
the wet season and stipulates that TMWB runoff, less than or equal to the computed  
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Figure 3.4  Model 1 conceptualization (parameters are in red)  

yearly constant, will instantly runoff rather than enter aquifer storage.  Any TMWB 
runoff in excess of that value is then routed to aquifer storage. 

The equations, after TMWB runoff is generated, begin with the runoff constant function 
as follows: 

 1 1 1If  R P RC, then Q = R≤   (6) 

 1 1 1 1 2If  R > P RC, then Q = P RC, R - Q = R   (7) 

Any excess runoff then recharges the aquifer, accumulating with the previous month’s 
final storage: 

 I 2 F(t-1)S = R + S  (8) 

The aquifer storage then drains as a function of the base flow recession constant: 

 I 2S k = Q  (9) 

with the remainder being the initial aquifer storage for the next month: 

 I 2 FS - Q = S  (10) 

The sum of immediate discharge and baseflow recession is total discharge: 

 1 2 TQ +Q = Q  (11) 

where: 
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R1 = Thornthwaite-Mather runoff (mm) 

P = Annual precipitation (mm) 

RC = Runoff constant (%) 

Q1 = Instant discharge (mm) 

R2 = Aquifer recharge (mm) 

SI = Initial aquifer storage (mm) 

SF = Final aquifer storage (mm) 

k = Baseflow recession constant (1/mo) 

Q2 = Baseflow discharge (mm) 

QT = Total discharge (mm) 

Model 1 has two parameters to calibrate, the TMWB soilmax and k.  The RC function is 
constant is discussed further in Chapter 5. 

3.3.2 Model 2 
Figure 3.5 illustrates a second model that was constructed based on a different 
conceptualization of the catchment system.  Removing the RC function, all TMWB 
runoff is routed to aquifer storage.  Aquifer storage is allowed to fill until a ‘maximum’ is 
reached, as determined by the Smax parameter, and then the excess runs off.  Aquifer 
storage is again drained by baseflow at a rate determined by k.   

The equations for Model 2, after initial TMWB runoff, are as follows: 

 ( )F t-1 1 IS + R = S  (12) 

When summed, if TMWB runoff and previous aquifer storage exceeds total aquifer 
storage capacity then the difference becomes discharge: 

 ,I max I max 1IF S > S then S – S = Q  (13) 

The remaining storage, which if the above condition is true, will be equal to Smax and is 
then drained by the recession constant: 

 J 2S k = Q  (14) 
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Figure 3.5  Model 2 conceptualization (parameters are in red) 

Final aquifer storage, which then carries over to the next month, is what remains after the 
baseflow discharge is accounted for: 

 J 2 FS - Q = S  (15) 

Total discharge is equal to saturation excess discharge and baseflow discharge: 

 2 1 TQ + Q = Q  (16) 

where: 

R1 = Thornthwaite-Mather runoff (mm) 

Smax = Aquifer storage capacity (mm) 

SI = Initial aquifer storage (mm) 

SJ = Intermediate aquifer storage (mm) 

SF = Final aquifer storage (mm)  

This model has three parameters to calibrate: TMWB soilmax, Smax and k.  Spreadsheets of 
both models and the original TMWB are found in the accompanying CD. 

3.3.3 Model Calibration 

Modeled monthly discharges were calibrated to maximize the Nash-Sutcliffe efficiency 
(E).  This ‘goodness-of-fit’ measure was first proposed by Nash and Sutcliffe (1970) and 
has since been used extensively in hydrologic modeling to assess model performance.  It 
is given as (Krause et al. 2005):  
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where:  

iQ  = observed flow (mm)  

Q  = mean flow (mm) 

mQ = modeled flow (mm)  

E is a measure of the squared difference of observed and modeled values divided by the 
variance in the observed data (Nash and Sutcliffe 1970).  Although E has been shown to 
over emphasize large flow volumes, this research focuses on low flows in the dry season 
and, since they exhibit small variations over time, this efficiency statistic is considered 
reasonable (Legates and McCabe Jr. 1999).   

Legates and McCabe Jr. (1999) suggest complementing Nash-Sutcliffe efficiency with 
absolute measures of model performance. Therefore, calibration results include modeled 
dry-season discharge means, standard deviations, and square root of the mean standard 
error (RMSE) given as: 

 ( )21

1

N

i m
i

RMSE Q QN −

=

= −∑  (18)    

and mean absolute error (MAE) denoted by: 

 1

1

N

i m
i

MAE N Q Q−

=

= −∑  (19) 

Since the discharge dataset is short, the models are not validated as is customary in 
hydrological modeling.  Instead, a cross-validation technique that divides the discharge 
record into sections for calibration and validation is used.  For example, the dry-season 
discharge is calibrated to 2005-2008 and validated in 2009, and the RMSE is reported for 
the calibration and validation period.  This is repeated for all possible permutations of 
consecutive years of discharge. 
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3.4 Simulating Climate Changes 

A number of methods exist which incorporate predicted climatic data into hydrologic 
models (Xu 1999), and many modelers are using GCM results to simulate future 
hydrologic changes (Varis et al. 2004).  However, some modelers do not use the GCM 
outputs because they do not produce reliable estimates of future climatic conditions at the 
necessary scale for hydrologic models (Kilsby et al. 1998).  These modelers instead alter 
historical data within certain conditions, comparing the modeled results to the historic 
simulations.  This technique is used to create climate scenarios for model testing, since 
GCM outputs for East Africa are uncertain and inconclusive.   

There are two main shortcomings with this method: 1) it assumes that the distribution of 
wet years and dry years remains constant through time (Kilsby et al. 1998), and 2) it 
presumes that physical conditions and processes within the catchment itself, such as 
vegetation and land use, will continue to behave the same (Beven 2006).  This research 
does not attempt to overcome these disadvantages but acknowledges the inherent 
uncertainty in them.  Rather than considering the results of these simulations as 
predictions, it is appropriate to view them as indicators of hydrologic system sensitivity 
to climatic factors, all else assumed constant (Xu and Singh 2004).   

The sensitivities of both models to climate changes were tested by perturbing the historic 
climate dataset to decrease total annual precipitation, increase temperature, reduce wet 
season length, and alter seasonal rainfall distribution.  Table 3.1 summarizes the climate 
scenarios tested. To simulate a reduction in wet season length, precipitation is zeroed in 
the final wet-season months.  First May, then April and May, and then March through 
May precipitation is removed to see how the model responds.  Rainfall distribution is 
altered by adding precipitation in 60 mm increments to the beginning of the wet season 
(November-January) and subtracting that amount from March-May precipitation.  The 60 
mm change is spread evenly across the months at 20 mm/mo and precipitation can never 
be below zero.   

The scenario results are compared to the calibrated model based on relative change in 
aquifer storage at the end of May.  Since dry-season discharge is a function of storage 
and May is typically the last month with storage recharge, relative changes in aquifer 
conditions and dry-season discharge due to climate alterations should be reflected in 
aquifer storage at the end of May.  
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Table 3.1 
Perturbed climate scenarios - P is precipitation, T is temperature, Wsb is the beginning of 

the wet season (November to January), and Wse is the end (March to May) 

Scenario # Change 
 

Scenario # Change 

1 P -10% 
 

11 P -20%, T +2° 

2 P -20% 
 

12 P -10%, T +3° 

3 P -30% 
 

13 P -20%, T +3° 

4 T +1° 
 

14 May (P=0) 

5 T +2° 
 

15 April, May (P=0) 

6 T +3° 
 

16 March, April, May (P=0) 

7 T +4° 
 

17 Wsb (P +60 mm),                
Wse (P -60 mm) 

8 P -10%, T +1° 
 

18 Wsb (P +120 mm),              
Wse (P -120 mm) 

9 P -20%, T +1° 
 

19 Wsb (P +180 mm),              
Wse (P -180 mm) 

10 P -10%, T +2° 
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4 DATA 

4.1 Temperature 

Monthly temperature information was collected for an observation station about 35 km 
west of the Jandu catchment called Basotu Plains (4 22' 15" S, 35 05' 30" E, 1671 mamsl) 
(AWMP 2000).  The average elevation of Jandu catchment is 2646 m (a 1000 m 
difference from Basotu Plains), so temperatures were corrected following Bedient et al. 
(2002) with an adiabatic lapse rate of 6.5 °C/1000 m (see Table 4.1).  

4.2 Precipitation 

The monthly precipitation record from 1984-2010 is summarized in Appendix 8.6 and is 
also in the accompanying CD.  Since data for 2003 were absent, the mean monthly 
precipitation values of the remaining years were used to complete the record.  Data was 
classified in hydrologic years, as September through August, because of the clear 
distinction between wet and dry seasons (see Figure 4.1).  Regional precipitation does not 
exhibit a bimodal distribution, with a ‘long rains’ and ‘short rains’, common to East 
Africa.  Rather, it is well distributed from November through May, which henceforth is 
referred to as the ‘wet season’.   

Mean rain-year precipitation is 705 mm, with a standard deviation of 307 mm.  
Maximum rain-year precipitation was 1868 mm in 1997-98, an El Niño year, while the 
minimum was only 60 mm 2 years later during a La Niña event.  Inter-seasonal variation 
is also high: January through March has experienced rainfall as much as 300% of the 
mean, while at other times experiencing none.  Figure 4.2 depicts the inter-annual 
variability as precipitation anomalies, corroborating previous observations that East 
African rainfall is extremely variable (Kabanda and Jury 1999).  

    

Table 4.1   
Mean monthly temperatures (°C) for Basotu Station and Jandu corrected temperatures 

(Source: AWMP 2000) 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Basotu 20 20 20 20 19 20 18 19 20 21 22 22 

Jandu 14 14 14 14 13 14 12 13 14 15 15 15 
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4.3 Discharge 

Daily discharge data for 2004-2010 were obtained from the weir caretaker (Oreste 2010).  
It is aggregated to monthly discharges for analysis and the entire data set is compiled in 
Appendix 8.7 and the accompanying CD.  The data exhibits the same distinction between 
the wet and dry seasons as the precipitation data and, therefore, is also analyzed in rain 
years (see Figure 4.3).  An El Niño event in 2007-2008 dominates the statistical analysis 
of this short record. 

Mean annual runoff was 11.8 Lps in 2004-2010, with a range of 7.9-20.0 Lps.  Mean 
wet-season discharge was 15.0 Lps, with a high in 1997 of 27.2 Lps.  Mean dry-season 
discharge was 7.5 Lps, with a low in 2007 of 5.1 Lps.  October, which is typically the last 
month of the dry season, consistently has the lowest discharge values.   

Figure 4.1  Katesh mean monthly precipitation (1984-2010) (Source: AWMP, 2000) 
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Figure 4.2  Annual precipitation as deviation from the mean.  Blue is positive deviation 
and red negative, RY is rain-year (Source: AWMP, 2000) 
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Discharge Precipitation

Mean October discharge for the record is 5.4 Lps, with a low of 3.4 Lps measured in 
2010.  Discharge is converted to millimeters for analysis by dividing by catchment area. 
Many discrepancies are apparent when the discharge hydrograph and precipitation are 
plotted over time (see Figure 4.4), increasing the uncertainty in using Katesh precipitation 
data to represent rainfall at Jandu catchment. 
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Figure 4.3  Minimum, maximum, and mean Jandu discharge (2004-2010) (Source: 
Oreste, 2010) 

Figure 4.4  Jandu discharge and Katesh precipitation (2004-2010).  Note that the scales 
are different (Sources: AWMP 2000; Oreste 2010) 
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5 RESULTS & DISCUSSION 

5.1 Water Quality Parameters 

Analysis of Jandu reservoir water quality samples, summarized in Table 5.1, 
demonstrates a meteorically recharged, shallow aquifer system.  pH measurements are 
slightly basic, likely reflecting leaching from the calcareous material.  An anomalous low 
value on February 25 was recorded immediately after a rainfall event, so it is thought to 
reflect high concentrations of overland flow and less groundwater.  From March to 
September, the pH changed very little, suggesting that hydrogen ion activity has reached 
equilibrium with the aquifer rocks.    

Temperature remains relatively constant throughout the wet season, decreases into the 
dry season, and then increases slightly in September.  This trend is seen in ambient air 
temperature as well.  Measurements were taken at varying times of the day, and because 
the sampled water has been surface water for an unknown time, air surface temperature 
affects water temperature to an unknown degree.  However, the water is never warmer 
than surface temperature, so geothermal heating is assumed minimal.  The cooler water 
probably reflects the higher altitudes at which it was recharged.   

Electrical conductivity dropped significantly in April, probably due to sampling of a 
runoff event, and increased slightly as the dry season progressed.  This is typical for 
systems with strong dry seasons in which recharge ceases and dissolution of the aquifer 
media by groundwater occurs without dilution.  The purity of the water suggests that 
recharge to the system is dominated by rainfall and that groundwater residence time is 
relatively short. 

Table 5.1   
Jandu stream water quality and geochemistry measurements for 2010  

Date pH Temp (°C) EC (µs) 
Hardness (CaCO3) 

(mg/L) 
Na+ 

(mg/L) 
Fl- 

(mg/L) 
SO2- 

(mg/L) 
25-Feb 8.2 16.9 271 

    
12-Mar 8.5 16.9 257 

    
2-Apr 8.5 15.9 236 

    
31-May 8.4 15.4 269 95 17 2.6 7 

5-Jul 8.5 13.1 274 
    

2-Aug 8.4 11.5 277 
    

4-Sep 8.5 12.4 281 98 19 2.6 7 
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The lab reports, which include hardness, alkalinity, and basic anions and cations, are 
reported in Appendix 8.8.  Both samples are characterized by low concentrations of 
anions and cations and almost no nitrites or nitrates.  With an average hardness (as 
CaCO3) of 96 mg/L, the samples can be considered moderately hard (Fetter 2001).  This 
is not surprising considering the dominant geology is nephelinitic and calcareous strata, 
which both readily leach calcium carbonate.  

Fluoride concentrations in both samples were 2.6 mg/L.  This is higher than the World 
Health Organization guideline of 1.5 mg/L, but below the Tanzania standard of 4.0 mg/L.  
Concentrations of this level may lead to dental fluorosis: however, much higher 
concentrations are necessary to cause more serious, adverse effects (WHO 2003).  
Fluoride has been found in groundwater throughout the Gregory Rift Valley and is 
thought to originate from the volcanic complexes of the region (Ghiglieri et al. 2009).     

5.2 Recession Analysis 

Jandu discharge data was analyzed, a baseflow recession curve plotted, and an average 
monthly recession constant calculated for the dry seasons in 2004 through 2010.  When 
log-discharge is plotted as a function of time, the trend line is near-straight (R2=0.95-
0.99), suggesting the reservoir acts as a linear store and can be characterized with Eqs. (3) 
and (4) (Tallaksen 1995).  A single, linear storage-discharge relationship for an aquifer 
assumes that the recession curve is constant from year to year (Hall 1968).  This 
assumption is not true for Jandu (see Table 5.2), so the recession constants for each year 
are averaged together to derive a recession constant for model parameterization.   

The recession constants range from 0.100 to 0.189/mo with a mean of 0.151/mo, but the 
recession rate itself (ΔQ/Δt) is quite consistent except for 2007, the high-precipitation El 
Niño year.  These recession constants are similar to constants obtained by Zecharias and 
Brutsaert (1988) in mountainous watersheds, and slightly higher than those calculated by 
Brandes et al. (2005) of 0.148/mo.   

The derived recession constant seems consistent with Jandu’s steep slopes and drainage 
patterns, even though there are no recession constants for other local watersheds to 
compare it with.  This assertion comes from the correlations between recession constant, 
catchment slope, and drainage density made by Zecharias and Brutsaert (1988) and 
Brandes et al. (2005).  Unfortunately, no empirical estimation of drainage density is 
available, nor are there other catchments with which to compare Jandu’s recession 
constant.  Thus, no definitive conclusions can be drawn from the recession analysis, other 
than that the recession constant is within reasonable agreement with other steep, 
mountainous catchments, and the reservoir behaves linearly.   
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Table 5.2   
Monthly recession constants (k) for dry seasons 2005 through 2009  

Year 
ΔQ/Δt 

(mm/mo2) 
k (1/mo) 

2005 1.44 0.182 
2006 1.33 0.168 
2007 2.40 0.114 
2008 1.38 0.100 
2009 1.30 0.189 

 

5.3 Water Balance Model Calibrations 

Table 5.3  presents the results of model calibration. Nash-Sutcliffe efficiencies (E) were 
both high, but Model 2 resulted in the best fit to the observed dry-season data (+0.05 mm 
higher than Model 1) at 0.91 mm.  MAE was 1.1 mm for both, but RMSE was 0.3 mm 
higher for Model 1 at 1.6 mm than Model 2.  Mean dry-season discharge was reproduced 
within 0.1 mm in both models, suggesting that both accurately represent mean dry-season 
flows.  However, observed year-to-year discharges were often different from modeled 
discharges (see Figure 5.1).  

The models produce very similar dry-season discharges, but Model 1 is much better at 
replicating wet-season discharge.  This is due to the incorporation of the runoff constant 
function, which was calculated by evaluating the relationship between annual catchment 
rainfall and monthly runoff.  The calculated mean wet-season discharges are, on average, 
3.1% of annual precipitation.  This correlates to the lower end of average runoff  

 
Table 5.3 

Model calibration results - E is Nash-Sutcliffe efficiency coefficient, MAE is mean 
absolute error, RMSE is root mean square error, k is recession constant, TMWB soilmax is 
Thornthwaite-Mather maximum soil moisture storage, Smax is maximum aquifer storage, 
Mean Ds Q is mean dry-season discharge, May S is mean May storage.  Observed values 

were calculated from the discharge record 2004-2009. 

 

Goodness of Fit Parameters Outputs 

E 
MAE 
(mm) 

RMSE 
(mm) k (1/mo) 

TMWB soilmax 

(mm) 
Smax 

(mm) 
Mean Ds Q  

(mm) 
May S 
(mm) 

Model 1 0.86 1.1 1.6 0.052 95 
 

9.8 314 
Model 2 0.91 1.1 1.3 0.062 138 392 9.8 246 
Observed 

   
0.151 

  
9.7 
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Figure 5.1  Dry-season discharge for observed data, Model 1, and Model 2 (2004-2009) 
 
percentages calculated by JICA (2008) for the area.  However, uncertainty in both the 
spatial accuracy of the precipitation data and temporal resolution of the discharge data 
makes the accuracy of the rainfall-runoff relationship uncertain.  This is because the daily 
observed discharge measurements probably do not accurately capture peak runoff events 
(due to catchment size and sampling rate), and accumulated monthly totals likely 
underestimate actual discharge.  Therefore, since error in the runoff constant could be 
great and Model 2 fits the dry-season data better, the runoff constant and reproduction of 
wet-season discharges in Model 1 are deemed unnecessary components.   

Model 2 does not allow precipitation to instantly run off and wet-season discharge is 
rarely comparable to the observed data.  This model routes all initial runoff to aquifer 
storage first, conceptually akin to an interflow and baseflow component.  So, the soil has 
to be completely saturated before runoff can occur, and the ‘saturation excess’ that does 
discharge can be thought of as quick flow and interflow.  Less water leaves the system 
than in Model 1.  Yet, the mean dry-season discharges are accurately reproduced, 
suggesting that more evapotranspiration occurs in Model 2 than in Model 1. 

Figure 5.3 shows the total annual evapotranspiration produced by the models, which is 
very similar: 435 mm for Model 1 and 469 mm for Model 2.  Model 2 is consistently 
higher due to the greater TMWB soilmax value.  Annual evapotranspiration exhibits 
minimal variance throughout the record, in the range of 400 to 500 mm, even though the 
precipitation record has great variance.  This suggests that evapotranspiration is limited  
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Figure 5.2  Modeled annual evapotranspiration, RY is rain-year 

by factors other than total precipitation.  Potential evapotranspiration is almost always 
exceeded in the wet season, and as it is calculated from the Hamon method, temperature 
is the limiting factor.  In the dry season, though, evapotranspiration is limited by TMWB 
soil moisture capacity, which is quickly depleted and does not allow further evaporative 
losses.   

Although the Jandu mean-monthly recession constant was calculated to be 0.151/mo, 
model calibration yielded much lower values: 0.052 for Model 1 and 0.062 for Model 2. 
This could be due to the models’ consistent underestimating of the storage and discharge 
in the first months of the dry season.  Figure 5.4 displays an example of modeled and 
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Figure 5.3  Dry season 2009 - Model 1 discharge and observed discharge 
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observed flow from the 2009 dry season and how using a lower recession constant 
counteracts the models’ temporal inability to initiate the dry season correctly.  Discharge, 
controlled only by the recession constant, begins earlier in the year, but it recedes at a 
slower rate than the observed data.  This effectively reproduces the average discharge 
rather than the actual discharge, thus giving high model efficiency values.   

The results from the cross validation are reported in Table 5.4.  Calibration scenarios 5 
and 9 have only one year of calibration and exhibit the lowest calibration RMSE (C-
RMSE) for both models, but validation RMSE (V-RMSE) is great.  V-RMSE for both 
models is low (1.2-1.4 mm) for scenarios 2 and 3, which utilize three and four year 
calibration periods, respectively.  Scenario 3 has the lowest V-RMSE for both models, 
demonstrating that the models only need to be calibrated to data from 2005-2007 in order 
to accurately reproduce observed discharges for 2008-2009.  When calibrated for 2007-
2009, the V-RMSE for 2005-2006 were between 1.7 and 3.8 mm.  More research is 
necessary in different catchments, but the cross validation suggests that TMWB models 
can be parameterized and calibrated to reproduce dry-season discharges with short (3-4 
year) discharge records.      

The relationship between June and October discharge for the observed data is shown in 
Figure 5.4.  The trend line (R2 = 0.93) clearly shows a linear trend with October discharge 
equaling about 60% of June discharge.  The recession constants that were calibrated for 
the models, though, produced October discharges that were roughly 80% of June 
discharge.  With this relationship, water managers for the catchment can make 
predictions of October discharge from June discharge, thereby giving some warning of 
potential dry-season water scarcity.   

Table 5.4 
Results of model cross validation – C is calibration period, V is validation period, RMSE 
is root mean square error.  Calibration scenario 1 is of models calibrated to entire dataset.  

Calibration 
Scenario 

2005 2006 2007 2008 2009 
Model 1 Model 2 

C-RMSE 
(mm) 

V-RMSE 
(mm) 

C-RMSE 
(mm) 

V-RMSE 
(mm) 

1 C 1.6  1.3  
2 C V 1.7 1.3 1.4 1.4 
3 C V 1.9 1.2 1.5 1.3 
4 C V 1.5 3.8 1.3 1.5 
5 C V 0.2 5.4 0.2 3.8 
6 V C 1.5 2.3 1.3 2.0 
7 V C 1.7 3.8 1.3 1.7 
8 V C 0.7 3.4 0.6 4.4 
9 V C 0.5 5.4 0.4 4.0 
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The current estimate of population served by the Jandu catchment is 4,000, and if we 
assume the World Health Organization WHO water consumption standard of 20 Lcd 
(liters per capita per day), the amount of water necessary to supply all demand is 80,000 
L d-1.  Given an estimated 50% system inefficiency, the demand is 160,000 L d-1.  This is 
equivalent to a discharge of 0.08 mm.  This discharge would be reached in October if 
June discharge was 0.14 mm.  This is unlikely, even with intense changes in climate, but 
the population that Jandu serves will undoubtedly increase.  More research is necessary to 
determine the accuracy of the served population and its growth rate, but water resource 
managers can still use this relationship to forecast dry-season discharge.      

Model 1 incorporated two new parameters, a runoff constant and an aquifer storage 
function, to the original TMWB model, and discharges were very accurately reproduced.  
The removal of the runoff constant and addition of an aquifer capacity parameter for 
Model 2 yielded a slight increase in accuracy.  Mean dry-season discharges are well 
reproduced by both models, suggesting that the TMWB model can successfully be 
adapted with minimal parameterization and applied to small, semi-arid catchments.  

Some shortcomings and uncertainties should also be elucidated.  Precipitation during the 
discharge calibration period ranged between 476 mm and 949 mm, so discharge volumes 
modeled in years with precipitation out of that range must be viewed with caution.  The 
precipitation gage from which records were taken is about 8 km away, and on the another 
side of the mountain, so whether or not measurements accurately portray rainfall within 
the catchment is unknown.  Comparison of the discharge and precipitation data did show 
discrepancies.  Ideally, the models would be calibrated to one long period of observed 

Figure 5.4  June and October discharge (2004-2009)  
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data and then validated to another period, but only one reliable period of discharge data is 
available, so the models are not properly validated.  The cross validation method would 
need to be further tested before considered an actual model validation.  The only 
confident assertion that can be made is that these models accurately reproduce discharges 
during the calibration period and conditions of the dry seasons in 2004 through 2009.  

5.4 Climate Scenarios 

Table 5.5 presents the results from the climate scenario simulations in terms of percent 
change in May mean aquifer storage.  Both models yield similar results for the given 
scenarios, so henceforth the results are discussed as averages of the two.  The similarity is 
not surprising considering that both rely on the TMWB to produce initial runoff values.   

The models were more sensitive to changes in precipitation than temperature, but 
changes in both produced significant changes in relative storage.  According to the 
models, the effects of a 10% reduction in precipitation are approximately equal to the  

Table 5.5 
Climate scenario results as percent changes in May mean aquifer storage (%ΔS) 

Scenario Model 1 Model 2 Average 
%ΔS %ΔS %ΔS 

ΔP 
-10% -25 -19 -22 
-20% -48 -42 -45 
-30% -67 -64 -66 

ΔT 

+1° -8 -7 -8 
+2° -16 -13 -15 
+3° -23 -19 -21 
+4° -30 -26 -28 

T+1, P-10% -32 -25 -29 
T+1, P-20% -53 -48 -51 
T+2, P-10% -38 -32 -35 
T+2, P-20% -58 -55 -57 
T+3, P-10% -44 -39 -42 
T+3, P-20% -63 -60 -62 
T+4, P-10% -49 -46 -48 
T+4, P-20% -67 -65 -66 

May P=0 0 -4 -2 
Apr & May P=0 -12 -18 -15 

March, April, May P=0  -42 -54 -48 
Wsb (P +60 mm), Wse (P -60 mm) 1 0 1 

Wsb (P +120 mm), Wse (P -120 mm) 8 3 6 
Wsb (P +180 mm), Wse (P -180 mm) 20 9 15 
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effects of a 3 °C increase in temperature.  For every 10% reduction in precipitation, 
storage reductions of 22% occur, giving a maximum change of -66% for a 30% decrease 
in precipitation.  Relative changes in storage were nearly double the relative changes in 
annual precipitation.  This suggests that even small changes in mean precipitation can 
have large effects on catchment discharge.    

Temperature changes also had significant effects: a 1 °C increase (7.5% of the mean 
annual temperature of 13.5 °C) led to an 8% storage reduction, and a 4 ºC increase 
reduced storage by 28%.  This suggests that changes in temperature, and thus 
evapotranspiration will have significant impacts on aquifer storage and groundwater 
discharge.  However, the TMWB model uses a simplistic method of calculating 
evapotranspiration and soil moisture storage, and does not account for other factors 
including the effects that atmospheric CO2 increases and temperature changes may induce 
in vegetation growth, relative humidity, and soil moisture storage processes in the 
catchment.        

Scenarios that combined increasing temperature and decreasing annual precipitation 
produced the largest storage reductions.  Storage decline approached 30% for the most 
moderate scenario of +1 °C and -10% P, whereas the most extreme scenario of +4 °C and 
-20% P generated storage reductions of 66%.  This appears to show that both models 
approach a leveling-off point as the climate continues to change.  For example, the 
decline of 30% experienced in the most moderate scenario is equal to the sum of the 
reductions from the individual scenarios of increasing temperature 1 °C and decreasing 
precipitation 10%.  However, the most extreme scenario results are 7% less than they 
would be if the reductions are summed from individual rainfall and temperature changes.   
These reductions are about 10% greater than reductions found by Jiang et al. (2007) for a 
large basin, but the magnitude of change between simulations is similar.  

When wet-season length was adjusted by zeroing precipitation in May, then April and 
March, the change in storage was -2%, -15%, and -48%, respectively.  This suggests that 
March precipitation contributes about 33% of dry-season storage, while precipitation in 
April and May cumulatively only contributes 15%.  The precipitation record was 
analyzed to determine relative contributions of March, April, and May precipitation to the 
cumulative total: March precipitation is 19% of total annual precipitation, April is 13%, 
and May is 6%.  Together, March through May account for 38% of total rain-year 
precipitation, so it is not surprising that removing this amount of total precipitation has 
such a strong impact on May aquifer storage. 

Scenarios that altered seasonal distribution of rainfall generated increases in May mean 
aquifer storage values.  Reducing precipitation in March to May and increasing it in 
November to January, increased mean May storage by 1 mm, 6 mm, and 15 mm, for 
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changes of 60 mm, 120 mm, and 180 mm respectively.  This demonstrates that either the 
models or this method of altering rainfall distribution is inadequate for accurate forecasts.  
The low recession rate allows aquifer storage to fill up, regardless of when, and slowly 
release that water throughout the year.  Thus, the models’ May storage is overestimated, 
and the large aquifer storage capacity allows the water lost from the end of the wet season 
to be stored in the beginning.  Since precipitation for any month can never go below zero 
and the end of the wet season is often characterized by low rainfall, this method 
sometimes increases total annual precipitation.  If the distribution was not evenly spread 
over the months, but distributed to have a net-zero effect on total precipitation, this 
shortcoming could be addressed.  These models, when given these scenarios and tested 
with this method, suggest than changes in rainfall distribution will have an impact on dry-
season storage, however, more thorough evaluation is necessary before more certain 
quantifications can be made. 
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6 CONCLUSION 

A small, spring-dominated catchment on Mt. Hanang, Tanzania was analyzed to 
determine general aquifer characteristics and hydrologic functioning.  Geochemical 
analysis, recession flow analysis, and water balance models were applied to characterize 
the system. 

The geochemistry shows a meteorically-recharged, shallow aquifer system with quickly 
circulating groundwater.  Recession flow varied from year to year, but an average 
monthly constant of 0.151/mo was calculated for the 2004-2009 discharge dataset.  This 
is consistent with data from other mountain catchments.   

Two models were developed from the Thornthwaite-Mather Water Balance model that 
accurately reproduced observed dry-season discharges.  Information obtained from 
analysis of precipitation data and discharge hydrographs, the runoff constant and 
recession constant, were successfully used to improve model performance.  For the 
calculated recession constant to be effectively applied, a model must accurately 
reproduce wet-season discharge and storage values as well.  

Once the models were calibrated, the historic climate data was perturbed to reflect 
increasing temperatures and decreasing precipitation.  Modeled storage values from these 
scenarios show that small climatic changes could have large hydrologic consequences, 
but the amounts determined herein are relative and cannot be offered as quantitative 
forecasts.  The study confirms previous findings that climate change will significantly 
impact hydrologic systems, and that water balance models, modified to local conditions 
and calibrated to historic data, are tools that offer a simple and accurate method of 
assessing hydrologic conditions and outputs. 
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7 FUTURE WORK 

There is much that could be done to improve and enhance a project like this one.  To 
ensure model inputs are accurate, catchment precipitation gages and thermometers could 
be deployed.  Soil samples could be analyzed and cores drilled to better classify 
watershed geology and assist with model parameterization.  If more discharge data were 
available, the models could be further validated and finely tuned.  The geochemical and 
flow data for Jandu stream could be contrasted to that of other Hanang springs and 
streams.  If those springs and streams are found to behave similarly to Jandu, and hence 
have similar catchment properties and storage structures, spot measurements of discharge 
could perhaps allow the estimation of complete discharge time series.  Then their low 
flows could be assessed and modeled and relative climate change forecasts extrapolated. 

Recession analysis has potential to help determine aquifer characteristics in sparsely 
gauged basins.  Further analysis of recession data would yield more information about 
aquifer parameters, flow components, and catchment characteristics.  This information 
could be compared for multiple basins and then cross-correlated to physical watershed 
parameters like drainage density, slope, and hydraulic conductivity.  If regional patterns 
became apparent, ungauged basins in the region could potentially be analyzed with spot 
discharge measurements. 

The water balance models have shown their ability to reproduce historical dry season 
flows, but it is unknown if they have the ability to forecast future discharges.  Analysis 
like that presented here could be carried out for any catchment, and then that catchment 
could be monitored in the future and changes in discharges compared to climate changes.  
The agreement between the model predictions and actual discharges could be assessed 
and more certainty applied to future forecasts from such models. 
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8 APPENDICES 

8.1 University of Texas Copyright Information 

Located: (http://www.lib.utexas.edu/usage_statement.html)  

Accessed: April 27, 2011 

Library Web Material Usage Statement 

Public Domain 

Materials that are in the public domain (such as images from the Portrait Gallery or most 
of the maps in the PCL Map Collection), are not copyrighted and no permission is needed 
to copy them. You may download them and use them as you wish. We appreciate you 
giving this site credit with the phrase: 

"Courtesy of the University of Texas Libraries, The University of Texas at Austin." 

  

http://www.lib.utexas.edu/usage_statement.html�
http://www.lib.utexas.edu/exhibits/portraits/�
http://www.lib.utexas.edu/maps/�
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8.2 Tanzania Geological Survey Permission 

This email dialogue establishes permission for the use of Figure 2.3 (geologic map): 
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8.3 U.S. Geological Survey Copyright Information 

Located:  (http://www.usgs.gov/laws/info_policies.html) 

Accessed:  April 27, 2011 

Copyrights and Credits 

USGS-authored or produced data and information are considered to be in the U.S. public 
domain. While the content of most USGS Web pages is in the U.S. public domain, not all 
information, illustrations, or photographs on our site are. Some non USGS photographs, 
images, and/or graphics that appear on USGS Web sites are used by the USGS with 
permission from the copyright holder. These materials are generally marked as being 
copyrighted. To use these copyrighted materials, you must obtain permission from the 
copyright holder under the copyright law. 

8.4 Isotope Data 

Neither stable isotope exhibited changes in concentration far outside the margin of 
sampling error of δ18O±0.08 and δ2H ±0.30.  There is, though, a slight enrichment of 
deuterium as the dry season progresses.  The isotopic abundances deviate significantly 
when compared to the Dar es Salaam meteoric water line (MWL) (δ2H=7.05 δ18O+7.0) 
from IAEA/WMO (2006), but plot closer to the Kenya Rift MWL (δ2H=5.56 δ18O+2.04) 
developed by Darling et al (1996) (see Figure 8.1).  While initially this might suggest 
precipitation origins, local precipitation has not been sampled for isotopic abundances, so 
concluding which MWL the original precipitation is best represented by is impossible.  
Also, since Jandu catchment lies on the leeward side of Mt. Hanang, precipitation 
patterns and potentially isotopic concentrations are strongly impacted by orographic 
anomalies.  The slight enrichment over time of δ2H could suggest evaporative losses from 
shallow soil moisture, but Kendall and McDonnell (1998) note that enrichment could also 
occur before rainfall infiltrates, so conclusions from the enrichment are impractical.  
Hence, no real supportive evidence is derived from the data, but is presented should 
someone undertake future isotopic research in the region (see Table 8.1). 

http://www.usgs.gov/laws/info_policies.html�
http://www.doi.gov/disclaimer.cfm/�
http://www.doi.gov/disclaimer.cfm/�
http://www.copyright.gov/�
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Figure 8.1  Isotopic abundances for Jandu stream 

 
 

Table 8.1  
Isotope data for Jandu and two other Hanang water sources 

Sample ID Sample Date δD StDev δ18O StDev 

Gendabi Spring 7 3/12/2010 -28.296 0.307 -5.507 0.125 

Gendabi Spring 8 6/4/2010 -27.290 0.440 -5.390 0.092 

Gendabi Spring 9 9/5/2010 -27.024 0.331 -5.351 0.023 

Himet Stream 5 3/15/2010 -25.694 0.465 -5.485 0.064 

Himet Stream 8 6/5/2010 -26.854 0.312 -5.661 0.059 

Himet Stream 10 9/7/2010 -27.134 0.288 -5.695 0.051 

Jandu 4 3/12/2010 -29.438 0.353 -5.698 0.052 

Jandu 5 5/31/2010 -28.883 0.252 -5.690 0.093 

Jandu 7 9/6/2010 -28.364 0.282 -5.703 0.084 
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8.5 Thornthwaite-Mather Water Balance Equations 

Governing equations are adapted from Shonsey (2009): 

If m mP PET≥  then m mET PET= , but if m mP PET<  then m m mET P SOIL= −∆  

   

 1m m mSOIL SOIL SOIL −∆ = −   

  

1
max

exp m m
m m

PET PSOIL SOIL
SOIL−

  −
= −  

  
 

 

 max fc fcSOIL Zθ=   

where: 

Pm = Monthly precipitation (mm) 

PETm = Monthly potential evapotranspiration (mm) 

ETm = Monthly actual evapotranspiration (mm) 

ΔSOIL = Monthly change in soil moisture (mm) 

SOILm = Present month’s estimated soil moisture (mm) 

SOILm-1 = *Previous month’s estimated soil moisture (mm)  

SOILmax = Maximum achievable soil moisture (mm) 

θfc = Field capacity of the soil (mm) 

Zfc = Vertical extent of the root zone (mm) 

*To start calculations SOILm-1 is equal to SOILmax 

Potential evapotranspiration (PET) is calculated by the Hamon method:   

 
( )*

924
273.2

a a

a

e T
PET D

T
=

+
    
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where: 

PET = potential evapotranspiration (mm/month) 

D = day length (hr) 

*
ae  = saturation vapor pressure at the mean daily temperature (kPa)  

Ta = mean daily temperature (°C) 

 
Saturation vapor pressure is estimated as (Dingman 2002): 
 

 ( )* 17.30.611exp
237.3

a
a a a

Te T
T
 =  + 

  

 
Day length is calculated with the following equation sets (Dingman 2002): 

 

 2 ( 1)
365
Jπ −

Γ =   

  

 ( )
0.006918  0.399912cos( ) 0.070257 sin( ) 0.006758cos(2 ) 

0.000907sin(2 )  0.002697cos 3  0.00148sin(3 )
δ = − Γ + Γ − Γ

+ Γ − Γ + Γ
  

 

 [ ]1cos tan( ) tan( )
2D

δ
ω

− − Λ
=  

 
  

where: 

Γ = day angle (radians) 

J = day number (Julian days) 

δ = sun declination (radians) 

Λ = latitude (radians) 

ω = earth’s angular velocity (0.2618 radians/hr) 
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8.6 Katesh Precipitation Data 

 



 

 53   
 

8.7 Jandu Monthly Discharge Data 
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8.8 Jandu Water Geochemistry Reports 
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8.9 CD Contents 

• Thornthwaite-Mather Water Balance Model spreadsheet 
• Model 1 spreadsheet 
• Model 2 spreadsheet 
• Jandu discharge data (2004-2010) 
• Katesh precipitation data (1985-2010) 
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