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Abstract 
Information on phosphorus bioavailability can provide water quality managers 

with the support required to target point source and watershed loads contributing most 

significantly to water quality conditions.  This study presents results from a limited 

sampling program focusing on the five largest sources of total phosphorus to the U.S. 

waters of the Great Lakes.  The work provides validation of the utility of a 

bioavailability-based approach, confirming that the method is robust and repeatable.  

Chemical surrogates for bioavailability were shown to hold promise, however further 

research is needed to address site-to-site and seasonal variability before a universal 

relationship can be accepted.  Recent changes in the relative contribution of P 

constituents to the total phosphorus analyte and differences in their bioavailability 

suggest that loading estimates of bioavailable P will need to address all three components 

(SRP, DOP and PP).  A bioavailability approach, taking advantage of chemical surrogate 

methodologies is recommended as a means of guiding P management in the Great Lakes. 
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1. Introduction 
Under the Great Lakes Water Quality Agreement of 1978, the International Joint 

Commission implemented a phosphorus management plan (IJC, 1978).  Loading 

reductions achieved through the Agreement led to changes in trophic state (DePinto et al., 

2006), including the controversial oligotrophication of Lakes Huron, Michigan and 

Ontario (Evans et al., 2011).  The eutrophication goals set under the Great Lakes Water 

Quality Agreement have now been met in the offshore waters of all the Great Lakes; 

except, Lake Erie where nuisance levels of Microcystis have been documented in 

Maumee Bay near the mouth of the Maumee River and across the western basin of Lake 

Erie (Bridgeman et al., 2011).  These objectives have not, however, been adequately 

addressed for impairment of nearshore waters.  This failure is, at least in part, related to 

the invasion of zebra mussels, which have dramatically changed nutrient dynamics and 

the ecological makeup of the Great Lakes (e.g. the nearshore phosphorus shunt; Hecky et 

al., 2004).  The filtering process of mussels results in increased water clarity and serves to 

convert particulate phosphorus to more bioavailable dissolved phosphorus.  These 

activities create ideal conditions for benthic algae such as Cladophora, which has 

returned to nuisance levels not observed since the 1980s (Auer et al., 2010).  These 

remaining eutrophication issues have lead to recommendations that the Great Lakes 

phosphorus management program be revaluated.  According to Evans et al. (2011), 

phosphorus loading studies should be performed on a tributary by tributary basis 

considering the water quality objectives and lost beneficial uses of the adjacent 

nearshore. 
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Phosphorus loading management involves the control of both point (industrial and 

municipal wastewater) and non-point sources (principally agriculture).  Loads include 

contributions of three forms of phosphorus: soluble reactive P (SRP), dissolved organic-P 

(DOP), and particulate P (PP).  These forms differ in their relative contribution to total P 

(TP) loads and in their bioavailability.  The SRP, DOP and PP characteristics are easily 

evaluated through traditional monitoring programs and the bioavailability may be 

quantified with algal and chemical assay techniques (Auer et al., 1998; DePinto, 1982; 

DePinto et al., 1981; Effler et al., 2012; Effler et al., 2002; Ekholm, 1994; Ekholm et al., 

2007; Ekholm and Krogerus, 1998; Ekholm and Krogerus, 2003; Ekholm et al., 2009; 

Miller et al., 1978; Uusitalo and Ekholm, 2003; Young et al., 1982; Young et al., 1985).  

These data can provide water quality managers with the support required to target 

watersheds with the largest bioavailable phosphorus loads.  While this approach has been 

applied historically (DePinto et al., 1981), phosphorus bioavailability in Great Lakes 

tributaries have not been characterized in over 30 years.  Considering the current state of 

the Great Lakes, it is appropriate to revisit this issue.   

1.1 Assessing Phosphorus Bioavailability 

A variety of approaches have been used to define the bioavailability of the various 

phosphorus fractions.  Here, the methods selected for use in our study are described and 

their applicability to each P fraction is identified.   

1.1.1 The Bottle Test 

The Bottle Test is an algal bioassay technique that was developed by Miller et al. 

(1978) and widely applied for evaluating agricultural runoff and river sediments 
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(Bradford and Peters 1987; Dorich et al. 1980; 1985; Ellis and Stanford 1988; Ellison and 

Brett 2006; Engle and Sarnelle 1990; Fabre et al. 1996; Miller et al. 1978; Qotbi et al. 

1996; Robinson et al. 1994; Sharpley et al. 1991; Sharpley 1993).   

A modification of the bottle test protocol of Miller et al. (1978) may be applied in 

determining the bioavailability of dissolved phosphorus (i.e. SRP and DOP).  A filtered 

-starved algae and the reduction in SRP and 

DOP is measured over time as they are taken up by the algae.  The assay continues until 

the dissolved P is depleted (100% bioavailable) or the concentration reaches an 

asymptote (partial bioavailability).   

1.1.2 The Dual Culture Diffusion Apparatus 

The Dual Culture Diffusion Apparatus (DCDA) consists of two chambers 

.  One chamber holds the solids sample (slurry 

of particulate matter) to be assayed and the other P-starved algae.  Phosphorus is released 

from particles in the solids sample, diffuses across the membrane and is taken up by the 

algae.  Bioavailable P is quantified as the cumulative P uptake over the course of the 

assay and expressed as a percentage of the total phosphorus added to the apparatus. 

 The DCDA method was developed by (DePinto 1982) and applied in assessing 

the bioavailability of phosphorus in Great Lakes tributaries and wastewater treatment 

plant effluents (DePinto et al. 1981; Young et al. 1982; Young et al. 1985).  Subsequently, 

the technique was applied to a variety of sources including paper mill effluent, river 

waters, and wastewater treatment plant effluent (Ekholm 1994; Ekholm and Krogerus 

1998; Ekholm and Krogerus 2003; Ekholm et al. 2007; Ekholm et al. 2009).   
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Bioavailability determined in this fashion should be (and is) the primary standard 

for assessing the eutrophication potential of nutrient sources, as it utilizes algae directly.  

However, algal bioassays are labor intensive and difficult to manage (Robinson et al. 

1994).  A simpler method would facilitate determination of bioavailability if it were 

shown to yield results comparable to that of the algal assay. 

1.1.3 Chemical Extraction 

Chemical methods (e.g. sequential extraction) have also been applied in assessing 

P bioavailability (Dorich et al. 1980; Fabre et al. 1996; Hodson et al. 2004; Mayer et al. 

1991; Sharpley et al. 1991; Zhou et al. 2001).  DePinto et al. (1981) and Young et al. 

(1985) demonstrated that the NaOH extractable fraction approximated the amount of P 

determined to be available using algal bioassays.  However, this relationship does not 

hold true for all water sources (Boström et al. 1988).  For example, Young et al. (1982) 

found that algal and chemical assays were poorly correlated in application to wastewater 

plant effluents.  Here, a four fraction sequential extraction procedure is applied and the 

correlation of those fractions with bioavailable P determined through algal assays 

examined.   
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2. Objectives and Approach 
 

The goal of this research is to examine the bioavailability of soluble and 

particulate phosphorus entering the Great Lakes from tributaries representing the five 

largest loads to United States waters (Personal Communication, Dr. David Dolan).  The 

objectives identified in order to obtain this goal were as follows: 

1. Assess the repeatability of algal bioassay methods 

2. Quantify the utility of chemical surrogates for determining PP 
bioavailability 

3. Determine the contributions of PP, DOP and SRP to TP and bioavailable P 
loads 

4. Propose a monitoring program which would implement the estimation of 
bioavailability at major tributaries 

The approach taken to obtain these objectives included the measurement of the 

bioavailability of dissolved and particulate phosphorus using algal bioassay and chemical 

fractionation methods.  Assay results quantify the fraction of the total phosphorus analyte 

that is bioavailable and the contribution of soluble reactive P, dissolved organic-P and 

particulate P to that fraction.   
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3. Methods 

3.1 Study Sites 

3.1.1 Site Characterization 

 Four of the five tributaries have a largely agricultural watershed, and the 

Cuyahoga River is dominated by an urban (41%) and undeveloped (43%) watershed 

(Figure 3.1).  The Fox River has an upper (90% of land area) and lower watershed that is 

separated by Lake Winnebago.  Therefore, the lower stretch is from the outfall of the lake 

which is high in particulate organic matter associated with algae and low in inorganic 

particulate matter (such as clays that wash off of row crop fields).  A large portion of the 

Fox River watershed is undeveloped (50%).  The outfall of Lake Winnebago is controlled 

and there are no flood peaks on the hydrograph.  The other rivers are free flowing, and it 

appears that 2011 was a wetter year than 2010 because the flood peaks were larger and 

more frequent in 2011 in all of the watersheds (Figure 3.2).  The summer of 2010 was dry 

and there was more rain in the summer of 2011.  It will be shown that flow patterns in the 

rivers can affect phosphorus bioavailability. 

3.1.2 Sample Collection and Processing 

Samples were collected (40 L grab) at the following locations: the Maumee River 

at Toledo, Ohio (11/20/2010), the Fox River at Green Bay, Wisconsin (11/28/2010 and 

10/26/2011), the Saginaw River at Bay City, Michigan (11/20/2010), the Sandusky River 

at  Fremont, Ohio (11/20/2010 and 10/26/2011) and the Cuyahoga River at Cleveland, 

Ohio (11/20/2010 and 7/11/2011; Figure 3.2, characterization of the flows during 

sampling).  Samples were transported to Michigan Technological University and stored 
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Figure 3.1 Land use off all watersheds (Fry et al., 2011). 
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Figure 3.2 Yearly hydrographs from the rivers sampled.  The time of sampling is noted 
on the graph.  
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in the dark at 4 C until processed, usually within 2-3 days of collection.  Each 40-L 

filter (GE Osmonics Labstore).  Filtrate was collected and refrigerated at 4°C.  Particulate 

matter was scraped off of the filters and placed in glass bottles containing a small amount 

of filtrate to create a slurry which was then frozen (-20°C).  Particulate samples were split 

into aliquots supporting three analyses: phosphorus richness (mass P per mass dry solids), 

particulate phase bioassays, and particulate phase chemical fractionation assays.   

3.2 Laboratory Methods 

3.2.1 Analytical Methods 

SRP was measured spectrophotometrically by the ascorbic acid method (APHA, 

2005). PP and TDP samples were digested by the persulfate method (APHA, 2005), 

converting the phosphorus to SRP.  Dissolved organic phosphorus (DOP) is defined 

operationally as TDP minus SRP (Figure 3.3).   

P-richness was determined by placing an aliquot of slurry on a 47 mm, 0.4 μm 

polycarbonate membrane filter (Whatman, Florham Park, New Jersey) and excess liquid 

was removed by vacuum filtration.  The filter was dried at 103 C, reweighed and placed 

in an Erlenmeyer flask to be processed for PP determination yielding the mass of 

phosphorus (μgP) present in the sample.  The dried filter weight minus the tared filter 

weight yields the mass of dry solids (gDW), and from this P-richness (μgP·gDW-1) may 

be calculated. 
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Figure 3.3. Break down of all phosphorus fractions, including chemical fractionations of 
Particulate Phosphorus. 

 

  

TP

TDP PP

SRP DOP Fe-Al Organic Ca-mineral Residual
DOP = TDP - SRP



18 

3.2.2 Soluble Phase - Bottle Test Assay 

Soluble phase assays were conducted using a modification of the bottle test 

procedure of Miller et al. (1978).  The initial SRP and DOP content of filtered water 

samples were determined and 2-3 L of sample was placed into a 4-L Erlenmeyer flask.  P-

starved algae (Selenastrum capricornutum) were added to the flask and the sample was 

incubated in the light (PAR = 600 μE·m-2·s-1, 24 hour light) at 20 C.  SRP and DOP were 

measured at intervals of 1-7 days (more frequent at the beginning) and the incubation was 

continued for 30 days.  The amount of SRP and DOP taken up by the algae divided by the 

initial concentration and expressed as a percent yields the bioavailability.   

3.2.3 Particulate Phase - Dual Culture Diffusion Apparatus 

The Dual Culture Diffusion Apparatus (DCDA) is a device developed by DePinto 

(1982) which can be used to perform algal bioassays.  The DCDA consists of two 

chambers bolted together (1.6 L total) with a 90 mm, 0.45 m black mixed cellulose ester 

(MCE) filter placed between them.  One chamber is dark and contains an aliquot of 

particulate sample diluted with P-free algal growth medium (described in APHA, 2005).  

The other chamber is exposed to light (PAR = 600 μE·m-2·s-1, 24 hour light) and contains 

P-free algal growth medium inoculated with P-starved algae (Selenastrum 

capricornutum).   

The initial PP concentration in the particulate and algal chambers is measured and 

the system is incubated for 30 days at 20 C with continuous stirring.  Algae are 

harvested every three days, and replaced with fresh, P-starved algae.  The PP 

concentration of the algae removed from and added to the DCDA is measured at each 
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harvest.  The change in the phosphorus content of the algae over each incubation interval 

(Ct=3 – Ct=0) is calculated and added to that for previous harvests to yield the cumulative 

algal P uptake.  As the assay proceeds and the bioavailable P pool is depleted, algal 

uptake ceases.  The cumulative uptake represents the bioavailable P and is expressed as a 

fraction (fbio) of the total phosphorus content of the sediment sample added. 

3.2.4 Chemical Extraction 

Chemical extraction techniques have been used to develop a surrogate 

representation of PP bioavailability.  A particulate P sample is subjected to a two-step 

sequential extraction procedure (Penn et al., 1995; Penn and Auer, 1997) which yields 

four fractions: the Fe/Al-P fraction (loosely bound, sorbed P; also termed the NaOH 

extractable fraction), the organic-P fraction (biogenic polyphosphates and easily 

mineralized organic-P), the Ca-mineral fraction (apatite), and the residual fraction 

(refractory P; Figure 3.3).  These four fractions are then summed to yield the total 

phosphorus content of the sample.  

In the first extraction, 50 mL of 0.1 N NaOH are added to ~50 mgDW of sediment 

and the resulting slurry is shaken for 17 hours.  The slurry is then centrifuged and the 

supernatant is neutralized to pH 8 before being split into two aliquots: one to be analyzed 

for SRP (representing the Fe/Al-P fraction) and one to be analyzed for DOP (representing 

the organic-P fraction).  The sequential extraction continues by adding 50 mL of 0.5 N 

HCl to the material remaining.  That slurry is shaken for 24 hours and centrifuged.  The 

supernatant is neutralized to pH 8 and analyzed for SRP (representing the Ca-mineral P 

fraction).  The remaining solids are analyzed for PP and represent the residual P fraction. 
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4. Results and Discussion 

4.1 Assay Application and Repeatability 

Analytical methods must be repeatable if the results are to be used for 

management purposes.  Triplicate analyses were performed on one sample collected from 

the Maumee River on November 20, 2010.  The repeatability of the three assay methods 

(DCDA, PP; chemical fractionation, PP; bottle test, DOP and SRP) were assessed from 

this sample.   

4.1.1 Dissolved Phosphorus  

SRP – it is widely accepted that soluble reactive phosphorus is readily available to 

algae (Boström et al., 1988; Young et al., 1982).  In triplicate bottle test analyses of the 

Maumee River sample, SRP was completely and repeatably depleted after 4 days of 

incubation (Figure 4.1a), supporting conclusions in the literature that SRP is highly 

available.  

DOP – the bioavailability status of DOP (also termed dissolved un-reactive P) is 

less clear.  In a review of P bioavailability Persson (2001) concluded that the 

bioavailability of DOP is close to zero; however, Boström et al. (1988) reported a large 

range on DOP bioavailability (0 to 100%) in a similar review.  The latter position is 

consistent with the findings of Ekholm and Krogerus (2003) who measured DOP 

availability in runoff from fields and forests and discharges from rivers of varying 

drainage basin size and reported that the DOP was 0-55% bioavailable.  Auer et al. 

(1998) determined through algal bioassays that DOP in the major tributary to 

Cannonsville Reservoir, New York was 100% bioavailable.  Connors et al. (1996) 
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Figure 4.1  Results from triplicate bioassays conducted on a sample from the Maumee 
River collected on 11/20/2010: (a) bottle test SRP assays, (b) bottle test DOP assays and 
(c) DCDA PP assays. (hollow points were outliers)   
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observed DOP concentrations in Onondaga Lake decline from spring to early summer, 

reaching an asymptote assumed to represent refractory DOP.  In his review, Persson 

(2001) cites studies that indicate that DOP in sewage effluent is more bioavailable than 

that in tributaries.  Ekholm and Krogerus (1998; 2003) measured DOP bioavailability 

from industrial, rural and urban wastewater plant effluents in Finland and reported 0-75% 

bioavailability depending on the source and sampling time.  Young et al. (1982) found all 

of the DOP in effluent from four municipal wastewater treatment plants to be available 

based on algal bioassays.  Here, in triplicate bottle test analyses of the Maumee River 

sample, DOP was depleted in a stepwise fashion (Figure 4.1b) yielding 51±3% (C.V. 5%) 

bioavailability.  This result is consistent with literature indicating that DOP is partially 

available. 

4.1.2 Particulate Phosphorus  

DCDA Bioassay – particulate phosphorus has been shown to exhibit a high 

degree of variation in its bioavailability: 0-100% in wastewater, and 0-58% in rivers 

(Ekholm and Krogerus 2003; usings DCDA assays).  Here, the bioavailability of the 

Maumee River PP sample was found to be 37±2% (C.V. 6%) in triplicate DCDA 

bioassays (Figure 4.1c). Over the course of the bioassay, 1255±70 μgP·gDW-1 was 

sequestered by the assay algae.  The PP content of the sample declined from 3432±147 

μgP·gDW-1 to 1968±147 μgP·gDW-1 -1 equating to 

(1464 μgP·gDW-1) serves as confirmation of the 

algal assay estimate of bioavailability (1255 μgP·gDW-1; Figure 4.2). 

showed good correlation with the DCDA result (r2 = 0.88) for all five of the tributaries 

assayed.  However, t h 
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tends to overestimate bioavailability (Figure 4.3) leading to the finding that t result 

differed significantly (p < 0.05) from the DCDA result for three of the five rivers 

assayed.   

Chemical Assay – Fe/Al-P (NaOH extractable P), has been proposed as a 

surrogate for algal bioavailability (DePinto et al. 1981; Dorich et al., 1980, 1985; Fabre et 

al., 1996; Mayer et al., 1991; Sharpley et al., 1991).  Here, the triplicate Maumee River 

samples had a Fe/Al-P concentration of 1448±48 μgP·gDW-1, corresponding to a 

bioavailability of 41±1%.  This result compares well with that estimated by the DCDA 

bioassay (37±2%)  (43±4%; Figure 4.2).  However, the chemical assay 

approach did not perform equally well for samples from all rivers as discussed 

subsequently.   

In summary, bottle test bioassays confirmed that SRP is readily and completely 

available in the Maumee River sample (but see Boström et al., 1988).  The DOP fraction 

was shown to be partially (51%) available in this source.  The three approaches applied in 

for the Fe- hods were all 

acceptable with Coefficient of Variations (C.V.s) of 6%, 9%, and 2.5% respectively. 
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Figure 4.2  Bioavailability of the Maumee River sample (11/20/2010) as measured by the 
DCDA (directly and pre/post) and chemical fractionation techniques.   
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Figure 4.3  Relationship between the DCDA measured algal bioavailable concentration, 
and the change in sample P richness concentrations in DCDAs.  (Dotted line is a 1:1 
slope.) 
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4.2 Assay Results 

In all dissolved phase bioassays, SRP was ~100% bioavailable (when considered within 

the analytical limits of the analysis), DOP averaged 67±19% bioavailable and PP 

averaged 36±19% bioavailable (Table 4.1).  In a regression of the DOP concentration and 

the bioavailable DOP concentration a good relationship was found (r2=0.94; Figure 4.4).  

If a universal fraction bioavailable for DOP is found then it could be used for predicting 

DOP loads.  The literature does not have conclusive answers for the bioavailability of 

DOP (Boström et al. 1988; see Section 4.1).  The PP bioavailability results will be 

discussed in detail in subsequent sections.   
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Table 4.1                                                                                         
Tributary P concentrations and results from all bioassays and fractionations 

(a) 
Sample Date TP μgP·L-1 TPbio μgP·L-1 TP fbio 

Maumee 11/20/2010 131 75 0.57 
Fox 11/28/2010 48 37 0.76 
Fox 10/16/2011 - - - 

Sandusky 11/20/2010 40 30 0.76 
Sandusky 10/26/2011 396 282 0.71 
Cuyahoga 11/20/2010 85 48 0.56 
Cuyahoga 7/11/2011 117 66 0.57 
Saginaw 11/20/2010 49 39 0.80 

 
(b) 

PP 

Sample Date PP 
μgP·L-1 

PPbio 
μgP·L-1 

Richness 
μgP·gDW-1 

PPbio 
μgP·gDW-1 

PP 
fbio 

k 
d-1 

Maumee 2010 70 26 3432 1255 0.37 0.10 
Fox 2010 12 8 4231 2887 0.68 0.07 
Fox 2011 45 17 3481 1323 0.38 0.13 

Sandusky 2010 15 7 1746 846 0.48 0.14 
Sandusky 2011 116 4 1501 46 0.03 0.07 
Cuyahoga 2010 44 11 2360 575 0.24 0.07 
Cuyahoga 2011 59 19 5803 1913 0.33 0.17 
Saginaw 2010 9 3 2726 999 0.37 0.11 
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Table 4.1 (continued) 
 
(c) 

TDP 

Sample Date 
TDP 

μgP·L-1 
DOP 
μgP·L-1 

DOPbio 
μgP·L-1 

DOP 
fbio 

SRP 
μgP· L-1 

SRPbio 
μgP· L-1 

SRP 
fbio 

Maumee 2010 61 25 13 0.51 36 36 1 
Fox 2010 36 12 4 0.36 24 24 1 
Fox 2011 - - - - - - - 

Sandusky 2010 25 14 12 0.86 11 11 1 
Sandusky 2011 280 17 15(est.) 0.86 (est.) 263 263(est.) 1(est.) 
Cuyahoga 2010 41 17 13 0.79 24 24 1 
Cuyahoga 2011 58 42 31 0.74 16 16 1 
Saginaw 2010 40 19 15 0.78 21 21 1 

 
(d) 

PP fractions 

Sample Date Fe-Al 
ugP ·gDW-1 

Organic 
ugP ·gDW-1 

Ca-mineral 
ugP ·gDW-1 

Residual 
ugP ·gDW-1 

Maumee 2010 1448 947 735 302 
Fox 2010 987 1845 659 740 
Fox 2011 976 1958 262 285 

Sandusky 2010 621 638 207 280 
Sandusky 2011 485 395 195 425 
Cuyahoga 2010 1376 179 466 339 
Cuyahoga 2011 2317 2614 457 415 
Saginaw 2010 1147 1004 283 292 

  



29 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

y = 0.7392x
r² = 0.9399

0

10

20

30

40

50

60

0 10 20 30 40 50 60

DOP Concentration ( gP·L-1)

B
io

av
ai

la
bl

e 
D

O
P 

(
gP

·L
-1

)

Figure 4.4 The DOP concentrations plotted with the bioavailable DOP concentrations.  
Fromm the slope the bioavailability is approximately 74%.   
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4.3 Alternative Methods for Determining Bioavailable PP 

4.3.1 Fe/Al-P: the NaOH extractable fraction 

Several authors have compared algal bioassay and sequential extraction methods 

and concluded that the Fe/Al-P (NaOH extractable) fraction is a suitable surrogate for PP 

bioavailability (DePinto et al. 1981; Dorich et al., 1980; 1985; Fabre et al., 1996; 

Sharpley et al., 1991).  In 1981, Young et al. (1985) conducted algal bioassays on 17 

particulate P samples collected from tributaries to Lake Erie (Maumee, Sandusky, and 

Cuyahoga Rivers and Honey Creek).  The bioavailability as determined by P uptake 

(24±5%) did not differ significantly (p>0.05) from that estimated by the change in the 

various chemical fractions over the course of the assay (23±9%).  Further, Fe/Al-P 

accounted for 85±26% of the bioavailable P, suggesting that this fraction satisfactorily 

approximates P bioavailability.  This study provides an appropriate frame of reference for 

the work presented here. 

In the Lake Erie tributary algal bioassays conducted on samples collected in 2010 

and 2011, the fraction bioavailable was higher (Maumee River, 37%±2; Sandusky River, 

48±5%; Cuyahoga River 33±1%) and the contribution to bioavailable P from the Fe/Al-P 

fraction lower (Maumee River, 68%±6; Sandusky River, 50%; Cuyahoga River 66%) 

than those reported by Young et al. (1985; Figure 4.5).  Additional contributions to the 

bioavailable P were derived from the Ca Mineral-P and organic-P fractions (Figure 4.5b), 

calling into question the use of Fe/Al-P as a sole surrogate for bioavailable P. 

Agricultural best management practices implemented in the early 1980s greatly 

reduced erosion and thus the suspended solids content and load delivered by the Maumee
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Figure 4.5  (a) Bioavailability as measured by DCDA and NaOH extractable P methods. 
Error bars are standard deviation (b) Contributions (%) of the chemically-defined 
phosphorus fractions to PP bioavailability.    
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and Sandusky Rivers (Richards et al., 2008).  These changes, together with improvements 

in wastewater treatment technologies over the three decades since the work of Young et 

al. (1985) may have altered the distribution of bioavailable particulate phosphorus among 

the various chemically-defined fractions, e.g. less contribution from the Fe/Al-P fraction, 

more from the organic-P fraction.  The improved light climate associated with reduced 

suspended solids levels is potentially the basis for the high levels of algal biomass 

reported recently in the Maumee River (Bridgeman et al., 2011) and thus a greater 

contribution to bioavailable P from the organic-P fraction.  Elevated levels of soluble 

reactive P (OhioEPA, 2010; Richards et al., 2010) are an unlikely cause for increased 

algal biomass as Maumee River concentrations have been extremely high for the past 

three decades (77 μg·L-1 in 1975-1985, 57 in 1990-1999 and 87 in 2000-2010; based on 

concentration data from National Center for Water Quality Research at Heidelberg 

University). 

Moving to locations beyond the study area of Young et al. (1985), Fe/Al-P 

contributed 36% of the bioavailable P in the Fox River and 57% in the Saginaw River 

(Figure 4.5b), both markedly less than the 85% contribution determined for the Lake Erie 

tributaries (Young et al., 1985) leading to the promotion of Fe/Al-P as a surrogate for 

bioavailable P.  These results stand in contradiction to the long standing assumption that 

the Fe/Al-P fraction is representative of bioavailable P.  Although Fe/Al-P continues to 

be used as a surrogate for bioavailable P (Baker, 2011; Hodson et al., 2004; Mayer et al., 

1991; Zhou et al., 2001) and the utility of the approach has been examined for several 

inland waters (Auer et al., 1998; Sharpley et al., 1991; Dorich et al., 1985), its application 
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has not been re-examined for Great Lakes tributaries since the pioneering work of Young 

et al. (1985). 

4.3.2 Correlating PP bioavailability, richness and chemical fractions 

A correlation between chemical fractionation measurements (e.g. Fe/Al-P) and 

bioavailability as determined by algal bioassays would provide a less resource intensive 

alternative to the DCDA method.  However, it has been shown above that the Fe/Al-P 

analyte taken alone performs unsatisfactorily in this regard.  Here, relationships between 

sediment P richness and bioavailable P (as determined through algal bioassays) and 

sediment P richness and sediment P fractions are examined. 

Correlation of Bioavailable P with Sediment P Richness – this approach, requiring 

solids and PP measurements, is the least resource intensive of any of the means of 

characterizing P bioavailability.  This relationship yields as its slope the fraction of the 

PP which is bioavailable.  A strong relationship suggests a fraction bioavailable with 

universal application.  Here, for samples from the five largest tributary P sources to the 

Great Lakes, the slope was 0.35 (35% bioavailable; Figure 4.6a) with richness explaining 

85% of the variability among samples (r2=0.85; Figure 4.6a).  The relationship is 

essentially the same when restricted to Lake Erie tributaries only (Figure 4.6b) 

facilitating comparison to work done on those systems in the 1980s.  The results obtained 

for Lake Erie tributaries by Young et al. (1985; 24±2%, mean±95% confidence interval, 

n = 17) would not fall within the 95% confidence intervals for the estimated 

contemporary bioavailability of those tributaries (Figure 4.6b; 35±5%, n = 6).  This 

suggests that PP bioavailability may have increased for these locations over the last 30 

years.  Alternatively, differences in bioavailability may vary from month to month and 
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Figure 4.6 Relationship between sample P richness and DCDA measured bioavailable P.  
(a) All tributary data are included; the 95% confidence interval of the slope of the 
regression is between 0.32 and 0.39 (dotted lines).  (b) Only Lake Erie Tributaries are 
included in the regression.  The 95% confidence interval of the slope of the regression is 
between 0.30 and 0.40.  The Sandusky River sample collected on 10/26/2011 and the Fox 
River collected 11/28/2011 were not included in the regressions.  
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could impart the differences observed between the 1980s and contemporary conditions 

(see Section 4.4). 

Two points, not included in the regression, represented extreme cases meriting 

further consideration.  The Sandusky River sample collected on 10/26/2011 had a PP 

bioavailability (3%) well below the mean for all other tributaries (see Section 4.4, Table 

4.1).  This sample was collected during a wet weather event and it is hypothesized that an 

influx of rainwater would have promoted P desorption from suspended solids.  At the 

other extreme, the Fox River sample collected on 11/28/2010 had a bioavailability (68%) 

well above the mean (Section 4.4).  The Fox River watershed is separated into upper and 

lower sub-watersheds by Lake Winnebago which acts as a sediment trap, removing 

inorganic particles from agricultural runoff (a rich source of Fe/Al-P).  Bioavailable 

phosphorus is then converted to algal biomass (a rich source of organic-P) and thus a 

shift in the relative amounts of bioavailable P fractions.  Thus, while there appears that 

there may be a value for the bioavailability coefficient (~35%) with some universal 

utility, the occurrence of outliers suggests that basin-specific information should be 

sought.   

Correlation of Bioavailable P with Chemical Fractions – traditionally, 

bioavailable P has been associated with the Fe/Al-P and organic-P fractions (Boström et. 

al., 1988).  In paired measurements of 40 samples collected from Lake Erie tributaries 

Young et al. (1985) determined that Fe/Al-P was well correlated with bioavailable P as 

measured using algal bioassays (r2 = 0.803) and that 85% of the bioavailable P originated 

from the Fe/Al-P fraction.  However, in a study of Onondaga Creek (New York) it was 

noted that the Fe/Al-P fraction contributed 54% of the bioavailable-P (Nover, 2004) and,



36 

as described above, other chemically-defined fractions can contribute to bioavailability as 

well (Figure 4.5b).  Here, each of the chemically-derived fractions will be examined 

singly and in combination for their efficacy in representing bioavailability.  

In the current study both the Fe/Al-P and organic-P fractions were well correlated 

with bioavailable P (r2 = 0.81 and 0.82, respectively, and p = 0.006 and 0.002, 

respectively) and a multiple regression using both fractions yielded the strongest 

correlation (r2 = 0.83; Fe-Al-P Coefficient = 0.51, Organic-P Coefficient = 0.38; Figure 

4.7).  Although bioavailable P increased with increases in both Ca-mineral P and residual 

P, the response was modest and the correlation poor and these were not included in the 

multiple regression analysis.  This would be expected as these fractions are traditionally 

assumed to yield little bioavailable P (Boström et. al., 1988; Young et. al., 1985).  While 

there is good evidence for universal application of these regressions, samples from some 

sites, on some dates did not fit the model well (Fox 2010 all, Sandusky 2011 all, and 

Cuyahoga 2010 was not included in the Fe/Al-P regression).  This may be a result of site-

to-site differences in the nature of the particulate matter or to seasonality in PP 

bioavailability.  These phenomena need to be addressed before bioavailability surrogates 

can be reliably applied. 

4.4 Geospatiotemporal Variability 

 Despite the fact that bioavailability has been shown to be well correlated with: 

PP-richness, Fe/Al-P and organic-P, striking variability in bioavailability is observed both 

geospatially among tributaries and temporally within tributaries.  The occurrence of 

outliers suggests that the spatiotemporal variability of these rivers should be studied 
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Figure 4.7 (a-d) Regressions of DCDA bioavailability and fractions (Cuyahoga 
11/20/2010 was not included in the Fe/Al-P regression it was an outlier) and (e) multiple 
regression of the Fe/Al-P (Coefficient = 0.51) and Organic-P (Coefficient = 0.38) 
fractions and DCDA bioavailability (Ca-mineral-P and Residual-P were not included in 
the regression).  
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further.  

An example of temporal variation within a single tributary is provided by the 

Sandusky River data.  Here, sampling represented two different flow regimes: in 2010, 

during dry weather (Q = 124 cfs; 67% exceedance probability 89 year record), PP 

bioavailability was 49% and in 2011, during wet weather at the tail end of a storm surge 

(Q = 1690 cfs; 16% exceedance probability; peak of storm Q = 12000 cfs 0.9% 

exceedance probability) it was 3% (Figure 3.2 e and f; Figure 4.5a).  Findings were 

similar for assays of tributaries to Onondaga Lake (New York), where PP bioavailability 

was 22-52% under low flow conditions (fall; Onondaga Creek Q = 47 cfs, 92% 

exceedance probability; Effler et al., 2002), and negligible during high flow conditions 

(4/13/2011 Q = 404 cfs, 8.3% exceedance probability, 11/28/2011 Q = 205 cfs 29% 

exceedance probability, all flow data from Onondaga Creek).  Also, PP was twice as 

bioavailable under dry-weather conditions than during wet weather in the major tributary 

to Cannonsville Reservoir (New York; Auer et al., 1998).  Differences in the 

bioavailability of the Sandusky River samples occurred despite the fact that their Fe/Al-P 

fraction concentrations were similar.  It is hypothesized that the dilution during high flow 

events causes desorption of bioavailable phosphorus from particulate matter, calling into 

question the value of Fe/Al-P as a surrogate under all flow regimes.   

Watersheds differ geologically and in the nature of their anthropogenic sources of 

particulate matter; thus surrogate methods for characterizing bioavailability may not 

respond consistently.  This feature is illustrated in samples collected from the Fox River 

where one sample (11/28/2010) exhibited the highest bioavailability (68%) of any sample 

collected in this study, while another (10/16/2011) had a bioavailability (38%) 
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comparable to that of all other sites.  Although this clearly reflects an intrasystem 

variation, the difference cannot be ascribed to flow conditions (i.e. desorption) as flows 

were similar and comparable to long term Fox River averages in both cases.  A striking 

difference exists in the ratio of Fe/Al-P to organic-P in the Fox River (0.52) versus the 

other tributaries (2.44) pointing to a significant enrichment in organic-P in the Fox River.  

As discussed previously, this difference reflects the ‘sediment trap – algae incubator’ role 

of Lake Winnebago upstream.  Thus, for the Fox River, bioavailability is expected to 

vary with the organic-P contribution (nature, quantity) both within the system seasonally 

and in comparison with other systems.   

4.5 Toward an Approach  

As discussed previously, a correlation between chemical analytes and PP 

bioavailability as determined by algal bioassays would provide a less resource intensive 

alternative to the DCDA method.  If a universal (i.e. widely applicable) relationship is 

found between bioavailability and a surrogate analyte then the bioavailable P load could 

be easily estimated based on the surrogate concentration and tributary flow.  The two 

regression relationships with the highest correlation, developed for all five rivers, were P-

richness with bioavailable P (r2 = 0.85; Figure 4.6) and a multiple regression of the 

Fe/Al-P and organic-P fractions with bioavailable P (r2 = 0.83; Figure 4.7e).  However, as 

discussed in previous sections, there were outliers in all regressions suggesting that 

geospatiotemporal variability in bioavailability must be accounted for.  Geospatially, 

watershed specific relationships can be developed where a universal regression doesn’t 

apply (e.g., Fox River).  Similarly, seasonal studies should be performed to establish a 

relationship within a watershed. 
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Particulate phosphorus is, however, only one aspect of the bioavailability 

narrative; other phosphorus forms (soluble reactive and dissolved organic) might be equal 

or greater importance.  Measurements of the bioavailability of SRP, DOP and PP along 

with their concentration data allow a comparison of the contribution of each within the 

context of TP and bioavailable P (Figure 4.8).  For example, in the Maumee River sample 

-1; 

Figure 4.9).  However, on the basis of bioavailability, SRP, DOP and PP contributed 49, 

18 and 33% (Figure 4.9).  Note that the contribution of SRP becomes more important 

when the fraction bioavailable is accounted for.  The Cuyahoga River sample collected in 

2010 revealed similar results: PP accounted for 49% of the TP but only 20% of the 

bioavailable P and SRP contributed 30% of the TP and 52% of the bioavailable P.  For 

the 2011 Cuyahoga River and 2010 Sandusky samples, DOP had more significance with 

respect to bioavailability.  In the Fox and Saginaw samples of 2010 SRP dominated the P 

concentrations in the rivers, and they were also the largest portion of the bioavailable P.  

In this manner, water quality managers are provided with the information necessary to 

target P sources based on bioavailability.   

4.6 A Proposed Monitoring Program  

 Historically, monitoring programs have focused solely on determination of total 

phosphorus loads.  This focus tends to overestimate the amount of phosphorus 

contributing to eutrophication (i.e. bioavailable P) and over-regulation may result by 

targeting constituents with little bioavailability. 
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Figure 4.8 The fraction bioavailable (fbio) of all samples (two samples did not have 
dissolved bioassays) 
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The first priority of a new monitoring program should be characterization of the 

soluble reactive phosphorus loading, the most bioavailable P form.  The next step would 

be to determine DOP bioavailability using algal bioassays; the need for consideration of 

variation in time and space should be recognized.  Finally, paired particulate phase 

bioassays and chemical fractionations would be employed to verify or develop the utility 

of chemical surrogates.  These studies would be done in all seasons and in dry and wet 

weather conditions on a system by system basis in order to characterize the seasonality 

and variability of P bioavailability.   

Once relationships between algal bioavailability and chemical surrogates (either 

chemical fractions or P richness) are developed and tested with respect to season and/or 

weather events, these surrogates can be incorporated in routine monitoring programs 

supporting estimation of bioavailable P loads.  Every 7-10 years, follow up bioassay 

studies should be performed to verify the continued utility of chemical surrogates as 

agricultural practices and human populations change within the watershed.   
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5. Summary and Conclusions 

The bioavailability of phosphorus can be repeatably measured with algal 

bioassays and these methods would be recommended for quantifying algal availability.  

Algal bioavailability can also be estimated with chemical fractions and sample richness if 

reliable relationships between algal bioavailability and chemical surrogates are 

established (i.e. through bioassays).  These chemical estimates are not always reliable and 

the frequency of outliers also needs to be addressed in future studies.  The impact of PP 

and DOP is much lower as a portion of the phosphorus load when the bioavailability is 

known because these constituents were only partially bioavailable (36±19% and 67±19% 

respectively).  The contribution of SRP is always larger because it is 100% bioavailable.   

A monitoring program could implement these methods, and target the largest 

bioavailable loads.  In a proposed monitoring program: the SRP contribution should be 

quantified first, then the bioavailability and contributions of PP (estimated with algal 

bioassays and chemical surrogates) and DOP (estimated with algal bioassays).  

Quantification of bioavailability would allow for better characterization of the 

eutrophication issues in the Great Lakes.   

  



45 

6. References 
APHA, American Public Health Association, 2005. Standard Methods for the 

Examination of Water and Wastewater in: Franson, M. A. H. (Ed.), 21 ed. 
American Public Health Association, American Water Works Association, Water 
Environment Federation Washington, DC. 

Auer, M. T., Tomasoski, K. A., Babiera, M. J., Needham, M. L., Effler, S. W., Owens, E. 
M. et al. 1998. Phosphorus Bioavailability and P-Cycling in Cannonsville 
Reservoir. Journal of Lake and Reservoir Management. 14, 278-289. 

Auer, M. T., Tomlinson, L. M., Higgins, S. N., Malkin, S. Y., Howell, E. T., and 
Bootsma, H. A. 2010. Great Lakes Cladophora in the 21st century: same algae—
different ecosystem. Journal of Great Lakes Research. 36, 248-255. 

Baker, D. B., 2011. The Sources and Transport of Bioavailable Phosphorus to Lake Erie 
Final Report: Part 1 Trends in Bioavailable Phosphorus Loading at River 
Monitoring Stations. National Center for Water Quality Research Heidelberg 
University, Tiffin, p. 30. 

Boström, B., Persson, G., and Broberg, B. 1988. Bioavailability of different phosphorus 
forms in freshwater systems. Hydrobiologia. 170, 133-155. 

Bridgeman, T. B., Chaffin, J. D., Kane, D. D., Conroy, J. D., Panek, S. E., and Armenio, 
P. M. 2012. From River to Lake: Phosphorus partitioning and algal community 
compositional changes in Western Lake Erie. Journal of Great Lakes Research. 
38, 90-97. 

Connors, S. D., Auer, M. T., and Effler, S. W. 1996. Phosphorus Pools, Alkaline 
Phosphatase Activity, and Phosphorus Limitation in Hypereutrophic Onondaga 
Lake. Lake and Reservoir Management. 12, 47-57. 

DePinto, J. V. 1982. An Experimental Apparatus for Evaluating Kinetics of Available 
Phosphorus Release from Aquatic Particulates. Water Research. 16, 1065-1070. 

DePinto, J. V., Lam, D., Auer, M., Burns, N., Chapra, S., Charlton, M. et al., 2006. 
Examination of the status of the goals of Annex 3 of the Great Lakes Water 
Quality Agreement. Report of the Annex 3 Model Review Sub-Group to the 
GLWQA Review Working Group D—Nutrients. 



46 

DePinto, J. V., Young, T. C., and Martin, S. C. 1981. Algal-avaibable phosphorus in 
Suspended Sediments from Lower Great Lakes Tributaries. Journal of Great 
Lakes Research. 7, 311-325. 

Dorich, R. A., Nelson, D. W., and Sommers, L. E. 1980. Algal Availability of Sediment 
Phosphorus in Drainage Water of Black Creek Watershed. Journal of 
Environmental Quality. 9, 557-563. 

Dorich, R. A., Nelson, D. W., and Sommers, L. E. 1985. Estimating Algal Available 
Phosphorus in Suspended Sediments by Chemical Extraction. Journal of 
Environmental Quality. 14, 400-405. 

Effler, S. W., Auer, M., Peng, F., Perkins, M., O'Donnell, S. M., Matthews, D. A. et al. 
2012. Factors Diminishing the Effectiveness of Phosphorus Loading from 
Municipal Effluent: Critical Information for TMDL Analyses. Water 
Environment Research. In Press. 

Effler, S. W., O'Donnell, S. M., Matthews, D. A., Matthews, C. M., O'Donnell, D. M., 
Auer, M. T. et al. 2002. Limnological and loading information and a phosphorus 
total maximum daily load (TMDL) analysis for Onondaga Lake. Lake and 
Reservoir Management. 18, 87 – 108. 

Ekholm, P. 1994. Bioavailability of phosphorus in agriculturally loaded rivers in southern 
Finland. Hydrobiologia. 287, 197-194. 

Ekholm, P., Jouttijarvi, T., Priha, M., Mannu, R., and Nurmesniemi, H. 2007. 
Determining algal-available phosphorus in pulp and paper mill effluents: Algal 
assays vs routine phosphorus analyses. Environmental Pollution. 145, 715-722. 

Ekholm, P., and Krogerus, K. 1998. Bioavailability of phosphorus in purified municipal 
wastewaters. Water Research. 32, 343-351. 

Ekholm, P., and Krogerus, K. 2003. Determining algal-available phosphorus of differing 
origin: routine phosphorus analyses versus algal assays. Hydrobiologia. 492, 29-
42. 

Ekholm, P., Rita, H., Pitkänen, H., and Rantanen, P. 2009. Algal-available Phosphorus 
Entering the Gulf of Finland as Estimated by Algal Assays and Chemical 
Analyses. Journal of Environmental Quality. 38, 2322-2333. 

Evans, M. A., Fahnenstiel, G., and Scavia, D. 2011. Incidental Oligotrophication of North 
American Great Lakes. Environmental Science & Technology. 45, 3297-3303. 



47 

Fabre, A., Qotbi, A., Dauta, A., and Baldy, V. 1996. Relation between algal available 
phosphate in the sediments of the River Garonne and chemically-determined 
phosphate fractions. Hydrobiologia. 335, 43-48. 

Fry, J. A., Xian, G., Jin, S., Dewitz, J. A., Homer, C. G., Yang, L. et al. 2006. Completion 
of the 2006 National Land Cover Database for the Conterminous United States. 
Photogrammetric Engineering & Remote Sensing. 77, 858-864. 

Hecky, R. E., Smith, R. E. H., Barton, D. R., Guildford, S. J., Taylor, W. D., Charlton, M. 
N. et al. 2004. The nearshore phosphorus shunt: a consequence of ecosystem 
engineering by dreissenids in the Laurentian Great Lakes. Canadian Journal of 
Fisheries and Aquatic Sciences. 61, 1285-1293. 

Hodson, A., Mumford, P., and Lister, D. 2004. Suspended sediment and phosphorus in 
proglacial rivers:bioavailability and potential impact upon the P status of ice-
marginal receiving waters. Hydological Processes. 18, 2409-2422. 

IJC, International Joint Commission, 1978. Great Lakes Water Quality Agreement, with 
Annexes and Terms of Reference between the United States and Canada signed at 
Ottawa November 22, 1978 and Phosphorus Load Reduction Supplement signed 
October 16, 1983, 1978 ed. 

Mayer, T., Kuntz, K. W., and Moller, A. 1991. Total and Bioavailable Particulate 
Phosphorus Loads from the Niagara River in 1987 and 1988. Journal of Great 
Lakes Research. 17, 446-453. 

Miller, W. E., Green, J. C., and Shiroyama, T., 1978. The Selenastrum Capricornutum 
Printz Algal Assay Bottle Test, Experimental Design, Application, and Data 
Interpretation Protocal. US EPA, Corvallis, Oregon. 

Nover, D., 2004. Management Applications and Measurement of Bioavailable Particulate 
Phosphorus, Civil and Environmental Engineering. Michigan Technological 
University, Houghton. 

OhioEPA, Ohio Evironmental Protection Agency, 2010. Ohio Lake Erie Phosphorus 
Task Force Final Report. 

Penn, M. R., and Auer, M. T. 1997. Seasonal variability in phosphorus speciation and 
deposition in a calcareous, eutrophic lake. Marine Geology. 139, 47-59. 



48 

Penn, M. R., Auer, M. T., VanOrman, E. L., and Karienek, J. J. 1995. Phosphorus 
diagenesis in lake sediments: investigation using fracrionation techniques. Marine 
and Freshwater Research. 46, 89-99. 

Persson, G. 2001. Phosphorus in Tributaries to Lake Mälaren, Sweden: Analytical 
Fractions, Anthropogenic Contribution and Bioavailability. AMBIO: A Journal of 
the Human Environment. 30, 486-495. 

Richards, R. P., Baker, D. B., Crumrine, J. P., Kramer, J. W., Ewing, D. E., and 
Merryfield, B. J. 2008. Thirty-Year Trends in Suspended Sediment in Seven Lake 
Erie Tributaries. Journal of Environmental Quality. 37, 1894–1908. 

Richards, R. P., Baker, D. B., Crumrine, J. P., and Stearns, A. M. 2010. Unusually large 
loads in 2007 from the Maumee and Sandusky Rivers, tributaries to Lake Erie. 
Journal of Soil and Water Conservation. 65, 450-462. 

Robinson, J. S., Sharpley, A. N., and Smith, S. J. 1994. Development of a method to 
determine bioavailable phosphorus loss in agricultural runoff. Agriculture, 
Ecosystems and Environment. 47, 287-297. 

Sharpley, A. N., Troeger, W. W., and Smith, S. J. 1991. The Measurement of 
Bioavailable Phosphorus in Agricultural Runoff. Journal of Environmental 
Quality. 20, 235-238. 

Uusitalo, R., and Ekholm, P. 2003. Phosphorus in Runoff Assessed by Anion Exchange 
Resin Extraction and an Algal Assay. Journal of Environmental Quality. 32, 633-
641. 

Young, T. C., DePinto, J. V., Flint, S. E., Switzenbaum, M. S., and Edzwald, J. K. 1982. 
Algal Availability of Phosphorus in Municipal Wastewater. Water Pollution 
Control Federation. 54, 1505-1516. 

Young, T. C., DePinto, J. V., Martin, S. C., and Bonner, J. S. 1985. Algal-Available 
Particulate Phosphorus in the Great Lakes Basin. Journal of Great Lakes 
Research. 11, 434-446. 

Zhou, Q., Gibson, C. E., and Zhu, Y. 2001. Evaluation of phosphorus bioavailability in 
sediments of three contrasting lakes in China and the UK. Chemosphere. 42, 221-
225. 

 


	Great Lakes tributary phosphorus bioavailability
	Recommended Citation

	viewcontent.cgi

