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ABSTRACT 

 

Regional flood frequency techniques are commonly used to estimate flood quantiles 

when flood data is unavailable or the record length at an individual gauging station is 

insufficient for reliable analyses.  These methods compensate for limited or unavailable 

data by pooling data from nearby gauged sites.  This requires the delineation of 

hydrologically homogeneous regions in which the flood regime is sufficiently similar to 

allow the spatial transfer of information.  It is generally accepted that hydrologic 

similarity results from similar physiographic characteristics, and thus these characteristics 

can be used to delineate regions and classify ungauged sites.  However, as currently 

practiced, the delineation is highly subjective and dependent on the similarity measures 

and classification techniques employed. 

A standardized procedure for delineation of hydrologically homogeneous regions 

is presented herein.  Key aspects are a new statistical metric to identify physically 

discordant sites, and the identification of an appropriate set of physically based measures 

of extreme hydrological similarity.  A combination of multivariate statistical techniques 

applied to multiple flood statistics and basin characteristics for gauging stations in the 

Southeastern U.S. revealed that basin slope, elevation, and soil drainage largely 

determine the extreme hydrological behavior of a watershed.  Use of these characteristics 

as similarity measures in the standardized approach for region delineation yields regions 

which are more homogeneous and more efficient for quantile estimation at ungauged 

sites than those delineated using alternative physically-based procedures typically 
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employed in practice.  The proposed methods and key physical characteristics are also 

shown to be efficient for region delineation and quantile development in alternative areas 

composed of watersheds with statistically different physical composition.  In addition, the 

use of aggregated values of key watershed characteristics was found to be sufficient for 

the regionalization of flood data; the added time and computational effort required to 

derive spatially distributed watershed variables does not increase the accuracy of quantile 

estimators for ungauged sites. 

This dissertation also presents a methodology by which flood quantile estimates 

in Haiti can be derived using relationships developed for data rich regions of the U.S.  As 

currently practiced, regional flood frequency techniques can only be applied within the 

predefined area used for model development.  However, results presented herein 

demonstrate that the regional flood distribution can successfully be extrapolated to areas 

of similar physical composition located beyond the extent of that used for model 

development provided differences in precipitation are accounted for and the site in 

question can be appropriately classified within a delineated region. 
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Chapter 1 : Introduction 

Accurate flood quantile estimates are necessary for the delineation of floodplains, the 

development of floodplain management and flood warning systems, and the design and 

operation of water-control structures, such as reservoirs and culverts.  Standard 

procedures for at-site flood frequency analysis involve assembling the annual maximum 

flood record at the site of interest and fitting an analytic probability distribution to the 

data (e.g., IACWD 1982).  The fitted distribution is then used to estimate flood quantiles 

associated with a given return period, such as the flood magnitude expected to be equaled 

or exceeded once every 100 years (i.e., the 100-year event).  However, in most cases the 

at-site record length is too short to accurately estimate flood quantiles for return periods 

of interest: estimation of the 100-year event often requires extrapolating beyond the 

observed flood record.  In other cases, flood data are unavailable at the site of interest, 

making at-site flood frequency analysis impossible.  As the latter is often the case for 

watersheds throughout the world, particularly in data sparse developing countries, but 

also in data rich countries such as the United States (e.g., Mishra and Coulibaly 2009), 

the development of appropriate methods for flood quantile estimation in ungauged basins 

is a common research theme in hydrology. 

To compensate for limited or unavailable flood data, one solution is to “trade 

space for time” (Stedinger et al. 1993) using a regional flood frequency analysis, wherein 

the characterization of flood flows at the site of interest is derived using information 

pooled from nearby hydrologically similar gauged sites (NRC 1988).  Regional flood 

frequency methods include the Index Flood method (e.g. Dalrymple 1960; Hosking and 
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Wallis 1988, 1997; Stedinger and Lu 1995; Fill and Stedinger 1998; De Michele and 

Rosso 2001; Kjeldsen and Rosberg 2002), and regional regression procedures, such as 

weighted and generalized least squares regression (e.g. Tasker and Stedinger 1989; 

Tasker et al. 1996; Madsen and Rosberg 1997; Eng et al. 2005, 2007a, 2007b; Griffis and 

Stedinger 2007a; Jeong et al. 2007). 

Much of the recent research has focused on improving or comparing existing 

regional flood frequency techniques (e.g., Castellarin et al. 2001; Chiang et al. 2002a; 

Kjeldsen and Rosbjerg 2002; Eng et al. 2007b; Griffis and Stedinger 2007a; Neykov et al. 

2007; Gruber and Stedinger 2008), and developing new methods for quantile estimation 

at ungauged basins located within the area used for model development (e.g., Chiang et 

al. 2002b; Eng et al. 2005, 2007b; Kayha et al. 2008; Shu and Ouarda 2008; Saf 2009; 

Malekinezhad et al. 2010).  The research presented in this dissertation draws on this base 

of knowledge to propose additional recommendations to improve quantile estimators for 

use within data rich areas, and proposes a novel method to extrapolate those results to 

sites with similar physical characteristics located in data sparse regions external to the 

area used for model development.  In particular, this research presents a method by which 

the flood regime in Haiti can be derived based on knowledge of the relationships between 

flood statistics and physical characteristics within the Southeastern portion of the United 

States. 
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1.1 Research Motivation 

An important component of the Index Flood method is the delineation of 

hydrologically homogeneous regions (or groups of sites), in which the flood regime is 

deemed sufficiently similar to allow the spatial transfer of information from gauged sites 

to ungauged sites (see for example, Stedinger and Lu, 1995, and citations therein).  The 

flood regime includes the magnitude, timing, duration, frequency, and inter-annual 

variability of flood events.  Within a hydrologically homogeneous region, sites share the 

same parent flood distribution with a common shape parameter, but each watershed has a 

site-specific scale factor (or location parameter).  For application at ungauged sites, it is 

assumed that the flood regime, or extreme hydrologic response, is similar in watersheds 

with comparable basin characteristics (e.g. physiographic characteristics and 

meteorological inputs).  Thus, a region in which sites are physically homogeneous is 

assumed to also be hydrologically homogenous, and physical characteristics can be used 

to classify an ungauged site within a delineated region.  Some studies have observed, 

however, that similar hydrologic response is not guaranteed simply by similar basin 

characteristics because of complex interactions among those characteristics (Zrinji and 

Burn 1994; Burn 1997; Burn et al. 1997).  In addition, delineated regions are highly 

dependent on the choice of similarity measures used to infer homogeneity (see for 

example, Burn 1990, 1997; GREHYS 1996; Burn et al. 1997; Hosking and Wallis 1997; 

Castellarin et al. 2001).  These are major limitations of the Index Flood method, and 

significantly impair its ability to provide accurate quantile estimates at ungauged sites. 
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Regional regression models are also hindered by our limited knowledge of the 

physical properties and mechanisms producing flood flows.  The typical modeling 

approach is to employ a log-log or log-linear relationship between flood statistics and 

basin characteristics, and in most cases the drainage area is the only explanatory variable 

employed.    More complex relationships and interactions between basin characteristics 

are generally not considered because the current understanding of hydrology is not 

advanced enough to know if such a model is reasonable (Eng et al. 2007b; Griffis and 

Stedinger 2007a).  Thus, models of flood quantiles and other statistics at ungauged sites 

can be improved by increasing our knowledge of what basin characteristics, or 

interactions among basin characteristics, predominantly contribute to flood flows. 

With increasing computing abilities and the availability of remotely sensed data, it 

may also be possible to improve quantile estimates in data limited areas by using 

available data more efficiently.  Recent research demonstrates the ability to delineate 

climatic regions as a function of remotely sensed data, including land surface 

temperature, precipitation, and infiltration categories based on microtopography, surface 

crusting and soil cover (Corbane et al. 2008; Rhee et al. 2008).  Remote sensing systems 

have also been used extensively to identify soil type, land use, land cover, geology and 

topography (Corbane et al. 2008; Brink and Eva 2009; Bertoldi et al. 2010; Inbar et al. 

2010).  Previous studies suggest that geology, land use, and land cover may help define 

the flood distribution of drainage basins (Chiang et al. 2002a, 2002b; Rao et al. 2006), 

and thus remotely sensed data could be used to infer the flood regime in areas with 

limited or unavailable flood data. 
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Regionalization of flood data using either the Index Flood method or regional 

regression assumes that the watershed processes governing the flood regime are 

sufficiently characterized by physical parameters aggregated at the watershed scale.  

Some may argue that spatially distributed parameters should be used to develop finer 

scale representations of hydrological processes (Beven and Kirkby 1979; Abbott et al. 

1986; Boyle et al. 2001; Duffy 2004; Panday and Huyakorn 2004; Reed et al. 2007).  

However, there is a trade-off between characterizing the heterogeneity within and 

uniqueness of a single watershed using spatially distributed values as commonly 

practiced in hydrologic modeling, and characterizing the heterogeneity within a region 

using parameter values aggregated at the watershed scale as in regional flood frequency 

techniques.  In the latter analyses, simple models are needed to infer the dominant 

processes governing extreme hydrologic response at the watershed scale, such that flood 

statistics can be successfully extrapolated from gauged basins for improved prediction in 

ungauged basins in data limited areas.  (See for example, McDonnell et al. 2007; Tezlaff 

et al. 2008; MacKinnon and Tetzlaff 2009, and citations therein.)  Use of these simple 

models in conjunction with remotely sensed data would allow for the development of 

quantile estimators in data sparse countries such as Haiti by extrapolating the 

relationships developed for basins of similar physical composition in data rich countries 

such as the United States. 

Hydrologic models such as rainfall-runoff models are another option for flood 

quantile estimation in ungauged basins.  Unlike regional flood frequency analyses, 

however, rainfall-runoff models do not provide information pertaining to the flood 
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distribution nor do they explain possible similarities in flood distributions among 

watersheds.  Further, rainfall-runoff models pose additional problems because the critical 

storm duration and the spatial distribution of relevant storm events (and corresponding 

inflows) are unknown.  In general, regional flood frequency analyses provide less 

accurate flood quantile estimates than at-site flood frequency analyses when sufficient 

gauged data is available (see for example, Griffis and Stedinger 2007b), but often provide 

more accurate flood quantiles than hydrologic modeling (USACE 1994). 

1.2 Research Objectives and Organization of Chapters 

The objectives of the research presented herein are: (i) to increase understanding 

of the basin characteristics, or interactions among basin characteristics, which 

predominantly contribute to flood flows, (ii) to improve estimates of flood quantiles at 

ungauged sites by removing subjectivity from the process of delineating hydrologically 

homogeneous regions, and (iii) to develop simple rules to successfully extrapolate flood 

statistic-basin characteristic relationships from data rich areas to derive flood quantile 

estimates in data sparse areas outside of that used for region delineation and model 

development.  In particular, this dissertation seeks to develop methods by which the flood 

regime in Haiti can be derived based on knowledge of the relationships between flood 

statistics and physical characteristics within the Southeastern U.S.  These objectives are 

achieved via completion of four tasks as outlined below. 

Task 1: Evaluate to what extent hydrological homogeneity is explained by 

physical homogeneity, and identify the key physical characteristics needed to delineate 
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hydrologically homogeneous regions. This is accomplished using a combination of 

traditional regional flood frequency techniques and multivariate statistical analyses 

applied to multiple flood statistics and watershed characteristics for sites throughout the 

Southeastern U.S.  Chapter 2 provides an overview of relevant flood frequency 

techniques and multivariate statistics.  Chapter 3 discusses the application of these 

techniques to two study areas within the Southeastern U.S.  The first study area is used to 

identify the physical attributes which are most indicative of the flood regime, and the 

second study area is used to validate the proposed application of the identified physical 

attributes for region delineation and inference of the flood regime in areas outside of the 

extent of the first study area. 

Task 2: Develop a standardized procedure for the delineation of hydrologically 

homogeneous regions.  The proposed method, including a new statistical procedure to 

identify physically discordant sites, is presented in Chapter 3.  Data for sites across the 

Southeastern U.S. are used to demonstrate the application of the proposed method, and to 

evaluate the accuracy of quantile estimators for ungauged sites derived using the 

proposed method relative to estimators derived using procedures typically employed in 

practice. 

Task 3: Demonstrate that values of physical variables aggregated at the watershed 

scale are sufficient for the delineation of regions suitable for flood frequency analysis.  

This is accomplished in Chapter 4 wherein hydrologically homogeneous regions are 

delineated within the Southeastern U.S. using a novel approach based on spatially 

distributed representations of the key physical characteristics identified in Task 1.  
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Quantile estimators for ungauged sites are subsequently derived and compared to 

estimators derived in Chapter 3 based on aggregated parameter values.  Both sets of 

quantile estimators are derived for regions delineated using the standardized method 

developed in Task 2; the procedures differ only in their use of spatially distributed values 

versus aggregated values of the key physical characteristics. 

Task 4: Demonstrate that quantile estimators derived for data rich regions can be 

extrapolated to data sparse areas which have similar physical characteristics, but are 

located outside of the area used for model development.  This is accomplished in Chapter 

5 using a combination of GLS regression models and the Index Flood method applied in 

regions delineated using the standardized procedure developed in Task 2.  The success of 

the extrapolation is first evaluated using data for sites across the Southeastern U.S.  The 

dataset is split into two study areas: one represents the data rich area used for model 

development; the second represents the data poor region.  Applications which 

demonstrate the extrapolation to data sparse countries are then performed for sites in 

Haiti. 

Overall, this research provides a critical contribution to flood frequency analysis 

as appropriate methods for flood quantile estimation in ungauged basins are needed for 

data sparse regions of the world.  For instance, the necessary data for flood frequency 

analysis is often unavailable in developing countries due to lack of financial resources or 

for political reasons, however, remotely sensed data is now freely and readily available 

for most of the world.  In such cases, remote sensing systems provide a way to obtain 

data where little information was previously available.  In addition, advances in 
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computational capabilities make remote sensing data coupled with traditional regional 

flood frequency techniques quite attractive and less time consuming than alternatives 

such as the development of watershed specific rainfall-runoff models.  Although 

synthetic unit hydrographs can simplify the process, their applicability to the watershed 

of interest may still be questionable. 
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Chapter 2 : Regional Flood Frequency Analysis 

Flood series at an individual site are seldom long enough to accurately estimate flood 

quantiles for return periods of interest.  In other cases, flood data are unavailable at the 

site of interest, making at-site flood frequency analysis impossible.  Regional flood 

frequency techniques which employ data from nearby sites have thus been developed to 

overcome the lack of flood data at a particular location.  This chapter reviews standard at-

site and regional flood frequency techniques and discusses limitations of their application 

to ungauged basins. 

2.1 At-Site Flood Frequency Techniques 

Standard procedures for estimating the risk of flood events involve estimating the 

return period associated with the magnitude of observed events using an analytic 

probability distribution.  Once properly fit to the observed data, the distribution is then 

used to determine the magnitude of needed design events (e.g., the 100-year event) for 

use in water resources applications such as land-use planning and management, and the 

design and operation of water-use and water-control structures.  As the true distribution 

of annual maximum flood flows is unknown, this process requires the selection of an 

analytic probability distribution that reasonably approximates the observations and their 

corresponding recurrence intervals, as well as an appropriate parameter estimation 

technique to fit the distribution using the available period of record.  

Distributions commonly used to model annual maximum flood series are the log-

Pearson type III (LP3), generalized extreme value (GEV), and lognormal (LN) 
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distributions (Stedinger et al. 1993).  Vogel and Wilson (1996) demonstrate that all three 

of these distributions are reasonable models of annual maximum flood series in the 

United States; however, the LP3 distribution is typically used to model flood series as 

recommended by Bulletin 17B (IACWD 1982).  Further, Griffis and Stedinger (2007c) 

demonstrate that, with two shape parameters, the LP3 distribution is more flexible than 

the LN and GEV distributions.  However, when compared to the uncertainty in the flood 

quantile estimates, the differences between reasonable choices of distributions are 

negligible (Stedinger 1980; Hosking and Wallis 1997; Stedinger and Griffis 2008).  

Therefore, the GEV distribution will be employed herein, because it has been widely 

used throughout the world (e.g., NERC 1975) and has recently gained a lot of support for 

at-site flood frequency in the U.S. (e.g., Saf 2010; Malekinezhad et al. 2011), and it is 

frequently used in the context of regional index flood modeling (e.g., Hosking et al. 

1985b; Wallis and Wood 1985; Lettenmaier et al. 1987; Hosking and Wallis 1988; 

Chowdhury et al. 1991; Stedinger and Lu 1995; Hosking and Wallis 1997; Madsen et al. 

1997).  The GEV distribution and relevant parameter estimation methods are discussed in 

more detail below. 

2.1.1 GEV Distribution 

Extreme value theory demonstrates that regardless of the distribution of Y, if n is 

large enough, then the distribution of Xn = max {Y1, …, Yn} converges to either the 

Gumbel, Frechet, or Weibull distribution (Gumbel 1958).  These distributions differ 

primarily in regard to their behavior in the tails.  The GEV distribution combines these 

three distributions into one distribution (Jenkinson 1969).  The GEV distribution can be 
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described by the location parameter , scale parameter  and shape parameter k , and the 

cumulative distribution function (cdf):   

 (1) 

The shape parameter k defines the tail behavior of the distribution.  When k < 0, the GEV 

distribution corresponds to the Frechet distribution with a heavy right-hand tail and a 

lower bound equal to  + /k; when k > 0, the GEV distribution corresponds to the 

Weibull distribution with an upper bound equal to  + /k; and when k = 0, the GEV 

distribution reduces to the Gumbel distribution with an exponential upper tail and the 

following cdf: 

 (2) 

which is unbounded both above and below (-  < x < ). 

For k > -1/3, the GEV parameters ( , , and k) are functions of the first three 

population moments (mean , variance , and skew x): 
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where sign(k) = +/- 1 depending on the sign of k, and (c) is the gamma function 
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( ) exp( )cc t t dt
 

(4) 

Quantiles of the GEV distribution are computed using the following equation: 

 for  k  0 

 for  k = 0 (5) 

where p is the cumulative probability corresponding to the return period of interest, T = 

1/(1-p).  The pth quantile (xp) is thus the flood magnitude expected to be equaled or 

exceeded once every T years.  In practice, quantile estimates ( ˆ px ) are obtained by 

replacing the true parameter values ( , , k) with parameter estimators ( ˆ , ˆ , k̂ ) 

computed as a function of the observed flood series. 

An efficient method for parameter estimation is necessary when using the GEV 

distribution in flood frequency applications as the record length at an individual site is 

often limited.  The most common methods used to estimate the parameters of the GEV 

distribution are: (i) method of moments (MOM) which equates the population moments 

in equation (3) to the sample moments ( x , , and Gx) computed using traditional 

moment estimators; (ii) maximum likelihood estimation (MLE) which identifies the 

values of the parameters that maximize the likelihood of having observing the flood 

series in question; and, (iii) L-moments estimators which are based on linear 

combinations of the ranked data.  Martins and Stedinger (2000) provide a detailed 

discussion of each of these methods with respect to application of the GEV distribution in 

flood frequency analysis.  Overall, L-moments estimators have been shown to be the 
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most efficient parameter estimation method for the GEV distribution (e.g., Landwehr et 

al. 1979; Hosking et al. 1985a) and will be used in subsequent analyses. 

2.1.2 L-Moments 

L-moments are an alternative to traditional product moments (e.g., x , , and Gx) 

for describing the statistical properties of flood data.  L-moments are computed as 

functions of probability weighted moments (PWMs) defined as  

 (6)  

where F(X) is the cumulative distribution function for X (Greenwood et al. 1979; 

Hosking, 1990).  L-moments are then calculated using the following relationships 

 (7)  

 (8)  

 (9)  

 (10)  

The first L-moment ( 1) is equivalent to the population mean (μ).  A dimensionless L-

moment coefficient of variation (L-CV) is given by 

 (11)  

The L-moment coefficient of skewness (L-Skewness) and kurtosis (L-Kurtosis) are given 

by 

 (12) 
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for r = 3 and 4, respectively.  These dimensionless L-moment coefficients, commonly 

referred to as L-moment ratios, are analogues for the conventional coefficients of 

variation (CV = xs x ), skewness and kurtosis. 

In practice, sample L-moments ( ˆ
i ) and L-moment ratios ( ˆ r ) are obtained by 

replacing the population PWMs in equations (7) - (12) with the sample PWMs computed 

using 

 (13)  

(Landwehr et al., 1979).  This formula yields an unbiased estimator of the order r PWM 

for a sample of size n ranked in descending order ( ).  In this way, L-

moments are based on linear combinations of the observations, as opposed to product 

moments which involve squaring and cubing the observations, (Hosking, 1990; Hosking 

and Wallis, 1997).  As such, parameter estimators obtained using the product-moment 

sample coefficients of variation, skewness, and kurtosis are highly variable and have a 

bias which depends upon the sample size as well as the underlying distribution (Wallis 

1988; Wallis et al. 1974).  In fact, for a sample of size n, the product-moment sample 

coefficient of variation cannot be larger than (n-1)0.5, and the sample skewness cannot 

exceed (n-2)/(n-1)0.5 (Kirby 1974).  Conversely, L-moments computed using unbiased 

PWMs yield unbiased analogues for the conventional coefficients of variation, skewness 

and kurtosis, and the resulting parameter estimators are more efficient in smaller samples 

than those derived from traditional product moments (Wallis 1988).     
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In applications of the GEV distribution, the parameters can be computed as a 

function of the L-moments using 

 (14) 

 (15) 

 (16) 

where the expression for k is an approximation developed by Hosking et al. (1985a) with 

 (17) 

Aside from parameter estimation in at-site analyses, the L-moment ratios are also used in 

regional flood frequency analyses to ascertain the homogeneity of a collection of 

watersheds and to derive quantile estimates at sites with limited data as discussed below. 

2.2 Regional Flood Frequency Techniques 

 The two most common regional flood frequency techniques are the Index Flood 

method (e.g. Dalrymple 1960; Hosking and Wallis 1988, 1997; Stedinger and Lu 1995; 

Fill and Stedinger 1998; De Michele and Rosso 2001; Kjeldsen and Rosberg 2002), and 

regional regression analyses (e.g. Tasker and Stedinger 1989; Tasker et al. 1996; Madsen 

and Rosberg 1997; Eng et al. 2005, 2007a, 2007b; Griffis and Stedinger 2007a; Jeong et 

al. 2007).  Each of these procedures and their application in the context of the research 

herein are discussed below. 
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2.2.1 Index Flood Method 

The Index Flood method is based on the premise that sites within a statistically (or 

hydrologically) homogeneous region share the same parent (or regional) flood frequency 

distribution with a common shape parameter, but each watershed has a site-specific scale 

parameter (a.k.a. the “index-flood”) to represent possible changes in magnitude across the 

region.  For application at gauged sites, the scale parameter is often given by the mean of 

the flood flows.  For ungauged sites, however, this parameter must be related to 

physiographic characteristics of the watershed, the most important of which is drainage 

area.  This could be accomplished using regional regression procedures as discussed in 

Section 2.2.2.  The basin characteristics at any point in the region (i.e. an ungauged site) 

can then be used to estimate the mean annual flood, which in turn can be used with the 

non-dimensional parent distribution to determine the flood magnitude corresponding to 

any return period at that location. 

While any combination of probability distribution and parameter estimation 

method could be used, the use of the GEV distribution fit using L-moments has been 

shown to produce more accurate quantile estimates than other distribution/estimation 

method combinations (e.g., Hosking and Wallis 1988; Jin and Stedinger 1989; Potter and 

Lettenmaier 1990; Rosbjerg and Madsen 1995; Stedinger and Lu 1995).  The GEV/L-

moment Index Flood procedure for application at a gauged site within a predefined 

hydrologically homogeneous region is as follows (Stedinger et al. 1993): 
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1) Calculate the L-moment estimators ( )
1

ˆ j , ( )
2

ˆ j , and ( )
3

ˆ j
 at site j using the unbiased 

PWM estimators b0, b1, and b2 in equations (7), (8), and (9).  Repeat for all sites in 

the region (j = 1, 2…, N). 

2) Define the non-dimensional parent distribution by the normalized regional L-

moments ( R
1̂ , R

2
ˆ , and R

3̂ ) computed using: 

( ) ( )
1

1

1

ˆ ˆ[ / ]
ˆ

N
j j
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j
j

w

w
  for r = 2, 3 (18) 

where j R
j

j R

n n
w

n n
, nj is the record length at site j, and j

R

n
n

N
.  For r = 1, 

1̂ 1R . 

3) Estimate the parameters ( ˆR , ˆ R , and ˆRk ) and quantiles ( ˆ Rpx ) of the non-

dimensional regional GEV distribution by using the normalized regional L-

moments ( R
1̂ , R

2
ˆ , and R

3̂ ) in equations (14) - (17) and (5), respectively. 

4) Estimate the 100p percentile of the flood distribution, corresponding to the T = 

1/(1-p) year event, at any site j using: 

1̂ˆ ˆ( ) j R
p px j x   (19) 

where 1̂
j  is the at-site sample mean for site j computed using equation (7). 
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This procedure is meant to be applied in hydrologically homogeneous regions which 

consist of a group of sites for which the extreme hydrologic response within the 

corresponding watersheds is deemed sufficiently similar to allow the spatial transfer of 

information (e.g., Stedinger and Lu 1995, and citations therein).  However, even when 

moderate regional heterogeneity is present, a regional analysis will still yield much more 

accurate extreme quantile estimates than an at-site analysis where limited gauged data is 

available (Lettenmaier et al. 1987; Hosking and Wallis 1988; Hosking and Wallis 1997).  

Methods typically applied in practice to group similar sites and subsequently evaluate 

their regional homogeneity are discussed in the following sections. 

2.2.1.1  Hydrological Homogeneity Test 

The hydrological homogeneity of a region requires that the sites within are able to 

share a common parent distribution, and thus the at-site distributions are similar in shape.  

Statistical similarity among the at-site distributions can therefore be assessed in terms of 

sample product moments such as the coefficient of variation (e.g., Dalrymple 1960), 

normalized flood quantile estimates (e.g., Lu and Stedinger 1992), or L-moment ratios 

such as the L-CV and L-Skewness (e.g., Hosking and Wallis 1997).  The latter test on L-

Moment ratios is most commonly used in practice, and will be employed herein as it is 

consistent with the use of the GEV/L-Moment Index Flood procedure. 

The Hosking and Wallis (1997) homogeneity test compares the variability in the 

observed at-site L-moment ratios to the expected variability in the L-moment ratios based 

on simulations from representative hydrologically homogeneous regions consistent with 



35 
 

the observed regional averages of the L-moment ratios and available record lengths.  

Three possible measures of variability in the at-site L-moment ratios are: 

    (20)   

   (21) 

  (22) 

where  are estimates of the L-CV, L-Skewness and L-Kurtosis at site i, 

, , and  are the regional averages of the L-moment ratios, ni is the record length at 

site i, and N is the number of sites in the region.  It has been observed that the first 

homogeneity measure (V1) based solely on the L-CV is the most effective at 

discriminating between homogeneous and heterogeneous regions (Hosking and Wallis 

1997; Castellarin et al. 2001), and therefore will be used herein as an indicator of 

hydrological homogeneity. 

To compare the observed variability in L-CVs to what would be expected in a 

homogeneous region, Hosking and Wallis (1997) developed the H-statistic defined as: 

 (23) 

Here V1 represents the observed variability in the at-site L-CVs computed using equation 

(20).  The expected variability should the region of interest be homogenous is represented 

by the mean μV and standard deviation V of values of V1 computed for a large number of 
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simulated regions consisting of uncorrelated sites with record lengths and regional 

average L-moment ratios equivalent to those of the observed data set.  These simulations 

can be easily performed in R using the HOMTEST package (Viglione 2010).  If H  1, 

the region is considered hydrologically homogeneous, meaning the observed variability 

in the L-CVs is no larger than would be expected given natural sampling variability.  If 1 

 H  2, the region is possibly heterogeneous, but is generally considered sufficient for 

application of the Index Flood procedure.  If H  2, the region is definitely heterogeneous 

and steps should be taken to improve the homogeneity of the region, if possible.  Results 

of recent studies suggest relaxing the latter constraint to H  4 (Hosking and Wallis 1993; 

Robson and Reed 1999; Guse et al. 2009) given that the significance levels are only 

accurate in the absence of serial and cross correlation, and that the sample truly follows a 

kappa distribution (Viglione et al. 2007 ).  In the study presented herein, all regions with 

H < 4 are considered appropriate for regionalization of flood data. 

For regions deemed definitely heterogeneous (H  4 herein), Hosking and Wallis 

(1997) recommend identifying possible discordant sites which may be responsible for 

inflating the H-statistic.  Discordant sites are statistical outliers with L-moment ratios 

which are substantially different from the regional average L-moment ratios.  These 

outliers can be identified using a discordancy measure computed for a given site as 

follows 

 (24) 
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where  is a vector of the at-site L-moment ratios  at site i,  is a vector 

of the regional average L-moment ratios ( , , and ), and 

   (25) 

For a region containing at least 15 sites, site i is hydrologically discordant if Di is greater 

than 3.  Hydrologically discordant sites should be removed from the region only if they 

are also discordant on physical and/or climatological grounds (Hosking and Wallis 1997, 

p. 170).  When necessary, regions may also be broken into smaller subsets. 

To reduce the impact of outliers on the discordancy measure, Neykov et al. (2007) 

propose a robust discordancy measure computed using a subset of size h selected from 

the N sites available in the region.  The selected subset has the minimum covariance 

determinant relative to all other possible subsets of size h.  For a given site i in the subset, 

the robust discordancy measure is computed as 

 (26) 

where  is a vector of the at-site L-moment ratios  at site i, L is a vector 

of the means of the L-moment ratios ( , , and ) computed for sites within the subset, 

and 

  (27) 

The factor cm is chosen to be consistent with the multivariate normal model and is 

unbiased in small samples.  Monte Carlo results presented by Neykov et al. (2007) 

demonstrate that their robust discordancy method outperforms the measure recommended 
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by Hosking and Wallis (1997).  Therefore, the robust discordancy measure will be 

implemented herein using the R package “rrcov” of Todorov and Filzmoser (2009). 

2.2.1.2 Delineation of Homogeneous Regions 

Multivariate statistical techniques such as cluster analysis, principal component 

analysis, canonical correlation analysis, and linear discriminant analysis are commonly 

employed to delineate homogeneous regions, i.e. group sites with similar extreme 

hydrologic response, and subsequently classify ungauged sites (see for example, Zrinji 

and Burn 1994; Burn 1997; Burn et al. 1997; Chiang et al. 2002a, 2002b; Rao and 

Srinivas 2006; Srinivas et al. 2008).  Application of these methods requires the selection 

of appropriate similarity measures to characterize the extreme hydrologic response, or 

flood regime, at individual sites. 

Possible similarity measures include at-site flood statistics, such as the magnitude 

of the T-year flood, the timing and/or duration of flood events, the conventional 

coefficient of variation (CV), and L-moment ratios (e.g., L-CV or L-Skewness).  

However, use of flood statistics to delineate regions may compromise the validity of the 

hydrological homogeneity test which is based on the same data (Burn 1990, 1997).   As a 

result, the delineated regions may appear homogeneous, but would be inefficient for 

developing regional quantile estimators.  In addition, unless the delineated regions are 

sufficiently contiguous, the successful classification of an ungauged basin within a 

delineated region cannot be guaranteed. 

It is generally assumed that the flood regime, or hydrologic response, is similar at 

sites with comparable basin characteristics (e.g. physiographic characteristics and 
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meteorological inputs).  (See for example, GREHYS 1996a; Hosking and Wallis 1997; 

Chiang et al. 2002a, 2002b; Isik and Singh 2008; Rao and Srinivas 2006.)  Therefore, 

measurable characteristics such as the drainage area, land use and land cover metrics, 

geology, basin elevation and mean annual precipitation can be used in place of similarity 

measures based on gauged flood data.  This is advantageous, as an ungauged site can then 

be classified within a delineated region, and regional quantile estimators can be 

developed for that site (Burn 1997; Burn et al. 1997).  

Still, a major complication remains in that the regions formed are dependent on 

the basin characteristics employed as indicators of hydrologic similarity, as well as the 

statistical technique(s) used to delineate the regions (GREHYS 1996b; Castellarin et al. 

2001).  This concern will be addressed in Chapter 3; the following sections describe the 

multivariate statistical techniques employed therein.   

Cluster Analysis 

Cluster analysis (CA) groups sites on the basis of a statistical distance measure 

reflecting the similarity (or dissimilarity) among a set of attributes (similarity measures) 

selected to represent each gauging station.  Several clustering techniques are available in 

the statistical literature, including hierarchical approaches such as single linkage, 

complete linkage, average linkage and Ward’s method, as well as non-hierarchical 

approaches such as the k-means method (Johnson and Wichern 2007, p. 671).  These 

methods have been widely used in the delineation of hydrologically homogeneous 

regions (see for example, Burn 1988, 1989, 1997, 2000; Bhaskar and O’Connor 1989; 

Baeriswyl and Rebetez 1997; Hosking and Wallis 1997; Chiang et al. 2002a; Castellarin 
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et al. 2001; Dinpashoh et al. 2004; Rao and Srinivas 2006).  Ward’s hierarchical method 

is most commonly used in the hydrologic literature as it tends to delineate regions 

roughly equivalent in size, and is thus considered more appropriate in the context of 

regionalizing flood data (Hosking and Wallis 1997, pp. 58-59).  For these reasons, 

Ward’s method will be employed herein. 

Ward’s method is an agglomerative hierarchical algorithm which initially begins 

with each site serving as its own cluster (or region).  The algorithm successively merges 

clusters using an analysis of variance approach in which the similarity among members 

(or sites) in a region is measured in terms of the Error Sum of Squares (ESS).  For region 

k containing N sites, wherein the flood regime is represented by p attributes (X1, X2, …, 

Xp), the ESS is given by 

  (28) 

where  =  is a vector of the attributes at site j, and  =  is 

a vector of the means of the attributes within the region.  At each step, ESSk is computed 

for the hypothetical merger of any two clusters, and the actual mergers chosen to occur 

are those which minimize the increase in the total ESS across all regions.  A dendrogram 

is commonly used to illustrate the mergers made at successive levels, where the vertical 

axis represents the value of the ESS. 

A pseudo F-test can be used to determine the number of regions (K) that should 

be delineated (Fovell and Fovell 1993).  The test seeks to minimize the differences within 

each region (ESS), while maximizing the differences between the regions, termed the 
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Between Sum of Squares (BSS).  In particular, the optimal number of regions to delineate 

(i.e., value of K) is that which maximizes the following function:  

TBSS N - K
ESS K -1

F  (29) 

where NT is the total number of sites and K is the current number of regions delineated.  

The Sum of Squares terms are computed using the following equations:   

  (30) 

 (31) 

where  is a vector of the means of the p attributes within region k, and is a vector of 

the means of the p attributes computed across all of the basins regardless of the region 

delineation. 

Cluster analysis using Ward’s method is employed in Chapters 3 and 4 herein 

using a variety of basin characteristics as similarity measures, both as a lone procedure 

and in conjunction with output from principal component analyses and canonical 

correlation analyses.  The latter procedures are discussed in the following sections. 

Principal Component Analysis 

Principal Component Analysis (PCA) is a multivariate statistical method that 

expresses the dataset in terms of uncorrelated linear functions of the original variables 

called principal components (PCs).  The components are chosen so that they successively 

contain the maximum variability of the original dataset.  When the first few PCs explain 

the majority of the variability, PCA identifies a fewer number of variables which can be 
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employed in subsequent analyses with little loss of information (Jolliffe 2002).  

Applications of PCA are found in a variety of fields including genetics (Yeung and 

Ruzzo 2001), remote sensing (Fung and Ledrew 1987), social sciences (Schyns 1998) 

and meteorology (Mallants and Feyen, 1990).  PCA has also been employed to delineate 

regions for regional flood frequency analyses (e.g., Lins 1985, 1997; Detenbeck et al. 

2005; Kahya et al. 2008). 

The PCA methodology can be described as follows.  Given a vector of p variables 

T

1 2 pX , X ,..., XX with a (p x p) variance-covariance matrix X, the eigenvalues i and 

eigenvectors ei (for i = 1,…, p) associated with X can be estimated by solving the 

following equations: 

X pdet 0I   (32) 

X i i ie e  (33) 

where Ip is a (p x p) identity matrix.  The resulting eigenvalues are ordered so that 1 > 2 

> …. > p.  The eigenvectors specify the orthogonal directions of most variance, and their 

associated eigenvalues indicate the magnitude of the variance.  Once the eigenvalues and 

eigenvectors of the variance-covariance matrix are obtained, the principal components 

(Yi for i = 1,…,p) are defined as 
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TY E X   (34) 

where 1 2 p, ,...,E e e e .  If the correlation matrix RX is used in place of the 

variance-covariance matrix X, then the eigenvectors are of unit length and they convey 

the contribution of each original attribute (Xj) to a specific component (Yi).  Thus, the 

elements of the eigenvectors (eij) are called component loadings because a larger eij 

indicates greater importance of the corresponding variable Xj in component i.  In 

addition, Yi is the principal component score with variance equal to the corresponding 

eigenvalue i, and all principal components are uncorrelated with one another. 

T T
i i i X i iVar( ) Var =  = Y e X e e   (35) 

T
i j i X jCov( , ) 0Y Y e e   for  i  j (36) 

When dimension reduction is desirable, a number of components will be excluded 

as they do not contain a considerable amount of information (i.e., Yp-1, Yp).  To decide on 

the number of components to exclude, one can use the scree plot of the cumulative 

variance in search of a plateau or, as a rule of thumb, retain the components that have a 

variance (or eigenvalue, i) greater than 1 when the correlation matrix is used (Johnson 

and Wichern 2007, p. 451).  In the research presented herein, the first few principal 

components (with i > 1) should contain the basin characteristics that explain most of the 

variability among the sites (and corresponding watersheds) in the study area, and thus 

would be useful in delineating homogeneous regions.  The first few PCs will also define 

new variables which will subsequently be used in cluster analyses.    



44 
 

Canonical Correlation Analysis 

Canonical Correlation Analysis (CCA) provides an estimate of the existing 

association between two sets of variables (Johnson and Wichern 2007, p. 539).  Linear 

combinations of the variables in one set are paired with linear combinations of the 

variables in the second set to form canonical variables.  The first canonical variable is the 

pair of linear combinations with unit variance and the maximum correlation.  Subsequent 

canonical variables with unit variance are formed such that the correlation is again 

maximized while ensuring all canonical variables are uncorrelated.  The correlation for a 

given pair of canonical variables is called the canonical correlation.  Only a few studies 

have employed CCA to delineate hydrologically homogeneous regions for the 

regionalization of flood data (Ribeiro-Correa et al. 1995; Ouarda et al. 2001; Hache et al. 

2002). 

The CCA methodology can be described as follows.  Consider two sets of 

variables represented by the random normalized vectors X = (X1, X2, …., Xp )T and Y = 

(Y1, Y2, …,Yq)T with means μX and μY and correlation matrices RXX and RYY, 

respectively.  In addition, the correlation between X and Y is represented by the (p x q) 

matrix RXY where p  q.  In the context of delineating homogeneous regions, X consists 

of hydrological variables, and Y consists of the measurable watershed characteristics.  

We define linear combinations of the variables in X and Y such as U = aTX and V = bTY.   

U and V are canonical variates if the vectors a and b successively maximize the 

correlation between the pairs (Ui,Vi) for i = 1,….,p and the correlation of (Ui, Vi) to any 
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other pair (Uj, Vj) for i  j is zero.  The canonical vectors ai and bi which define the ith 

pair of canonical variables are computed as follows: 

1/2
i XX ia R e  (37) 

1/2
i YY ib R f   (38) 

where ei represents the eigenvectors associated with 1/2 1 1/2
XX XY YY YX XXR R R R R , and 

1/2 1/2
i YY YX XX if R R R e .  In order for fi to be uniquely specified, the following constraint of 

unit variance must be satisfied: T
i YY ivar( ) 1b R b .  The individual coefficients within ai 

and bi represent the relative importance of specific variables within X and Y in the linear 

combination. 

The canonical correlation between the two variables U and V is calculated using: 

T T
XY

T T
XX YY

Corr(U, V) a R b
a R a b R b

  (39) 

In the research presented herein, the first few canonical variables with the highest 

correlation should indicate which basin characteristics would serve as useful indicators of 

hydrological homogeneity for use in region delineation. 

Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) is a multivariate technique used to identify 

the variables that are best able to explain differences between a set of predefined regions.  

LDA yields linear functions of the original variables, termed discriminant functions.  The 

first few discriminant functions best discriminate between the regions, and therefore, can 
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be used for classification of a future dataset.  In the context of regionalization of 

hydrologic data, these discriminant functions would be useful for allocating an ungauged 

site to a delineated region.  However, few studies in the hydrologic literature have 

employed LDA (Chiang et al. 2002a, 2002b; Detenbeck 2005; Cianfrani et al. 2006; 

Snelder et al. 2009), and none have used it in the context of flood frequency analysis.   

The LDA methodology can be described as follows.  Consider K groups (or 

regions) composed of watersheds characterized by p variables.  The (p x 1) vectors , 

, ...  contain the means of each variable within region k (k = 1, 2, … K), and the (p x 

1) vector  contains the overall means for each of the p variables computed across all K 

regions.  It is assumed that the K regions are multivariate normal and that their (p x p) 

variance-covariance matrices are all equal to S.  If not, S should be replaced by the 

pooled sample variance-covariance matrix Spooled computed as: 

  (40) 

where Sk is the variance-covariance matrix of region k (k = 1, 2, … K) containing Nk 

sites. 

The discriminant functions are chosen to maximize the differences between 

regions.  This requires defining the sample between groups sum of cross products matrix 

(B) to measure the variation of each of the regional means ( ) around the overall mean 

( ) for each variable, and the sample within groups matrix (W) to measure the variation 

of variables within a region about the regional mean ( ).  These matrices are computed 

as follows: 
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    (41) 

 (42) 

wherein Nk is the number of sites (or watersheds) in region k, and xjk is the jth site in 

region k.  The eigenvalues i and eigenvectors ei [for i = 1,…,s where s = min(K-1, p)] 

associated with the matrix W-1B are then estimated by solving the following equations: 

= 0  

 (43) 

The resulting eigenvalues are ordered so that 1 > 2 > …. > s and the eigenvectors are 

normalized so that .  The discriminant functions (Yi for i = 1, …, s) are 

then defined as: 

TY E X  
 

(44) 

where 1 2 s, ,...,E e e e  and X = (X1, X2, …., Xp )T contains the p watershed 

variables.  The magnitudes of the eigenvalues convey the power of the discriminant 

function to differentiate between regions.  In the research presented in Chapter 3, the first 

few discriminant functions will indicate which basin characteristics should be used for 

delineation of hydrologically homogeneous regions.  In order to develop quantile 

estimators at ungauged locations, discriminant functions will also be used in Chapter 5 to 

classify ungauged sites within delineated regions. 
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2.2.2 Generalized Least Squares Regression 

Generalized least squares (GLS) regression has been used extensively throughout 

the U.S. and the world to estimate flood statistics at ungauged sites as a function of 

physiographic characteristics of a watershed such as drainage area, main-channel slope, 

average annual precipitation, and land use and land cover indices (e.g., Tasker and 

Stedinger 1989; Madsen and Rosberg 1997; Griffis and Stedinger 2007a).  Stedinger and 

Tasker (1985, 1986a, 1986b) and Kroll and Stedinger (1998) show that GLS estimators 

are much more appropriate and efficient for use with hydrologic data than ordinary least 

squares (OLS) estimators.  Unlike OLS estimators, the GLS estimators account for 

differences in the variance of streamflows from site-to-site due to different record 

lengths, and cross-correlation of the estimators due to correlation among concurrent 

streamflows at nearby sites (Tasker 1980; Kuczera 1983). 

Applications of GLS regression with the GEV distribution often involve 

estimating the at-site L-moments ( 1, 2, and 3) as a function of watershed or climate 

characteristics using log-log or log-linear relationships (e.g., Reis 2005; Jeong et al. 

2007).  For example, the first L-moment ( 1) can be related to a set of k basin 

characteristics using the following expression: 

       (45) 

where Xij is the base-10 logarithm of the jth basin characteristic corresponding to site i,  j 

is the corresponding regression coefficient, and  is the model error.  When equation 

(45) is applied to N sites in a region (i = 1, …, N), the resulting model errors are assumed 
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to be independent and normally distributed with mean zero and variance   Similar 

expressions could be used to represent higher order L-moments or L-moment ratios (e.g., 

L-CV or L-Skewness). 

Typically, regression coefficients are obtained assuming the values of the 

predictor variables, and the corresponding response variables, are measured with 

negligible error.  In hydrologic applications, however, the true value of the response 

variable (e.g., 1) is unknown and must be estimated using an at-site analysis for sites 

with gauged data.  A time-sampling error, i, results due to limited record lengths.  In 

general, this error can be expressed as 

 (46) 

where  is the true value of the L-moment in question (e.g. 1, 2, or 3) at site i, and 

 is an estimate of the L-moment using the available at-site data.  Given that L-

moment estimators are unbiased estimators of the population L-moments, i has a mean 

of zero; the variance of i is a function of the estimated sample moments.  For example, 

the sampling error variance associated with the logarithm of the first L-moment is given 

by (Madsen and Rosbjerg 1997): 

 (47) 

where ni is the record length available at site i, and CVi is the population coefficient of 

variation at site i. 

For a regional analysis across N sites, equations (45) and (46) are combined 

resulting in the following relationship in matrix notation 
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 (48) 

where Y is a (N x 1) vector of the base-10 logarithms of the sample L-moments, X is a [N 

x (k+1)] matrix of the base-10 logarithms of the basin characteristics with an added 

column of ones corresponding to the intercept,  is a [(k+1) x 1] vector containing the 

regression coefficients, and  is a vector of random errors with  and 

.  In this way, the variance of residuals has two components: (i) the model 

error variance , which is a measure of the precision with which the true model can 

predict L-moments, and (ii) the sampling-covariance matrix  which accounts for the 

time-sampling variance in the logarithms of the at-site L-moment estimators, as well as  

cross-correlation with estimators at nearby sites due to correlation among concurrent 

streamflows (e.g., Tasker and Stedinger 1989; Madsen et al. 2002; Martins and Stedinger 

2002). 

The coefficients of the regression model and the model error variance are 

obtained using an iterative procedure to solve the following equations (Stedinger and 

Tasker 1985): 

 (49) 

and 

 (50) 

where  is an (N x N) identity matrix and elements of the sampling covariance matrix 

are estimated using available streamflow data.  For example, the estimator of  for the 

logarithm of the first L-moment is computed as (Madsen and Rosbjerg 1997): 
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 for i = j 

  for i  j (51) 

where  and  are the sample coefficients of variation at sites i and j, respectively,  

is the record length at site i,  the record length at site j,  is the number of concurrent 

years of record at sites i and j, and  is the lag zero cross-correlation of flows between 

sites i and j.  To avoid correlation among the residuals, the sample coefficients of 

variation are estimated as a function of drainage area using a separate regional regression, 

and ij is computed as a function of the distance between sites i and j as recommended by 

Tasker and Stedinger (1989).  GLS regression models for the L-CV and L-Skewness can 

be obtained in a similar fashion; however, mathematical expressions for the necessary 

sampling covariance matrices are unavailable.  Martins and Stedinger (2002) describe the 

use of Monte Carlo simulations to infer the values of those expressions. 

As multiple models can be created using various combinations of basin 

characteristics, statistical measures are used to avoid over parameterization of the model 

and to ensure selection of the most relevant explanatory variables.  Standard metrics for 

the assessment of GLS regression model precision in hydrologic applications include the 

model error variance, the average variance of prediction (AVP), and the pseudo-R2 (e.g., 

Griffis and Stedinger, 2007a).  The latter is computed as 

  (52) 
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where  is the model error variance for the regression model with k explanatory 

variables, and  is the estimated model error variance when no explanatory variables 

are employed, i.e. only the constant 0 is retained.  This pseudo-R2 is preferred over the 

traditional R² and adjusted-R² which misrepresent the true power of the GLS model as 

they measure the proportion of variance in the observed values of the response variable 

(e.g. L-moment estimates) explained by the fitted model. Unfortunately, that proportion 

considers the total error, which includes the sampling error. 

Under the assumption that the regional model was developed using data collected 

at sites which are representative of those at which predictions will be made, the average 

variance of prediction (AVP) over the available dataset is a measure of how well the GLS 

regression model predicts the true L-moment on average (Tasker and Stedinger 1986).  

The AVP is computed as 

 (53) 

where xi is a row vector containing the logarithms of the basin characteristics for site i. 

When comparing hydrologic regression models a smaller AVP is preferred. (See for 

example, Reis et al. 2005; Griffis and Stedinger 2007a, and citations therein.) 

In the research presented in Chapter 5 herein, relationships between the index-

flood parameters and basin characteristics are derived using GLS regression analyses.  

These relationships will subsequently be used to predict flow quantiles at ungauged sites.  

Preference will be given to models with the smallest   and AVP, and the largest . 
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Chapter 3 : A Standardized Procedure for Delineation of 
Hydrologically Homogeneous Regions 

Application of the Index Flood procedure at ungauged sites requires that hydrologically 

homogeneous regions be delineated using physical similarity measures in lieu of flood 

statistics.  Physical characteristics can then be used to classify an ungauged site within a 

delineated region, and subsequently estimate needed flood quantiles.  Unfortunately, the 

delineated regions are highly dependent on the choice of similarity measures used to 

characterize the extreme hydrologic response at individual sites, as well as the statistical 

techniques employed to group similar sites (see for example, GREHYS 1996b; Burn 

1990, 1997; Burn et al. 1997; Hosking and Wallis 1997; Castellarin et al. 2001).  In 

addition, once regions are obtained, the identification of and decision to remove 

discordant sites is highly subjective.  Typically, efforts to improve regional homogeneity 

as measured by the H-statistic involve moving hydrologically discordant sites from one 

region to another without any clearly defined physical basis (Rao and Srinivas 2006; 

Srinivas et al. 2008).  These are major limitations of the Index Flood method, and 

significantly impair its ability to provide accurate quantile estimates at ungauged sites. 

The goal of this chapter is to decrease the subjectivity associated with the 

delineation of hydrologically homogeneous regions for regional flood frequency 

analyses.  Herein, a standardized procedure for region delineation is proposed and 

evaluated using data for sites across the Southeastern United States.  Key components of 

this procedure are a new statistical metric to identify physically discordant sites and a 

new methodology to identify the physical variables that are the most indicative of 
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extreme hydrologic response.  In addition, results presented herein are used to validate 

the hypothesis that the identified physical attributes can be used to infer the flood regime 

and successfully estimate quantiles in areas outside of the extent of the study area used 

for model development. 

3.1 Standardized Procedure for Region Delineation 

A new procedure for attribute selection and region delineation is outlined below.  

The procedure employs techniques commonly employed in practice, but offers simple 

rules and guidelines to remove subjectivity from the delineation process while ensuring 

the best possible classification of ungauged sites in homogeneous regions.  An 

application of this process is presented in subsequent sections to provide a more detailed 

explanation of key steps. 

As is typical in practice, the process begins with compiling a set of non-redundant 

physical variables relevant to the flood regime.  Usually, all available variables are then 

used as similarity measures in multivariate statistical techniques to delineate regions, 

without prior consideration of their impact on the flood regime.  We recommend an 

intermediate step wherein the physical variables most relevant to the flood regime are 

identified using a combination of cluster analyses, principal component analyses, 

canonical correlation analyses and linear discriminant analyses applied to sets of flood 

statistics and physical variables.  Although many studies delineate regions based on 

physical characteristics, efforts to select an appropriate set of characteristics for region 

delineation are rarely made in practice (Bates 1997).  However, as demonstrated later in 
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this chapter, doing so results in improving the hydrologic homogeneity of delineated 

regions, and thus, more efficient quantile estimators for use at ungauged sites are 

obtained. 

The physical variables identified as being most indicative of the flood regime are 

used as attributes in a cluster analysis using Ward’s method (see Section 2.2.1.2) to 

delineate regions suitable for regional flood frequency analysis.  Regions are formed such 

that the Error Sum of Squares across all regions is minimized, while ensuring that each 

region contains at least 10 sites.  Given the standard rule of thumb that 5T years of record 

are needed within a region to accurately estimate the T-year flood, and assuming that the 

average record length at an individual site is 50 years, a minimum of 10 sites within each 

region ensures that enough data is available to estimate the 100-year event at ungauged 

sites. 

The hydrological homogeneity of each delineated region is then assessed using 

the H-statistic of Hosking and Wallis (1997) calculated using equation (23).  If H < 4, 

then the region is sufficiently homogeneous and can be used to generate flood quantile 

estimates at ungauged sites; if H  4, then discordant sites should be identified and 

removed from the region in order to improve the homogeneity (Hosking and Wallis 1993; 

Robson and Reed 1999; Guse et al. 2009).  Sites which are hydrologically discordant are 

identified using the robust discordancy test calculated using equation (26) as proposed by 

Neykov et al. (2007).  Typically, any sites which are identified as hydrologically 

discordant are removed without consideration of their physical characteristics.  This is 

contrary to the recommendations of Hosking and Wallis (1997) who advocate that only 
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those sites which are both hydrologically and physically discordant be removed from a 

delineated region.  However, no metrics to assess the physical discordancy of sites have 

previously been provided.  Herein, we propose a new metric to evaluate the physical 

discordancy of sites and their corresponding watersheds (see below).  Only those sites 

that are both hydrologically and physically discordant should be removed from regions 

with H  4.  If discordant sites are removed and the H value remains greater than 4, then 

quantile estimates derived using the Index Flood method should be used with caution. 

3.1.1 Physical Discordancy Test 

Physically discordant watersheds are markedly different from others within a 

given region with regards to their basin characteristics.  Using data for the N sites within 

the region in question, physically discordant watersheds (and corresponding sites) can be 

identified using output from a principal component analysis performed on all available 

physical variables which have been appropriately normalized and centered by subtracting 

their mean values.  All PCs with standard deviation (or eigenvalues, i) greater than one 

should be retained as these are the components which explain most of the variability 

within the region (see Johnson and Wichern 2007, p. 451, and Section 2.2.1.2 herein), 

and therefore, will be most useful in identifying discordant sites.  Assuming that the PC 

scores of the retained components follow a normal distribution, a critical T-value can be 

computed as follows: 

  (54) 
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where  is the student t value with N-1 degrees of freedom corresponding to 

0.975 cumulative probability, and Si =  is the standard deviation of the principal 

component under examination.  This is equivalent to constructing a 95% confidence 

interval for the mean when the mean of the principal component is zero, as is the case in 

PCA calculations when the observations are centered by subtracting their mean.  

Watersheds with PC scores above or below the critical value are deemed physically 

discordant.  Appendix B provides an example which illustrates the application of this test 

for physical discordancy. 

3.2 Data and Study Location  

The study area spans the states of Georgia, South Carolina, and North Carolina, as 

well as neighboring portions of Alabama, Florida, Tennessee, and Virginia.  A total of 

249 unimpaired and unnested watersheds and their corresponding U.S. Geological Survey 

(USGS) gauging stations are considered.  The locations of these gauging stations are 

illustrated in Figure 3.1.  These sites were identified using the Hydro-Climatic Data 

Network (Slack et al. 1993).  Annual maximum instantaneous peak flow data were 

collected for each site from the USGS website (http://nwis.waterdata.usgs.gov/usa/ 

nwis/peak).  Record length statistics for the flood series compiled by state are presented 

in Table 3.1.  Overall, the gauging stations have relatively long records with a maximum 

of 115 years, an average on the order of 50 years, and a minimum of 16 years. 
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Figure 3.1: Location of unimpaired and unnested gauging stations within the 
Southeastern U.S.  Sites in Set 1 comprise the training set; sites in Set 2 comprise the 
validation set.  (State boundary files downloaded from Census Website: 
http://www.census.gov/geo/www/cob/st2000.html) 

Table 3.1 
Number of sites per state and record length statistics. 

State Number 
of sites 

Minimum 
record length 

Maximum 
record length 

Average 
record length 

Alabama 18 25 77 49 

Florida 9 27 72 44 

Georgia 82 25 115 41 
N. Carolina 67 27 107 56 
S. Carolina 20 27 79 53 
Tennessee 31 16 78 44 
Virginia 22 25 108 56 
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In order to demonstrate the efficiency of the proposed standardized method in 

alternate study areas, the 249 sites are divided into two sets: Set 1 composed of 143 sites 

constitutes the training set located in the western portion of the Southeastern U.S. 

(represented by red triangles in Figure 3.1); Set 2 composed of 106 sites constitutes the 

validation set located in the eastern portion of the Southeastern U.S. (represented by blue 

triangles in Figure 3.1).  Although a similar flood regime is not guaranteed by geographic 

proximity, a geographic division rather than a random division of the dataset is necessary 

for the applications herein.  Data for sites contained in Set 1 will be used in subsequent 

sections of this chapter to illustrate the application of the standardized method for region 

delineation, and in jackknife resampling procedures used to evaluate the efficiency of the 

delineated regions for quantile estimation at ungauged sites.  Data for sites contained in 

Set 2 will be used to test the hypothesis that the attributes selected for Set 1 will be 

appropriate to characterize the flood regime in Set 2.  Verification of this hypothesis is 

necessary for the applications presented in Chapter 5 for ungauged basins beyond the 

extent of the study area. 

A variety of hydrologic and physical parameters were obtained for each of the 

249 sites.  Using available at-site flow data, the first three L-moment ratios (L-CV, L-

Skewness, and L-Kurtosis) were calculated for each site, and the 10-year, 25-year, 50-

year, and 100-year flood quantiles were estimated using the GEV distribution with 

parameters estimated by the L-moments method (see Chapter 2.1.2).  These L-moment 

ratios and flood quantiles are used to represent the flood regime in subsequent analyses.  

In addition, the following nine basin characteristics were collected for each site: drainage 
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area (A) in square miles, main channel slope (SCh) in feet/mile, mean basin slope (SB) in 

percent, basin shape (Sh) computed as the ratio of the main channel length squared to the 

drainage area (dimensionless), mean basin elevation (E) in feet, percent impervious 

surface (Imp), percent forest cover (F), a soil drainage index (SI) used to approximate the 

drainage class of the watershed, and an infiltration index (Inf) used to approximate the 

infiltration rate in the basin.  Details of the soil drainage and infiltration indices are 

provided in Appendix A.  These nine physical characteristics represent variables typically 

considered in regional flood frequency analyses.  Values of the physical characteristics 

for each basin under consideration herein were provided by Gruber and Stedinger (2008). 

Summary statistics for each physical variable compiled by set are reported in 

Table 3.2.  Except for main channel slope, the degree of variability in each physical 

parameter is similar in both datasets.  However, two-sample hypothesis tests performed 

on the difference in the means of each physical variable in Set 1 versus Set 2 reveal that, 

with the exception of drainage area, the characteristics comprising the watersheds within 

the two datasets are significantly different at the 5% level.  This suggests that the chosen 

datasets are sufficient to demonstrate application of the proposed standardized method for 

region delineation in alternate areas, and to assess the use of attributes selected for Set 1 

to characterize the flood regime in Set 2. 



61 
 

Table 3.2 
Summary statistics for the physical variables in Sets 1 and 2 of the study area. 

Physical 
Characteristic Minimum Maximum Average Standard 

Deviation 

Set 1 
Drainage Area 9.60 2914 226.8 316.6 
Main Channel Slope 0.60 737.5 41.1 105.2 
Basin Slope 0 50.7 10.2 10.8 
Basin Shape 2.40 28.3 6.90 4.30 
Basin Elevation 36.3 4057 811.8 824.4 
% Impervious Cover 0 40.5 4.30 6.00 
% Forest Cover 0 51.8 99.2 24.4 
Soil Drainage Index 2.30 6.20 3.40 0.80 
Infiltration Index 1.90 2.40 3.80 0.40 

Set 2 
Drainage Area 2.72 2587 249 355.6 
Main Channel Slope 0.71 189 17.6 26.7 
Basin Slope 0.30 46.8 14.1 12.5 
Basin Shape 1.60 30.7 8.50 4.90 
Basin Elevation 26.6 3979 1076.3 1069.2 
% Impervious Cover 0.02 34.3 2.14 4.30 
% Forest Cover 8.32 99.0 56.6 20.0 
Soil Drainage Index 2.30 3.35 5.90 0.70 
Infiltration Index 1.90 3.90 2.40 0.40 

Although the multivariate statistical procedures used herein do not explicitly 

assume normality, goodness-of-fit tests used to estimate their adequacy do.  Therefore, 

the 249 data points corresponding to each physical variable were tested for normality 

using the probability plot correlation test (Stedinger et al. 1993), and efforts were made to 

normalize the data using Box-Cox transformations as necessary.  For a given set of data 

denoted by x, the Box-Cox transformation searches for an exponent  that creates a new 
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variable y which is approximately normally distributed (Box and Cox 1964).  The new 

variable (y) represents a transformation of the original variable (x), and is obtained as 

follows: 

     (55) 

Equation (55) was used to apply the Box-Cox transformation to each of the physical 

variables considered herein resulting in the values of lambda reported in Table 3.3.  

Summary statistics for the transformed variables compiled by Set are presented in Table 

3.4.  The transformed variables are subsequently standardized by scaling the values from 

zero to one to avoid giving more weight to any one variable.  These normalized and 

standardized variables will be used in the applications of multivariate statistical 

techniques to follow; however, according to standard measures of normality, only the 

drainage area, channel slope and basin shape were successfully transformed. 

Table 3.3 
Exponent for Box-Cox transformations of physical variables. 

Physical Characteristic 

Drainage Area 0 
Main Channel Slope -0.2 
Basin Slope 0.3 
Basin Shape -0.3 
Basin Elevation 0.1 
% Impervious Cover 0.2 
% Forest Cover 0.8 
Soil Drainage Index -3.0 
Infiltration Index -3.3 
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Table 3.4 
Summary statistics of the transformed (normalized) physical variables in Sets 1 and 2. 

Physical 
Characteristic Minimum Maximum Average Standard 

Deviation 

 Set 1 

Drainage Area 0.98 3.46 2.12 0.47 

Main Channel Slope -0.54 3.67 1.81 0.77 

Basin Slope -3.23 7.49 2.55 2.21 

Basin Shape 0.77 2.11 1.37 0.27 

Basin Elevation 4.32 13.0 8.62 2.09 

% Impervious Cover -4.21 5.48 0.63 2.15 

% Forest Cover -1.25 48.2 27.4 12.1 

Soil Drainage Index 0.305 0.331 0.323 0.004 

Infiltration Index 0.266 0.299 0.284 0.007 

 Set 2 

Drainage Area 0.43 3.41 2.07 0.57 

Main Channel Slope -0.35 3.25 1.74 0.66 

Basin Slope -1.01 7.23 3.41 1.99 

Basin Shape 0.44 2.14 1.48 0.29 

Basin Elevation 3.88 12.9 9.00 2.40 

% Impervious Cover -2.71 5.14 0.16 1.24 

% Forest Cover 5.56 48.1 30.0 9.09 

Soil Drainage Index 0.305 0.331 0.322 0.004 

Infiltration Index 0.266 0.299 0.284 0.006 
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3.3 Attribute Selection 

In this section, the physical variables that are most indicative of extreme 

hydrologic response in the western portion of the Southeastern U.S. (Set 1) will be 

identified by comparing and contrasting the characteristics of regions delineated based on 

flood statistics to those of regions based on physical variables.  From here on out, these 

regions will be referred to as Statistics-Based Regions and Physically-Based Regions, 

respectively.  Although flood statistics should not be used to delineate regions, the 

Statistics-Based Regions will represent the best case scenario for hydrologic similarity.  

These analyses will employ the normalized and standardized values of the nine physical 

variables for the sites in Set 1. 

3.3.1 Statistics-Based Regions  

Using the data in Set 1, Statistics-Based Regions are created by employing the L-

CV as a similarity measure in the Ward clustering technique.  The dendrogram in Figure 

3.2 shows the distance or ESS between each cluster at each level of the algorithm.  At the 

bottom of the figure, corresponding to a distance of 0, each vertical line represents an 

individual site.  (Due to the number of sites are considered in the analysis, the actual 

station IDs corresponding to each line cannot be provided in the figure.)  Aside from 

using the L-CV as a similarity measure, the Statistics-Based Regions are created 

following the guidelines outlined above in Section 3.1.  Therefore, three regions are 

delineated to avoid the creation of clusters containing less than 10 sites.  The spatial 

partition of the three Statistics-Based Regions is shown in Figure 3.3.  It is clearly evident 
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that the regions are not contiguous, and thus it would be difficult to classify ungauged 

sites within one of the delineated regions. 

For each Statistics-Based Region, Table 3.5 reports the number of sites therein 

(N), the heterogeneity measure (H), and the total record length available ( ).  These 

metrics are presented for the original regions resulting from the Ward clustering 

technique, as well as for regions modified by removing sites identified as hydrologically 

discordant (HD), and for regions modified by removing only the sites which are both 

hydrologically and physically discordant (HPD).  The discordant sites are also noted in 

Figure 3.3, wherein circles denote HD sites and squares denote HPD sites; the color of 

the symbol corresponds to the original region within which the site in question was 

classified.  The original regions are all sufficiently homogeneous with H < 4, and thus 

procedures to identify and remove discordant sites are unnecessary.  However, as the 

results in Table 3.5 reveal, the homogeneity of the regions can be further improved if HD 

sites are removed.  But, this is ill-advised in the interest of applications with ungauged 

sites; only sites which are HPD should be removed to ensure that the regional distribution 

would appropriately scale to any ungauged site allocated therein using physical 

characteristics.  Both Regions 1 and 3 contain an individual HPD site, however, removal 

of the HPD site from Region 1 actually increases the statistical heterogeneity of the 

region.  While Region 1 remains sufficiently homogeneous following removal of the 

HPD site, the increased heterogeneity of the region suggests that removal of discordant 

sites is in fact unnecessary when H < 4.   
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Figure 3.2: Dendrogram for Wards clustering applied to at-site L-CVs in Set 1. 

 
Figure 3.3: Three Statistics-Based Regions delineated using Wards clustering applied to 
at-site L-CVs in Set 1.  Circles represent HD sites, squares represent HPD sites. 
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Table 3.5 
Size and homogeneity of Statistics-Based Regions delineated using Wards clustering 

applied to at-site L-CVs in Set 1. 

 Original Regions Regions without 
HD sites 

Regions without 
HPD sites 

 
N H  N H  N H  

Region 1 68 1.28 3534 62 0.14 3322 67 1.51 3503 

Region 2 34 -2.57 1285 33 -2.59 1252 34 -2.57 1285 

Region 3 41 -5.11 1716 34 -5.34 1419 40 -5.28 1588 

 
A linear discriminant analysis applied using the physical attributes of the 

Statistics-Based Regions will identify the physical variables that explain most of the 

differences between the homogeneous regions.  The values of the nine physical variables 

(normalized and standardized) for the sites contained in each of the Statistics-Based 

Regions define three sets of variables.  As there are only three sets, two linear 

discriminant functions are sufficient to differentiate between the regions.  Table 3.6 

reports the correlation of each physical variable to the linear discriminant functions.  The 

first linear discriminant function (LD1) explains 82% of the differences, and is mostly 

impacted by the basin slope, basin elevation, soil drainage and forest cover.  It is 

therefore likely that those four physical characteristics would be useful in determining 

hydrological homogeneity with respect to flood flows in this area.  The coefficients of 

LD2 indicate that percent impervious cover is also influential, and may be a key indicator 

of the flashiness of the response from a given watershed.  It is not considered in 
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subsequent steps to delineate regions, however, as LD2 explains less than 20% of the 

differences between the regions. 

Table 3.6 
Correlation coefficients resulting from LDA applied to normalized and standardized 

physical attributes of the Statistics-Based Regions in Set 1. 

Physical Characteristic LD1 LD2 

Drainage Area -0.409 0.190 

Main Channel Slope -0.001 0.191 

Basin Slope -0.813 -0.372 

Basin Shape -0.159 -0.292 

Basin Elevation -0.549 -0.306 

% Impervious Cover -0.066 0.535 

% Forest Cover -0.561 -0.120 

Soil Drainage Index 0.677 0.075 

Infiltration Index 0.315 -0.175 

Variance Explained: 0.826 0.174 

  

 

3.3.2 Physically-Based Regions 

It is typically assumed that regions which are physically homogeneous are also 

hydrologically homogeneous.  To validate this assumption and to confirm the results of 

the LDA above, Physically-Based Regions are evaluated using principal component and 

canonical correlation analyses applied to the normalized and standardized values of the 

physical variables for watersheds within Set 1.  The PCA is used to identify the physical 

variables that explain most of the variability in the dataset, while the CCA will identify 
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the physical variables that most correlate to the flood statistics, and thus would be most 

appropriate for use in regional frequency analyses. 

Principal Component Analysis 

A principal component analysis is used to identify independent linear 

combinations of the physical variables which can be used to summarize the data set.  

Table 3.7 contains the principal component loadings corresponding to each normalized 

and standardized variable.  For a given PC, each loading explains the importance of the 

associated variable.  The higher the loading, the more impact the variable has on the 

principal component in question.  The last two rows of Table 3.7 contain the eigenvalues 

associated with each PC and the cumulative variance explained by higher order PCs.  

According to the general rule of thumb that the PCs with eigenvalues greater than 1 

should be retained, it is the first three PCs which are of interest here.  These PCs explain 

nearly 68% of the variability in the dataset, with the first principal component (PC1) 

alone explaining slightly more than PC2 and PC3 combined.  Within PC1, the most 

important variables are: basin slope, mean elevation, and soil drainage.  PC2 is largely 

driven by the drainage area and basin shape, and to a lesser degree, main-channel slope.  

PC3 indicates that the land cover metrics (percent impervious surface and percent forest 

cover) are also influential.  There is no doubt that all of these variables play some role in 

the hydrological process; however, these results alone do not indicate whether these 

variables are in fact indicative of hydrological homogeneity with respect to flood flows. 



70 
 

Table 3.7 
Principal component loadings obtained for normalized and standardized physical 

variables at sites in Set 1. 

Physical 
Characteristic PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

Drainage Area -0.167 0.562 0.000 -0.300 -0.256 0.432 0.540 -0.105 0.000 

Main Channel 
Slope 0.284 -0.451 0.000 -0.445 0.000 -0.392 0.506 -0.174 0.263 

Basin Slope 0.497 0.199 0.107 0.000 0.210 0.213 -0.254 0.155 0.722 

Basin Shape 0.000 0.607 0.000 -0.221 0.241 -0.706 0.000 0.111 0.000 

Basin 
Elevation 0.445 0.000 0.000 0.185 0.564 0.172 0.450 0.196 -0.414 

% Impervious 
Cover -0.105 0.000 0.729 0.503 0.000 -0.177 0.202 -0.303 0.193 

% Forest 
Cover 0.321 0.000 0.552 -0.328 -0.444 0.000 -0.210 0.347 -0.344 

Soil Drainage 
Index -0.482 -0.205 0.127 0.000 0.123 0.000 0.225 0.761 0.255 

Infiltration 
Index -0.311 -0.168 0.349 -0.515 0.541 0.228 -0.216 -0.305 0.000 

Eigenvalues: 1.769 1.325 1.132 0.934 0.802 0.719 0.679 0.489 0.319 

Cumulative 
Variance: 0.348 0.543 0.685 0.782 0.853 0.919 0.962 0.988 1.000 

Canonical Correlation Analysis 

A Canonical Correlation Analysis is used to identify the physical variables which 

are most correlated with flood statistics, and thus would be useful in delineating 

hydrologically homogeneous regions.  Herein, CCA was used to relate the nine 

normalized and standardized physical attributes to the first three L-moment ratios (L-CV, 

L-Skewness, and L-Kurtosis).  Two canonical variates were created: U is the physical 

canonical variate consisting of the nine physical variables, and V is the hydrological 
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canonical variate consisting of the three L-moment ratios.  Table 3.8 and Table 3.9 report 

the canonical correlations, and the coefficients of the physical and hydrological canonical 

variates as they relate to the actual physical and hydrologic variables, respectively.  The 

maximum correlation coefficient that could be attained for the first pair of canonical 

variables (U1,V1) is 0.57.  As indicated by the coefficients in Table 3.9, the hydrological 

variate V1 is heavily impacted by the L-CV.  Because the L-CV is the key component of 

hydrological homogeneity as defined by Hosking and Wallis (1997), the coefficients of 

U1 in Table 3.8 indicate which physical variables are most relevant in characterizing the 

flood regime.  These variables, by order of importance, are: basin slope, soil drainage, 

mean basin elevation, and percent forest cover. 

Table 3.8 
Canonical correlations and coefficients of physical variates defined for Set 1. 

Physical 
Characteristic U1 U2 U3 

Drainage Area 0.090 -0.564 -0.433 

Main Channel Slope 0.210 0.331 0.365 

Basin Slope 0.953 0.039 -0.044 

Basin Shape 0.165 -0.283 -0.150 

Basin Elevation 0.733 -0.147 0.459 

% Impervious Cover -0.090 -0.526 0.428 

% Forest Cover 0.625 0.153 -0.023 

Soil Drainage Index -0.816 -0.391 -0.164 

Infiltration Index -0.369 -0.187 0.053 

Correlation(U,V): 0.571 0.437 0.271 
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Table 3.9 
Canonical correlations and coefficients of the hydrological variates defined for Set 1. 

Hydrologic 
Variable V1 V2 V3 

L-CV -0.888 0.171 0.427 

L-Skewness -0.314 0.696 0.645 

L-Kurtosis -0.234 0.962 0.142 

Correlation(U,V): 0.571 0.437 0.271 

    

3.3.3 Selected Attributes for Set 1 

The results of the LDA, PCA and CCA performed on various combinations of 

flood statistics and physical variables all concur in that the basin slope, soil drainage, and 

basin elevation are the most indicative of hydrological homogeneity with respect to flood 

flows in the western portion of the Southeastern U.S. (Set 1).  The percent forest cover is 

also an important indicator of the flood regime, although to a lesser degree than the other 

three variables.  The weights on percent forest cover in U1 are on the order of 15% to 

40% less than the weights on basin slope, soil drainage, and elevation.  Therefore, percent 

forest cover will not be employed as an attribute in the subsequent steps to delineate 

homogenous regions presented in the following section. 

3.4 Region Delineation in Set 1 Using Standardized Procedure 

An application of the standardized procedure for delineation of hydrologically 

homogeneous regions is presented herein using the sites contained in Set 1.  Based on the 

results presented in Section 3.3, mean basin elevation (E), mean basin slope (SB), and the 
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soil drainage index (SI) are the most indicative of the flood regime in this study area.  

Therefore, the normalized and standardized values of those three physical variables are 

used as attributes in the Ward clustering technique to delineate regions.  The resulting 

dendrogram is presented in Figure 3.4.  Seven regions should be created to ensure that 

each region contains a minimum of 10 sites, while simultaneously minimizing the error 

sum of squares (or height on y-axis in Figure 3.4).  Figure 3.5 shows the spatial 

distribution of these seven regions.  Overall, the spatial continuity of each region is 

sufficient for visual classification of ungauged sites within the study area.   

For each region, Table 3.10 reports the number of sites therein (N), the 

heterogeneity measure (H), and the total record length available ( ).  These metrics 

are presented for the original regions resulting from the Ward clustering technique, as 

well as for regions modified by removing sites identified as hydrologically discordant 

(HD), and for regions modified by removing only the sites which are both hydrological 

and physically discordant (HPD).  The discordant sites are also noted in Figure 3.5, 

wherein circles denote HD sites and squares denote HPD sites; the color of the symbol 

corresponds to the original region within which the site in question was classified. 

Five of the original regions (1, 3, 4, 5, and 6) are sufficiently homogeneous with 

H < 4, and thus, subsequent procedures to identify and remove discordant sites therein are 

unnecessary.  In fact, the heterogeneity of Region 6 increases from 3.70 to 4.83 following 

the removal of the HPD sites; this increase in heterogeneity suggests that removal of 

discordant sites is unnecessary when H < 4 in the original region delineation.  However, 

efforts should be made to improve the homogeneity of Regions 2 and 7, if possible.  



74 
 

Unfortunately, Region 7 does not contain any sites which are either HD or HPD, and thus 

the region should be used with caution in subsequent derivations of quantile estimators 

for ungauged sites classified therein.  Region 2 contains four HD sites, the removal of 

which reduces the H-statistic from 6.70 to 2.85, thereby creating a region which is 

sufficiently homogeneous.  However, removal of sites which are only hydrologically 

discordant is ill-advised in the interest of applications with ungauged sites.  Only one of 

the four sites identified as hydrologically discordant in Region 2 is also physically 

discordant.  Removal of this HPD site results in a more modest reduction in the H-

statistic from 6.70 to 5.06, and thus the region remains reasonably heterogeneous.  In all 

cases, the total record length available is greater than 500 years, and therefore, a 

sufficient amount of gauged data is available for estimation of the 100-year flood. 

 
Figure 3.4: Dendrogram for Wards clustering applied to E, SB, and SI in Set 1. 
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Figure 3.5: Seven regions delineated for Set 1 using Wards clustering applied to 
normalized and standard values of E, SB, and SI.  Circles represent HD sites, and squares 
represent HPD sites. 

Table 3.10 
Size and homogeneity of regions delineated for Set 1 using Wards clustering applied to 

normalized and standardized values of E, SB, and SI. 

 Original Regions Regions without 
HD sites 

Regions without 
HPD sites 

 
N H  N H  N H  

Region 1 12 2.10 853 10 2.31 757 11 1.74 817 

Region 2 22 6.70 1169 18 2.85 979 21 5.06 1131 

Region 3 22 0.74 745 20 1.67 687 22 0.74 745 

Region 4 26 3.09 1141 24 1.15 1054 25 2.26 1099 

Region 5 20 2.55 960 16 2.36 824 20 1.93 935 

Region 6 27 3.70 1056 15 4.03 556 26 4.03 984 

Region 7 14 4.95 611 14 4.77 611 14 4.95 611 
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3.5 Accuracy of Quantile Estimators for Ungauged Basins in Set 1 

The overall goal of regional flood frequency procedures is to develop flood 

quantile estimators for ungauged basins.  As such, the accuracy of quantile estimators for 

ungauged basins classified within the regions delineated in Section 3.4 need to be 

evaluated to fully assess the efficiency of the proposed standardized procedure.  To put 

the results in perspective, the performance of the quantile estimators derived using the 

standardized approach will be compared to that of estimators derived for regions 

delineated using methods commonly employed in practice.  Overall, quantile estimators 

derived for five cases (or methods) will be considered.  The cases differ primarily in 

terms of the similarity measures used to infer hydrologic homogeneity.  Except for the 

use of alternative similarity measures employed in the Ward clustering technique, the 

proposed standardized procedure outlined in Section 3.1 is adhered to in most cases; 

however, in some cases additional multivariate statistical techniques are employed to 

further manipulate the physical data employed for clustering  The following five cases 

are considered: 

Case 1:  Statistics-Based Regions are delineated using the at-site L-CVs as 

similarity measures in the Ward clustering technique (Saf 2009).  Although flood 

statistics should not be used to delineate regions, this case will represent the best case 

scenario for hydrologic similarity.  Results from this case will serve as the baseline to 

compare the following four physically-based cases against. 

Case 2: Physically-Based Regions are delineated using the Ward clustering 

technique applied with all nine normalized and standardized physical variables 
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considered herein.  This case represents the method most often employed in practice and 

has been recommended in many studies (e.g., Zrinji and Burn 1994; Burn 1997; Burn et 

al. 1997; Chiang et al. 2002a, 2002b; Rao and Srinivas 2006; Srinivas et al. 2008). 

Case 3: Physically-Based Regions are delineated using the Ward clustering 

technique wherein principal component scores serve as attributes.  The principal 

component scores are obtained from a prior principal component analysis applied to all 

nine normalized and standardized physical variables.  This procedure is commonly 

applied in practice and takes advantage of the reductionist aspect of PCA where only the 

first few components are used in the regionalization (Alcazar and Palau 2010). 

Case 4: Physically-Based Regions are delineated using the Ward clustering 

technique wherein the canonical scores related to the physical variate serve as attributes.  

The canonical scores are obtained by relating the L-CV, L-Skewness and L-Kurtosis to 

the nine normalized and standardized physical variables.  Although applied infrequently 

in practice, this technique is still of interest (Tsakiris et al. 2011). 

Case 5: Physically-Based Regions are delineated using the Ward clustering 

technique wherein the normalized and standardized values of mean basin elevation, mean 

basin slope, and the soil drainage index are employed as attributes.  This corresponds to 

the standardized procedure for region delineation proposed herein. 

The five cases are compared using the mean square error (MSE) of the quantile 

estimators for the 10-, 25-, 50- and 100-year events (Q0.90, Q0.96, Q0.98, and Q0.99, 

respectively).  To assess the application of quantile estimators derived for ungauged sites 
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within a given region, the MSE is computed using a jackknife resampling procedure 

wherein, one at a time, each site is temporarily considered to be ungauged and removed 

from the region.  For a given region, the MSE for a given return period, or corresponding 

cumulative probability p, is computed as: 

   (56) 

wherein N is the total number of sites contained in the region,  is the pth quantile 

estimator for site i derived using the GEV/L-moment Index Flood procedure, and  

is the pth quantile estimator for site i derived using an at-site frequency analysis wherein 

the parameters of the GEV distribution are estimated as a function of L-moments.  

Normalization by  corrects for differences in scale across cases.  (See for example, 

Chebana and Ouarda 2008.) 

In addition, we propose a new metric, denoted H*, for comparison of the 

heterogeneity across cases.  As the use of different attributes in the clustering process is 

likely to yield a different delineation of regions, it is difficult to directly compare the H-

statistics computed for the multiple regions delineated in each case.  H* represents the 

average heterogeneity value across all K regions delineated for a given case and is 

computed as 

  (57) 

where Hk is the heterogeneity measure of Region k, and  is the total record 

length available in Region k.  This metric will allow for a more direct comparison of the 
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ability of each case to delineate hydrologically homogeneous regions.  Results for each 

case applied to the sites in Set 1 are discussed and compared in the following sections. 

3.5.1 Results for Case 1 

In this case, Statistics-Based Regions are delineated by employing the at-site L-

CVs in Set 1 as similarity measures in the Ward clustering technique.  The delineated 

regions are equivalent to those obtained in Section 3.3.1, wherein three regions were 

delineated to ensure that each contained a minimum of 10 sites (see Figure 3.2).  The 

spatial representation of the three regions is shown in Figure 3.3.  All of the delineated 

regions were sufficiently homogeneous with H < 4, and thus additional procedures to 

identify and remove hydrologically and physically discordant sites were not necessary 

(see Table 3.5).  The efficiency of these regions for regionalization of flood data and 

applications at ungauged sites can be assessed using the MSEs of various flood quantiles 

illustrated in Figure 3.6.  Additional results are tabulated in Appendix C.  The highest 

mean square error obtained is 3.7% corresponding to estimation of the 100-year event in 

Region 1; this is likely due to Region 1 having the highest value of the H-statistic.  On 

average, smaller MSEs are obtained for more frequent floods.  
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Figure 3.6: MSE of flood quantiles obtained for regions delineated in Case 1. 

 

3.5.2 Results for Case 2 

In this case, Physically-Based Regions are delineated by employing all nine 

normalized and standardized physical variables for sites in Set 1 as similarity measures in 

the Ward clustering technique.  The five regions illustrated in Figure 3.7 were created to 

ensure that each contains a minimum of 10 sites.  The delineated regions show a 

significant level of spatial continuity indicating a strong geographical component. 

For each region, Table 3.11 reports the number of sites therein (N), the 

heterogeneity measure (H), and the total record length available ( ).  These metrics 

are presented for the original regions resulting from the Ward clustering technique, as 

well as for regions modified by removing HD sites, and for regions modified by 

removing HPD sites.  The locations of these discordant sites are indicated in Figure 3.7.  

Regions 2, 3, and 4 are sufficiently homogeneous with H < 4; however, Regions 1 and 5 

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

T = 10 years T = 25 years T = 50 years T = 100 years

M
SE

[Q
p]

Region 1

Region 2

Region 3



81 
 

remain heterogeneous even after HPD sites are removed.  Overall, the regions delineated 

using all available physical variables are more heterogeneous than regions delineated 

using only the mean basin elevation, mean basin slope, and soil drainage index (see Table 

3.10).  This suggests that the recommendation to cluster only on those variables which 

are most indicative of the flood regime is in fact appropriate. 

Figure 3.8 illustrates the mean square errors for various quantile estimators at 

ungauged sites derived using the five regions delineated in Case 2.  Results are for either 

the original regions resulting directly from the Ward clustering scheme in the instance 

that H < 4, or those which have been modified by removing the HPD sites in the instance 

that H  4.  Additional results are tabulated in Appendix C.  The highest MSE obtained is 

13.5% corresponding to estimation of the 100-year event in Region 5.  As was observed 

in Case 1, on average, smaller MSEs are obtained for more frequent floods. 

 
Figure 3.7: Five regions delineated for Set 1 using Wards clustering applied to all nine 
normalized and standardized physical variables. Circles represent HD sites, and squares 
represent HPD sites. 
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Table 3.11 
Size and homogeneity of regions delineated for Set 1 using Wards clustering applied to 

all nine normalized and standardized physical variables. 

 
Original Regions 

Regions without 
HD sites 

Regions without 
HPD sites 

 
N H  N H  N H  

Region 1 40 8.44 2238 36 5.87 2061 40 8.44 2238 

Region 2 34 1.17 1347 31 -0.17 1254 34 1.17 1347 

Region 3 20 2.62 960 16 2.40 824 19 1.93 935 

Region 4 12 2.48 524 10 3.31 463 12 2.48 524 

Region 5 37 6.09 1466 30 5.36 1141 36 5.77 1393 

 
Figure 3.8: MSE of flood quantiles obtained for regions delineated in Case 2. 
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3.5.3 Results for Case 3 

Instead of using the physical variables directly in the Ward clustering technique as 

in Case 2, herein the variables are first transformed into linear combinations (PCs) using 

a principal component analysis applied to all nine normalized and standardized physical 

variables for sites in Set 1.  The resulting PCs are presented in Table 3.7.  As the first 

three PCs have eigenvalues greater than one, the corresponding principal component 

scores computed for each site are used as similarity measures in the Ward clustering 

technique.  The five regions illustrated in Figure 3.9 were created to ensure that each 

contains a minimum of 10 sites.  These regions are not as contiguous as those delineated 

in Case 2, and are certainly not sufficient for visual classification of ungauged sites. 

For each region, Table 3.12 reports the number of sites therein (N), the 

heterogeneity measure (H), and the total record length available ( ).  These metrics 

are presented for the original regions resulting from the Ward clustering technique, as 

well as for regions modified by removing HD sites, and for regions modified by 

removing HPD sites.  The locations of these discordant sites are indicated in Figure 3.9.  

Overall, the regions obtained are less homogeneous than those obtained in Case 2. 

Figure 3.10 reports the mean square errors for various quantile estimators at 

ungauged sites derived using the five regions delineated in Case 3.  Results presented are 

for the original regions delineated as no HPD sites were identified.  Additional results are 

tabulated in Appendix C.  The highest MSE obtained is 15.6% corresponding to 

estimation of the 100-year event in Region 4.  Overall, the MSEs for Case 3 are larger 
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than those observed for both Cases 1 and 2.  Thus, Case 3 does not seem to be an 

acceptable approach for the regionalization of flood data. 

 
Figure 3.9: Five regions delineated for Set 1 using Wards clustering applied to PC1, PC2 
and PC3 created using the nine normalized and standardized physical variables. Circles 
represent HD sites, and squares represent HPD sites. 

Table 3.12 
Size and homogeneity of regions delineated for Set 1 using Wards clustering applied to 

PC1, PC2 and PC3 created using the nine normalized and standardized physical variables. 

 
Original Regions 

Regions without 
HD sites 

Regions without 
HPD sites 

 
N H  N H  N H  

Region 1 49 9.24 2331 43 6.65 2103 49 9.24 2331 

Region 2 48 4.26 2335 45 3.74 2249 48 4.26 2335 

Region 3 12 2.33 524 10 3.14 463 12 2.33 524 

Region 4 17 3.00 671 17 3.00 671 17 3.00 671 

Region 5 17 3.99 674 15 3.62 612 17 3.99 674 
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Figure 3.10: MSE of flood quantiles obtained for regions delineated in Case 3. 
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Kurtosis.  The resulting canonical variables are presented in Table 3.8 and Table 3.9.  

The canonical correlations indicate that the physical variate U1 is the most relevant to the 

flood regime.  Therefore, the coefficients for U1 were used to compute canonical scores 

for each site, which in turn were used as similarity measures in the Ward clustering 

technique.  The five regions illustrated in Figure 3.11 were created to ensure that each 
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contains a minimum of 10 sites.  As was observed in Case 2, the spatial continuity of the 

delineated regions is sufficient to allow for visual classification of ungauged sites. 

Table 3.13 reports the number of sites (N) contained in each region, the 

corresponding value of the H-statistic, and the total record length available ( ).  

These metrics are presented for the original regions resulting from the Ward clustering 

technique, as well as for regions modified by removing HD sites, and for regions 

modified by removing HPD sites.  The locations of these discordant sites are indicated in 

Figure 3.11.  Overall, the regions obtained are more homogeneous than those obtained in 

Cases 2 and 3, but more heterogeneous than the regions obtained in Case 1.  This result 

was expected as Case 4 is a more focused clustering approach than Case 2, because the 

canonical scores place more weight on the physical variables which are most indicative 

of hydrological homogeneity. 

Figure 3.12 illustrates the mean square errors for various quantile estimators at 

ungauged sites derived using the five regions delineated in Case 4.  Results are for either 

the original regions resulting directly from the Ward clustering scheme in the instance 

that H < 4, or those which have been modified by removing the HPD sites in the instance 

that H  4.  Additional results are tabulated in Appendix C.  The highest MSE obtained is 

12.2% corresponding to estimation of the 100-year event in Region 5.  Overall, the MSEs 

obtained for Case 4 are lower than those observed for both Cases 2 and 3.  Thus, of the 

physically-based techniques currently employed in practice, the use of canonical scores 

as attributes in the clustering algorithm yields regions which provide the most accurate 

quantile estimators for ungauged sites.  Unfortunately, this method is used the least. 



87 
 

 
Figure 3.11: Five regions delineated for Set 1 using Wards clustering applied to the first 
physical canonical variate.  Circles represent HD sites and squares represent HPD sites. 

Table 3.13 
Size and homogeneity of regions delineated for Set 1 using Wards clustering applied to 

the first physical canonical variate. 

 
Original Regions 

Regions without 
HD sites 

Regions without 
HPD sites 

 
N H  N H  N H  

Region 1 14 3.75 978 13 4.03 918 14 3.75 978 

Region 2 26 6.07 1419 24 5.13 1334 26 6.07 1419 

Region 3 44 3.99 1759 40 2.66 1646 43 3.99 1728 

Region 4 36 2.3 1427 29 2.56 1175 35 2.26 1379 

Region 5 23 4.68 952 23 4.68 952 23 4.68 952 
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Figure 3.12: MSE of flood quantiles obtained for regions delineated in Case 4. 

3.5.5 Results for Case 5 

This case corresponds to the proposed standardized method for delineation of 

hydrologically homogeneous regions.  In Section 3.3, it was concluded that the mean 

basin elevation (E), mean basin slope (SB), and soil drainage index (SI) are most 

indicative of the flood regime in Set 1.  The regions delineated using those three physical 

variables and the corresponding metrics related to regional heterogeneity are presented in 

Section 3.4 (see Figure 3.5 and Table 3.10).  The efficiency of these regions for quantile 

estimation at ungauged sites is assessed herein using the MSEs of various flood quantiles 

illustrated in Figure 3.13.  Results are for either the original regions resulting directly 

from the Ward clustering scheme in the instance that H < 4, or those which have been 

modified by removing the HPD sites in the instance that H  4.  Additional results are 

tabulated in Appendix C.  The highest MSE obtained is 13.2% corresponding to 

estimation of the 100-year event in Region 6.  On average, the MSEs obtained for Case 5 

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

T = 10 years T = 25 years T = 50 years T = 100 years

M
SE

[Q
p]

Region 1

Region 2

Region 3

Region 4

Region 5



89 
 

are slightly less than those observed for Case 4; therefore, the newly proposed 

standardized method for region delineation is the most competitive physically-based 

method for quantile estimation at ungauged sites.  As with Case 4, Case 5 is a more 

focused clustering approach than Case 2; however, Case 5 employs three attributes (E, 

SB, and SI) in the Ward clustering technique, whereas Case 4 employs only one attribute 

(U1).  A more detailed comparison of the five cases is provided in the next section. 

 
Figure 3.13: MSE of flood quantiles obtained for regions delineated in Case 5. 

3.5.6 Comparison of Cases 

Results presented above indicate that Case 5, corresponding to the standardized 

approach for region delineation presented herein, yields the most accurate quantile 

estimators for use in ungauged basins relative to other physically-based approaches 

typically employed in practice.  Tables presented in this section illustrate this finding 

more clearly.  Table 3.14 reports the average heterogeneity level (H*) for each case 

considered in regards to the original regions defined by the Ward clustering technique, as 
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well as regions from which all HD sites are removed, and regions from which only HPD 

sites are removed.  For all three scenarios, Case 5 yields the most homogenous regions 

relative to the other physically-based procedures.  Although the H-statistics for Case 5 are 

not as competitive as those obtained in Case 1, all H* values obtained for Case 5 are less 

than 4 indicating that the regions are sufficiently homogeneous for the development of 

quantile estimators at ungauged sites.  In addition, it should be noted that the H-statistics 

for Case 1 are exceptionally small due to the use of L-CVs for both region delineation 

and the subsequent evaluation of regional homogeneity. 

Figure 3.14 illustrates the average MSEs computed for various flood quantiles 

obtained for regions delineated in Cases 1 through 5 and subsequently modified to 

remove all HPD sites as appropriate (i.e., if H  4).  The magnitudes of the MSEs are 

satisfactory in comparison with results from other regionalization studies such as 

Malekinezhad et al. (2011) and Shu and Ouarda (2009).  Overall, Case 5 outperforms the 

other physically-based methods considered.  And, in comparing the MSEs with the H* 

values in Table 3.14, it is evident that improved accuracy of quantile estimators for 

ungauged sites is a direct result of the increased hydrological homogeneity of delineated 

regions.  Thus, use of the physical variables most indicative of the flood regime as 

attributes in the delineation process results in greater hydrologic homogeneity of 

delineated regions, and more efficient quantile estimators for use at ungauged sites are 

obtained. 



91 
 

Table 3.14 
Average heterogeneity (H*) obtained for regions delineated in Cases 1-5. 

 Case 1 
(L-CV) 

Case 2 
(All Vars) 

Case3 
(PC 1-3) 

Case 4 
(U1) 

Case 5 
(E, SB, SI) 

Original Regions -1.15 5.08 5.54 6.81 3.53 

Regions without 
HD sites -1.73 3.75 4.60 3.72 2.56 

Regions without 
HPD sites -1.03 4.91 5.72 4.14 3.02 

 
Figure 3.14: Average MSE of flood quantiles obtained for regions delineated in Cases 1 
through 5.  Results are for regions appropriately modified to remove HPD sites. 

3.6 Validation of Standardized Procedure in Alternate Study Areas 

The analyses above revealed that three physical variables (mean basin slope, 

mean basin elevation, and soil drainage) are sufficient to delineate hydrologically 

homogeneous regions in the western portion of the Southeastern U.S. (Set 1).  A primary 

goal of this dissertation is to demonstrate that those same variables could be used to infer 

the flood regime in alternate study areas.  The possible extrapolation of these results from 

Set 1 to Set 2 of the Southeastern U.S. is investigated herein.  However, as noted in 
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Section 3.2, with the exception of drainage area, the physical characteristics of the 

watersheds in Sets 1 and 2 are statistically different on average; this may negatively 

impact the extrapolation of results. 

To investigate whether the findings for Set 1 can be generalized to alternate study 

areas, normalized and standardized values of the mean basin slope, mean basin elevation, 

and soil drainage index were used as attributes in the Ward clustering technique to 

delineate regions in Set 2.  With the exception of identifying the physical variables most 

indicative of the flood regime, regions are delineated using the standardized method 

proposed herein.  Therefore, the six regions illustrated in Figure 3.15 were created to 

ensure that each contains a minimum of 10 sites, while simultaneously minimizing the 

error sum of squares.  The spatial continuity of the delineated regions should be adequate 

for visual classification of ungauged sites. 

Table 3.15 reports the number of sites (N) contained in each region, the 

corresponding value of the H-statistic, and the total record length available ( ).  

These metrics are presented for the original regions resulting from the Ward clustering 

technique, as well as for regions modified by removing all HD sites, and for regions 

modified by removing only HPD sites.  The locations of these discordant sites are 

indicated in Figure 3.15.  With the exception of Region 1, the heterogeneity measures for 

the original regions are all less than 4 indicating that the regions are adequate for 

regionalization of flood data.  In addition, Region 1 is at its core quite homogeneous, as 

removing five HD sites reduces the H-statistic to -0.4 and a sufficient number of years of 

record remains.  However, it is recommended that these sites be retained for use in 
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subsequent steps to derive quantile estimators for ungauged sites as they are not 

physically discordant. 

The jackknife resampling procedure discussed in Section 3.5 was also applied to 

the regions delineated for Set 2 in order to evaluate their adequacy for the development of 

quantile estimators for ungauged sites.  The resulting MSEs for various quantiles are 

illustrated in Figure 3.16 for either the original regions resulting directly from the Ward 

clustering scheme in the instance that H < 4, or those which have been modified by 

removing the HPD sites in the instance that H  4.  Additional results are tabulated in 

Appendix C.  Overall, the highest MSE obtained was 13.6%, corresponding to estimation 

of the 100-year event in Region 6.  Both the MSEs and H* values obtained for regions 

delineated in Set 2 using basin slope, elevation, and soil drainage as similarity measures 

are competitive with the values obtained for regions delineated in Set 1 using the same 

attributes.  As the physical characteristics of Sets 1 and 2 are statistically different on 

average, these results indicate that the three variables identified for Set 1 are sufficient to 

characterize the flood regime in alternate study areas. 
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Figure 3.15: Five regions delineated for Set 2 using Wards clustering applied to 
normalized and standardized values of E, SB, and SI. Circles represent HD sites and 
squares represent HPD sites. 

Table 3.15 
Size and homogeneity of regions delineated for Set 2 using Wards clustering applied to 

normalized and standardized values of E, SB, and SI. 

 
Original Regions 

Regions without 
HD sites 

Regions without 
HPD sites 

 
N H  N H  N H  

Region 1 25 4.52 1398 20 -0.45 1167 25 4.52 1398 

Region 2 17 1.70 854 13 2.97 660 17 1.70 854 

Region 3 13 2.29 845 8 0.42 533 13 2.29 845 

Region 4 14 2.09 824 14 2.09 824 14 2.09 824 

Region 5 23 3.30 1189 14 2.7 765 23 3.30 1189 

Region 6 14 3.95 856 9 3.51 567 14 3.95 856 

H* 3.1 1.6 3.1 
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Figure 3.16: MSE of flood quantiles obtained for regions delineated in Set 2 as a function 
of E, SB, and SI. 

 

3.7 Conclusion 

This chapter presented a standardized procedure for the delineation of 

hydrologically homogeneous regions.  A key aspect of this procedure is the identification 

of an appropriate set of physically based measures of hydrological similarity for use in 

region delineation.  Overall, the results presented herein demonstrate that mean basin 

elevation, mean basin slope, and soil drainage are appropriate for regionalization of flood 

data throughout the Southeastern United States.  Overall, use of these physical 

characteristics as attributes in Wards clustering technique yields regions which are more 

homogeneous than those delineated using physically-based procedures typically 

employed in practice.  In addition, results of a jackknife resampling procedure presented 

herein demonstrate that increasing the homogeneity of delineated regions results in the 

ability to develop more accurate quantile estimators for use in ungauged basins.  Further, 
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these results can be extrapolated to study areas with statistically different physical 

characteristics.  These findings will be used in Chapter 5 to develop quantile estimators 

for ungauged basins in Haiti. 
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Chapter 4 :  Delineation of Hydrologically Homogeneous 
Regions Using Spatially Distributed Data 

With increased computing capabilities and the availability of data, spatially distributed 

models are becoming more prevalent (Beven and Kirkby 1979; Abbott et al. 1986; Boyle 

et al. 2001; Duffy 2004; Panday and Huyakorn 2004; Reed et al. 2007).  As basins are 

composed of a wide range of landscape properties, use of spatially distributed parameters 

provides a better representation of the watershed, which in turn, is expected to represent 

hydrological processes more accurately.  For this reason, distributed methods are often 

used in hydrologic modeling at the watershed scale instead of lumped rainfall-runoff 

models (see for example, Ajami et al. 2004; Paudel et al. 2009, and citations therein).  On 

the contrary, most regionalization studies consider an individual watershed to be a 

homogeneous unit whose properties can be represented by a single aggregated variable.  

In the latter case, it is necessary to infer the dominant processes governing hydrologic 

response at the watershed scale such that simple models can be developed to extrapolate 

results from gauged basins for improved prediction in ungauged basins (e.g., McDonnell 

et al. 2007; Tezlaff et al. 2008; MacKinnon and Tetzlaff 2009). 

The goal of this chapter is to determine whether or not physical values aggregated 

at the watershed scale are sufficient for regionalization of flood data.  In particular, this 

chapter investigates whether regions delineated using spatially distributed variables yield 

more accurate quantile estimators for ungauged sites than those derived from regions 

delineated using aggregated values.  In Chapter 3, it was observed that similarity in the 

flood regime throughout the Southeastern U.S. is primarily defined by three physical 
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characteristics: mean basin slope, mean basin elevation, and soil drainage.  This 

conclusion was drawn based on results of multivariate statistical techniques applied to 

aggregated values of physical variables commonly employed as indicators of extreme 

hydrologic response.  In this chapter, spatially distributed representations of the three key 

physical variables (E, SB, and SI) are used to delineate hydrologically homogeneous 

regions; the accuracy of quantile estimators derived for use in ungauged basins therein 

are subsequently evaluated and compared to the results in Chapter 3.  Overall, the only 

difference in the procedures employed herein versus that in Chapter 3 is due to the 

derivation of similarity measures, i.e., spatially distributed versus aggregated attributes. 

Herein, unsupervised classification techniques are used to derive spatially 

distributed representations of the key physical variables (E, SB, and SI).  A similar type of 

analysis was conducted by Mazvimavi et al. (2006) wherein remotely sensed data was 

used to define additional parameter values related to land cover and the geological 

features of watersheds.  Using redundancy analysis, they related the hydrologic behavior 

of watersheds to physical attributes describing the proportion of each watershed occupied 

by various land covers and rock types.  However, their study only considered hydrologic 

response as measured by the mean annual runoff, the coefficient of variation of the 

annual runoff, percentiles of daily flow, and the average number of days per year without 

flow.  The impact of spatially distributed variables on the regionalization of flood 

statistics has not previously been considered. 
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4.1 Unsupervised Classification 

Two main parametric classification techniques are employed in remote sensing: 

supervised classification and unsupervised classification (Jensen 2005, p. 337).  In 

general, each technique employs a classifier (similar to a clustering algorithm) to 

categorize pixels of a digital image into classes which are subsequently related to values 

of the physical variable of interest (e.g., land cover type).  Supervised classification 

requires prior knowledge of the characteristics of the classes to be created.  In the 

application herein, there is no a priori knowledge of the characteristics of each class; 

therefore, unsupervised classification is preferred.  Unsupervised classification is a 

remote sensing technique that is widely used in pattern recognition for spatial data 

(Jensen 2005, p. 337).  Studies by Duveiller et al. (2007) and Hutchinson et al. (2010) are 

examples of relevant applications for land classification.  The two most commonly used 

clustering algorithms for unsupervised classification are the k-means method and the 

Iterative Self-Organizing Data (ISODATA) algorithm.  In the k-means method, the 

number of classes is set a priori, whereas only the maximum number of classes to be 

created is set a priori in the ISODATA algorithm.  For this reason, the ISODATA 

algorithm is generally preferred over the k-means method, and will be employed in the 

following analyses using functions in ERDAS IMAGINE (Erdas 2010).  (Herein, a 

maximum of 14 classes are created for each physical variable as discussed in Section 

4.2). 

The ISODATA algorithm is an iterative procedure which ultimately yields classes 

(or groups of pixels) with similar spectral characteristics.  Initial classes are formed by 
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randomly selecting a number of points along the range of possible values for the 

parameter in question.  In each iteration, individual pixel values are compared to the 

mean of each class.  Each pixel is assigned to the class for which the mean value is 

closest to that of the pixel.  Once all pixels have been classified, the mean values of each 

class are recalculated.  The new means are input into the next iteration, and pixels are 

reassigned to a different class as needed.  This process is repeated until there is no 

significant change in pixel assignments or the maximum number of iterations is reached.  

In particular, the algorithm stops when the classes to which 95% of the pixels are 

assigned remain unchanged from one iteration to another, or a maximum of 6 iterations 

are performed.  (These are default settings in ERDAS IMAGINE and will be used 

herein.) 

In addition to the general process outlined above, the ISODATA algorithm 

includes the following criteria for the refinement of classes (Jensen, 2005): 

1. If a given class does not contain at least 1% of the total number of pixels, then 

it is merged with the class with the closest mean.   

2. If the minimum weighted distance between two classes is less than a 

predefined value, then the two classes are merged. 

3. If the maximum standard deviation in a class exceeds a predefined value, then 

the class is subdivided to create two new classes for which the means are 

equivalent to that of the original class plus and minus one standard deviation. 
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The values of the critical/predefined thresholds used herein to determine when to merge 

or split classes are based on default values set within ERDAS. 

The application of the ISODATA algorithm to obtain spatially distributed values 

of the elevation and basin slope for each site (and corresponding watershed) in Figure 3.1 

is discussed below; spatially distributed values corresponding to soil drainage are readily 

available for the study area.  Following convergence of the classification algorithm, a 

number of classes are created.  In the application herein, additional analyses are needed to 

relate the classes to individual watersheds.  For a given watershed, GIS is used to overlay 

the watershed boundary on a map representing the classes, and the percentage of the 

watershed falling within each class is calculated.  The classes defined for each of the key 

physical variables (E, SB, and SI) are subsequently used as similarity measures in the 

Ward clustering technique to delineate hydrologically homogeneous regions throughout 

the Southeastern U.S. 

4.2 Derivation of Spatially Distributed Variables  

A spatially distributed representation of the soil drainage within the Southeastern 

U.S. is presented in Figure 4.1.  This data was obtained from the conterminous U.S. 

(CONUS) soil database which was designed for regional studies and contains information 

based on soil surveys from the State Geographic Soil (STATSGO) database with some 

minor modifications (http://www.soilinfo.psu.edu/).  The spatial resolution of the 

STATSGO data is 6.25 km2 (http://www.il.nrcs.usda.gov/technical/soils/statsgo 

_inf.html#statsgo5).  As the minimum drainage area considered in the study is 
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approximately 9 km2, the spatial resolution of the soil drainage data is considered 

appropriate for the spatial analysis performed herein. 

 
Figure 4.1: Spatial representation of the fourteen soil drainage classes in the Southeastern 
U.S. as obtained from STATSGO (http://www.soilinfo.psu.edu/). 

The soil drainage is assembled into 14 classes corresponding to the seven major 

soil drainage classes as defined in Appendix A, as well as seven additional classes 

corresponding to mixed soil types.  Herein, the proportion of each watershed contained in 

each of the 14 drainage classes (denoted Dr1 – Dr14) will serve as attributes in the Ward 

clustering technique.  As such, an additional 13 attributes related to soil drainage will be 

used to delineate regions using spatially distributed variables as opposed to the single soil 
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drainage index used in Chapter 3.  Physical descriptions of each drainage class and the 

corresponding soil drainage indices are provided in Table 4.1.  The majority of the 

Southeastern U.S. is well drained and is contained in drainage class 1 (Dr1).  Negligible 

portions of the dataset are unclassified (Dr0) or of mixed soil types.  
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Table 4.1 
Characteristics of drainage classes for the Southeastern U.S. 

Drainage 
Type Description Soil Drainage 

Index (SI) 
Drainage 

Class 
Proportion 
of Dataset 

Unclassified NA NA Dr0 3.30% 

E Excessively drained 1.0 Dr1 3.40% 

W,E Mixed 1.5 Dr2 0.43% 

SE Somewhat 
excessively drained 

2.0 Dr3 4.80% 

W,SE Mixed 2.5 Dr4 0.50% 

MW, SE Mixed 2.7 Dr5 0.04% 

W Well drained 3.0 Dr6 55.5% 

W,MW Mixed 3.5 Dr7 0.30% 

MW Moderately well 
drained 

4.0 Dr8 5.70% 

MW,SP Mixed 4.5 Dr9 0.60% 

SP,MW Mixed 4.5 Dr10 0.20% 

SP Somewhat poorly 
drained 

5.0 Dr11 3.70% 

P Poorly drained 6.0 Dr12 15.2% 

P, VP Mixed 6.5 Dr13 0.20% 

VP Very poorly drained 7.0 Dr 14 6.10% 

 

 Spatially distributed values of elevation and basin slope for the Southeastern U.S. 

were derived using SRTM (Shuttle Radar Topography Mission) DEMs of 90m resolution 

(8100 m2 per pixel) downloaded from the Consultative Group on International 
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Agricultural Research consortium for spatial information (CGIAR-CSI) website 

(http://srtm.csi.cgiar.org/).  The decision to use DEMs of 90m resolution can be partially 

explained by the large spatial extent of the study area: a lower resolution is advantageous 

as it requires substantially less computational time to process the information.  In 

addition, attempts to use 30m DEMs resulted in computational instabilities, and the 30m 

DEMs contain gaps within the study area which impaired subsequent analyses to 

characterize the spatial variability of the elevation, slope, and soil drainage at the 

watershed level (see below).  The latter analyses require delineation of watershed 

boundaries, for which use of DEMs as coarse as 90m resolution is generally considered 

sufficient (Moglen and Hartman 2001; Pryde et al. 2007; Mendas 2010). 

Mean elevations for each pixel are obtained directly from the DEMs.  The mean 

slope of each pixel in degrees was calculated from the DEMs using the Spatial Analyst 

tool in ArcGIS.  The spatial variability of the elevation and slope parameters was then 

characterized using unsupervised classification techniques.  The unsupervised ISODATA 

algorithm was employed to create a maximum of fourteen classes for both elevation and 

slope.  This maximum number of classes was chosen to ensure that no spatial variable 

was given a larger weight than the soil drainage.  Using the ISODATA algorithm, the 

maximum of 14 classes were created for elevation (denoted E1 – E14); however, only 

eight classes were created for slope (denoted S1, S5, S6, S8, S9, S11, S12, and S14).  In 

the latter case, classes were merged to ensure that each contained at least 1% of the total 

number of pixels.  The spatial representations of the slope and elevation classes across 

the Southeastern U.S. are shown in Figure 4.2 and Figure 4.3, respectively; the physical 
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characteristics of each of the classes for slope and elevation are reported in Table 4.2 and 

Table 4.3, respectively.  Most of the slopes in the Southeastern U.S. are less than 10 

percent and are concentrated in classes S1 to S12; only class S14 contains slopes greater 

than 10 percent.  With respect to elevation, nearly half of the study region is less than 13 

m above mean sea level and is contained in class E1; the other half of the study region is 

roughly equally distributed among the remaining thirteen elevation classes. 

 
Figure 4.2: Spatial representation of eight slope classes for the Southeastern U.S. created 
using the ISODATA algorithm. 
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Table 4.2 
Characteristics of slope classes for Southeastern U.S. created using ISODATA algorithm. 

Percent Slope Class Proportion of 
Dataset 

0 - 1 S1 77.0% 
>1 - 2 S5 7.5% 
>2 - 3 S6 4.1% 
>3 - 4 S8 2.4% 
>4 - 5 S9 1.6% 
>5 - 6 S11 1.2% 

>6 - 10 S12 2.4% 
>10 - 77 S14 3.8% 

 

 
Figure 4.3: Spatial representation of fourteen elevation classes for the Southeastern U.S. 
created using the ISODATA algorithm. 
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Table 4.3 
Characteristics of elevation classes for the Southeastern U.S. created using the ISODATA 

algorithm. 

Elevation 
(meters) Class Proportion of 

Dataset 
0 - 13 E1 47.2% 

>13 - 42 E2 7.1% 
>42 - 73 E3 4.7% 

>73 - 105 E4 5.0% 
>105 - 137 E5 5.5% 
>137 - 168 E6 5.0% 
>168 - 200 E7 4.1% 
>200 - 231 E8 3.7% 
>231 - 262 E9 3.4% 
>262 - 293 E10 3.0% 
>293 - 325 E11 2.2% 
>325 - 356 E12 1.4% 
>356 - 516 E13 3.1% 

>516 - 2025 E14 4.4% 
 

In order to characterize the spatial variability of the soil drainage, slope, and 

elevation at the watershed level, the watersheds corresponding to the 249 gauging 

stations in Figure 3.1 were delineated using the SRTM 90m DEM in ArcMap.  Figure 4.4 

shows the spatial extent of each watershed.  Subsequently, the percentage of each 

watershed belonging to each previously defined drainage, slope, and elevation class (Dr1-

Dr14, S1-S14, and E1-E14) was ascertained by overlaying the watershed boundaries on 

the maps in Figure 4.1, Figure 4.2, and Figure 4.3, respectively.  In the following section, 

homogeneous regions are delineated based on the spatially distributed representations of 
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soil drainage, basin slope and basin elevation by using those percentages as similarity 

measures in the Ward clustering technique. 

 
Figure 4.4: Spatial extent of watersheds corresponding to gauging stations in Figure 3.1. 

4.3 Region Delineation Using Spatially Distributed Attributes 

Hydrologically homogeneous regions were delineated for Sets 1 and 2 using the 

standardized procedure outlined in Section 3.1, wherein the attributes used in Wards 

clustering technique are spatially distributed values of soil drainage, basin slope, and 

basin elevation as defined in the preceding section.  The results for each data set are 

discussed below. 
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Seven regions, as illustrated in Figure 4.5, were delineated for Set 1 using Wards 

clustering technique applied with the spatially distributed attributes.  In general, the 

regions are spatially contiguous and would be adequate for visual classification of 

ungauged basins.  Table 4.4 reports the number of sites (N) contained in each region, the 

corresponding value of the H-statistic computed using equation (23), and the total record 

length available ( ).  These metrics are presented for the original regions resulting 

from the Ward clustering technique, as well as for regions modified by removing sites 

identified as hydrologically discordant (HD) using equation (26), and for regions 

modified by removing only the sites which are both hydrologically and physically 

discordant (HPD), wherein physical discordancy is assessed using equation (54).  The 

discordant sites are also illustrated in Figure 4.5, wherein circles represent HD sites and 

squares represent HPD sites; the color of the symbol corresponds to the original region 

within which the site in question was classified.  In addition, the last row of Table 4.4 

reports the average heterogeneity level (H*) computed using equation (57) as an overall 

measure of the ability of the delineated regions to be used for flood quantile estimation.  

Overall, the value of H* indicates that the delineation for Set 1 is acceptable; however, 

only four of the original regions are sufficiently homogeneous with H < 4.  The 

homogeneity of the other three regions can be improved by removing HD sites; however, 

this is ill-advised in the interest of deriving quantile estimators for ungauged sites.  

Unfortunately, none of these sites are physically discordant, and thus estimators derived 

for Regions 2, 4, and 6 should be used with caution.  It is interesting to note that when 

HD sites are removed from Regions 5 and 7, the total available record length within each 
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region drops below 500 years, and thus estimators of the 100-year event derived therein 

would be suspect. 

 
Figure 4.5: Region delineation for Set 1 obtained using Wards clustering applied to 
spatially distributed values of elevation, basin slope, and soil drainage.  Circles represent 
HD sites, and squares represent HPD sites. 
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Table 4.4 
Size and homogeneity of regions delineated using Wards clustering applied to spatially 

distributed values of basin elevation, basin slope, and soil drainage for sites in Set 1. 

 Original Regions Regions without 
HD sites 

Regions without 
HPD sites 

 
N H  N H  N H  

Region 1 10 2.27 727 9 2.86 667 10 2.27 727 

Region 2 44 4.80 1923 39 2.83 1747 44 4.80 1923 

Region 3 27 2.67 1053 24 3.39 915 27 2.67 1053 

Region 4 19 4.91 829 18 4.81 798 19 4.91 829 

Region 5 13 2.57 516 11 2.20 455 13 2.57 516 

Region 6 17 5.55 947 16 3.57 894 17 5.55 947 

Region 7 13 -0.02 540 9 0.63 402 13 -0.02 540 

H* 2.9 3.1 2.9 

The same procedure was repeated for the sites contained in Set 2.  Six regions 

were delineated as illustrated in Figure 4.6.  These regions are sufficiently contiguous for 

visual classification of ungauged sites.  Table 4.5 reports the number of sites (N) 

contained in each region, the corresponding values of the H-statistic and the total record 

length available ( ), as well as the average heterogeneity level (H*).  These metrics 

are presented for the original regions resulting from the Ward clustering technique, as 

well as for regions modified by removing all HD sites, and for regions modified by 

removing only HPD sites.  The discordant sites are also illustrated in Figure 4.6 wherein 

circles represent HD sites and squares represent HPD sites.  Overall, the value of H* 

indicates that the delineation for Set 2 is acceptable; however, two of the original regions 

(1 and 6) are not sufficiently homogeneous as H  4.  The homogeneity of Region 1 is 
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reduced to 2.91 following the removal of an HPD site; however, the homogeneity of 

Region 6 cannot be improved as no HPD sites are identified therein. 

 
Figure 4.6: Region delineation for Set 2 obtained using Wards clustering applied to 
spatially distributed values of basin elevation, basin slope, and soil drainage.  Circles 
represent HD sites, and squares represent HPD sites. 
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Table 4.5 
Size and homogeneity of regions delineated using Wards clustering applied to spatially 

distributed values of basin elevation, basin slope, and soil drainage for sites in Set 2. 

 Original Regions Regions without 
HD sites 

Regions without 
HPD sites 

 
N H  N H  N H  

Region 1 18 5.00 1064 11 2.19 709 17 2.91 983 

Region 2 18 1.52 880 13 3.06 660 17 1.34 854 

Region 3 16 2.38 906 10 2.71 561 15 1.24 877 

Region 4 23 3.75 1239 18 2.64 999 23 3.75 1239 

Region 5 13 3.04 687 8 1.82 438 10 1.91 528 

Region 6 18 4.14 1190 14 1.14 941 18 4.14 1190 

H* 3.4 2.2 2.8 

 
 

4.4 Accuracy of Quantile Estimators for Ungauged Basins 

Acceptable homogeneous regions were delineated in Chapter 3 using the 

standardized procedure presented therein applied with aggregated values of three key 

physical variables: basin slope (SB), basin elevation (E), and soil drainage (SI).  In 

Section 4.3, acceptable homogeneous regions were delineated in the same fashion; 

however, spatially distributed representations of the three key variables were employed as 

attributes in the Ward clustering technique.  For both Sets 1 and 2, the same number of 

regions were delineated in each case; however, the actual sites composing each region 

were not necessarily the same -- overall, there was roughly 66% consistency in the region 

delineation.  
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In general, for both Sets 1 and 2, the H-statistics for regions delineated as a 

function of aggregated parameter values (see Table 3.10 and Table 3.15) are comparable 

to those of regions delineated as a function of spatially distributed variables.  This 

suggests that regions delineated using aggregated parameter values are sufficient for the 

regionalization of flood data.  To further justify this conclusion, the jackknife resampling 

procedure described in Section 3.5 is repeated herein to evaluate the accuracy of quantile 

estimators derived from regions delineated using spatially distributed variables; these 

results are subsequently compared to the results in Chapter 3 derived using aggregated 

parameter values.  The accuracy of quantile estimators corresponding to various return 

periods of interest are assessed in terms of the mean square error (MSE) computed using 

equation (56).  Figure 4.7 and Figure 4.8 illustrate the MSEs of quantile estimators 

derived for ungauged basins within each delineated region of Set 1 and Set 2, 

respectively, obtained using spatially distributed variables.  Results are for either the 

original regions resulting directly from the Ward clustering scheme in the instance that H 

< 4, or those which have been modified by removing the HPD sites in the instance that H 

 4.  Additional results are tabulated in Appendix C.  The highest errors obtained were 

approximately 17%, corresponding to estimation of the 100-year event in Region 4 of Set 

1 and Region 1 of Set 2, both of which are approximately the same distance from the 

coastline.  For Region 4 of Set 1, this large error is likely due to the high level of 

heterogeneity (H = 4.91) therein (see Table 4.4); however, larger H values do not always 

correlate with larger MSEs.  In fact, the H-statistic computed for Region 1 of Set 2 (H = 

2.91) is within the range of acceptable homogeneity (see Table 4.5).  Further, the second 
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and third largest MSEs (on the order of 12%) for estimators of the 100-year event in Set 2 

are observed in regions with H values less than 2. 

 
Figure 4.7: MSE of flood quantiles obtained for regions delineated in Set 1 using 
spatially distributed representations of basin slope, elevation, and soil drainage. 
 

 
Figure 4.8: MSE of flood quantiles obtained for regions delineated in Set 2 using 
spatially distributed representations of basin slope, elevation, and soil drainage. 
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The efficiency of the quantile estimators derived using regions delineated based 

on spatially distributed variables relative to those derived using regions delineated using 

aggregated parameter values can be assessed by comparing the results in Figure 4.7 and 

Figure 4.8 above to those in Figure 3.13 and Figure 3.16 for Sets 1 and 2, respectively.  

For ease of comparison, the MSEs averaged across the regions delineated in each case are 

illustrated in Figure 4.9 below.  For each dataset, the average MSEs obtained using 

spatially distributed variables are comparable to those obtained using aggregated 

variables.  However, with respect to the accuracy reported for individual regions, the 

maximum error obtained when aggregated variables are employed was on the order of 

13% in both datasets versus the maximum errors of 17% reported above for the spatially 

distributed variables.  Overall, gains in the accuracy of quantile estimators for ungauged 

basins are not observed when regions are delineated as a function of spatially distributed 

variables.  Thus, the physical processes that influence the flood regime appear to be 

adequately captured by attributes aggregated at the watershed scale. 
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Figure 4.9: Average MSE of flood quantiles obtained across regions delineated in Sets 1 
and 2 using either aggregated or spatially distributed representations of basin slope, 
elevation, and soil drainage.  
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would translate into increased accuracy of quantile estimators.  Overall, the quantile 

estimators derived using regions delineated as a function of aggregated values were 

observed to perform slightly better than those derived as a function of spatially 

distributed values.  Thus, although hydrologic models of individual watersheds are 

generally improved using spatially distributed parameters, the results presented herein 

do not suggest that use of physical attributes defined at scales finer than that of the 

watershed would be beneficial for the regionalization of flood data.  This conclusion is 

fortunate, as simple models for the extrapolation of results to data sparse areas outside of 

the study region can be developed as a function of aggregated watershed variables.  This 

type of application is investigated in Chapter 5. 
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Chapter 5 : Development of Quantile Estimators for Ungauged 
Basins in Data Sparse Areas 

The Index Flood method has been praised for its effectiveness in increasing the accuracy 

of flood quantile estimates at gauged sites for which the available record length is short 

(e.g., Hosking and Wallis 1997); however, extensions to ungauged sites are rarely sought 

(e.g., Madsen and Rosbjerg 1997; Kjeldsen and Jones 2006).  This is primarily due to the 

need to develop an estimate of the at-site scale parameter for ungauged sites as a function 

of measurable characteristics, as well as difficulty classifying ungauged sites when the 

delineated regions are not sufficiently contiguous.  The former issue can be resolved 

using generalized least squares (GLS) regression models of the mean (e.g., Stedinger et 

al. 1993), as discussed in Section 2.2.2 herein; the latter could be resolved by using linear 

discriminant functions to classify ungauged sites (e.g., Chiang et al. 2002b) within 

regions which were appropriately delineated using physical watershed characteristics.  

Alternatively, quantile estimates for ungauged basins could be obtained directly as a 

function of watershed characteristics using GLS regression models developed for a 

predefined region.  In the United States, flood quantile estimators for each state in the 

nation have been developed by the USGS using weighted least squares (WLS) or GLS 

regression procedures (e.g., Ries and Crouse 2002; Feaster et al. 2009; Gotvald et al. 

2009; Weaver et al. 2009).  However, use of regression models to obtain quantile 

estimates directly has a significant disadvantage in that separate models must be 

developed for each quantile of interest, whereas the Index Flood procedure provides the 

entire frequency distribution at a given site from which any quantile could be derived. 
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As currently practiced, both the Index Flood method and regional regression 

models can only be applied within the predefined area used for model development.  The 

main goal of this chapter is to demonstrate that quantile estimators derived for data rich 

regions can be extrapolated to data sparse areas with similar physical characteristics 

which are located outside of the area used for model development.  In particular, flood 

quantile estimates for the Gonaives watershed in Haiti are derived using relationships 

developed for the western portion of the Southeastern U.S. (Set 1).  This is accomplished 

using a hybrid GLS-Index Flood approach wherein quantile estimators for ungauged sites 

are derived using GLS regression models of the mean to scale the regional flood 

distribution; ungauged watersheds external to Set 1 are classified within the regions 

delineated for Set 1 using linear discriminant functions.  Prior to the application in Haiti, 

the methodology is first validated by considering the sites in the eastern portion of the 

Southeastern U.S. (Set 2) to be ungauged.  

5.1 Estimation of the At-site Mean via GLS Regression 

In Chapter 3, seven regions were delineated for Set 1 using aggregated values of 

the mean elevation, mean basin slope, and soil drainage index as attributes in the Ward 

clustering technique (see Figure 3.5); characteristics of each of these regions are provided 

in Table 3.10.  Herein, the regions considered are either those resulting directly from the 

Ward clustering scheme in the instance that H < 4, or those which have been modified by 

removing the sites which are both hydrologically and physically discordant (HPD) in the 
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instance that H  4.  For each of the seven regions, models of the following form were 

considered: 

1 2 3 4 5log( ) log( ) log( ) log( ) log( ) log( )i o i Chi Bi hi ib b A b S b S b S b E  

6 7 8 9 10log( ) log( ) log( ) log( ) log(Pr )i i i i i ib Imp b F b SI b Inf b e    (58) 

where μi is the mean of the flood flows at site i (equivalent to the first L-moment, 1), and 

ei is the estimation error.  In addition to the nine physical characteristics considered in 

previous chapters, the mean annual precipitation at site i (Pri) is investigated as a possible 

explanatory variable.  All of the explanatory variables employed are the original 

untransformed values of the physiographic and meteorological characteristics. 

For each region, the coefficients of the model in equation (58) were estimated 

using a GLS analysis (see Section 2.2.2) for which the needed estimator of the sampling 

covariance matrix  is defined in equation (51).  To avoid correlation among the 

residuals, elements of  are computed using sample coefficients of variation estimated as 

a function of the drainage area using a separate regression analysis (see below), and lag-

zero cross-correlations between sites approximated using the following smoothing 

function (Tasker and Stedinger 1989): 

       (59)  

where ij is the lag-zero cross-correlation between sites i and j, dij is the distance between 

sites i and j, and  and  are function parameters to be estimated.  Figure 5.1 illustrates 

the lag-zero cross-correlations plotted as a function of the distance between sites in 
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Region 1 of Set 1, as well as the smoothing function obtained for use therein.  Smoothing 

functions for the remaining regions in Set 1 are presented in Appendix D. 

An estimator of the sample coefficient of variation of the flood flows at site i 

(CVi) appropriate for use in equation (51) is given by the model (e.g., Madsen and 

Rosbjerg 1997): 

                                                                          (60) 

where Ai is the area of the watershed corresponding to site i, and i is the model error.  

Additional explanatory variables could be used, but the area alone is sufficient for the 

purpose of this estimator herein.  Coefficients of the model (  and ) for each region were 

estimated using a simple ordinary least squares (OLS) regression analysis.  The models 

obtained for each region are presented in Table 5.1; summary statistics indicating the 

precision of each model are tabulated in Appendix D. 

 
Figure 5.1: Correlation-distance smoothing function for Region 1 (  = 0.000053,  = 
0.9998). 
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Table 5.1 
OLS regression models of the coefficient of variation derived for each region in Set 1. 

Region 1  

Region 2  

Region 3  

Region 4  

Region 5  

Region 6  

Region 7  

Using the estimators of the coefficient of variation and cross-correlation 

developed above to estimate the sampling covariance matrix, various forms of the model 

in equation (58) were fit using GLS regression.  For each region, the first form of the 

model considered employed all 10 explanatory variables in addition to the constant term.  

The significance of the coefficients corresponding to each variable were assessed at the 

5% level using a two-sided hypothesis test, and the GLS procedure was repeated using 

only the variables for which the coefficients were significant at the 5% level.  This 

process was repeated until all coefficients remained significant.  The final GLS 

regression models of the mean derived for each region in Set 1 are presented in Table 5.2; 

summary statistics indicating the precision of each model are reported in Table 5.3.  Plots 

of the residuals and summary statistics for the coefficients for each of these models are 

provided in Appendix D.  As is generally expected, the drainage area plays a key role in 

each of these models.  The statistics for all of the models, except that for Region 3, 

indicate a reasonable level of precision, with relatively low values of model error 
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variance ( ) and average variance of predication (AVP), coupled with high values of 

R2
GLS.  (See Section 2.2.2 for details regarding computation of these metrics.)  In the 

following sections, flood quantile estimates for ungauged basins are derived via the Index 

Flood procedure wherein these models of the mean are used to estimate the at-site scaling 

factor for stations located both inside and outside of Set 1. 

Table 5.2 
GLS regression models of the at-site mean derived for each region in Set 1. 

Region 1  

Region 2  

Region 3 
 

Region 4  

Region 5  

Region 6 
 

Region 7 
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Table 5.3 
Summary statistics for GLS regression models of the at-site mean derived for each region 

in Set 1. 

 AVP  R2
GLS 

Region 1 0.0018 0.986 

Region 2 0.1629 0.0220 0.823 

Region 3 0.2398 0.0467 0.640 

Region 4 0.1063 0.0097 0.908 

Region 5 0.0978 0.0079 0.867 

Region 6 0.1280 0.0138 0.901 

Region 7 0.1507 0.0160 0.826 

 

5.2 Flood Quantile Estimation at Ungauged Sites within the 
Predefined Study Area 

In order to assess the accuracy of the GLS models of the mean in the context of 

flood quantile estimation via the Index Flood method, the jackknife resampling procedure 

presented in Section 3.5 is applied herein using data for sites within the seven regions 

delineated for Set 1.  For a given region, the accuracy of quantile estimators 

corresponding to various return periods of interest are assessed in terms of the Mean 

Square Error (MSE) computed using equation (56) wherein the at-site estimator is 

derived from a GEV distribution fit to the available flood record using L-moments, and 

the regional estimator is derived using a hybrid GLS-Index Flood (GLS-IF) approach 

assuming that the site in question is ungauged.  The GLS-IF approach utilizes the models 

in Table 5.2 to estimate the at-site mean for an ungauged site; this estimate is then used to 
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scale the regional frequency distribution obtained via the Index Flood method in order to 

derive flood quantile estimates for the site in question. 

Table 5.4 reports the MSEs of quantile estimators derived for ungauged sites 

within each region of Set 1 using the GLS-IF approach.  The largest MSE obtained is 

nearly 50%, corresponding to estimation of the 100-year event in Region 3.  This large 

error is likely due to the poor precision of the GLS model for the mean in that region; in 

general, the MSEs for a given return period tend to increase with the AVP of the GLS 

regression models.  Relatively large MSEs are also obtained in Regions 2, 6, and 7, 

wherein the values of the H-statistics were also reasonably large (5.06, 3.70, and 4.95, 

respectively, as reported in Table 3.10).  Overall, due to additional errors resulting from 

estimation of the mean, the GLS-IF model is less precise than use of the Index Flood 

procedure alone (see Figure 3.13 for comparison).  However, the MSEs reported in Table 

5.4 are generally acceptable when compared to the results of other regionalization 

studies.  For instance, Malekinezhad et al. (2011) report average root mean square errors 

for various return periods in the range of 0.13 to 0.53, corresponding to MSEs of 0.02 to 

0.28.  Similarly, Shu and Ouarda (2009) report average root mean square errors ranging 

from 0.53 to 0.57 (corresponding to MSEs of 0.28-0.32) for estimation of the 10-year 

event, 0.58 to 0.76 (0.34-0.58) for the 50-year event, and 0.64 to 0.75 (0.41-0.56) for the 

100-year event.  Therefore, the GLS-IF approach is suitable for estimation of flood 

quantiles at ungauged sites within the study area used for model development when the 

GLS regression model for the mean can be derived with adequate precision. 
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Table 5.4 
MSE of flood quantiles obtained using the GLS-IF approach for sites within Set 1. 

 T = 10 years 
(p = 0.90) 

T = 25 years 
(p = 0.96) 

T = 50 years 
(p = 0.98) 

T = 100 years 
(p = 0.99) 

Region 1  0.0071 0.0067 0.0089 0.0137 

Region 2  0.1560 0.1941 0.2331 0.2837 

Region 3  0.7932 0.6995 0.5886 0.4988 

Region 4  0.0738 0.0822 0.0945 0.1167 

Region 5  0.0902 0.1088 0.1379 0.1877 

Region 6  0.1302 0.2027 0.2783 0.3819 

Region 7  0.1111 0.1668 0.2217 0.2941 

Average  0.1945 0.2087 0.2233 0.2538 

 

5.3 Extension of GLS-IF Model to Alternate Areas 

Results presented above verify that application of the Index Flood procedure 

using GLS regression models of the mean to estimate the scale factor for ungauged sites 

is appropriate within the study area used for model development.  However, a primary 

goal of this dissertation is to demonstrate that the relationships derived in a data rich 

study area can successfully be extrapolated to sites in areas external to that used for 

model development.  In the sections below, the extrapolation to sites of similar physical 

composition is first validated using gauged sites in a data rich region (i.e., Set 2), and 

then an example of the extrapolation to a data sparse area is provided using data for the 

Gonaives watershed in Haiti. 
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5.3.1 Validation via Extension to Data Rich Areas 

Results presented in Chapter 3 indicate that hydrologically homogeneous regions 

can be successfully delineated throughout the Southeastern U.S. using three key physical 

characteristics: mean elevation, mean basin slope, and soil drainage.  Therefore, it should 

be possible to successfully classify sites in Set 2 within one of the seven regions 

delineated for Set 1, and to subsequently derive flood quantiles for the sites in Set 2 using 

the GLS-IF approach. 

In the following analyses, the watersheds in Set 2 are considered ungauged and 

are classified within regions in Set 1 using linear discriminant functions that differentiate 

between those regions as a function of watershed characteristics.  The values of the nine 

physical variables (normalized and standardized) for the sites contained in each of the 

regions in Set 1 define seven sets of variables.  As there are seven sets of variables, six 

discriminant functions are sufficient to differentiate between the regions.  Table 5.5 

reports the coefficients of the linear discriminant (LD) functions corresponding to each of 

the physical variables; the correlation coefficients indicating the relative importance of 

each physical variable are provided in Table 5.6.  The first discriminant function (LD1) is 

the most powerful, explaining 72% of the differences among the regions; as expected, it 

is most influenced by the basin slope, mean elevation, and soil drainage. 
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Table 5.5 
Coefficients of the normalized and standardized physical variables in the discriminant 

functions differentiating between regions in Set 1. 

Physical 
Characteristic LD1 LD2 LD3 LD4 LD5 LD6 

Drainage Area 0.310 -0.246 4.380 -0.213 2.176 1.369 

Main Channel Slope 0.158 0.437 5.584 0.334 4.842 3.591 

Basin Slope 3.796 -12.53 4.561 9.191 -0.385 6.796 

Basin Shape 1.072 -0.204 1.156 1.576 0.523 -3.705 

Basin Elevation 17.93 11.95 -0.784 -3.103 -1.953 -3.035 

% Impervious Cover 1.063 1.011 -1.406 3.827 2.494 1.234 

% Forest Cover -0.972 -1.679 1.105 -4.726 -4.017 -3.039 

Soil Drainage Index -1.356 4.933 6.529 3.144 -8.066 5.854 

Infiltration Index 0.723 2.084 2.592 1.872 2.139 -2.695 

Table 5.6 
Correlation coefficients resulting from LDA applied to the normalized and standardized 

physical variables for regions in Set 1. 

Physical 
Characteristic LD1 LD2 LD3 LD4 LD5 LD6 

Drainage Area -0.200 -0.107 0.260 0.140 0.034 -0.252 

Main Channel Slope 0.306 0.024 0.466 -0.491 0.386 0.303 

Basin Slope 0.784 -0.592 0.100 0.131 -0.068 0.018 

Basin Shape -0.035 -0.215 0.107 0.396 -0.012 -0.557 

Basin Elevation 0.994 0.080 0.001 -0.050 -0.022 -0.009 

% Impervious Cover 0.007 0.260 -0.167 0.421 -0.071 -0.109 

% Forest Cover 0.311 -0.465 0.373 -0.284 -0.254 -0.199 

Soil Drainage Index -0.603 0.630 0.225 0.209 -0.344 0.161 

Infiltration Index -0.326 0.374 0.527 0.337 0.070 -0.340 

% Variance 
Explained: 0.7225 0.2093 0.0401 0.0229 0.0050 0.0002
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As LD1 explains the majority of the differences between the regions in Set 1, this 

function will be used to classify the watersheds in Set 2 within one of the seven regions 

in Set 1.  This is achieved by calculating values of the LD1 function corresponding to 

each site in Set 2,  denoted LD1(i).  In addition, values of the LD1 function are computed 

using the mean values of the physical characteristics for each region in Set 1, denoted 

 for k = 1, …, 7.  Each site from Set 2 is then allocated to the region in Set 1 for 

which LD1(i) and  are closest.  Table 5.7 reports the number of sites from Set 2 

allocated to each of the regions in Set 1.  This type of allocation rule using discriminant 

analysis was previously employed by Chiang et al. (2002b).  A confusion matrix is 

commonly used to assess the error rate of a proposed classification scheme (e.g., Johnson 

and Wichern 2007).  Table 5.8 contains the confusion matrix for the classification 

scheme employed herein.  Elements of the matrix reflect the fraction of sites in Set 1 that 

are misclassified using the proposed allocation metric based on LD1.  For example, 

Region 5 should contain 20 sites, however, the metric based on LD1 misclassifies 2 sites 

as belonging in Region 6 and 4 sites as belonging in Region 7.  Overall, the classification 

scheme works well, except in Regions 5 and 7.  Thus, results derived herein for the latter 

regions should be viewed with caution.  The success of the classification of ungauged 

sites could be improved by retaining LD2 for use in the classification scheme (see 

Appendix E); however, this alternative classification scheme is not considered in the 

subsequent analyses presented herein. 
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Table 5.7 
Number of sites (N) in Set 2 allocated to each region in Set 1 using LD1. 

N 

Region 1 19 

Region 2 16 

Region 3 14 

Region 4 17 

Region 5 17 

Region 6 19 

Region 7 4 

 

Table 5.8 
Confusion matrix for the classification scheme based on LD1. 

 Region 
Actual\Prediction 1 2 3 4 5 6 7 

Region 1 12 0 0 0 0 0 0 

Region 2 0 22 0 0 0 0 0 

Region 3 0 0 22 0 0 0 0 

Region 4 0 0 0 26 0 0 0 

Region 5 0 0 0 0 14 2 4 

Region 6 0 0 3 0 0 24 0 

Region 7 0 0 0 0 10 1 3 

Prediction 
Accuracy (%): 

100 100 88 100 58 89 43 

The efficiency of regional quantile models extrapolated from Set 1 for application 

within Set 2 was assessed in two phases.  In Phase I, the Index Flood relationships 

derived within Set 1 were scaled for application at sites in Set 2 using the actual at-site 
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mean as a scale parameter in order to further validate the use of mean elevation, basin 

slope and soil drainage to characterize the flood regime throughout the Southeastern U.S.  

In this way, the sites in Set 2 are considered gauged, and thus for the extrapolation to be 

successful, the quantile estimators derived in this way should be as efficient as those 

derived for sites contained in Chapter 3 (see Figure 3.16).  In Phase II, sites in Set 2 were 

considered ungauged and the GLS-IF approach was used to derive flood quantile 

estimates wherein the Index Flood models derived for Set 1 were scaled to the site in 

question in Set 2 using the appropriate GLS model of the mean based on physical 

characteristics.  In this case, if the extrapolation is successful, then the results should be 

comparable to those reported in Table 5.4, corresponding to application of the GLS-IF 

approach within the area used for model development (i.e., Set 1).  This is the first time 

regional models have been extrapolated to sites located outside of the study area used for 

model development.  Results of jackknife resampling procedures used to assess the 

efficiency of quantile estimators derived in each phase are presented below. 

In Phase I, wherein sites in Set 2 are considered gauged, the accuracy of quantile 

estimators corresponding to various return periods of interest is assessed in terms of the 

MSE computed using equation (56) where the at-site estimator is derived from a GEV 

distribution fit to the available flood record using L-moments, and the regional estimator 

is derived using the Index Flood model developed for the region in Set 1 into which the 

site from Set 2 was classified; the regional frequency distribution is scaled using the 

actual at-site mean for the site in Set 2.  Table 5.9 reports the MSEs of quantile estimators 

derived for gauged sites in Set 2 allocated to each region of Set 1.  The largest MSE 
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obtained is nearly 30% corresponding to estimation of the 100-year event for sites 

allocated to Region 7; however, only 4 sites from Set 2 were allocated therein.  Omitting 

the results for Region 7, the average error is on the order of 7%, which is consistent with 

the performance of the Index Flood method applied directly to Set 2 (see Figure 3.16).  

Therefore, these results indicate that the Index Flood models developed for Set 1 can 

successfully be extrapolated to sites in Set 2.  Thus, when the watersheds in Set 2 are 

considered ungauged, only an estimate of the at-site mean should be necessary to scale 

the regional quantile model.  This is considered in Phase II below. 

In Phase II, wherein sites in Set 2 are considered ungauged, the accuracy of 

quantile estimators derived using the GLS-IF approach to extrapolate results from Set 1 is 

assessed in terms of the MSE.  Herein, the at-site estimator is derived from a GEV 

distribution fit to the available flood record using L-moments, and the regional estimator 

is derived using the Index Flood model developed for the region in Set 1 into which the 

site from Set 2 was classified; the regional frequency distribution is scaled using an 

estimator of the mean derived for the site of interest in Set 2 using the appropriate GLS 

regression model from Table 5.2.  Table 5.10 reports the MSEs of quantile estimators 

derived in this way for sites in Set 2 allocated to each region of Set 1.  Again, the largest 

MSE obtained corresponds to estimation of the 100-year event for sites allocated to 

Region 7, but with only 4 sites from Set 2 allocated therein, these results are suspect.  The 

average error is cut in half when the results for Region 7 are omitted; however, the MSEs 

in Regions 2 and 5 are also unacceptable.  For Region 5, this may be partially due to the 

high classification error reported in Table 5.8. 
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Table 5.9 
MSE of quantiles estimated for sites in Set 2 using the Index Flood model for the 

corresponding region in Set 1 scaled by the at-site mean computed using the available 
record at the site of interest (Phase I). 

 T = 10 years 
(p = 0.90) 

T = 25 years 
(p = 0.96) 

T = 50 years 
(p = 0.98) 

T = 100 years 
(p = 0.99) 

Region 1  0.0031 0.0016 0.0113 0.0310 

Region 2   0.0041 0.0065 0.0134 0.0265 

Region 3  0.0277 0.0539 0.0933 0.1615 

Region 4  0.0114 0.0137 0.0206 0.0355 

Region 5  0.0157 0.0079 0.0113 0.0285 

Region 6  0.0341 0.0619 0.0962 0.1523 

Region 7  0.0293 0.0852 0.1661 0.2999 

Average 0.0179 0.0329 0.0589 0.1050 

Table 5.10 
MSE of quantiles estimated for sites in Set 2 using the GLS-IF approach wherein the 

GLS estimator of the mean derived for the site of interest is used to scale the Index Flood 
model for the corresponding region in Set 1 (Phase II). 

 T = 10 years 
(p = 0.90) 

T = 25 years 
(p = 0.96) 

T = 50 years 
(p = 0.98) 

T = 100 years 
(p = 0.99) 

Region 1  0.1927 0.2141 0.2407 0.2763 

Region 2   1.0213 1.0117 1.0088 1.0284 

Region 3  0.2914 0.2681 0.2516 0.2445 

Region 4  0.0908 0.0758 0.0666 0.0649 

Region 5  3.7972 4.5493 5.2547 6.1203 

Region 6  0.1394 0.1502 0.1678 0.2024 

Region 7  5.4195 6.8575 8.2561 10.126 

Average 1.5646 1.8752 2.1780 2.5804 



136 
 

Kjeldsen and Jones (2006) demonstrated that the uncertainty in quantile estimates 

derived using the Index Flood model increased by eight times when applied to ungauged 

sites within the area used for model development.  Although the errors reported in Table 

5.10 are within the limits of those observed by Kjeldsen and Jones (2006), it is likely that 

the estimators for sites external to the original study area could be improved by 

accounting for differences in precipitation.  Table 5.11 reports summary statistics for the 

mean annual precipitation averaged across sites within each region delineated for Set 1, 

as well as for the sites from Set 2 allocated to each of those regions.  Wilcoxon-Mann-

Whitney tests were performed to assess the difference in the medians of the sites from Set 

1 versus Set 2 contained in each region.  These tests indicate that the precipitation values 

of the two groups are significantly different at the 5% level.  (Details of these tests are 

provided in Appendix E, as well as results of tests and summary statistics compiled for 

each of the nine physical variables.) 

The impact of differences in precipitation on the GLS-IF approach for 

extrapolation to alternate areas was assessed by repeating the jackknife resampling 

analysis employed in Phase II above.  Herein, the regional quantile estimates are again 

derived using the GLS-IF approach, but prior to utilizing the Index Flood regional 

distribution, the estimator of the mean derived using the GLS regression model for the 

site of interest in Set 2 is scaled by the ratio of the at-site precipitation to the regional 

average precipitation of the corresponding region of Set 1; this approach is denoted GLS-

IF(P).  Table 5.12 reports the MSEs of quantile estimators derived in this way for sites in 

Set 2 allocated to each region of Set 1.  Overall, accounting for differences in 
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precipitation improves the efficiency of quantile estimators obtained by extrapolating 

regional flood distributions from Set 1 for application in Set 2.  Again, the error observed 

in Region 7 is quite high; however, four sites do not provide a strong basis for evaluation.  

The large error in Region 5 can be explained by the classification errors reported in Table 

5.8.  Omitting these regions, the average error is reduced to 22.5%, which is in line with 

the range of values reported in Table 5.4 for application of the GLS-IF approach within 

the area used for model development.  These results indicate that regional flood 

distributions derived within data rich areas can be successfully extrapolated to alternate 

areas using a GLS-IF approach properly scaled to account for differences in precipitation, 

provided the sites in question can be successfully classified within a delineated region. 

Table 5.11 
Summary statistics for the mean annual precipitation (inches) for the seven regions 

delineated for Set 1 versus that of sites from Set 2 allocated to those regions.  

Region 
1 2 3 4 5 6 7 

Set 1 

Minimum 59.3 50.2 46.8 50.0 47.1 46.2 47.3 

Maximum 81.8 70.3 61.2 57.8 60.0 54.5 57.0 

Average 70.0 61.1 49.5 53.5 54.5 49.4 53.3 

Std. Dev. 6.17 4.5 3.2 2.1 2.6 2.4 3.0 

Set 2 

Minimum 40.1 41.7 45.1 44.9 45.6 47.6 48.4 
Maximum 72.7 56.4 52.4 49.0 56.3 49.5 51.7 
Average 53.8 48.3 47.1 46.4 48.5 48.4 50.1 
Std. Dev. 8.0 4.1 1.6 1.4 2.5 0.6 2.4 
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Table 5.12 
MSE of quantiles estimated for sites in Set 2 using GLS-IF(P) approach wherein the GLS 

estimator of the mean derived for the site of interest is scaled by the ratio of the at-site 
precipitation to the mean precipitation of the region in Set 1 within which it is allocated. 

 T = 10 years 
(p = 0.90) 

T = 25 years 
(p = 0.96) 

T = 50 years 
(p = 0.98) 

T = 100 years 
(p = 0.99) 

Region 1  0.2267 0.2467 0.2670 0.2906 

Region 2   0.4051 0.3919 0.3865 0.3943 

Region 3  0.2819 0.2554 0.2368 0.2262 

Region 4  0.0736 0.0601 0.0536 0.0536 

Region 5  2.4586 2.9798 3.4727 4.0788 

Region 6  0.1174 0.1210 0.1340 0.1624 

Region 7  4.1176 5.2525 6.3718 7.8813 

Average  1.0972 1.3290 1.5600 1.8696 

 

5.3.2 Estimation at Ungauged Sites Located in Haiti 

The Gonaives basin in Haiti is used herein to demonstrate application of the GLS-

IF(P) approach to extrapolate regional flood distributions from data rich areas to data 

scarce locations.  This application is an example of a more extreme extrapolation than 

that considered above for sites in Set 2, as the Gonaives watershed is located in an area 

for which the climate is vastly different from that of the area used for model development 

(i.e., Set 1). 

The Gonaives watershed is located in the Northeastern region of Haiti.  It is 

frequently in the path of tropical storms and hurricanes, and has an average annual 

precipitation of 46.1 inches.  Estimating flood quantiles in Haiti is difficult due to lack of 
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streamflow data; therefore, previous studies of the watershed used rainfall-runoff models 

to estimate flood quantiles (e.g., Brandimarte et al. 2010; Ilorme et al. 2011).  Available 

physical characteristics for the watershed obtained from Ilorme et al. (2011) are reported 

in Table 5.13.  The table reports the original values of the physical characteristics, as well 

as values which have been normalized and standardized (or transformed) for use in the 

linear discriminant functions defined for Set 1 in Table 5.5.  Evaluation of LD1 using the 

transformed values indicates that the Gonaives watershed should be allocated to Region 4 

of Set 1. 

Table 5.13 
Watershed Characteristics of Gonaives, Haiti. 

Physical 
Characteristic 

Original 
Value 

Transformed 
Value 

Drainage Area 212 2.33 

Main Channel Slope 198 3.27 

Basin Slope 21.0 5.07 

Basin Shape 4.82 1.25 

Basin Elevation 1406 10.6 

% Impervious Cover 2.0 0.745 

% Forest Cover 3.0 1.75 

Soil Drainage Index 4.0 0.328 

Infiltration Index 3.0 0.295 
 

The at-site mean for Gonaives was estimated to be 120.8 m3/s (4266 ft3/s) using 

the GLS regression model developed for Region 4 (Table 5.2).  This value was 

subsequently scaled by precipitation and used to scale the Index Flood model developed 

for Region 4 in Set 1.  Table 5.14 reports values of the 10-, 25-, 50-, and 100-year events 
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derived for Gonaives.  The estimate of the 100-year flood is about four times lower than 

that estimated by Ilorme et al. (2011) using rainfall-runoff modeling (1191m3/s).  As the 

true quantile is unknown, it is difficult to know which estimate is more accurate.  

Previous studies have demonstrated that, when employed within the area used for model 

development, regional flood frequency analyses often provide more accurate flood 

quantiles than hydrologic modeling (e.g., USACE, 1994).  However, additional analyses 

are needed to confirm that the same holds true when regional flood distributions are 

extrapolated to areas outside of that used for model development, as is the case 

considered here. 

Table 5.14 
Flood quantiles derived for Gonaives watershed via the GLS-IF(P) approach. 

 
T = 10 years 

(p = 0.90) 
T = 25 years 

(p = 0.96) 
T = 50 years 

(p = 0.98) 
T = 100 years 

(p = 0.99) 

Flow (m3/s) 187.1 215.8 307.4 369.9 

 

5.4 Conclusion 

This chapter presented a methodology by which regional flood distributions 

derived for data rich areas can be successfully extrapolated to basins of similar physical 

composition located beyond the extent of the study area used for model development.  

Results presented herein demonstrate that GLS regression models can provide sufficient 

estimators of the at-site scale (or index-flood) parameters for ungauged basins within the 

predefined study area; however, additional measures must be taken when the regional 

flood distribution is extrapolated to ungauged basins outside of the study area.  In 



141 
 

particular, a transfer function based on precipitation must be applied to appropriately 

scale flood magnitudes for areas where the mean annual precipitation is significantly 

different from that in the study area.  Overall, the success of the extrapolation is 

dependent upon the accuracy of the GLS model of the mean, and the ability to 

appropriately classify the site in question within a delineated region. 

In addition, an example of the extrapolation of results from the data rich 

Southeastern portion of the U.S. to the data scarce Gonaives watershed of Haiti was 

presented.  While such an extrapolation is certainly possible using the methodology 

presented herein, additional analyses are needed to confirm that the results obtained are in 

fact reasonable when regional flood distributions are extrapolated to areas in a 

significantly different climate.  It is highly likely that additional scale parameters are 

needed to appropriately scale flood magnitudes when extrapolating the regional flood 

distribution to basins within alternative climate zones. 

  



142 
 

Chapter 6 :  Conclusion 

Regional flood frequency techniques, such as the Index Flood method and regional 

regression procedures, are commonly used to estimate flood quantiles when either flood 

data for the basin under study is unavailable or the record length at an individual gauging 

station is insufficient for reliable analyses.  Successful derivation of site specific flood 

quantile estimates using regional models is predicated on the assumption that similarity in 

the flood regime (hydrological homogeneity) is indicated by similarity in physical 

characteristics aggregated at the watershed level.  Unfortunately, the delineation of 

hydrologically homogeneous regions is highly subjective and is dependent on the 

physical similarity measures and classification techniques employed.  In addition, as 

currently practiced, regional flood frequency models are only applied within the area 

used for model development; no procedures currently exist to extrapolate flood statistic-

basin characteristic relationships from regions which are relatively data rich to data 

scarce regions where flood quantile estimates are sorely needed. 

In order to improve quantile estimates for ungauged sites located in both data rich 

and data scarce areas, this dissertation presented simple rules to delineate hydrologically 

homogeneous regions based on the physical characteristics which are the most relevant 

indicators of extreme hydrologic response, and to extrapolate flood statistic-basin 

characteristic relationships to data sparse areas located beyond the extent of the area used 

for model development.  Herein, use of the Index Flood method for quantile estimation at 

ungauged sites was investigated because once the regional flood distribution is properly 

scaled to the site in question, the Index Flood procedure provides the entire frequency 
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distribution at a given site from which any quantile could be derived, whereas separate 

models must be developed for each quantile of interest when regression procedures are 

employed. 

Chapter 3 presented a standardized procedure for the delineation of hydrologically 

homogeneous regions.  Key aspects of this procedure are a new statistical metric to 

identify physically discordant sites, and the identification of an appropriate set of 

physically based measures of extreme hydrologic response for use in region delineation.  

Results presented herein demonstrate that mean basin elevation, mean basin slope, and 

soil drainage are appropriate for regionalization of flood data throughout the Southeastern 

U.S.  Use of these characteristics as similarity measures in the proposed approach for 

region delineation yields regions which are more homogeneous and more efficient for 

quantile estimation at ungauged sites via the Index Flood method than regions delineated 

using alternative physically-based procedures typically employed in practice.  These key 

physical characteristics are also shown to be efficient for region delineation and quantile 

development in alternative study areas composed of watersheds with statistically different 

physical composition. 

Previous studies have demonstrated that hydrologic models of individual 

watersheds are generally improved by using spatially distributed parameters, and thus it 

was of interest to see if additional gains in the accuracy of quantile estimators derived via 

the Index Flood method could be achieved by using more precise descriptions of the key 

physical variables.  In Chapter 4, regions throughout the Southeastern U.S. were 

delineated as a function of spatially distributed values of soil drainage, basin slope, and 
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basin elevation.  Overall, marginal gains in homogeneity and a slight decrease in the 

performance of quantile estimators for ungauged sites were observed when regions were 

delineated using spatially distributed variables instead of aggregated values.  Thus, the 

use of aggregated values of key watershed characteristics is sufficient for the 

regionalization of flood data.  This finding is fortunate, as simple models for the 

extrapolation of results to data sparse areas outside of the study region can then be 

developed. 

Chapter 5 presented a methodology by which regional flood distributions derived 

for data rich areas can be successfully extrapolated to basins of similar physical 

composition located beyond the extent of the study area used for model development.  

Results presented herein demonstrate that GLS regression models can provide sufficient 

estimators of the at-site scale (or index-flood) parameters for ungauged basins within the 

predefined study area; however, additional measures must be taken when the regional 

flood distribution is extrapolated to ungauged basins outside of the study area.  In 

particular, a transfer function based on precipitation must be applied to appropriately 

scale flood magnitudes for areas where the mean annual precipitation is significantly 

different from that in the study area.  Overall, the success of the extrapolation is 

dependent upon the accuracy of the GLS model of the mean, and the ability to 

appropriately classify the site in question within a delineated region. 

Overall, the research presented herein provides a critical contribution to the 

profession as appropriate methods for flood quantile estimation in ungauged basins are 

needed throughout the world, particularly in data sparse areas.  An example of the 
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extrapolation of regional flood distributions from the data rich Southeastern U.S. to the 

data scarce Gonaives watershed of Haiti was presented in Chapter 5.  While such an 

extrapolation is certainly possible using the physically-based methodology presented 

herein, coupled with the increasing availability of remotely sensed data, additional 

analyses are needed to confirm that the quantile estimates obtained are in fact reasonable 

when regional flood distributions are extrapolated to areas in a significantly different 

climate.  It is highly likely that additional scale parameters are needed to appropriately 

scale flood magnitudes when extrapolating the regional flood distribution to basins within 

alternative climate zones. 

In general, the ability to successfully estimate flood quantiles at ungauged sites as 

a function of physical attributes which are easily computed at the watershed scale using 

GIS and remotely sensed data makes regional flood frequency techniques quite attractive, 

because the development of these models as proposed herein is less time consuming and 

data intensive than alternatives such as watershed specific rainfall-runoff models with 

spatially distributed parameters.  Further, previous studies have demonstrated that, when 

employed within the area used for model development, regional flood frequency analyses 

are more efficient for flood quantile estimation than hydrologic models.  However, 

additional analyses are needed to confirm that the same holds true when regional flood 

distributions are extrapolated to areas outside of that used for model development. 

Future work will include the development of rainfall-runoff models for select sites 

in Set 2 in order to assess the relative accuracy of hydrologic models versus the GLS-IF 

models extrapolated beyond the extent of the area used for model development.  In 
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addition, the possible impacts of variability in precipitation across individual watersheds 

on quantile estimators will be evaluated.  Alternative transfer functions based on factors 

such as the average annual 24-hour maximum precipitation event and the 24-hour, N-year 

storm event where N is a function of the drainage area will also be considered.  Impacts 

of the underlying geology on the scaling of regional quantiles to individual watersheds 

will also be investigated.  And, to ensure that the methodology and key watershed 

characteristics are truly applicable in range of geographic locations, the analyses 

presented herein will be repeated for alternate study areas such as the Midwestern and 

Pacific Northwestern regions of the United States. 
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Appendix A 

Soil Drainage and Infiltration Indices 
 

This appendix describes the soil drainage (SI) and infiltration (Inf) indices employed as 

watershed attributes in the regional flood frequency techniques employed in this 

dissertation. 

A1. Soil Drainage Index 

The soil drainage index is a numerical representation of the drainage class which 

identifies the natural drainage properties of the soil.  In particular, it refers to the 

frequency and duration of wet periods under conditions similar to those under which the 

soil formed (National Soil Survey Handbook, accessed 07/18/2011).  There are seven major 

classes of soil drainage as described in the Soil Survey Manual (1993): 

Excessively drained (E): Water is very rapidly removed from the soil. Soils are 
generally very coarse textured, rocky, or shallow. Some are steep. All are 
free of the mottling related to wetness. 

Somewhat excessively drained (SE): Water is rapidly removed from the soil. 
Soils are generally sandy and rapidly pervious. Some are shallow. Some are 
steep enough that much of the water they receive is lost as runoff. All are 
free of the mottling related to wetness. 

Well drained (W): Water is readily removed from the soil, but not rapidly. 
Water is available to plants throughout most of the growing season, and 
wetness does not inhibit growth of roots for significant periods during most 
growing seasons. Well drained soils are generally medium textured and are 
mainly free of mottling. 

Moderately well drained (MW): Water is removed from the soil somewhat 
slowly during some periods. Soils are wet for only a short time during the 
growing season, but periodically they are wet long enough that most 
mesophytic crops are affected. They typically have a slowly pervious layer 



159 
 

within or directly below the solum, or periodically receive high rainfall, or 
both. 

Somewhat poorly drained (SP): Water is removed slowly enough that the soil 
is wet for significant periods during the growing season. Wetness markedly 
restricts the growth of mesophytic crops unless artificial drainage is 
provided. Soils typically have a slowly pervious layer, a high water table, 
additional water from seepage, nearly continuous rainfall, or a combination 
of these. 

Poorly drained (P): Water is removed so slowly that the soil is saturated 
periodically during the growing season or remains wet for long periods. 
Free water is commonly at or near the surface for long enough during the 
growing season that most mesophytic crops cannot be grown unless the soil 
is artificially drained. The soil is not continuously saturated in layers 
directly below plow depth. Poor drainage results from a high water table, a 
slowly pervious layer within the profile, seepage, nearly continuous rainfall, 
or a combination of these. 

Very poorly drained (VP): Water is removed from the soil so slowly that free 
water remains at or on the surface during most of the growing season. 
Unless the soil is artificially drained, most mesophytic crops cannot be 
grown. Soils are commonly level or depressed and are frequently ponded. 
Yet, where rainfall is high and nearly continuous, they can have moderate 
or high slope gradients. 

Herein, numerical representations of these drainage classes are necessary for the 

application of multivariate statistics and regional regression techniques.  The values of 

the soil drainage index (SI) and the corresponding drainage class are as follows: 1 

represents class E, 2 represents class SE, 3 represents class W, 4 represents class MW, 5 

represents class SP, 6 represents class P, and 7 represents class VP. 

A2. Infiltration Index 

The infiltration index is a numerical representation of the hydrologic soil group 

which identifies the runoff potential of the soil and the minimum infiltration rate 

following prolonged periods of wetness (National Soil Survey Handbook, accessed 
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07/18/2011).  There are four major groups (A, B, C, and D) defined for classification of 

soils within the United States.  The properties of these groups are defined in the National 

Engineering Handbook (available online at http://www.mi.nrcs.usda.gov/technical/ 

engineering/neh.html, accessed 07/19/2011):  

Group A: Soils with high infiltration rates and low runoff potential when 
thoroughly wet. These soils have high water transmission rates, consisting 
primarily of deep, well drained to excessively drained sands or gravelly 
sands. 

Group B: Soils with moderate infiltration rates when thoroughly wet. These 
soils have moderate water transmission rates, consisting primarily of 
moderately deep or deep, moderately well drained or well drained soils that 
have moderately fine texture to moderately coarse texture. 

Group C: Soils with slow infiltration rates when thoroughly wet. These soils 
have slow water transmission rates, consisting primarily of soils with a 
layer that impedes the downward movement of water or soils of moderately 
fine texture or fine texture. 

Group D: Soils with very slow infiltration rates and high runoff potential when 
thoroughly wet. These soils have very slow water transmission rates, 
consisting primarily of clays with a high shrink-swell potential, soils with a 
high water table, soils with a claypan or clay layer at or near the surface, 
and shallow soils over nearly impervious material. 

Herein, numerical representations of these soil groups are necessary for the application of 

multivariate statistics and regional regression techniques.  The values of the infiltration 

index (Inf) and the corresponding soil group are as follows: 1 represents group A, 2 

represents group B, 3 represents group C, and 4 represents group D. 
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Appendix B 

Application of the Physical Discordancy Test 

This appendix contains a full description of the procedure to identify physically 

discordant sites using the metric introduced in Section 3.1.1.  A detailed description of 

the test is provided using an example for Region 2 of Set 1 (N = 22 sites) delineated 

using the Ward clustering technique applied to mean elevation, basin slope, and soil 

drainage (see Figure 3.5). 

For a given region, the first step is to perform a principal component analysis 

using the normalized and standardized physical characteristics for each site (or 

watershed) therein.  This is accomplished using equations (32), (33), and (34) to compute 

the principal component functions (Yi), and the associated eigenvectors (ei) and variance 

(eigenvalues, i).  For the purpose of the physical discordancy test, i and Yi are the only 

parameters of interest.  For Region 2 of Set 1, Table B.1 reports the principal component 

loadings, the standard deviation of each component (Si = ) and the cumulative 

variance explained when higher order PCs are retained.  Nine principal components are 

obtained as nine physical characteristics are investigated herein as possible indicators of 

extreme hydrologic response.  Only the components whose standard deviations are 

greater than 1 are to be employed in the physical discordancy test, as these are the PCs 

which explain the majority of the variability in the original dataset (Johnson and Wichern 

2007, p. 451).  For Region 2, only the first four PCs should be used; these PCs explain 

81% of the variation of the dataset. 
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Table B.1 
PCA output obtained using normalized and standardized physical variables at sites in 

Region 2 of Set 1. 

Physical 
Characteristic PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

Drainage Area 0.51 0.15 -0.01 0.21 0.29 -0.04 0.27 0.72 -0.03 

Main Channel 
Slope 

-0.48 -0.26 0.28 0.11 -0.05 -0.27 0.70 0.12 0.20 

Basin Slope -0.05 -0.17 -0.64 -0.58 0.23 0.04 0.34 0.00 -0.22 

Basin Shape 0.53 0.20 -0.14 0.05 -0.15 -0.05 0.42 -0.52 0.43 

Basin 
Elevation 

-0.06 -0.26 -0.15 0.54 0.70 0.06 -0.02 -0.34 -0.05 

% Impervious 
Cover 

-0.13 0.58 -0.10 0.16 0.00 -0.55 0.10 -0.16 -0.51 

% Forest 
Cover 

-0.35 0.44 -0.22 -0.12 0.31 -0.14 -0.22 0.16 0.66 

Soil Drainage 
Index 

-0.28 0.22 -0.43 0.45 -0.37 0.55 0.18 0.13 -0.05 

Infiltration 
Index 

-0.09 0.43 0.47 -0.27 0.34 0.54 0.25 -0.15 -0.15 

Si =  1.65 1.52 1.07 1.05 0.97 0.57 0.44 0.42 0.27 

Cumulative 
Variance: 0.30 0.56 0.69 0.81 0.92 0.95 0.97 0.99 1.00 

 

The first four principal component scores (with eigenvalues greater than 1) are 

then evaluated for all sites in Region 2 using the loadings in Table B.1 in conjunction 

with the normalized and standardized values of the physical variables at the site in 

question.  The resulting PC scores and corresponding Station ID are reported in Table 

B.2.  In order to identify extreme values of the PC scores, critical values (Tcritical) are 

computed using equation (54) wherein S =  for i = 1, …, 4, and  = 2.08 as 

Region 2 contains N = 22 sites.  The critical values for Region 2 are listed in Table B.3. 
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Table B.2 
First four principal component scores for each watershed in Region 2 of Set 1. 

Bold font indicates physically discordant watersheds. 

Station 
ID PC1 PC2 PC3 PC4 

88 -1.90 0.41 -0.82 0.65 
145 1.47 -3.92 -0.23 0.78 
146 0.41 0.55 -0.62 1.77 
147 -0.37 0.29 -1.13 1.17 
177 -0.21 0.86 -0.86 1.11 
178 -1.61 1.42 0.79 0.72 
179 2.85 -3.44 0.76 0.07 
180 -0.89 1.57 0.32 -0.31 
181 1.74 2.28 -0.29 0.77 
226 3.64 0.47 -1.18 -0.31 
227 -1.94 -1.78 -1.93 -1.23 
228 0.73 0.69 0.74 -2.30 
229 -0.15 0.49 -0.49 -2.13 
231 -1.12 -0.92 -0.88 -1.15 
232 0.87 0.57 1.18 1.21 
233 -1.16 -0.36 0.68 -0.26 
234 -0.38 -0.53 1.52 -0.16 
236 -1.19 -0.94 2.54 0.62 
240 -1.98 -0.50 -1.47 0.74 
246 0.83 2.03 0.68 -0.69 
247 2.66 1.29 -0.25 -0.60 
248 -2.29 -0.52 0.95 -0.49 

Table B.3 
Critical values for the first four principal component scores for Region 2 in Set 1. 

 PC1 PC2 PC3 PC4 

Tcritical 3.64 3.16 2.23 2.18 
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The values of each PC score in Table B.2 are then compared against the 

corresponding critical values in Table B.3.  Any PC scores which are less than -Tcritical or 

greater than +Tcritical are deemed extreme with regards to the characteristics generally 

observed in the region, and the corresponding watershed is identified as physically 

discordant.  The discordant sites identified in Region 2 are indicated by bold font in Table 

B.2. 

As the standardized procedure for region delineation outlined in Section 3.1 

recommends only removing those sites which are both hydrologically and physically 

discordant, the results above are then compared with those of the robust hydrologic 

discordancy test proposed by Neykov et al. (2007).  Details of the latter test are provided 

by Neykov et al. (1997); herein, the test is implemented in R using the package provided 

by Todorov and Filzmoser (2009).  An output of the test is a distance plot which shows 

the location of the discordant sites using an internal index (Neykov ID = 1, …., N) related 

to the order in which the sites where entered in the test.  The distance plot for Region 2 of 

Set 1 is illustrated in Figure B.1.  Four sites are identified as hydrologically discordant; 

the Station IDs of these sites are tabulated in Figure B.1.  The site(s) identified as both 

hydrologically and physically discordant (HPD) are to be removed from the region prior 

to developing the regional flood distribution via the GEV/L-moment Index Flood 

procedure.  For Region 2, only watershed 228 is identified as HPD.  



165 
 

5 10 15 20

1
2

3
4

Index

R
ob

us
t d

is
ta

nc
e

12

16
22

1

Distance Plot

Neykov
id

Station
id

1 88

12 228

16 233

22 248

 
Figure B.1: Distance plot obtained from the hydrological discordancy test of Neykov et 
al. (2007) and Station IDs of sites identified as hydrologically discordant. 
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Appendix C 

Additional Results of Jackknife Resampling Procedure 

This appendix presents additional results for the jackknife resampling analyses conducted 

in Chapters 3 and 4.  These results correspond to either the original regions are reported 

for regions from which all hydrologically discordant (HD) sites have been removed, as 

well as regions from which all sites which are both hydrologically and physically 

discordant (HPD) have been removed.  Results for regions without HD sites are included 

herein for comparison purposes only. 

Table C.1 
MSE of flood quantiles obtained for regions delineated in Case 1 (Chapter 3). 

 T = 10 years 
(p = 0.90) 

T = 25 years 
(p = 0.96) 

T = 50 years 
(p = 0.98) 

T = 100 years 
(p = 0.99) 

 HPD HD HPD HD HPD HD HPD HD 

Region 1  0.003 0.002 0.009 0.005 0.020 0.011 0.037 0.021 

Region 2  0.003 0.004 0.004 0.004 0.012 0.012 0.028 0.029 

Region 3  0.002 0.001 0.002 0.001 0.008 0.005 0.020 0.012 

Average 0.003 0.002 0.005 0.003 0.013 0.010 0.028 0.021 
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Table C.2 
MSE of flood quantiles obtained for regions delineated in Case 2 (Chapter 3). 

 T = 10 years 
(p = 0.90) 

T = 25 years 
(p = 0.96) 

T = 50 years 
(p = 0.98) 

T = 100 years 
(p = 0.99) 

 HPD HD HPD HD HPD HD HPD HD 

Region 1 0.006 0.004 0.018 0.015 0.034 0.028 0.057 0.047 

Region 2 0.003 0.002 0.011 0.010 0.027 0.023 0.052 0.041 

Region 3 0.003 0.003 0.017 0.017 0.039 0.035 0.072 0.060 

Region 4 0.005 0.004 0.025 0.029 0.061 0.065 0.117 0.120 

Region 5 0.008 0.008 0.034 0.036 0.074 0.076 0.135 0.135 

Average 0.005 0.004 0.021 0.021 0.047 0.045 0.087 0.081 

 

Table C.3 
MSE of flood quantiles obtained for regions delineated in Case 3 (Chapter 3). 

 T = 10 years 
(p = 0.90) 

T = 25 years 
(p = 0.96) 

T = 50 years 
(p = 0.98) 

T = 100 years 
(p = 0.99) 

 HPD HD HPD HD HPD HD HPD HD 

Region 1  0.006 0.005 0.019 0.014 0.037 0.027 0.063 0.045 

Region 2  0.004 0.003 0.021 0.013 0.045 0.027 0.082 0.050 

Region 3  0.005 0.004 0.025 0.029 0.061 0.065 0.117 0.120 

Region 4 0.008 0.008 0.035 0.035 0.081 0.081 0.156 0.156 

Region 5 0.010 0.008 0.032 0.033 0.063 0.062 0.109 0.101 

Average 0.006 0.006 0.026 0.025 0.057 0.052 0.105 0.094 
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Table C.4 
MSE of flood quantiles obtained for regions delineated in Case 4 (Chapter 3). 

 T = 10 years 
(p = 0.90) 

T = 25 years 
(p = 0.96) 

T = 50 years 
(p = 0.98) 

T = 100 years 
(p = 0.99) 

 HPD HD HPD HD HPD HD HPD HD 

Region 1  0.004 0.004 0.012 0.013 0.023 0.024 0.037 0.041 

Region 2  0.005 0.004 0.017 0.015 0.031 0.030 0.050 0.050 

Region 3  0.006 0.004 0.024 0.013 0.056 0.031 0.106 0.059 

Region 4 0.006 0.004 0.022 0.025 0.049 0.055 0.092 0.101 

Region 5 0.007 0.007 0.031 0.031 0.067 0.067 0.122 0.122 

Average 0.006 0.005 0.021 0.017 0.045 0.041 0.081 0.075 

 

Table C.5 
MSE of flood quantiles obtained for regions delineated in Case 5 (Chapter 3). 

 T = 10 years 
(p = 0.90) 

T = 25 years 
(p = 0.96) 

T = 50 years 
(p = 0.98) 

T = 100 years 
(p = 0.99) 

 HPD HD HPD HD HPD HD HPD HD 

Region 1  0.002 0.002 0.009 0.010 0.017 0.020 0.032 0.036 

Region 2  0.005 0.003 0.017 0.011 0.030 0.022 0.048 0.036 

Region 3  0.006 0.003 0.017 0.017 0.043 0.041 0.089 0.077 

Region 4 0.004 0.003 0.013 0.010 0.029 0.024 0.054 0.046 

Region 5 0.003 0.003 0.017 0.017 0.039 0.035 0.072 0.060 

Region 6 0.007 0.008 0.031 0.035 0.070 0.069 0.132 0.118 

Region 7 0.008 0.008 0.034 0.034 0.067 0.067 0.114 0.114 

Average 0.005 0.004 0.020 0.019 0.042 0.040 0.077 0.070 

 



169 
 

Table C.6 
MSE of flood quantiles obtained for regions delineated in Set 2 using aggregated values 

of basin elevation, basin slope, and soil drainage. 

 T = 10 years 
(p = 0.90) 

T = 25 years 
(p = 0.96) 

T = 50 years 
(p = 0.98) 

T = 100 years 
(p = 0.99) 

 HPD HD HPD HD HPD HD HPD HD 

Region 1  0.005 0.002 0.026 0.012 0.059 0.032 0.112 0.066 

Region 2  0.007 0.005 0.027 0.030 0.063 0.066 0.121 0.119 

Region 3  0.005 0.002 0.019 0.011 0.004 0.025 0.073 0.050 

Region 4 0.004 0.004 0.012 0.012 0.023 0.023 0.040 0.040 

Region 5 0.006 0.004 0.024 0.012 0.056 0.023 0.106 0.040 

Region 6 0.013 0.012 0.038 0.025 0.077 0.042 0.136 0.069 

Average 0.007 0.005 0.024 0.017 0.047 0.035 0.098 0.064 

 

Table C.7 
MSE of flood quantiles obtained for regions delineated in Set 1 using spatially distributed 

representations of basin elevation, basin slope, and soil drainage. 

 T = 10 years 
(p = 0.90) 

T = 25 years 
(p = 0.96) 

T = 50 years 
(p = 0.98) 

T = 100 years 
(p = 0.99) 

 HPD HD HPD HD HPD HD HPD HD 

Region 1  0.003 0.003 0.012 0.013 0.024 0.027 0.041 0.046 

Region 2  0.005 0.003 0.022 0.011 0.047 0.023 0.086 0.041 

Region 3  0.003 0.003 0.017 0.016 0.039 0.034 0.070 0.060 

Region 4 0.011 0.009 0.041 0.043 0.089 0.095 0.169 0.176 

Region 5 0.006 0.006 0.028 0.025 0.060 0.050 0.101 0.084 

Region 6 0.005 0.004 0.018 0.016 0.033 0.032 0.054 0.054 

Region 7 0.005 0.002 0.012 0.015 0.031 0.036 0.065 0.071 

Average 0.005 0.004 0.021 0.020 0.046 0.042 0.084 0.076 
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Table C.8 
MSE of flood quantiles obtained for regions delineated in Set 2 using spatially distributed 

representations of basin elevation, basin slope, and soil drainage. 

 T = 10 years 
(p = 0.90) 

T = 25 years 
(p = 0.96) 

T = 50 years 
(p = 0.98) 

T = 100 years 
(p = 0.99) 

 HPD HD HPD HD HPD HD HPD HD 

Region 1  0.007 0.005 0.038 0.025 0.087 0.054 0.169 0.099 

Region 2  0.007 0.005 0.027 0.030 0.063 0.066 0.121 0.119 

Region 3  0.004 0.004 0.015 0.015 0.034 0.028 0.065 0.045 

Region 4 0.004 0.003 0.015 0.014 0.031 0.030 0.057 0.055 

Region 5 0.003 0.002 0.020 0.021 0.055 0.059 0.110 0.117 

Region 6 0.010 0.001 0.028 0.010 0.055 0.025 0.093 0.049 

Average 0.006 0.003 0.024 0.019 0.054 0.044 0.103 0.081 
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Appendix D 

Additional Information for Regression Model Development 

 

This appendix presents additional statistics related to the ordinary least squares (OLS) 

regression models of the coefficient of variation, smoothing functions to describe the 

correlation-distance relationship, and generalized least squares (GLS) regression models 

of the mean employed in Chapter 5.  The statistics are summarized for each of the seven 

regions delineated for Set 1.  Residuals plots showing the adequacy of the regression 

models are also provided. 

D1. OLS Regression Models of Coefficient of Variation 

The OLS regression models of the coefficient of variation presented in Table 5.1 

were obtained using the function “lm” in R.  For each region, the base-10 logarithms of 

the coefficient of variation and the base-10 logarithms of the area (see equation 60) 

computed for each site served as inputs to the function.  Table D.1 reports the values of 

the model coefficients derived within each region, as well as the standard error associated 

with each coefficient, and t-values and p-values resulting from a two-sided hypothesis 

test to indicate their significance.  These results suggest that the coefficient in most 

regions would be adequately described by the mean regional value; the coefficient on the 

area is only significant at the 5% level in Region 6.  Table D.2 reports summary statistics 

related to the precision of the models derived for each region.  Overall, none of the 
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models are adequate for prediction purposes; however, the models are sufficient for the 

purpose of the estimator of coefficient of variation used herein.   
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Table D.1 
Summary statistics for OLS regression model coefficients for each region in Set 1. 

 Coefficient Standard 
Error T-value P-value 

 Region 1 

Constant -0.9391 0.0993 -9.456 0.000 

Area 0.0547 0.0473 1.157 0.274 

 Region 2 

Constant -0.9128 0.1005 -9.079 0.000 

Area 0.0109 0.0109 0.047 0.871 

 Region 3 

Constant -0.5755 0.1462 -3.938 0.001 

Area -0.1078 0.0748 -1.441 0.1652 

 Region 4 

Constant -0.7600 0.0740 -10.27 0.000 

Area -0.0600 -0.0600 0.036 0.113 

 Region 5 

Constant -0.8480 0.2407 -3.524 0.002 

Area 0.0027 0.1000 0.027 0.979 

 Region 6 

Constant -0.6244 0.0998 -6.256 0.000 

Area -0.0934 0.0455 0.046 0.050 

 Region 7 

Constant -0.6430 0.1383 -4.649 0.001 

Area -0.0237 -0.0237 0.0603 0.701 
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Table D.2 
Summary statistics for the OLS regression models of the coefficient of variation derived 

for each region in Set 1. 

 R2 Adjusted-R2 Residual Standard 
Error 

Region 1 0.1180 0.0298 0.0709 

Region 2 0.0003 -0.0471 0.1040 

Region 3 0.0940 0.0487 0.1174 

Region 4 0.1014 0.0640 0.0924 

Region 5 0.0000 -0.0555 0.1334 

Region 6 0.1442 0.1099 0.1163 

Region 7 0.0127 -0.0696 0.1214 

 

D2. Smoothing Functions for Estimation of Cross-Correlation 

To avoid correlation between the residuals, the cross-correlations used to estimate 

the sampling covariance matrix are computed using a smoothing function which 

approximates the correlation between two sites as a function of the distance between the 

sites.  The form of the smoothing function is provided in equation (59).  The function 

parameters (  and ) were estimated using a non-linear regression method in R via the 

function “nls”.  Figure 5.1 illustrates the smoothing function derived for Region 1 of Set 

1.  The smoothing functions for the other six regions are illustrated in the figures below.  
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Figure D.1: Correlation-distance smoothing function for Region 2 (  = 0.000083 and  = 
0.9997). 
 

 
Figure D.2: Correlation-distance smoothing function for Region 3 (  = 0.000679 and  = 
0.9994) 
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Figure D.3: Correlation-distance smoothing function for Region 4 (  = 0.0003623 and  
= 0.9996). 
 

 
Figure D.4: Correlation-distance smoothing function for Region 5 (  = 0.000245 and  = 
0.9997). 
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Figure D.5: Correlation-distance smoothing function for Region 6 (  = 0.000157 and  = 
0.9998). 
 

 
Figure D.6: Correlation-distance smoothing function for Region 7 (  = 0.000565 and  = 
0.9994). 
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D3. GLS Regression Models of the Mean 

The GLS regression models of the mean presented in Table 5.2 were obtained 

using a modified version of a MATLAB code prepared by Griffis and Stedinger (2007a).  

The tables below report the values of the model coefficients derived for each region, as 

well as the standard error associated with each coefficient, and t-values and p-values 

resulting from a two-sided hypothesis test to indicate their significance.  Plots of the 

residuals resulting from the GLS regression models are also provided herein.  With the 

exception of Region 3 wherein the model for the mean was relatively poor, the residuals 

are all centered on a mean of zero and no patterns are evident; therefore, the regression 

functions obtained from the GLS model are appropriate. 

Table D.3 
Summary statistics for GLS regression model coefficients in Region 1. 

 Model 
Coefficient 

Standard 
Error T-value P-value 

Constant -3.610 0.9446 -3.820 0.0051 

Drainage Area 0.8224 0.0358 22.99 0.0000 

% Forest Cover 2.6441 0.4598 5.751 0.0004 

Infiltration 1.336 0.2210 56.05 0.0003 
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Table D.4 
Summary statistics for GLS regression model coefficients in Region2. 

 Model 
Coefficient 

Standard 
Error T-value P-value 

Constant 6.150 1.134 5.421 0.0000 

Drainage Area 0.7440 0.1077 6.909 0.0000 

Basin Shape -0.4659 0.1912 -2.436 0.0255 

Soil Drainage -7.260 2.244 -3.236 0.0046 

 

Table D.5 
Summary statistics for GLS regression model coefficients in Region 3. 

 Model 
Coefficient 

Standard 
Error T-value P-value 

Constant 0.8986 0.6980 1.287 0.2152 

Drainage Area 0.9538 0.2262 4.216 0.0006 

Channel Slope 0.7103 0.3248 2.187 0.0430 

% Impervious 0.1236 0.0311 3.976 0.0010 

% Forest Cover -0.0732 0.0330 -2.221 0.0402 

 

Table D.6 
Summary statistics for GLS regression model coefficients in Region 4. 

 Model 
Coefficient 

Standard 
Error T-value P-value 

Constant 2.061 0.2277 9.052 0.0000 

Drainage Area 0.6910 0.0458 15.10 0.0000 

Basin Shape -0.3377 0.0926 -3.646 0.0014 

Infiltration 1.035 0.0431 2.400 0.0253 
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Table D.7 
Summary statistics for GLS regression model coefficients in Region 5. 

 Model 
Coefficient 

Standard 
Error T-value P-value 

Constant -4.386 1.758 -2.495 0.0239 

Drainage Area 0.5682 0.0744 7.642 0.0000 

Precipitation 2.289 0.9797 2.336 0.0328 

% Forest Cover 1.669 0.3186 5.240 0.0001 

 

Table D.8 
Summary statistics for GLS regression model coefficients in Region 6. 

 Model 
Coefficient 

Standard 
Error T-value P-value 

Constant -8.734 2.018 -4.329 0.0003 

Drainage Area 0.5861 0.0495 11.83 0.0000 

Basin Slope 0.5916 0.1825 3.241 0.0038 

Precipitation 5.772 1.202 4.804 0.0001 

Infiltration 2.061 0.6081 3.389 0.0026 
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Table D.9 
Summary statistics for GLS regression model coefficients in Region 7. 

 Model 
Coefficient 

Standard 
Error T-value P-value 

Constant 5.840 0.7257 8.046 0.0000 

Drainage Area 0.4007 0.0782 5.121 0.0006 

Basin Shape -0.8730 0.3207 -2.723 0.0235 

Soil Drainage -10.52 3.129 -3.363 0.0084 

Infiltration 9.212 3.294 2.796 0.0208 

 
 

Figure D.7: Plot of residuals for GLS regression model of the mean for Region 1. 
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Figure D.8: Plot of residuals for GLS regression model of the mean for Region 2. 

 
Figure D.9: Plot of residuals for GLS regression model of the mean for Region 3. 
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Figure D.10: Plot of residuals for GLS regression model of the mean for Region 4. 
 

 
Figure D.11: Plot of residuals for GLS regression model of the mean for Region 5. 
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Figure D.12: Plot of residuals for GLS regression model of the mean for Region 6. 

 
Figure D.13: Plot of residuals for GLS regression model of the mean for Region 7. 
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Appendix E 

Additional Analyses for Classification of Ungauged Sites 

This appendix presents additional information used to assess the classification scheme 

used to allocated ungauged sites to a region within Set 1 as proposed in Chapter 5.   

Herein, the characteristics of sites within each region in Set 1 are compared to the 

characteristics of sites from Set 2 allocated to each region in Set 1 using Wilcoxon-Mann-

Whitney tests, and confusion matrices for alternative classification schemes are 

presented.   

E1. Wilcoxon-Mann-Whitney Tests 

Table E.1-Table E.7 report summary statistics for each of the nine physical 

variables computed for sites within each of the seven regions of Set 1, as well as for sites 

from Set 2 allocated to each region of Set 1 using the classification scheme based on LD1.  

For each variable, a Wilcoxon-Mann-Whitney test was performed to assess the 

significance of the physical differences between the sites in Set 1 and those from Set 2 

allocated to the same region.  The tests were performed using the “wilcox.test” function 

in R.  The resulting p-values are presented in Table E.8; the table also contains the results 

of tests on the precipitation as summarized for each region in Table 5.11.  Overall, no 

significant differences are observed with respect to area at the 5% level, and very few 

significant differences are observed with respect to channel slope, elevation, percent 

forest cover, and percent impervious surface.  Most of the significant differences are 

observed with respect to basin slope, soil drainage and precipitation, which may explain 
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why application of the GLS-IF approach explained in Chapter 5 does not produce 

quantile estimates for sites in Set 2 with as much precision as those derived for sites in 

Set 1.  While, some of these differences are accounted for by using the proposed scheme 

to weight the estimated mean by precipitation, it is possible that additional gains in 

quantile precision could be achieved by using additional metrics to account for 

differences in basin slope and soil drainage, especially because these are two of the key 

physical variables used as indicators of extreme hydrologic response.   

Table E.1 
Summary statistics for the nine physical variables computed for sites within Region 1 of 

Set 1 versus that of sites from Set 2 allocated therein. 

 A SCh SB Sh E Imp F SI Inf 

 Set 1 

Minimum 14.0 7.81 26.8 2.8 2070.2 0.1 79.1 2.3 2.0 

Maximum 655.0 230.9 50.7 11.4 4056.5 5.6 99.2 3.1 3.5 

Average 179.2 53.5 37.2 6.5 2875.3 1.3 88.7 2.8 2.3 

Std. Dev. 186.2 60.7 7.0 2.1 632.6 1.7 7.2 0.2 0.4 

 Set 2 

Minimum 15.9 4.7 14.9 1.6 2092.2 0 47.9 2.3 2.0 

Maximum 812.2 189.0 46.7 30.7 3978.5 1.9 99.0 3.1 3.6 

Average 164.9 50.2 33.7 9.6 3030.0 0.6 79.6 2.8 2.3 

Std. Dev. 179.4 46.2 8.9 7.9 488.9 0.5 14.1 0.2 0.4 
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Table E.2 
Summary statistics for the nine physical variables computed for sites within Region 2 of 

Set 1 versus that of sites from Set 2 allocated therein. 

 A SCh SB Sh E Imp F SI Inf 

 Set 1 

Minimum 24.4 3.3 11.4 2.4 1174.4 0 0 2.9 2.0 

Maximum 2914 149.3 37.4 26.9 1940.0 10.0 88.3 3.3 2.8 

Average 288.5 41.2 20.4 7.9 1587.1 3.3 67.5 3.0 2.4 

Std. Dev. 607.2 41.6 6.4 5.9 234.7 3.3 23.7 0.1 0.2 

 Set 2 

Minimum 26.0 4.2 17.3 3.6 1367.8 0.2 37.8 2.8 2.1 
Maximum 875.0 81.2 33.6 16.9 2496.0 5.7 90.1 3.3 3.2 
Average 199.7 23.9 25.1 8.7 1627.2 1.3 69.9 3.0 2.4 
Std. Dev. 228.5 19.6 5.2 3.6 281.5 1.4 13.4 0.2 0.3 

 

Table E.3 
Summary statistics for the nine physical variables computed for sites within Region 3 of 

Set 1 versus that of sites from Set 2 allocated therein. 

 A SCh SB Sh E Imp F SI Inf 

 Set 1 

Minimum 16.8 4.5 3.7 2.7 334.9 0 0 2.6 1.9 
Maximum 291.8 37.0 15.5 8.3 600.5 10.3 83.5 3.4 2.3 
Average 110.5 11.0 6.2 5.0 505.5 2.9 55.2 3.1 2.1 
Std. Dev. 80.1 7.7 2.5 1.4 75.2 2.6 24.6 0.2 0.1 

 Set 2 

Minimum 5.0 3.6 5.8 3.9 365.3 0.3 41.5 3.0 2.1 
Maximum 1372 23.5 14.2 12.1 682 3.9 68.7 3.3 2.7 
Average 246.9 8.9 8.4 7.4 555.6 1.4 59.0 3.2 2.3 
Std. Dev. 351.3 5.7 2.5 2.6 90.5 1.0 7.7 0.1 0.2 
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Table E.4 
Summary statistics for the nine physical variables computed for sites within Region 4 of 

Set 1 versus that of sites from Set 2 allocated therein. 

 A SCh SB Sh E Imp F SI Inf 

 Set 1 

Minimum 9.6 2.6 4.3 2.8 793.7 0 0 2.9 2.0 
Maximum 756.0 22.6 16.0 28.3 1119.8 40.5 60.6 3.3 3.2 
Average 165.3 9.2 8.2 7.1 910 9.5 38.0 3.1 2.3 
Std. Dev. 178.3 5.9 3.1 5.2 92.5 11.4 21.7 0.1 0.3 

 Set 2 

Minimum 9.2 5.4 6.0 3.3 705.8 0.6 8.3 3.0 2.1 
Maximum 2587 35.4 15.4 13.9 1173.5 34.3 65.9 3.3 3.0 
Average 281.8 11.5 9.8 6.9 905.1 6.4 44.5 3.1 2.3 
Std. Dev. 607.7 6.9 3.1 3.2 132.2 9.3 16.1 0.1 0.3 

 

Table E.5 
Summary statistics for the nine physical variables computed for sites within Region 5 of 

Set 1 versus that of sites from Set 2 allocated therein. 

 A SCh SB Sh E Imp F SI Inf 

 Set 1 

Minimum 47.1 2.0 3.6 4.0 36.3 0.2 46.7 2.9 2.1 

Maximum 792.1 21.4 15.5 21.8 184.4 2.7 83.5 3.4 2.9 

Average 293.5 7.1 7.6 9.0 87.6 1.0 60.5 3.1 2.4 

Std. Dev. 185.5 4.6 3.5 4.8 42.8 0.7 9.8 0.2 0.2 

 Set 2 

Minimum 2.7 0.7 0.3 2.5 26.6 0.1 15.7 2.8 1.9 

Maximum 1236 18.0 3.4 8.1 121.8 1.9 63.4 5.9 3.9 

Average 270.8 4.1 1.9 5.7 69.6 0.8 36.4 4.5 2.9 

Std. Dev. 365.5 4.0 0.8 1.7 29.9 0.6 12.0 0.9 0.5 
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Table E.6 
Summary statistics for the nine physical variables computed for sites within Region 6 of 

Set 1 versus that of sites from Set 2 allocated therein. 

 A SCh SB Sh E Imp F SI Inf 

 Set 1 

Minimum 9.8 1.7 0.9 2.7 201.9 0 0 3.4 2.2 
Maximum 1250 14.4 3.8 17.8 420.2 11.3 52.4 5.4 3.4 
Average 246.5 4.9 2.3 7.1 302.1 5.7 34.0 4.0 2.6 
Std. Dev. 291.6 3.2 0.8 3.7 70.3 2.2 11.0 0.5 0.3 

 Set 2 

Minimum 29.8 2.2 2.5 4.2 153.3 0.2 25.4 3.0 2.1 
Maximum 1228 13.2 12.6 19.1 398.2 9.7 72.9 4.3 2.9 
Average 313.2 5.9 6.1 11.6 293.6 2.5 52.6 3.3 2.3 
Std. Dev. 310.0 3.4 1.9 4.8 69.8 2.3 13.1 0.3 0.2 

 

Table E.7 
Summary statistics for the nine physical variables computed for sites within Region 7 of 

Set 1 versus that of sites from Set 2 allocated therein. 

 A SCh SB Sh E Imp F SI Inf 

 Set 1 

Minimum 20.8 0.6 0 2.7 66.4 0 0 3.4 2.2 
Maximum 1129 737.5 0.8 7.4 235.4 8.9 52.8 6.2 3.8 
Average 323.6 255.0 0.2 4.9 141.7 2.6 37.4 5.1 3.2 
Std. Dev. 348.5 239.3 0.2 1.4 51.9 3.1 15.5 1.0 0.6 
 Set 2 

Minimum 49.0 1.6 2.1 5.8 129.5 1.2 21.1 3.0 2.0 
Maximum 676.0 10.7 6.5 17.4 158.2 1.8 72.7 4.5 2.7 
Average 302.8 5.6 4.1 9.5 139.8 1.5 41.9 3.7 2.4 
Std. Dev. 287.4 4.6 2.1 5.4 13.2 0.3 23.6 0.7 0.3 

 



190 
 

Table E.8 
p-values of Wilcoxon-Mann-Whitney test.   

Bold indicates that the null hypothesis is rejected at 5% significance level. 

Region 
1 2 3 4 5 6 7 

A 0.887 0.790 0.181 0.852 0.091 0.493 1.00 
SCh 0.984 0.258 0.355 0.134 0.004 0.241 0.232 
SB 0.372 0.014 0.000 0.064 0.000 0.000 0.003 
Sh 0.967 0.164 0.004 0.664 0.015 0.001 0.037 
E 0.220 0.965 0.038 0.740 0.228 0.774 0.915 

Imp 0.670 0.156 0.130 0.419 0.419 0.000 0.595 
F 0.064 0.609 0.733 0.463 0.000 0.000 1.00 
SI 0.714 0.108 0.001 0.002 0.000 0.000 0.037 
Inf 0.477 0.390 0.000 0.489 0.002 0.000 0.061 
Pr 0.000 0.000 0.001 0.000 0.000 0.003 0.014 

 

E2. Confusion Matrices for Alternative Classification Schemes 

The confusion matrix for the classification scheme based on the first discriminant 

function as employed in Chapter 5 is presented in Table 5.8.  Therein, it was observed 

that the classification scheme works well, except in Regions 5 and 7.  The tables below 

present the confusion matrices for alternative classification schemes based on higher 

order discriminant functions.  These results indicate that the success of the classification 

of ungauged sites could be improved by employing both the first and second discriminant 

functions, which together explain roughly 93% of the differences between the regions 

(see Table 5.6).  Little or no gain in classification success would be achieved by retaining 

additional discriminant functions.   
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Table E.9 
Confusion matrix for the classification scheme based on the first two discriminant 

functions. 

 Region 

Actual\Prediction 1 2 3 4 5 6 7 

Region 1 12 0 0 0 0 0 0 

Region 2 1 21 0 0 0 0 0 

Region 3 0 0 22 0 0 0 0 

Region 4 0 0 0 26 0 0 0 

Region 5 0 0 0 0 20 0 0 

Region 6 0 0 0 0 0 26 1 

Region 7 0 0 0 0 0 0 14 

Prediction 
Accuracy (%): 

92 100 100 100 100 100 93 

 

Table E.10 
Confusion matrix for the classification scheme based on the first three discriminant 

functions. 

 Region 

Actual\Prediction 1 2 3 4 5 6 7 

Region 1 12 0 0 0 0 0 0 

Region 2 1 21 0 0 0 0 0 

Region 3 0 0 22 0 0 0 0 

Region 4 0 0 0 26 0 0 0 

Region 5 0 0 0 0 20 0 0 

Region 6 0 0 0 0 0 26 1 

Region 7 0 0 0 0 0 0 14 

Prediction 
Accuracy (%): 

92 100 100 100 100 100 93 
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Table E.11 
Confusion matrix for the classification scheme based on the first four discriminant 

functions. 

 Region 

Actual\Prediction 1 2 3 4 5 6 7 

Region 1 12 0 0 0 0 0 0 

Region 2 1 21 0 0 0 0 0 

Region 3 0 0 22 0 0 0 0 

Region 4 0 0 1 25 0 0 0 

Region 5 0 0 0 0 20 0 0 

Region 6 0 0 0 0 0 27 0 

Region 7 0 0 0 0 0 1 13 

Prediction 
Accuracy (%): 

92 100 96 100 100 96 100 

 

Table E.12 
Confusion matrix for the classification scheme based on the first five discriminant 

functions. 

 Region 

Actual\Prediction 1 2 3 4 5 6 7 

Region 1 12 0 0 0 0 0 0 

Region 2 1 21 0 0 0 0 0 

Region 3 0 0 22 0 0 0 0 

Region 4 0 0 1 25 0 0 0 

Region 5 0 0 0 0 20 0 0 

Region 6 0 0 0 0 0 27 0 

Region 7 0 0 0 0 0 1 13 

Prediction 
Accuracy (%): 

92 100 96 100 100 96 100 
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Table E.13 
Confusion matrix for the classification scheme based on all six discriminant functions. 

 Region 

Actual\Prediction 1 2 3 4 5 6 7 

Region 1 12 0 0 0 0 0 0 

Region 2 1 21 0 0 0 0 0 

Region 3 0 0 22 0 0 0 0 

Region 4 0 0 1 25 0 0 0 

Region 5 0 0 0 0 20 0 0 

Region 6 0 0 0 0 0 27 0 

Region 7 0 0 0 0 0 1 13 

Prediction 
Accuracy (%): 

92 100 96 100 100 96 100 
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