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Michigan Technological University  

ABSTRACT 

 

EFFECTS OF CARBONATION ON THE MINERAL COMPOSITION OF  

CEMENT KILN DUST 

 

By Cecilia P. Anderson 

Department of Geological & Mining Engineering & Sciences  

3 October 2006 

 

Due to their relatively high calcium oxide content, industrial mineral oxide wastes 

are potential candidates for mineral sequestration of carbon dioxide (CO2). Cement kiln 

dust (CKD), a byproduct of cement manufacturing contains 20-60% CaO making it a 

possible candidate for CO2 sequestration. In this study, three types of CKD are 

characterized, before and after carbonation, using environmental scanning electron 

microscopy and energy dispersive x-ray microanalysis to determine the mineralogical and 

morphological changes occurring due to carbonation. The reactants, products, and 

precipitation mechanisms were investigated to enhance understanding of the governing 

processes and allow better utilization of CKD for CO2 sequestration. The results of 

multiple independent analyses confirmed the formation of CaCO3 during carbonation. 

Examinations of the reaction pathways found that CaO and calcium hydroxide (Ca(OH)2) 

were the major reactants. Three types of CaCO3 precipitation mechanisms were observed: 

(1) diffusion of CO2 into Ca(OH)2 particles causing precipitation in the pores of the 

particle and the growth of a CaCO3 ring from the outside inward, (2) precipitation onto 

existing particles, and (3) precipitation from aqueous solution. The growth of a CaCO3 

ring on the outside of a particle may slow further diffusion of CO2 into a particle slowing 
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the overall sequestration rate. Additionally, changes caused by carbonation in the 

solubility of trace metals were studied by mixing pre- and post-carbonated CKD with 

water and analyzing the solution using inductively coupled plasma mass spectrometry. 

Decreases in the leaching of chromium, lead, and copper were observed, and is an 

incentive for use of CKD for CO2 sequestration. Equilibrium modeling using PHREEQC 

confirmed that CaO and Ca(OH)2 would carbonate readily and form CaCO3. 
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PREFACE  

 

The following document has been formatted as an Electronic Thesis or Dissertation 

(ETD). Hyperlinks and bookmarks are intended to facilitate navigation from the table of 

contents and to section headings within the main document. After following a hyperlink, 

the reader may use the back button on the tool bar to return to the previous location in the 

document. The linked figures and tables are located at the end of the text document and 

are numbered sequentially.  
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1. INTRODUCTION   

Carbon dioxide (CO2) emissions are of primary concern due to the status of CO2 

as a leading anthropogenic greenhouse gas (Falkowski et al. 2000). Annually over 25 

billion tons of CO2 are released due to human activities (DOE-NETL 2006). Since the 

world’s dependence on fossil fuels is difficult to lower, the capture or sequestration of 

CO2 is an important consideration to reduce the effects of emissions (Butt et al. 1999). A 

possible method to reduce anthropogenic CO2 emissions is CO2 sequestration as a 

mineral carbonate.  

Mineral sequestration of CO2 involves the reaction of a mineral oxide with CO2 to 

form a mineral carbonate. Common oxides that will readily form stable mineral 

carbonates are magnesium oxide (MgO) and calcium oxide (CaO). Due to their vast 

availability, ultra mafic rocks rich in MgO (in silicate form) have been studied the most 

for potential geological sequestration (Lacker et al. 1997: Butt et al. 1999; Guthrie et al. 

2001; Fauth et al. 2002; Wolf et al. 2004). For rapid carbonation, preprocessing is needed 

to extract the MgO out of the ore rock and transform it to the more reactive hydroxide 

phase as Mg(OH)2 (Butt et al. 1999).   

Potential sources of readily available CaO are industrial oxide wastes. The 

carbonation of CaO and Ca(OH)2 progresses rapidly, with completion possible in minutes 

(Lacker et al 1997) making industrial oxide wastes logical candidates for geological 

sequestration. Bertos et al. (2004a) examined the carbonation of municipal solid waste 

incinerator (MSWI) ash in an aqueous solution at elevated temperatures and pressures. 

They utilized scanning electron microscopy (SEM), x-ray diffraction (XRD), and 

differential thermogravimetrical analysis (DTA) to characterize the changes occurring 
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due to carbonation. The study examined bottom ash, which is mostly aluminosilicate 

phases with some metallic components, and air pollution control (APC) residues, which 

are a mixture of carbon and lime (CaO) with heavy metals, soluble salts, and chlorinated 

compounds. In both ash segments, CaCO3 contents increased due to carbonation, more so 

in the APC due to the higher initial CaO content. Depleted calcium silicates were also 

found in proximity to newly precipitated CaCO3, suggesting calcium silicates had 

contributed Ca2+ for carbonation.  

Huijgen et al. (2005) investigated the carbonation of steel slag using methods 

similar to Bertos et al. (2004a) such as scanning electron microscopy and energy 

dispersive x-ray (SEM-EDX) to investigate the reaction pathways. Huijgen et al. (2005) 

examined the use of steel slag for CO2 sequestration because of its high calcium silicate 

content. They used a water to solid ratio of 20:1 and reaction temperatures of up to 

250˚C. After the rapid carbonation of all the Ca(OH)2 present in the steel slag, they 

proposed that Ca2+ was leached from calcium silicates to form CaCO3. Theses studies 

found that the carbonation of industrial mineral oxide wastes is a feasible approach for 

CO2 sequestration, however both used large (>1 water to solid ratios) and elevated 

temperatures and pressures, which require energy. 

In a study on the accelerated carbonation of cement-based materials for the 

stabilization of waste materials, Bertos et al. (2004b) observed that the diffusion of CO2 

into a particle causes leaching and precipitation of CaCO3 in the intraparticle pores. This 

leaves a growing front of carbonated material and an inner zone of non-carbonated 

material. Tightly packed, fibrous calcite crystals were also observed in the carbonated 

products. Carbonation is a natural process in the manufacture of cement-based (concrete) 
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materials but accelerated carbonation of wastes with cementitious materials might allow 

for increased stability during disposal. 

Huntzinger et al. (2006a) studied the rate and extent of carbonation in cement kiln 

dust (CKD), a waste byproduct of cement manufacturing, using CKD samples from Ash 

Grove Cement Company. CKD is rich in CaO, typically containing lime in amounts 

ranging from 20-60% (dry weight basis). Huntzinger et al. (2006a) used composition 

information (fluorescence spectrometry (XRF) and quantitative x-ray diffraction 

(QXRD)) to estimate a theoretical capacity for CO2. Batch carbonation experiments 

provided measures of the actual extent of carbonation. Batch reactions were conducted in 

a reaction box with a relative humidity >98% and a CO2 concentration between 75 and 

85% (v/v). Characterization using QXRD utilizing the relative intensity ratio (RIR) 

method along with thermogravimetric analysis with differential thermal analysis 

(TGA/DTA) allowed quantification of changes in total carbonates due to carbonation. An 

overall increase of up to 20.7% in calcite content after carbonation was determined with 

QXRD. Independently, greater extents of carbonation (26-30%) were measured with 

TGA/DTA, suggesting that calcite polymorphs or poorly formed calcite were also 

present.  

Huntzinger et. al. (2006b) performed column experiments with CKD to study the 

rates and extent of the reactions under dynamic (i.e., flowing CO2 gas) conditions. Slower 

rates and hence, lesser extents of carbonation were measured in the columns compared to 

the static batch experiments, suggesting reaction mechanisms such as intraparticle 

diffusion could be affecting the carbonation.  
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Lacking in the mechanistic studies by Huntzinger et al. (2006a, b) were 

microanalysis and characterization of the effect of carbonation on the CKD at the particle 

scale. This study investigates the reaction participants and pathways in the carbonation of 

CKD using SEM-EDX. In addition, environmental electron microscopy (ESEM) was 

used to compare particles before and after carbonation to document morphological 

changes. These investigations into the carbonation reaction of CKD could answer 

questions regarding the slowing of the reaction rates and the limitations on the extents of 

sequestration, leading to better utilization of the sequestration technology.  

1.1. Carbonation Chemistry 

The composition of CKD is extremely variable and depends on the kiln type, 

cement type, source of the raw materials, and fuels being used (van Oss & Padovani 

2003). Most CKD is partially calcined and contains up to 60% free lime (CaO), 

portlandite (Ca(OH)2), and reactive cement species (i.e., calcium silicates) (Klemm 1994; 

Corish & Coleman 1995; van Oss & Padovani 2003; Sreekrishnavilasam et al. 2006). 

Other mineral oxides such as MgO, Na2O, Fe2O3, and K2O can be present as complex 

compounds (e.g., NaCl or (K,Na)3Na(SO4)2) in varying amounts but in a lesser total 

amount than CaO. Volatile metals and alkali compounds (sulfates and chlorides) get 

concentrated in CKD (Klemm 1994; Corish & Coleman 1995). Alkali limits for cement 

in some states prevents the recycling of CKD into the raw feed (limestone, clay, 

sandstone, iron ore, etc.) due to the alkali-silica reaction (ASR) that can occur in 

concrete. Non-recyclable CKD is either sold for other uses (agriculture, land stabilization, 

etc.) or land filled (van Oss & Padovani 2003). 
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Due to the heterogeneous nature of CKD, several carbonation reactions are 

possible. Sequestration reactions with mineral oxides follow a general form:  

Mineral Oxide + Water → Mineral Hydroxide(s) 

Mineral Hydroxide(s) + Carbon Dioxide → Mineral Carbonate(s) 

Free CaO  can be present in large amounts in CKD, especially in alkali bypass 

dust with 27% (dry weight) or more free CaO (Klemm 1994; Sreekrishnavilasam et al. 

2006). Therefore, calcium carbonate is expected to be the main carbonation product. 

Unknown is in the form the calcium carbonate will occur as a result of carbonation: 

calcite crystals, calcite polymorphs, or amorphous precipitates.  

Carbonation of CaO is a two-step reaction involving the intermediate formation of 

Ca(OH)2 (calcium hydroxide or portlandite). Both reactions occur readily at ambient 

temperatures and pressures (Steinour 1959; Bertos et al. 2004a; Huijgen et al. 2005). 

 CaO + H2O → Ca(OH)2 (1a) 

 Ca(OH)2 + CO2 → CaCO3 + H2O (1b) 

Similar reactions can occur with other oxides (e.g., sodium, potassium, and magnesium); 

however, these reactions do not occur as readily at ambient temperatures and pressures 

(Steinour 1959; Bertos et al. 2004a). 

 Na2O + H2O → Na2(OH)2 (2a) 

 Na2(OH)2 + 2CO2 → 2NaHCO3 (2b) 

 Na2(OH)2  + CO2 → Na2CO3 + H2O (2c) 

 K2O + H2O → K2(OH)2 (3a) 
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 K2(OH)2 + 2CO2 → 2KHCO3  (3b) 

 K2(OH)2 + CO2 → K2CO3 + H2O (3c) 

 MgO + H2O → Mg(OH)2 (4a) 

 Mg(OH)2 + CO2 → MgCO3 +H2O (4b) 

The weathering of calcium silicates present in CKD may also release Ca2+ for 

carbonation. However, this is a slower reaction than the carbonation of CaO. The reaction 

path is summarized below (Huntzinger et al. 2006a): 

CaSiO3 + 2H2O + 2CO2→ Ca2+ +2HCO3
- +2H+ + SiO3

2+ 
→ 

CaCO3 + SiO2⋅⋅⋅⋅H2O + H2O + CO2 

1.2. Ancillary Effects of Carbonation  

In addition to lowering CO2 emissions, the use of industrial wastes for CO2 

sequestration may have positive effects on the composition of the waste by lowering the 

caustic nature and/or the mobility of heavy metals present in the waste. Several studies 

investigated the effects of carbonation on the leaching of heavy metals from industrial 

wastes such as MSWI ash (Meima et al. 2002; Ecke 2003; Bertos et al. 2004a; Van 

Gerven et al. 2005) and steel slag (Huijgen & Comans 2006). Five mechanisms have 

been hypothesized that would explain changes in leaching caused by carbonation: (1) 

precipitation of carbonates, (2) pH-neutralization, (3) formation of minerals other than 

carbonates, (4) coprecipitations, and (5) sorption of metals on fresh precipitation surfaces 

(loc. cit. Huijgen & Comans (2006)). In the carbonation of CKD, all of these mechanisms 

are possible. Although discerning the different mechanisms responsible for lessening the 
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leaching potential of CKD is outside the scope of this study, preliminary laboratory 

experiments were performed to examine the changes in trace metal solubility caused by 

carbonation.  

Thermodynamically based geochemical modeling can provide insight into the 

expected reactants and products of the carbonation reactions. PHREEQC, a geochemical 

modeling program developed by the United States Geological Survey (USGS 1998), uses 

the equilibrium chemistry of aqueous solutions containing minerals and gases to 

determine reaction products for many sorts of geochemical reactions. Halim et al. (2005) 

investigated the use of PHREEQC for the leaching of metals from cement to investigate 

the use of cement for metals stabilization. Their study used kinetic simulations, which 

gave similar results as their laboratory experiments. Because of industry design 

specifications, the composition of cement is better constrained than CKD and in Halim et 

al. (2005) a known amount of the heavy metal compounds was added, so the mixture 

compositions were well defined in their study. The use of a kinetic simulation would 

have been impractical for this present study due to a lack of detailed CKD composition. 

However, Halim et al. (2005) showed that the use of PHREEQC for studies on 

cementitious material is possible and can correlate well to laboratory studies. In this 

study, PHREEQC is used to determine the thermodynamically favorable products of the 

carbonation of the CKD types examined. It also provided information on the changes in 

Ca solubility caused by pH differences. 

2. OBJECTIVES AND SCOPE 

 The primary objective of this study is to determine the nature of the carbonation 

reactions that occur in a mineralogically heterogeneous CKD at ambient temperatures 
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and pressures. This will involve the determination of the active constituents of CKD and 

examination of the mechanisms of the predominate reactions. Additionally, the changes 

in trace metal solubility caused by carbonation are examined due to theories about 

reduction in metal solubility because of carbonation.  

The scope of this work is limited to three CKD samples provided by Ash Grove 

Cement Company (Overland Park, Kansas). The three samples provide a spectrum of 

diverse CKD composition and include the two most prevalent production processes (dry 

and wet kilns). The carbonation of the samples was performed using near-pure (~80% 

v/v) CO2 at ambient temperature and pressure. Relative humidity was controlled to be 

near saturated (>98%). The high-purity atmosphere is not representative of the 

complexity of flue gas mixtures but an important simplifying step in understanding the 

sequestration reactions that take place.  

3. EXPERIMENTAL METHODS  

The determination of the reactive components of CKD requires techniques with 

the ability to examine the chemical composition and mineralogical form. Scanning 

electron microscopy with energy dispersive x-ray spectroscopy (SEM-EDX) can 

characterize the spatial distribution of elements within and around CKD particles, but 

sample preparations for SEM preclude being able to visualize particular particles before 

and after carbonation to see the changes. Environmental scanning electron microscopy 

(ESEM) allows for direct particle comparison to determine morphological changes 

occurring due to the carbonation. In addition, analysis such as qualitative x-ray 

diffraction (QXRD) and thermal gravimetric analysis/differential thermal analysis 

(TGA/DTA) (Huntzinger et al. 2006a) allow for quantification of carbonates formed. The 
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combination of these methods yields the different minerals being depleted and reacting 

with the carbon dioxide to form new carbonates.    

 Geochemical modeling is used to examine equilibrium reactions among CKD, 

water, and CO2 and to confirm the reactive constituents in the CKD. Analysis using 

inductively coupled plasma mass spectrometry examined the changes in metals solubility 

caused by carbonation. 

3.1. CKD Samples 

Ash Grove (AG) Cement Company (Overland Park, KS) provided freshly 

produced CKD samples from two cement manufacturing facilities. The oxide 

compositions obtained from x-ray fluorescence spectrometry (XRF) are provided in 

Table 1. Table 2 lists estimates of simplified compositions of major constituents 

calculated using normative calculations. Two of the samples are alkali by-pass dust from 

the production of different cement types, from Chanute, Kansas, using a modern, dry 

process facility with a precalcination unit. The composition of AG Bypass High is more 

typical of CKD produced at the Chanute plant than the composition of AG Bypass Low. 

AG Bypass High has a large lime content (37% dry weight) and it represents a modern 

production type, so it is of most interest to the CO2 sequestration investigation. The third 

sample is from the wet process facility in Midlothian, Texas (AG Wet).  

3.2. ESEM 

An environmental scanning electron microscope (Philips xl40 ESEM (FEI 

Company, Hillsboro, Oregon)) was used for direct particle comparison. A virgin (non-

carbonated) sample of each CKD type was mounted to an ESEM sample stub with a 



10 

carbon adhesive tab and dispersed on the mount using pressurized air. The use of 

pressurized air to mount the samples allows for a more representative sample and spaces 

the particles for better viewing. The mounted virgin samples were examined with the 

ESEM at 15-20 kv and 2 - 3 torr, both of which were adjusted within this range to obtain 

clearest images. Specific particles were identified with the aid of a line grid etched into 

the carbon adhesive tab and imaged. After examining the virgin CKD, the stubs were 

placed in a reaction box for an average of 36 hours. The reaction box is pictured in Figure 

1. The box provided an environment where humidity and CO2 concentration could be 

controlled and monitored (see Huntzinger et al. (2006a) for more details). The stubs were 

re-examined in the ESEM and the particles compared with the respective pre-carbonation 

photographs to compare changes in the overall structure of the particles.  

3.3. SEM-EDX 

Virgin samples and samples that had been carbonated were examined by SEM-

EDX, using a PHILIPS XL40 Environmental Scanning Electron Microscope (FEI 

Company, Hillsboro, Oregon) equipped with an EDAX EDS detector (Mahwah, New 

Jersey) and a TexSEM Laboratories (Draper, Utah) Electron Back-Scatter Pattern 

Detector). Sample preparation involved impregnation with resin using an IU30 Vacuum 

Impregnation Unit (Logictech, Westlake, Ohio), mounting on glass slides, diamond 

polishing to obtain cross sections of the particles, washing with alcohol, and coating with 

200-300Å of carbon. Elemental mapping and EDX microanalysis of particles were 

conducted using a focused electron beam with an accelerating voltage of 15KeV and a 

working distance of 10 mm. Each microanalysis was collected for 100 seconds of live 

time and was performed on 12 areas of each particle to acquire a representative average. 
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Willemite (Zn2SiO4) was used as an internal standard and was run between each analysis 

to obtain a beam correction factor. Calibration of the EDX was performed hourly 

(Peterson, personal communications, 2006).  

Sodium (Na), magnesium (Mg), aluminum (Al), silicon (Si), phosphorus (P), 

sulfur (S), chloride (Cl), potassium (K), calcium (Ca), manganese (Mn), and iron (Fe) 

were the major elements examined. SEM Quant (EDAX) automatically analyzed the 

collected EDX spectra using the ZAF (Z = atomic number factor, A = absorption factor, 

F = characteristic fluorescence correction) correction method with a manual background 

correction performed. Due to the uncertainty determining weight percentages of elements 

with atomic numbers less than 11, the data were not normalized to 100%, which allowed 

combined oxygen (O), hydrogen (H), and carbon (C) percentages to be determined from 

the difference. However, the presence of a C or O peak was noted during spectra 

collections to assist in identification of minerals. 

3.4. Thermodynamic Equilibrium Evaluations 

Batch equilibrium leaching experiments provides insight into the changes in metal 

leaching from CKD resulting from carbonation. Batch experiments were used to 

determine metal and mineral solution concentrations before and after carbonation. 

Additionally geochemical equilibrium modeling allows for examination of the theoretical 

results of carbonation to confirm that the observed reactions are thermodynamically 

favorable. 
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3.4.1. Laboratory Analyses 

Virgin and carbonated CKD were mixed in de-ionized water at a liquid to solid 

ratio of 10:1 for 48 hours using a stir bar, stir base, and allowing the mixture to be open 

to the atmosphere. The resulting solution was filtered through a 1-µm filter (Gelman 

Glass Acrodisc). University of Wisconsin Soils Laboratory (Verona, Wisconsin) 

conducted analysis of the solution samples using inductively coupled plasma mass 

spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry 

(ICP-OES). The ICP-MS (VG PlasmaQuad PQ2 Turbo Plus ICP-MS (Thermo Elemental, 

Waltham, Massachusetts)) analysis examined chromium, copper, arsenic, cadmium, and 

lead concentration (UWM 2005a), while ICP-OES (Jarrell Ash IRIS High Resolution 

ICP-OES, (Genesis Laboratory Systems, Grand Junction, Colorado)) examined 

phosphorus, potassium, calcium, magnesium, sulfur, boron, magnesium, iron, copper, 

aluminum, and sodium concentration (UWM 2005b). The solution pH was also 

determined at this lab using a pH meter (Beckman Cat. No. 123144) with combination 

reference-glass electrode (Orion, Ross Sure-Flow combination, epoxy body Model 

#8165) (UWM 2004). The results were obtained for comparison to the geochemical 

modeling describe below and to determine any changes in solubility of heavy metals and 

other minerals. 

3.4.2. Geochemical Equilibrium Modeling 

PHREEQC, which stands for pH, redox, equilibrium, written in C programming 

language, is a modeling software from the USGS that performs low-temperature aqueous 

geochemical calculations (PHREECi, which is a version of PHREEQC with a user 

interface, was utilized in this study) (USGS 1998). The geochemical modeling uses 
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thermodynamic principles to evaluate the reactions occurring between the compounds in 

the virgin CKD and water. Using a 10:1 liquid to solid ratio, each CKD type was reacted 

to equilibrium by PHREEQC with the use of the Lawrence Livermore National Library 

(LLNL) database. For these calculations, a simplified composition of each virgin CKD 

type was calculated (see Table 2). The normative calculation used the XRF oxide 

percentages and the following assumptions: (1) anhydrite was assumed as the only sulfate 

species; (2) calcite percentage was determined by QXRD analysis using the RIR method; 

and (3) portlandite percentages were taken from TGA/DTA analysis (Huntzinger et al. 

2006a). Remaining CaO was assumed available for reaction and was lumped together as 

CaO. Any Na present was assumed to be in halite and the remaining chloride was 

assumed to be in sylvite (when present as determined by QXRD) (Halim et al. 2005). 

Also, three atmospheres differing in CO2 composition were compared: closed system 

with atmospheric (0.035% v/v) CO2, open system with 0.035% CO2, and open system 

with 80% CO2 (similar to the reaction box conditions).  

4. RESULTS AND DISCUSSION  

The focus of this study was to determine the nature of the carbonation reactions 

that occur in a mineralogically heterogeneous CKD at ambient temperatures and 

pressures. ESEM was selected to allow for comparison of specific CKD particles in their 

virgin and carbonated states, making it possible to determine changes in morphology 

occurring due to carbonation. SEM-EDX analysis provides information on the 

distribution of elements and allows for elemental microanalysis of particles to determine 

changes caused by and products of the carbonation. It can also offer insight into the 

mechanisms of the reactions. Combined with QXRD and TGA/DTA (Huntzinger et al. 
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2006a), which also provide information on changes in carbonates and crystalline 

compounds, conclusions can be drawn regarding the carbonation products and reactions.  

Three CKD samples with diverse virgin compositions (Tables 1 & 2) were 

examined. The high CaO composition of the AG Bypass High and its modern production 

type (dry kiln) makes it the better candidate for CO2 sequestration. It is therefore the 

focus of the majority of the discussions below.  

4.1. Characteristics of Virgin CKD 

Virgin (noncarbonated) samples of each CKD type were analyzed to enable 

comparison with the carbonated CKD. Figure 2 identifies locations selected due to 

presence of elements of interest (obtained from elemental maps), where the results of 

EDX microanalysis performed on virgin AG Bypass High are provided in Table 3. The 

expected major constituents were: portlandite, calcite, and lime, along with quartz, 

anhydrite, iron, aluminates, calcium silicates, and alkali compounds. Of the five analyzed 

areas, three (see Table 3: A, B, and E) were silicate compounds with calcium, potassium, 

and iron. Areas A and B appear to be a fused particle both with different silicate 

compositions. Area A has calcium silicate composition with some aluminum (Al) and 

iron (Fe), and Area B is possibly potassium (K) silicate with Al and Ca. Also identified in 

the microanalysis was a particle of quartz (C), with a thin calcium silicate rim (E) on the 

outside. Similar quartz particles with calcium silicate rims were found in the other CKD 

types as well (Appendix C). Particle C in Figure 2 has a Ca composition consistent with 

Ca(OH)2. The Ca content ranged from 45 to 54% with varying small amounts of sulfur 

(S). This suggests some S compounds, possibly anhydrite, were also present in the 

particle. Although a few calcium silicate compounds were found with SEM-EDX, there 
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were none detected by QXRD analysis in all samples, suggesting they are a minor 

constituent (<2%) of these CKD samples. 

4.2. Reaction Participants and Products 

Results from TGA/DTA analyses for all CKD types showed an increase in 

carbonates. QXRD analysis also confirmed an increase (13-20% depending on CKD 

type) in crystalline calcite. TGA/DTA showed slightly higher increases (14-30% 

depending on CKD type) compared to QXRD because it measures amorphous 

(unstructured) calcium carbonate and trace amounts of other mineral carbonates 

(Huntzinger et al. 2006a).  

 Direct particle comparisons conducted using ESEM showed precipitation of 

carbonates on the outside of particles (Figure 3). This precipitation was observed in all 

particles directly examined by ESEM for the sample of AG Bypass High and the majority 

of AG Bypass Low and AG Wet particles (Appendix A). Similar precipitation on the 

outside of particles was observed in preliminary SEM investigations on carbonated CaO 

and Ca(OH)2 (Appendix E). An indication of carbonate precipitation is the increased 

clarity between the virgin and carbonated images. This is due to the higher density of 

carbonates compared to oxides, allowing better electron imaging in ESEM. In addition to 

carbonate precipitation, AG Bypass Low (Figure 4) displayed precipitation of sylvite 

(KCl) crystals, which initially dissolved due to its high solubility and then reprecipitated 

as the sample dried. The AG Wet (Figure 5) shows larger calcite crystal growth along 

with a likely amorphous carbonate precipitate. Fibrous crystals are characteristic of 

calcite, which has several crystal habits (Taylor 1997). Bertos et al. (2004b) found similar 

calcite crystals in their examination of accelerated carbonation of cement. 
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 Further support for the precipitation of CaCO3 is shown in EDX elemental maps 

of Ca in virgin (Figures 6a-b), 8-hr reacted (Figures 6c-d) and 4-d reacted High Bypass 

CKD (Figures 6e-f). The back scattered electron (BSE) images on the right show the area 

mapped, and the Ca maps on the left show the changes in the distribution. The 

distribution of calcium appears to grow (~30%) over time as the higher Ca content 

particles release Ca2+, which carbonates and precipitates. Elemental maps of AG Wet and 

AG Bypass Low show the same Ca distribution growth (Appendix B). 

EDX microanalysis of each carbonated CKD type showed the presence of CaCO3 

both as separate particles and as precipitates on Ca-containing particles. AG High Bypass 

CKD had many (majority of reacted) particles with a center composition similar to 

Ca(OH)2 and a outer ring of CaCO3. In the Ca maps, these are the particles with Ca-rich 

centers and lower Ca content outer rings (see Figure 6f). The nature of the precipitation 

will be discussed further below.   

4.3. Reaction Pathways 

In CKD at ambient temperatures and pressures, the carbonation of Ca is possible 

either by the release of Ca2+ due to silicate weathering or from the carbonation of Ca2+ 

present in CaO or Ca(OH)2. Evidence of the first pathway is the presence of calcium 

silicates with lower Ca percentages than silicates in the virgin samples. The particle in 

Figure 7 illustrates results with a depleted Ca-silicate center and CaCO3 precipitated 

adjacent, apparently connected, to the particle (Huijgen et al. 2005; Bertos et al. 2004) 

Also shown in Figure 7 are the accompanying Ca and silicon (Si) elemental maps 

illustrating Si and Ca in the center with only Ca present on the edge of the particle.  
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Table 4 shows the results of the EDX analysis on this particle and the results 

indicate that potassium (K) substitution may have been possible in the carbonate and 

silicate sections of the particle. Traces of sodium (Na) and iron (Fe) are also present in 

the carbonate material. The Ca content (34.8 wt %) of the edge is not as high as it would 

be for pure CaCO3 (40% dry weight Ca) but some substitution and intermixed silicate 

material is probable. Due to the slow rate that silicates weather, it is also possible that the 

depleted calcium silicate species present in this study would have continued, with 

increased time (months to years), to contribute Ca2+ for the formation of CaCO3. 

The carbonation of CaO and Ca(OH)2 was dominant due to the high CaO and 

Ca(OH)2 contents of the CKD samples, the slower reaction rate of calcium silicates (can 

be years compared to minutes for CaO/Ca(OH)2) at theses temperatures and pressures, 

and their trace presence (<2%) in these CKD samples. QXRD analysis on virgin and 

carbonated samples of all three CKD types found that CaO was not present in the 

carbonated product. This is probably due to the immediate transformation of CaO to 

Ca(OH)2 in the presence of water. Ca(OH)2 was not detected in the AG Bypass Low but 

was found in the 4-d carbonated samples of AG Bypass High and AG Wet, which 

suggests that full carbonation of Ca(OH)2 was not reached in those CKD samples  

(Huntzinger et al. 2006a).  

4.4. Precipitation Mechanisms 

 For the carbonation of CaO and Ca(OH)2, the SEM-EDX microanalysis 

investigations found three possible mechanisms for the precipitation of CaCO3 and that 

each CKD type showed unique combinations of the three mechanisms. The three 

mechanisms are: (1) diffusion of CO2 into a CaO or Ca(OH)2 particle with precipitation 
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on the outside of the particle and the intraparticle pores causing the formation of a 

carbonate ring that grows inward with time, (2) precipitation of CaCO3 through 

nucleation on existing calcite particles, and (3) the precipitation of CaCO3 out of 

saturated aqueous solution. Table 5 summarizes the precipitation mechanisms based on 

CKD types. Further explanations of each mechanism are provided below. 

The diffusion of CO2 into particles of CaO or Ca(OH)2 was the main CaCO3 

precipitation mechanism in the AG Bypass High. Figure 8 displays particles from the 4-d 

reacted High Bypass CKD, and Table 6 lists corresponding EDX elemental results. The 

particle in Figure 8b corresponds to the highlighted particle in the Ca map in Figure 6f. 

This particle shows a center with higher Ca content and a CaCO3 edge. In a study on the 

accelerated carbonation of cement materials, Bertos et al. (2004b) discusses the diffusion 

of CO2 into a particle which causes leaching and precipitation of CaCO3 in the particle 

pores. This follows the scenario of the hydration of CaO (or the presence of Ca(OH)2) 

and the diffusion of CO3
2-

(aq) into the particle. In Figure 8, the average center 

compositions, while close to that of Ca(OH)2 at ~50 wt% Ca, had variable Ca percentages 

over the 12 recorded analyses for each from 40% (CaCO3) to 54% (Ca(OH)2). This 

suggests a mixed CaCO3/Ca(OH)2 composition in the centers of these particles, which is 

likely caused by precipitation of CaCO3 in the intraparticle pores.  

The formation of an outer ring of CaCO3 is due to interaction of the CO3
2-

(aq) with 

the Ca2+
(aq) and the water on the outside of the particle. As the ring grows inward, it may 

slow further diffusion of CO3
2-

(aq) into the micro-pore system. An interesting difference in 

the two particles illustrated in Figure 8 includes the thickness of this carbonate ring. The 

Ca content of the ring in Figure 8b compared to the thinner carbonate ring in Figure 8a 
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indicates that the average Ca content of this ring is 40.5 wt%. This is higher than the 

average of 36 wt% shown in Figure 8a. The greater porosity of the thinner ring in Figure 

8a could cause this difference in Ca content. 

Figure 9 illustrates two particles of CaCO3 found in the samples of AG Bypass 

High. Table 7 summaries the EDX results for these particles. In this case, time appears 

not to be a factor as the 8-hr carbonated particle is similar both mineralogically and 

morphologically to the 4-d carbonated particle, suggesting a relatively fast carbonation 

reaction has occurred. Both particles have the same average Ca content of 37% (dry 

weight). Their morphologies are similar to the carbonate ring in Figure 8b. This could 

indicate that these particles (Figure 9) were originally smaller particles with compositions 

like the centers of Figures 8a-b and completely carbonated. A second possibility is that 

these particles were originally smaller and entirely CaCO3 and acted as a nucleus for 

additional calcite precipitation. The appearance of different morphological regions in the 

particles suggest either possibility is plausible. 

AG Wet experienced similar carbonation mechanisms to the AG Bypass High. 

Figure 10 illustrates a 4-d carbonated particle of the AG Wet CKD. The elemental 

analysis (Table 8) of this particle shows a composition of CaCO3. The particle has a small 

standard deviation of 1.0% in regards to Ca content, which suggests constant CaCO3. 

Examination of the morphology of this particle reveals an altered edge around the 

particle. Although this edge is also CaCO3, its morphology is more porous. This may 

indicate that this edge is precipitated CaCO3 through nucleation onto the existing CaCO3 

center of the particle. The Ca map for this particle confirms that the Ca content is 

relatively constant through the particle. Other particles similar to this one were observed 



20 

in this sample. This precipitation mechanism is also shown in Figure 5 with the direct 

particle comparison result for AG Wet. The expected cross section of the carbonated 

particle in Figure 5 would be close to identical to the particle seen in Figure 10. 

The AG Bypass Low CKD does not have a typical composition for CKD, 

containing sylvite (KCl) at 38% (dry weight) or greater (Table 2). During carbonation, 

samples of AG Bypass Low absorbed water vapor to the point where liquid water formed 

and practically submerged the samples. Separate water-vapor-absorption experiments 

with pure KCl confirmed that the water was forming from dissolution of sylvite and 

condensation. Figure 11 shows a 4-d carbonated AG Bypass Low particle that has a more 

porous morphology than the AG Wet particle (Figure 10) and AG Bypass High particles 

(Figure 11). This particle appeared characteristic of CaCO3 in the 4-d AG Bypass Low 

sample. A possible explanation is a larger presence of water during carbonation. The 

increased water dissolved all CaO and Ca(OH)2, both of which subsequently carbonated 

and precipitated CaCO3 as it dried, which might explain the porous morphology. A 

similar mechanism occurred with the sylvite present in the sample. Nucleation may also 

be a contributing factor to the precipitation mechanism and a combination of both 

mechanisms is probable in this case. 

4.5 Effects of Reaction Rates 

 
Overall, the amount of carbonation in samples grew with longer carbon dioxide 

exposure times. However, more than 50% of the carbonation extent was reached within 2 

days with a slowing of the carbonation after that (Huntzinger et al. 2006a). Although not 

focused on rate, this study conducted a preliminary look at differences in mineralogical 

changes over time. Only the AG Bypass High was examined at two time intervals (8-hr 
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and 4-d) with only slight differences found related to the carbonate ring formation. The 

progression of carbonation with time was apparent in the thickness of the carbonation 

rings. Figure 12 shows images of virgin (Figure 12a), 8-hr reacted (Figure 12b) and 4-d 

reacted (Figures 12c-d) AG Bypass High. Identified in similar particles in the virgin AG 

Bypass High was Ca(OH)2. The carbonated ring present on the 8-hr particle shown in 

Figure 12b is only one-fourth the size: ~1 µm compared to the 4-d, which had a ~4 µm 

carbonate ring. The thinner 8-hr ring also appears more porous than the thicker 4-d ring, 

suggesting a slower reaction rate in the 4-d ring, maybe due to slower vapor/aqueous 

diffusion as carbonation proceeded. Figure 12c shows a group of these particles from the 

4-d sample all with similar thicknesses of carbonate rings. 

Cross-sectional area characterization of these particles from SEM images allowed 

for independent estimation of the overall sequestration extent. By comparing the volume 

of the particles to the volume of the carbonate rings, assuming the particles are spheres, a 

percent carbonated was determined for 20 representative particles in the 4-d carbonated 

AG Bypass High. An average of 75% carbonation, with a standard deviation of 12%, was 

determined. This correlates well with the 83% extent of carbonation observed by 

Huntzinger et al. (2006a) for this CKD type after 4-d of carbonation in batch tests.  

4.5. Thermodynamic Equilibrium Results 

In addition to sequestering CO2, the carbonation of CKD may lower the mobility of 

trace heavy metals present in the dust. This could lower the hazardous nature of CKD and 

allow for easier disposal or for reuse in agriculture or construction. A preliminary 

evaluation of changes due to carbonation in trace metals solubility in the CKD was 

performed by mixing virgin and carbonated CKD with DI water and analyzing the 
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solution with ICP-MS. Geochemical modeling was used to confirm reactive CKD species 

and to investigate changes in mineral solubility. These were not primary objectives of this 

study but do provide a preliminary groundwork for further investigation regarding change 

in metals mobility caused by carbonation. 

4.5.1. Laboratory Analysis 

Table 9 displays the results of ICP-MS analysis performed on the solution 

samples. A decrease in solubility of chromium (Cr) and lead (Pb) due to carbonation is 

evident in all of the CKD types. The solubility of copper (Cu) also decreased 

considerably in the AG Bypass Low and AG Wet due to carbonation. Van Gerven et al. 

(2005) observed that carbonate formation was responsible for a decrease in Cr and Cu 

leaching from MSWI-bottom ash. The results of this study correspond well with the 

observation of an increase in carbonates. A decrease in pH did not contribute to the 

reduction in metals leaching as the change in pH (see Table 9) in these cases is minimal, 

and neutral levels were not reached at this extent of carbonation (4 d). Another possible 

explanation (at least in the AG Bypass Low) is the substitution of heavy metals into the 

sylvite (KCl) structure during carbonation due to the dissolution of KCl. This would also 

explain the shift in the KCl peak noticed in QXRD spectra of this CKD sample 

(Huntzinger et al. 2006a). These preliminary results should encourage TCLP (toxicity 

characteristic leaching procedure) testing of virgin and carbonate CKD samples for 

further information regarding leaching behavior. 
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4.5.2. Geochemical Equilibrium Modeling 

 PHREEQC modeling predicted that the CaO and Ca(OH)2 present in CKD react 

completely to form CaCO3 in the presence of atmospheric CO2 (0.035%). The 

PHREEQC estimated solution composition varied widely depending on the level of CO2 

present and the starting mineralogical composition. The starting composition was 

calculated using QXRD, TGA/DTA, and XRF data (Huntzinger et al. 2006a) along with 

stoichiometry. This simplified composition estimate is listed in Table 2. The modeling 

was conducted in three different CO2 environments, one where atmospheric CO2 

(0.035%) was present with no replenishment (closed), one with atmospheric levels of 

CO2 and infinite replenishment (open), and open with 80% CO2. The absence of CO2 was 

tested to simulate a system closed to CO2. The concentration of CO2 did not affect the 

complete conversion of lime (CaO) into portlandite (Ca(OH)2), this occurred in the 0% 

CO2 atmosphere as well (Table 10). In scenarios with CO2, all portlandite was converted 

to calcite (CaCO3) regardless of CO2 concentration if it was above zero. The laboratory 

and carbonation reactions were constrained by time and neither reached full equilibrium 

with CO2. However the PHREEQC simulations represent results that have reached full 

equilibrium with CO2. 

 Comparison of the PHREEQC mineral concentration results with those from ICP-

OES is listed in Table 11. pH values for the three CO2 concentrations show that the pH 

closest to the value obtained from the laboratory analysis is that of the closed (0%) CO2 

system. This indicates that equilibrium with CO2 was probably not reached in the 

laboratory experiments. When CO2 is added to the system (1 mol in this case which acted 

as an infinite supply compared to the amount of CKD), the pH drops to a neutral range 



24 

(Table 11). The pH affects the solubility of Ca with the solubility being higher at pH of 

12 and 12.5 than at neutral pH of 7.5-8.0. Below a pH of 6.0 the solubility of Ca again 

rises. Other minerals such as K, Na, and S are not affected as significantly by pH. 

One contributor to the differences in mineral concentration between PHREEQC 

and ICP-OES analyses is the uncertainty in the compositions for the CKD. The 

estimation does not work for every mineral measured within a CKD type in the 0% CO2 

simulation. Although the exact composition is not correct for the PHREEQC analyses, 

the conclusions regarding complete depletion of CaO and Ca(OH)2 correspond well with 

data obtained from SEM-EDX, QXRD, and TGA/DTA.  

5. CONCLUSIONS 

 An examination of the effects of carbonation on CKD, a waste by-product of 

cement manufacturing, was conducted in order to characterize the main carbonation 

reactions. The mineralogical and morphological changes occurring in the CKD during 

carbonation were ascertained through a combination of microscopic and characterization 

methods. CKD particles before and after carbonation were examined using ESEM for 

morphological changes and elemental microanalysis of carbonated particles and cross 

sections of particles using SEM-EDX to determine dominant reactions and their 

pathways. Additional analyses from XRD and TGA/DTA from Huntzinger et al. (2006a) 

complemented this work. 

 The three CKD types examined vary greatly in composition. The AG Bypass 

High contains 36% available CaO, AG Wet contains 22%, while AG Bypass Low 

contains 11%. These amounts factor into the carbonation potential of the CKD. The 

amount of sylvite differs as well, with AG Bypass Low having the highest at 38%, which 
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causes it to pool water due to the high solubility of sylvite. AG Bypass High contains 

11%, while AG Wet contains only trace amounts, causing a lower water to solid ratio 

compared to AG Bypass Low.  

The study found the major product in the carbonation of these three CKD types to 

be calcium carbonate (CaCO3) in both crystalline and amorphous form in all CKD types. 

The dominant reaction path was the carbonation of CaO and Ca(OH)2. A second reaction 

path is the weathering of Ca-silicates to release Ca2+ for carbonation. This second path is 

a minor contributor due to the small amount of Ca-silicates present and the longer 

reaction times for their carbonation. 

The carbonation of CaO and Ca(OH)2 was found to occur through three different 

precipitation mechanisms. These mechanisms were influenced by the amount of water 

present in the reactions and the characteristics of the CKD type. In the AG Bypass High 

CKD, CaO was present at a 36% (dry weight) and combined with a low water to solid 

ratio (<1:1). The combination resulted in the diffusion of CO2 into the porous Ca(OH)2 

particles and the precipitation of CaCO3 in the pores of the particles. A carbonate-rich 

ring formed on the outside of the particles and grew inward with time. However, this ring 

may slow vapor and aqueous diffusion by causing blockages in the pore systems. 

Evidence was found in the AG Wet samples that may support this mechanism in that 

CKD type as well. 

The second observed precipitation mechanism involved precipitation of CaCO3 

through nucleation with existing particles is also possible in all CKD types. The AG 

Bypass Low had a high water to solid ratio (>>1:1) due to its sylvite content (at least 38% 

(dry weight)). This allowed for more Ca(OH)2 dissolution, which led to carbonate 
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precipitation from saturated aqueous solution as the sample was dried. This third 

precipitation mechanism was only observed in the AG Bypass Low due to its higher 

water to solid ratio caused by its sylvite content.  

The chemical equilibrium experiments showed a decrease in solubility in Cr, Pb, 

and Cu due to carbonation. The PHREEQC geochemical modeling showed that CaO and 

Ca(OH)2 would be fully carbonated to CaCO3 if full equilibrium with CO2 was reached. 

This supports the hypothesis regarding reactants and products in the carbonation 

reactions. Although the laboratory experiments did not reach equilibrium with CO2, it 

gave insight to Ca solubility changes due to pH and showed a decrease in metals 

solubility due to carbonation. 

Overall, this study has provided insight in to the reactants and products and the 

nature of the precipitation reactions occurring in the carbonation of three types of CKD. 

These results show that precipitation mechanisms may be slowing the rate of carbonation 

and possibly preventing full carbonation from occurring. Carbonate precipitation may 

cause blockage pores within reactive particles such that diffusion of CO2 into these 

particles is slowed sufficiently to inhibit complete carbonation. Decreases (40-90%) in 

lead, chromium, and copper leaching due to carbonation were also observed.  

6. RECOMMENDATIONS  

 For better microscopic analyses, the CKD could be separated into several size 

ranges prior to carbonation. Division by particle size allow for determination of 

composition distribution by particle size and may show higher carbonation for small 

particle size due to increased lime content in smaller particles. SEM-EDX analysis of 

samples of the same particle size would allow for better characterization of 
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morphological changes and measurements of the carbonate rings found in the AG Bypass 

High. 

Altering the time of carbonation for both the ESEM particle comparison and 

SEM-EDX microanalysis would provide greater insight into the precipitation 

mechanisms. Examination of particle comparisons in 4 hour steps for the first 24 to 48 

hours should provide more information on carbonate precipitation mechanisms. 

Additional work with SEM-EDX microanalysis using batch reacted samples at similar 

reaction times would produce complementary cross-sectional analysis to allow better 

characterization of the precipitation mechanisms. 

 Further analysis of CKD that has been carbonated for longer times (8 to 16 days 

or more) especially of the AG Bypass High, would be beneficial to determine the extent 

of the carbonate rings and depletion of calcium silicates.  

 Development of a dependable way to incorporate the SEM-EDX into the direct 

particle comparison conducted on ESEM would provide better identification of the 

precipitate compositions seen in ESEM. This may involve different preparation 

techniques or carbon coating of reacted stubs for generalized elemental analysis. 

Although cross sectional EDX analysis is not possible in the direct particle comparison, 

conducting some EDX analysis on these stubs may allow for more certainty in the 

morphological and mineralogical changes occurring due to carbonation.  

 More investigation is needed in the metals mobility experiments since equilibrium 

was not reached. Longer laboratory mixing times should be used along with periodic pH 

testing. Possible comparison could be done by using a completely closed system for the 
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virgin CKD and a system where CO2 is bubbled into the water for the carbonated CKD. 

This could allow additional carbonation and would enable full equilibrium with CO2.   

 TCLP (toxicity characteristic leaching procedure) testing as required by the EPA 

should be conducted on virgin and carbonated samples to determine the changes in 

leaching due to carbonation. Confirming lower metals solubility may contribute to the 

use of carbonation as a stabilization method for CKD.   



29 

7. REFERENCES 

Bertos, M.F., Li, X., Simons, S.J.R., Hills, C.D., and Carey, P.J. (2004a). Investigation of 
accelerated carbonation for the stabilization of MSW incinerator ashes and the 
Sequestration of CO2. Green Chemistry, 6:428-436. 

Bertos, M.F., Simons, S.J.R., Hills, C.D., and Carey, P.J. (2004b). A review of 
accelerated carbonation technology in the treatment of cement-based materials 
and sequestration of CO2. Journal of Hazardous Materials, B112: 193-205. 

Butt, D.P., Lackner, K.S., Wendt, C. H., Nomura, K., and Yanagisawa, Y. (1999). The 
Importance of and a Method for Disposing of Carbon Dioxide in a 
Thermodynamically Stable Form.  World Resources Review, 11(2):196-219. 

Chung, F.H. and Smith, D.K.(Eds.). (2000). Industrial Application of X-ray Diffraction. 

New York: Marcel Dekker. p. 21-25. 

Corish, A., and Coleman, T. 1995. Cement Kiln Dust. Concrete, September/October 
1995. 

Department of Energy – National Energy Technology Laboratory (DOE-NETL) (2006). 
Carbon Sequestration Technology Roadmap and Program Plan 2005. [cited 
June1, 2006]. Available from: 
http://www.netl.doe.gov/publications/carbon_seq/2006_roadmap_for_web.pdf 

Ecke, H. (2003). Sequestration of Metals in Carbonated Municipal Solid Waste 
Incineration (MSWI) Fly Ash. Waste Management, 23:631-640. 

Falkowski, P., Scholes, R.J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., 
Hibbard, K., Högberg, .P., Linder, S., Mackenzie, F.T., Moore, B. III, Pedersen, 
T., Rosenthal, Y., Seitzinger, G., Smetacek, V., and Steffen, W. (2000). The 
global Carbon Cycle: A Test of Our Knowledge of Earth as a System. Science, 
290: 291-296.  

Fauth, D.J., Baltrus, J.P., Soong, Y., Knoer, J.P., Howard, B.H., Graham, W.J., Maroto-
Valer, M.M., and Andrésen, J.M. (2002). “Carbon Storage and Sequestration as 
Mineral Carbonates.” In M.M. Maroto-Valer, C. Song, and Y Soong (eds.), 
Environmental Challenges and Green House Gas Control for Fossil Fuel 

Utilization in the 21
st
 Century. (pp. 1-17). Kluwer Academic / Plenum Publishers. 

Guthrie, G.D., J.W. Carey, D. Bergfeld, D. Byler, S. Chipera, H.J. Ziock, and K.S. 
Lackner. (2001). Geochemical Aspects of the Carbonation of Magnesium 
Silicates in an Aqueous Medium. National Energy Technology Laboratory 
Conference on Carbon Sequestration. 

Halim, C.E., Short, S.A., Scott, J.A., Amal, R., and Low, G. (2005). Modelling the 
leaching of Pb, Cd, As, and Cr from cementitious waste using PHREEQC. 
Journal of Hazardous Materials, A125:45-61. 

Huijgen, W.J.J., Witkamp, G., and Comans, R.N.J. (2005). Mineral CO2 Sequestration by 
Steel Slag Carbonation. Environmental Science and Technology, 39(24):9676-
9682. 

http://www.netl.doe.gov/publications/carbon_seq/2006_roadmap_for_web.pdf


30 

Huijgen, W.J.J. and Comans, R.N.J. (2006). Carbonation of Steel Slag for CO2 

Sequestration: Leaching of Products and Reaction Mechanisms. Environmental 

Science & Technology 40, 8:2790-2796. 

Huntzinger, D. N., Gierke, J. S., Kawatra, K., Eisele, T. C., and Sutter, L. L. (2006a). 
Carbon Dioxide Sequestration in Cement Kiln Dust through Mineral Carbonation. 
Unpublished Manuscript, Michigan Technological University, Houghton, 
Michigan. 

Huntzinger, D. N., Gierke, J. S., Kawatra, K., Eisele, T. C., and Sutter, L. L. (2006b). 
Mineral Carbonation for Carbon Sequestration in Cement Kiln Dust from Waste 
Piles. In Progress, Michigan Technological University, Houghton, Michigan. 

Klemm, W.A. 1994. What are CKD Uses and Characteristics? Rock Products Cement 
Edition July 1994: 38-44 

Klug, H. P. and Alexander, L. E. (1974). X-ray Diffraction Procedures, 2nd edition, New 
York: John Wiley and Sons 

Lackner, K.S., D.P. Butt, and C.H. Wend. (1997). Progress on Binding CO2 in Mineral 
Substrates. Energy Conversion and Management, 38:259-264. 

Meima, J.A.,van der Weijden, R. D., Eighmy, T.T., and Comans, R.N.J. (2002). 
Carbonation processes in municipal solid waste incinerator bottom ash and their 
effect on the leaching of copper and molybdenum. Applied Geochemistry, 
17:1503-1513. 

Peterson, K. R. (2006). Personal Communications. 1400 Townsend Drive 
Houghton, MI 49931-1295 USA. 

Sreekrishnavilasam, A., Kings, S., and Santagata, M. (2006). Characterization of fresh 
and landfilled cement kiln dust for reuse in construction applications. Engineering 

Geology, 85:165-173. 

Steinour, H. H. (1959). Some Effects of Carbon Dioxide on Mortars and Concrete – 
Discussion. Journal of the American Concrete Institute, 30: 905–907. 

Taylor, H.F.W. (1997). Cement Chemistry. (2nd ed.). London: Thomas Telford. 

United States Geological Survey (USGS). (1998). PHREEQCI – A graphical user 
interface for the geochemical computer program PHREEQC. [cited May 7, 2006]. 
Available from: http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqci/ 

University of Wisconsin – Madison (UWM) Soil & Plant Analysis Laboratory. (2004). 
Soil pH and SMP Lime Requirement. Available at: 
http://uwlab.soils.wisc.edu/files/procedures/pH_SMP.pdf 

University of Wisconsin – Madison (UWM) Soil & Plant Analysis Laboratory (2005a). 
Standard Operation Procedure Elemental Analysis of Solution samples with 

Inductively Coupled Plasma Mass Spectrometry. Available at: 
http://uwlab.soils.wisc.edu/files/procedures/ICPMS.pdf 

http://uwlab.soils.wisc.edu/files/procedures/ICPMS.pdf
http://uwlab.soils.wisc.edu/files/procedures/pH_SMP.pdf
http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqci/


31 

University of Wisconsin – Madison (UWM) Soil & Plant Analysis Laboratory (2005b)  
Standard Operation Procedure Elemental Analysis of Solution Samples with 

Inductively Coupled Plasma Optical Emission Spectrometry. Available at: 
http://uwlab.soils.wisc.edu/files/procedures/ICPOES.pdf  

Van Gerven, T., Van Keer, E., Arickx, S., Jaspers, M., Wauters, G., and Vandecasteel, C. 
(2005). Carbonation of MSEI-bottom ash to decrease heavy metal leaching in 
view of recycling. Waste Management, 25:291-300. 

van Oss H. B. and Padovani, A.C. (2003). Cement Manufacture and the Environment 
Part 2: Environmental Challenges and Opportunities. Journal of Industrial 

Ecology, 7(1):93-126. 

Walenta, G., Füllmann, T., and Gimenes, M. (2001). Quantitative Rietveld analysis of  
cement and clinker. International Cement Review, June:51-54. 

Wolf, G.H., Chizmeshya, A.V.G., Diefenbacher, J., and McKelvy, M.J. (2004). In Situ 
Observation of CO2 Sequestration Reactions Using a Novel Microreaction 
System. Environmental Science and Technology, 38(3):932-936. 

http://uwlab.soils.wisc.edu/files/procedures/ICPOES.pdf


32 

 

Figure 1: The reaction box used to carbonate cement kiln dust samples was connected to 
a pure-CO2 tank. CO2 was first passed through distilled/deionized (DI) water prior to 
entering the box, which contained a pan of DI water and a humidity monitor. CO2 
concentrations were monitored by twice-daily air samples run through a gas 
chromatograph. 
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Figure 2: Area mapped for the Virgin Ash Grove Bypass High showing the locations that 
were analyzed using energy dispersive x-ray microanalysis. The energy dispersive x-ray 
results are summarized in Table 3. 
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Figure 3: Direct comparisons of an AG Bypass High cement kiln dust particle conducted by environmental scanning electron 
microscopy. The increased clarity of the image of the carbonated form is due to the precipitation of carbonates, which have higher 
density than oxides. 
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Figure 4: Direct comparison of Ash Grove Bypass Low particle conducted by environmental scanning electron microscopy and 
showing the formation of sylvite (KCl) crystals along with CaCO3 precipitation. 
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Figure 5: Direct comparison of Ash Grove Wet particle conducted by environmental scanning electron microscopy and showing the 
formation of fibrous calcite crystals along with CaCO3 precipitation  
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Figure 6: Backscattered electron images (left) and the results of calcium (Ca) mapping by 
energy dispersive x-ray (right) on the AG Bypass High cement kiln dust. The bright 
white represent the highest calcium content and black represents the absence of Ca. 
Figures 6a-b are of virgin cement kiln dust, 6c-d are 8-hour reacted cement kiln dust, and 
6e-f are 4-day reacted cement kiln dust. The Ca content, corresponding to the carbonation 
of free lime and portlandite, appears to increase over time. The highlighted particle in 6f 
corresponds to the particle displayed in Figure 8b. 
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Figure 7: Ash Grove Bypass High Particle with depleted calcium silicate center and 
precipitate CaCO3 on the edge. Corresponding calcium (Ca) and silicon (Si) maps are 
shown with the zoomed particle outlined. The presence of Si is evident in the low Ca 
content center. The particle shows the average composition with standard deviations 
obtained from energy dispersive x-ray microanalysis for the center and edge of this 
particle (Table 4). 
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Figure 8: Backscatter electron images of particles of 4-day Ash Grove Bypass High exhibiting different degrees of carbonations: (a) 
particle with limited calcite (B) rim around portlandite (A) center, (b) particle with larger calcite (B) rim and smaller portlandite (A) 
center suggesting greater carbonation. Table 6 provides five detailed, elemental composition of labeled areas.
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Figure 9: Backscattered electron images of two examples of carbonate precipitation in 8-hour and 4-day carbonated Ash Grove Bypass 
High. Both have calcium contents of 37% (dry weight) and are similar in shape and color. Table 7 lists the energy dispersive x-ray 
elemental microanalysis data for these particles. 
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Figure 10: Backscattered electron (BSE) image of a particle of CaCO3 in 4-day 
carbonated samples of Ash Grove Wet. Particle composition (see Table 8) is CaCO3. The 
calcium (Ca) content map (lower) shows constant calcium content for this particle (see 
boxed area). The altered edge is mostly likely newly precipitated CaCO3, while the center 
was present in the virgin cement kiln dust and acted as a nucleus to precipitation. 
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Figure 11: Back scattered electron (BSE) image of a particle of 4-day Ash Grove Bypass 
Low, with a composition (see Table 8) of CaCO3. The accompanying calcium map shows 
a relatively uniform distribution of calcium throughout the particle. 
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Figure 12: Back scattered electron images of Ash Grove Bypass High: (a) virgin (non-
carbonated) cement kiln dust, (b) 8-hour reacted cement kiln dust, and (c-d) 4-day reacted 
cement kiln dust. Figure 12a show virgin candidates for these Ca(OH)2 centers. CaCO3 
rings forming around Ca(OH)2 centers are evident in 4b-d with the rings growing in 
thickness over time.
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Table 1: Composition (% dry weight) of the cement kiln dust samples analyzed in this 
study based on x-ray fluorescence spectrometry, which yields mineral compositions in 
terms of oxide. 

Oxide 
AG¥ Bypass 

High 
AG¥ Bypass 

Low AG¥ Wet 

Na2O 0.65 1.83 0.49 

MgO 1.39 0.52 0.55 

Al2O3 3.45 1.59 4.09 

SiO2 13.31 5.09 12.61 

P2O5 0.06 0.04 0.11 

K2O 7.04 24.04 4.03 
CaO 48.03 22.72 47.14 

TiO2 0.23 0.12 0.22 
MnO 0.06 0.03 0.13 

Fe2O3 2.14 1.16 1.79 

SO3 2.73 5.78 7.66 

Cl- 5.22 20.41 0.18 

Br- 0.21 1.03 0.03 

LOI* 14.88 15.07 20.37 
Total 99.39 99.43 99.4 

¥ Samples provided by Ash Grove Cement Company 
* Loss on Ignition 
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Table 2: Results of normative calculations of compositions for the three cement kiln dust types examined in this study. Data from x-
ray fluorescence spectrometry data (Table 1), qualitative x-ray diffraction, and thermogravimetric analysis (Huntzinger et al. 2006a) 
were used in this calculation. 

  AG
¥
 Bypass High AG

¥
 Bypass Low AG

¥
 Wet 

Mineral Formula wt% wt% wt% 

Anhydritea CaSO4 4.6 9.8 13.0 

Calciteb CaCO3 9.4 2.6 32.5 
Halite NaCl 1.2 3.5 0.0 
(Available) Limec CaO 36.4 10.8 21.9 
Portlandite Ca(OH)2 5.9 8.5 2.2 
Quartz SiO2 13.3 5.1 12.6 
Sylvite KCl 11.1 38.0 0.0 

Potassium Oxided K2O 0.0 0.0 4.0 
Sodium Oxided Na2O 0.0 0.0 0.5 
LOI* 14.9 15.1 20.4 
Total Percentage 96.9 93.4 107.1 

¥ Samples provided by Ash Grove Cement Company 
a Calculations assumed anhydrite was the only SO3 containing species.  
b Calculations used calcite percentage obtained from x-ray diffraction using the relative intensity ratio method. 
c Calculated assuming calcite, anhydrite, and portlandite were the only other CaO containing species meaning the remaining CaO 
would be available for carbonation. 
d Results from x-ray diffraction using relative intensity ratio did not show K2O or Na2O containing species present in AG Wet, direct 
x-ray fluorescence spectrometry percentages are shown. 
* Loss on Ignition
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Table 3: Energy dispersive x-ray elemental microanalysis data (% dry weight) for virgin (noncarbonated) Ash Grove Bypass High. 
Data corresponds to areas labeled on Figure 2. 

Location A B C D E 

Element Average 
Standard 
Deviation Average 

Standard 
Deviation Average 

Standard 
Deviation Average 

Standard 
Deviation Average 

Standard 
Deviation 

Na 0.3 0.4 0.5 0.1 0.4 0.1 0 0 1.3 0.4 
Mg 0.8 0.2 0 0 0.5 0.1 0 0 0.5 0.3 
Al 6.5 1.7 13.4 0.6 0.3 0.1 0 0 7.9 3.1 
Si 15.1 1.3 21.3 0.6 0.5 0.1 43.9 0.9 19.1 2.9 
P  0 0 0 0 0.0 0.0 0 0 0 0 
S  0 0 0 0 6.2 2.3 0 0 0.2 0.4 
Cl 0.1 0.1 0.2 0.1 0.7 0.2 0 0 0.8 1.3 
K  0.5 0.2 19.4 1.6 0.6 0.3 0 0.1 4.8 1.3 
Ca 37.8 5 6.4 2.4 49.3 2.9 0.1 0 23.3 2.5 
Mn 0.1 0.1 0 0 0.0 0.0 0 0 0 0 
Fe 3 1.2 1.8 0.5 0.2 0.4 0 0 3.3 1.3 
Total 64.1 2.8 63.2 1.4 58.7 5.2 44.1 0.9 61.1 4.2 

H + O + C* 35.9 2.8 36.8 1.4 41.3 5.2 55.9 0.9 38.9 4.2 
Mineral Type Calcium Silicate Potassium Silicate Calcium Hydroxide Silica Oxide Calcium Silicate 
Mineral Name 
(if known)   Portlandite Quartz  

* Difference between total and 100% is assumed to be the sum of hydrogen, oxygen, and carbon. 
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Table 4: Energy dispersive x-ray elemental microanalysis data (% dry weight) 
corresponding to labeled areas on the Ash Grove Bypass High particle shown in Figure 7.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

* Difference between total and 100% is assumed to be the sum of hydrogen, oxygen, and 
carbon.

Location Particle Center  Particle Edge 

Element Average 
Standard 
Deviation Average 

Standard 
Deviation 

Na 1.6 0.2 1.1 0.3 
Mg 0.7 0.2 0.8 0.4 
Al 8.7 1.0 0.9 0.9 
Si 19.0 0.6 1.7 1.1 
P  0.0 0.0 0.1 0.1 
S  0.2 0.1 0.1 0.0 
Cl 0.2 0.1 0.3 0.1 
K  5.1 1.2 2.6 0.3 
Ca 24.3 1.1 34.6 1.6 
Mn 0.0 0.0 0.0 0.1 
Fe 4.8 0.7 1.1 0.4 
Total 64.7 1.1 43.3 1.9 

H + C + O* 35.3 1.1 56.7 1.9 
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Table 5: Summary of the cement kiln dust (CKD) types with hypothesized precipitation mechanisms.   

CKD 

Distinguishing 

Characteristics of Virgin 

CKD 

Extent of 

Carbonation* Figures Precipitation Mechanisms 

AG¥ Bypass High 
Lime (36%), Sylvite (11%), 
water to solid ratio <1  

83% 8(a-b) & 9 

• Diffusing of CO2 into Ca(OH)2 
particles causing precipitation in 
the particle pores and formation 
of a carbonate ring 

• Precipitation by nucleation 

AG¥ Wet 
Calcite (33%), Lime (22%), 
water to solid ratio <1 

53% 10 

• Precipitation by nucleation  

• Diffusing of CO2 into Ca(OH)2 
particles causing precipitation in 
the particle pores and formation 
of a carbonate ring 

AG¥ Bypass Low 
Lime (11%), Sylvite (38%), 
water to solid ratio >1 

98% 11 

• Precipitation 
from a saturated 
solution 

• Precipitation by nucleation 

* % of theoretical extent (Huntzinger et al. 2006a) 
¥ Samples provided by Ash Grove Cement Company
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Table 6: Energy dispersive x-ray elemental microanalysis data (% dry weight) for locations marked on the Ash Grove Bypass High 
particles shown in Figure 8. 

* Difference between total and 100% is assumed to be the sum of hydrogen, oxygen, and carbon. 

Location (a) A (a) B (b) A (b) B (b) C 

Element Average 
Standard 
Deviation Average 

Standard 
Deviation Average 

Standard 
Deviation Average 

Standard 
Deviation Average 

Standard 
Deviation 

Na 0.0 0.0 0.5 0.2 0.1 0.1 0.5 0.1 0.9 0.0 
Mg 0.3 0.1 1.2 0.3 0.1 0.1 0.7 0.3 1.5 0.1 
Al 0.1 0.1 0.3 0.2 0.0 0.0 0.1 0.2 11.0 0.6 
Si 0.3 0.3 0.9 0.4 0.1 0.1 0.4 0.5 16.7 0.7 
P  0.2 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.1 0.0 
S  0.6 0.2 0.2 0.2 0.5 0.1 0.3 0.2 0.1 0.0 
Cl 0.7 0.2 0.3 0.1 1.8 1.7 0.4 0.1 0.2 0.2 
K  0.2 0.1 1.5 0.4 2.0 1.9 1.4 0.5 2.9 0.5 
Ca 50.6 1.5 36.0 1.1 49.8 2.0 40.5 5.4 26.8 1.5 
Mn 0.0 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.1 
Fe 0.6 0.2 0.1 0.1 0.1 0.1 0.2 0.1 2.8 0.8 
Total 53.6 1.3 41.0 1.6 54.5 2.8 44.6 4.7 63.0 1.3 
H + C + O* 46.4 1.3 59.0 1.6 45.5 2.8 55.4 4.7 37.0 1.3 
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Table 7: Energy dispersive x-ray elemental microanalysis data (% dry weight) for the 
Ash Grove Bypass High particles shown Figure 9.   

 

 

 

 

 

 

 

 

 

 

 

 

* Difference between total and 100% is assumed to be the sum of hydrogen, oxygen, and 
carbon. 

Location 8 hr Carbonated 4 d  Carbonated 

Element Average 
Standard 
Deviation Average 

Standard 
Deviation 

Na 0.8 0.3 0.5 0.2 
Mg 0.4 0.1 1.0 0.3 
Al 0.5 0.6 0.4 0.3 
Si 1.4 1.5 1.2 0.7 
P  0.0 0.0 0.1 0.0 
S  0.0 0.0 0.1 0.0 
Cl 0.4 0.5 0.5 0.9 
K  1.0 0.6 1.9 1.2 
Ca 37.0 1.7 37.0 2.1 
Mn 0.0 0.0 0.1 0.1 
Fe 0.2 0.2 0.4 0.5 
Total 41.7 2.7 43.4 1.9 
H + C + O* 58.3 2.7 56.6 1.9 
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Table 8: Energy dispersive x-ray elemental microanalysis data (% dry weight) for the 
particles shown in Figures 10 & 11.  

Location: 
AG Wet  

(Figure 10) 

AG Bypass Low 

(Figure 11) 

Element Average 
Standard 
Deviation Average 

Standard 
Deviation 

Na 0.0 0.0 0.3 0.1 
Mg 0.3 0.1 0.2 0.0 
Al 0.1 0.1 0.2 0.1 
Si 0.1 0.1 0.6 0.3 
P  0.1 0.0 0.0 0.0 
S  0.0 0.0 0.6 0.1 
Cl 0.0 0.0 1.3 0.3 
K  0.1 0.0 0.4 0.1 
Ca 40.9 1.0 38.2 3.0 
Mn 0.2 0.1 0.0 0.0 
Fe 0.0 0.1 0.0 0.0 
Total 41.7 0.9 41.7 2.4 
H + C + O* 58.3 0.9 58.3 2.4 

* Difference between total and 100% is assumed to be the sum of hydrogen, oxygen, and 
carbon.
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Table 9: Results from inductively coupled plasma mass spectrometry (ICP-MS) analysis. The extent of carbonation and pH are also 
shown.  

Sample 

Cr 

(ppm) 

Cu 

(ppm) 

As 

(ppm) 

Cd 

(ppm) 

Pb 

(ppm) 

Extent of 

Carbonation* pH 

Virgin AG Bypass 
High 0.319 0.034 <0.001 0.002 0.039 -- 12.7 
Reacted AG  Bypass 
High 0.099 0.032 <0.001 <0.001 0.009  83% 12.4 
Virgin AG Bypass 
Low  0.227 0.153 <0.004 <0.002 0.970 -- 12.6 
Reacted AG Bypass 
Low   0.112 0.098 <0.004 <0.002 0.069 98% 12.4 
Virgin AG Wet 0.139 0.044 0.001 0.0027 0.0231 -- 12.6 
Reacted AG Wet 0.051 0.003 0.0015 0.0026 <0.003 53% 10.6 

* % of theoretical extent (Huntzinger et al. 2006a)
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Table 10: Phase assemblage results from PHREEQC equilibrium analysis using x-ray 
fluorescence spectrometry with x-ray diffraction and thermal gravimetric analysis for 
starting cement kiln dust compositions. Three results are shown for each cement kiln dust 
type, using three CO2 concentrations, open and closed 0.035% CO2 (atmospheric), and 
80% CO2 (concentration used in carbonation experiments). 

  Closed Atmospheric CO2 Open Atmospheric CO2 Open 80% CO2 

AG Bypass High 

Millimoles in 
assemblage 

Millimoles in 
assemblage 

Millimoles in 
assemblage 

Phase S.I. Initial Final Delta S.I. Initial Final Delta S.I. Initial Final Delta 

Anhydrite 0.0 2.5 1.0 -1.5 0.0 5.6 1.5 -4.1 0.0 2.5 0.0 -2.5 

Calcite 0.0 7.0 7.0 0.0 0.0 2.0 26.0 24.0 0.0 7.0 60.3 53.4 

CO2(g) -13.1 0.0 0.0 0.0 -3.5 1000.0 976.0 -24.0 -0.1 1000.0 943.2 -56.8 

Halite -4.5 1.6 0.0 -1.6 -3.4 4.7 0.0 -4.7 -4.4 1.6 0.0 -1.6 

Lime -10.1 48.1 0.0 -48.1 -19.7 15.0 0.0 -15.0 -23.1 48.1 0.0 -48.1 

Portlandite 0.0 5.9 44.5 38.6 -9.6 9.0 0.0 -9.0 -13.0 5.9 0.0 -5.9 

Quartz -0.3 16.4 0.0 -16.4 0.0 6.6 6.6 0.0 0.0 16.4 16.4 0.0 

Sylvite -2.9 11.1 0.0 -11.1 -1.8 39.8 0.0 -39.8 -2.8 11.1 0.0 -11.1 

AG Bypass Low 

Millimoles in 
assemblage 

Millimoles in 
assemblage 

Millimoles in 
assemblage 

Phase S.I. Initial Final Delta S.I. Initial Final Delta S.I. Initial Final Delta 

Anhydrite 0.0 5.6 2.9 -2.7 0.0 5.6 1.5 -4.1 0.0 5.6 1.7 -3.9 

Calcite 0.0 2.0 2.0 0.0 0.0 2.0 26.0 24.0 0.0 2.0 25.4 23.4 

CO2(g) -13.1 0.0 0.0 0.0 -3.5 1000.0 976.0 -24.0 -0.1 1000.0 973.4 -26.6 

Halite -3.5 4.7 0.0 -4.7 -3.4 4.7 0.0 -4.7 -3.5 4.7 0.0 -4.7 

Lime -10.1 15.0 0.0 -15.0 -19.7 15.0 0.0 -15.0 -23.1 15.0 0.0 -15.0 

Portlandite 0.0 9.0 19.2 10.3 -9.6 9.0 0.0 -9.0 -13.0 9.0 0.0 -9.0 

Quartz -0.5 6.6 0.0 -6.6 0.0 6.6 6.6 0.0 0.0 6.6 6.6 0.0 

Sylvite -1.8 39.8 0.0 -39.8 -1.8 39.8 0.0 -39.8 -1.8 39.8 0.0 -39.8 

AG Wet 

Millimoles in 
assemblage 

Millimoles in 
assemblage 

Millimoles in 
assemblage 

Phase S.I. Initial Final Delta S.I. Initial Final Delta S.I. Initial Final Delta 

Anhydrite 0.0 7.2 5.6 -1.6 0.0 7.2 2.2 -4.9 0.0 7.2 2.8 -4.3 

Calcite 0.0 24.4 24.4 0.0 0.0 24.4 59.7 35.3 0.0 24.4 58.9 34.6 

CO2(g) -13.1 0.0 0.0 0.0 -3.5 1000.0 964.6 -35.4 -0.1 1000.0 961.8 -38.2 

K2O -62.9 3.2 0.0 -3.2 -71.6 3.2 0.0 -3.2 -75.1 3.2 0.0 -3.2 

Lime -10.1 29.4 0.0 -29.4 -19.7 29.4 0.0 -29.4 -23.1 29.4 0.0 -29.4 

Na2O -47.7 0.6 0.0 -0.6 -56.3 0.6 0.0 -0.6 -59.7 0.6 0.0 -0.6 

Portlandite 0.0 2.2 26.2 24.0 -9.6 2.2 0.0 -2.2 -13.0 2.2 0.0 -2.2 

Quartz -0.3 15.8 0.0 -15.8 0.0 15.8 15.7 0.0 0.0 15.8 15.7 0.0 

S.I. = Saturation Index
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Table 11: Elemental concentrations calculated by PHREEQC compared with the results 
from inductively coupled plasma optical emission spectrometry (ICP-OES) using ) using 
x-ray fluorescence spectrometry with x-ray diffraction and thermal gravimetric analysis 
for the starting composition. Three PHREEQC results are shown for each cement kiln 
dust type, using three CO2 concentrations: open and closed 0.035% CO2 (atmospheric), 
and open 80% CO2 (concentration used in carbonation experiments). 
 Estimation Method PHREEQC ICP-OES 

CO2 Atmosphere* 
Closed 
0.035%  Open 0.035% Open 80% Virgin  Carbonated 

High Free Lime 

C (ppm) 0 4 522 -- -- 
Ca (ppm) 5700 1295 1596 671 249 
Cl (ppm) 5793 5700 5704 -- -- 
K (ppm) 5607 5517 5517 6678 4397 
Na (ppm) 460 453 453 483 227 
S (ppm) 627 1032 1032 142 13 
Si (ppm) 5335 2 2 -- -- 
pH 12.16 7.64 5.90 12.7 12.4 
Total alkalinity (eq/kg)  2.46E-01 3.43E-04 1.54E-02 --  --  
Total CO2 (mol/kg) 7.34E-06 3.45E-04 4.35E-02 --  --  

  
Low Free Lime 

C (ppm) 0 4 134 -- -- 
Ca (ppm) 3843 2104 2184 1925 1463 
Cl (ppm) 20221 20086 20086 -- -- 
K (ppm) 19957 19828 19828 24015 16283 
Na (ppm) 1378 1369 1369 1573 1041 
S (ppm) 1123 1680 1643 1612 1395 
Si (ppm) 2129 2 2 -- -- 
pH 12.27 7.58 6.25 12.6 12.4 
Total alkalinity (eq/kg)  1.221E-01 3.362E-04 6.665E-03 -- -- 
Total CO2 (mol/kg) 7.754E-06 3.364E-04 1.115E-02 -- -- 

  
AG Wet 

C (ppm) 0 6 612 -- -- 
Ca (ppm) 3947 654 750 879 564 
K (ppm) 3525 3481 3482 2157 1337 
Na (ppm) 394 389 389 222 90 
S (ppm) 731 2214 1943 827 958 
Si (ppm) 5590 2 2 -- -- 
pH 12.23 7.83 6.10 12.6 10.6 
Total alkalinity (eq/kg)  2.590E-01 4.948E-04 2.224E-02 -- -- 
Total CO2 (mol/kg) 7.544E-06 4.944E-04 5.097E-02 -- -- 
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