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Abstract

The generalized lognormal distribution plays an important role in various aspects

of life testing experiments. We examine Bayesian analysis of this distribution using

objective priors (in the general sense of priors constructed using some formal rules) for

the model parameters in this paper. Specifically, the derivation of explicit expressions

for multiple types of the Jeffreys priors, the reference priors with different group

ordering of the parameters, and the first-order matching priors. We investigate the

important issue of proper posterior distributions. It is shown that only two of them

lead to proper posterior distributions. Monte Carlo simulations are conducted to

compare the performances of the Bayesian approaches under the various priors. Last,

a real-world data case will be shown to illustrate the theoretical analysis.
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Chapter 1

Introduction

Lognormal distribution is utilized in many different aspects of life sciences, including

biology, ecology, and reliability/survival analysis as well as in economics, finance, and

risk analysis. This is mainly because of its various attractive properties and its suit-

able fit for many experimental data, especially when the assumption of symmetry is

not appropriate. For example, the lengths of incubation periods (time from exposure

to the point at which first symptoms appear) of infectious diseases usually fit closely

to the lognormal distribution. We here refer the interested readers to [1] for details

on this topic.

If a random variable Y has the lognormal distribution, the random variable X =

exp(Y ) is normally distributed. Recently, [18] studied a generalized form of the
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lognormal distribution. The authors have generalized the two-parameter log-normal

distribution to the three-parameter generalized lognormal (for short, logGN) distribu-

tion with the additional parameter, which provides a more suitable transformation for

analyzing asymmetric data sets. Thus, the logGN distribution can adequately model

the data whereby the lognormal distribution may not be absolutely suitable. As an

illustration, [18] showed its superior performance on the analysis of life cycle data

belonging to the field of engineering. Consequently, besides the classical lognormal

distribution, the logGN distribution can be viewed as another one of the important

skewed distribution for analyzing the data from different fields, atmospheric sciences,

environmental sciences, microbiology, reliability/survival analysis; see, for example,

[7], [24].

We say that the random variable X = log(Y ) is generalized normal (GN) distribu-

tion if a random variable Y follows the logGN distribution. The probability density

function (pdf) of the logGN distribution with parameters µ, σ, and s is

f(y | µ, σ, s) = s

2yσΓ(1/s)
exp

(

−
∣

∣

∣

log y − µ

σ

∣

∣

∣

s
)

, (1.1)

where y > 0,−∞ < µ < ∞, σ > 0, and s ≥ 1. When s = 2, the logGN distribution

reduces to the lognormal one, showing its more flexibility to experimental data than

the lognormal one. This distribution also include the logLaplace distribution as a

particular case by taking s = 1.
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Figure 1.1 shows the visual representation of logGN’s density and hazard rate function

with different choices of the parameter s with µ = 1, σ = 0.5. It can be seen from

the two figures that the logGN distribution has very flexible shapes of density and

hazard rate functions based on different combinations of the unknown parameters. In

addition, we observe that as y tends to infinity, the density of the logGN distribution

approaches 0, indicating that the logGN distribution is suitable for modeling the data

under the situation in which the large values of y are not of interest.
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Figure 1.1: logGN’s Probability density function and hazard rate plots for
µ = 1, and σ = 0.5 and different values of {s = 1, 1.5, 2, 5}.

We shall thus be interested in estimating the three unknown parameters of the logGN

distribution from both the frequentist and Bayesian frameworks. Here, we contem-

plate objective Bayesian analysis of the logGN distribution using objective priors for

the unknown parameters, which are constructed using some formal rules. To the

best of our knowledge, there are just few Bayesian steps for analysing the logGN
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distribution in the literature. [18] derived the independence Jeffreys prior by treat-

ing the three parameters independently and provided a simple approximated form to

this prior, whereas they did not consider other commonly used objective priors based

on other formal rules. Additionally, they did not investigate the important issue of

whether the considered priors result in proper posterior distribution. Later on, we

will show that the prior used by [18] results in an improper posterior distribution.

Thus, special attention should be paid when we use improper priors for the unknown

parameters. In this paper, we have different types of the Jeffreys priors, the reference

priors with different group ordering of the parameters, and the first-order matching

priors and study their posterior proprieties under these improper priors. This study

is quite important from both theoretical and practical viewpoints, because the results

not only prevent researchers from making invalid statistical inference from improper

posterior distributions, but also provide a guideline to perform Bayesian analysis for

the logGN distribution using objective priors of the unknown parameters.

The rest of the paper has the following sections. In Section 2, we consider various

objective priors of the model parameters constructed using some formal rules and

provide a general form of the various priors under consideration. In Section 3, we

investigate the issue of whether these improper priors result in proper posterior dis-

tributions. In Section 4, we develop an efficient Gibbs sampler algorithm for posterior

computation. In Section 5, computational simulations are conducted to compare the

4



various priors and the maximum-likelihood estimation (MLE). A real data applica-

tion is presented in Section 6. Concluding remarks and future work are illustrated in

the fianl section. We will also provide more detailed proofs in the Appendix.
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Chapter 2

Objective Bayesian analysis

Bayesian analysis begins with the prior specifications for the unknown parameters.

In this section, we derive the three types of the Jeffreys priors (Section 2.0.1), the

two types of reference priors for all possible model parameters (Section 2.0.2), and

the general form of the first-order probability matching priors (Section 2.0.3).

2.0.1 Inside of the Jeffreys-type priors

When prior knowledge is missing, the noninformative priors of the unknown parame-

ters is often preferred and are usually obtained from the expected Fisher information

of the model. It can be seen from [18] that the Fisher information matrix of the
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logGN distribution is as following:

H(ϕ) =

































(s−1)sΓ(1−s−1)
σ2Γ(s−1)

0 0

0 s
σ2

− A
σs

0 − A
σs

A2+B
s3

































, (2.1)

where ϕ = (µ, σ, s), ψ(·) is the diagamma function, A = 1 + ψ(1 + s−1) and B =

(1 + s−1)ψ
′

(1 + s−1)− 1.

Within the Bayesian framework, one of the commonly used noninformative priors

is the Jeffreys (Jeffreys, 1998), which contains Jeffreys-rule prior and independence

Jeffreys priors. For the logGN distribution, we consider the following two groups of

the parameters:
{

(µ), (σ, s)
}

and
{

(µ), (σ), (s))
}

. It will be shown that these different

types of the Jeffreys priors can be unified as

π(ϕ) ∝ π(s)

σa
, (2.2)

where a ∈ R is a hyper-parameter and π(s) can be defined as the ‘marginal’ prior

of the parameter s. We summarize these priors in the following theorem with proofs
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provided in the Appendix.

Theorem 1 Consider the logGN distribution with the pdf in (1.1). The independence

Jeffreys priors with the groupings
{

(µ), (σ), (s))
}

and
{

(µ), (σ, s)
}

, and the Jeffreys-

rule priors for
{

µ, σ, s
}

are marked as πJ1(ϕ), πJ2(ϕ), and πJ(ϕ), respectively. They

are of the form (2.2) with

a = 1, πJ1(s) ∝ s−1
[

B
]1/2

, (2.3)

a = 1, πJ2(s) ∝ s−3/2
[

A2 +B
]1/2

, (2.4)

a = 2, πJ(s) ∝
[

s(s− 1)Γ(1− s−1)

Γ(s−1)

]1/2

πJ1(s). (2.5)

where B = (1 + s−1)ψ′(1 + s−1)− 1.

As commented by [3], the Jeffreys-type priors may be unsatisfactory for multiparam-

eter problems if we are only interested in a subset of the parameters with the rest

treated as nuisance parameters, because it may result in some unsatisfied results.

For instance, the frequentist coverage of Bayesian credible interval from the Jeffreys-

rule priors may not reach the desired theoretical level. This motivates the study of

alternative objective priors constructed based on some formal rules.

9



2.0.2 Inside of the reference priors

According to the influential paper of [5], the reference priors have been indicated

as alternative tools for developing noninformative priors of the parameters. Note

that this prior in problems involving multiple parameters depends on the different

orderings of the unknown parameters. Since the Fisher information (2.1) does not

depend on the location parameter µ, we can put it in anywhere. Thus, different

orderings lead to the two types of the reference priors summarized in following theorem

with proofs given in the Appendix.

Theorem 2 Consider the logGN distribution with the pdf in (1.1). when a = 1,

for the group orderings (µ, σ, s), (σ, s, µ), and (σ, µ, s), the ‘marginal’ prior of the

parameter s is

πR1(s) ∝ s−3/2 [A2 +B]1/2, (2.6)

whereas for the group orderings (µ, s, σ), (s, σ, µ), and (s, µ, σ) the ‘marginal’ prior of

the parameter s is

πR2(s) ∝ s−3/2 [B]1/2. (2.7)

It should be noted that πR1 is exactly the same as πJ2 and that the expressions of other

priors in Theorems 1 and 2 are quite similar. However, from the follwing results, we
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can get different answers, especially when we have smaller sample size. In particular,

we will show that they behave differently in terms of the probability matching criteria

defined by [11] from a theoretical point of view.

2.0.3 Inside of the First-order matching priors

A prior distribution under which the posterior probabilities of specific districts exactly

or approximately coincide with their coverage probabilities is called a probability

matching prior. More examples can be seen in the paper of [10], [11]. Since the shape

parameter s is very important, we could develop first-order matching prior’s general

form, when s is the parameter of interest. The result helps us to choose a better prior

of the Bayesian estimation.

Since we are interested in estimating the parameter s, we arrange the Fisher infor-

mation H(ϕ) in terms of the group ordering (s, σ, µ). The Fisher information matrix

can then be rewritten as

H(ϕ) =

































A2+B
s3

− A
σs

0

− A
σs

s
σ2

0

0 0 (s−1)sΓ(1−s−1)
σ2Γ(s−1)

































.
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An orthogonal reparameterization of (s, σ, µ). Let θ1 = s, θ2 = g(s, σ), and θ =

(θ1, θ2, θ3) can simplify the procedure. We need to obtain a solution for

H(s, σ, µ) =

































1 ∂g
∂s

0

0 ∂g
∂σ

0

0 0 1

































































Iθ1,θ1 0 0

0 Iθ2,θ2 0

0 0 Iθ3,θ3

































































1 0 0

∂g
∂s

∂g
∂σ

0

0 0 1

































.

Then several differential equations can be derived as followings:

Iθ1,θ1 +
(∂g

∂s

)2

Iθ2,θ2 =
B + A2

s3
,

∂g

∂s

∂g

∂σ
Iθ2,θ2 = − A

σs
,

(∂g

∂σ

)2

Iθ2,θ2 =
s

σ2
,

which gives

∂g

∂s
+
Aσ

s2
∂g

∂σ
= 0.

It can be verified that g(s, σ) = σ−1 exp(−s−1)[Γ(1 + s−1)]−1 is a solution, leading to

θ1 = s, θ2 = σ−1 exp
(

−s−1
)[

Γ(1 + s−1)
]

−1
, θ3 = µ.
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The likelihood function of θ is defined as

L(θ) =
θn2
2n

exp

{

n

θ1
− [θ2 exp

( 1

θ1

)

Γ
(

1 +
1

θ1

)

]θ1
n

∑

i=1

∣

∣

∣

∣

yi − θ3
σ

∣

∣

∣

∣

θ1}

.

The corresponding Fisher information under the above orthogonal reparameterization

is given by

R(θ) = Diag
{

b1(θ), b2(θ), b3(θ)
}

, (2.8)

where Diag{·} is a diagonal matrix with the diagonal elements

b1(θ) = [(1 + θ−1
1 )ψ′(1 + θ−1

1 ) + A2 − 1] θ−3
1 ,

b2(θ) = θ1θ
2
2 exp(2θ

−1
1 ) [Γ(1 + θ−1

1 )]2,

b3(θ) =
(θ1 − 1)θ1 Γ(1− θ−1

1 )

Γ(θ−1
1 )

θ22 exp(2θ
−1
1 ) [Γ(1 + θ−1

1 )]2.

It follows that the form of first-order matching prior is

π(θ) ∝ a1(θ)
1/2 g(θ2, θ3)

∝ θ
−3/2
1 [(1 + θ−1

1 ) ψ′(1 + θ−1
1 ) + A2 − 1]1/2 k(θ2, θ3), (2.9)

where k(·) is an arbitrary positive and differentiable function of θ2 and θ3. Moreover,

13



by letting k(θ2, θ3) = σ−1, a first-order matching prior reduces to

π(σ, µ, s) ∝ σ−1 s−3/2 [A2 +B]1/2,

which shows that πR1 in (2.6) is the same as the first-order probability matching prior.

Other objective priors (2.3), (2.5), and (2.7) given in Theorems 1 and 2 are not. This

shows that even the priors looks similar, the behavior of these priors is quite different

from a theoretical viewpoint.

Since we can choose different function for k(·), there are uncountable first-order

matching priors for the model parameters. Thus, it is of interest to narrow

down the subclass of the priors according to the second-order matching criterion

(Mukerjee and Dey, 1993). After tedious algebraic implications of derivatives and

expectations from the Fisher information in (2.8), it can be proved that on second-

order matching priors in our case (2.9) when s is the parameter of interest.

It should be noted that the priors in Theorems 1 and 2 are all improper. We are thus

interested in investigating the important issue of whether these improper priors result

in proper posterior distributions, since statistical inference based on an improper

posterior distribution is invalid (Mukerjee and Ghosh, 1997.

14



Chapter 3

Propriety of the posterior

distributions

Suppose that y1, · · · , yn are independent and identically distribution (iid) random

variables generated from the logGN distribution with the pdf in (1.1). We have the

likelihood function as

L(µ, s, σ) ∝ σ−nsn
[

Γ(1/s)
]

−n
exp

{

−
n

∑

i=1

∣

∣

∣

yi − µ

σ

∣

∣

∣

s
}

. (3.1)
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The joint posterior distribution of the unknown parameters under the prior of the

form (2.2) is given by

πτ (µ, s, σ | y) ∝ L(µ, s, σ)σ−aπτ (s), (3.2)

where y = (y1, · · · , yn)′ and τ = {J, J1, J2,R1,R2} represents the objective prior

under consideration. The joint posterior distribution of (µ, s, σ) is proper if and only

if
∫

∞

1

πτ (s | y) ds <∞, (3.3)

where πτ (s | y) is the marginal posterior distribution of the parameter s obtained by

integrating with µ and σ

πτ (s | y) ∝ πτ (s)

∫

R

∫

∞

0

L(µ, s, σ)σ−a dσ dµ = πτ (s)LI(s;y).

The finite nature of the integral in (3.3) is related to the tail behavior of πτ (s | y),

which is determined by both the integrated likelihood LI(s;y) and the ‘marginal’

priors of the parameter s in Theorems 1 and 2. The following two lemmas play a key

role in determining whether the posterior distributions of the unknown parameters

are proper under these priors.

Lemma 1 The marginal priors of the parameter s in Theorem 1 are continuous

functions in [1,∞) and are such that πJ1(s) = O(s−1), πJ2(s) = O(s−3/2), and πJ(s) =

16



O(s−1/2) as s→ ∞. Similarly πR1(s) = πR2(s) = O(s−3/2) as s→ ∞.

Lemma 2 When n > 3−a, the integrated likelihood of the parameter s is a continuous

function in [1,∞) and is such that LI(s;y) = O(1) as s→ ∞.

The propriety of the posterior distribution of various priors in Theorems 1 and 2 are

given by as followings.

Proposition 1 Consider the logGN distribution with the pdf in (1.1). The Jeffreys-

type priors πJ and πJ1 in Theorem 1 lead to improper posterior distributions. Provided

that n > 2, the prior πJ2 and the two reference priors in Theorem 2 result in proper

posterior distributions.

It deserves mentioning that [18] derived the independence Jeffreys prior πJ2 of the

unknown model parameters. Because the expression of πJ2 is quite complex, they

provided a simple approximated form given by πMP(s) ∝ s−1/2. We observe from

Lemmas 1 and 2 that this approximation may lead to an improper posterior distri-

bution. Instead, we propose a valid appropriated form for the ‘marginal’ prior of s

according to the tail behavior of the priors with respect to s. Specifically, we consider

an approximated form given by

a = 1, πRA(s) ∝ s−3/2.

17



π

π
π
π

Figure 3.1: Comparsion between priors πR1, πR2 and π
RA.

This approximation will not only lead to a proper posterior distribution, but also

simplifies the posterior computation under other objectives priors in Theorems 1 and

2. It can be seen from Figure 3.1 that this approximated form falls between the two

reference priors.

We also observe from expressions (3.1) and (3.2) that the joint posterior distribution

of the unknown parameters (μ, s, σ) is not recognizable, so an efficient Gibbs sampler

algorithm needs to be developed for generating posterior samples to make statistical

inference.

18



Chapter 4

Posterior computation

The full conditional posterior distributions of the unknown model parameters are

given by

µ | σ, s,u,y ∝ 1, max
i

{log(yi)− σu
1/s
i } < µ < min

i
{log(yi) + σu

1/s
i },

σ | µ, s,u,y ∝ 1

σn+1
, σ > max

i

{ |µ− log(yi)|
u
1/s
i

}

,

ui | µ, s, σ,y ∝ exp(ui), ui >

{ | log(yi)− µ|
σ

}s

, i = 1, · · · , n,

s | µ, s, σ,u,y ∝ sn−1

Γn(1/s)
,max
i∈S−

{1, ai} < s < min
i∈S+

ai, (4.1)

19



where S− = {i : log(|µ− log(yi)|/σ < 0}, S+ = {i : log(|µ− log(yi)|/σ > 0}, and

ai =
log(ui)

log(|µ− log(xi)|/σ
, i = 1, · · · , n.

Therefore, an efficient Gibbs sampler algorithm for generating posterior samples can

be developed as follows.

i) Simulate µ from the uniform distribution in the interval [maxi{log(yi) −

σu
1/s
i }, mini{log(yi) + σu

1/s
i }].

ii) Simulate σ from the Pareto distribution with the scale parameter

maxi
{

|µ− log(yi)|/u1/si

}

and the shape parameter n.

iii) Simulate ui from the truncated exponential distribution with the rate parameter

1 by truncating on right side of
{

| log(yi)− µ|/σ
}s

for i = 1, · · · , n.

iv) Simulate s from the conditional posterior distribution in (4.1) using the

acceptance-rejection method developed by [12].

It should noted that the full conditional posterior distribution of the parameter s

is not of standard form; we here employ the acceptance-rejection method (Devroye,

1986) for posterior simulation. Our simulation studies in the next section indicate

that the proposed sampling algorithm is quite efficient due to mixing and convergence

under different simulation scenarios.
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Chapter 5

Simulation studies

In this section, we use computational simulations to assess the performance of the

Bayesian procedures under the various priors as well as the MLEs for the parameters of

the logGN distribution. In these examples, we take the shape parameter s = 1, 2, 3, 5

and the sample size n = 25, 50, 100. Without loss of generality, the location parameter

µ and the scale parameter σ are kept fixed at 0 and 1, respectively. All the results

were based on 1, 000 repetitions. We report the average values of the posterior mean,

the posterior median, and the squared root of mean squared error (SRMSE) of each

estimator. We also report Bayesian frequentist coverage and the average length of

Bayesian credible intervals for each parameter under the various priors studied in this

paper.
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Table 5.1

The averaged estimates of each parameter and the SRMSE(in the
parenthesis) based on 1, 000 repetition for n = 25.

s Parameter π
R1

π
R2

π
RA

Mean Median Mean Median Mean Median MLE

1

µ −0.0064 −0.0071 0.0069 0.0066 −0.0034 −0.0029 −0.0099
(0.2410) (0.2393) (0.2409) (0.2383) (0.2329) (0.2311) (0.2473)

σ 1.4518 1.3972 1.5044 1.4492 1.4609 1.4056 1.0335
(0.5612) (0.5177) (0.6085) (0.5630) (0.5697) (0.5252) (0.6165)

s 1.5414 1.3430 1.6222 1.3993 1.5478 1.3507 1.3051
(0.7738) (0.4796) (0.8913) (0.5604) (0.7743) (0.4809) (1.0264)

2

µ 0.0020 0.0018 0.0061 0.0063 −0.0029 −0.0030 −0.0042
(0.1414) (0.1422) (0.1519) (0.1528) (0.1472) (0.1484) (0.1536)

σ 0.9192 0.9056 0.9391 0.9286 0.9350 0.9235 0.9215
(0.1989) (0.2147) (0.1978) (0.2123) (0.1915) (0.2064) (0.2929)

s 2.2672 1.913 2.4907 1.9700 2.4048 1.9108 2.4849
(1.0458) (0.6621) (1.3115) (0.7691) (1.2348) (0.7401) (1.5962)

3

µ 0.0054 0.0053 0.0064 0.0065 0.0012 0.0011 −0.0053
(0.1225) (0.1229) (0.1240) (0.1243) (0.1175) (0.1180) (0.1266)

σ 0.8562 0.8545 0.8915 0.8924 0.8830 0.8835 0.8967
(0.2134) (0.2232) (0.1941) (0.2020) (0.1921) (0.2002) (0.2353)

s 2.9233 2.2341 3.2717 2.4922 3.1573 2.3985 3.3182
(1.3691) (1.1596) (1.6157) (1.1451) (1.5243) (1.1500) (1.8445)

5

µ 0.0038 0.0038 0.0064 0.0061 0.0016 0.0017 −0.0012
(0.1043) (0.1038) (0.1109) (0.1106) (0.1076) (0.1071) (0.1115)

σ 0.8776 0.8847 0.8422 0.8475 0.8615 0.8677 0.8573
(0.1805) (0.1799) (0.2072) (0.2089) (0.1908) (0.1914) (0.2272)

s 4.3633 3.1820 3.7222 2.7244 3.995 2.9404 4.1470
(2.1025) (2.2296) (2.2070) (2.5528) (2.0862) (2.3788) (2.4149)

We ran the Gibbs sampler algorithm in Section 4 to obtain 50, 000 observations of

Markov chains, where the first 5,000 samples are discarded as burn-in periods with a

thinning of 10 draws. According to our examination, there is no proof of absence of

merging in view of the run length control analytic([21]) and the union symptomatic

test measurement (at an importance level of 5%) by [15].
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Table 5.2

The averaged estimates of each parameter and the SRMSE(in the
parenthesis) based on 1, 000 repetition for n = 50.

s Parameter π
R1

π
R2

π
RA

Mean Median Mean Median Mean Median MLE

1

µ −0.0018 −0.0018 0.0035 0.0036 −0.0017 −0.0017 0.0096
(0.1520) (0.1513) (0.1631) (0.1624) (0.1564) (0.1555) (0.1680)

σ 1.3095 1.2744 1.3269 1.2911 1.3385 1.3031 1.0253
(0.3914) (0.3636) (0.3988) (0.3693) (0.4098) (0.3807) (0.4479)

s 1.2796 1.2137 1.3050 1.2349 1.3097 1.2397 1.1173
(0.3680) (0.2877) (0.3943) (0.3098) (0.3869) (0.3068) (0.5567)

2

µ 0.0036 0.0035 −0.0001 0.0000 0.0026 0.0024 −0.0047
(0.1004) (0.1007) (0.1068) (0.1071) (0.1040) (0.1045) (0.1067)

σ 0.9581 0.9560 0.9350 0.9312 0.9457 0.9425 0.9965
(0.1651) (0.1744) (0.1759) (0.1863) (0.1683) (0.1782) (0.2112)

s 2.2954 2.0434 2.1671 1.9330 2.1994 1.9659 2.5471
(1.0894) (0.7757) (1.1216) (0.8121) (1.1192) (0.7910) (1.5899)

3

µ −0.0014 −0.0012 0.0010 0.0009 −0.0018 −0.0017 0.0018
(0.0885) (0.0887) (0.0874) (0.0876) (0.0850) (0.0852) (0.0844)

σ 0.9186 0.9239 0.9314 0.9372 0.9315 0.9378 0.9851
(0.1607) (0.1632) (0.1469) (0.1486) (0.1482) (0.1498) (0.1421)

s 3.1762 2.7103 3.3509 2.8533 3.3440 2.8344 3.9661
(1.7131) (1.2122) (1.7138) (1.1906) (1.7997) (1.2118) (2.5498)

5

µ 0.0029 0.0028 0.0016 0.0017 −0.0007 −0.0005 0.0018
(0.0672) (0.0670) (0.0683) (0.0681) (0.0705) (0.0703) (0.0696)

σ 0.9375 0.9455 0.9384 0.9459 0.9231 0.9306 0.9707
(0.1186) (0.1153) (0.1167) (0.1134) (0.1339) (0.1311) (0.1014)

s 5.5300 4.3712 5.5007 4.3688 5.2316 4.1774 6.0692
(2.8941) (2.0151) (2.9836) (2.0658) (2.8792) (2.1094) (3.2712)

The first study is devoted to the comparison between the MLEs and the Bayesian

estimations based on the two reference priors in Theorem 2 and the approximated

one πRA(s) ∝ s−3/2. Tables 5.1, 5.2, and 5.3 provide the Baysian estimates and the

MLEs with their squared root mean squared error for all three parameters µ, σ, and s

of the three different priors πR1, πR2, and πRA when n = 25, 50, and 100, respectively.

From these tables, some features can be drawn as follows:
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Table 5.3

The averaged estimates of each parameter and the SRMSE(in the
parenthesis) based on 1, 000 repetition for n = 100.

s Parameter π
R1

π
R2

π
RA

Mean Median Mean Median Mean Median MLE

1

µ −0.0041 −0.0038 0.0069 0.0066 −0.0034 −0.0029 −0.0008
(0.1028) (0.1026) (0.2409) (0.2383) (0.2329) (0.2311) (0.1063)

σ 1.2170 1.1945 1.5044 1.4492 1.4609 1.4056 1.0085
(0.2690) (0.2503) (0.6085) (0.5630) (0.5697) (0.5252) (0.2972)

s 1.1788 1.1459 1.6222 1.3993 1.5478 1.3507 1.0406
(0.2091) (0.1778) (0.8913) (0.5604) (0.7743) (0.4809) (0.2372)

2

µ 0.0020 0.0018 0.0061 0.0063 −0.0029 −0.0030 0.0006
(0.1414) (0.1422) (0.1519) (0.1528) (0.1472) (0.1484) (0.0731)

σ 0.9192 0.9056 0.9391 0.9286 0.9350 0.9235 1.0055
(0.1989) (0.2147) (0.1978) (0.2123) (0.1915) (0.2064) (0.1372)

s 2.2672 1.8113 2.4907 1.9700 2.4048 1.9108 2.2298
(1.0458) (0.6621) (1.3115) (0.7691) (1.2348) (0.7401) (0.7019)

3

µ 0.0054 0.0053 0.0064 0.0065 0.0012 0.0011 −0.0007
(0.1225) (0.1229) (0.1240) (0.1243) (0.1175) (0.1180) (0.0599)

σ 0.8562 0.8545 0.8915 0.8924 0.8830 0.8835 0.9983
(0.2134) (0.2232) (0.1941) (0.2020) (0.1921) (0.2002) (0.0995)

s 2.9233 2.2341 3.2717 2.4922 3.1573 2.3985 3.5329
(1.3691) (1.1596) (1.6157) (1.1451) (1.5243) (1.1500) (1.5313)

5

µ 0.0038 0.0038 0.0064 0.0061 0.0016 0.0017 −0.0011
(0.1043) (0.1038) (0.1109) (0.1106) (0.1076) (0.1071) (0.0477)

σ 0.8776 0.8847 0.8422 0.8475 0.8615 0.8677 0.9937
(0.1805) (0.1799) (0.2072) (0.2089) (0.1908) (0.1914) (0.0659)

s 4.3633 3.1820 3.7222 2.7244 3.995 2.9404 6.0746
(2.1025) (2.2296) (2.2070) (2.5528) (2.0862) (2.3788) (2.7785)

(1) Intuitively, when we increase the sample size, all the considered estimates be-

come closer the true parameter value and their SRMSE decreases indicating the

expanded in the exactness of the evaluating process.

(2) Compared to MLEs, the Bayesian estimates under the three considered priors

seem to be more steady even when the sample size becomes large. However, all
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the considered estimators perform well for estimating the parameter s when s

is small; and they are all consistently less accurate for the large values of s.

(3) The posterior medians outperform the posterior means in most cases in terms

of the estimation precision and the SRMEs. In addition, the Bayesian estimates

under the approximated ‘marginal’ prior of s perform very well under different

simulation scenarios.

Table 5.4

Comparison among Bayesian approaches under the different objective
priors due to the frequentist coverage and the average length (in the
parenthesis) of 95% credible interval of each parameter when n = 25.

s π
R1

π
R2

π
RA

µ σ s µ σ s µ σ s

1 0.966 0.938 1.000 0.965 0.910 1.000 0.967 0.926 1.000
(0.9851) (1.4584) (1.4731) (1.0066) (1.5287) (1.8679) (0.9957) (1.4916) (1.6165)

2 0.951 0.934 0.943 0.952 0.944 0.965 0.930 0.948 0.961
(0.5667) (0.8536) (4.0365) (0.5709) (0.8735) (4.5414) (0.5687) (0.8628) (4.3309)

3 0.942 0.895 0.878 0.937 0.921 0.921 0.938 0.909 0.919
(0.5010) (0.7472) (5.8994) (0.4935) (0.7435) (6.9714) (0.4912) (0.7381) (6.7876)

5 0.949 0.906 0.827 0.955 0.909 0.874 0.966 0.912 0.857
(0.4497) (0.6568) (9.3916) (0.4437) (0.6469) (10.3896) (0.4436) (0.6493) (10.118)

The second study is devoted to the comparison of the Baysian frequentist coverage

probabilities for the three parameters under the three different priors studied in this

paper. Under the same simulation scenarios mentioned above, we examine the cov-

erage probabilities of Bayesian 95% credible intervals and the average length for the

three parameters. The results of the simulation study have been summarized in Ta-

bles 5.4, 5.5, 5.6. Even we have small sample size (n = 25), we can still observe from

these tables that the frequentist coverage probabilities are very close to 0.95 for the
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three parameters; and thus we may conclude that the Baysian procedures under the

considered priors enjoy good frequentist properties. As expected, the Bayesian pro-

cedure under the prior πR1 performs the ones under the other two priors. It clearly

guarantees the validity of the result that πR1 is a first-order matching prior when we

interest in s.

Table 5.5

Comparison among Bayesian approaches under the different objective
priors due to the frequentist coverage and the average length (in the
parenthesis) of 95% credible interval of each parameter when n = 50.

s π
R1

π
R2

π
RA

µ σ s µ σ s µ σ s

1 0.973 0.926 1.000 0.963 0.914 0.999 0.969 0.917 0.999
(0.6611) (1.0554) (0.8761) (0.6621) (1.0749) (0.8977) (0.6674) (1.0796) (0.9208)

2 0.941 0.929 0.934 0.938 0.925 0.931 0.933 0.920 0.919
(0.3946) (0.6929) (2.989) (0.3984) (0.6998) (3.0346) (0.3978) (0.6955) (2.9948)

3 0.948 0.911 0.871 0.952 0.936 0.921 0.932 0.916 0.889
(0.3362) (0.5704) (5.2888) (0.3362) (0.5647) (5.9576) (0.3353) (0.5668) (5.6251)

5 0.947 0.931 0.862 0.963 0.960 0.902 0.954 0.946 0.895
(0.2861) (0.4444) (10.5004) (0.2838) (0.4292) (11.6785) (0.2828) (0.4321) (11.692)

Table 5.6

Comparison among Bayesian approaches under the different objective
priors due to the frequentist coverage and the average length (in the
parenthesis) of 95% credible interval of each parameter when n = 100.

s π
R1

π
R2

π
RA

µ σ s µ σ s µ σ s

1 0.957 0.902 0.994 0.960 0.897 0.989 0.944 0.895 0.995
(0.4456) (0.7527) (0.5236) (0.4489) (0.7545) (0.5374) (0.4481) (0.7529) (0.5297)

2 0.953 0.928 0.931 0.949 0.902 0.898 0.921 0.926 0.923
(0.2799) (0.5347) (1.7827) (0.2772) (0.5317) (1.8305) (0.2790) (0.5329) (2.0278)

3 0.950 0.940 0.909 0.961 0.937 0.911 0.951 0.949 0.918
(0.2318) (0.4023) (3.5488) (0.2313) (0.3982) (3.6467) (0.2310) (0.3967) (3.7328)

5 0.966 0.943 0.911 0.950 0.947 0.903 0.952 0.950 0.900
(0.1878) (0.2786) (8.3203) (0.1865) (0.2747) (8.473) (0.1878) (0.2794) (8.508)
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Chapter 6

Real data application

The aim of this section is to illustrate the application of the Bayesian procedures

under the various priors by using the data originally studied by [23]. The data have

been previously used in the literature and can be found in Table 2 of [18]. This data

provide the life time of 59 test conductor of 400-micrometer length. The 59 specimens

were all tested under the same temperature and current density until they all raced

to fail at a specific high temperature and current density. [18] have shown that the

logGN distribution provides a better data fitting than the one based on the lognormal

distribution.

For each choice of the considered priors, we generate 22,000 posterior samples using

the proposed sampling algorithm in Section 4, where the first 2,000 samples are

27



π
π
π

Figure 6.1: Fitted curves and data histogram.

discarded as burn-in periods with a thinning of 10 draws. The posterior summaries of

each parameter are displayed in Table 6.1. We observe that the point estimates of each

parameter are close to each other. Figure 6.1 shows the fit of the predictive densities

of the logGN distribution evaluated at the different point estimates in Table 6.1. It

can be seen from the figure that the estimated densities of the logGN distribution fits

the data quite well and that they are are almost overlapping.

Table 6.1

Point estimate of each parameter for the data given in Table 2 of [18].

Parameter π
R1

π
R2

π
RA MLE

Mean Median Mean Median Mean Median

μ 1.9236 1.9240 1.9223 1.9225 1.9240 1.9246 1.9260
σ 0.2551 0.2492 0.2667 0.2624 0.2590 0.2519 0.2600
s 1.3519 1.2858 1.4137 1.3494 1.3732 1.3088 1.3762
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Chapter 7

Concluding remarks

we have studied Bayesian analysis of the logGN distribution under the various objec-

tive priors constructed using some formal rules. Specifically, we have derived different

types of objective priors, including the Jeffreys-type priors, the reference priors based

on the different group orderings of the parameters, and the first-order matching pri-

ors. It has been shown that some of the commonly used objective priors (such as

the Jeffrey-rule prior) preclude the existence of proper posterior distributions due to

their relative heavy tails for the large values of s. This result may be the opposite

of a general sense that the Jeffreys prior almost always lead to a proper posterior

distribution; see, for example, [2], [27], among others. Thus, special attention should

be paid, especially when we adopt improper priors for the unknown parameters in

practical situations.
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We have shown that the two types of the reference priors in Theorem 2 result in

proper posterior distributions. The problem is that which of the two reference priors

should be recommenced in many practical situations. Because the prior πR1 is a

first-order matching prior when s is the parameter of interest, we have a preference

for this reference prior. Numerical simulations also show that the performance of the

Bayesian approach under the prior πR1 is superior than the ones under the priors πR2

and πRA.

One possible extension to our work is to extend the proposed Bayesian procedures to

the censored data, which are commonly occurred from reliability tests. [24] recently

considered Byasian analysis of the logGN distribution for the censored data using

subjective priors for the unknown parameters. Here, subjective priors are normally

gotten from the experimenter’s learning about the conduct of arbitrary procedures

under thought. Without former learning, using Beysian procedure to analyse the

censored data is right now under scrutiny and will be accounted for in future work.
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Appendix A

Proof

A.1 Proof of Theorem 1

Proof of Theorem 1: From the Fisher information of the logGN distribution in

(2.1), we can get:

† For the independence Jeffreys prior πJ1(θ):

πJ1(µ, σ, s) = πJ1(µ) πJ1(σ, s),
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where πJ1(µ) ∝
√

det(Hµµ) ∝ 1, and

πJ1(σ, s) ∝
√

HσσHss −H2
σs

=
√

s−2σ−2[A2 +B]− A2σ−2s−2

= σ−1s−1[B]1/2.

† The independence Jeffreys prior is as following:

πJ2(θ) = πJ2(µ)πJ2(σ)πJ2(s).

From the Fisher information matrix, we have πJ2(µ) ∝ 1, πJ2(σ) ∝ σ−1, and

πJ2(s) ∝ s−3/2[A2 +B]1/2,

which provides that

πJ2(µ, σ, s) ∝ σ−1s−3/2[A2 +B]1/2.

† For Jeffreys-rule prior πJ(µ, σ, s):

πJ(µ, σ, s) ∝
√

det[H(θ)] =
√

HσσHss −H2
σs

√

det(Hµµ),
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where det(Hµµ) =
(s−1)sΓ(1−s−1)

σ2Γ(s−1) . Therefore, it follows that

πJ(µ, σ, s) ∝
[

(s− 1)sΓ(1− 1/s)

σ2Γ(1/s)

]1/2

πJ1(σ, s)

=σ−1

[

(s− 1)sΓ(1− 1/s)

Γ(1/s)

]1/2

πJ1(σ, s).

A.2 Proof of Theorem 2

Proof of Theorem 2: We derive the reference prior for the ordering (σ, µ, s) in part

1 and the ordering (s, µ, σ) in part 2. Since derivations of reference priors for other

orderings are similar and are thus omitted for simplicity.

† For the ordering θ = (σ, µ, s), the new Fisher information matrix changes to

S(θ) =H−1(θ)

=

































σ2[A2+B]

ψ
′
(1+s−1)(1+s)−s

0 Asσ
B

0 σ2Γ(s−1)
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.
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Thus, we obtain

S1 =
σ2[A2 +B]

ψ′(1 + s−1)(1 + s)− s
,

S2 =









σ2[A2+B]

ψ′ (1+s−1)(1+s)−s
0

0 σ2Γ(s−1)
(−1+s)sΓ(1−s−1)









,

and S3 = S(θ). Moreover, if we let Hj = S−1
j , we have

H1 =
ψ

′

(1 + s−1)(1 + s)− s

σ2[A2 +B]
,

H2 =











ψ
′

(1+s−1)(1+s)−s
σ2[A2+B]

0

0 (s−1)sΓ(1−s−1)
σ2Γ(s−1)











,

and H3 = H(θ). Let hj be the nj×nj lower right corner of Hj. Then, it follows

h1 =
ψ

′

(1 + s−1)(1 + s)− s

σ2[A2 +B]
,

h2 =
(s− 1)sΓ(1− s−1)

σ2Γ(s−1)
,

h3 = [A2 +B]s−3.
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Following the procedures and notions in [13], we have

πl3(s | σ, µ) =πl3(θ[−2] | θ[2])

=
|h3(θ)|1/2IΘl

(3)
(θ(3))

∫

Θl

(3)
|h3(θ)|1/2d(θ(3))

=

∣

∣[A2 +B]s−3
∣

∣

1/2
I[1,l](s)

∫ l

1

∣

∣[A2 +B]s−3
∣

∣

1/2
ds

=[c1(l)]
−1 ([A2 +B]s−3)1/2 I[1,l](s),

where c1(l) =
∫ l

1

∣

∣[A2 +B]s−3
∣

∣

1/2
ds. Moreover,

πl2(µ, s | σ) =πl2(θ[−1] | θ[1])

=
πl3(θ[−2]|θ[2]) exp(0.5IEl2[log |h2(θ)|

∣

∣θ[2]]) IΘl

(2)
(θ(2))

∫

Θl

(2)
exp(0.5IEl2[log |h2(θ)|

∣

∣θ[2]]) d(θ(2))
,

where

IEl2[log |h2(θ)|
∣

∣θ[2]] =

∫

Θl

(3)

log |h2(θ)| πl3(θ[−2] | θ[2]) dθ[−2]

=

∫ l

1

log

(

Γ(1− s−1)s(s− 1)

Γ(s−1)σ2

)

[c1(l)]
−1

([A2 +B]s−3)1/2 I[1,l](s)ds

= − 2k log σ + c2(l),
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with

c2(l) =[c1(l)]
−1

∫ l

1

log

(

Γ(1− s−1)s(s− 1)

Γ(s−1)

)

([A2 +B]s−3)1/2 I[1,l](s)ds.

Hence,

πl2(µ, s | σ) =
πl3(s | σ, µ) exp[0.5(−2k log σ + c2(l))] I[−l,l]k(µ)

∫

[−l,l]k
exp[0.5(−2k log σ + c2(l))]I[−l,l]kdµ

=πl3(s|σ, µ) (2l)−k I[−l,l]k(µ).

Further, we obtain

πl1(σ, µ, s)π
l
1(θ[−0]|θ[0])

=
πl2(θ[−1]|θ[1]) exp(0.5IEl1[log |h1(θ)|

∣

∣θ[1]]) IΘl

(1)
(θ(1))

∫

Θl

(1)
exp(0.5IEl1[log |h1(θ)|

∣

∣θ[1]]) d(θ(1))
,
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with

IEl1[log | h1(θ)|
∣

∣ θ[1]] =

∫

Θl

[−1]

log |h1(θ)| πl2(θ[−1]|θ[1]) dθ[−1]

=

∫

[−l,l]k

∫ l

1

log

(

ψ
′

(1 + s−1)(1 + s)− s

σ2[A2 +B]

)

πl2(µ, s|σ) ds dµ

=− 2 log σ + c3(l),

where

c3(l) =

∫

[−l,l]k

∫ l

1

log

(

ψ
′

(1 + s−1)(1 + s)− s

[A2 +B]

)

πl2(µ, s | σ) ds dµ,

does not depend on θ = (σ, µ, s). Hence,

πl1(σ, µ, s) =
πl2(θ[−1]|θ[1]) exp[0.5(−2 log σ + c3(l))] IΘl

(1)
(θ(1))

∫

Θl

(1)
exp[0.5(−2 log σ + c3(l))] d(θ(1))

=
πl2(µ, s|σ) σ−1 I[l−1,l](σ)

∫ l

l−1 σ−1 dσ

=
πl2(µ, s|σ) σ−1 I[l−1,l](σ)

2 log l
.
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Thus,

πl1(s, µ, σ) =π
l
3(s|σ, µ) (2l)−k I[−l,l]k(µ) σ

−1 I[l−1,l](σ) (2 log l)
−1

=σ−1 ([A2 +B]s−3)1/2

× c1(l)(2l)
−k (2 log l)−1 I[1,l](s) I[−l,l]k(µ) I[l−1,l](σ).

Now we take any point θ∗ = (σ∗, µ∗, s∗) ∈ [l−1, l] × [−l, l]k × [1, l]. Then, the

reference prior for the ordering (σ, µ, s) is given by

π(σ, µ, s) ∝ lim
l→∞

πl1(σ, µ, s)

πl1(σ
∗, µ∗, s∗)

=σ−1 s−3/2 [A2 +B]1/2
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† For the ordering θ = (s, µ, σ), we have the Fisher information matrix:

S(θ) =H−1(θ)

=

































s3

B
0 Asσ

B

0 σ2Γ(1/s)
(−1+s)sΓ(1−1/s)

0

Asσ
B

0 σ2(ψ
′

(1+s−1)+s(ψ
′

(1+s−1)+A2
−1))

s(s(−1+ψ
′
(1+s−1))+ψ

′
(1+s−1))

































.

Thus,

S1 =
s3

B
,

S2 =











s3

B
0

0 σ2Γ(1/s)
(−1+s)sΓ(1−1/s)











,

and S3 = S(θ). Moreover, let Hj = S−1
j . Thus,

H1 =
B

s3
,

H2 =











B
s3

0

0 (s−1)sΓ(1−1/s)
σ2Γ(1/s)











,
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and H3 = H(θ).

h1 =
B

s3
,

h2 =
(s− 1)sΓ(1− 1/s)

σ2Γ(1/s)
,

h3 =
s

σ2
.

Similarly, we have

πl3(σ | s, µ) =πl3(θ[−2]|θ[2])

=
|h3(θ)|1/2IΘl

(3)
(θ(3))

∫

Θl

(3)
|h3(θ)|1/2 d(θ(3))

=
|sσ−2|1/2I[l−1,l](σ)
∫ l

l−1 |sσ−2|1/2 dσ

=σ−1 (2 log l)−1I[l−1,l](σ).

Moreover,

πl2(µ, σ|s) = πl2(θ[−1]|θ[1])

=
πl3(θ[−2]|θ[2]) exp(0.5IEl2[log |h2(θ)|

∣

∣θ[2]]) IΘl

(2)
(θ(2))

∫

Θl

(2)
exp(0.5IEl2[log |h2(θ)|

∣

∣θ[2]]) d(θ(2))
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where

IEl2[log |h2(θ)|
∣

∣θ[2]] =

∫

Θl

(3)

log |h2(θ)| πl3(θ[−2]|θ[2]) dθ[−2]

=

∫ l

l−1

log

(

Γ(1− s−1)s(s− 1)

Γ(s−1)σ2

)

(2σ log l)−1 I[l−1,l](σ) dσ

=c1(l, s),

which does not depend on µ. Hence,

πl2(µ, σ | s) =
πl3(σ|s, µ) exp[0.5c1(l, s)] I[−l,l]k(µ)
∫

[−l,l]k
exp[0.5c1(l, s)] I[−l,l]k dµ

=πl3(σ|s, µ) (2l)−k I[−l,l]k(µ).

Further,

πl1(s, µ, σ) =π
l
1(θ[−0]|θ[0])

=
πl2(θ[−1]|θ[1]) exp(0.5IEl1[log |h1(θ)|

∣

∣θ[1]])IΘl

(1)
(θ(1))

∫

Θl

(1)
exp(0.5IEl1[log |h1(θ)|

∣

∣θ[1]])d(θ(1))
,
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with

IEl1[log |h1(θ)|
∣

∣θ[1]] =

∫

Θl

[−1]

log |h1(θ)|πl2(θ[−1]|θ[1]) dθ[−1]

=

∫

[−l,l]k

∫ l

l−1

log(s−3[B]) πl2(µ, σ|s) dσ dµ

= log(s−3 [B]).

Hence,

πl1(s, µ, σ) =
πl2(θ[−1]|θ[1]) exp(0.5 log(s−3[B])) IΘl

(1)
(θ(1))

∫

Θl

(1)
exp(0.5 log(s−3[B])) d(θ(1))

=
πl2(θ[−1]|θ[1]) (s−3[B])1/2 IΘl

(1)
(θ(1))

∫

Θl

(1)
exp(0.5 log(s−3[B])) d(θ(1))

= πl2(θ[−1]|θ[1]) (s−3 [B])1/2 c2(l) IΘl

(1)
(θ(1))

= πl2(µ, σ|s) (s−3 [B])1/2 c2(l) I[1,l](s),

where [c2(l)]
−1 =

∫ l

1
exp(0.5 log(s−3[B])) d(s). Thus,

πl1(s, µ, σ) =(2σ log l)−1 (s−3[B])1/2

× c2(l)(2l)
−k I[1,l](s) I[−l,l]k(µ) I[l−1,l](σ).
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Finally,

π(s, µ, σ) ∝ lim
l→∞

πl1(s, µ, σ)

πl1(s
∗, µ∗, σ∗)

= σ−1 s−3/2 [B]1/2.

This completed the proof.

A.3 Proof of Lemma 1

† Consider the ordering θ = (σ, µ, s). From Theorem 1, we obtain that the

marginal prior of s is

πR1(s) ∝ s−3/2[A2 +B]1/2.

which provides

[πR1(s)]2 ∝ s−3[A2 +B].
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Since Γ(a) ≈ e−aaa−1/2
√
2π (Abramowitz and Stegun, 1986, p. 257), we obtain

that

[1 + ψ(1 + 1/s)]2

=1 + 2ψ(1 + 1/s) + [ψ(1 + 1/s)]2

=1 + 2 log(1 + 1/s)− (1 + 1/s)−1 + [log(1 + 1/s)− [2(1 + 1/s)]−1]2.

Since log(1 + 1/s) → 0 as s→ ∞ and (1 + 1/s)−1 → 1 as s→ ∞,

[1 + ψ(1 + s−1)]2 ≈ 1

4
.

Also, ψ′(a) ≈ a−1 + (2a2)−1 for large a. Thus, for small s, it follows

ψ′(1 + 1/s) ≈ (1 + 1/s)−1 + [2(1 + 1/s)2]−1 ≈ 3

2
.

Hence, [πR1(s)]2 ≈ s−3[3
2
+ 1

4
− 1] = 3

4
s−3 = O(s−3). Therefore,

πR1(s) = O(s−3/2).

† Consider the ordering θ = (s, µ, σ). From Theorem 1, we obtain that the

marginal prior is

πR2(s) ∝ s−3/2[B]1/2.
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Then, [πR2(s)]2 ∝ s−3[B]. Hence,

[πR2(s)]2 ≈ s−3[1 + 2(1 + 1/s)−1 − 1] =
1

2
s−3(1 + 1/s)−1.

Since (1 + 1/s)−1 → 1 as s→ ∞, [πR2(s)]2 ≈ 1
2
s−3 = O(s−3). Therefore,

πR2(s) = O(s−3/2).

† For marginal independence Jeffreys prior πI1(s). Since πI1(s) ∝ s−1[(1 +

s−1ψ′(1 + s−1)− 1]1/2, we obtain

[πI1(s)]2 ∝ s−2[B].

From the previous proof, we know [B] ≈ 1
2
. Hence,

[πI1(s)]2 ≈ 1

2
s−2 = O(s−2).

Therefore,

πI1(s) = O(s−1).

† For marginal independence Jeffreys prior πI2(s). This is the same as the

marginal reference prior of ordering θ = (σ, µ, s), so its proof is omitted for

simplicity.
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† For marginal Jeffreys-rule prior πJ(s). We know that

πJ(s) ∝
[

s(s− 1)Γ(1− s−1)

Γ(s−1)

]k/2

πI1(s).

Then,

[πJ(s)]2 ∝
[

s(s− 1)Γ(1− s−1)

Γ(s−1)

]k

[πI1(s)]2.

Thus, as s→ ∞, we have Γ(s−1) ≈ s. Also, Γ(1− s−1) → Γ(1) = 1 as s→ ∞.

Hence,

Γ(1− 1/s)

Γ(1/s)
≈ 1/s.

Since [πI1(s)]2 ≈ 1
2
s−2,, it follows

[πJ(s)]2 ≈ [
s(s− 1)

s−1
]k(

1

2
s−2) ∝ (s− 1)k(s−2) = O(sk−2).

Therefore,

πJ(s) = O(s(k−2)/2).
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A.4 Proof of Lemma 2

Proof of Lemma 2 First, we notice that σ can be integrated out analytically.

LI(µ, s; y) =

∫

∞

o

L(µ, σ, s : y)π(σ)dσ

=

∫

∞

o

(2σ)−n sn [Γ(1/s)]−n exp

(

−
n

∑

i=1

∣

∣

∣

log(yi)− µ

σ

∣

∣

∣

s
)

σ−a dσ

∝s−1

(

s

Γ(s−1)

)n

Γ

(

n+ a− 1

s

){ n
∑

i=1

∣

∣

∣
log(yi)− µ

∣

∣

∣

s
}

−
n+a−1

s

.

Then, with π(µ) ∝ 1, the integrated likelihood for s is

LI(s; y) =

∫

R

LI(µ, s; y)π(µ)dµ

∝ 1

s

{

s

Γ(s−1)

}n

Γ

(

n + a− 1

s

)∫

R

{ n
∑

i=1

∣

∣

∣
log(yi)− µ

∣

∣

∣

s
}

−
n+a−1

s

dµ.

Following the proof of Lemma 2 ([22]), it can be easily showed that

m1(y) ≤ n
n+a−1

s

∫

R

{ n
∑

i=1

∣

∣

∣
log(yi)− µ

∣

∣

∣

s
}

−
n+a−1

s

dµ ≤ m2(y),

where

m1(y) = min
(

∫

(max | log(yi)− µ|)−(n+a−1)dµ,

∫

(min | log(yi)− µ|)−(n+a−1)dµ
)
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and

m2(y) = max
(

∫

(max | log(yi)− µ|)−(n+a−1)dµ,

∫

(min | log(yi)− µ|)−(n+a−1)dµ
)

,

which are independent of s. Then, we obtain

∫

R

{ n
∑

i=1

∣

∣

∣
log(yi)− µ

∣

∣

∣

s
}

−
n+a−1

s

dµ = O(n−(n+a−1)/s).

The result will allow us to analyse the tail behaviour of the integrated likelihood for

s. We know that as s→ ∞, we have Γ(s−1) ≈ s. Therefore,

LI(s; y) ∝ s−1

(

s

Γ(s−1)

)n

Γ

(

n+ a− 1

s

)∫

R

{ n
∑

i=1

∣

∣

∣
log(yi)− µ

∣

∣

∣

s
}

−
n+a−1

s

dµ

= s−1 sn
[

Γ(s−1)
]

−n
Γ

(

n+ a− 1

s

)
∫

R

{ n
∑

i=1

∣

∣

∣
log(yi)− µ

∣

∣

∣

s
}

−
n+a−1

s

dµ

≈ 1

n+ a− 1
O(n−(n+a−1)/s) = O(1).

This completed the proof.
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