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Abstract 
High resolution digital elevation models (DEMs) of Santiaguito and Pacaya volcanoes, 

Guatemala, were used to estimate volume changes and eruption rates between 1954 and 

2001. The DEMs were generated from contour maps and aerial photography, which 

were analyzed in ArcGIS 9.0®. Because both volcanoes were growing substantially over 

the five decade period, they provide a good data set for exploring effective methodology 

for estimating volume changes. The analysis shows that the Santiaguito dome complex 

grew by 0.78 ± 0.07 km3 (0.52 ± 0.05 m3 s-1) over the 1954-2001 period with nearly all 

the growth occurring on the El Brujo (1958-75) and Caliente domes (1971-2001). 

Adding information from field data prior to 1954, the total volume extruded from 

Santiaguito since 1922 is estimated at 1.48 ± 0.19 km3.  Santiaguito’s growth rate is 

lower than most other volcanic domes, but it has been sustained over a much longer 

period and has undergone a change toward more exogenous and progressively slower 

extrusion with time.  At Santiaguito some of the material being added at the dome is 

subsequently transported downstream by block and ash flows, mudflows and floods, 

creating channel shifting and areas of aggradation and erosion.  At Pacaya volcano a 

total volume of 0.21 ± 0.05 km3 was erupted between 1961 and 2001 for an average 

extrusion rate of 0.17 ± 0.04 m3 s-1.   Both the Santiaguito and Pacaya eruption rate 

estimates reported here are minima, because they do not include estimates of materials 

which are transported downslope after eruption and data on ashfall which may result in 

significant volumes of material spread over broad areas. Regular analysis of high 

resolution DEMs using the methods outlined here, would help quantify the effects of 
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fluvial changes to downstream populated areas, as well as assist in tracking hazards 

related to dome collapse and eruption. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1 Introduction 
 The Central American Volcanic Front crosses Guatemala from Mexico to El 

Salvador, and consists of a linear belt of stratovolcanoes, silicic domes, and calderas, 

over an area of actively changing topography (Vallance et al. 1995; Carr et al. 2007). 

The volcanoes give rise to volcanogenic sediment accumulating downslope of the 

growing volcanic chain, affecting many rivers, which cross the heavily populated coastal 

slope (Vessell and Davies, 1981).  Uplift of the entire region is likely from subduction of 

the Cocos Plate under the Chortis terrain (Rogers et al. 2002), which is marked by 

slivered transcurrent faults (DeMets, 2001).   

 Santiaguito is located on the SW flank of Santa María stratovolcano (3772 m) in 

SW Guatemala and is ~10 km away from Quetzaltenango, Guatemala’s second largest 

city (Figure 1.1).   

 

Figure 1.1  Map of Guatemala with Santa María/Santiaguito and Pacaya Volcanoes. Guatemala 
City, the capital, is denoted by the black star.  Map created by author with data found in ESRI 
ArcGlobe.   

 
Santiaguito has grown from continuous extrusion of dacite since 1922 (Sapper, 1926; 

Rose 1987; Harris et al. 2004) following a plinian eruption in 1902 from Santa María 

(Sapper, 1903; Williams and Self, 1983), building a complex of dacitic domes and 
1 
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blocky lava flows (Rose 1972a, 1987; Harris et al. 2003, 2004).  Between 1922 and 1984 

Santiaguito grew in a series of 3-5 year bursts of high extrusion (0.6-2.1 m3 s-1) and 10-

12 year intervals of lower extrusion (~0.2 m3 s-1) (Rose 1973, 1987). At Santiaguito 

much of the volcanic material erupted is transported downstream due to block and ash 

flows and lahars, which may be deposited as far away as the ocean due to further fluvial 

transport (Kuenzi et al. 1979; Harris et al. 2006).  In November 1929, dome collapse led 

to a block and ash flow which flowed ~10 kilometers from the volcano devastating 

several populated areas and resulting in hundreds of deaths (Sapper and Termer, 1930; 

Simkin and Siebert, 1994). Block and ash flows have occurred almost every year at 

Santiaguito and consequent lahar hazards are prevalent in the rainy season when heavy 

rains remobilize block and ash flow materials and carry them downstream, producing 

lahars, hyperconcentrated flows, and flood deposits.   This activity aggrades the parallel 

rivers of the alluvial fan and presents a serious and very complex hazard for the 

communities surrounding the dome complex and the rivers that drain it (Harris et al. 

2006).  Changes in topography of volcanic domes are fundamental for the understanding 

of consequent hazards from dome collapses (Swanson et al 1987; Miller, 1994).   

 Pacaya volcano is located ~ 28 km S of Guatemala City and lies on the S edge of 

Amatitlán caldera (Wunderman and Rose, 1984).  Pacaya’s activity is episodic with 

eruptive intervals of 50-300 years during which lava and scoria are erupted, and longer 

dormant intervals lasting between 300-500 yr (Conway, 1992).  Activity at Pacaya can 

be subdivided into three stages: initial, historical, and recent (Eggers, 1971).  The initial 

phase consisted of cone construction by large flows and tephra deposits (Kitamura and 

Matías, 1995).  Strombolian activity continued between 2000 and 400 yr BP, until a 
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large sector collapse occurred creating a debris avalanche of 0.6 km3 and a prominent 

arcuate scar (Vallance et al. 1995).  The historic stage continued, consisting of 

Strombolian periodic cone building eruptions, occurring periodically since 1565 (GVN, 

2008).  Pacaya was in repose from 1885-1961 when an eruption occurred without 

warning in March of 1961 (Conway, 1992); beginning the current eruption phase.  After 

a lava flow eruption in 1961 and four years of repose, Pacaya has been continuously 

active with Strombolian eruptions causing tephra fall, ballistic bombs, and lava flows 

(Eggers, 1971; 1983), which built a new cone (Mackenney Cone) on the west side of the 

older (1775-1885) cone.   The possibility of debris avalanches or volcanic edifice sector 

collapses are a concerning hazard for the future at Pacaya, especially in view of its 

dramatic record of its catastrophic collapse in the past (Vallance et al. 1995).  

 Topographic changes have been studied at many volcanoes using Radar 

(Rowland et al. 1999), GPS (Wadge et al. 2006), and DEMs (Stevens et al. 1997; Baldi, 

2002; Kerle, 2002). Ideally a topographic study is conducted using very high resolution 

data acquired from Radar, InSAR, GPS, etc.  Many regions of the world do not have 

highly accurate elevation data, and other methods need to be used, such as deriving 

DEMs from topographic maps. These DEMs can be extremely helpful in areas where 

very little elevation data exists, which is the case in Guatemala. The Santiaguito dome 

complex and Pacaya volcano are excellent study areas for evaluating DEM-based 

extrusion rate estimates as a result of their continuous activity, which has produced 

significant topographic changes near the active vents. The topography is steep and 

irregular and is changing continually from both erosion and addition of new volcanic 

material.   In this paper we quantify the rate of topographic change at Santiaguito and 
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Pacaya volcanoes over the past ~50 years using high resolution digital elevation models 

(DEMs) obtained from aerial photographs and topographic maps.  
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2 Methods  

2.1 DEM differencing 
 In the 1950’s basic topographic mapping of Guatemala was completed by the 

Instituto Geográfico Nacional (IGN) and country-wide 1:50,000 quadrangle maps were 

compiled. These maps are still widely used and are essential for hazards evaluation 

because they describe the complex topography of the volcanic front. Quadrangle maps, 

based on aerial photography from January- March 1954, for Santiaguito and Pacaya 

(IGN, Guatemala, sheets Colombá (1860 II), Retalhuleu (1859 I), San Lorenzo (1859 II), 

and Amatitlán (2059 II)) had 20 m contour lines, which were digitized from clear film 

and exported to an ArcINFO export format (.e00) (USGS, 2001).  The United States 

Geological Survey (USGS) used these 20 m elevation contours to produce 10 m pixel 

DEMs (pers. comm. Steve Schilling, 2007).  

 In February 2001 the Japan International Cooperation Agency (JICA) in 

cooperation with various Guatemalan agencies, generated new digital topography of 

some key hazard areas, including Santiaguito and Pacaya, from aerial photographs 

(JICA, 2003). We used the 2001 digital contour lines from JICA to interpolate 10 m 

DEMs using the ANUDEM algorithm developed by Hutchinson (1993). The 2001 

DEMs were converted to the UTM Zone 15 NAD 1927 coordinate system and datum to 

align with the 1954 DEMs. In this study we use DEM data created from the 1950’s 

topographic maps and the 2001 JICA digital topography as primary data sources to 

examine topographic changes at Santiaguito and Pacaya and the areas surrounding them. 



Volume and elevation change was estimated in this study by subtracting the 1954 DEMs 

from the 2001 DEMs (See Appendix I for DEM differencing steps).   

 Field observations and existing maps were used to outline active volcanic areas 

at Santiaguito and Pacaya, resulting in analysis masks.  Analysis masks were used to clip 

or cut out certain areas of interest allowing the user to process only the features within 

the mask. Analysis masks were created for Santiaguito at (1) the El Brujo Dome region, 

active from 1958-75 (Rose, 1972a, 1987), for (2) the Caliente Dome region, active from 

1971 to present and for (3) a region on the south flank of the La Mitad and El Monje 

Domes, which was subject to severe erosion during 1954-2001. In all of the masked 

regions we subtracted the 1954 DEM from the 2001 DEM, giving us a difference DEM 

for each region.  At Pacaya, the complexity of volume change was much less that that of 

Santiaguito and a single active mask was analyzed. 

2.2 DEM error estimation 
 Errors within the DEM may be caused by random errors, systematic errors during 

data collection, interpolation errors, and regional uplift in the region.  We first estimate 

the error of interpolation using the root mean square error as shown below: 

RMSE = ∑
=

n

i 1 n
yY ii )( −

 

Where n is the number of reference points, yi is the elevation at reference point i, and Yi 

is the elevation from the DEM at point i. Interpolation of contour lines to create a DEM 

results in some error; therefore the RMS error was used to measure this effect. The 1954 

data had no independent set of control points; therefore the contour lines, which were 

used to interpolate the DEM, were converted to points, and a random sample of 500 
6 
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points were taken out of ~500,000.  The sample points were then compared to the DEM 

and a vertical RMSE was obtained. This error represents the error introduced from the 

interpolation process which was conducted by the USGS (2001).  The 2001 data 

included elevation points at a spacing of 40 m, which were interpolated from the original 

orthophotographs (JICA, 2003). The 40 m points were not used to create the DEM, so 

they represent a separate reference point which was used to calculate the RMSE.  A 

random sample of 500 was taken, out of a possible ~1 million, and those points were 

compared to the DEM yielding a vertical RMSE. Independent ground control points 

(GCP’s) were not created for this study; therefore the existing elevation data was used to 

estimate the interpolation error. Errors due to re-projection are considered insignificant 

with very little distortion taking place due to the small area studied (Steinwand et al. 

1995).   

 In addition to the interpolation, there are systematic errors within the dataset due 

to errors in data collection (i.e. manual drawing of contour lines, digitization etc.).  

Systematic errors are hard to measure and ideally the original aerial stereographic data 

should be used, but these were not available for this study.  A study done by Shearer 

(1990), estimated the error resulting from digitization of the contours to be ±0.25 m.  

This estimate has been used in other lava volume studies (Stevens et al. 1997; Stevens et 

al. 1999), and is believed to be suitable for this study. Other error sources (tree cover, 

uplift etc.) are believed to be negligible and are discussed later in more detail.  

   



3 Results 

3.1 Estimated Errors 
 The RMSE due to interpolation is 2.2 m and 5.7 m for the 1954 and 2001 DEMs 

respectively. The 1954 and 2001 DEMs were mosaiced from three DEMs, for 

Santaiguito. All three DEMs are believed to have the same error since the aerial 

photographs were obtained at the same time, therefore the RMSE due to interpolation 

was determined once for the 1954 and 2001 DEMs. The Pacaya DEMs are believed to 

have the same error since they were created at the same time as the Santiaguito DEMs. 

The error estimated from digitization of contours was estimated as 0.25 m, as defined by 

Shearer (1990).  The above errors were added resulting in an overall DEM error of 8.15 

m (Table 3-1) and was used to calculate the volume errors by multiplying the volcanic 

area by the DEM error.  

Table 3-1 Table showing RMSE for each DEM due to interpolation, as well as the digitization error.   
The Total DEM Error was found to be 8.15 m. 

1954 RMSE (m) 2001 RMSE (m) Digitization 
Error (m) 

Total DEM 
Error (m) 

2.2 5.7 0.25 8.15 

3.2 Santiaguito Dome 
 Based on DEM differencing for 2001 and 1954, elevation changes occurred 

inside and outside of the dome as shown in Figures 3.1a and 3.2 respectively.  Figure 3.2 

has elevation changes occurring outside of the active dome, with much of the image 

showing small elevation change. The large elevation loss (> -50 m) in the Santa María 

crater wall represents an area of rapid erosion due to very steep slopes (> 45°). The 

amount of erosion from this is estimated at 0.05 ± 0.02 km3, with a maximum elevation 

8 
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loss of 150 m. This erosion contributes to the volume of material accumulating within 

the 1902 crater region to the south, which is masked as part of the active dome. We 

assume the eroded material from Santa María contributes very little to the overall dome 

volume and did not attempt to determine how much of this material was deposited 

outside of the masked dome region.  In addition to the wall of Santa María, there are 

other regions which show large (+50 m) elevation changes outside of the dome itself. 

Because they are found at high elevations within this area of frequent fog, we suggest 

that these possibly reflect poor visibility regions (cloud or mist) on either of the aerial 

photographs used for contouring which resulted in misalignments.  In addition, the large 

elevation changes may be caused by misalignment of contours from data collection and 

interpolation methods. Comparison of the dome region and areas outside reveal the mean 

elevation change is very different (Table 3-2).  The means (both algebraic and absolute) 

are significantly higher in the dome region, than that outside; indicating much larger 

elevation change is occurring in the dome region.  

Table 3-2 Table showing mean elevation change for the dome and the region outside. The algebraic 
mean and standard deviation are shown for elevation change, as well as the absolute mean and 
standard deviation values. Note the difference between the mean changes, with much higher 
elevation change occurring in the dome region.   

Region Mean Elev. 
Change (m) 

Standard Dev. 
Elev. Change (m) 

Abs. Mean Elev. 
Change (m) 

Abs. Stand. Dev. 
Elev. Change (m) 

Dome 92.70 78.96 100 68.5 
Outside 
Dome 

8.05 26.12 17.2 21.2 



 
Figure 3.1 Elevation change map for the Santiaguito dome with a volume change of 0.78 ± 0.07 km3.  b. Elevation change at El Brujo with a volume change of 0.42 ± 0.03 km3. c. An area of large elevation loss is shown between b and d, with a 

volume loss of 0.03 ± 0.01 km3.  d. Elevation change at Caliente with a volume change of 0.39 ± 0.03. km3. 

10 



 

Figure 3.2 Elevation change map outside of the dome.  

11 



 The dome region comprises two areas of positive elevation change (> 150 m), 

which coincide with the El Brujo (1958-1975) and Caliente (1971-present) domes (Rose 

1972a; 1987). In addition, a region of negative topographic change (< -50 m) is depicted 

between the two active dome regions, which is a rapidly eroded region during the test 

period (1954 to 2001).  A volume change of 0.42 ± 0.03 km3 and 0.39 ± 0.03 km3 was 

estimated for the El Brujo and Caliente domes respectively (Figure 3.1 b and d).  The 

highly eroded region between El Brujo and Caliente resulted in a volume loss of 0.03 ± 

0.01 km3 (Figure 3.1c). The mean extrusion rate for El Brujo, 0.78 ± 0.04 m3s-1, was 

calculated from 1954-1975 during the active period, while the mean extrusion rate for 

Caliente, 0.41 ± 0.03 m3 s-1, was calculated from 1971-2001 (the end of the study 

period).  The overall volume change for the dome region (excluding the lost volume 

from Santa María) is 0.78 ± 0.07 km3 yielding an average extrusion rate of 0.52 ± 0.05 

m3 s-1 from 1954 to 2001 (Figure 3.1a, Table 3-3). The volume error was calculated by 

multiplying the DEM error and the volume error as shown in Table 3-3.   

Table 3-3 Summary table for DEM error, Area, and Volume Change.  Volume changes for each 
region with error estimates are shown. 

12 

 

 In addition to changes occurring at the dome, flows from the Caliente dome are 

impacting Río Nimá I and II with addition of material in the river channels (Harris et al. 

2006), which can be seen in the dome region (Figure 3.1 a).  Areas downstream of 

Santiaguito were analyzed for elevation change, but the volume changes shown in these 

Region DEM Error 
(m) 

Area 
(km2) 

Volume Error 
(km3) 

Volume Change 
(km3) 

Dome 8.15 8.4 0.07 0.78 ± 0.07 
Pacaya 8.15 6.8 0.05 0.21 ± 0.05 
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regions were small compared to computed errors, so we do not attempt to estimate here 

how much erupted materials are carried downslope by pyroclastic flows, mudflows, and 

floods.  We do know that all of these downslope depositional events are occurring every 

year at Santiaguito (Harris et al. 2006).   

3.3 Pacaya 
 Based on DEM differencing for 2001 and 1954, elevation changes occurred 

inside and outside of the Pacaya region as shown in Figures 3.5 and 3.6.  Figure 3.6 

measures elevation changes occurring outside of the Pacaya region, with much of the 

image showing small elevation change. Pacaya had a volume change of 0.21 ± 0.05 km3 

with an average eruption rate of 0.17 ± 0.04 m3 s-1 for a masked area of 1 x 106 m2 

(Figure 3.5, Table 3-3). The average eruption rate of 0.17 ± 0.04 m3 s-1 was determined 

from 1961-2001, as Pacaya was not active from 1954-1961. Pacaya began the current 

eruption phase in 1961 creating a lava flow with deposition ranging from 10-50 meters 

and continued with lava flows and spatter deposits from 1965-2001 which are present in 

the north. The volume changes shown do not quantify tephra falls that caused deposition 

outside of the test region. These were numerous but mostly small in volume, although 

the Jan. 16, 2000 fall deposit certainly resulted in significant additional volume (BGVN, 

1999).  Comparison of the Pacaya region and areas outside reveal the mean elevation 

change is very different (Table 3-4).  The means (both algebraic and absolute) are 

significantly higher in the Pacaya region, than that outside, indicating much larger 

elevation change is occurring in the volcanic region. 
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Table 3-4 Table showing overall DEM error. The algebraic mean and standard deviation are shown 
for elevation change, as well as the absolute mean and standard deviation values. Note the difference 
between the mean changes, with much higher elevation change occurring in the volcanic region.   

Region Mean Elev. 
Change (m) 

Stand. Dev. Elev. 
Change (m) 

Abs. Mean Elev. 
Change (m) 

Abs. Stand. Dev. 
Elev. Change (m) 

Pacaya 31.36 43.97 34.9 41.2 
Outside  -3.54 10.61 8.8 6.8 



 

Figure 3.3  Elevation change map of Pacaya volcano with a volume change of 0.21±0.05 km3. 
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Figure 3.4 Elevation change map outside of the Pacaya region 

16 
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4 Discussion 

4.1 Santiaguito Volume Changes  
 El Brujo was active from 1958-1975 and during that time erupted six blocky lava 

flows as described by Rose (1987) and Harris et al. (2003).  Figure 4.1 outlines some of 

these flows from a new geologic map of Santiaguito (Escobar et al. 2008).  Many of the 

large flows along the west side of Santiaguito occurred from 1958-1974 and coincide 

with the volume changes we found in the El Brujo vent region.  

 The analysis of Caliente dome, active from 1971 to present, reveals that volume 

change patterns mapped here coincide with the emplacement of many lava flows, 

including units emplaced from 1972 until 2006 (Figure 4.1, Escobar et al. 2008).  Two 

areas of high elevation change (>200m) are shown to the north and south of the Caliente 

vent (Figure 3.2d).  This pattern was created from lava flow material accumulating near 

the Caliente vent first, with lava flows from 1972-73 flowing north of the vent into the 

1902 crater, and later lava flows occurring in the early 90’s causing thickening south of 

the vent (Harris et al. 2003).   An area of erosion (loss of 0-200 m) has developed 

between the Caliente and El Brujo vents and occurs at a steep area on the flank, where 

rocksliding and fluvial erosional energy is concentrated.  



 

Figure 4.1 Elevation change map for Santiaguito with lava flows units shown in black as defined by Escobar et al. (2008) from 1922-2006.  
Much of the elevation change relates directly to the lava flow emplacement, but the use of this map, especially around the Caliente vent 

misleads by emphasizing recent units that may in many cases cover up units previously extruded.

18 
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Comparison with previous work 
 
 The volume change at the dome between 1954 and 2001 is 0.78 ± 0.07 km3 (0.52 

± 0.05 m3 s-1), with much of the deposition occurring at El Brujo and Caliente.  Adding 

the field based estimates from 1922-1954 of 0.7 km3 (Rose et al. 1970; Rose 1972b, 

1987), gives a total volume change from 1922-2001 of 1.48 ± 0.20 km3 (Table 4-1). 

Volume estimates for units emplaced prior to 1986 were not based on topography 

derived from photogrammetry and had estimated errors of ± 25% of the volume (Harris 

et al. 2003). 

Table 4-1 Volume calculations for 1922-2001.  The volume estimates are also shown from 1922-1954 
based on previous field estimates with a 25% error estimate. The 1922-2001 volume change for 
Santiaguito is 1.48 ± 0.19.   

Region  1954-2001 
Volume (km3) 

 1922-1954 
Volume a(km3) 

1922-2001 
Volume (km3) 

Dome  
   El Brujo  0.42 
   Caliente  0.39 
   La Mitad Erosion -0.03 
  Santa María Erosion    -0.05* 

 
 

0.7 

 

Dome Total  0.78 ± 0.07 0.7 ± 0.18 1.48 ± 0.19 
* Santa María erosion is not included in the dome total since we are unsure how much of this erosion is 
within the dome region.  We believe this volume is contributing very little to the overall dome volume.  
a Rose et al. 1970; Rose 1972b, 1987 

 
The volume changes quantified here for Santiaguito (Table 4-1) do not include the 

additional volumes of airfall ash deposited outside of the masked areas associated with 

weak hourly vertical explosions and far less frequent block and ash flows.  The erosion 

occurring on the steep walls of Santa María are not included in the overall volume, 

because this erosion is believed to be contributing very little to the volume erupted at the 

dome.  We do not attempt to quantify the volume of this material, but instead 

acknowledge that our estimate here is a minimum volume change. In addition, the 
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proximal and medial regions, which were found to be insignificant in this study and are 

not included here, are believed to be contributing to the overall Santiaguito volume due 

to downslope sedimentation which has been previously documented (Kuenzi et al. 1979; 

Kimberly, 1995; Harris et al. 2006).   

 Previous estimates of volume change from 1922-2000 were found to be 1.3 km3 

(Rose et al. 1970; Rose 1972b, 1987; Harris et al. 2003).  Our results are thus in good 

agreement with the previous estimate (1.3 km3), but have improved errors (1.48 ± 0.19 

km3).   

4.2 Comparison with other domes 
 From 1954-2001 the effusive activity at Santiaguito has been mainly exogenous 

and consists of a cyclical pattern of low and high extrusion rates (Harris et al. 2003). 

Similar pulsating behavior has been observed at other active domes e.g. the 1980-83 

eruptive period of Mount. St. Helens (Swanson et al.1987).  Table 4-2 shows the main 

parameters of growth for six domes compared to Santiaguito. 

 

 

 

 

 

 

 

 



21 

Table 4-2 Volume and extrusion rates for various volcanic domes 

  Santiaguitoa Mount St. 
Helens* b,c 

Augustined Montserrate Unzen 
f,,g 

Redoubt 
h 

Merapi 
i,,j 

Period of dome growth 
From Jan-54 Oct-80/ Oct-

04 
Jan-06 Nov-95 Oct-91 Dec-89 1890 

To Feb-01 Dec-83/ 
Dec-05 

Mar-06 Mar-98 Mar-93 June-90 Jan-92 

Duration 
(yr) 

47 3.2 / 1.2 0.25 2.3 1.4 0.5 102 

Dome 
Volume 
(km3) 

0.78  0.04 / 0.07 0.018  0.3  0.09  0.09  0.10 

Average 
eruption 
rate (m3 

s-1) 

~ 0.52 ~ 0.41 / 
~1.93 

2.7 ~ 4.1 ~2.0 5.92 0.04 

SiO2 
Content 

63-68% 61-64% 56-64% 58-62% 64-66% 58-63% 53-
55% 

   a This paper, b Fink et al. 1987, c Scott et al. In press, d Dehn et al. 2006, e Watts et al. 2002, fKaneko et al.                             
2002, gNakada et al. 1999, hMiller, 1994, iSiswowidjoyo et al. 1995, jVoight et al 2000, *Two eruption 
dates are shown for Mt. St. Helens: October 1980-December 1983 and October 2004-December 2005.   

 

Figure 4.2 shows the relationships between lava volume, duration and eruption rate for 

these documented cases.  Larger domes tend to extrude for longer periods at slower 

extrusion rates.  Merapi has a much lower eruption rate but has been erupting for well 

over 100 years. Merapi and Santiaguito have similar eruption cycles dominated by high 

extrusion for shorter periods and lower extrusion rates for longer periods (Siswowidjoyo 

et al. 1995; Voight et al 2000).   



 

Figure 4.2  Graph showing duration in years vs. eruption rate. The areas of circles plotted are 
proportional to overall lava volume.  

 
Both Montserrat (1995-1998) and Redoubt (1989-1990) created many domes which 

were emplaced and destroyed through endogenous and exogenous growth (Miller, 1994; 

Watts et al. 2002).  In 2006, Augustine showed similar characteristics with the formation 

of a new lava dome resulting in failure, causing block and ash flows (Power et al. 2006). 

A similar pattern occurred at Unzen (1991-1993) with the collapse of a multi-lobed 

dome creating pyroclastic flows (Kaneko et al. 2002). Santiaguito has lava flow 

collapses and smaller scale partial dome collapses rather frequently (yearly to every few 

years).  This pattern is a great concern at Santiaguito for much of the collapse material is 

moved down stream of the volcano creating lahars, hyperconcentrated flows, and floods.   
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 Overall the comparison of rates shown in Table 4-2 and Figure 4.2 shows that 

short-lived (one to several years) dome extrusion events have extrusion rates that are an 

order of magnitude higher than the Santiaguito average, and similar to the higher 

extrusion rates that last for only a few years. Santiaguito has a larger volume and much 
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longer duration than many other modern dome examples, while all domes exhibit some 

form of unsteady flow (Barmin et al. 2002).  

 After the endogenous to exogenous shift occurred in the 1960-70’s, the block 

lava flow lengths increased, while the SiO2 content dropped by 2 wt% since 1970 (Rose, 

1987; Harris et al. 2003).  In spite of this compositional change, we have seen a 

decreasing extrusion rate (Figure 4.2), which is possibly due to an exhausted and less 

pressurized chamber, where more mafic magma is being erupted (Harris et al. 2003). 

4.3 DEM Errors 
 Errors within a DEM can significantly affect the final analysis for elevation and 

volume studies. Some other factors which may affect the DEMs are tree canopies, uplift, 

erosion, and other systematic and random errors relating to data collection and 

interpolation. Tree canopies can be a source of error in aerial photographs, due to the 

elevation of the canopy recorded and not the ground (Stevens et al. 1997).  For this 

study, tree canopies may introduce error in regions outside of the volcanic zone, but 

much of the analysis was conducted on the volcanic dome or in areas of activated flood 

plains and therefore we believe the effects of tree canopies to be minimal.  For this study 

we do not consider regional uplift effects which may occur along the volcanic front, 

because we have no estimates to help constrain them. Similarly, we have not considered 

the regional sedimentation that is demonstrably underway, transporting sediments from 

the volcanic highland to the coastal slope and coastal plain; therefore this is not included 

in the error analysis.  

 In this study, points obtained from the contour lines or from the aerial 

photography were used as the reference points. There was no independent set of 
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reference points to determine an RMSE for each DEM. The reference points are a good 

indicator for the error due to interpolation, which is what was used for this study. Ideally 

independent ground control points (GCP’s) would be used which have a higher accuracy 

level than the DEMs used here, resulting in reduced DEM errors.  The method used here 

was a conservative approach, yielding higher errors than may actually exist in the DEMs 

and further analysis would have to be done to obtain more accurate error estimates.  

4.4 Pacaya 
 The emplacement of volcanic products (i.e. lava flows, spatter and proximal 

tephra deposits) due to the eruptive activity of the MacKenney Cone at Pacaya since 

1961 are clearly recognizable in our results.  Because MacKenney Cone’s east side is 

buttressed by an earlier cone, most of the 1961-01 activity has taken place on the west 

side of the MacKenney Cone yielding a volume change of 0.21 ± 0.05 km3 (0.17 ± 0.04 

m3 s-1) (Figure 3.5).  Pacaya is dominated by Strombolian activity, lava flows and tephra 

fall.  The tephra falls are not accurately reflected in this analysis since we believe that 

significant volume of the tephra falls were distributed outside of the masked DEM 

volume change region. Major effusive phases occurred in 1961, 1965-1989, and 1990-

2000 (Matías, 2008 (unpublished data)).  Much of the 1980’s through 2000 flows are 

overlain on one another to the north-west of the MC, but the January 10-16, 2000 flow is 

shown (Figure 3.5) directly north of the cone (BGVN, 2000).   Pacaya poses various 

volcanic hazards including lava flows, lava bombs, spatter, and tephra fall. This study 

has shown where much of the current activity has taken place, north of the Mackenney 

Cone, and can be used to determine the location of future hazards.  In addition, the 

possibilities of debris avalanches or volcanic edifice sector collapses are a concerning 
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hazard for the future (Vallance et al. 1995). Continued monitoring of the elevation and 

volume change at Pacaya could help with determining future volcanic hazards.   

 The extrusion rates of four other basaltic convergent plate boundary volcanoes 

are compared with Pacaya (Table 4-3 and Figure 4.3).  

Table 4-3 Lava volume and extrusion rates for basaltic volcanoes 

  Pacayaa Strombolib Izalcoc Cerro Negrod,e Fuegof,g 
Period of dome growth      
From Mar-61 Feb-34 1770 Apr-1850 1932 
To Feb-01 Present 1974 Aug-99 1979 
      
Duration (yr) 40 73 204 149 47 
      
Lava Volume (m3) 2.1 x 108 > 2.6 x 

106 
2 x 109 4 x 107 7 X 108 

      
Average eruption rate 
(m3 s-1) 

~ 0.17 0.001 0.31 0.008 0.5 

      
SiO2 Content 47-52% 52-53% 53-56% 48-50% 50-54% 

a This paper, b GVN, 2007, c Carr et al. 1981, d GVN, 2007b, e Carr et al. 2003, f Martin and Rose, 1981, g 

Roggensack, 2001 
 

Of the four examples in Table 4-3, the eruption style of Pacaya matches best that of 

Izalco, which was continuously active from about 1770 until 1960, and the two 

volcanoes have similar eruption rates. Stromboli and Cerro Negro, two other basaltic 

volcanoes with frequent activities, erupt less prolifically. Stromboli has been continually 

active at a low rate for the past 3000 years at least, while Cerro Negro has had several 

brief Strombolian events each decade since 1870. Fuego is another nearby basaltic center 

which erupts frequently. Its eruption rate has been estimated at ~0.5 m3 s-1 by Martin and 

Rose (1981).  The higher vertical stature of Fuego (3770 m vs. ~2500 m for Pacaya) and 

its possibly higher eruption rate may partly reflect higher volatile content of its magma 



(Roggensack, 2001).  Pacaya has a much higher eruption rate than Cerro Negro and 

Stromboli, and has similar eruption rates to Fuego and Izalco, although Izalco erupted 

more over a longer time period (Figure 4.3). 

 

Figure 4.3  Graph showing lava volume vs. eruption rate. The area of circles plotted are 
proportional to the duration of activity measured.  

 
Pacaya is marked by thin lava flows which require high resolution DEM data to be 

accurately resolved. A detailed map of Pacaya’s activity since 1961 is being compiled 

using orthophoto data with 1m resolution (O. Matias, MS thesis, MTU, in prep.).   
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5 Conclusion 
 DEM subtraction is an accurate method for determining elevation change and 

extrusion rate at active effusive volcanoes. This study resulted in more accurate 

estimates of volume changes and eruptive flux rates at Santiaguito and Pacaya 

volcanoes. Our results compare well with previous estimates derived from field methods 

and Landsat satellite images at Santiaguito (Rose et al. 1970; Rose 1972b; 1987; Harris 

et al. 2003), but the new results have smaller errors. The DEM analysis of Santiaguito 

matches the patterns of blocky lava flow activity, that were reported by field studies at 

the dome from 1954-2001. The total volume erupted at Santiaguito from 1922-2001 is 

estimated at 1.48 ± 0.19 km3.  This value is believed to be a minimum because some 

volume of erupted materials is rapidly transported southward by dome collapses and 

sedimentation is unmeasured here and dispersed volcanic ash is also not estimated. To 

determine the effect of volcanic sedimentation, higher accuracy DEMs, and more 

datasets at varying time intervals should be analyzed.  This will further quantify the 

influx/outflux of volcanic sediment from Santiaguito and can be added to the overall 

erupted volume of Santiaguito.  Comparison of Santiaguito with other domes, reveal that 

short lived dome extrusion events have extrusion rates which are an order of magnitude 

higher than that of Santiaguito.  Santiaguito has a much larger volume and much longer 

duration than most modern dome examples.  The DEM volume difference estimates at 

Pacaya from 1954-2001 were found to be 0.21 ± 0.05 km3, created by lava flow and 

spatter deposition associated with the development of the Mackenney Cone. Comparison 

of Pacaya with other basaltic volcanoes, reveal that Pacaya has similar eruption rates as 

Fuego and Izalco, two basaltic volcanoes with prolific activity records.    
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 Ideally GCP’s would be used to obtain a more accurate DEM error; therefore 

greatly decreasing the error in the volcanic regions, as well as regions downslope. 

Through the analysis of DEMs we have calculated elevation and volume change at both 

Santiaguito and Pacaya, which revealed areas of deposition and erosion. Due to much of 

this material moving downslope to populated areas, these changes should be monitored 

to prepare for future volcanic hazards.  DEM analysis proved successful in determining 

elevation change with improved error estimates over a ~50 year period at both 

Santiaguito and Pacaya and the same methodology can be applied to many other 

volcanoes to map and predict volcanic hazards.  
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7 Appendix 
 
 I.  DEM differencing/error instructions using ArcGIS 9.0.  Appendix 
may be accessed at http://www.geo.mtu.edu/~ksdurst/Thesis/DEMProcedures.html and 
is also attached in a CD (html and jpeg) with this thesis. 
 
 II. ASTER DEM and differencing analysis. Although this research is not 
presented in this thesis, detailed analysis and instructions may be accessed at 
http://www.geo.mtu.edu/~ksdurst/Thesis/ASTER.html and is also attached in a CD 
(html and jpeg) with this thesis. 

http://www.geo.mtu.edu/%7Eksdurst/Thesis/DEMProcedures.html
http://www.geo.mtu.edu/%7Eksdurst/Thesis/ASTER.html
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