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Abstract

Light-frame wood buildings are widely built in the United States (U.S.). Natural hazards

cause huge losses to light-frame wood construction. This study proposes methodologies

and a framework to evaluate the performance and risk of light-frame wood construction.

Performance-based engineering (PBE) aims to ensure that a building achieves the desired

performance objectives when subjected to hazard loads. In this study, the collapse risk of a

typical one-story light-frame wood building is determined using the Incremental Dynamic

Analysis method. The collapse risks of buildings at four sites in the Eastern, Western, and

Central regions of U.S. are evaluated. Various sources of uncertainties are considered in the

collapse risk assessment so that the influence of uncertainties on the collapse risk of light-

frame wood construction is evaluated. The collapse risks of the same building subjected to

maximum considered earthquakes at different seismic zones are found to be non-uniform.

In certain areas in the U.S., the snow accumulation is significant and causes huge economic

losses and threatens life safety. Limited study has been performed to investigate the snow

hazard when combined with a seismic hazard. A Filtered Poisson Process (FPP) model

is developed in this study, overcoming the shortcomings of the typically used Bernoulli

model. The FPP model is validated by comparing the simulation results to weather records

obtained from the National Climatic Data Center. The FPP model is applied in the pro-

posed framework to assess the risk of a light-frame wood building subjected to combined

snow and earthquake loads. The snow accumulation has a significant influence on the seis-

mic losses of the building. The Bernoulli snow model underestimates the seismic loss of

buildings in areas with snow accumulation.

An object-oriented framework is proposed in this study to perform risk assessment for light-

frame wood construction. For home owners and stake holders, risks in terms of economic

losses is much easier to understand than engineering parameters (e.g., inter story drift). The

proposed framework is used in two applications. One is to assess the loss of the building

subjected to mainshock-aftershock sequences. Aftershock and downtime costs are found

to be important factors in the assessment of seismic losses. The framework is also applied

xxiii



to a wood building in the state of Washington to assess the loss of the building subjected

to combined earthquake and snow loads. The proposed framework is proven to be an

appropriate tool for risk assessment of buildings subjected to multiple hazards. Limitations

and future works are also identified.
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Chapter 1

Introduction

1.1 Motivation

Woodframe construction is the most common type of building for homes and apartments

in the U.S. Approximately 90% of the residences in the U.S. are light-frame wood con-

struction [1]. Figure 1.1 shows a typical one-story light-frame wood building in the United

States (U.S.). As can be seen from Figure 1.1, woodframe shear walls are the primary com-

ponents of the lateral load resisting system of the light-frame wood structure. Typically, a

shear wall is composed of framing members (stud, sill plate, and top plate), sheathing

panels (not shown in the figure), sheathing-to-framing connectors (nails) and hold-down

anchorages (e.g., anchor bolts).

Natural hazards including earthquakes, snow, and hurricanes have caused catastrophic

losses to wood construction. In the 1994 Northridge earthquake, about $20 billion of

property losses [1, 2] and 24 out of 25 deaths were due to damage or collapse of wood

construction [1]. In the 1995 Kobe earthquake, collapse of residential wood buildings con-

tributed significantly to death and economic losses [2]. Three fatalities were reported in

the winter of 1999-2000 due to roof collapses as a result of heavy snow loads at Bardu-

foss Community Center in northern Norway [3]. The March 1993 east coast storm in the

United States caused $1.75 billion economic losses [4]. On January 28, 2006, at least 66

were killed and 160 were injured in the Katowice Trade Hall roof collapse due to heavy
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Figure 1.1: A one-story light-frame building in the U.S.

snow loads in Poland [5]. In January 2006, a roof collapsed due to heavy snow loads in Bad

Reichenhall, Germany, killing 15 (including 8 children) and injuring more than 30 [6]. In

February 2008, a snow storm in southern China caused a direct economic loss of 54 billion

yuan ($7.7 billion) [7].

The unacceptable economic losses from these hazards to woodframe construction have

compelled the industry and academia to evaluate the performance of existing woodframe

construction and to develop a performance-based seismic design (PBSD) philosophy so

that the economic losses can be predicted and controlled. The CUREE-Caltech woodframe

project [8, 9], funded by the Federal Emergency Management Agency (FEMA), aimed to

significantly reduce earthquake induced economic losses to woodframe construction, by

experimental testing and analysis, field investigations, and building codes and standards

development. This project laid the groundwork for PBE of wood buildings in the U.S [10].

In addition, the NEESWOOD project [11], funded by the National Science Foundation

(NSF), aimed to develop a PBSD philosophy for mid-rise woodframe construction. The

SEI/ASCE Committee on Reliability-based Design of Wood Structures initiated a two-year
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special project in 2005 entitled ‘The next step for AF&PA/ASCE 16-95: performance-

based design of wood structures’ [10]. The objective of this project was to formulate a

performance-based format for ASCE 16-95 standard [12]. Filiatrault and Folz [13] pro-

posed the PBSD of woodframe buildings through displacement-based approach that was

based on the direct-displacement method [14–16]. Rosowsky and Ellingwood [17] made

an overview of PBE of woodframe buildings and proposed fragility analysis as a tool to

assess building performance, as shown by:

P[LS] = ∑P[LS|D = x]P[D = x] (1.1)

in which D is the engineering demand parameter (EDP) (e.g., spectral acceleration Sa at

the fundamental period of a building). P[D = x] is the hazard function. P[LS|D = x] is the

fragility, a limit state (LS) probability conditioned on a certain hazard level D = x. Fragility

analysis was then applied to light-frame wood construction subjected to a variety of natural

hazards (e.g., [1, 18–20]).

Post-earthquake disaster surveys have shown that a large portion of structural and non-

structural damage to light-frame wood residential construction can be related to excessive

lateral drifts in the building system. The lateral deformation of the structural system is an

appropriate performance metric when system behavior must be measured by one global

structural response quantity, particularly when the structural response is in the nonlinear

range, which is the usual case in wood-frame structures. Building performance levels have

been defined in terms of drift limits for wood-framed buildings in NEHRP guidelines [21,

22] and in other recent literature [13, 23]. For example, in FEMA report 356 [22] and

ASCE Standard 41-06 [23], the immediate occupancy (IO), life-safety (LS), and collapse

prevention (CP) performance levels for lateral force-resisting structural elements in light-

frame wood construction subjected to seismic effects are related to transient lateral drifts

of 1%, 2%, and 3% of the story height, respectively. The seismic testing of a full-scale

two-story light-frame wood buildings at the University of Buffalo, a benchmark test for the

NEESWood project [11], supports the IO and LS limits, but not the CP limit. The two-

story building exceeded a drift of 3.6% without being close to incipient collapse. Other

recent studies have also found that the drift limit for CP is larger than 3%. The SEI/ASCE

Committee on Reliability based Design of Wood Structures proposed 4–7% drift limit for

CP in the PBE of light-frame wood construction.

Aftershocks occur following an earthquake of large magnitude (referred to as the main-
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shock). In 24 hours after the 8.8 earthquake in Chile on Feb. 27, 2010, about 90 aftershocks

with magnitudes equal to or larger than 5.0 were recorded by the United States Geological

Survey (USGS) [24]. In the Wen-Chuan earthquake on May 12 2008 in China, 12 after-

shocks with magnitudes larger than 5.0 were observed on the day [25] after the mainshock.

In the 1999 Taiwan Chi-chi earthquake [26], there were 3 aftershocks with magnitudes

around 6.0 within 4 hours after the mainshock. Therefore, it is not realistic that the build-

ing is rebuilt to its intact state immediately, or before the next earthquake event, which is

typically assumed in seismic loss estimation (e.g., 27, 28). Depending on the damaged

building status and the aftershock intensities, it can take 2 years or longer before reopen-

ing the mainshock damaged building [29], which results significant economic losses. Li

and Ellingwood [30] investigated the potential additional damage caused to a steel build-

ing by aftershocks. Yeo and Cornell [29] investigated life-cycle cost of a steel commercial

building in California using Markov models.

Risk in terms of economic loss is much easier to understand for building owners and

stake holders, rather than engineering parameters (e.g., a drift limit state). The life-cycle

cost (LCC) analysis has been applied in infrastructure management [31] and bridge man-

agement [32]. Earthquake induced cost analysis was performed using a category-based

methodology [33, 34], which categorizes buildings based on their lateral force resisting sys-

tem and height. Costs are calculated using some pre-established functions. The category-

based methodology is incorporated in the HAZUS software developed by the Federal Emer-

gency Management Agency (FEMA). A substantial database is included in HAZUS, in-

cluding nationwide inventory of buildings, lifeline systems, and demographic data [35].

Based on this database, HAZUS is capable of loss (direct and induced) assessment for a

regional area.

A generic seismic loss estimation framework was proposed by the Pacific Earthquake En-

gineering Research (PEER) Center [36–38]. Based on the PEER framework, an assembly-

based vulnerability (ABV) methodology was developed by Porter [39] and Porter et al.

[40]. Pei and van de Lindt [27] incorporated the ABV method into a framework for

long-term seismic caused loss assessment for light-frame wood construction. The ATC-

58 project [41] developed three methods, i.e., intensity-, scenario-, and time-based assess-

ments for structural performance quantification.

Although some studies have been performed to investigate the performance and economic
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losses of light-frame wood construction subjected to earthquakes, snow, or hurricanes, the

following issues have not been well investigated.

1. The collapse risks at different seismicity zones and the influence of various sources

of uncertainties on the collapse risk of light-frame wood buildings.

2. The influence of snow accumulation on the performance and economic risk of light-

frame wood construction.

3. The performance and economic risk of light-frame wood construction subjected to

combined snow and seismic loads.

4. The performance and economic risk of light-frame wood construction subjected to

mainshock and aftershock sequences.

1.2 Objectives

The goal of this study is to develop framework and methodologies to investigate the perfor-

mance and risk assessment of light-frame wood construction subjected to multiple hazards.

The specific objectives are to:

1. Investigate collapse risks of different light-frame wood buildings at different seis-

micity zones, considering various sources of uncertainties.

2. Develop a new snow load simulation model to capture snow accumulation character-

istics. Examine the influence of snow accumulation on the risk of light-frame wood

construction using the snow model.

3. Examine the performance and risk of light-frame wood buildings subjected to com-

bined seismic and snow loads.

4. Assess the risk of light-frame wood buildings subjected to mainshock and aftershock

sequences.
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1.3 Organization and outline

Each chapter (except Chapter 2∗) is a single paper that has either been accepted by a journal

or submitted to a journal. Chapters 2-6 are summarized as follows.

Chapter 2 examines the collapse risk of light-frame wood residential construction sub-

jected to earthquakes in the United States. Using simple structural models of one-

story residences with typical lateral force-resisting systems (shear walls) found in

buildings in western, eastern and central regions of the United States as illustrations,

the seismic demands are determined using nonlinear dynamic time-history analy-

ses. The collapse capacities are determined using incremental dynamic analyses.

The probabilities of collapse, conditioned on the occurrence of the maximum con-

sidered earthquakes and design earthquakes stipulated in ASCE Standard 7-05, and

the collapse margins of these typical residential structures are compared for typical

construction practices in different regions in the United States. The calculated col-

lapse inter-story drifts are compared with the limits stipulated in FEMA 356/ASCE

Standard 41-06 and observed in recent experimental testing. The results of this study

provide insights into residential building risk assessment and the relation between

building seismic performance implied by the current earthquake-resistant design and

construction practices and performance levels in performance-based engineering of

light-frame wood construction being considered by the SEI/ASCE committee on

reliability-based design of wood structures. Further code developments are necessary

to achieve the goal of uniform risk in earthquake-resistant residential construction.

Chapter 3 † examines the effects of both aleatoric and epistemic uncertainties on the col-

lapse risk of wood structures due to seismic loads. Record-to-record uncertainty and

effect of the spectral shape (ε) of ground motion records are examined. Uncertainties

in structural resistance are represented in for typical wood-frame shear walls, which

are modeled by a hysteresis model with 10 parameters, each of which is treated as a

random variable. Epistemic uncertainty that is introduced by the modeling process

∗Chapter 2 is an abridged version of a publication by Li et al. [42]. Some contents of the publication are

contributed by other coauthors and removed from this chapter. Only the contribution of the second author

(Yin) is kept. The copyright permission is included in Appendix A.
†Chapter 3 has been published by Structural Safety, 2010, 32:250-261. The copyright permission is included

in Appendix B.
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is examined in this study. The implications of inclusion of all sources of uncer-

tainties on collapse risk are investigated and discussed in the context of comparison

with the collapse risk in concrete and steel structures. It is found that the resistance

uncertainty as well as modeling uncertainty have significant impacts on the seismic

collapse risk of light-frame wood buildings. Some previous studies that neglected

the effect of resistance uncertainty in seismic performance evaluation may lead to

unconservative results.

Chapter 4 ‡ proposes a new model to simulate snow load. The Bernoulli pulse process

has been used in the past for modeling snow loads. However, it is not an appropri-

ate model for heavy snow load areas as the snow accumulation cannot be simulated,

which may lead to unconservative assessment of buildings in such areas. In this

study, a filtered Poisson process (FPP) is investigated and demonstrated to be an

effective stochastic model capable of simulating snow loads with or without accu-

mulation. Weather records obtained from the National Climatic Data Center are used

to calibrate the simulated ground snow load records using the FPP model. A genetic

algorithm is employed to determine the parameters of the FPP model. Illustrated by

three selected sites in the United States, the annual maximum and daily ground snow

load characteristics are well captured by the FPP model. Potential applications of the

model in reliability analysis and risk assessment are discussed.

Chapter 5 § examines the seismic losses of light-frame wood construction subjected to

mainshock and aftershock sequences. Aftershocks occur following an earthquake of

large magnitude (referred to as the mainshock) and cause further damage to buildings

that may have sustained damage in the mainshock. In this chapter, an object-oriented

framework is proposed to estimate seismic losses of light-frame wood buildings sub-

jected to mainshock and aftershock sequences. Mainshocks are simulated as a ho-

mogeneous Poisson process, while aftershocks are simulated as a nonhomogeneous

Poisson process. Back-to-back mainshock-aftershock nonlinear dynamic analysis is

performed to determine the maximum inter-story drift due to each earthquake oc-

currence (either mainshock or aftershock). Seismic risk is quantified in terms of

economic losses in this chapter. The damage loss (transition cost) and downtime cost

are included in the loss estimation, considering a time discount factor. The proposed

framework is demonstrated by an example that examines the seismic loss of typical

‡Chapter 4 has been accepted by Journal of Cold Regions Engineering. Preview online. http://dx.doi.

org/10.1061/(ASCE)CR.1943-5495.0000021
§Chapter 5 has been reviewed, revised and resubmitted to Journal of Performance of Constructed Facilities.
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light-frame wood residential buildings in the United States. The results show that

aftershocks and downtime cost are important contributor to total seismic losses. Fu-

ture work is identified to further investigate the effect of mainshock and aftershock

sequences on the seismic loss.

Chapter 6 ¶ investigates the performance and economic risks of light-frame wood con-

struction subjected to combined seismic and snow loads. In some areas, e.g., moun-

tainous areas in the western United States, both seismic and snow loads are sig-

nificant. Limited research has been done to investigate the seismic risk of light-

frame wood construction in those areas considering the combined loads, particularly

snow accumulation. An object-oriented framework of risk assessment for light-frame

wood construction subjected to combined seismic and snow hazards is proposed in

this study. A typical one-story light-frame wood residential building is selected to

demonstrate the proposed framework. Quantified risks of the building in terms of

economic losses due to the combined hazards are evaluated for the building. It is

found that for areas with significant snow load accumulation, the snow load has sig-

nificant effects on the seismic risk assessment for light-frame wood construction.

¶Chapter 6 has been reviewed, revised, and resubmitted to Engineering Structures.
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Chapter 2

Collapse capacity and collapse risk of

light-frame wood construction

2.1 Introduction

This chapter investigates the collapse risk of light-frame wood residential construction sub-

jected to earthquakes in the United States. Using simple structural models of one-story res-

idences with typical lateral force-resisting systems (shear walls) found in buildings in west-

ern, eastern and central regions of the United States as illustrations, the seismic demands are

determined using nonlinear dynamic time-history analyses, whereas the collapse capacities

are determined using incremental dynamic analyses. The probabilities of collapse, condi-

tioned on the occurrence of the maximum considered earthquakes and design earthquakes

stipulated in ASCE Standard 7-05, and the collapse margins of these typical residential

structures are compared for typical construction practices in different regions in the United

States. The calculated collapse inter-story drifts are compared with the limits stipulated in

FEMA 356/ASCE Standard 41-06 and observed in the recent experimental testing. The

results of this study provide insights into residential building risk assessment and the re-

lation between building seismic performance implied by the current earthquake-resistant

design and construction practices and performance levels in performance-based engineer-

ing of light-frame wood construction being considered by the SEI/ASCE committee on
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reliability-based design of wood structures. Further code developments are necessary to

achieve the goal of uniform risk in earthquake-resistant residential construction.

2.2 Prototype light-frame wood residential construction

Collapse capacities and collapse risks of ‘engineered’ and ‘conventional’ buildings located

in four cities (Los Angeles, CA; Seattle, WA; Boston, MA; St. Louis MO) are assessed

in this study. Buildings identified as ‘conventional’ are assumed to be constructed to min-

imum historically acceptable standards of earthquake protection, in which shear walls are

typically anchored to the foundation at spacing from 0.6 m to 1.2 m (2–4 ft) with bolts

ranging from 13 to 16 mm (1/2–5/8 in) in diameter. Buildings identified as ‘engineered’

are constructed to an enhanced standard to comply (at least partially) with modern codes

(e.g., NAHB [43]; WFCM [44]) and to offer higher seismic resistance.

The fundamental configurations of both conventional and engineered residential buildings

are illustrated in Figure 2.1. These buildings are 9.75m (32 ft) long, 6.10m (20 ft) wide and

2.44m (8 ft) high. The fundamental dimensional unit for their shear walls is a 1.22×2.44 m

(4×8 ft) sheathing panel modified, as appropriate, to allow for door and window openings.

The opening details and dimensions of the wall systems are illustrated in Figure 2.1. The

sheathing of the shear walls is provided by 9.5mm (0.375 in) oriented strand board panels.

Studs are spaced at 610mm (24 in) on centers. The sheathing is connected to the studs

with 8 d nails, which are 3.33mm (0.131 in) in diameter. The nails are spaced 152.4mm

(6 in) along the sheathing panel perimeter and 304.8mm (12 in) in the panel interior. The

fundamental period of both the conventional and engineered versions of the buildings is

0.25 s, as the initial stiffness of the shear walls for both buildings are the same, which

is shown in the hysteresis curves for the shear walls in Figure 2.2. Both residences are

regular in plan and have the same configurations, with mean roof height of 3.20m (12 ft).

Both residences have gable roofs with a slope of 6:12. The construction details for the

residences represent common light-frame wood construction practice in the U.S.

Each shear wall in Figure 2.1(a) is modeled by a spring that is connected to the roof di-

aphragm. The diaphragm has three degrees of freedom: two in-plane displacements and

one in-plane rotation. The south shear wall of the building is shown in Figure 2.1(b). The
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(a) 3-D model for the light-frame wood building

(roof is not illustrated)

(b) South shear wall (unit: meter)

Figure 2.1: Schematic of one-story wood frame residence
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Conventional shear wall hysteresis curve

Engineered shear wall hysteresis curve

Convertional shear wall backbone curve

Engineered shear wall backbone curve

Figure 2.2: Hysteresis and backbone curves for conventional and engineered shear

walls

response of wood-frame shear walls during minor earthquakes is essentially linear elastic.

However, under severe earthquake ground motion, such systems exhibit highly nonlinear

hysteretic behavior, with significant stiffness degradation, pinching of the hysteretic loops,

and corresponding energy dissipation, as shown in Figure 2.2. The hysteretic behavior of

the shear wall in Figure 2.1 is determined using CASHEW [45], a numerical model devel-

oped as the part of the CUREE-Caltech Wood-frame Project that is capable of predicting

the force-displacement response of wood shear walls under quasi-static cyclic loading. This

force-displacement response is used, in turn, to define the hysteretic behavior of the wall,

including pinching and degradation in stiffness, in subsequent nonlinear dynamic analysis

(NDA). Filiatrault et al. [46] have shown that drywall and other non-structural finishing
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materials increase the lateral stiffness of shear walls. For simplicity and conservatism,

the effect of such finishing materials is not modeled in the lateral force-resisting systems

considered herein.

In regions of high seismicity in the Western United States (WUS), current design and con-

struction practice (e.g. WFCM [44]) are to anchor shear walls of wood-frame residences

to the foundation with seismically qualified anchors, which resist both wall uplift and slid-

ing and ensure a racking mode of deformation. In this study, engineered shear walls are

assumed fully anchored to the foundation with seismically qualified anchorage. However,

many older houses in the WUS were not built in this manner, and extensive damage to the

sill plates and posts connected to hold-downs were observed following the 1994 Northridge

earthquake. Furthermore, in the CEUS, the walls in residential construction seldom are

seismically anchored to the foundation. Non-seismically qualified anchorage of the shear

wall in the building prevents sliding but does not prevent uplift. There is only limited data

to describe the hysteretic behavior of non-seismically anchored light-frame shear walls.

Accordingly, in this study, the cyclic stiffness and strength of a non-seismically anchored

shear walls in conventional construction have been assumed to be 70% of the correspond-

ing values for shear walls with fully anchored hold-down [47]. Figure 2.2 compares the

backbone curves of the engineered and conventional shear walls, along with hysteresis

curves obtained by performing the nonlinear dynamic analysis proposed by Folz and Fili-

atrault [48]. Additional support for this approach to modeling conventional (non-seismic)

construction is provided by a NAHB study [49], which revealed that the shear walls with

flexible foundations provide only 70% of the lateral load support provided by walls on rigid

foundations. Finally, the models used in Ellingwood et al. [50] for partially anchored shear

walls typical of construction practices in regions of low-to-moderate seismicity indicated

similar reductions. The hysteresis curves in Figure 2.2 show the resulting effect on behavior

for a one-story shear wall that is fully and partially anchored to the foundation, engineered

and conventional shear wall, respectively.

2.3 Earthquake ground motions

Structural performance during an earthquake is impacted by uncertainties in both seis-

mic loading and structural resistance. The uncertainty in seismic demand is known to be
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very large in comparison with the inherent variability in the capacity of the structural sys-

tem [50], and is the dominant (aleatoric) uncertainty in the structural performance assess-

ment described subsequently. The uncertainty in seismic demand in this study is reflected

in the suite of ground motions chosen for structural performance assessment. The ground

motions developed in the SAC project Phase II [51] for Los Angeles, CA, Seattle, WA,

and Boston, MA are used in the NDA for residential building structures at those sites. Six

ground motion ensembles were utilized; each ensemble has 20 ground motions that ag-

gregate earthquake events of different magnitudes and epicentral distances and collectively

represent ground motions with probabilities of 10%/50-yr (la01-20, se01-20, bo01-20 for

Los Angeles, CA, Seattle,WA, and Boston, MA, respectively) and 2%/50-yr (la21-40, se21-

40, and bo21-40). For residences in St Louis, MO, which is located within 150 miles of

multiple earthquake sources including the New Madrid Seismic Zone (NMSZ), synthetic

ground motion ensembles generated by Wen and Wu [52] having exceedance probabilities

of 10% and 2% in 50-yr were used. The dispersion in the response spectra from ground mo-

tions la21 through la40 for Los Angeles, illustrated in Figure 2.3, represents the uncertainty

in the random amplitude and phasing from an ensemble of ground motions corresponding

to a return period of approximately 2500 years. The median spectral acceleration is high-

lighted in the heavy dash curve.

2.4 Seismic demand analysis for light-frame wood con-

struction

The seismic demands are determined by the NDA. The response quantity of most interest

in measuring damage in one-story residential construction is the maximum drift sustained

at the top of the shear wall during the earthquake ground motion, expressed as the ratio

of the top of shear wall displacement to the height of the shear wall. These maximum

drifts reflect only the uncertainty in ground motions, as discussed previously. While it has

been customary to assume that uncertainties in capacity have a marginal impact on the

fragilities (e.g. [50]), recent research [53, 54] has suggested that this source of uncertainty

may be non-negligible in engineered steel and concrete frames. The implication of this

finding, as well as the modeling of uncertainty, including shear wall hysteresis models

must await the completion of current large-scale testing programs and is a topic of future
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Figure 2.3: Response spectra for records la21-40

investigation. Preliminary analyses revealed that the south and north shear walls sustained

almost identical deformations, and that these are larger than those of the east and west

shear walls. Subsequently, the ground motions were applied in the east-west directions,

and the maximum drifts of the south shear wall are presented in the following sections. The

NDA was conducted using the program SAWS [55], a finite element platform developed to

perform NDA of wood structural systems subjected to earthquake ground motions.

Table 2.1 summarizes the mean, median (50th percentile), and coefficient of variation

(COV) of the maximum drifts for light-frame wood structures in the selected cities sub-

jected to the 2%/50-yr and 10%/50-yr earthquake ground motions. The mean drift is larger

than the median drift in most instances, indicating that the distribution of drift is strongly

skewed in the positive direction. The COV in drift can be as high as about 170% as a re-

sult of aleatoric uncertainty in the earthquake ground motions. The difference in seismic

demand between engineered and conventional construction in Seattle highlights the vul-

nerability of shear walls without proper anchorage in regions of moderate seismicity. The

difference is even more evident for areas with high seismicity, such as Los Angeles. In
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contrast, the benefit of seismic anchorage are less apparent in Boston and St. Louis.

The relationship between maximum drift D and Sa can be expressed as [56]:

D = a(Sa)
b (2.1)

in which D is the maximum drift (in percent of story height) from the NDA, a and b are

constants, and Sa is the spectral acceleration at the fundamental period of the structure

with 5% damping ratio (this damping is selected to make the seismic intensity consistent

with the specification of seismic hazard by the United States Geological Survey (USGS)).

The same damping ratio allows one to calculate the annual probability of collapse without

adjusting the seismic hazard curve, as described in Section 2.6. The logarithmic standard

deviation of D for a given Sa is around 30–60% for similar shear walls [1].

Table 2.1: Seismic demand (drift) on wood structures

Conventional Construction Engineered Construction

City Ground

Motion

Mean (%) Median(%) COV Mean(%) Median(%) COV

Los

Angeles

∗LA2/50 10.88 3.61 1.18 5.60 2.40 1.37

∗LA10/50 3.58 1.31 1.70 1.35 1.11 0.65

Seattle
∗SE2/50 6.40 2.35 1.02 4.52 2.37 1.11

∗SE10/50 0.93 0.80 0.54 0.81 0.78 0.47

Boston
∗BO2/50 0.59 0.40 0.92 0.57 0.39 0.88

∗BO10/50 0.19 0.14 0.67 0.19 0.14 0.70

St

Louis

+SL2/50 0.17 0.16 0.17 0.17 0.17 0.18

+SL10/50 0.11 0.11 0.12 0.11 0.10 0.10

∗the SAC project ground motions (discussed in Section ).

+the Wen-Wu ground motions (discussed in Section ).

2.5 Seismic collapse fragility and margin of collapse

The seismic capacity of a structural system can be determined by incremental dynamic

analysis (IDA) [57]. An IDA involves a series of NDAs of the structure subjected to an

ensemble of ground motion records, each record in the ensemble being scaled to multiple
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levels of intensity with respect to the Sa at the fundamental period of the structure. The

resulting family of curves describes the structural response (measured by maximum drift)

versus earthquake intensity (measured by Sa). The point of incipient collapse is reached

when a small increment in Sa results in a large increment in maximum drift or when the

drift becomes large enough that the NDA is suspended. In the following, shear wall col-

lapse capacities for construction in the selected cities are presented in term of drifts at

incipient collapse. Figure 2.4 illustrates the results of the IDA for engineered light-frame

construction in Los Angeles obtained using the 2%/50-yr suite ground motion ensemble,

while Figure 2.5 shows the 14, 50, and 86 percentiles of the IDA curves from the same

ground motions. The collapse limit state is defined from the IDA as the last point where

the slope of the IDA curve is larger than 20% of the initial slope [57]. Note that collapse

Sa is relatively independent of the 20% value, whereas the collapse drift value is very de-

pendent on the assumption of 80% loss in the initial slope. The median drift at incipient

collapse of the shear wall in Los Angeles is approximately 3.5%, while the median Sa at

that point (the Sa ‘corresponding to’ the drift limit of incipient collapse) is 1.8 g. The

irregularities (reversals) in the IDA curves in Figure 2.4, which occur at drifts in the ex-

cess of approximately 0.06, have been observed by other investigators; see Section 3 of

Reference [57] for an explanation.

The IDA is repeated using the LA10/50 ground motions for engineered construction in Los

Angeles, as shown in Figures 2.6 and 2.7. The median drift at collapse of the shear wall is

3.8% using the LA10/50 ground motions, while the capacity was around 3.5% utilizing the

suite of LA2/50 ground motions. The difference on the collapse capacities of the shear wall

shows the effect of different earthquake ensembles. The median Sa corresponding to the

median collapse capacity generated with LA10/50 is 2.5 g. In comparison, the median Sa

is 1.8 g using LA2/50 ground motions, which again demonstrates the uncertainty in ground

motions in the ensembles.

The assumption that the building is fully anchored to the foundation is not always valid

for older residential construction in the WUS. Figures 2.8 and 2.9 present the results of

an IDA for conventional light-frame wood construction in Los Angeles subjected to the

LA2/50 ground motions. The median drift at incipient collapse is 2.5% for convention

construction, a value that is 30% less than that of engineered construction. The median Sa

associated with collapse capacity is 1.3 g for conventional construction, which is around

40% less than that for engineered construction.
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Figure 2.4: IDA curves for engineered construction in Los Angeles, CA (LA2/50

ground motions)

Similar analyses were performed for one-story residential buildings in other cities in the

U.S. For example, the median collapse capacity for the shear wall in Seattle, WA using

the SE2/50 ground motions is 4.1%, which is close to that in Los Angeles. The median

Sa in Seattle corresponding to the collapse capacity is 2.2 g in comparison with 1.8 g in

Los Angeles. Nevertheless, the MCE or design Sa in Los Angeles (2.1 g) are higher than

that in Seattle (1.6 g); the discrepancy in building collapse risk in both cities in the WUS

is obvious. When IDA curves were developed for Boston, MA using the 2%/50-yr and

10%/50-yr ensembles from the SAC project, it was found that the median capacity of the

shear wall was approximately 4.3% and 4.7%, respectively, for those ensembles. Finally, a

total of 20 synthetic ground motions with 2%/50-yr and 10%/50-yr levels [52] were used

to develop the IDA curves for St. Louis, MO. The median capacity of the engineered shear

wall was found to be approximately 4.3%, which is similar to the capacity for the same

construction in Los Angeles, Seattle, and Boston. The median collapse capacities in terms

of drift limits and the associated Sa using 2%/50-yr and 10%/50-yr ensembles for the four

cities are summarized in Table 2.2.

The collapse fragility is the probability of incipient collapse, conditioned on Sa at the fun-

damental period of the structure. The seismic fragilities for most building construction

can be modeled by a lognormal distribution [58–60]. A series of tests were performed
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Figure 2.5: IDA percentile curves for engineered construction in Los Angeles, CA

(LA2/50 ground motions)

Table 2.2: Median collapse capacity and associated Sa

City Construction Type
2%/50-yr 10%/50-yr

Capacity (Drift) Sa (g) Capacity (Drift) Sa (g)

Los Angeles Conventional 2.5% 1.3 2.8% 1.9

Engineered 3.5% 1.8 3.8% 2.5

Seattle Conventional 2.3% 1.5 2.8% 2.0

Engineered 4.1% 2.2 4.3% 2.8

Boston Conventional 2.6% 2.2 2.6% 2.2

Engineered 4.3% 3.1 4.7% 3.1

St. Louis Conventional 3.5% 3.2 3.0% 4.3

Engineered 4.3% 4.3 4.4% 6.1

to examine the hypothesis that the lognormal distribution is a suitable model for collapse

fragility for light-frame wood construction. The seismic fragilities determined from a suite

of IDAs first were plotted on lognormal paper, where a hypothesis test of the linearity of the

plot provides support for the lognormal assumption. A subsequent series of Kolmogorov-

Smirnov tests (at the 5% significance level) confirmed that the lognormal CDF provides a

reasonable model of collapse fragility for light-frame wood construction. The lognormal
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Figure 2.6: IDA curves for engineered construction in Los Angeles, CA (LA10/50

ground motions)

CDF is described by:

FR(Sa) = Φ

[
ln(Sa/mR)

ζR

]
(2.2)

in which mR is the median collapse capacity in terms of Sa, ζR is the logarithmic standard

deviation of the capacity, and Φ(·) is the standard normal probability integral. Figures 2.10

compares the collapse fragilities for the four cities for engineered and conventional con-

struction practice. The fragility curve for engineered construction in St Louis is not shown

because the probability of collapse is virtually zero even for the MCE at that location.

The fragilities are obtained by rank-ordering the Sa obtained from each individual IDA

(e.g. Figures 2.4 and 2.6) at the point that corresponds to incipient collapse of the shear

wall. The probabilities of collapse under the MCE clearly are quite different at these sites.

For example, the Sa at the period of 0.2 s, defining the MCE at Los Angeles is 2.1 g,

which results in 58% probability of collapse for engineered construction. In comparison,

the probability of collapse is virtually zero when the MCE (0.34 g) occurs in Boston for

similar construction.

The probabilities of collapse at Sa associated with the MCE and 10%/50-yr earthquakes

are summarized in Table 2.3. The results for engineered construction in St. Louis are not

presented, as the likelihood of collapse at MCE Sa is negligible. It is evident that when
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Figure 2.7: IDA percentile curves for engineered construction in Los Angeles, CA

(LA10/50 ground motions)

the MCE is considered, both conventional and engineered construction in Los Angeles and

Seattle will sustain substantial damage, with 22–80%probability of collapse. In Seattle,

the probability of collapse for conventional construction is higher than that for engineered

construction by an order of magnitude. In contrast, the probability of collapse at the MCE

for the cities in the CEUS is on the order of 10−5.

The 2003 NEHRP Provisions [61] assert that when a structure experiences a level of ground

motion 1.5 times the design level (i.e. if it experiences the MCE ground motion level), the

structure should have a low likelihood of collapse. Based on the results of the FEMA-

funded ATC-63 Project [62], this likelihood is approximately 10%. It is apparent that this

objective is not achieved in the light-frame wood construction illustrated in this study;

the conditional collapse probability is higher that 10% in the WUS and much lower in

the CEUS. The probabilities of collapse at 10%/50-yr level earthquake are also shown in

Table 2.3.

The lognormal parameters for collapse fragility for conventional and engineered construc-

tion in selected cities are listed in Table 2.4, whereas the collapse fragility curves are sum-

marized in Figure 2.11. The variation of lognormal collapse fragility ζR is between 35–52%

for the one-story house, which is consistent with the average of 0.4 found in a study of a
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Figure 2.8: IDA curves for conventional construction in Los Angeles, CA (LA2/50

ground motions)

Table 2.3: Probability of collapse at Sa at MCE and 10%/50-yr earthquake

Location Construction type Sa (MCE) Prob. of

collapse

(%)

Sa (10%/50-yr) Prob. of

collapse

(%)

Los Angeles Conventional 2.1 80.0 1.26 44.0

Engineered 2.1 58.0 1.26 22.0

Seattle Conventional 1.61 47.0 0.75 4.0

Engineered 1.61 22.0 0.75 0.6

Boston Conventional 0.34 0.00182 0.11 0

Engineered 0.34 0.00263 0.11 0

St. Louis Conventional 0.55 0.00012 0.21 0

two-story house conducted by Christovasilis et al. [2]. In comparison, Luco [63] asserted

that the variation to be between 0.4 and 0.8 for steel structures.

Table 2.5 summarizes the median collapse capacity in terms of drift determined from the

IDA using the 2/50 ground motions and the median demand obtained by NDA. The ratios

between median collapse capacity and the seismic demand from the MCE (seismic margin

of collapse) vary significantly by construction and between cities. The margin of collapse
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Figure 2.9: IDA percentile curves for conventional construction in Los Angeles,

CA (LA2/50 ground motions)

Table 2.4: Lognormal model parameters for probability of collapse

Location Type mR(g) ζR

Los Angeles Conventional 1.36 0.51

Engineered 1.89 0.52

Seattle Conventional 1.66 0.47

Engineered 2.24 0.43

Boston Conventional 2.50 0.44

Engineered 3.26 0.52

St. Louis Conventional 3.17 0.35

is less than 1.0 for conventional construction in Los Angeles and Seattle, implying that

conventional construction in certain areas of the WUS may be vulnerable to seismic haz-

ard. In comparison, for engineered construction, the ratio is around 1.5–1.7 in the WUS

and more than 10 in the CEUS. The discrepancy in the margin of collapse in different seis-

mic zones reflects the non-uniform risk to which the construction is exposed. In pursuit

of a geographically uniform risk, the seismic hazard risk needs to be further modified and

adjusted [64]. The collapse capacity of wood-frame construction is sensitive to the ground

motions selected, which is a reflection of epistemic uncertainty. The interstory drift lim-

its for incipient collapse of 3% stipulated in FEMA 356 and ASCE 41-05 appear to be
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Figure 2.10: Collapse fragility curves and probability of collapse at Sa of 2%/50-yr

and 10%/50-yr

conservative, as the current analysis indicated that engineered shear wall collapse did not

occur until the drift exceeds 3.5%. The recently completed full-scale experimental testing

for wood-frame structures (NEESWood) and the study by Christovasilis et al. [2] also in-

dicated shear walls would not necessarily collapse when drift exceeds 3.0%. The variation

in collapse capacity also contributes to the non-uniform risk.
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Figure 2.11: Collapse fragility curves with lognormal distribution

Table 2.5: Median capacity and demand and margin of collapse

Construction

type

Capacity

(Drift)(%)

Demand

(Drift)(%)

Margin of

collapse

Los Angeles Conventional 2.5 3.61 0.70

Engineered 3.5 2.40 1.46

Seattle Conventional 2.3 2.35 0.98

Engineered 4.1 2.37 1.71

Boston Conventional 2.6 0.40 6.46

Engineered 4.3 0.39 11.22

St. Louis Conventional 3.5 0.16 21.88

Engineered 4.3 0.17 25.48
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2.6 Probability of collapse considering only uncertainty

from ground motions

Seismic hazard curves determined by the USGS define the mean probability that spectral

accelerations of 5% damped oscillators (periods of 0.2, 0.3 and 1.0 s) are exceeded at

specific sites.

The seismic hazard H(x), the probability that spectral acceleration Sa exceeds x can be

approximately described over the range of significance for structural risk assessment by

the Cauchy-Pareto relationship [56],

H(x) = P[Sa > x] = k0Sa
−k (2.3)

in which k0 and k are constants. Los Angeles, for example, k0 = 0.004663 and k = 3.2.

Typical values of the constant k range from 1 to 4, the higher values being typical in the

WUS, whereas the lower values are found in the CEUS. The unconditional probability of

a wood-frame structure exceeding certain deformation limits or failing to meet a seismic

performance objective can be obtained by convolving the fragility with the seismic hazard

curve. The annual probability of collapse provides a metric for the evaluation of uniform

risk, as it includes the site-specific seismic hazard. This probability is,

Pcollapse =
∫

P[Collapse|Sa = x]|dH(x)| (2.4)

which P[Collapse|Sa = x] is the collapse fragility, and H(x) defines the seismic hazard. The

annual probability of collapse can be estimated by the following expression [56, 64, 65]:

Pcollapse = (k0mR
−k)e0.5(kζR)

2
(2.5)

The annual probabilities of collapse for the selected cities are illustrated in Figure 2.12(a).

It should be noted that this estimate of collapse probability is a mean value, which does

not include the epistemic uncertainties associated with the risk analysis; such uncertainties

for light-frame wood construction are under investigation and the results will be reported

at a later time. Nor does it include the influence of spectral shape (represented by the

factor epsilon in seismic hazard analysis), the potential effect of which on collapse risk has
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recently been noted [66]. When comparing the probabilities of collapse for conventional

and engineered construction, it should also be noted that the stiffness and strength for shear

walls of conventional construction are assumed to be 70% of the corresponding values for

engineered construction. For building code development purposes, the reference period

typically is 50 years [67]. The probability of collapse in 50 years for the building at each

site is shown in Figure 2.12(b). The probability of failing to meet the CP objective in 50

years for conventional light-frame construction is 250% of that for engineered construction

in Los Angeles, while the difference is 90% for the two types of construction in Seattle. As

a point of comparison, the annual probabilities of collapse for code-compliant steel frames

in the CEUS [65] and code-conforming concrete structures [68] are typically in the order

of 10−4.

6.5E−3

2.4E−3

6.7E−4

3.3E−4

2.5E−5 2.7E−5 2.0E−5

(a) Annual collapse probability

2.8E−1

1.1E−1

3.3E−2

1.6E−2

1.2E−3 1.4E−3 1.0E−3

(b) 50-year collapse probability

Figure 2.12: Collapse risks of light-frame wood buildings in 4 sites

2.7 Summary

Collapse fragilities summarized in this chapter were obtained from a series of IDAs, and ac-

count for differences in construction practices and site-specific seismic hazard. The ground

motions developed in the SAC project [51] and by Wen and Wu [52] were used to repre-

sent the inherent (aleatoric) uncertainty in earthquake demand. The collapse capacity of

wood-frame construction was found to be sensitive to the ground motions selected for this

analysis. Although research completed in the SAC project and in the more recent ATC
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63 study suggests that the general approach taken in this study is a reasonable one, the

sensitivity of the risk assessment to the selection of ground motions (natural or synthetic)

requires further investigation.

The probability of collapse under a spectrum of possible earthquakes was determined by

convolving the collapse fragility with the seismic hazard specified by the USGS. Despite

recent changes in seismic hazard mapping practices in ASCE Standard 7-05, the collapse

probabilities of light-frame wood residential construction in western, eastern, and central

regions of the U.S. remain geographically non-uniform, implying that current seismic de-

sign requirements in ASCE Standard 7-05 do not lead to uniform risk (where risk is mea-

sured by collapse probability). Collapse margins of typical shear walls in the WUS are

significantly lower than those in the CEUS. If the goal of uniform risk for light-frame

wood construction is to be achieved, the proposed performance levels in PBE and current

seismic design maps may need to be modified.
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Chapter 3

Seismic collapse risk of light-frame wood

construction considering aleatoric and

epistemic uncertainties

3.1 Introduction

90% of housing in the United States is light-frame wood construction. The damage or

collapse of such construction under earthquake events has caused catastrophic losses. In

the 1994 Northridge Earthquake, about $20 billion of property losses [1, 2] and 24 out of

25 deaths were due to damage or collapse of wood construction [1]. In the 1995 Kobe

earthquake in Japan collapse of residential wood buildings contributed significantly to the

death and economic losses [2].

In order to evaluate the collapse risk of existing buildings or design new buildings with

certain levels of margin against collapse, it is important to accurately estimate the seismic

demand and structural capacity [56]. However, the inherent uncertainties in earthquake

ground motions as well as structural systems make structural collapse risk evaluation a

challenging task. Typically, uncertainty due to the inherent randomness is termed aleatoric

uncertainty, while uncertainty due to the limitation of human knowledge is termed epis-

temic uncertainty.
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All sources of uncertainties need to be properly identified, modeled, and propagated in

the seismic performance evaluation. A main source of demand uncertainty is due to seis-

mic loads, which also is the largest source of uncertainty in seismic risk assessment [69].

The USGS (United States Geological Survey) seismic hazard curve represents the expected

(mean) seismic hazard for a specific site. Aleatoric uncertainty in earthquake ground mo-

tion is inherent in the randomness of amplitudes, phase angle, and shape of the seismic

hazard curve, while epistemic uncertainty exists in seismic models such as alternate at-

tenuation models [65, 70]. In studies using ground motion records to perform nonlinear

dynamic analysis (NDA), aleatoric uncertainties exist between ground motion records [71]

and details of each ground motion [72]. In this study, uncertainties between ground motion

is termed record-to-record uncertainty, while the ground motion spectral shape parameter

ε [66] is to be investigated for ground motions. Both record-to-record uncertainty and ε

will be discussed in Section 3.3. Considering the capacity part, aleatoric uncertainty ex-

ists in the damping, stiffness, mass, and energy dissipation characteristics of the structure,

while epistemic uncertainty occurs in the ability of the numerical model to represent the

actual structure as well as how well the drawings describe the real structure [41]. In this

study, the aleatoric uncertainty in structure capacity is termed resistance uncertainty and

will be discussed in Section 3.4. Epistemic uncertainty will be discussed in Section 3.5.

Studies (e.g. [72, 73]) indicate that uncertainties in the structural system has limited ef-

fect on structural seismic performance. However, those studies focused mainly on limit

states other than collapse, which includes minor or moderate damage. Recent studies

[53, 65, 69, 74] indicate that uncertainties associated with structure capacity (stiffness,

strength, energy dissipation, etc.) have significant influence on structural collapse per-

formance of steel and reinforced concrete structures. However, it is unclear whether the

uncertainty in resistance has a significant impact on the collapse risk of light-frame wood

construction, which is examined in this chapter. Some sources of uncertainties were inves-

tigated for seismic performance of wood construction. For example, Li and Ellingwood

[1] studied wood shear wall fragilities against three limit states considering uncertainty

from earthquake ground motion. Christovasilis et al. [2] quantified the seismic collapse

fragilities of two-story and three-story wood buildings using Increment Dynamic Analysis

(IDA) [57], where capacity variants were considered only by examining three levels: poor,

typical and superior. Li et al. [42] investigated the collapse probabilities of a one-story

wood building conditioned on the maximum considered earthquake (MCE, i.e. earthquake

with a 2475-year return period) and design earthquakes stipulated in ASCE 7-05 [75].
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While considering the uncertainty from earthquake ground motions, these studies have not

systematically investigated the effect of aleatoric and epistemic uncertainties for the col-

lapse risk of wood construction.

Epsilon (ε) was investigated by Baker and Cornell [66] to measure the ground motion inten-

sity and indicate spectral shape of the ground motion. Recent studies ([68, 76]) on concrete

and steel structures found that structural collapse capacity determined using ground motion

records with larger ε tends to be higher than that determined using smaller ε ground mo-

tion records. The ATC-63 project[62] determined the collapse capacity (defined as a peak

inter-story drift of 7%) and the collapse margin ratio for two archetypes (one for residential

buildings and the other for office, retail, warehouse buildings). However, the ε effect on

structures with a fundamental period less than 0.5 second, which is typical for light-frame

wood buildings, has not been investigated [69].

In this study, both aleatoric and epistemic uncertainties from demand and capacity are prop-

agated into seismic collapse risk assessment of light-frame wood construction. A typical

residence is assumed to be located at four sites in the United States. Los Angeles, CA, Seat-

tle, WA, and Boston, MA represent high, moderate and low seismicity areas, respectively.

St Louis, MO represents sites in the Central and Eastern United States (CEUS) where typ-

ically is referred to as low-to-moderate seismicity region [77]. The results obtained herein

will provide insights into light-frame wood building collapse risk assessment considering

aleatoric and epistemic uncertainties, and provide risk-informed tools for decision making

including structural rehabilitation, retrofit or repair plans.

3.2 Structural model

The collapse risk evaluation is performed on a typical one-story residential house in the

United States with wood shear walls as its main lateral force-resisting system. The con-

figuration of the building is shown in Figure 3.1, where details of openings for the south

shear wall are illustrated. The dimensions of the building are 9.75 m (32 ft) long, 6.10 m

(20 ft) wide and 2.44 m (8 ft) high. The shear walls are covered by 1.22×2.44 m (4×8 ft)

sheathing panels, which might be modified, as appropriate, to allow for door and window

openings. Studs are spaced at 610 mm (24 in) on centers. For the building located in Los

31



Angeles, the sheathing of the shear walls is provided by 11.1 mm (7/16 in) oriented strand

board (OSB) panels. For the other three sites, 9.5 mm (3/8 in) OSB panels are used. The

sheathing is connected to the studs with 8d common nails, which are 3.33 mm (0.131 in)

in diameter. For the building located in Los Angeles (building A), 3/6 nailing schedule

is used, which indicates that nails are spaced 76.2 mm (3 in) along the sheathing panel

perimeter and 152.4 mm (6 in) in the panel interior. For the building in other three sites

(building B), 6/12 nailing schedule is used. The fundamental period of the building A is

0.20 second, while it is 0.25 second for the building B.

(a) 3-D model for the light-frame

wood building (roof is not illus-

trated)

(b) South shear wall (unit: meter)

Figure 3.1: Schematic of one-story wood frame residence

The building has a gable roof but is not shown Figure 3.1(a). The roof is assumed to

be rigid. The response of a wood-frame construction subjected to seismic load is highly

nonlinear and shows pinched hysteretic behavior with strength and stiffness deterioration.

Figure 3.2 shows the load-displacement response of a typical wood-frame shear wall sub-

jected to a ground motion record. The backbone curve (i.e. the envelope of the hysteresis

curves) is defined by:

F =





sgn(δ )(F0 + r1K0|δ |)
(

1− e−K0|δ |/F0

)
if |δ | ≤ |Du|;

sgn(δ )Fu + r2K0 [δ − sgn(δ )Du] if |Du|< |δ | ≤ |DF |;
0 if |δ |> |DF |.

(3.1)

where K0 is the initial stiffness, Du and Fu correspond to the shear wall ultimate capacity,

after which the load bearing capacity decreases with a slope of r2. The hysteresis curves

in Figure 3.2 are obtained using the model developed by Folz and Filiatrault [78], in which

five more parameters r3, r4, F1, α , and β were included. r3 is the unloading stiffness

32



from the backbone curve. r4 is the pinching line slope. F1 indicates the point where the

pinched hysteresis curves pass through. α and β are two parameters considering stiffness

and strength degradation. Details about these parameters are provided in Folz and Fili-

atrault [78]. Using this hysteresis model, Folz and Filiatrault [79] developed the SAWS

program to perform NDA for light-frame wood construction. In this study, the hystere-

sis parameters of the four shear walls in the building are determined using the CASHEW

program [45, 78]. The CUREE-Caltech loading protocol [80] is used in the CASHEW

program to determine the hysteresis parameters. By comparing the CUREE-Caltech load-

ing protocol with other protocols, Gatto and Uang [81] concluded that the CUREE-Caltech

loading protocol is appropriate for light-frame wood buildings. The dynamic response of

the one-story light-frame wood building shown in Figure 3.1 is obtained using the SAWS

program.

Two to four-story light-frame wood buildings are more susceptible to collapse risk, par-

ticularly those with garages and large openings, than one-story buildings. The one-story

building examined herein is to demonstrate the relative contribution of various uncertainties

to the overall collapse risk. Nevertheless, the numerical model can also be used to model

wood building of more than one story. This is beyond the scope of the current study.
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Figure 3.2: Hysteresis model of light-frame wood shear wall
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3.3 Collapse risk with uncertainty in ground motion records

3.3.1 Record-to-record uncertainty

One of the major challenges associated with performance-based seismic engineering [82]

is the identification, characterization and appropriate treatment of the uncertainties in the

ground motion prediction [70]. Earthquake events are typically predicted using attenuation

equations (e.g. the one proposed by Abrahamson and Silva [83]), which consider the earth-

quake magnitude distribution, epicenter distance, soil type, rupture type, and other factors.

In order to properly incorporate the inherent uncertainty of earthquake events in the struc-

tural collapse fragility evaluation, IDA has been found to be an effective tool [69, 71]. A set

of appropriately selected ground motion records (e.g. suites of ground motions developed

by the SAC project [51]) are used in IDA and the record-to-record variability is implicitly

accounted for.

To perform an IDA, a ground motion record is scaled to multiple levels of intensity with

respect to the Sa at the fundamental period of the structure. NDA is then performed on the

structure using each scaled ground motion record. IDA provides a family of IDA curves

describing the relation between intensity measurement (IM, Sa hereby) and engineering

demand parameter (EDP, maximum incipient drift hereby). The point of incipient collapse

is reached when a small increment in IM results in a large increment in EDP or the drift

becomes so large (over 7% [2] for wood structure) that the NDA fails to converge.

Analysis shows that the drift of the south and north shear walls are larger than those of the

west and east shear walls. Ground motions are only applied along the east-west direction

to estimate the building’s collapse risk. For a given ground motion, the observed (based on

dynamic analysis results) incipient drifts are very close for south and north shear walls. In

the following sections, all the collapse capacity/fragilities are determined using the drift for

the south shear wall. Figure 3.3(a) shows 20 IDA curves for drifts obtained for building A

subjected to a suite of 20 ground motions, which were developed in the SAC project [51]

and has a 2% exceedance probability in 50 years for Los Angeles. This suite of ground

motions will be referred to as LA2/50. Similarly, SE2/50, BO2/50, and SL2/50 indicate

ground motions with 2% exceedance probability in 50 years for Seattle, Boston, and St

Louis, respectively. Note that the SAC ground motions [51] are used in the calculation for
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three sites: Los Angeles, Seattle, and Boston, while Wen-Wu ground motion [52] is used

for St Louis.

The collapse fragility can be defined by a lognormal distribution [1] as shown by its cumu-

lative distribution function (CDF):

FR(Sa) = Φ

[
lnSa− lnS̄a,cc

σlnSa,cc

]
(3.2)

in which the median collapse capacity S̄a,cc and the standard deviation of logarithmic col-

lapse capacity σlnSa,cc
(also called dispersion of collapse capacity due to record-to-record

uncertainty βr2r) can be determined by regression analysis of a set of Sa,cc determined by

IDA. For Los Angeles, 20 collapse capacities Sa,cc were determined from Figure 3.3(a). It

is found that the lognormal distribution is an appropriate model for the collapse capacity,

Sa,cc, of the light-frame wood building using Kolmogorov-Smirnov test at 5% significance

level. Figure 3.3(b) shows the collapse fragility obtained for the south shear wall of the res-

idence in Los Angeles. The dispersion of the collapse capacity is found to be 0.39, which

indicates the effect of the record-to-record uncertainty of the LA2/50 ground motions.

3.3.2 Effects of spectra shape of ground motion records on collapse

capacity

Other than the typical IM such as Sa discussed in Section 3.3.1, recent studies have in-

vestigated which properties of a ground motion are most strongly related to the structural

response. Baker and Cornell [66] found that the epsilon parameter (ε) is an important pa-

rameter for measuring the intensity of a ground motion. Epsilon indicates the spectral shape

of a ground motion and is a key characteristic of ground motions affecting collapse risk as-

sessment [76]. Recent studies [68, 76, 84, 85] have found that selecting ground motions

with peaked spectral shapes increases the predicted structural collapse capacity. However,

these studies focused on steel or concrete structures with fundamental period around 1.0

second. The ε effect on light-frame wood residences, typically with period between 0.2

and 0.5 seconds, has never been investigated.
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Figure 3.3: IDA and fragility curves of the building A subjected to Los Angeles

2/50 ground motions
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For a given ground motion with a spectral acceleration Sa(T ) at period T , the corresponding

epsilon can be calculated by:

ε(T ) =
ln(Sa(T ))−E[lnŜa(T )]

Std[lnŜa(T )]
(3.3)

where E[lnŜa(T )] and Std[lnŜa(T )] are the mean and standard deviation of logarithmic

spectral acceleration, lnŜa(T ), predicted by an attenuation equation. For a given ground

motion record, ε is a function of period and attenuation equations [66]. The attenuation

equation proposed by Abrahamson and Silva [83] is used in this study. Using a different

attenuation model for calculating ε might only lead to a slightly different value [76].

Figure 3.4(a) shows the acceleration spectra of a ground motion record with a positive ε

at period T = 1.0 second. The ε value of a ground motion record at a period T indicates

the distance between its spectra and the expected spectra predicted by attenuation models.

For example, in this case, ε(1.0) > 0 indicates that this ground motion record has a larger

spectral acceleration than the expected spectral acceleration. Such a ground motion record

is termed ‘Peak’ record [66]. It has been found that the spectra of one ground motion record

with a positive ε value at a period tends to be peak shaped around that period [76].

A set of randomly selected ground motions will have an average ε value around zero and

a unit standard deviation [66]. However, this does not hold for suites of ground motions

such as LA2/50, which are intentionally selected so that they represent a certain seismic-

ity level for a given site (e.g., 2% exceedance probability in 50 years for Los Angeles).

Using Eq. (3.3), the ε values for the LA2/50 ground motions are determined and listed in

Table 3.1. The mean ε value at 0.20 sec (i.e., the fundamental period of building A in Los

Angeles) of LA2/50 is 0.38 instead of zero for the reason descussed above. Figure 3.4(b)

shows the spectra of LA2/50 ground motions, in which the expected spectra is determined

by the attenuation model by Abrahamson and Silva [83]. Subsets 1 and 2 in Figure 3.4(b)

are selected in order to compare collapse fragilities determined from ground motions with

different ε . Subset one consists of LA40, LA24, LA39, and LA38 and has an ε range of

−1.71∼−1.15. Subset two includes LA28, LA30, LA34, and LA25 and has an ε range of

1.06∼ 1.39. For each subset, collapse fragility can be obtained using the method discussed

in Section 3.3.1. Collapse fragilities determined using subsets one and two are shown in

Figure 3.5. The median collapse capacity obtained using subset two is 2.94 g, 16% larger

than 2.52 g determined without considering ε . The median collapse capacity obtained us-
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ing subset one is 2.15 g, 14% smaller than 2.52 g. From the comparison, it can be observed

that larger ε leads to a larger collapse capacity prediction (i.e., lower probability of col-

lapse) while smaller ε leads to smaller collapse capacity prediction (i.e., higher probability

of collapse). This is consistent with what has been found in studies [66, 68, 76, 84, 85]

on steel and reinforced concrete structures. Note that only three ground motions are used

in each subset. Accurate quantification of the effect of ε on structural collapse capacity

requires more ground motions with specific ε at the fundamental period of the building of

interest. In Figure 3.5, there is one fragility curve that is adjusted with a target ε value

of 2. The target ε is discussed in Section 3.3.3 in which the collapse fragility adjustment

technique introduced.
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Figure 3.5: Collapse capacity of building A subjected to LA2/50 ground motions

(target ε = 2)

The ε values (listed in Table 3.1) for LA2/50 ground motions have a median value of 0.69

(at the period of 0.2 sec), while the median value is 1.38 if ε is calculated at period of 0.25

sec. The reason of the difference is that ε is a function of period [66]. There is quite a

dispersion of ε among the ground motions. The reason for the dispersion may be due to

the fact that the SAC ground motions [51] were developed by matching the uniform hazard

spectra for each site only in terms of Sa, without considering the spectra shape of each

selected ground motion.
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Table 3.1: Epsilon (ε) values of LA2/50 ground motions (at the period of 0.20 sec)

ground

motion

ε ground

motion

ε ground

motion

ε ground

motion

ε

LA23 -2.33 LA37 -8.36e-1 LA26 8.99e-1 LA33 1.45

LA401 -1.71 LA22 -5.77e-1 LA28 1.062 LA36 1.54

LA241 -1.36 LA21 -1.12e-1 LA30 1.102 LA35 2.10

LA391 -1.34 LA27 -1.44e-3 LA34 1.222 LA32 2.81

LA381 -1.15 LA29 4.86e-1 LA25 1.392 LA31 3.00
1 subset one; 2 subset two

3.3.3 Collapse capacity with adjustment for epsilon

In Section 3.3.2, it was found that ε has a significant effect on the collapse capacity evalua-

tion of light-frame wood construction. It is necessary to properly account for the +ε effect

when evaluating structural collapse risk. One approach is to select a set of ground motion

records with a specific ε value at a specified period (e.g. the fundamental period), and then

apply IDA methods to determine Sa,cc. However, this approach is not feasible for practical

use because it might be difficult to obtain enough ground motion records with given target

ε values at specific periods [86]. An alternative approach was proposed by Haselton et al.

[86], which uses a general set of ground motions without considering ε and then adjusts

the results distribution to account for ε in the analysis of collapse risk.

In the beginning of the second approach, one needs to select a general set of ground motions

without considering ε and determine the ε value and collapse capacity Sa,cc for each ground

motion record. Then regression analysis between Sa,cc and ε is performed according to:

lnSa,cc = c1ε + c0 (3.4)

where c1 and c0 are parameters determined by regression analysis. Figure 3.6 shows the

regression results for LA2/50 ground motions. Coefficients c0 and c1 in Eq. (3.4) is found

to be 0.88 and 0.12 respectively. The coefficient of determination, R2, is found to be 0.24.

In this study, c1 and c0 will be taken as deterministic values for a specific site. Note the

ε of LA2/50 is calculated at the period of 0.20 sec (i.e., the fundamental period of build-
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ing A. ε for the other three sites should be calculated at the period of 0.25 sec (i.e., the

fundamental period of building B. Let {Sa,cc} denote the observed collapse capacity vector

for the building and {S′a,cc} denote the calculated vector by Eq. (3.4) using the ε values

listed in Table 3.1. A residual vector is obtained by {Sa,cc}−{S
′
a,cc} and will be used for

collapse fragility adjustment discussed later in this section. The last step is to adjust the

collapse fragility using the regression results. Assuming that the collapse capacity, Sa,cc, is

lognormally distributed, the expected natural logarithm of the collapse capacity, µ̂ln(Sa,cc),

can be obtained as:

µ̂ln(Sa,cc) = c0 + c1εtarget (3.5)

where c0 and c1 are the parameters shown in Eq. (3.4), while εtarget is the target ε of interest.

The standard deviation of the natural logarithm of the collapse capacity, σ̂ln(Sa,cc)
, can be

determined as:

σ̂ln(Sa,cc) =
√

σ2
ln((Sa,cc),reg)

+ c2
1σ2

ε (3.6)

where c1 is the regressed coefficient in Eq. (3.4), σε is the standard deviation of ε , and

σln((Sa,cc),reg) is the standard deviation of the regression residual of ln(Sa,cc).
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Figure 3.6: Regression of ε and lnSa,cc for LA2/50 ground motions (at the period

0.2 s)
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For example, for the LA2/50 ground motion records, c0 = 0.88 and c1 = 0.12, the standard

deviation σε = 1.52, and σln((Sa,cc),reg) = 0.34. If εtarget = 2.0, the adjusted lognormal

parameters for collapse fragility can be calculated as

µ̂ln(Sa,cc) = 0.88+0.12×2.0 = 1.12 (3.7)

σ̂ln(Sa,cc) =
√

0.342 +0.122×1.522 = 0.39 (3.8)

The two parameters µ̂ln(Sa,cc)= 1.12 and σ̂ln(Sa,cc)= 0.39 define the adjusted collapse fragility

curve shown in Figure 3.5. The expected median collapse capacity with ε = 2 is 3.06 g,

21% larger than the median collapse capacity 2.52 g without considering ε . By perform-

ing the same process for Seattle, Boston, and St Louis, collapse fragilities of the residence

with considering ε are obtained and listed in Table 3.2. By comparing the collapse fragility

curves in Figure 3.5, it can be observed that using this alternative approach to account for

ε effect in collapse fragility is effective. This alternative method is used later in this study

to assess the collapse risk of the light-frame wood building.

The dispersion parameter σlnSa,cc
listed in columns (4) and (6) of Table 3.2 reflects the

record-to-record uncertainty as discussed in Section 3.3.1. Since the same suite of ground

motions is used to determine the collapse fragility, the dispersions are the same for each site

regardless whether ε is considered or not. Although the MCE spectra acceleration Sa for

Seattle and St Louis are 1.57 g and 0.55 g, respectively, the median ε values observed for

SE2/50 and SL2/50 are close (3.00 for SE2/50 and 3.07 for SL2/50). The suites of ground

motions (LA2/50, BO2/50, and SE2/50) were developed to be used in the SAC project [87].

While the ground motions provide satisfactory evaluation for seismic performance (e.g.

[1, 88]), collapse fragility obtained from these ground motions might need to be adjusted

to account for ε effects in order to appropriately estimate the collapse risk.

3.4 Collapse capacity considering resistance uncertainty

Past studies on seismic performance of light-frame wood structures (e.g. [1, 2, 89]) used de-

terministic hysteresis models, in which the resistance uncertainty has not been considered.

In this section, the resistance uncertainty in light-frame wood buildings is to be examined.

The uncertainty inherent in the structural system has been investigated through several ap-
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proaches including sensitivity analysis [72, 90, 91], first-order-second-moment (FOSM)

methods, and Monte Carlo methods. Sensitivity analysis indicates the parameter effects

on the structural performance to a limited depth. FOSM methods can be used to propagate

modeling uncertainties to evaluate the effect on collapse capacity, but might be problematic

when the limit state functions are highly nonlinear [38]. The Monte Carlo method is the

most comprehensive but the most computationally expensive approach [71].

3.4.1 Resistance uncertainty

Typical light-frame wood buildings have several wood shear walls as the main lateral force

resisting system. The resistance of each shear wall is reflected in 10 hysteresis parame-

ters as discussed in Section 3.2. In Section 3.3, these hysteresis parameters are taken as

constants (median values) when IDA is performed to obtain collapse fragilities. In this sec-

tion, the uncertainty associated with these hysteresis parameters (referred to as resistance

uncertainty later) is investigated. The numerical model of the light-frame wood building

(Figure 3.1) includes four shear walls (to be modeled with 40 random variables). In order

to alleviate the computation burden, an individual wood shear wall (the south shear wall in

the building B) instead of the whole building is investigated for the variation of resistance,

which then is used in the whole building analysis. This simplified procedure is based on

the assumption that the dispersion of collapse fragility, in terms of coefficient of variation

(COV), due to the resistance uncertainty found in the individual shear wall is at the same

level as that in the whole building.

As there is no data available for determining the probability distribution of the hysteresis

parameters. The normal distribution is assumed in this study for each of the hysteresis

parameters. Table 3.3 lists the distribution parameters. The median values of these param-

eters are determined using the CASHEW program [45, 78]. The normal distributions have

to be truncated considering the following factors. First, there are physical limitations on

the hysteresis parameters. For example, parameter r2 should always be less than 0 since it

indicates the strength degradation after the ultimate displacement Du is reached, as shown

in Figure 3.2. Second, there is a 95% probability that a normal distribution assigns values

in the range of µ±2σ (µ is the mean value and σ is the standard deviation). So sampling

in the range of µ ± 2σ can provide a high enough confidence level and save computation

resources. The bounding ranges listed in Table 3.3 are set considering both factors. Since
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there is no enough experimental data, the COV of each hysteresis parameter is assumed to

be 0.5 herein. Vamvatsikos and Fragiadakis [71] examined the resistance uncertainty of a

steel frame and assumed COV of the hysteresis parameters to be 0.4.

Table 3.3: Probabilistic distributions of the hysteresis parameters (Units: kN-mm)

Hysteresis

parameter

Probabilistic distribution Distribution parameter Truncation range

K0 Truncated Normal MK0
= 2.73, COVK0

= 0.5 [0.65,5.46]

Du Truncated Normal MDu
= 58.9, COVDu

= 0.5 [12.0,117.8]

r1 Truncated Normal Mr1
=−2.49, COVr1

= 0.5 [0,0.166]

r2 Truncated Normal Mr2
=−2.54, COVr2

= 0.5 [−0.16,−0.02]

r3 Truncated Normal Mr3
= 1.29, COVr3

= 0.5 [1,2.57]

r4 Truncated Normal Mr4
= 0.048, COVr4

= 0.5 [0,0.096]

F0 Truncated Normal MF0
= 24.95, COVF0

= 0.5 [5.29,38.24]

F1 Truncated Normal MF1
= 5.29, COVF1

= 0.5 [0.8,10.59]

α Truncated Normal Mα = 0.73, COVα = 0.5 [0,1.46]

β Truncated Normal Mβ = 1.09, COVβ ) = 0.5 [1,2.18]

M: median value; COV: coefficient of variance

3.4.2 Monte Carlo simulation with Latin Hypercube Sampling

As discussed in Section 3.3.1, IDA requires many runs of NDA. In this study, 40 runs of

NDA are performed for each ground motion. A single collapse fragility requires 800 runs

of NDA using the LA2/50 ground motions (20×40 = 800). A classic Monte Carlo Simula-

tion requires a large sampling number N so that the target variable (i.e., structural collapse

fragility in this section) distribution can be estimated. By sampling N times from the pa-

rameter distributions listed in Table 3.3, Monte Carlo simulation generates a population

of N shear walls. Each of the N shear wall needs 800 runs of NDA to obtain a collapse

fragility. The computational demand can be overwhelming given a large number N.

The classic Monte Carlo Simulation can be further improved by the Latin Hypercube Sam-

pling (LHS) technique [92]. The sampling number N can be significantly reduced while

keeping the same accuracy level as a classic Monte Carlo Simulation [71]. Generally, LHS

randomly selects n different values from each of k variables X1, X2, . . . , Xk. The range of
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each variable is divided into n nonoverlapping intervals, each of which has equal area under

its probability density function (PDF) curve. One value is selected at random from each

interval with respect to its PDF. So a n× k matrix of samples are generated using LHS for

the k variables. The ith column contains n randomly selected samples for variable Xi. More

details about LHS can be found in Iman et al. [93, 94].

The hysteresis parameters for the light-frame wood shear wall are statistically and/or phys-

ically correlated [91]. However, the available literature does not provide any information

on the correlations. Recent studies on steel and concrete structures (e.g. Vamvatsikos and

Fragiadakis [71], Celik and Ellingwood [74]) assume that each parameter is independent

from the others. In this study the same assumption is made and each hysteresis parame-

ter is examined independently. While one hysteresis parameter is sampled using LHS, the

other 9 hysteresis parameters remain unchanged and hold their mean values. Each hystere-

sis parameter is sampled 100 times and so 1,000 realizations of a single wood shear wall

are created. For Los Angeles, each shear wall realization is analyzed by IDA using the

LA2/50 ground motions. Figure 3.7 shows 100 median IDA drift curves, each of which

corresponds to one realization of a shear wall (modeled by one sample value of r3 from

LHS and 9 mean values of other hysteresis parameters). The collapse capacity Sa,cc of one

realization of a shear wall is determined using its median IDA drift curve that is obtained

by the process discussed in Section 3.3.1. For each median IDA curve, a collapse capacity

Sa,cc is reached when a small increase of Sa leads to a large increase of drift as discussed

previously. Each black dot in Figure 3.7 corresponds to a Sa,cc for a shear wall realization.

After 100 collapse capacities Sa,cc are determined, the collapse capacity dispersion due to

uncertainty in parameter r3, βr3
= σlnSa,cc

, can then be determined. The same procedure is

performed for the other 9 hysteresis parameters.

A tornado chart that indicates the dispersion due to each hysteresis parameters is shown in

Figure 3.8. The vertical axis is located at 1.07 g, which is the median collapse capacity of

the shear wall with all hysteresis parameters holding their mean values. It can be observed

that the effect of each parameter on the collapse capacity of the single wood shear wall

varies significantly. The statistics of the dispersions of the 10 hysteresis parameters in

Figure 3.8 are listed in Table 3.4, in which the dispersions due to uncertainty in K0, F0,

F1, and α are much larger than that of other parameters. The first three items (K0, F0, F1)

are related to material strength, while the last item (α) is related to the energy dissipation

mechanism of the structural system. It can be observed that the energy dissipation capacity
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and material strength have significant influence on collapse risk assessment of light-frame

wood structures.
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Figure 3.7: Effect of uncertainty in hysteresis parameter r3 (shown in Figure 3.2)

on the median collapse capacity

Figure 3.8: Effect of hysteresis parameters on dispersion of collapse capacity

In comparison, Vamvatsikos and Fragiadakis [71] found the yield moment, the ultimate

ductility, the capping ductility, and the negative stiffness ratio have significant impact on

steel structure performance. For concrete structures, the viscous damping ratio and con-

crete strength were found to have the greatest impact on the structural performance eval-

47



Table 3.4: Single shear wall collapse capacity Sa,cc statistics due to resistance un-

certainty

Hysteresis Median σlnSa,cc
Hysteresis Median σlnSa,cc

parameter value (g) (%) parameter value (g) (%)

K0 1.11 15.1 F0 1.11 15.5

Du 1.16 5.3 F1 1.16 14.2

r1 1.15 7.6 r2 1.7 4.1

r3 1.11 8.4 r4 1.15 6.8

α 1.15 16.4 β 1.15 4.4

uation [74]. Celik and Ellingwood [74] investigated the effect of uncertainty in viscous

damping ratio ξ for reinforced concrete structures. Studies [78, 91, 95] have found that

the viscous damping ratio of wood frame structures is in the range of 0 ∼ 2%, lower than

that of reinforced concrete structures (e.g. Celik and Ellingwood [74] assumed a mean ξ

value of 4.6% for reinforced concrete structures). The reason for this is there is significant

hysteretic damping in wood structures and the hysteretic damping is typically incorporated

into the hysteresis model[91]. In this study, viscous damping ratio ξ = 1% is assumed as

constant while the uncertainty in the structural system is modeled through the hysteresis

parameter.

Let βr indicate the collapse capacity dispersion due to resistance uncertainty that was in-

vestigated earlier in this section. βr was obtained using the LA2/50 ground motions so

that the record-to-record uncertainty βr2r was included. Using the procedure discussed in

Section 3.3.1, a single shear wall modeled by 10 hysteresis parameters at their mean values

is analyzed and a dispersion βr2r = 0.30 is obtained, which is due to the record-to-record

uncertainty. Assuming the 10 hysteresis parameters are independent, the collapse capacity

dispersion due to resistance uncertainty can be determined by Eq. (3.9) to be 0.18.

βr =
√

β 2
total−β 2

r2r (3.9)

where,

βtotal =

√√√√ 10

∑
i=1

β 2
p,i (3.10)
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In Eq. (3.10), βp,i coresponds to the dispersion items due to each of the ten hysteresis

parameters K0, F0, F1, Du, r1, r2, r3, r4, α , and β (i.e. βK0
, βF0

, βF1
, βDu

, βr1
, βr2

, βr3
, βr4

,

βα , and ββ ). The values of βp,i, i = 1, · · · ,10 are listed in Table 3.4.

To determine whether βr = 0.18 obtained in Eq. (3.9) is reasonable, an alternative method

used by Vamvatsikos and Fragiadakis [71] is also examined here. βr can be determined by:

βr =

√√√√∑N
j=1

(
lnS̄(a,cc), j− lnS̄a,cc

)2

N−1
(3.11)

where N is the number of structure samples (i.e. 1000 realization of shear walls), S̄(a,cc), j is

the median collapse capacity for the jth shear wall, and lnS̄a,cc is the mean value of all the

ln S̄a,cc. βr is found to be 0.17 using Eq. (3.11). Therefore, dispersion in collapse capacity

due to resistance uncertainty is approximately 0.18.

3.5 Collapse risk with aleatoric and epistemic uncertain-

ties

3.5.1 Collapse fragility with uncertainty

In Section 3.3 and Section 3.4, aleatoric uncertainties in earthquake records and struc-

tural resistance are investigated. Another significant source of uncertainty is epistemic

uncertainty. It comes from the fact that numerical models (e.g. attenuation equations and

hysteresis models in this study) can only capture part of the real system. The epistemic

uncertainty is termed modeling uncertainty in this study. Let βm indicate the dispersion

of collapse capacity due to modeling uncertainty. The square-root-sum-of-squares (SRSS)

method has been used to assess structural performance in the presence of various sources

of uncertainties (e.g. [56, 65, 71, 88, 96]). Using SRSS, the dispersion of collapse capacity

considering both aleatoric and epistemic uncertainties can be determined by:

β =
√

β 2
r2r +β 2

r +β 2
m (3.12)
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where β is the collapse capacity dispersion considering both aleatoric and epistemic uncer-

tainties, βr2r is the dispersion due to record-to-record uncertainty discussed in Section 3.3,

βr is the dispersion due to resistance uncertainty discussed in Section 3.4, and βm is the

epistemic uncertainty. The structural collapse fragility dispersion parameter σlnSa,cc
de-

fined in Eq. (3.2) is to be updated in this section to account for all sources of uncertainties.

Table 3.5 tabulates all the related dispersion quantities. In column (9) of Table 3.5, the epis-

temic uncertainty caused dispersion in collapse capacity, βm, is set with three levels, 0.2,

0.4, and 0.6, which represents small, moderate, and high modeling uncertainties, respec-

tively. Similar assumptions have been adopted in other studies investigating the uncertainty

effect on seismic performance assessment [41, 88]. The annual collapse probability, Pc,1,

and the collapse probability in 50 years, Pc,50, shown in columns (6) ∼ (7) and (11) ∼ (13)

in Table 3.5, will be discussed in Section 3.5.3.

Figure 3.9 illustrates collapse fragilities of the light-frame building in Los Angeles, Seattle,

Boston, and St Louis. It can be observed from this figure that all the collapse fragility

curves rotate about the median capacities. The reason is that the median capacity for each

collapse fragility is unchanged. For example, the median collapse capacity for Los Angeles

is 2.52 g. The five fragility curves shown in Figure 3.9 for Los Angeles are defined by the

median value 2.52 g and five dispersions that corresponds to different combinations of

uncertainties. Similar results are observed in ATC [62], Liel et al. [69].

3.5.2 Probability of collapse at MCE

The collapse probabilities at MCE of the light-frame wood building at the four sites are

summarized in Table 3.6. In Los Angeles, given an MCE event, the collapse probability

of building A considering both aleatoric and epistemic uncertainties is 46.1%, while it is

34.7% for building B in Seattle subjected to an MCE event. Note that the median collapse

capacity of building A is 2.52 g, higher than 2.11 g of building B. The difference between

the MCE collapse probability is due to differences in seismicity between the two sites (e.g.,

MCE in Los Angeles and Seattle are 2.34 g and 1.57 g, respectively).

Collapse fragility curves generated considering the ε effect are shown in Figure 3.10. Given

an MCE event (i.e. Sa = 2.34 g) in Los Angeles, the collapse probability is 24.6% consid-
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ering record-to-record uncertainty and a target ε of 2. The probability increases to 35.9%

while considering record-to-record, resistance, and modeling uncertainties (see column (8)

in Table 3.6). Considering the same cases in Seattle, the collapse probability rises from

28.6% up to 37.8% (see columns (7) and (8) in Table 3.6). For St Louis and Boston, the

collapse probabilities given an MCE event are almost zero for all the cases, as can be ob-

served from Figures 3.9∼3.10. Note that in this study the same construction details are

assumed for the four sites.

Table 3.6: Collapse probability (%) of the light-frame wood building at four Sites

in the United States at MCE

Source of uncertainty considered

βr2r

βr2r βr2r βr2r βr

βr2r βr βr βr βr2r βm = 0.6

Site βr2r βr βm = 0.2 βm = 0.4 βm = 0.6 εtarget = 2 εtarget = 2

(1) (2) (3) (4) (5) (6) (7) (8)

LA 42.5 43.2 43.7 45.0 46.1 24.6 35.9

SE 23.6 25.6 27.3 31.1 34.7 28.6 37.8

BO 0 0 0 0 0.1 0 0.1

SL 0 0 0 0 0.2 0 0.3

βr2r is the collapse capacity dispersion due to record-to-record uncertainty.

βr is the collapse capacity dispersion due to resistance uncertainty

βm is the collapse capacity dispersion due to modeling uncertainty

3.5.3 Annual and 50-year collapse probabilities

By convolving the collapse fragilities with seismic hazard curves, the annual collapse risk

can be evaluated. Several studies ([42, 56, 64, 65],) have used Eq. (3.13) to estimate the

annual collapse probability. In Eq. (3.13), Pc,1 is the annual collapse probability, S̄a,cc is

the median collapse capacity (the spectral acceleration corresponding to 50% probability

of collapse fragility curve), β is the dispersion of the collapse fragility, and k0 and k are

two site specific parameters defining the seismic hazard [56].

Using Eq. (3.13) and (3.14), the annual collapse probability and the collapse probability
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in 50 years (Pc,50) of the light-frame wood building in Los Angeles, Boston, Seattle, and

St Louis are determined and summarized in Table 3.5. The median values S̄a,cc used in

the calculation are listed in Table 3.2. Seismic parameter k0 and k for the four sites are

obtained from the USGS [97]. The collapse capacity dispersion, βr = 0.18, is assumed to

be the same as that in the single shear wall as discussed in Section 3.4.

Pc,1 = k0S̄−k
a,cce0.5(kβ )2

(3.13)

Pc,50 = 1− (1−Pc,1)
50 (3.14)

The annual collapse probabilities considering record-to-record uncertainty and spectral

shape effects are listed in column (7) of Table 3.5, while the annual collapse probabili-

ties considering only record-to-record uncertainty without spectral shape effects are listed

in column (6). With median collapse capacity adjusted with target ε = 2, the annual col-

lapse probability in Los Angeles decreases from 0.53E−3 to 0.28E−3 (or 46% less). For

Boston, the difference between columns (6) and (7) is negligible. This results are consistent

with what was recommended in other studies [76, 86] that the spectral shape has significant

influence on collapse risk assessment for high seismicity areas like western United States.

For low seismicity areas like Boston (MCE = 0.28 g), the spectral shape might not be as

important as other factors such as resistance and modeling uncertainties.

The annual collapse probability in Boston only considering record-to-record was found to

be 2E−5, which increases by 25% to 2.5E−5 considering an epistemic disperison βm = 0.4

and resistance uncertainty βr = 0.18. The resistance uncertainty and epistemic uncertainty

do not have significant influence on the collapse risk of light-frame wood construction

in Boston. While in Los Angeles the annual collapse probability increases 168% from

0.53E−3 to 1.41E−3.

Compared with the record-to-record uncertainty, βr2r, the resistance uncertainty contributes

to the overall collapse risk, especially when the modeling uncertainty is at moderate or high

level (i.e., βm = 0.4∼ 0.6). Note that the dispersion βr listed in Table 3.5 assumes the resis-

tance uncertainty effect on a single shear wall is the same as that on a whole wood building.

This assumption needs to be further investigated later. According to these observations, it

can be seen that the uncertainty from earthquake ‘demand’ and effect of spectral shape are
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more significant than the resistance uncertainty on the collapse risk analysis for light-frame

wood structures. However, neglect of resistance uncertainty will lead to unconservative es-

timation of seismic collapse risk of the light-frame wood structure. In comparison, studies

on concrete and steel structures (e.g. [53, 65, 69, 74]) found that uncertainties in structural

systems have significant influence on seismic collapse performance.

3.6 Discussion

The record-to-record dispersion βr2r found in this study for the four sites ranges between

0.31 and 0.50. This is comparable to what has been found by Haselton and Deierlein [54],

who evaluated the collapse risk of 30 reinforced concrete moment frames of varying height.

In their study, the dispersions due to record-to-record uncertainty, βr2r, were found to range

between 0.35 and 0.45. The modeling uncertainty found in their study [54] was around

0.45. Note that the modeling uncertainty in their study corresponds to the combination of

βr (column (8) in Table 3.5) and βm (column (9) in Table 3.5) in this study using SRSS.

Taking a moderate epistemic uncertainty, βm = 0.40, a combined dispersion βr+m = 0.44

is obtained, which is comparable to the results in Haselton and Deierlein [54].

The ongoing ATC-63 project [62] is developing a methodology for quantifying structural

seismic performance parameters (i.e., response modification coefficient R, system over-

strength factor Ω0, and deflection amplification factor Cd) for use in seismic design. Al-

though the ATC-63 project includes seismic performance evaluation for light-frame wood

buildings, a direct comparison of results from the ATC-63 project and those from this study

is confounded by several factors. First, the focus of this study is different from that of the

ATC-63. This chapter aims to evaluate effects of uncertainty on the seismic performance

of a typical light-frame wood buildings, while the ATC-63 focuses on providing reliable

performance factors for design purpose. The collapse risk of existing buildings is not con-

sidered in the ATC-63 project but is studied in this chapter. Second, the ground motions

used in the two studies are different. The SAC and Wen-Wu ground motions are used in

this study while the ATC-63 used ground motions from the PEER NGA database [98]. Dif-

ferent sources of ground motions lead to different collapse capacities, as can be seen from

Table 3.2. Third, the definitions of collapse capacity are different. The median collapse ca-

pacity in the ATC-63 project was obtained by scaling all the records to the MCE intensity
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and then increasing intensity until half of the scaled ground motion records cause collapse.

The median collapse capacity determined in this study is discussed in Section 3.3.1.

3.7 Conclusions

Collapse risk of light-frame wood construction at four sites in the United States was as-

sessed in this study, considering both aleatoric uncertainty (i.e., record-to-record uncer-

tainty, and resistance uncertainty) and epistemic uncertainty (i.e., modeling uncertainty).

The spectral shape (ε) effect on the collapse risk was investigated. Collapse probabilities

at MCE and collapse probabilities (annual and 50-year) for four sites were estimated.

Record-to-record uncertainty found in light-frame wood construction in this study ranged

between 0.31 and 0.50, which is consistent with what has been found in steel and concrete

structures. The spectral shape ε of ground motion was found to have significant effect

on the collapse risk of light-frame wood construction, especially for high seismicity areas

like the west coast of United States. Considering a moderate modeling uncertainty (i.e.

βm = 0.4 in this chapter), the dispersion due to both resistance and modeling uncertainties

was found to be approximately 0.44, which led to an increase of annual collapse probability

ranging between 25% and 168% depending on the site. Therefore, resistance and modeling

uncertainty contributions cannot be neglected in light-frame wood construction collapse

risk assessment.
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Chapter 4

Stochastic modeling of snow loads using

a Filtered Poisson process

4.1 Introduction

Snow hazard causes significant damage to buildings and threatens life safety. For exam-

ple, The March 1993 east coast storm in the United States caused $1.75 billion economic

losses [4]. On January 28 2006, at least 66 were killed and 160 were injured in the Ka-

towice Trade Hall roof collapse due to heavy snow loads in Poland [5]. In January 2006, a

roof collapse due to heavy snow loads in Bad Reichenhall, Germany, killed 15 (including 8

children) and injured more than 30 [6]. In February 2008, a snow storm in southern China

caused a direct economic loss of 54 billion yuan ($7.7 billion) [7].

The Bernoulli pulse process (referred to as the Bernoulli model later) has been used for

snow load simulation. For example, the Bernoulli model was used to investigate the ‘creep-

rupture’ characteristic of timber structures (e.g. [99–101]), The Bernoulli pulse process

works well for sites with intermittent snow loads (i.e. pulse loads). However, it cannot be

used for sites with snow accumulation because the assumption of independence between

time intervals is invalid under such conditions. Details are discussed in the following sec-

tions.
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The load combinations in ASCE Standard 7-05 [75] were developed based on Turkstra’s

rule [102], which assumes the maximum combined load effect occurs when one load at-

tains its maximum value while other loads are at their arbitrary point-in-time values. For

some areas in the United States (e.g. the mountainous areas in the west coast), where both

earthquake and snow hazards are significant for an extended period of time, Turkstra’s rule

may not be appropriate [103]. In order to investigate the load combinations involving snow

loads (e.g. seismic and snow loads, wind and snow loads), a proper snow load model is

required to simulate the time history of ground snow loads so that the snow load at any

point of time can be obtained.

This study considers a model for snow load simulation proposed by Yin et al. [104]. This

model is based on a Filtered Poisson Process (FPP). Weather records for three sites, Tahoe

City, CA, Stampede, WA, and Buffalo, NY, are obtained from the National Climatic Data

Center (NCDC) and used to calibrate the FPP model. Tahoe City and Stampede represent

areas with snow accumulation, while Buffalo represents an intermittent snow load area.

4.2 Bernoulli model and its limitations

In the Bernoulli model, a snow season T is divided into n time intervals, τi, i = 1,2, · · · ,n,

and the load pulse value remains constant during each interval and independent between

intervals. For each time interval, a probability p is assumed such that the load pulse is

nonzero at that probability [99]. Eq. (4.1) shows the relationship between the cumulative

distribution functions (CDF) of the maximum values, Fmax(x), (e.g., the annual maximum

ground snow loads) and the single load pulse values, F(x), (e.g., the daily ground snow

loads). Typically, the annual maximum ground snow loads for most sites in the United

States fit a lognormal distribution with parameters that are site specific [105–107].

Fmax(x) = [(1− p)+ pF(x)]n (4.1)

Based on the assumptions, snow load simulation is performed using Eq. (4.1) and appro-

priate Fmax parameters (e.g., λ and ξ for a lognormal distribution). Fig. 4.1(a) shows a
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simulated snow load record using the Bernoulli model with a probability p = 0.2 and 2-

week time interval. Fig. 4.1(b) shows the ground snow loads of Buffalo, NY from Nov.,

1963 to Apr., 1964 obtained from the NCDC [108]. It can be observed that the Bernoulli

model approximately captures the load pulse characteristic that is common for intermittent

snow load sites.
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Figure 4.1: Ground snow load record of Buffalo, NY

Fig. 4.2(a) shows the ground snow loads of Stampede, WA from Nov., 1954 to Jul., 1955

obtained from the NCDC. The gaps in the record are caused by missing data of the NCDC

weather records. In comparison to the Buffalo snow load record (4.1(b)), the Stampede

ground snow loads increase to a high level because of snow accumulation and then decrease

as the weather gets warmer. For such a case, to use the Bernoulli model, the probability p

is set to 1 (i.e., nonzero snow loads present all the time during the snow season). Fig. 4.2(b)

shows a simulated snow load record using the Bernoulli model with p = 1. The Bernoulli

model fails to capture the snow accumulation characteristic of the snow load record of

Stampede. The reason is that the assumption that the load pulse is independent between

intervals does not hold for such a case. The snow load at the i time interval is related to

those in the previous intervals and will affect those in the following intervals.

Furthermore, the parameter p of the Bernoulli model has been determined arbitrarily and

cannot be validated [109]. Consequently, it is difficult to calibrate the simulations modeled
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by the Bernoulli model. Lastly, using the Bernoulli model, it is not feasible to obtain a snow

load history (e.g., daily ground snow load) that may be needed for structural performance

evaluation for buildings located in certain areas.
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Figure 4.2: Ground snow load records of Stampede, WA

4.3 Filtered Poisson Process

The concept of the FPP was proposed by Parzen [110]. Rahman and Grigoriu [111] used

the FPP to model seismic hazards. Yoon and Kavvas [112] proposed a FPP model to

simulate rainfall. Lefebvre and Guibault [113] proposed a FPP river flow model. Yin et al.

[104] proposed a FPP model for snow load simulation as shown by Eq. (4.2), which is a

stochastic model driven by Poisson processes.

X(t) =
N(t)

∑
i=1

AiS(t, ti,Yi), where 0 < t < T (4.2)

S(t, ti,Yi) =

{
1, if t ∈ [ti, ti +Yi);

0, otherwise .
(4.3)
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The FPP model consists of a sequence of Poisson events Xi = AiS(t, ti,Yi). Fig. 4.3 shows

some generic Poisson events. Note that it is possible for Poisson events to overlap. In

Eq. (4.2), X(t) is the time history of snow loads; N(t),0 < t < T is a Poisson process with

a mean arrival rate v; T is the time period in which Poisson events occur; Ai is a sequence

of independent and identically distributed (IID) random variables that model Poisson event

intensities; Yi is another sequence of IID random variables that model Poisson event dura-

tions; S is a step function defined by Eq. 4.3, in which Ai and Yi are assumed to be inde-

pendent and lognormally distributed with parameters determined using a genetic algorithm

that is presented next.

Y
i

A
i

τ
i

Figure 4.3: Generic Poisson events

4.4 Genetic algorithm

As defined in Eq. (4.2), several variables, the occurrence rate v, the amplitude Ai, the time

period T , and the duration Yi, are involved with the FPP model. Each variable can assume a

probability distribution with one or more parameters. All these parameters should properly

fit to the NCDC weather records. The determination of these parameters for a specific site

requires many iterations. In each iteration, the parameters are optimized with feedbacks

from the previous iteration until the simulated results fit the NCDC weather records.

In this study, the genetic algorithm (GA) is used to determine the 6 parameters (2 for the

Poisson event duration, 2 for the Poisson event intensity, 1 for the Poisson event occurring

rate, and 1 for the snow season length) of the FPP model. While there might be alternative

methods to determine the FPP model parameters, to compare the GA with other methods
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is beyond the scope of this chapter. In the future, it may be of interest to use alternative

methods for comparison purposes.

The genetic algorithm, proposed by Holland [114], has been applied to many areas (e.g.,

[115–118]). It is an optimization method inspired by biological genetics and evolution. The

genetic algorithm includes selection of parents (i.e., chromosomes), propagation of babies

(i.e., new chromosomes), mutation, and genetic filtering (i.e., keeping good chromosomes

and dropping the bad ones) according to cost, which is determined by a cost function such

that the optimization objectives are obtained.

Eq. (4.4) shows a genetic matrix with m rows and n columns. Each row corresponds to a

chromosome, chromosomei, i ∈ [1,m]. Each column corresponds to a parameter, αi, i ∈
[1,n]. The cost vector, (cost1,cost2, · · · ,costm)

T , is determined by a cost function using the

simulated records and the data records (simulated snow records and NCDC weather records

in this study). Each chromosome, chromosomei, corresponds to a cost value, costi. The cost

function varies with the simulation objectives. In this study, the cost functions as shown

in Equations (4.5) and (4.6) were investigated. In Eq. (4.5), µsim and σsim are the mean

and standard deviation of simulated annual maximum ground snow loads, respectively;

µNCDC and σNCDC are the mean and standard deviation of annual maximum ground snow

loads obtained from NCDC weather records, respectively. In Eq. (4.6), AnnualMaxsim,i and

AnnualMaxNCDC,i are annual maximum ground snow loads for the i year of the simulated

and NCDC weather records, respectively. The number of years, n, during which the NCDC

ground snow load records are available varies by site.

[GAMatrix] =




α11 α12 · · · α1n

...
...

...
...

αi1 αi2 · · · αin

...
...

...
...

αm1 αm2 · · · αmn




← chromosome1
...

← chromosomei

...

← chromosomem





cost1
...

costi
...

costm





(4.4)

cost1 = (µsim−µNCDC)
2 +(σsim−σNCDC)

2 (4.5)

cost2 =
n

∑
i=1

[
AnnualMaxsim,i−AnnualMaxNCDC,i

]2
(4.6)
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Crossover is a process by which two chromosomes pair up and exchange sections. There

are several crossover methods used for generating baby chromosomes from parent chro-

mosomes [116]. The single random weight method and the Heuristic method are used in

this study. For the first method, the two parent chromosomes are multiplied by a uniform

random number r (r ∈ [0,1]), as shown:

(mother) = (αi1 αi2 · · · αin) (4.7)

( f ather) = (α j1 α j2 · · · α jn) (4.8)

to generate two babies

(baby1) = r ∗ (mother)+(1− r)∗ ( f ather), (4.9)

(baby2) = (1− r)∗ (mother)+ r ∗ ( f ather). (4.10)

For the second method, the parent chromosomes are multiplied by the random number r as

shown by:

(baby1) = (mother)− r ∗ [( f ather)− (mother)], (4.11)

(baby2) = (mother)+ r ∗ [( f ather)− (mother)]. (4.12)

A careful check is necessary after each crossover because some members of the baby chro-

mosomes might be negative, which is not valid in this study. If a negative value does ap-

pear after a crossover, it is replaced with a random number. For example, if αi j, i ∈ [1,rn],

j ∈ [1,cn] is negative after a crossover, it will be assigned a new value determined by

αi,lo + r ∗ (αi,hi−αi,lo) (4.13)

where αi,lo and αi,hi constitute a reasonable range, [αi,lo,αi,hi], for αi that corresponds to a

column in the [GAMatrix]; rn and cn are row and column dimensions of the chromosome

population that is a matrix; and r is a uniform random number on [0,1].

Mutation induces variation into the chromosome population. The mutation rate is the por-

tion of members that will be changed. The rate is set to be 5-10% in this study. The

members to be mutated are randomly selected throughout the chromosome population. A

selected member is replaced with a random number generated by the way that is used to

replace the negative value in a crossover operation.
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Fig. 4.4 illustrates the main processes of the hazard simulation program (HASP) developed

in this study. At the beginning of HASP, the [GAMatrix] is initialized based on a reason-

able range for each of the n variables. The COST module performs ground snow loads

simulation by running SIMULATOR, which is a subroutine to generate ground snow load

records, and calculates costs using the cost functions shown in Eq. (4.5)-(4.6). The GA

module performs iteration and contains crossover and mutation algorithms.

The initial [GAMatrix] is sorted in ascending order according to the cost vector, as shown in

Eq. (4.4). The sorted [GAMatrix] is equally divided into two parts and the top half (i.e., with

smaller costs) becomes a working population [POP] that evolves as the iteration in the GA

module proceeds. The working population [POP] is also equally divided into two parts. The

top half is named [KEEP], from which the parent chromosomes are selected. The bottom

half of [POP] is replaced with baby chromosomes generated by crossover of the parent

chromosomes selected from [KEEP]. For each loop, a mutation process is performed after

crossover is finished. At the end of a loop, the new working population [POP] is sorted in

ascending order according to the corresponding costs. The iteration in the GA module is

controlled by a maximum iteration number. Convergence criteria are also used to determine

if a good result is reached before termination at the maximum iteration number.

4.5 NCDC weather records

4.5.1 NCDC weather stations

There are about 1600 first-order stations operated by the National Weather Service (NWS),

19,000 NWS Cooperative Observer Program (COOP) stations, and other stations in the

United States and its territories. Each station has a specific COOPID number. The NCDC

processes and provides weather records observed from these stations. The weather record

data are classified into types such as the daily snow depth (SNWD), daily maximum tem-

perature (TMAX), daily minimum temperature (TMIN), and daily water equivalent snow

depth (WTEQ). The first-order stations provide all these types of weather records. But

WTEQ is not provided by other stations. In this study, Tahoe City, CA, Stampede, WA,

and Buffalo, NY, were selected for case studies. The simulated ground snow load records
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for these sites, using the FPP model, were validated by comparing them with those ob-

tained from the NCDC. Table 4.1 lists the weather stations from which weather records

were obtained. Among the four stations, all but Tahoe City are first-order stations. The

Blue canyon station is the closest first-order station to Tahoe City and was used to estimate

WTEQ for Tahoe City using the method discussed in the next section.

Table 4.1: Selected weather stations

COOPID Station Name State Latitude Longitude Elevation (ft.)

040897 Blue Canyon Airport (Ap.) CA 39◦17’ -120◦43’ 1608.1

048758 Tahoe City CA 39◦10’ -120◦9’ 1898.9

458009 Stampede Pass WA 47◦18’ -121◦20’ 1206.4

301012 Buffalo Niagara International Ap. NY 42◦56’ -78◦44’ 214.9

4.5.2 WTEQ estimation using climatological data

As snow density varies by time and site, it is difficult to convert snow depth to snow load by

simply multiplying by a factor, while WTEQ can be conveniently converted to snow loads

by multiplying a factor of 5.19 psf per inch of water. Fridley et al. [119] proposed a method

to estimate WTEQ using snow depth and temperature data. In this study, this method is

used to obtain the daily ground snow load for Tahoe City, where WTEQ is unavailable.

First, a first-order weather station, Blue Canyon Airport (Ap.), which is located 31.4 miles

to the west of Tahoe City was selected such that the weather correlation analysis can be

performed. For Tahoe City, 106-year (1903-2008) weather records were available and 69-

year (1940-2008) weather records were available for Blue Canyon Ap. However, some

data were missing for both stations for some days. Four variables, TMAX, TMIN, SNWD,

and daily average temperature (TAVG), were checked for each day to make sure that each

variable assumed a valid value (i.e., not missing or damaged) for both stations. During the

common period of both stations (i.e., 1940-2008), 15,614 days of data were found to be

valid. The correlation coefficient for each of the four variables was determined using the

available data between both stations. As shown in Table 4.2, the weather conditions are

strongly correlated (i.e., the weather conditions are similar).
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Second, nonlinear regression analysis was performed to determine the coefficients C1,C2,

and C3 as shown in

WT EQ =C1 ·SNWD+C2 ·TAV G+C3 ·TAV G3, (4.14)

which was proposed by Fridley et al. [119]. A total of 4,082 days of weather data for Blue

Canyon is analyzed and the estimated WTEQ is compared with the recorded WTEQ, as

shown in Fig. 4.5. Table 4.3 lists the regression analysis results.

Lastly, WTEQ for Tahoe City is determined using the coefficients obtained in the previous

step. 71-season WTEQ records are estimated using Eq. (4.14) and coefficients in Table 4.3.

Table 4.2: Weather correlation analysis results

Blue Canyon Ap.

SNWD TMAX TMIN TAVG

Tahoe City

SNWD 0.900

TMAX 0.877

TMIN 0.826

TAVG 0.882

SNWD: daily snow depth; TMAX: daily maximum temperature

TMIN: daily minimum temperature; TAVG: daily average temperature

Table 4.3: Nonlinear regression analysis results

site R2 C1 C2 C3 σerror µerror

in./in. in./◦F in./◦F3 in. in.

Blue Canyon Ap. 9.340E-1 3.099E-1 1.435E-2 -1.988E-6 2.529E0 -6.697E-2

R2: correlation coefficient between station recorded WTEQ and estimated WTEQ;

Error = station recorded WTEQ - estimated WTEQ;

σerror: standard deviation of the error. µerror: mean value of the error.

4.6 Fitting model parameters

As discussed earlier, six parameters are required in this study for a specific site using the

FPP model to simulate snow loads. These parameters are λd and ξd for Poisson event
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Figure 4.5: Estimated water equivalent snow depth (WTEQ) vs. recorded WTEQ

for Blue Canyon

duration, λi and ξi for Poisson event intensity, time period T , and Poisson event arrival rate

v. λ (λd or λi) and ξ (ξd or ξi) are parameters of the lognormal distribution, as shown in

the probability density function (PDF):

f (x;λ ,ξ ) =
1

xξ 2
√

2π
e
−[ln(x)−λ ]2

2ξ 2 (4.15)

The six parameters are determined using the genetic algorithm discussed earlier. Depend-

ing on the cost function, crossover method, and mutation rate, there are differences between

each set of parameters. Once a set of six parameters are determined for a specific site, snow

load simulation can then be performed using the FPP model with the determined parame-

ters.

4.7 Case studies

In this section, the FPP model is to be validated by comparisons between simulated snow

loads and NCDC recorded snow loads for three sites in the U.S. For each site, one compar-

70



ison is made between the shapes of the records, another one is made between the annual

maximum probability distributions, and the last one is to compare the empirical CDF (i.e.

the rank order statistics) of daily ground snow loads.

4.7.1 Tahoe City, CA

Fig. 4.6(a) shows four estimated ground snow load records of Tahoe City (referred to as

NCDC ground snow loads later). The records are plotted as a function of time ranging

from Aug. 16 to the next Aug. 15. The snow accumulation pattern can be identified from

Fig. 4.6(a). The gaps in the figure are caused by missing data. A Kolmogorov-Smirnov

(KS) test at 5% significance level is performed to show that the NCDC annual maximum

ground snow loads for the site are lognormally distributed. The statistics of the annual

maximum ground snow loads of Tahoe City are listed in Table 4.4, where λ and ξ are

parameters of the lognormal distribution.

Using the FPP model, the ground snow load records of Tahoe City are generated. Four

simulated ground snow load records of Tahoe City are shown in Figure 4.6(b). Compar-

ing to the NCDC snow load records, the simulated snow load records properly modeled

the snow accumulation characteristic. The simulated annual maximum ground snow loads

are also checked using the KS test at 5% significance level and found to be lognormally

distributed (see Table 4.4). The crossover methods and mutation rate did not make a signif-

icant difference as long as the same cost function is specified. Fig. 4.7(a) shows the CDF

plot for both the NCDC and simulated annual maximum ground snow load using both cost

functions. The empirical CDF is determined by ranking order of data. In comparison of the

CDF plots, the simulated snow loads with the first cost function (Eq. 4.5) are closer to the

NCDC snow loads than those with the second cost function (Eq. 4.6).

In addition to the comparison of annual maximum snow loads, the daily ground snow loads

are also compared. The empirical CDF of the NCDC recorded and FPP simulated daily

ground snow loads are obtained and shown in Fig. 4.7(b). The simulated daily ground

snow loads are fit to exponential, Weibull, lognormal, and Gumbel distributions. None

of the four distributions fits the data. Then the same process is performed for the NCDC

recorded daily ground snow loads. It is also found that none of the four distributions fit

the data. Although no probability distribution is found to fit the daily ground snow loads,
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Table 4.4: Statistics of the annual maximum ground snow load for three sites

Site Data Mean(psf) Std(psf) Distribution λ ξ

Tahoe City NCDC 91.480 40.471 lognormal 4.431 0.411

FPP1 93.363 43.784 lognormal 4.413 0.536

FPP2 85.040 19.108 lognormal 4.418 0.229

Stampede NCDC 241.669 85.869 lognormal 5.421 0.387

FPP1 238.160 76.880 lognormal 5.404 0.358

FPP2 209.505 40.244 lognormal 5.327 0.191

Buffalo NCDC 18.038 22.763 lognormal 2.531 0.787

FPP1 21.782 15.684 lognormal 2.824 0.793

FPP2 23.4151 5.624 lognormal 3.122 0.259

Std: standard deviation

FPP1: simulated results using the FPP model with the first cost function in Eq. (4.5)

FPP2: simulated results using the FPP model with the second cost function in Eq. (4.6)

the simulated daily ground snow loads approximately match the NCDC daily ground snow

loads. For example, there is a probability of 70% that the NCDC daily ground snow load

of Tahoe City is less than 50 psf, while the simulated daily ground snow loads at the same

level with the probability between 62% and 76%, implying that the FPP model captures the

variation of the daily ground snow loads fairly well.

4.7.2 Stampede, WA

For Stampede, WA, 39-season ground snow load records are obtained from the NCDC.

Fig. 4.8(a) shows four seasons of NCDC ground snow load records for this site. The ground

snow load records are also simulated using the FPP model, as shown in Fig. 4.8(b). Snow

accumulation can be observed in both Fig. 4.8(a) and Fig. 4.8(b), indicating that the FPP

model is capable of modeling this characteristic. However, some different patterns between

Fig. 4.8(a) and Fig. 4.8(b) still exist. In Fig. 4.8(a), snow load increases slower than it

decreases, while it goes the opposite way in Fig. 4.8(b). The length of some simulated

snow seasons is slightly shorter than that of the NCDC snow seasons. The reason for these

differences is that these characteristics (i.e., the record shape and snow season length) are

not incorporated in the cost function.
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Figure 4.7: CDF plot of snow load of Tahoe City, CA

Both the NCDC and simulated annual maximum ground snow loads for Stampede were

found to be lognormally distributed. The statistics of the lognormal distribution are listed

in Table 4.4. The CDF plot of the annual maximum ground snow loads of Stampede is

shown in Fig. 4.9. Similar to the case of Tahoe City, the exponential, Weibull, lognormal,

and Gumbel distributions do not fit the daily ground snow loads of Stampede (both NCDC

and simulated). Fig. 4.10 shows the CDF of the daily ground snow loads. The simulated

records with the first cost function match the NCDC records better than those with the

second cost function. There is a probability of 76% that the NCDC daily ground snow load

of Stampede is less than 200 psf, while the simulated records with the first cost function

indicate a probability of 81%.

4.7.3 Buffalo, NY

For Buffalo, NY, 53-season NCDC ground snow load records are obtained from the NCDC.

Similar procedures are performed for Buffalo. Fig. 4.11(a)-4.11(b) show the NCDC and

simulated ground snow load records. The lognormal distribution still fits the annual maxi-

mum ground snow loads. Table 4.4 lists the parameters. Fig. 4.12 shows the CDF plot of

the annual maximum ground snow loads of Buffalo.
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Different from Tahoe City and Stampede, snow loads of Buffalo keep ‘on’ and ‘off’ in-

termittently (Fig. (4.11(a))), which is typically referred to as the load pulse pattern. This

pattern can also be observed from the simulated records (Fig. (4.11(b))), indicating that the

FPP model can simulate both snow accumulation and load pulse patterns. The difference

between Fig. 4.11(a) and Fig. 4.11(b) is that the simulated snow load pulses are ‘com-

pressed’ in shorter timer periods than those of the NCDC snow records. The reason is that

the length of snow season is not incorporated in the cost function. Similar to the cases of

Tahoe City and Stampede, none of the four distributions (i.e., exponential, Weibull, lognor-

mal, and Gumbel) fits the daily ground snow loads of Buffalo. However, the FPP model

captures the daily ground snow loads fairly well, as can be seen from Figure 4.12.

4.7.4 Discussion

The probability distribution of the annual maximum ground snow loads as well as the cor-

responding parameters are typically of interest and set as the ‘control property’ in Table 4.4

such that the simulated snow load records using different cost functions can be compared.

The differences between the lognormal distribution parameters (Table 4.4) determined from

the NCDC and simulated snow load records using the frst cost function, are caused by the

stochastic property of the simulated snow load records and cost function residue. Theoreti-

cally, cost1 in Eq. (4.5) tends to be zero as realization number (i.e., numbers of snow season

simulated) goes to infinity. In fact, only limited numbers of realization can be performed so

there always is a residue of cost1. Even for the same set of parameters (i.e., the best chro-

mosome selected by the genetic algorithm as shown in Eq. (4.4)), the annual maximums

statistics vary slightly for each run (i.e., a Monte Carlo simulation with certain number of

realizations). The relatively large differences between the parameters determined from the

NCDC and simulated snow load records using the second cost function are because the

second cost function has the objective of the least sum of squared differences of annual

maximums, which is different from the ‘control property’(Eq. 4.6).
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Figure 4.9: CDF plot of the annual maximum ground snow load of Stampede, WA
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Figure 4.10: CDF plot of the daily ground snow load for Stampede, WA
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Figure 4.12: CDF of the annual maximum ground snow load for Buffalo, NY
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Figure 4.13: CDF of the daily ground snow load for Buffalo, NY
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4.8 Future work

Some characteristics of the ground snow load record are not thoroughly examined in this

study, including the length of snow season and the shape of the snow load record with

accumulation. The daily ground snow loads were examined by comparing the empirical

CDF of both NCDC and simulated records (for the purpose of model validation). In the

future, other cost functions should be considered to investigate such characteristics of snow

load records so that the FPP model will be capable of modeling snow loads more accurately.

This study is a part of ongoing research by the authors to investigate quantified risks (i.e.

economic losses) of light framed wood constructions subject to combined seismic and snow

loads. The FPP model is to be used for stochastically modeling snow loads so that the

load combination (at any point of time) of seismic and snow loads can be obtained. For

such an application, snow season length (or snow covered period), snow load shape (i.e.

snow accumulation or pulse like), and annual maximums are required, all of which can be

provided by the FPP model.

Application may also include the investigation of the ‘creep-rupture’ behavior for timber

structures subject to accumulated snow loads. As discussed earlier in this chapter, the

Bernoulli model was typically used in such an application but it is not an appropriate model

for heavy snow load areas. In comparison, the FPP model works well for both heavy

and intermittent snow load areas. For timber structures located in heavy snow load areas,

the FPP model can be used to simulate stochastic snow load histories to investigate the

accumulated damage in timber structures using available damage models, e.g., [120–122].

4.9 Summary

The Bernoulli model has been used in the past to model snow loads. However, the model

cannot be used for sites with heavy snow loads because it might lead to unconservative

design of buildings located in such areas, for not being able to model the snow accumula-

tion. In this study, the FPP model was investigated as a stochastic tool to simulate snow

loads. Weather records from three sites were obtained from the NCDC to calibrate the
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FPP model. Both snow accumulation (Tahoe City, CA and Stampede, WA) and load pulse

(Buffalo, NY) characteristics for different sites can be effectively simulated using the FPP

model. A genetic algorithm was employed successfully to select parameters for the FPP

model.

One of the merits of the FPP model is that different simulation objectives can be fulfilled

by using different cost functions, while the Bernoulli model can only fit to the probability

distribution of the annual maximum ground snow loads. The time variation (i.e., the daily

ground snow loads) approximately match those of the NCDC snow records, which the

Bernoulli model cannot achieve.
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Chapter 5

Loss estimation of light-frame wood

construction subjected to

mainshock-aftershock sequences

5.1 Introduction

It is found that aftershocks occur following an earthquake of large magnitude (referred

to as the mainshock). In 24 hours after the 8.8 earthquake in Chile on Feb. 27, 2010,

about 90 aftershocks with magnitudes equal to or larger than 5.0 were recorded by the

United States Geological Survey [24]. In the Wen-Chuan earthquake on May 12, 2008 in

China, 12 aftershocks with magnitudes larger than 5.0 were observed on the same day [25]

after the mainshock. Figure 5.1 shows the recorded aftershocks in the 1999 Taiwan Chi-

chi earthquake [26]. ‘M’ in the figure legend indicates the mainshock while ‘A’ indicates

aftershocks. It can be observed that there are 3 aftershocks with magnitudes around 6.0 in

4 hours after the mainshock. Therefore, it is not realistic that the building is rebuilt to its

intact state immediately, or before the next earthquake event, which is typically assumed in

seismic loss estimation (e.g., [27, 28]). Depending on the damaged building status and the

aftershock intensities, it can take 2 years or longer to reopen the building damaged in the

mainshock [29], which results in significant economic losses.
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Figure 5.1: Recorded aftershocks in the 1999 Taiwan Chi-chi earthquake

Risk assessment of structures in the post-mainshock environment is critical and needs to

be addressed properly [123]. A conceptional framework for seismic loss estimation was

proposed by the Pacific Earthquake Engineering Research (PEER) Center [36, 37]. In the

PEER framework, the seismic loss analysis consists of four components that are ground

motion hazard, structural response, damage to components, and repair costs. Based on the

PEER framework, several application frameworks for seismic loss estimation were pro-

posed recently. For example, Pei and van de Lindt [27] developed a seismic loss estimation

methodology for light-frame wood construction. The ATC-58 project [41] developed three

methods, i.e., intensity-, scenario-, and time-based assessments for structural performance

quantification. In these approaches, the building was assumed to be rebuilt to its intact

state immediately after an earthquake, which is not realistic in the post-mainshock en-

vironment [29]. In addition, aftershocks were not considered in these approaches while

aftershocks may have significant effects on the seismic loss estimation [29].

Light-frame wood construction is the most widely built structure in the United States (U.S.).

Approximately 90% of residential buildings are light-frame wood construction. In the 1994

84



Northridge earthquake, damage or collapse of wood residential construction caused $20 bil-

lion in economic losses [1]. Some studies (e.g., [29, 30]) investigated the performance of

steel and concrete buildings and risks due to mainshock and aftershock sequences. Markov

models were investigated in the study by Yeo and Cornell [29]. In the study by Li and

Ellingwood [30], only the intensities in terms of magnitude of mainshock and aftershock

were simulated, while occurrence time of earthquakes and economic losses were not inves-

tigated. van de Lindt [124] conducted an experimental tests to investigate the behavior of

light-frame wood structure subjected to multiple earthquakes in a sequence. However, the

impact of aftershocks on light-frame wood construction is unclear.

To demonstrate the proposed framework, mainshock-aftershock sequences are simulated

and applied to a typical wood residential building in the U.S., and the economic loss over

a period of time is estimated. Mainshocks are simulated as a homogeneous Poisson pro-

cess, while aftershocks are simulated as a nonhomogeneous Poisson process. The ground

acceleration records from the ATC-63 project [62] are randomly selected and applied to the

structural model to perform nonlinear dynamic analysis (NDA). The maximum inter-story

drift obtained from the NDA is then used to determine the damage state of the building. At

last the expected losses of the building subjected to mainshock and aftershock sequences

are examined through Monte Carlo Simulation (MCS), considering both transition cost and

downtime cost. The transition cost includes structural and nonstructural damage cost of the

building due to one occurrence of the shock, as well as the evacuation cost of occupants

in the building [29]. The downtime cost is the economic loss due to closed operation or

limited function of the building [29].

Baker and Cornell [38] examined the uncertainty propagation for the PEER framework us-

ing the first-order second-moment (FOSM) method. Bradley and Lee [125] examined that

approximation method by comparing it with direct numerical integration and concluded

that great care should be taken in the use of such approximation because of the error (up

to 50%) in the results. In this study, the MCS method is used to estimate the seismic loss.

The next-generation performance-based seismic design procedure, with its emphasis on

risk quantification, is being developed by the ATC-58 project [41] and viewed as an im-

provement in performance-based engineering. The proposed framework in this chapter is

an effort contributing to such an improvement.
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5.2 Framework for seismic risk assessment

Figure 5.2 shows a typical framework for seismic loss estimation (e.g., [27, 41]), which is

termed fragility-based framework herein. The fragility curves (i.e., conditional probability

functions) are essential components in such a framework. In the fragility-based frame-

works, the aftershock sequences, including the number and magnitudes of aftershocks as

well as the inter arrival time, are not explicitly examined. For example, in the ATC-58

project [41], seismic loss was estimated using a loss function, which is a cumulative proba-

bility function of losses conditioned on the earthquake hazard level. Since aftershocks may

have significant effects on seismic loss of buildings as shown in recent studies, an approach

is needed so that the effects of aftershocks on seismic loss can be explicitly examined.

Figure 5.2: Fragility-based frameworks for seismic loss estimation

Object-oriented (OO) technology has been found to be a proper tool to develop flexible and

reusable programs for computer-aided engineering since the 1990’s (e.g., [126, 127]). The

object in the OO technology simulates an entity (e.g., earthquake in this study) with built-in

numerical models [127]. To overcome the difficulties of fragility-based frameworks on the

investigation of seismic loss including both mainshock and aftershock, an object-oriented

framework (shown in Figure 5.3) is proposed herein with the merits listed as follows.

† It is object-oriented. The four components of the PEER framework are represented

by three objects, i.e., shock simulation, structural analysis, and loss analysis, as

shown in Figure 5.3. Each object has an interface through which external proce-

dures can exchange data with it. The built-in numerical models in the objects can be

updated or replaced by alternative models, without affecting other objects. For ex-

ample, aftershock simulation can be removed from the shock simulation object and

the ultimate results will be economic losses due to mainshocks only. In comparison,
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the fragility-based frameworks have limited options for aftershocks and downtime

cost, which may significantly underestimate the seismic risk.

† All sources of uncertainties can be explicitly propagated in the framework. The

framework has the potential to examine the effects of various sources of uncertainties

on the estimated losses.

† It is extensible. For example, the framework can be extended for multiple hazards

risk assessment, by adding more hazard objects. The OO framework is applied in

Chapter 6 on risk assessment of buildings subjected to combined snow and seismic

load.

In the following sections, the three objects of the proposed framework are discussed sepa-

rately.

5.2.1 Simulation of mainshock-aftershock sequences

5.2.1.1 Mainshock simulation

The mainshock occurrence is typically simulated as a homogeneous Poisson process. Let

Neq be the number of earthquakes occurred in a period of time, T . The occurring time, teq,i,

of each earthquake can be determined by:

teq,i = T0 +
i

∑
j=1

τ j (5.1)

where T0 is the starting point of time and τi, i = 1,2, . . . ,Neq is exponentially distributed.

Note that T0 ≤ teq,i ≤ T .

The probability density function (PDF) of mainshock magnitude (Mm) can be determined

by the Gutenberg-Richter relationship [128] as:

fMm
(x) =

βe−βx

e−βMm,min− e−βMm,max
(5.2)
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where Mm,min and Mm,max are the minimum and maximum magnitudes considered for the

site, respectively, and β is a site specific parameter.

5.2.1.2 Aftershock simulation

The occurrences of aftershock are usually modeled as a nonhomogeneous Poisson pro-

cess [123, 129]. The mean daily rate of aftershock can be calculated by the modified

Omori’s Law [130, 131] as:

λ (t,Mm) =
10a+b(Mu−Ml)−10a

(t + c)p
(5.3)

where λ (t,Mm) is the mean daily rate of aftershock with magnitude between Ml and Mu

at time t (in days) following a mainshock with a magnitude of Mm, and Ml represents

the minimum aftershock magnitude of engineering interest. In this study, Ml is taken to

be 5.0 [29, 132]. Mu is typically considered to be the mainshock magnitude Mm. The

aftershock sequence parameters in Eq. (5.3) are site specific. For California, they were

found to be a = -1.67, b = 0.91, p = 1.08 and c = 0.05 [129, 133].

In the insurance industry, the nonhomogeneous Poisson process is used to simulate the

claim arrival process [134]. A ‘rejecting’ method has been proved efficient to simulate the

nonhomogeneous Poisson process [134–136]. Let T1 and T2 indicate the occurring time of

two mainshocks. Let Na be the number of aftershocks in the period (T1,T2). The occurring

time of the Na aftershocks are to be simulated using the ‘rejecting’ method. As shown in

Eq. (5.3), the mean daily rate of aftershock decreases rapidly as days elapse. Therefore,

λ (t)≤ λ̄ , where t ∈ [T1,T2] and λ̄ = λ (T1). Note that λ (t) can be determined by Eq. (5.3)

given a mainshock magnitude. The ‘rejecting’ algorithm is summarized as follows:

Step 1: set T ∗ = 0

Step 2: for i = 1,2, . . . ,Na

Step 2.1: generate an exponential random number ue using the parameter λ̄

Step 2.2: let T ∗ = T ∗+ue
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Step 2.3: generate a random number u uniformly distributed in (0,1). If u> λ (T ∗)/λ̄ ,

go back to Step 2.1 (i.e., rejecting T ∗), otherwise, T (i) = T ∗

Step 3: T (i)+T1, i = 1,2, . . . ,Na are occurring time of aftershocks

Figure 5.4 shows the simulated and analytical mean daily rate of aftershock, following a

mainshock with a magnitude Mm = 7.3 in California. 100 runs of MCS are shown in Fig-

ure 5.4 by circles (◦). The y coordinate of a circle indicates the number of aftershocks,

while the x coordinate indicates the day on which the aftershocks are ‘observed’. Note

that many circles may overlap each other and seem as one circle in the figure. The simu-

lated mean occurrence rate is shown by the dash line, while the median occurrence rate is

shown by the dotted line. It can be observed that the simulated mean rate using the ‘reject-

ing’ method well matches the analytical mean rate given by Eq. (5.3). Figure 5.5 shows

histograms of the number of simulated aftershocks on the 1st and 20th days after the main-

shock. On the 1st day, the simulated mean number of aftershocks (i.e., the mean daily rate)

is 2.55/day, with a coefficient of variation (COV) of 0.65. On the 20th day, the mean rate is

0.08/day with a COV of 3.84. The analytical mean rates, given by Eq. (5.3), on the 1st and

20th days are 2.49/day and 0.10/day, respectively. Figure 5.6 shows a simulated aftershock

sequence following a mainshock with a magnitude Mm = 7.3 in California.

5.2.1.3 Selecting and scaling of ground motions

Once the shock sequence, including the occurrence time and magnitudes of mainshocks and

aftershocks, is obtained by simulation, ground acceleration records are to be selected for

each shock. One approach is to numerically simulate ground motion records. In this study,

another approach is used, which is to select recorded data from an earthquake database.

This approach was also used by Huang et al. [137]. The Far-Field bin in the ATC-63

project [62], including 44 ground motions, is used for NDA in this study. The 44 ground

motions are carefully selected so that they are statistically sufficient to represent the record-

to-record uncertainty [62].

The spectral acceleration is assumed to be lognormally distributed [41]. For each shock

(either mainshock or aftershock), the median spectral acceleration S̄a and dispersion σlnSa

can be determined using the attenuation model. Then a spectral acceleration Sa,0 is sampled
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Figure 5.4: Daily aftershock rate after a mainshock of Mm = 7.3 in California (only

aftershocks with magnitudes M ≥ 5 are considered in the simulation)
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Figure 5.5: Histogram of simulated number of aftershocks following a mainshock

with the magnitude Mm = 7.3 in California (only aftershocks with magnitudes M ≥
5 are considered in the simulation)
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Figure 5.6: Simulated aftershocks following a mainshock with magnitude Mm =
7.3 (only aftershocks with magnitudes M ≥ 5 are considered in the simulation)

from the lognormal distribution using the two parameters S̄a and σlnSa
. The source-to-

site distance used in the attenuation equation is assumed to be uniformly distributed. The

attenuation model developed by Abrahamson and Silva [83] is used in this chapter. Other

attenuation models may also be used. Following the sampling of Sa,0, a ground motion

record is to be randomly selected from the Far-Field bin. Let Sa,1 stand for the Sa(T1) of

the selected ground motion record. The randomly selected ground motion record is scaled

by a factor Cs = Sa,0/Sa,1 and applied to the structural model to perform NDA.

5.2.2 Structural model and nonlinear dynamic analysis

In this study, the proposed framework is applied to a typical one-story light-frame wood

residential building located in California. Wood shear walls are the main lateral force-

resisting system of the building. The configuration of the building is shown in Figure 5.7,

where details of openings for the south shear wall are illustrated. The dimensions of the

building are 9.75 m (32 ft) long, 6.10 m (20 ft) wide and 2.44 m (8 ft) high. The shear

walls are covered by 1.22× 2.44 m (4× 8 ft) sheathing panels, which might be modified,

as appropriate, to allow for door and window openings. The sheathing of the shear walls

is provided by 9.5 mm (0.375 in) oriented strand board (OSB) panels. Studs are spaced at

610 mm (24 in) on centers. The sheathing is connected to the studs with 8d common nails,
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which are 3.33 mm (0.131 in) in diameter. The nails are spaced 152.4 mm (6 in) along

the sheathing panel perimeter and 304.8 mm (12 in) in the panel interior. The fundamental

period of the wood building is 0.25 second. The construction details for this residence

represent common light-frame wood construction practice in the U.S.

(a) 3-D model for the light-frame wood building (b) South shear wall (unit: meter)

Figure 5.7: Schematic of one-story wood frame residence

The response of a wood-frame construction subjected to seismic load is highly nonlinear

and shows pinched hysteretic behavior with strength and stiffness deterioration. Figure 5.8

shows the load-displacement response of a typical wood-frame shear wall subjected to a

ground motion record. The backbone curve (i.e., the envelope of the hysteresis curves) was

developed by Folz and Filiatrault [78] and defined by:

F =





sgn(δ )(F0 + r1K0|δ |)
(

1− e−K0|δ |/F0

)
if |δ | ≤ |Du|

sgn(δ )Fu + r2K0 [δ − sgn(δ )Du] if |Du|< |δ | ≤ |DF |
0 if |δ |> |DF |

(5.4)

where K0 is the initial stiffness, Du and Fu correspond to the shear wall ultimate capacity in

terms of displacement and base shear force, after which the load bearing capacity decreases

with a slope of r2. Five more parameters r3, r4, F1, α , and β were also introduced in the

model by Folz and Filiatrault [78]. The hysteresis curves in Figure 5.8 are obtained using

the model. r3 is the unloading stiffness from the backbone curve. r4 is the pinching line

slope. F1 indicates the point where the pinched hysteresis curves pass through. α and β are

two parameters considering stiffness and strength degradation, respectively. Details about
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these parameters are provided in Folz and Filiatrault [78]. Using this hysteresis model,

Folz and Filiatrault [79] developed the SAWS program to perform NDA for light-frame

wood construction. In this study, the dynamic response of the one-story light-frame wood

building shown in Figure 5.7 is obtained using the SAWS program.

−100 −50 0 50 100
−25

−20

−15

−10

−5

0

5

10

15

20

25

Displacement, mm

L
o
a
d
, 
k
N

 

 

Hysteresis curve

Backbone curve

K
p

1

1

1

1

r
4
K

0

1

K
0

r
2
K

0

1
r
1
K

0

r
3
K

0

(Du,Fu)

F
0

F
1

Figure 5.8: Hysteresis model of light-frame wood shear wall

For each shock in a simulated mainshock-aftershock sequence, a ground motion is selected

and scaled as discussed in Section “Selecting and scaling of ground motions”. Then an

extended ground acceleration time history is formed by putting the ground motions of each

shock “back to back”. The nonlinear NDA performed using the extended ground accel-

eration time history is termed back-to-back NDA [138]. For the one-story building in

Figure 5.7(a), it is found that the inter-story drift due to ground motion along the west-east

direction is larger than that due to the same ground motion applied along the south-north

direction. The back-to-back ground motion is then applied to the structural model along

the west-east direction to perform NDA. Figure 5.9 shows the inter-story drift time history

of the one-story building subjected to a back-to-back ground motion record, including a

mainshock and an aftershock.
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motion

5.2.3 Damage and loss estimation

The maximum instantaneous inter-story drift obtained in the NDA is recorded as the engi-

neering demand parameter (EDP) that is used to determine the damage state. Five damage

states are used in this study, including three damage states (DS1, DS2, DS3) defined in the

ATC-58 project [41], the undamaged state (DS0), and the collapse state (DS4). Figure 5.10

shows the fragilities of DS0, DS1, DS2, and DS3. DS1, DS2, and DS3 are assume to be

lognormally distributed [41]. The median values are 1%, 1.75%, and 2.5%, respectively.

The dispersion is 0.4 for the three damage states.

For an EDP level, say 1.5% inter-story drift, a uniform random number u ∈ (0,1) is gen-

erated and compared to the damage state exceedance probabilities, 0.10, 0.35, and 0.84 as

shown in Figure 5.10. The building is in DS3 if u≤ 0.10; or DS2 if 0.10 < u≤ 0.35; or DS1
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Figure 5.10: Damage state fragility of the light-frame wood building

if 0.35 < u ≤ 0.84. It is intact (DS0) if u > 0.84. Note that the building might be totally

damaged (or collapse) if the inter-story drift is larger than its collapse capacity, which is

assumed to be an inter-story drift of 7% for light-frame wood buildings [2, 62]. Therefore,

it is necessary to check whether the structural collapse capacity has been exceeded for each

EDP.

The seismic loss includes transition cost (TC) and downtime cost (DC). Table 5.1 lists the

transition and downtime cost. Given the assumption that no repair is taken in the aftershock

environment, transition costs for DSi → DS j, i ≥ j, are not available. Since DS4 is the

collapse state, there is no downtime cost associated with it.

Let t1 be the time of an earthquake (either mainshock or aftershock) occurs, and t2 be the

time of the following earthquake, the present value of the transition cost due to the first

shock, PVTC(t1), can be obtained as [139]:

PVTC(t1) = TCe−αt1 (5.5)
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where TC is the transition cost listed in Table 5.1, and α is the discount rate. Assuming the

building is in damage state DSi, i = 0,1,2,3, after the shock at t1, the downtime cost during

the time between t1 and t2 can be obtained by:

PVDC(DSi) =
∫ t2

t1

DC(DSi)e
−αtdt (5.6)

where DC(DSi) is the downtime cost (listed in Table 5.1) in damage state DSi .

Table 5.1: Downtime and transition costs for three damage states

Damage state
Downtime cost($k/day) Transition cost (% of building value)

Set 1 Set 2 DS0 DS1 DS2 DS3 DS4

DS0 n/a n/a n/a 0.25 0.5 0.75 1.0

DS1 0.05 0.1 n/a n/a 0.25 0.5 0.75

DS2 0.075 0.15 n/a n/a n/a 0.25 0.5

DS3 0.1 0.2 n/a n/a n/a n/a 0.25

Note that the data listed in Table 5.1 were derived for a commercial steel building located

in California [29]. The downtime cost (listed in Table 5.1) are adjusted for the residential

building studied here to illustrate the proposed framework. Typically the market value of

a building includes the building replacement value and land value. The land value is not

considered in this chapter. Assuming the replacement value of the one-story building in

California is $300 k ($1 k = $ 1,000). The property in the building is assumed to be 50% of

the building value [29, 140]. The total replacement value (TRV) of the building is $450 k.

The downtime cost for the commercial building in DS1 in [29] is $50 k/day, 0.02% of the

TRV. For the residential building in this chapter, two sets of downtime cost are examined

to cover a range of possible costs. Downtime costs for DS1 in the three sets are $0.05 k and

$0.1 k, approximately 0.01% and 0.02% of the TRV, respectively, as listed in Table 5.1.

The downtime cost for such a residential building may be caused by situations that after an

earthquake, residents will have to order some living necessities (e.g., food, water), or have

to find a temporary dwelling place. More data specifically developed for light-frame wood

construction will be used to improve the loss estimation when it becomes available.
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5.3 Uncertainty in seismic loss estimation

The PEER seismic loss estimation framework can be expressed as [38]:

GTC|IM(z|x) =
∫

u

∫

v

∫

y
GTC|DVE(z|u) fDVE|DM(u|v) fDM|EDP(v,y) fEDP|IM(y|x)dudvdy (5.7)

λTC(z) =
∫

x
GTC|IM(z|x)

∣∣∣∣
dλIM(x)

dx

∣∣∣∣dx (5.8)

where fEDP|IM is the probability density function (PDF) of EDP conditioned on the hazard

intensity IM, fDM|EDP is the PDF of damage state conditioned on EDP, fDVE|DM is the

PDF of repair cost conditioned on damage state, GTC|IM is the complementary CDF of total

cost, TC, conditioned on the hazard intensity, and λTC is the annual exceedance rate of total

repair cost. Details of the notations in Eq. (5.7) and (5.8) are in Baker and Cornell [38].

Baker and Cornell [38] investigated the propagation of the uncertainty in the PEER frame-

work. In their study, the FOSM method was used to determine the mean value and vari-

ance of the total repair cost distribution conditioned on the hazard intensity (i.e. GTC|IM
in Eq.(5.7)). Then the mean value and variance of λTC in Eq. (5.8) were determined by

numerical integration of GTC|IM with the seismic hazard function. Recently, this approach

was examined by Bradley and Lee [125] by comparing the approach with direct numerical

integration. It was found that the accuracy of the FOSM method depends on the uncertainty

in the conditional function fEDP|IM [125].

In this study, an MCS approach is used to propagate the uncertainties in seismic loss esti-

mation. Various sources of uncertainties and the propagation methods in the MCS approach

are discussed in the following paragraphs.

The uncertainty in seismic hazard (or ground motion) is the most significant contributor to

the variance of seismic loss estimation [38, 69]. Typically, the main contributor of uncer-

tainty in ground motion is represented by site-specific seismic hazard curve [69, 70], which

can be obtained from the USGS, while the additional uncertainties are usually termed

as ‘record-to-record’ uncertainty [69]. Another approach to treat the ground motion un-

certainty is to sample a large number of earthquake scenarios with different magnitudes

and source-to-site distances, using the attenuation model. This approach was discussed
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by Bommer and Crowley [70] and is used in this study. The uncertainty associated with

the earthquake occurrence is considered in the Poisson process. The record-to-record un-

certainty is considered by using the ATC-63 ground motions.

Since the ground motions are randomly selected in this study from a database, there may

lie significant uncertainty in the process of selecting and scaling of ground motions. Four

methods of selecting ground motions were compared by Baker and Cornell [76] to investi-

gate their influences on structural collapse risk. Ground motions selected using four meth-

ods were applied on a seven-story reinforce concrete building, whose fundamental period is

0.8 sec, to develop drift hazard curves. It was found that methods considering the spectral

shape parameter ε produced unbiased drift hazard curves while methods without consider-

ing ε produced larger exceedance probabilities. The ground motion selection method used

in this chapter does not consider ε . The effect of different ground motion selection meth-

ods on seismic loss estimation will be investigated in a future study, in which the proposed

framework can be used. The PEER GMSM (ground motion selection and modification)

program [141] is developing guidances that can be used to appropriately select and modify

ground motions for NDA. These guidances, once available, can be incorporated into the

proposed framework to examine the ground motion uncertainties.

There are uncertainties in the structural resistance. For the building examined in this chap-

ter, the resistance (e.g., the stiffness, strength, and energy dissipation characteristics) of

wood shear wall is reflected in the hysteresis parameters shown in Figure 5.8. The effects

of resistance uncertainty on the collapse risk of light-frame wood buildings were investi-

gated in Chapter 3. In this chapter, the resistance uncertainty is not considered.

The uncertainty associated with relating EDP to DS is incorporated damage state fragilities

(Figure 5.10). Uncertainty in the cost estimation conditioned on DS is not considered in

this study. The variation in the cost estimation given a DS can be examined by treating the

transition costs in Table 5.1 as random variables, if such information is available.
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5.4 Illustrative example

The total replacement of the building is $450 k. The annual discount rate is assumed to be

3.5% [29]. The mainshock occurrence rate is assumed to be 0.03 per year [103]. The min-

imum and maximum considered magnitudes for mainshocks are 6.5 and 7.5, respectively.

The minimum considered magnitude for aftershocks is 5.0. The source-to-site distance is

assumed to be uniformly distributed between 10 km and 100 km [132].

MCS is performed for three reference periods of time (i.e., 30, 50, and 75 years). 1 million

runs of MCS are performed for each period of time following the scheme, as shown in

Figure 5.11. For a reference period of time T , the shock simulation and structural analysis

objects (see Figure 5.3 for details) are executed in the outer loop for 1000 ( i.e., NMCS1 =

1000) times. For the ith outer loop, sequences of mainshock (MS) and aftershock (AS) are

simulated using the methods discussed before. Let MS(ti,1), AS(ti,2), AS(ti,3), MS(ti,4), · · · ,
be a sequence of simulated MS and AS, where ti,1, ti,2, ti,3, ti,4, · · · are the occurring time

of shocks simulated in the shock simulation object.

Subsequently, the EDP sequences due to MS and the occurring time of AS are feed to

the inner loop in Figure 5.11, where another 1000 runs of loss analysis are performed

(i.e., NMCS2 = 1000). For the jth inner loop in the ith outer loop, a series damage states

(DS) are obtained and noted as DS(ti,1, j), DS(ti,2, j), DS(ti,3, j), DS(ti,4, j), · · · , as shown

in Figure 5.11. Then the transition and downtime cost can be determined and noted as

TC(ti,1, j), DC(ti,1 → ti,2, j), TC(ti,2, j), DC(ti,2 → ti,3, j), TC(ti,3, j), · · · . The total loss is

then calculated as

Loss(i, j) =
NS(i)

∑
m=1

TC(ti,m, j)+
NS(i)−1

∑
k=1

DC(ti,k→ ti,k+1, j) (5.9)

in which NS(i) is the total number of shocks in the ith outer loop. At the end of simulation,

a matrix of loss value [Loss] of dimension NMCS1 by NMCS2 is obtained.

The expected present values of economic losses of the building due to earthquake hazard

are shown in Figure 5.12, in which DC sets 1 and 2 are the two downtime cost sets in Ta-

ble 5.1. In Figure 5.12, the two curves of transition losses overlap each other because the

transition losses are not affected by the downtime cost sets. In 50 years, considering DC
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Figure 5.11: Monte Carlo Simulation scheme for seismic loss estimation consid-

ering mainshock and aftershock

set 1, downtime losses account for 32.8% and 49.0% of the total losses of the MS and MS-

AS cases, respectively. MS indicates that only mainshocks are considered while MS-AS

indicates both mainshocks and aftershocks are considered. When DC set 2 is considered,

the downtime loss is about the same as the transition loss for the MS case (Figure 5.12(a)),

while the downtime loss is much larger than the transition loss for the MS-AS case (Fig-

ure 5.12(b)). In 75 years, the downtime losses contribute 50.5% and 66.3% to the total

losses, for the MS and MS-AS cases, respectively.

The expected loss values are listed in Table 5.2, indicating that the MS-AS losses are 40%–

61% higher than those of MS cases. Figure 5.13 shows the expected total loss as well as

the breakdown of loss due to transition or downtime cost. When DC set 1 is considered

(Figure 5.13(a)), losses due to mainshocks are higher than those caused by aftershocks. In
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(b) Considering both mainshocks and aftershocks

Figure 5.12: Expected seismic losses (in percentage of the total replacement value)

of a light-frame wood building in California

50 years, 51% of the total loss is due to mainshocks. When DC set 2 is considered (Fig-

ures 5.13(b)), the losses caused by aftershocks are higher than those caused by mainshocks.

In 50 years, aftershocks contribute 62.1% (DC set 2) of the total losses. Given the partic-

ular assumptions made in the example, aftershocks have significant impact on the seismic

loss estimation. This observation is comparable to the study by Yeo and Cornell [29] on

a commercial steel building, in which the seismic loss was found to increase by 25% if

aftershocks were considered.
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Figure 5.13: Expected seismic losses of the one-story building at a site in Califor-

nia
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Table 5.2: Expected losses (in percentage of the total replacement value) of the

one-story residential building in California

T (year) 30 30 50 50 70 75

Case DC set 1 DC set 2 DC set 1 DC set 2 DC set 1 DC set 2

MS-AS 4.6 6.8 5.4 8.0 8.1 12.1

MS 3.3 4.4 3.6 4.8 5.6 7.5

MS-AS: mainshock and aftershock sequences; MS: mainshock only

In Figure 5.13, transition cost is the main contributor to the losses caused by mainshocks.

For example, in 50 years, 76%–89% of the losses caused by mainshocks is due to transition

cost. However, downtime cost is the main contributor to the loss caused by aftershocks. In

75 years, considering DC set 2, 95% of the losses caused by aftershocks is contributed by

downtime cost.

If DC set 2 is considered, the expected losses of the building in 50 years are 8% and 4.8% of

the TRV, for the MS-AS and MS cases, respectively, as listed in Table 5.2. The coefficient

of variation (COV) associated with the two expected values is around 190%, indicating

the large uncertainty in the seismic loss estimation. Therefore, the stake holders or home

owners can hardly be well informed about the potential risk by merely a point estimation.

A probability distribution of the estimated loss is desirable. The histogram of the losses

(DC set 2 is considered) for the building in 50 years considering both mainshocks and

aftershocks is shown in Figure 5.14, the y-axis of which is in logarithmic scale. It can be

observed that the distribution of losses is highly skewed. There is a probability of 87% that

there will be no seismic losses to the building in 50 years. There is a probability of 5%

that the loss will be larger than 62% of the TRV of the building in 50 years considering the

mainshock and aftershock sequences.

The exceedance probability of seismic losses in a period of time can be obtained by ranking

order of the 1 million loss values obtained from MCS. For example, for the one-story light-

frame wood residential building, the exceedance probabilities of an expected loss of 50%

of the TRV are 5.7%, 6.5%, and 8.5%, in 30, 50, and 75 years, respectively, as shown in

Figure 5.15. Note that the DC set 2 is considered in the assessment.
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aftershock sequences (DC set 2 is considered)

5.5 Discussions and future work

The focus of this chapter is to propose an object-oriented framework of seismic loss estima-

tion of light-frame wood buildings subjected to mainshock and aftershock sequences. The

preliminary results are comparable to what has been found in other studies (e.g., [29, 30]),

indicating that the framework is a proper tool for seismic loss assessment for buildings

subjected to mainshock and aftershock sequences.

The following future work in conjunction with the proposed framework will improve the

loss estimation of buildings subjected to mainshock and aftershock sequences.

† Investigation of other ground motion selection and scaling methods (e.g., [76]) and
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their effects on loss estimation considering mainshock and aftershock sequences.

† Consideration of retrofit or repair activities after the earthquake. The economic losses

will include the loss due to the interruption of repair activities.

† Incorporation of damage fragilities for non-structural components in the loss estima-

tion.

5.6 Summary

An object-oriented framework of seismic loss estimation for light-frame wood buildings

subjected to mainshock and aftershock sequences is proposed in this chapter. The frame-

work is modular and can explicitly consider the effects of aftershocks and downtime cost,

as well as various sources of uncertainties. The seismic hazard is simulated and applied to

buildings to estimate the transition and downtime losses, which constitute the total seismic

106



loss. A illustrative light-frame wood building is examined using the proposed framework.

The probability distribution of the seismic loss is obtained by Monte Carlo Simulation.

Various sources of uncertainties are considered in the analysis. Aftershocks and downtime

cost are found to be two important factors in seismic loss assessment. For the illustrative

building in this study, the seismic losses considering both mainshocks and aftershocks are

approximately 40%–61% higher than those only considering mainshocks. If the remaining

service life of the buildings are 75 years, downtime losses contribute more than 50% of the

total seismic losses of the building.
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Chapter 6

Probabilistic loss assessment of

light-frame wood construction subjected

to combined seismic and snow loads

6.1 Introduction

Light-frame wood construction is widely built in the United States (U.S.). Approximately

90% of residential buildings are light-frame wood construction. In the 1994 Northridge

earthquake, 24 fatalities and $20 billion insured losses were claimed due to damage of

wood buildings [1]. Snow hazard also threatens life safety and causes economic losses. In

January 2006, 65 people died and 170 people were injured in the Katowice Trade Hall roof

collapse due to heavy snow loads in Poland [5]. The March 1993 east coast storm in the

U.S. caused economic losses of $1.75 billion [4]. In February 2008, the snow hazard in

China caused direct economic losses of $7.7 billion [7].

Extensive studies have been performed to investigate the performance of light-frame wood

construction subjected to seismic loads. For example, Li and Ellingwood [1] performed

fragility analysis to light-frame wood shear walls. van de Lindt and Gupta [142] investi-

gated damage of light-frame wood shear walls due to earthquake. Pei and van de Lindt

[27] developed a framework for loss estimation of wood construction subjected to seismic
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loads. However, limited research has been performed considering combined seismic and

snow hazards.

The Bernoulli pulse process (referred to as the Bernoulli model later in this paper) was used

to model the snow load. Ellingwood and Rosowsky [103] examined the snow and earth-

quake load combination for limit state design. In their study, the snow load was simulated

using the Bernoulli model. Snow accumulation was modeled by rectangular or triangular

load shape. Lee and Rosowsky [20] performed fragility analysis for a light-frame wood

building subjected to combined snow and earthquake loads. In those studies, the stochastic

characteristic of the snow load was not explicitly considered, which might underestimate

the effect of snow accumulation on buildings in areas with heavy snow loads. In addi-

tion, the Bernoulli model cannot simulate the snow accumulation, which is a common

phenomenon in areas with heavy snow load. In some areas of the Western U.S., both earth-

quake and snow hazards are significant for an extended period of time. But limited research

has been performed to investigate the seismic risk of light-frame wood construction con-

sidering combined earthquake and snow loads. In this study, this topic is investigated and

a Filter Poisson Process (FPP) model [143] is used for the snow load simulation.

The snow participation factor used in the load combination (e.g., combination of snow and

seismic loads [75]) for seismic structural design has been investigated (e.g., [103]). Re-

cently, fragility analyses [20] were applied to wood construction subjected to combined

seismic and snow loads. While some of the above studies provide tools to obtain bet-

ter structural design or make retrofit schedules, the results from those analyses (e.g., ex-

ceedance probability of a certain drift limit) are not easily understood by home owners

or other decision makers. For them, economic losses can be more effectively communi-

cated in the decision making process. The ongoing ATC-58 project [41] is to develop a

performance-based seismic design process in which structural performance will be explic-

itly expressed as economic losses. This study contributes in this aspect by proposing a

framework for risk assessment of light-frame wood construction subjected to combined

seismic and snow loads.
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6.2 Framework of risk analysis

A generic (conceptional) framework for the seismic loss estimation was proposed by the

Pacific Earthquake Engineering Research (PEER) Center [36]. In the framework, the seis-

mic loss analysis consists of four components: ground motion hazard, structural response,

damage to components and repair cost. Based on the PEER framework, several applica-

tional frameworks for seismic loss estimation were proposed recently. Pei and van de Lindt

[27] developed a seismic loss estimation methodology for light-frame wood construction.

The ATC-58 project [41] developed three methods, i.e., intensity-based, scenario-based,

and time-based assessments for structural performance quantification. The frameworks

in [27, 41] is termed the fragility-based framework (FBF) here. Figure 6.1 shows the FBF

of risk assessment for single hazard. In the FBF, the fragility curves provide exceedance

probabilities of a certain limit state (e.g., 1% inter story drift) conditioned on a certain

hazard level (e.g., spectral acceleration Sa), while the seismic hazard curves describe the

occurrence frequencies of the seismic hazard. The distribution of the failure event can

be obtained by integrating the fragility curves and hazard curves over a range of seismic

hazard intensity (from minimum considered Sa,min that causes negligible damage to maxi-

mum considered Sa,max that may cause collapse. Details can be found in [41]). The failure

event is defined as an occurrence that a certain limit state is reached or exceeded. Finally,

economic losses can be determined by integrating the failure event distribution with con-

sequence models (e.g., conditional probability distribution of the repair cost given a failure

event).

Theoretically, the risk assessment for multiple hazards can be achieved by extending the

FBF. The fragility curve for single hazard is to be substituted by a fragility surface that

can be developed for combined hazards, as discussed in [20] for wood construction due

to combined seismic and snow loads. Once the fragility surface is obtained, the failure

probability can be determined by:

Pf =
∫

snow

∫

earthquake
F(LS|x,y) f (x) f (y)dxdy (6.1)

in which x is the snow load intensity (e.g., ground snow load) and y is the seismic load

intensity (e.g., Sa), F(LS|x,y) is the fragility surface function that gives a conditional ex-

ceedance probability of a limit state (LS), and f (·) is the notation for the hazard curve
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Figure 6.1: Risk assessment for a single hazard

function. However, the closed-form expression of the fragility surface is difficult to obtain.

Even if possible, the computational demands are overwhelming.

An object-oriented framework (OOF) is proposed in this study to perform the risk assess-

ment for buildings subjected to combined seismic and snow hazards, as shown in Fig-

ure 6.2. An OOF is modular, allowing each module (or object) to be modeled, updated,

and executed independently. The output of one module (e.g., the earthquake module) will

be taken as the input of another module (e.g., the structural module). As can be seen from

Figure 6.2, the OOF contains four modules (objects), the earthquake module, the snow

module, the structural module and the loss module. In the OOF, time is explicitly included

in the hazard modules (i.e., earthquake and snow modules). Details are discussed in Sec-

tion 6.6.2.

The simulation of hazard events for a period of time T is achieved in the hazard modules,

using site specific hazard information. A ground acceleration record database containing

records with a range of earthquake magnitudes and source-to-site distances are included in

the earthquake module. If no recorded records are available for the site of interest, two alter-

native methods can be used. One is to select and scale records obtained in other sites, while

another is to generate acceleration records using attenuation models. For the snow haz-

ard, weather records with daily snow precipitation and daily snow depth (water-equivalent)

should be obtained. In addition, earthquake occurrence models, earthquake intensity mod-

els, snow load models, as well as the corresponding parameters are also included in the
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hazard modules. The probabilistic hazard models are discussed in Section 6.3.

The structural module contains the information about the structure to be analyzed. In this

study, a one-story light-frame wood building is considered in the structural module. It can

be replaced by other type of buildings or structures for other applications. The simulated

hazard records are passed to the structural module to perform nonlinear dynamic analysis

(NDA). The obtained engineering demand parameters (EDP) (e.g., maximum inter-story

drift, maximum shear force) through NDA are used in the loss module for risk assessment.

The structural model included in this module is discussed in Section 6.4.

Risk assessment is performed in the loss model. For a building subjected to combined snow

and seismic hazards, risks come from three sources (as shown in Figure 6.2): (1) Losses

caused only by earthquakes such as casualties, down-time cost, and damage of properties.

(2) Losses caused by combined seismic and snow hazards, which is to account for the case

that snow load on roof will increase the seismic weight, which subsequently leads to larger

base shear force and damage. (3) Losses caused only by the snow hazard. As discussed in

Section 6.1, the snow hazard alone can cause significant losses. However, this case is not

considered in this study. The loss module is discussed in Section 6.5.
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Figure 6.2: Object oriented framework (OOF) of risk assessment for combined

seismic and snow hazards
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6.3 Hazard modules

6.3.1 Earthquake load

6.3.1.1 Occurrence of earthquake

Earthquake includes mainshocks and aftershocks. Mainshocks are typically modeled as a

homogeneous Poisson process, while aftershocks can be simulated as a non-homogeneous

Poisson process. In this study, only mainshocks are considered. Let Neq be the number of

earthquakes occurred in a period of time, T . The occurring time, teq,i, of each earthquake

can be determined by

teq,i = T0 +
i

∑
j=1

τ j (6.2)

where T0 is the starting point of time and τi, i = 1,2, . . . ,Neq are exponentially distributed.

Note that T0 ≤ teq,i ≤ T .

6.3.1.2 Intensity of earthquake

The intensities of earthquake events can be measured in terms of the peak ground acceler-

ation (PGA) or Sa. In this section, both intensity measurements are discussed.

The maximum earthquake event in 50 years can be described by a Type II distribution of

largest values [20, 103, 144], as shown:

P(Av > x) = 1−FA,max(x) = 1− exp[−(u/x)k] (6.3)

where u is the location parameter and k is the shape parameter, both of which are site

specific. Av is the earthquake intensity (PGA or Sa) with a certain exceedance probability

in 50 years, and FA,max is the cumulative distribution function (CDF) of the maximum

earthquake event intensity in 50 years.
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The probability distribution of the maximum event to occur during a reference period T

can be expressed as [103]:

FA,max(x) = exp{−λAT [1−FX(x)]} (6.4)

where λA is the mean rate of individual earthquake event (in terms of PGA). FA,max is the

CDF of the maximum event while FX is the CDF of the individual event.

The distribution of the individual earthquake intensity can be obtained by combining Eq. (6.3)

and (6.4), as shown:

FX(x) = 1− 1

λAT

(u

x

)k

(6.5)

in which λA is the annual occurrence rate of earthquakes.

Parameters k and u for Sa can be determined using the seismic hazard curves obtained from

the U.S. Geological Survey (USGS) [97]. For example, the 5% damped Sa at 0.2 sec with

2% and 10% exceedance probabilities at Stampede, WA are 0.72 g and 0.36 g, respectively.

Substituting these values into Eq. (6.3), one obtains,

0.02 = 1− exp(−(u/0.72)k) (6.6)

0.10 = 1− exp(−(u/0.36)k) (6.7)

By solving Eq. (6.6) and (6.7), k and u can be obtained. The seismic hazard parameters for

Sa at 0.2 sec for several sites are listed in Table 6.1. For the case that PGA is used for the

earthquake intensity, the seismic hazard parameters k and u can also be determined using

the USGS seismic hazard maps. Parameter values for three sites in the U.S. are listed in

Table 6.1.

Table 6.1: Seismic hazard parameters for the earthquake intensity

PGA Sa

Site k u k u

Stampede, WA 11.41 0.818 2.381 0.139

St. Louis, MO 10.21 0.867 1.717 0.052

Boston, MA 10.81 0.877 1.459 0.020

Once the occurrence and intensity of the earthquake hazard are simulated, ground motion
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records are required for each earthquake in order to perform NDA. One approach is to

generate records using numerical models. Another approach is to randomly select recorded

data from the available earthquake database (e.g., the SAC ground motions [51]). The

second method is used in this paper as discussed in Section 6.6.

6.3.2 Snow load

6.3.2.1 Bernoulli model and its limitations

In the Bernoulli model, a snow season T is divided into n time intervals, τi, i = 1,2, · · · ,n,

and the load pulse value remains constant during each interval and independent between

intervals. For each time interval, a probability p is assumed so that the load pulse is nonzero

at that probability. Eq. (6.8) is used in the Bernoulli model. In Eq. (6.8), Fmax(x) and F(x)

are CDF of the annual maximum snow load and individual pulse load.

Fmax(x) = [(1− p)+ pF(x)]n (6.8)

Figure 6.3(a) shows a simulated snow load record using the Bernoulli model with a prob-

ability p = 0.2 and 2-week time interval. Figure 6.3(b) shows the ground snow loads of

Buffalo, NY from Nov., 1963 to Apr., 1964 obtained from the National Climatic Data Cen-

ter (NCDC) [108]. It can be observed that the Bernoulli model approximately captures the

load pulse characteristic that is common for high snow load sites.

Figure 6.4(a) shows the ground snow loads of Stampede, WA from Nov., 1954 to Jul., 1955

obtained from the NCDC. The gaps in the record are caused by missing data of the NCDC

weather records. In comparison to the snow load record of Buffalo (Figure 6.3(b)), the

ground snow load of Stampede increases to a high level because of snow accumulation and

then decreases as the weather gets warmer. In such a case, to use the Bernoulli model,

the probability p is set to be 1.0 (i.e., nonzero snow loads present all the time during the

snow season). Figure 6.4(b) shows a simulated snow load record using the Bernoulli model

with p = 1.0. The Bernoulli model fails to capture the snow accumulation characteristic of

the snow load record of Stampede. The reason is that the assumption that the load pulse
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is independent between intervals is invalid for such a case. The snow load at the i time

interval is related to those in the previous intervals and will affect those in the following

intervals.
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Figure 6.3: Ground snow load records of Buffalo, NY
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Figure 6.4: Ground snow load records of Stampede, WA
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6.3.2.2 Filtered Poisson Process model

In order to overcome the shortcomings of the Bernoulli model, Yin et al. [143] proposed a

model based on the Filtered Poisson Process (FPP) for the snow load simulation. The FPP

is a stochastic model composed of a set of Poisson processes, as shown by:

X(t) =
N(t)

∑
i=1

AiS(t, ti,Yi), 0 < t < T (6.9)

where, AiS(t, ti,Yi) are a sequence of Poisson events; X(t) is the time history of snow loads;

N(t),0 < t < T is a Poisson process with a mean arrival rate v; T is the time period in

which Poisson events occur; Ai is a sequence of independent and identically distributed

(IID) random variables that model Poisson event intensities; Yi is another sequence of IID

random variables that model Poisson event durations; S is a step function defined by:

S(t, ti,Yi) =

{
1, if t ∈ [ti, ti +Yi);

0, otherwise .
(6.10)

In Eq. 6.9, Ai and Yi are assumed to be independent. Figure 6.5 shows the generic Poisson

events. Note that it is possible for Poisson events to overlap, which allows modeling of

the snow accumulation. Figure 6.6 shows four simulated ground snow load records for

Stampede, WA. Details of the FPP model are in [143].

Y
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τ
i

Figure 6.5: Generic Poisson events
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Figure 6.6: FPP simulated ground snow load records for Stampede, WA
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6.3.3 Uncertainty in hazard load

The uncertainty in the seismic hazard is the most significant contributor to the seismic

loss variance [69, 145]. In this study, the ground motion uncertainty is reflected in the

probability distributions of the earthquake intensity (PGA or Sa) and the seismic hazard

curve, as discussed in Section 6.3.1. Another source of the ground motion uncertainty lies

in the selection and modification (i.e., scaling in accordance to Sa) of ground motions. A

guidance of ground motion selection and modification for NDA is under development by

the Pacific Earthquake Engineering Research (PEER) Center [141]. The proposed OOF in

this paper can be updated to incorporate this guidance when it is available in the future.

Typically, the uncertainty in snow load is considered using the probability distribution of

the annual maximum snow load (e.g., [20]) or the Bernoulli model (e.g., [103]). In this

paper, the snow load is simulated using the FPP model, in which uncertainties in the annual

maximum and daily ground snow load are considered. Details can be found in [143].

6.4 Structural module

The proposed OOF of risk assessment is applied on a typical one-story light-frame resi-

dential house in the U.S., with wood shear walls as its main lateral force-resisting system.

The configuration of the building is shown in Figure 6.7 The dimensions of the building are

9.75 m (32 ft) long, 6.10 m (20 ft) wide and 2.44 m (8 ft) high. The shear walls are covered

by 1.22× 2.44 m (4× 8 ft) sheathing panels, which might be modified, as appropriate, to

allow for door and window openings. The sheathing of the shear walls is provided by 9.5

mm (0.375 in) oriented strand board (OSB) panels. Studs are spaced at 610 mm (24 in)

on centers. The sheathing is connected to the studs with 8d common nails, which are 3.33

mm (0.131 in) in diameter. The nails are spaced 152.4 mm (6 in) along the sheathing panel

perimeter and 304.8 mm (12 in) in the panel interior. The seismic weight of the building

is 15 kip. The fundamental period of the wood building is 0.25 second. The construction

details for this residence represent common light-frame wood construction practice in the

United States.

121



Figure 6.7: Schematic of one-story wood frame residence

Inter story drift is taken as the engineering demand parameter (EDP) herein. The drift limit

state has been used as an appropriate performance metric for light-frame wood buildings

(e.g., [22, 42]). The exceedance probabilities of four drift limit states, 1%, 2%, 3%, and

7%, are investigated for the light-frame wood building in this study. 1%, 2%, and 3%

correspond to immediate occupancy, life safety, and collapse prevention [23], respectively.

7% is a collapse limit state found by recent studies [2, 62] of light-frame wood buildings.

The EDP is obtained through NDA of the building using the SAWS program developed

by Folz and Filiatrault [48, 79]. In the NDA using the SAWS program, a 1% viscous

damping ratio is used. The 1% viscous damping ratio is reasonable for wood buildings due

to the significant hysteretic responses of wood buildings under the seismic loading [79].

Recent studies [74, 145] indicate that the structural resistance uncertainty cannot be ne-

glected when the collapse risk of the building is considered. The resistance uncertainty

lies in the damping, stiffness, mass, and energy dissipation characteristics of the struc-

ture as well as the modeling process [41]. The effect of the resistance uncertainty of the

light-frame wood buildings on the collapse risk was investigated by the authors [145]. In

this study, the resistance uncertainty is not included as the focus is on the development

of a framework of risk assessment of buildings subjected to combined seismic and snow

hazards.

122



6.5 Loss module

The economic loss of the one-story building due to combined seismic and snow hazards

over a period of time is estimated using the loss estimation model as discussed in this

section.

First, the damage state of the building needs to be determined according to the EDP (i.e.,

inter-story drift herein) obtained in the structural analysis (i.e., NDA). Three damage states

(DS), DS1-DS3, defined in the ATC-58 project [41] are used in this study, as shown in

Figure 6.8. For a specific EDP, say 1.5% inter-story drift, a uniform random number u ∈
(0,1) is generated and compared to three DS exceedance probabilities, 0.10, 0.35, and 0.84

as shown in Figure 6.8. The building is in DS3 if u ≤ 0.10, or DS2 if 0.10 < u ≤ 0.35,

or DS1 if 0.35 < u ≤ 0.84. It is intact (i.e., undamaged state DS0) if u > 0.84. Note that

the building might be totally damaged (or collapse) if the inter-story drift is larger than its

collapse capacity, which is around 7% for light-frame wood buildings [2, 62]. Therefore, it

is necessary to check whether the structural collapse capacity has been exceeded for each

EDP during the analysis.

Figure 6.8: Damage state fragility of a light-frame wood building
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Second, to simulate the loss (repair or replacement cost in this study) given the damage state

determined in the first step. A set of loss distributions defined in the ATC-58 project [41]

are used in this study. The economic losses can be obtained from these distributions by

Monte Carlo Simulation (MCS).

The damage states in Figure 6.8 and the corresponding repair cost distributions are assumed

to be lognormally distributed [41] with parameters listed in Table 6.2, where Xm is the me-

dian value and β is the dispersion (i.e., the standard deviation of lnX). The loss estimation

process discussed above is applied to the one-story wood building in Section 6.6.2. Note

that it is assumed that the building is immediately restored to its intact status after each

earthquake event. Similar assumption was made in other studies (e.g., [27, 28]) of seismic

loss estimation for bridges and buildings. This assumption simplifies the loss estimation

process by omitting the inter transition possibilities between damage states (i.e., a damaged

building may endure more damage from another earthquake) and the downtime cost cal-

culation. An updated loss estimation methodology to account for damage state transitions

(e.g., due to mainshock and aftershock sequences) and downtime costs will be developed

in a future study.

There are also uncertainties in the damage states and cost distributions. As discussed ear-

lier, these uncertainties are propagated by MCS using the assumed distributions. The same

technique was used in other studies (e.g., [38]).

Table 6.2: Damage state fragility and repair cost distribution parameters for light-

frame wood construction

Damage state1 (inter story drift, %)

DS Description Xm β

I Slight separation of sheathing or nails pulled out slightly 1.50 0.40

II Permanent rotation of sheathing, pull out of nails 1.75 0.40

III Fracture of studs, sill plate cracking 2.50 0.40

Repair cost2 ($ per 5.95 m2)

DS Description Xm β

I Re-nail wood sheathing 131 0.3

II Replace wood sheathing 254 0.3

III Replace shear wall 377 0.3

1Data obtained from [41]; 2Data obtained from [146]
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6.6 Case study

The light-frame wood residential building is assumed to be located in Stampede, WA. Since

there are no ground acceleration records available for Stampede, acceleration records for

Seattle, WA, developed in the SAC steel project [51] are used for NDA in this study. Fig-

ure 6.9 shows the uniform hazard spectra (UHS) for both sites. The seismic hazard in

Seattle is more severe than that in Stampede. The earthquake records for Seattle are scaled

so that their Sa at the fundamental period of the building (i.e., 0.25 sec) match the UHS of

Stampede.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Period, sec

S
p

e
c
tr

a
l 
a

c
c
e

le
ra

ti
o

n
, 

g

 

 

Seattle 2%−50yr

Seattle 10%−50yr

Stampede 2%−50yr

Stampede 10%−50yr

Figure 6.9: Uniform hazard spectra of Seattle and Stampede, WA

For a specific earthquake event, a ground acceleration record is randomly selected and

scaled to perform NDA. As discussed in Section 6.3.1.2, the intensity of a simulated earth-

quake event can be measured in terms of PGA or Sa. If the intensity is in terms of PGA,

PGA is converted to Sa using a factor c, which is determined by:

c = Sa(T1)/PGA (6.11)
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where Sa(T1) and PGA are the mean values of Sa(T1) and PGA of ground motions that are

selected for a specific site. Sa(T1) is the spectral acceleration at the fundamental period of

the building (T1 = 0.25 sec for the illustrative building in this paper). For Stampede, the

values of c are 2.505 for the ground motions with 10% exceedance probability in 50 years,

and 2.278 for those with 2% exceedance probability in 50 years. Once PGA is converted

to Sa (termed target Sa herein), the random selected ground motion record is scaled so that

its Sa matches the target Sa.

The ground snow load record of Stampede is simulated using the FPP model as discussed

in Section 6.3.2. The roof snow load p f is converted from the ground snow load pg by

p f = 0.7CsCeCtI pg (6.12)

where Cs is the roof slope factor, Ce is the exposure factor, Ct is the thermal factor, and I

is the importance factor. In this study, it is assumed that, the building roof is warm and

with slope less than 30◦ (Cs = 1); the building is located in exposure C with fully exposed

roof Ce = 0.9 and is normally heated (Ct = 1). Importance factor I is 1.0. These factors are

obtained from the ASCE 7-05 standard [75].

In the simulation, the randomly selected acceleration record is applied along the X direction

and then the Y direction. The roof snow load is converted to seismic weight using four

factors (referred to as the snow participation factor αs later) 1.0, 0.5, 0.2 and 0. For each

simulated earthquake event, there are up to 8 runs of NDA. If the snow load is larger than

zero, 8 NDAs are performed (4 αs on both X and Y directions). Only 2 NDAs will be

performed if the snow load is zero. The snow participation factor αs = 1.0 indicates that

the roof snow stays on the roof during the earthquake, while αs = 0 implies that all the

snow on the roof drops off because of the ground shaking. Given these two factors, the

range of snow load effect on the seismic risk of the building can be determined. Other

two factors 0.5 and 0.2 are intermediate values used for further evaluation of snow load

effects on seismic risk of the building. Note that the snow participation factor 0.2 in ASCE

7-05 [75] is based on the annual maximum ground snow load distribution. It cannot be

directly compared with αs specified herein.
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6.6.1 Limit states exceedance probabilities

Each run of MCS simulates a 10,000-year period of time, by which the simulations are

found to be converged. The simulated ground snow loads are calibrated with the weather

records obtained from the NCDC, as discussed in Section 6.3.2.2. The earthquake oc-

currence rate is approximately 0.05 per year [103]. A maximum inter-story drift can be

obtained by NDA for each earthquake occurrence. The obtained maximum inter-story drift

is compared with the four limit states, 1%, 2%, 3%, and 7%, so that the annual rate of

exceedance of the limit states can be obtained. For example, 487 earthquakes are observed

in one run of MCS (10,000 years) and 39 of them caused inter-story drifts larger than 1%

(considering snow participation factor αs = 1). The annual exceedance rate of 1% drift can

be calculated as λ = 39/10,000 = 0.0039/year. Assuming the exceedance event follows

the Poisson distribution, the annual exceedance probability can be determined by:

pannual = 1−POISSCDF(0,λ ) (6.13)

where POISSCDF is the CDF of the Poisson distribution, λ is the occurrence rate [147].

Figure 6.10 shows the expected (mean values) annual exceedance probabilities of the four

limit states obtained using MCS. Table 6.3 lists the expected annual exceedance probabil-

ities. As discussed in Section 6.3.1.2, earthquake intensity can be measured in terms of

PGA or Sa, both of which are investigated for the building in Stampede. The exceedance

probabilities of the four limit states determined using both measurements have the same or-

der of magnitude, as shown in Figures 6.10(a) and 6.10(b). In the discussion of economic

losses in Section 6.6.2, only PGA is considered as the earthquake intensity measurement.

The coefficient of variation (cov) of the annual exceedance probabilities are listed in Ta-

ble 6.3. It can be observed that the cov of the 7% and 3% limit states are much higher

than those of the other two limit states, indicating that high variation in the exceedance

probability of the 7% and 3% limit states.
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Table 6.3: Annual exceedance probabilities of four drift limit states of a light-frame

wood building in Stampede, WA

αs = 1 αs = 0.5 αs = 0.2 αs = 0

Limit state mean cov mean cov mean cov mean cov

×10−3 ×10−4 ×10−4 ×10−5

1% 4.1 0.15 16 0.26 4.0 0.4 10 0.73

2% 1.0 0.28 5.0 0.45 1.8 0.78 4.5 1.41

3% 0.51 0.56 2.1 0.81 0.78 1.32 0.54 4.11

7% 0.13 0.85 0.52 1.2 0.20 1.42 0.49 4.31

αs: snow participation factor
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Figure 6.10: Expected annual exceedance probabilities of four limit states in Stam-

pede, WA

6.6.2 Estimation of economic losses

the seismic risk in terms of economic loss may be easier to understand for stake hold-

ers or home owners than engineering terms such as the drift limit exceedance probability.

Economic loss in a period of time T (e.g., 50 years) is examined for the one-story build-

ing in Stampede, WA, using the proposed OOF. The annual discount rate is taken to be

128



3.5% [29]. The loss in 5 different periods of time (10, 25, 50, 80 and 100 years) are sim-

ulated for comparison purposes, considering 4 snow participation factors (αs). Generally,

the market value of a building includes the building replacement value and the land value.

In this study, the land value is not included in the analysis. The value of the building (i.e,

replacement value) is assumed to be $150 k ($1 k = $1,000) and the value of the contents

of the building is taken to be 50% of the building value [29, 140]. So the total replacement

value is $225 k. If the inter-story drift is larger than 7%, indicating a collapse state of the

building, the loss is assumed to be the total replacement value.

The loss accumulated over a period of time T is a random variable, the distribution of which

is examined using MCS in this section, in terms of mean and percentile values of the loss in

time T . Let EDPn×1, in which n is the number of EDP (equal to the number of earthquakes

in T ), indicate the simulated maximum EDP (i.e., inter-story drift in this study) in time T .

The loss in time T can be simulated by performing MCS m times following the procedure

described in Section 6.5. For the jth run of MCS, Loss(T, j) is calculated by:

Loss(T, j) =
n

∑
i=1

L(i, j)

(1+ rd)ti
(6.14)

where L(i, j) is the economic loss due to EDP(i), i ∈ [1,n], in the j ( j ∈ [1,m]) run of MCS,

rd is the annual discount rate, and ti is the occurring time of EDP(i). According to this

process, a vector of loss, Lossm×1, can be obtained for a vector EDPn×1. For a 10,000-year

simulation of the earthquake and snow hazards combination, 100 EDP are obtained if the

reference time of interest for loss is 100 years (i.e., T = 100 years in Eq. (6.14)), leading to

a loss matrix, Lossm×100. Using this matrix Lossm×100, 100 values of a certain percentile

value can be calculated.

Figure 6.11 shows the 90th percentile of the loss for the one-story wood building, consider-

ing 5 reference times and 4 snow participation factors. For the most conservative case (i.e.,

αs = 1 indicating all the snow on roof is taken as the seismic weight), there is a 90% prob-

ability that the loss in 100 years is no more than 13% of the house total replacement value.

However, if assuming that 50% of the roof snow drops off the roof (i.e., αs = 0.5), the loss

in 100 years has a 90% probability to be no more than 3.7% of the house total replacement

value, decreasing significantly compared to the case with αs = 1. It indicates the snow load

in such areas with significant snow accumulation as Stampede has a significant effect on

the seismic risk assessment for light-frame wood construction.
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Figure 6.11: 90th percentile of the simulated economic losses (in percentage of

the total replacement value) of the one-story light-frame building in Stampede, WA

(αs: snow participation factor)

Figure 6.12 shows the mean (i.e., expected) values of the loss of the building. Given those

parameters listed in Table 6.2 and the earthquake hazard information listed in Table 6.1,

without considering roof snow load (i.e., αs = 0), the expected loss is almost negligible for

all the 5 reference times. For example, the mean loss in 50 years with αs = 0 is 0.1% of the

total replacement value, as shown in Table 6.4. It increases by 300% to 0.4% if the snow

participation factor αs = 0.2. The mean values, median values (i.e., 50th percentiles), and

90th percentiles of the economic losses for all the cases examined are listed in Table 6.4.

The loss curves in Figures 6.11 and 6.12 tend to be flat as the reference period of time

becomes longer. This is due to the time discounting effects. The histogram of the simu-

lated economic losses in 50 years with the snow participation factor αs = 1 is shown in

Figure 6.13(a), in which the y-axis is in log scale in order to show the upper tail of the

distribution. It can be seen that there is a high probability that the economic losses are zero.

The high probability of no loss is due to the low exceedance probabilities of the drift limit

states. For example, the exceedance probability of the 1% drift limit state with αs = 0 in

50 years can be calculated by the data in Table 6.3 as 1− (1−10−4)50 = 0.005.
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Figure 6.12: Expected economic losses (in percentage of the total replacement

value) of the one-story light-frame building in Stampede, WA (αs is the snow par-

ticipation factor)

Table 6.4: Economic losses (in percentage of the total replacement value) of the

one-story building in Stampede, WA

Snow participation factor Statistics
Reference time T (year)

10 20 50 80 100

αs = 1.0

90th percentile 0 3.1 12.1 12.9 13.0

median 0 0 0 0 0

mean 1.9 2.8 3.4 4.1 4.2

αs = 0.5

90th percentile 0 1.1 3.38 3.5 3.7

median 0 0 0 0 0

mean 0.6 1.2 1.4 1.6 1.7

αs = 0.2

90th percentile 0 0 0 0.006 0.008

median 0 0 0 0 0

mean 0.18 0.31 0.40 0.45 0.5

αs = 0

90th percentile 0 0 0 0.001 0.001

median 0 0 0 0 0

mean 0.038 0.079 0.10 0.12 0.15
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For the “low-frequency, high-consequence” hazard such as earthquake, the stake holders

can hardly be informed about the potential risk by merely the mean values. The probability

distribution of the loss is essential to answer questions such as “what is the probability that

the loss will exceed the expected value in 50 years with αs = 1.0 (i.e., 3.4% of the total

replacement value as listed in Table 6.4)?”. Figures 6.13(a) and 6.13(b) provide information

to answer such a question. For example, the probabilities of the loss in 50 years exceeding

3.4% of the total replacement value are 19%, 10%, 2.4%, and 0.79%, considering the snow

participation factor αs of 1.0, 0.5, 0.2, and 0, respectively.

In order to examine the significance of snow accumulation on the economic loss of the

building, the proposed OOF is used again, with the snow load simulated by the Bernoulli

model, to examine the expected loss in 50 years for the wood building in Stampede, WA.

The probability p in Eq.( 6.8) is set to be 1.0 since the ground snow load pulse is always

‘on’ throughout the snow season. The loss estimated by such a method is found to be

approximately half of that estimated using the FPP model. For example, with snow partici-

pation factor αs = 1.0, the expected losses in 50 years obtained using the Bernoulli and FPP

models are 1.8% and 3.4%, respectively. Therefore, for areas with the snow accumulation,

the Bernoulli model underestimates the losses.

6.7 Summary

A probabilistic framework was proposed for risk assessment of structures subjected to com-

bined seismic and snow hazards. The fragility surface for multiple hazards is a main chal-

lenge for the fragility-based frameworks. However, it is no longer a challenge for the

proposed object-oriented framework, in which the effects and coincidences of multiple

hazards are determined through MCS. The fragility surface is not needed in the proposed

framework. Benefited from the object-oriented features, the proposed framework can also

be extended to investigate other natural hazards, or be applied on other types of buildings,

by adding modules into the framework.

The framework was applied to a typical light-frame wood residential building in Stampede,

WA where both seismic and snow loads are significant for an extended period of time. The

seismic load was simulated as a Poisson process, with ground acceleration records ran-

132



0 50 100 150 200
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Economic losses, %

F
re

q
u
e
n
c
y

(a)

3.4 10 20 30
0

0.05

0.1

0.15

0.2

0.0079

0.024

0.10

0.19

Loss (percentage of TRV) in 50 years

E
x
c
e
e
d
a
n
c
e
 p

ro
b
a
b
ili

ty

 

 
α

s
 = 1

α
s
 = 0.5

α
s
 = 0.2

α
s
 = 0

(b)

Figure 6.13: (a) Histogram of the simulated economic losses (in percentage of

the total replacement value) in 50 years of the one-story building in Stampede,

WA; (b) Exceedance probabilities of the 50-year economic loss (in percentage of

the total replacement value) of the one-story building in Stampede, WA (the snow

participation factor αs = 1)

domly selected from available databases. The snow load was simulated using the Filtered

Poisson process model. Uncertainties in earthquake ground motions, structural response,

damage state and damage cost are propagated in the framework by MCS. The snow load

in areas with snow accumulation was found to contribute significantly to the economic

losses of the light-frame wood building. The Bernoulli snow model underestimates the

loss of buildings located in areas with snow accumulation. With snow participation factor

αs = 1.0, the expected losses with and without considering snow accumulation in 50 years

were found to be 3.4% and 1.8%, respectively.
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Chapter 7

Summary, conclusions and future work

7.1 Summary and conclusions

In this study, the risk of light-frame wood construction subjected to multiple hazards is

evaluated. The contributions and conclusions of this study are summarized as follows.

1. Collapse fragilities of light-frame wood buildings, accounting for differences in con-

struction practices and site-specific seismic hazard were investigated from a series

of Incremental Dynamic Analysis (IDA). The ground motions developed in the SAC

project [51] and by Wen and Wu [52] were used to represent the inherent (aleatoric)

uncertainty in earthquake demand. The collapse capacity of wood-frame construc-

tion was found to be sensitive to the ground motions selected for the analysis. The

probability of collapse under a spectrum of possible earthquakes was determined

by convolving the collapse fragility with the seismic hazard specified by the USGS.

Despite the recent changes in seismic hazard mapping practices in ASCE Standard 7-

05, the collapse probabilities of light-frame wood residential construction in western,

eastern, and central regions of the U.S. remain geographically non-uniform, imply-

ing that current seismic design requirements in ASCE Standard 7-05 do not lead to

uniform risk (i.e., collapse probability). Collapse margins of typical shear walls in

the WUS are significantly lower than those in the CEUS. If the goal of uniform risk
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for light-frame wood construction is to be achieved, the proposed performance levels

in PBE and current seismic design maps may need to be modified.

2. Collapse risk of light-frame wood construction at four sites in the U.S. were fur-

ther investigated, considering both aleatoric uncertainty (i.e., record-to-record uncer-

tainty, and resistance uncertainty) and epistemic uncertainty (i.e., modeling uncer-

tainty). The spectral shape ε effect on the collapse risk was also examined. Collapse

probabilities at Maximum Considered Earthquake (MCE) and collapse probabilities

(annual and 50-year) for four sites were estimated.

Record-to-record uncertainty found in light-frame wood construction in this study

ranged between 0.31 and 0.50, which is consistent with what has been found in steel

and concrete structures. The spectral shape ε of ground motion was found to have

significant effect on the collapse risk of light-frame wood construction, especially for

high seismicity areas like the west coast of the U.S. Considering a moderate modeling

uncertainty (i.e., βm = 0.4 in this study), the dispersion due to both resistance and

modeling uncertainties was found to be approximately 0.44, which led to an increase

of annual collapse probability ranging between 25% and 168% depending on the site.

Therefore, resistance and modeling uncertainty contributions can not be neglected in

light-frame wood construction collapse risk assessment.

3. The Bernoulli model has been used in the past to model snow loads. However, the

model cannot be used for sites with significant snow accumulation because it might

lead to unconservative designs of buildings located in such areas, for not being able

to model the snow accumulation. In this study, the Filtered Poisson process (FPP)

model was investigated as a stochastic tool to simulate snow loads. Weather records

from three sites in the U.S. were obtained from the National Climatic Data Center

(NCDC) to calibrate the FPP model. Both snow accumulation (Tahoe City, CA and

Stampede, WA) and load pulse (Buffalo, NY) characteristics for different sites can

be effectively simulated using the FPP model. A genetic algorithm was employed

successfully to select parameters for the FPP model.

One of the merits of the FPP model is that different simulation objectives can be

fulfilled by using different cost functions, while the Bernoulli model can only fit to

the probability distribution of the annual maximum ground snow loads. The time

variation (i.e., the daily ground snow load) approximately match those of the NCDC

snow records, which the Bernoulli model cannot achieve.
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4. An object-oriented framework (OOF) was proposed in this study, for loss estimation

of buildings subjected to multiple hazards. The OOF is modular and can explicitly

consider various sources of uncertainties in the loss estimation process. The difficul-

ties of using fragility-based framework were overcome. The OOF was proved to be

an appropriate tool for risk assessment of light-frame wood buildings.

The framework was applied to light-frame wood construction subjected to mainshock

and aftershock sequences to estimate the economic losses. The seismic hazard was

simulated and applied to buildings to estimate the transition and downtime losses,

which constitute the total seismic loss. The probability distribution of the seismic

loss was obtained by Monte Carlo Simulation (MCS). Aftershock and downtime cost

were found to be two important factors in the seismic loss assessment.

The OOF was also used to assess the economic risk of a light-frame wood building

subjected to combined seismic and snow loads. The snow load was simulated using

the Filtered Poisson process model. The seismic load was simulated as a Poisson

process, with ground acceleration records randomly selected from available database.

Uncertainties in earthquake ground motions, structural response, damage state and

damage cost are propagated in the framework by MCS. The snow load in areas with

snow accumulation was found to contribute significantly to the economic losses of

the light-frame wood construction. The Bernoulli model might underestimate the

loss for areas with snow accumulation. With snow participation factor αs = 1.0, the

expected losses with and without consideration of snow accumulation in 50 years

were found to be 3.1% and 1.6%, respectively, which indicates that without proper

considering snow accumulation, the risk is under estimated by almost 100%.

7.2 Future work

Although the proposed methodologies and framework in this study provide insights to per-

formance and risk of light-frame wood buildings subjected to multiple hazards, further

investigations are suggested as follows for light-frame wood construction and other types

of buildings and structures.

1. Some characteristics of the ground snow load record have not been thoroughly ex-
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amined in the FPP model, including the length of snow season and the shape of the

snow load record with accumulation. The daily ground snow load was examined by

comparing the empirical CDF of both NCDC and simulated records. In the future,

other cost functions should be considered to investigate such characteristics of snow

load records so that the FPP model will be capable of modeling snow loads more ac-

curately. The FPP model can also be used in the investigation of the ‘creep-rupture’

behavior for timber structures subjected to accumulated snow loads.

2. As discussed in Chapter 5, there is a high probability that aftershocks will occur

in a short time after the mainshock, leaving very limited time for decision makers

to make critical decisions, such as resident evacuation, repair action, and building

re-occupancy. Typical risk assessment processes are too time consuming to be appli-

cable for decision making on such situations. A rapid and efficient risk assessment

tool is necessary for real-time decision making in the aftershock environment. Such

a tool can be developed based on the OOF and the transition probability matrix de-

veloped in future work 2.

3. The proposed OOF can be applied to concrete and steel buildings, as well as infras-

tructure subjected to multiple hazards. In the OOF, the structural object is defined to

include structural models. In this study, the structural model is the hysteresis model

defined in the SAWS program [48]. Other structural models can be incoporated into

the structural object to investigate risk of other types of construction. Other objects

in the OOF (e.g., the seismic hazard object and the loss assessment object) will not

be affected by such a change in the structural object.

4. Ground motion selection and scaling are used in this study, but the uncertainty in

the process has not been thoroughly investigated. Recent studies (e.g., [76, 141])

indicate that the ground motions selection and scaling methods might have significant

influence on the risk assessment of buildings. Guidances on this subject are under

development in the PEER GMSM program [141]. These guidances, once available,

can be incorporated into the proposed framework to examine the influences on the

risk assessment.
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