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Abstract  
 

Modern economic and social activities are dependent on a complex network of 

infrastructure systems that are highly interdependent. Electric power systems form the 

backbone of such complex network as most civil infrastructure systems cannot function 

properly without reliable power supply. Electric power systems are vulnerable to extensive 

damage due to natural hazards, as evident in recent hazard events. Hurricanes, earthquakes, 

floods, tornados and other natural hazards have caused billions of dollars in direct losses 

due to damage to power systems and indirect losses due to power outages, as well as social 

disruption. There is, therefore, a need for a comprehensive framework to assess and 

mitigate the risk posed by natural hazards to electric power systems. Electric power 

systems rely on various components that work together to deliver power from generating 

units to customers. Consequently, any reliable risk assessment methodology needs to take 

into account how the different components interact. This requires a system-level risk 

assessment approach. This research presents a framework for system-level risk assessment 

and management for electric power systems subjected to natural hazards. Specifically, risk 

due to hurricanes and earthquakes, as well as the combined effect of both is considered. 

The framework incorporates a topological-based system reliability model, probabilistic and 

scenario-based hazard analysis, climate change modeling, component vulnerability, 

component importance measure, multi-hazard risk assessment, and cost analysis. Several 

risk mitigation strategies are proposed; their efficiency and cost-effectiveness are studied. 

The developed framework is intended to assist utility companies and other stakeholders in 

making a risk-informed decision regarding short- and long-term investment in natural 

hazard risk mitigation for electric power systems. The framework can be used to identify 

certain parts of the system to strengthen, compare the efficiency and cost-effectiveness of 

various risk mitigation strategies using life-cycle cost analysis, compare risks posed by 

different natural hazards, and prioritize investment in the face of limited resources. 
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1. Introduction 
 

Civil infrastructure systems such as electric power systems, water distribution systems, 

transportation networks, gas supply systems, etc. are the backbone of modern economies 

and essential for public wellbeing. For safety, security, prosperity, and social welfare, such 

critical infrastructure systems need to be reliable, robust, and resilient. Most civil 

infrastructure systems cannot function properly without reliable power supply. Emergency 

response units, telecommunication networks, traffic control systems, healthcare facilities, 

etc., all depend on the electric power system to function. As such, the electric power system 

is among the most critical of all the civil infrastructure systems. Thus, the loss of electricity 

can cause billions of dollars in direct and indirect economic losses. 

 

Electric power systems are subjected to numerous disturbances ranging from small 

disturbances caused by common cause failures to major disturbances caused by natural 

hazards. Natural hazards that threaten power systems include hurricanes, earthquakes, 

floods, severe thunderstorms, and tornadoes. In the event of natural disasters, continuous 

supply of electricity is essential not only to critical buildings such as hospitals and fire 

stations but to the public as a whole. Hurricanes and earthquakes are among the most 

devastating natural hazards that can cause extensive damage and prolonged power outages 

(Stewart, 2004; Pasch et al., 2005; Blake et al., 2013; Romero et al., 2015; Noda, 2001b). 

 

The extensive damage potential of hurricanes on power systems has been well documented 

historically. From the four major hurricanes that hit Florida in 2004 to the 2008 hurricane 

season in Texas, the cost of hurricane damage to power systems is in the billions (USDOE, 

2005; Hoffman et al., 2009). In 2004, four major hurricanes struck Florida causing a 

combined economic loss of over $20 billion and damaging every segment of Florida’s 

electricity infrastructure which resulted in a power outage to over 9.6 million customers 

combined (USDOE, 2005). In 2005, hurricanes Katrina, Rita, and Wilma struck the U.S. 

causing extensive damage to power systems across several states (Knabb et al., 2005; 

NOAA, 2005; Pasch et al., 2006). Recently in 2012, hurricane Sandy caused severe damage 
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to the power system of several coastal states causing over 8.5 million customers to lose 

power for weeks and even months in some areas (Blake et al., 2013). When it comes to 

damage due to hurricanes, the distribution part of the power system is the most vulnerable 

(Davidson et al., 2003). For example, between 1998 and 2009, electric utility companies 

in Texas incurred about $1.8 billion in restoration costs due to hurricanes with 80% of the 

costs attributed to the distribution system (Brown, 2009). 

 

Investment in the power sector is considered a long-term investment due to the service life 

of the assets, which can be as long as 100 years (Mendiluce, 2014). It is, therefore, 

imperative for utility companies to consider the uncertainties inherent in such long-term 

investments that will impact return on investment as well as customer satisfaction. One 

such uncertainty is the potential impact of climate change on hurricane hazard. In a 

National Climate Assessment report which summarizes the impacts of climate change on 

the United States, it is stated that “the intensity, frequency, and duration of North Atlantic 

hurricanes, as well as the frequency of the strongest (Category 4 and 5) hurricanes, have 

all increased since the early 1980s… Hurricane-associated storm intensity and rainfall rates 

are projected to increase as the climate continues to warm” (Walsh et al., 2014). With the 

potential increase in the intensity of hurricanes in the long-term due to climate change, the 

cost of damage to power systems is expected to rise. 

 

Electric power systems are also vulnerable to damage due to earthquakes. For example, the 

1994 Northridge earthquake caused over 2.5 million customers to lose power and resulted 

in direct losses of about $138 million to Los Angeles Department of Water and Power 

(Dong et al., 2004; Schiff et al., 1995). Similarly, the 1995 Great Hanshin earthquake, 2008 

Wenchuan earthquake, as well as the 2010 Chile earthquake caused various levels of 

damage to electric power systems (Noda, 2001a; Eidinger, 2009; Romero et al., 2015). 

When it comes to damage due to earthquakes, brittle substation components with 

considerable weight are the most vulnerable (Vanzi, 1996; Eidinger & Kempner, 2012). 
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The extent of damage to electric power systems due to natural hazards depends not only 

on the frequency and intensity of such hazards but also on the number of different types of 

hazards that the systems are exposed to. Most parts of the world are vulnerable to multiple 

hazards that can be concurrent/non-concurrent and dependent/independent (Li et al., 2012). 

Over the lifespan of electric power systems located in regions affected by more than one 

hazard, such systems can be affected by multiple hazards that differ in nature and can occur 

simultaneously or otherwise. For example, hurricanes and earthquakes have a very low 

probability of occurring simultaneously and are considered independent non-concurrent 

hazards. However, the life cycle cost of systems located in areas vulnerable to both 

hurricanes and earthquakes depends on the combined effect of both hazards. Therefore, 

long-term risk mitigation strategies need to consider the effect of multiple independent 

hazards as certain mitigation strategies for one hazard might be ineffective or even increase 

the risk for other hazards (Bell & Glade, 2004).  

 

Aging infrastructure has also been determined to be one of the main issues facing the power 

system (ASCE, 2013). Aging of components increases the vulnerability of the system in 

cases of natural disasters such as hurricanes. Wood distribution poles, for example, are 

susceptible to decay as they age which causes a reduction in strength. This is of particular 

concern as most of the distribution poles in the U.S. are wood poles (Gustavsen & 

Rolfseng, 2000).    

 

Damage to infrastructure such as electric power systems due to natural hazards needs to be 

reduced as recovery period is longer when the system is severely damaged which in turn 

can exponentially increase losses (Tierney et al., 1999). As such, cost-effective risk 

mitigation strategies need to be identified. This requires a comprehensive risk assessment 

framework that incorporates hazard identification and characterization, consequence 

analysis, risk evaluation, and risk mitigation. Such framework can be used for pre-disaster 

preparation, mitigation, and post-disaster response planning. Additionally, such framework 

is required to guide decision makers to prioritize investment on risk mitigation strategies 

in the face of limited resources.        
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Studies have been conducted towards risk assessment for electric power systems subjected 

to natural hazards. The effectiveness of various mitigation strategies such as targeted 

hardening has also been studied (e.g. Han et al. (2013), Shafieezadeh et al. (2014a), 

Bjarnadottir et al. (2013), Ryan et al. (2014b)). Brown (2009) studied the hardening of 10% 

of distribution poles in Texas and estimated the net benefit derived from it. Bjarnadottir et 

al. (2014) studied targeted hardening of distribution poles in Florida using four strategies: 

(i) replacement of poles that reach threshold of strength; (ii) replacing failed poles with 

poles that are one class stronger; (iii) replacing poles that fail with stronger poles plus 

replacing poles that reach strength threshold; and (iv) proactive measures for foreshore 

locations by using stronger poles. The above studies, however, focused on component-

level risk assessment. 

 

Similarly, studies on the potential impact of climate change on risk of power system 

subjected to hurricanes are limited to component-level performance (e.g. Francis et al. 

(2011), Bjarnadottir et al. (2013), Bjarnadottir et al. (2014)). Francis et al. (2011) presented 

a hybrid economic input-output life cycle cost analysis method for evaluating the cost-

effectiveness of climate change adaptation strategies of distribution systems. Failure of 

distribution poles, spans, and pad-mounted transformers was considered in the study. The 

effect of climate change was modeled through the use of count regression analysis and data 

mining techniques that describe the relationship between climate variability and North 

Atlantic tropical cyclone counts in the U.S.  

 

Multi-hazard assessment and mitigation were investigated for residential construction (Li 

& Ellingwood, 2009), bridges (Kameshwar & Padgett, 2014), and commercial buildings 

(Wen & Kang, 2001). While development of multi-hazard risk analysis framework for 

buildings and bridges have been ongoing in recent years, risk analysis of spatially-

distributed civil infrastructure systems such as electric power and water systems have so 

far been limited to mostly single-hazard considerations (e.g. Adachi and Ellingwood 
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(2010), Winkler et al. (2010), Song and Ok (2010), Duenas-Osorio and Hernandez-Fajardo 

(2008), Kim and Kang (2013), Ryan et al. (2014a)).    

 

Davis and Clemmer (2014) suggested shifting to renewable energy sources to diversify the 

electric system and make it more resilient. This is because the use of renewable energy can 

turn the power system to smaller-scale and more distributed system. Renewable energy 

sources can be used for smart grid systems where generation and transportation of 

electricity can be decentralized and failure in one part of the system will not affect other 

parts. However, though the use of renewable sources of energy can help in improving the 

resilience of power systems, the current extensive system needs upgrading and 

strengthening as it is likely to stay in place for years to come before the gradual adaptation 

of smart grid systems.  

 

Based on the review of existing literature, the following observations can be made: 

 

1.  While component-level risk assessment methodologies have been well established, 

efficient utilization of limited risk mitigation resources requires identifying critical 

parts or components of a system that when strengthened, will have a greater impact 

on overall system reliability. To determine the critical parts or components of a 

system, some form of component importance measure is required. This, in turn, 

requires system reliability modeling that relates structural components failure and 

power delivery. 

 

2. Previous research on climate change impact did not couple climate change 

modeling and system reliability. Decision making regarding appropriate climate 

change adaptation strategies based on component-level risk analysis might not be 

accurate.   

 

3. Damage to electric power systems can lead to significant indirect monetary loss to 

residential, commercial, and industrial customers. However, most existing studies 
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did not consider indirect losses in the form of societal economic losses due to power 

outages. 

 

4. Risk analysis of electric power systems has so far been limited to mostly single-

hazard considerations. As these systems usually cover large areas and can be 

subjected to multiple hazards within their lifetime, there is a need to develop a 

framework to study the impact of multiple hazards on such systems. This is 

essential for decision making regarding investment in long-term mitigation of risks 

due to all possible hazards that can affect the system over its entire lifespan. There 

is also a need to investigate the cost-effectiveness of mitigation strategies in 

reducing the overall risks to infrastructure that are vulnerable to multiple hazards. 

This requires a comprehensive multi-hazard risk-based approach. 

 

      

1.1 Research Objectives 
 

The main objective of this dissertation is to develop a system-level risk-based framework 

for assessment and strengthening of electric power systems subjected to natural hazards. 

The focus of the framework is on the distribution as well as the transmission parts of the 

electric power system. The natural hazards considered are hurricanes and earthquakes, as 

well as the combined impact of both on the life cycle cost of systems located in areas 

vulnerable to both hazards. Specific objectives include: 

 

1. Develop a probabilistic system reliability approach that relates structural 

components failure with power delivery for radially operated distribution systems 

as well as networked transmission systems. 

 

2. Develop and demonstrate a framework for risk-based assessment and strengthening 

of distribution systems subjected to hurricanes. 

 



7 

3. Incorporate climate change model to risk assessment of power systems subjected 

to hurricanes to study the impact of variation in both intensity and frequency of 

future hurricanes. 

 

4. Develop and demonstrate a framework for multi-hazard risk assessment of electric 

power systems subjected to independent non-concurrent hazards through their 

lifespan.  

 

5. Propose and investigate the cost-effectiveness of various risk mitigation strategies 

for distribution and transmission systems considering both direct and indirect costs.     

 

The developed framework can be utilized in decision making regarding the design of new 

electric power systems, investigating the effectiveness of various mitigation in terms of 

system reliability improvement and monetary benefit, comparing various mitigation 

strategies, as well as prioritizing investment in instances of competing hazards and limited 

resources.  

 

 

1.2 Organization of Dissertation 
 

This dissertation has been organized into nine chapters. The content of each chapter is 

outlined below: 

 

Chapter 1 introduces the subject, discusses the need for risk assessment of electric power 

systems subjected to natural hazards, reviews existing literature on the subject, and 

highlights the motivation for the research. Finally, the objectives of the research are 

presented. 

 

Chapter 2 gives a general background on electric power systems and discusses the 

different sub-systems that work together to deliver power to customers. Natural 
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hazards, specifically hurricanes and earthquakes, are introduced together with a 

discussion of different regions of the U.S. vulnerable to such hazards. Finally, the 

concept of infrastructure risk assessment is introduced. 

 

Chapter 3 develops a topological-based system reliability approach for distribution and 

transmission systems. This includes discussion of system reliability theory, modeling 

accessibility of system components in radial and networked systems, and line failure 

models. 

 

Chapter 4 presents a framework for studying the effectiveness of targeted hardening 

strategies for distribution systems subjected to hurricanes. The framework includes 

probabilistic and scenario-based hazard modeling, time-dependent component fragility 

model, component importance evaluation, and cost analysis. The framework is 

demonstrated using a notional distribution system assumed to be located in Florida. 

 

Chapter 5 extends the framework from chapter 4 to integrate the potential impact of 

climate change on hurricane risk. Several climate change scenarios are integrated into 

a hurricane simulation model to investigate the impact of variation in both intensity and 

frequency of hurricanes on risk. Cost-effectiveness of adaptation strategies is also 

evaluated using a notional distribution system. 

 

Chapter 6 evaluates the effectiveness of adding redundancy to distribution systems to 

reduce hurricane risk by constructing additional distribution lines with normally open 

(NO) switches to connect various independent substations. A system consisting of 20 

independent distribution systems in central Florida is used. 

 

Chapter 7 presents a framework for multi-hazard risk assessment of electric power 

systems subjected to hurricanes and earthquakes. The framework includes probabilistic 

and scenario-based hazard modeling and different methods of multi-hazard risk 
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assessment. A notional electric power system assumed to be located in Charleston, SC, 

New York, NY, and Seattle, WA, is used to demonstrate the proposed framework. 

 

Chapter 8 extends the framework in Chapter 7 to investigate the effectiveness of various 

multi-hazard risk mitigation strategies. Probabilistically weighted deterministic hazard 

scenarios approach is also introduced. Finally, a new component importance measure 

appropriate for networked systems such as transmission systems is developed. A 

notional electric power system is used to investigate the cost-effectiveness of the 

proposed mitigation strategies. 

 

Chapter 9 summarizes findings of the previous chapters, states conclusions from this 

study, and suggests future avenues for research in the area of risk assessment of 

infrastructure systems subjected to natural hazards.      
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2. Background 
 

2.1 Electric Power Systems 
 

The electric power system can be broadly divided into three subsystems: generation, 

transmission, and distribution. The basic structure of a power system showing these sub-

systems is shown in Figure 2.1. Electric power is produced by generating units which 

convert mechanical energy into electricity. The generation plants produce electricity by 

using fossil fuels, nuclear energy, wind, hydro, or solar energy. Power plants produce 

electricity at a line-to-line voltage of between 11 kV and 30 kV (Brown, 2008). However, 

this range of voltage is not sufficiently high to transport electricity over long distances. 

Hence, generation substations are used to step up the voltage to transmission levels. 

 

Electric power from generating units is carried by the transmission system over long 

distances to the distribution system. The voltage levels for the transmission system ranges 

from 69 kV to as high as 1100 kV in the transmission and sub-transmission lines in the US 

(Brown, 2008). The sub-transmission system carries electric power at lower voltages and 

over shorter distances than the transmission system and is used to connect the transmission 

system to multiple distribution systems (Kassakian et al., 2011). The transmission system 

is composed of power lines and substations. The conductors in the power lines are 

supported by structures that can be lattice steel towers or H-frames for transmission 

systems and single pole structures for sub-transmission systems. 

 

Topologically, the transmission and sub-transmission systems have mesh-like designs to 

provide multiple paths from one node (substation) to another. This increases flexibility and 

improves reliability so that power can be delivered to loads even when a transmission line, 

substation, or generating unit goes offline. Transmission security assessment is routinely 

carried out to determine whether a system can deliver peak demand after one or more pieces 

of equipment or components are disconnected (Brown, 2008). After removing a piece of 



11 

equipment, power flow is run to check if all voltage levels are within limits and equipment 

are not loaded above emergency ratings. This ensures that the transmission system is at 

least N-1 secure at all times. 
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Figure 2.1 Schematic of an electric power system 



13 

The distribution system starts from a distribution substation that is fed by one or more sub-

transmission lines (Kersting, 2012). The main function of the distribution substation is to 

step down the voltage to distribution level by utilizing a transformer. The stepped down 

power leaves the substation through feeders that can be either overhead or underground 

system. The feeders eventually branched off to smaller lateral lines that deliver power 

directly to customers. Overhead distribution systems utilize wires that are carried by wood, 

steel or concrete poles that are 30 to 40 ft high and spaced 100 to 150 ft in the suburbs and 

300 to 400 ft in rural areas (Short, 2006). The voltage is usually between 4.16 kV to 34.5 

kV in the distribution system and is mostly carried by Aluminum Conductor Steel 

Reinforced (ACSR) and All Aluminum Conductor (AAC) wires (Brown, 2008). 

 

Unlike the transmission and sub-transmission systems, the topology of the distribution 

system is mostly radial or radially operated in the U.S. (Kersting, 2012; Brown, 2008). 

Radial implies there is a unique path for power flow from a substation to each customer. 

Radially operated distribution systems have ring (or loop) topology where there is more 

than one path from the power source to customers. The radial nature of the system is 

maintained by using normally open (NO) switches which can be closed to provide an 

alternative path in the case of a fault. This increases reliability by allowing customers 

downstream of a fault to receive power using a combination of NO switches and 

sectionalizing switches. 

 

Electric power grids are among the most extensive and complex engineering systems in 

modern societies. The generation, transmission, and distribution systems work together to 

supply electricity to millions of different types of customers ranging from residential, 

commercial, and industrial customers. Table 2.1 gives a summary of some of the 

characteristics of the U.S. electric grid.  
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Table 2.1 General information on the U.S. electric grid 

Description  Approximate value Source  

Total number of customers 147 million EIA (2016b) 

Number of residential customers  128 million (37% of consumption) EIA (2016b) 

Number of commercial customers  17.8 million (36% of consumption) EIA (2016b) 

Number of industrial customers  839,000 (27% of consumption) EIA (2016b) 

Number of transportation customers 79 (0.2% of consumption) EIA (2016b) 

Total revenue (2014) $393 million EIA (2016b) 

Revenue from residential customers 45% of total EIA (2016b) 

Revenue from commercial customers 37% of total EIA (2016b) 

Revenue from industrial customers 18% of total EIA (2016b) 

Revenue from transport customers 0.2% of total EIA (2016b) 

High voltage transmission lines 200,000 miles NERC (2015) 

Low voltage distribution lines 6 million miles 
Kassakian et 

al. (2011) 

Primary energy consumed 40% of total EIA (2016a) 

 

 

2.2 Natural Hazards 
 

Natural hazards that threaten the power system include hurricanes, earthquakes, floods, ice 

storms, severe thunderstorms, tornadoes etc. Each of these hazards causes failure in a 

different way and to different parts of the power system. The duration of the resulting 

interruption also usually depends on the type of hazard with some causing considerably 

long interruptions. Utility companies are required to submit reports to both U.S. 

Department of Energy (DOE) and the North American Electric Reliability Council (NERC) 

when there is a sufficiently large disturbance in their territories. Between 1984 and 2006, 

there were 438 events that resulted in interruptions of more than 300 MW or affected at 

least 50,000 customers. A summary of the causes of such interruptions is given in Table 

2.2 (Hines et al., 2009). 
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Table 2.2 Summary of causes of major power outages in the U.S.  

(1984 – 2006) 

Cause of outage % of events Mean MW 
lost 

Mean number of 
customers affected 

Wind/rain 31.4 679 235,840 

Equipment failure 19.9 767 248,643 

Ice storm 11.1 1664 431,184 

Hurricane/tropical storm 10.1 2684 912,870 

Other cold weather events 8.8 1045 271,924 

Lighting  8.8 794 200,617 

Operator error 8.5 1226 358,440 

Fire  5.6 972 294,994 

Other external cause 3.6 1518 823,691 

Tornado  3.6 721 227,073 

Supply shortage  2.3 600 896,432 

Earthquake  1.6 1124 526,260 

Intentional attack 0.7 2154 165,000 

 

 

It can be seen from Table 2.2 that even though hurricanes and tropical storms constitutes 

only about 10% of the total number of events, they resulted in the highest damage in terms 

of mean megawatts (MW) lost and mean number of customers affected. While earthquakes 

constitute only about 1.6% of events, which is second to last, they are 4th in terms of 

average number of customers affected and 6th in terms of mean MW lost. Considering only 

natural hazards, earthquakes are only second to hurricanes/tropical storms in terms of 

number of customers affected and third in terms of MW lost. Generally, natural hazards 

result in relatively widespread damage to electric power systems and longer repair times.     
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2.2.1 Hurricanes  
 

All circulating weather systems over tropical waters are generally referred to as tropical 

cyclones. There are three classes of tropical cyclones: tropical depressions, tropical storms, 

and hurricanes. Tropical depressions have maximum sustained winds ≤ 38 mph while 

tropical storms have maximum sustained winds of 39 to 73 mph. Hurricanes are intense 

systems with a well-defined circulation and maximum sustained winds ≥ 74 mph (NOAA, 

2016a). In western pacific, hurricanes are referred to as “typhoons”. All Atlantic and Gulf 

coastal areas of the US are prone to hurricanes. On average, the US coastline is hit by five 

hurricanes in a typical 3-year period, of which two will be major (≥ category 3) (NOAA, 

2016a).      

 

The Saffir-Simpson Hurricane Scale is used to categorize hurricanes into five categories 

based on their 1-minute sustained wind speeds. Table 2.3 shows the five categories of 

hurricanes and their range of wind speeds as well as the total number of hurricanes that 

directly hit the U.S. between 1851 and 2015 (NOAA, 2016c, 2016b; Jarrell et al., 2001). 

 

Table 2.3: Saffir-Simpson hurricane scale and summary of hurricanes that hit the U.S. 

Category 
Sustained wind speed Number of hurricanes 

(1851 – 2015) mph m/s 

1 74 – 95 33 – 42 117 

2 96 – 110 43 – 49 76 

3 111 – 129 50 – 58 76 

4 130 – 156 58 – 70 18 

5 ≥ 157 > 70 3 
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Hurricanes are among the major causes of power outages in the U.S. Since 2002, 58% of 

power outages and 87% of outages affecting 50,000 or more customers were caused by 

severe weather such as hurricanes, thunderstorms, and blizzards (DOE, 2016). Table 2.4 

summarizes hurricanes that damaged the U.S. electric power system and the number of 

customers affected (DOE, 2016). Hurricanes rarely affect power generation stations and 

cause little to moderate damage to the transmission system. This is because generation and 

transmission systems are designed to withstand high wind loads. The distribution system, 

however, can be significantly affected by hurricanes. Much of the damage to the 

distribution system is done by high winds which can uproot distribution poles and damage 

distribution lines due to flying debris or falling trees. For example during the 1989 

Hurricane Hugo, falling trees knocked out thousands of distribution poles and lines cutting 

power to over 1 million customers (NOAA, 1990).  

 

Table 2.4 Summary of damage to power systems caused by hurricanes 

Year  Hurricane 
Approximate number 

of customers affected  

Approximate MW 

lost 

2002 Hurricane Lily 242,000 Not Reported (NR) 

2003 Hurricane Isabel 3.9 million 15,000 

2004 Hurricane Charley 2 million 4,200 

2004 Hurricane Frances 4.2 million 14,700 

2004 Hurricane Ivan 1.3 million 2,000 

2004 Hurricane Jeanne 1.2 million 4,300 

2005 Hurricane Dennis 278,000 96 

2005 Hurricane Katrina 2 million NR 

2005 Hurricane Ophelia 60,000 215 

2005 Hurricane Rita 2 million 3,200 

2005 Hurricane Wilma 3.7 million 10,800 

2008 Hurricane Gustav 1.3 million NR 

2008 Hurricane Ike 5.9 million NR 

2012 Hurricane Isaac 1.4 million NR 

2012 Hurricane Sandy 5.9 million NR 



18 

2.2.2 Earthquakes 
 

Earthquakes are among the most devastating natural hazards. The extent of damage from 

earthquakes depends on population density and level of development of infrastructure such 

as power systems in an area. Most of the US has some seismic risk with some areas being 

more prone than others. Figure 2.2 shows the U.S. seismic hazard map with PGAs having 

a return period of 2475 years (USGS, 2016). As discussed in the previous section, the entire 

east coast of the U.S. is vulnerable to hurricane hazard. It can be seen from Figure 2.2 that 

some areas on the east coast such as South Carolina are also vulnerable to seismic hazard. 

Multi-hazard risk analysis approach is therefore required for such areas.    

 

 

 

Figure 2.2 U.S. seismic hazard map (PGA, 2% in 50 years)  

[Image courtesy of USGS (2016). See Appendix A] 

 

Earthquakes can cause damage to power generation facilities depending on the intensity of 

the earthquake and size of the power plant. Most power plants are usually designed to have 
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good seismic resistance. The 1989 San Francisco earthquake caused damage to the Moss 

Landing Facility which is a large generating plant located about 20 miles from the epicenter 

(U.S. Congress, 1990). Transmission towers are rarely damaged by the actual shaking of 

the ground during earthquakes. This is because the towers are designed for severe loads 

such as combined wind and ice, extra loads due to the collapse of adjacent towers and so 

on. Instead, the damage is mostly due to foundation failures caused by landslides, ground 

fracture and liquefaction (Shinozuka et al., 2005). 

 

Substations have several brittle components that have considerable mass which makes 

them prone to earthquake damage (Vanzi, 1996; Eidinger & Kempner, 2012). Unanchored 

rail-supported transformers in substations can fall from elevated platforms which can result 

in severe damage. Lack of adequate slack in conductors connecting equipment is another 

source of damage in substations. Current design guidelines require anchoring of substation 

equipment to the foundation or first-support, either by welding or bolting. There are, 

however, a large number of existing substation equipment across the US that are not 

retrofitted and anchored (Knight & Kempner Jr, 2009b). The 1971 San Fernando 

earthquake, for example, damaged many high-voltage substations causing power outages 

(U.S. Congress, 1990). The 2011 Christchurch earthquake in New Zealand also caused 

severe damage to substations due to ground shaking and liquefaction causing a power 

outage for several days (Massie & Watson, 2011). Earthquakes usually cause little damage 

to distribution lines because of their sizes and nature. A summary of some earthquakes and 

resulting damage to electric power systems is shown in Table 2.5. 
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Table 2.5 Summary of damage to power systems caused by earthquakes 

Year Earthquake Approximate number of 
customers affected  

Source  

1989 Loma Prieta earthquake 1.4 million NRC (1994) 

1994 Northridge earthquake 2.5 million Dong et al. (2004) 

2001 Nisqually earthquake 217,000 Creager et al. (2001) 

2003 San Simeon earthquake 109,000 DOE (2016) 

2010 Eureka earthquake 28,000 Valencia et al. (2010) 

 

 

2.3 Infrastructure Risk Assessment and Management 
 

In general terms, risk is defined as a measure of probability and severity of harm or adverse 

effects (Lowrance, 1976). In the context of infrastructure risk assessment, risk can be 

defined as the potential for loss or damage to infrastructure due to exposure to uncertain 

hazards. Uncertainties are inherent in both the occurrence of future hazard events as well 

as the consequent losses. Prediction of occurrence of hazard events is usually based on 

available historical data. Therefore risk analysis is prospective, anticipating scientifically 

credible future scenarios (Cardona et al., 2012). Due to uncertainties in both hazard 

occurrence and consequent losses, risk analysis of infrastructure is usually based on 

probabilistic formulations that incorporate the uncertainties into the risk analysis. In simple 

mathematical form, risk can be expressed as (Ayyub et al., 2009):  

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑅𝑅𝑝𝑝𝑅𝑅𝑝𝑝𝑝𝑝 𝑝𝑝𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 × 𝑒𝑒𝑣𝑣𝑝𝑝𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑅𝑅𝑝𝑝𝑅𝑅𝑝𝑝𝑝𝑝 × 𝑐𝑐𝑝𝑝𝑒𝑒𝑅𝑅𝑒𝑒𝑐𝑐𝑣𝑣𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒 (2.1) 

 

The probability of event is a measure of the likelihood of occurrence of hazard event of a 

given intensity and in a given area and time period. It is, therefore, a function of hazard 

source, location, and intensity. Vulnerability is the susceptibility of exposed components 

or systems to damage. For structures and infrastructure system components, this can be 

quantified through fragility analysis. Consequence is the potential loss due to damage 
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caused by the hazard. It can be measured in monetary terms, casualties, downtime, or 

power outage and duration in the case of electric power systems. 

 

Assessment of risk involves asking three basic questions (Kaplan, 1997):  

 

1. What can go wrong?  

2. How likely is it to go wrong (probability/frequency)  

3. What are the consequences? 

 

To answer the above three questions in the context of civil infrastructure risk assessment, 

the framework in Figure 2.3 is developed. The first stage of any risk assessment involves 

identification of any or all hazards that can impact a system and quantifying the hazard in 

terms of intensity and frequency. The second stage is exposure analysis which involves 

identifying assets that are exposed to the identified hazards. The likelihood of damage and 

the consequence of such damage is then quantified. The final stage of the framework 

involves evaluating whether the level of risk is within acceptable/tolerable limits. This last 

stage of the risk assessment framework leads to the decisions regarding mitigation and 

management of risk.  

     

 

Figure 2.3 Risk assessment methodology 

 

Risk mitigation involves reducing one or more of the three components of risk in Equation 

(1). For infrastructure subjected to natural hazards, reducing the probability of occurrence 

of the hazard events is not feasible. Hence, mitigation strategies usually involve reducing 

vulnerability and/or consequence. Vulnerability can be reduced by improving the 
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reliability of infrastructure systems through hardening of existing components, introducing 

redundancy in the system etc. One way to reduce consequence is to provide alternative to 

the exposed infrastructure. For example, microgrids and distributed generation can reduce 

power outage during or after natural disasters in case of damage to the main power grid.   

    

Risk management can be summarized in three questions (Haimes, 2015; Ezell et al., 2000):  

 

1. What can be done? 

2. What options are available and what are their corresponding cost, risks, and 

benefits? 

3. What will be the impact of current risk management decisions on future options? 

 

Risk management involves four main steps as shown in Figure 2.4: (1) estimating the level 

of risk under the status quo (without mitigation); (2) identifying possible risk mitigation 

strategies and their associated cost; (3) re-evaluating risk to estimate reduction in losses 

due to mitigation strategies; and (4) calculating the cost-effectiveness of mitigation 

measures. The risk management framework shown in Figure 2.4 forms the basis for all the 

frameworks developed in this dissertation for different sub-systems of the electric power 

system subjected to different natural hazards.  

   

 

Figure 2.4 Risk management framework 
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3. System Reliability Model 
 

Civil infrastructure systems are made up of components that work together to serve a 

specific purpose. Electric power systems, for example, rely on components in the 

generation, transmission, and distribution sub-systems to deliver electricity to customers. 

The functionality of the system at any particular time depends on the state of the 

components. Therefore, risk analysis of such a system requires consideration of the 

interaction among its components.    

 

A critical part of any system-level risk analysis process is quantifying the consequence of 

damage to the system. This can be done using various performance measures such as 

system reliability. System reliability is defined as the ability of a system to perform a 

required function for a stated period of time under given environmental and operating 

conditions (Rausand & Høyland, 2004). System reliability theory can be used to assess the 

risk to infrastructure systems subjected to natural hazards, evaluate the efficiency of 

disaster mitigation methods, design maintenance plans, and design layout of system 

components.  

  

For electric power systems, models of performance measure can range from purely 

topological-based models to complex alternating current (AC) power flow models. 

Topological- or connectivity-based models only consider the manner in which system 

components are arranged (topology) to describe the behavior of the system. Physical 

constraints that govern power flow within the system is ignored. Power flow-based models, 

on the other hand, take into account the physics of power flow, power capacity limits of 

components and other engineering details of the system (LaRocca et al., 2014). 

 

Topological-based models have two main advantages: (i) they are computationally 

efficient especially for complex systems or in a case where system performance under 

various scenarios is desired, and (ii) significantly less data about a system is required to 

evaluate reliability. While power flow-based models provide more accurate description of 
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system performance, they are computationally complex and often impractical (LaRocca et 

al., 2014; Duenas-Osorio & Hernandez-Fajardo, 2008; Kim & Kang, 2013; Cavalieri et al., 

2014; Albert et al., 2004). Furthermore, detail information about engineering properties of 

system components is required for such analysis. As this study focuses mainly on structural 

components of the power system, which define the topology, the topological-based method 

will be used. 

 

 

3.1 Review of Existing Topological-Based Methods 
 

While topological-based system performance models have not been applied to distribution 

systems, few models for transmission (networked) systems have been proposed. Albert et 

al. (2004) proposed a measure of system performance termed connectivity loss (CL) for a 

grid-like system. The method was developed to investigate the impact of removing nodes 

(generators and substations) from the North American power grid and to determine whether 

the grid is reliant on a small set of hubs whose removal will cause large-scale breakdown 

of the power grid. Nodes are modeled with binary functions, i.e., either functioning or 

failed. The connectivity loss is given by Equation (3.1). The connectivity loss measures the 

decrease in the ability of a distribution substation to receive power from the generators. 

 

𝐶𝐶𝐿𝐿 = 1 −
1
𝑁𝑁𝐷𝐷

�
𝑁𝑁𝐺𝐺𝑖𝑖

𝑁𝑁𝐺𝐺

𝑁𝑁𝐷𝐷

𝑖𝑖

 (3.1) 

 

where 𝑁𝑁𝐺𝐺  is the total number of generators; 𝑁𝑁𝐷𝐷 is the total number of distribution 

substations; and 𝑁𝑁𝐺𝐺𝑖𝑖  is the number of generators connected to substation i. 

 

LaRocca et al. (2014) introduced a topological-based system performance measure termed 

efficiency, which is calculated based on the shortest path between a pair of nodes in a 

network. The method was demonstrated by randomly removing nodes and edges from the 
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network and studying the impact on efficiency. The efficiency of a network is given by 

Equation (3.2).     

 

𝐸𝐸 =
1

𝑁𝑁(𝑁𝑁 − 1)
�

1
𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖∈𝑁𝑁𝐹𝐹,𝑖𝑖∈𝑁𝑁𝐿𝐿

 (3.2) 

 

where 𝑁𝑁 is the total number of nodes in the network; 𝑁𝑁𝐹𝐹 is the set of in-feed nodes; 𝑁𝑁𝐿𝐿 is 

the set of load nodes; and 𝑑𝑑𝑖𝑖𝑖𝑖 is the length of the shortest path between node i and node j. 

In another approach, Johansson et al. (2007) used power connection loss (PCL) to evaluate 

system performance. PCL, given by Equation (3.3), is defined as the aggregate load at 

nodes that do not have any connection to a power source. 

 

𝑃𝑃𝐶𝐶𝐿𝐿 = � 𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑖𝑖
𝑖𝑖∈𝑁𝑁𝑁𝑁

 (3.3) 

 

where 𝑁𝑁𝐶𝐶 is the set of nodes that do not have any connection to a power source and 𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑖𝑖 

is the load at node i.      

 

The vulnerability of structural components subjected to natural hazards is usually evaluated 

using fragility curves. Fragility curves give the probability of failure between 0 and 1 for a 

component given a specific hazard level. The probability of failure is, therefore, a 

continuous random variable. However, the above methods assigned a probability of failure 

or probability that power will not be supplied to customers of either 0 or 1. As such, the 

above topological methods fail to capture the true stochastic nature of risk assessment 

under natural hazards. In the following two sections, a topological-based method that 

overcomes this limitation is presented.  
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3.2 Accessibility of System Components 
 

The ability of a component in a system to perform its function depends invariably on its 

reliability as well as the reliability of other components. Even if a system component is not 

physically damaged after a hazard event, damage to other components can prevent it from 

performing its intended function. Accessibility of a component is therefore defined here as 

the probability that commodity (power) will be supplied to the component.  

 

As mentioned in Chapter 2, the topology of distribution and transmission systems differ 

significantly. Most distribution systems have radial topology such as the one shown in 

Figure 3.1(a). Power delivery starts from the substation through main feeder lines. The 

feeders eventually branched off to smaller lateral lines that deliver power directly to 

customers. Transmission systems, on the other hand, have a networked topology with 

several paths from one node to another. The accessibilities of the two different topologies 

are formulated below.  

 

Substation

(b)

Substation

Feeder

(a)  

Figure 3.1 Topology of electric power sub-systems  

(a) Distribution system (radial or tree-like) (b) Transmission system (networked or grid-
like) 
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3.2.1 Radial Systems 
 

In radial distribution systems, a line is defined as a switchable section with one or more 

isolator elements at its ends. Isolator elements, commonly known as sectionalizers, are 

usually installed at several points within a system so as to allow parts of the system to be 

isolated in case of any disturbance at any point along a line (Brown, 2008). The presence 

of isolator elements within a distribution system allows each line to be considered 

individually as a ‘switchable section’. All components in a switchable section have the 

same reliability characteristics and failure of any component have the same impact 

regardless of the location of the failed component. Consequently, switchable sections can 

be reduced to single component equivalent. A failed line is assumed to be isolated from the 

rest of the system by activating the isolator element upstream of the line. 

 

Due to the radial nature of most distribution systems, the accessibility of lines in the system 

can be modeled as a series system in which the failure of any line or component along a 

path can lead to failure of power delivery to lines downstream of the failed line. Consider 

the simple radial system shown in Figure 3.2. The failure probability of power delivery to 

each lateral line is calculated by considering power flow. For example, considering line 7, 

power will be cut off to the line if line 1, 3, 5, 6 or 7 itself fails. The accessibility of line 7 

can, therefore, be represented with the reliability block diagram in Figure 3.3.  
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Substation
Sectionalizer

Line 1

Line 2

Line 3 Line 4

Line 5

Line 6

Line 7
Feeder line
Lateral line

 

Figure 3.2 Schematic of a radial distribution system 

 

1 3 5 6 7
 

Figure 3.3 Reliability block diagram for power delivery to line 7 

 

The probability that power is not delivered to line 7 (complement of accessibility) is 

therefore given by Equation (3.4). 

 

𝑄𝑄𝐿𝐿7 = 1 − ��1 − 𝑃𝑃𝑓𝑓𝐿𝐿1��1 − 𝑃𝑃𝑓𝑓𝐿𝐿3��1 − 𝑃𝑃𝑓𝑓𝐿𝐿5��1 − 𝑃𝑃𝑓𝑓𝐿𝐿6��1 − 𝑃𝑃𝑓𝑓𝐿𝐿7�� (3.4) 

 

where 𝑃𝑃𝑓𝑓𝐿𝐿1, 𝑃𝑃𝑓𝑓𝐿𝐿3, 𝑃𝑃𝑓𝑓𝐿𝐿5, 𝑃𝑃𝑓𝑓𝐿𝐿6, and 𝑃𝑃𝑓𝑓𝐿𝐿7  are probabilities of failure of lines 1, 3, 5, 6, and 7 

respectively. Note that in Equation (3.4), the failures of the lines are independent due to 

the isolator elements.  

 

In a situation whereby a line can be supplied by more than one substation as will be seen 

in Chapter 6, all paths from source to the line are considered in formulating the 

accessibility. In systems with more than one power source, normally open (NO) switches 
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are used to maintain the radial nature of the system. If one path of power delivery fails, the 

NO switch can be closed to initiate the flow of electricity through alternative paths. For 

example, considering the simple schematic in Figure 3.4, power will be cut off to lateral 

line 4 if line 3 fails, or both lines 1 and 2 fail, or if line 4 itself fails. Failure of power 

delivery to line 4 can be represented with the fault tree diagram in Figure 3.5. 

 

 

Substation
Sectionalizer

Line 1

Line 2

Line 3
Line 4

Line 5

Normally open switch

 

Figure 3.4 Simple schematic of distribution system with redundancy 

 

Power not delivered to Line 4

Failure of Line 4 Failure of Line 3

Failure of Line 1 Failure of Line 2

Power not delivered to Line 3

OR gate

AND gate

 

Figure 3.5 Fault tree diagram for failure of power delivery to Line 4 
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The probability that power is not delivered to Line 4 is then calculate using Equation (3.5). 

 

𝑄𝑄𝐿𝐿4 = 1 − ��1 − 𝑃𝑃𝑓𝑓𝐿𝐿4��1 − 𝑃𝑃𝑓𝑓𝐿𝐿3��1 − 𝑃𝑃𝑓𝑓𝐿𝐿1∙𝑃𝑃𝑓𝑓𝐿𝐿2�� (3.5) 

 

where 𝑃𝑃𝑓𝑓𝐿𝐿1, 𝑃𝑃𝐿𝐿2, 𝑃𝑃𝑓𝑓𝐿𝐿3, and 𝑃𝑃𝑓𝑓𝐿𝐿4  are probabilities of failure of lines 1, 2, 3, and 4 respectively. 

 

 

3.2.2 Networked Systems 
 

Consider the simple schematic in Figure 3.6 with 2 supply stations (gate stations) and 3 

demand substations (low voltage substations). Whether substation S1 remains functional 

depends not only on its own reliability but on the reliability of gate stations G1 and G2, 

substation S2, as well as transmission lines T1, T3, T4, and T5.   

 

Gate Station

Low voltage substation

Transmission lines

G1

G2

S1

S3

S2

T1

T2

T3

T4

T5 T6

 

Figure 3.6 Schematic of a networked power system 

 

Now consider a situation where only the edges (transmission lines) are assumed to be 

vulnerable to failure. The problem of calculating the probability that power is not delivered 

to any node (substation) reduces to a terminal-pair reliability problem. A terminal-pair 
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reliability problem aims to determine the probability of successful communication between 

any pair of nodes in a network, given the reliability of each edge in the network. In such a 

case, the accessibility or terminal-pair reliability of any node (which is the complement of 

the probability that power is not delivered to that node) is the union of the reliability of all 

the minimal cut sets from supply nodes to the node in question. 

 

A cut set here is defined as the set of components such that if these components fail, the 

system fails (i.e., power is not delivered to the intended node). A cut set is minimal if, when 

any component is removed from the set, the remaining components collectively are no 

longer a cut set.  

 

Considering power delivery to S1 and only edge failure, there are three paths for power 

flow to S1: (i) through T1, (ii) through T3, and (iii) through T5 and T4. Failure of a 

combination of one element from each path will result in power not being delivered to S1. 

The minimal cut sets are, therefore: 

 

1. T1, T3, and T4 

2. T1, T3, and T5 

In other words, the system will fail if T1, T3, and T4 fail OR if T1, T3, and T5 fail.  

 

Defining the probabilities of failure of T1, T3, T4, and T5 as 𝑃𝑃𝑓𝑓𝑓𝑓1, 𝑃𝑃𝑓𝑓𝑓𝑓3, 𝑃𝑃𝑓𝑓𝑓𝑓4, and 𝑃𝑃𝑓𝑓𝑓𝑓5, 

respectively, and assuming failure of the lines to be independent, the probability that power 

will not be delivered to S1 is then: 

 

𝑄𝑄𝑆𝑆1 = �𝑃𝑃𝑓𝑓𝑓𝑓1𝑃𝑃𝑓𝑓𝑓𝑓3𝑃𝑃𝑓𝑓𝑓𝑓4� ∪ �𝑃𝑃𝑓𝑓𝑓𝑓1𝑃𝑃𝑓𝑓𝑓𝑓3𝑃𝑃𝑓𝑓𝑓𝑓5� (3.6) 

 

Denoting �𝑃𝑃𝑓𝑓𝑓𝑓1𝑃𝑃𝑓𝑓𝑓𝑓3𝑃𝑃𝑓𝑓𝑓𝑓4� as P(A) and �𝑃𝑃𝑓𝑓𝑓𝑓1𝑃𝑃𝑓𝑓𝑓𝑓3𝑃𝑃𝑓𝑓𝑓𝑓5� as P(B), 
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𝑄𝑄𝑆𝑆1 = 𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵) = 1 − 𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵) (3.7) 

 

From de Morgan’s rule, 

 

𝑄𝑄𝑆𝑆1 = 1 − 𝑃𝑃��̅�𝐴 ∩  𝐵𝐵� = 1 − [1 − 𝑃𝑃(𝐴𝐴)] ∙ [1 − 𝑃𝑃(𝐵𝐵)] (3.8) 

 

A and B (minimal cut sets) in the above equation are assumed to be independent. This will 

be clarified later. Substituting A and B with the original probabilities, 

 

𝑄𝑄𝑆𝑆1 = 1 − �1 − �𝑃𝑃𝑓𝑓𝑓𝑓1𝑃𝑃𝑓𝑓𝑓𝑓3𝑃𝑃𝑓𝑓𝑓𝑓4�� ∙ �1 − �𝑃𝑃𝑓𝑓𝑓𝑓1𝑃𝑃𝑓𝑓𝑓𝑓3𝑃𝑃𝑓𝑓𝑓𝑓5�� (3.9) 

 

The terminal-pair reliability of S1, which is the complement of 𝑄𝑄𝑆𝑆1 is then 

 

𝑅𝑅𝑓𝑓 = 1 − 𝑄𝑄𝑆𝑆1 = ��1 − 𝑃𝑃𝑓𝑓𝑓𝑓1𝑃𝑃𝑓𝑓𝑓𝑓3𝑃𝑃𝑓𝑓𝑓𝑓4��1− 𝑃𝑃𝑓𝑓𝑓𝑓1𝑃𝑃𝑓𝑓𝑓𝑓3𝑃𝑃𝑓𝑓𝑓𝑓5�� (3.10) 

 

Considering a situation where only the nodes (substations) are assumed to be vulnerable to 

failure, power will not be delivered to S1 when S1 itself fails or when both G1 and G2 fail. 

The probability that power is not delivered to S1 is then given by Equation (3.11) based 

on the minimal cut sets from source nodes to S1. 

 

𝑄𝑄𝑆𝑆1_𝑠𝑠 = 1 − ��1 − 𝑃𝑃𝑓𝑓𝑆𝑆1��1 − 𝑃𝑃𝑓𝑓𝐺𝐺1𝑃𝑃𝑓𝑓𝐺𝐺2�� (3.11) 

 

In a situation where both the nodes and edges are vulnerable to failure, the minimal cut sets 

for power delivery to S1 are: 

 

1. S1 

2. G1 and G2 

3. G1, T3, and T5 

4. G1, T3, and S2 
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5. G1, T3, and T4 

6. T1 and G2 

7. T1, T3, and T5 

8. T1, T3, and S2 

9. T1, T3, and T4 

The probability that power will not be delivered to S1 is then given by: 

 

𝑄𝑄𝑆𝑆1 = �𝑃𝑃𝑓𝑓𝑆𝑆1� ∪ �𝑃𝑃𝑓𝑓𝐺𝐺1𝑃𝑃𝑓𝑓𝐺𝐺2� ∪ �𝑃𝑃𝑓𝑓𝐺𝐺1𝑃𝑃𝑓𝑓𝑓𝑓3𝑃𝑃𝑓𝑓𝑓𝑓5� ∪ �𝑃𝑃𝑓𝑓𝐺𝐺1𝑃𝑃𝑓𝑓𝑓𝑓3𝑃𝑃𝑓𝑓𝑆𝑆2�

∪ �𝑃𝑃𝑓𝑓𝐺𝐺1𝑃𝑃𝑓𝑓𝑓𝑓3𝑃𝑃𝑓𝑓𝑓𝑓4� ∪ �𝑃𝑃𝑓𝑓𝐺𝐺2𝑃𝑃𝑓𝑓𝑓𝑓1� ∪ �𝑃𝑃𝑓𝑓𝑓𝑓1𝑃𝑃𝑓𝑓𝑓𝑓3𝑃𝑃𝑓𝑓𝑓𝑓5�

∪ �𝑃𝑃𝑓𝑓𝑓𝑓1𝑃𝑃𝑓𝑓𝑓𝑓3𝑃𝑃𝑓𝑓𝑆𝑆2� ∪ �𝑃𝑃𝑓𝑓𝑓𝑓1𝑃𝑃𝑓𝑓𝑓𝑓3𝑃𝑃𝑓𝑓𝑓𝑓4� 

(3.12) 

 

where 𝑃𝑃𝑓𝑓𝑆𝑆1 and 𝑃𝑃𝑓𝑓𝑆𝑆2 are the probabilities of failure of S1 and S2, respectively; 𝑃𝑃𝑓𝑓𝐺𝐺1 and 

𝑃𝑃𝑓𝑓𝐺𝐺2 are the probabilities of failure of G1 and G2, respectively. Using the same steps as 

before, it can be shown that 𝑄𝑄𝑆𝑆1 is given by Equation (3.13) considering both node and 

edge failure. 

 

𝑄𝑄𝑆𝑆1 = 1 − ��1 − 𝑃𝑃𝑓𝑓𝑆𝑆1��1 − 𝑃𝑃𝑓𝑓𝐺𝐺1𝑃𝑃𝑓𝑓𝐺𝐺2��1 − 𝑃𝑃𝑓𝑓𝐺𝐺1𝑃𝑃𝑓𝑓𝑓𝑓3𝑃𝑃𝑓𝑓𝑓𝑓5��1

− 𝑃𝑃𝑓𝑓𝐺𝐺1𝑃𝑃𝑓𝑓𝑓𝑓3𝑃𝑃𝑓𝑓𝑆𝑆2��1 − 𝑃𝑃𝑓𝑓𝐺𝐺1𝑃𝑃𝑓𝑓𝑓𝑓3𝑃𝑃𝑓𝑓𝑓𝑓4��1 − 𝑃𝑃𝑓𝑓𝐺𝐺2𝑃𝑃𝑓𝑓𝑓𝑓1��1

− 𝑃𝑃𝑓𝑓𝑓𝑓1𝑃𝑃𝑓𝑓𝑓𝑓3𝑃𝑃𝑓𝑓𝑓𝑓5��1 − 𝑃𝑃𝑓𝑓𝑓𝑓1𝑃𝑃𝑓𝑓𝑓𝑓3𝑃𝑃𝑓𝑓𝑆𝑆2��1− 𝑃𝑃𝑓𝑓𝑓𝑓1𝑃𝑃𝑓𝑓𝑓𝑓3𝑃𝑃𝑓𝑓𝑓𝑓4�� 

(3.13) 

 

Note that in formulating Equations (3.10), (3.11) & (3.13), it was assumed that the failure 

of minimal cut sets occurs independently. This is not always true as one component may 

appear in several minimal cuts. Therefore, system reliability evaluated using the formulated 

accessibilities (probability of power being delivered) in Equations (3.10), (3.11) & (3.13), 

will be the lower bound of the actual reliability. It has been shown that for coherent systems 

with components that have small probabilities of failure, which is often the case in practice, 

the lower bound of the reliability is very close to the actual reliability (Esary & Proschan, 

1963). Coherent systems are defined as systems in which (i) if all components are 
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functioning, the system is functioning, (ii) if all components are in a failed state, then the 

system failed, and (iii) higher components’ reliability implies higher system reliability. 

 

 

3.3 Topological-Based System Reliability Formulation 
 

Given the accessibilities of system components, a single measure of system reliability is 

required. A simple topological-based approach is to use the weighted reliabilities of system 

components (Volkanovski et al., 2009). The system reliability is thus given by Equation 

(3.14). 

 

𝑅𝑅𝑆𝑆 = 1 −�𝑄𝑄𝑖𝑖
𝐶𝐶𝑖𝑖
𝐶𝐶

𝑁𝑁

𝑖𝑖=1

 (3.14) 

 

where 𝑄𝑄𝑖𝑖 is the probability that power is not delivered to the ith component (lateral lines 

or demand substations); 𝐶𝐶𝑖𝑖 is the load served by ith component (kVA, kW, or number of 

customers); 𝐶𝐶 is the total load served by the system (kVA, kW, or number of customers); 

and 𝑁𝑁 is the total number of demand components in the system. 𝑄𝑄𝑖𝑖 as evaluated in the 

previous section explicitly considers the actual probability of failure of each component in 

a system.  

 

If detailed information about customer power consumption is available, then 𝐶𝐶𝑖𝑖 and 𝐶𝐶 can 

be defined as the average power supplied by ith component and the average total power 

supplied by the system, respectively. Doing this will ensure that a line that supplies one 

customer for example with high power consumption will have a relatively similar effect on 

system reliability with a line that serves several customers with low power demand. 

However, due to the varying nature of power consumption, the reliability can only be 

evaluated using average power consumptions or at a particular time instant.    
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3.4 Line Failure Model 
 

Failure of distribution and transmission lines here is defined as service failure which is the 

inability of a line to deliver power to the intended target. Service failure is assumed to occur 

when the conductor wires are dropped to the ground. For distribution lines, the failure 

model proposed by Taras et al. (2004) is adopted and is explained here. A distribution line 

is defined as a switchable section with isolator elements at its ends. 

 

Consider the distribution line shown in Figure 3.7, service failure is defined as the failure 

of two consecutive poles in a system of three poles. Failure of 2 consecutive poles in any 

line constitutes service failure regardless of the total number of poles in the line. In the 

model, a ‘system of 3 poles’ in a line of n poles is considered because the failure of a central 

pole, i, can cause the failure of either of the adjacent poles (i+1 or i-1). The failure of the 

adjacent poles is conditional on the failure of the central pole. 

 

Figure 3.7 Distribution line model 

 

i i - 1 i + 1 
Adjacent Adjacent Central Pole 
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To determine the probability of service failure in a system of three poles, the following are 

defined Taras et al. (2004): 

• Probability of service failure of a system with three poles is defined as 𝑃𝑃𝐼𝐼 

• Probability of failure of the central pole “i” is defined by 𝑃𝑃(𝐹𝐹𝑖𝑖) ≡ 𝑃𝑃𝑖𝑖 

• Probability of failure of an adjacent pole conditional on the failure of the central 

pole is defined by 𝑃𝑃(𝐹𝐹𝑖𝑖−1|𝐹𝐹𝑖𝑖) = 𝑃𝑃(𝐹𝐹𝑖𝑖+1|𝐹𝐹𝑖𝑖) ≡ 𝑃𝑃𝑎𝑎 

• The conditional probability of failure of the adjacent poles is evaluated by 

increasing their applied load by 50% to account for load sharing after the failure of 

the central pole. Note that increasing the load means increasing the wind pressure 

area or the ground line moment, rather than increasing the wind speed.  

 

The probability of service failure in the system with three poles is: 

 

𝑃𝑃𝐼𝐼 = 𝑃𝑃(𝐹𝐹𝑖𝑖) ∙ 𝑃𝑃[(𝐹𝐹𝑖𝑖−1 ∪ 𝐹𝐹𝑖𝑖+1)|𝐹𝐹𝑖𝑖] (3.15) 

 

𝑃𝑃𝐼𝐼 = 𝑃𝑃(𝐹𝐹𝑖𝑖) ∙ {𝑃𝑃[𝐹𝐹𝑖𝑖−1|𝐹𝐹𝑖𝑖] + 𝑃𝑃[𝐹𝐹𝑖𝑖+1|𝐹𝐹𝑖𝑖] − 𝑃𝑃[(𝐹𝐹𝑖𝑖−1 ∩ 𝐹𝐹𝑖𝑖+1)|𝐹𝐹𝑖𝑖]} (3.16) 

 

Assuming that the failures of the adjacent poles are independent of each other, then 

 

𝑃𝑃𝐼𝐼 = 𝑃𝑃(𝐹𝐹𝑖𝑖) ∙ {𝑃𝑃[𝐹𝐹𝑖𝑖−1|𝐹𝐹𝑖𝑖] + 𝑃𝑃[𝐹𝐹𝑖𝑖+1|𝐹𝐹𝑖𝑖] − 𝑃𝑃[(𝐹𝐹𝑖𝑖−1|𝐹𝐹𝑖𝑖)] ∙ 𝑃𝑃[(𝐹𝐹𝑖𝑖+1|𝐹𝐹𝑖𝑖)]} (3.17) 

 

The above equation can be rewritten as: 

 

𝑃𝑃𝐼𝐼 = 𝑃𝑃𝑖𝑖 ∙ {2𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑎𝑎2} (3.18) 

 

Equation (3.18) is applied to each pole along a line. The number of all possible failure 

modes in a line is the same as the number of poles in the line. Assuming all failure modes 

are fully independent, the overall failure probability of an entire line is given by Equation 
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(3.19). This is also the upper bound of the probability of failure. If all the failure modes are 

fully dependent, the probability of failure is the lower bound given by Equation (3.20). 

Note that the exact failure probability of a line lies between the given bounds. 

Determination of the exact failure probability requires a knowledge of the correlation 

coefficient between poles in a line which can vary depending on the location of each pole 

relative to a failed pole. In subsequent life cycle cost analysis in this study, the upper bound 

of the probability of failure of the lines is used so as to be conservative. 

 

𝑈𝑈𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝 𝑝𝑝𝑝𝑝𝑣𝑣𝑒𝑒𝑑𝑑:      𝑃𝑃𝑓𝑓𝐿𝐿 = 1 −�[1 − 𝑃𝑃𝐼𝐼]
𝑚𝑚

𝑖𝑖=1

 (3.19) 

𝐿𝐿𝑝𝑝𝐿𝐿𝑒𝑒𝑝𝑝 𝑝𝑝𝑝𝑝𝑣𝑣𝑒𝑒𝑑𝑑:     𝑃𝑃𝑓𝑓𝐿𝐿 = max[𝑃𝑃𝐼𝐼] (3.20) 

 

where 𝑃𝑃𝑓𝑓𝐿𝐿 is the probability of failure of an entire line and m is the total number of poles 

in the line.  Using the above concept, the probabilities of failure of the lines in a power 

system can be calculated. The reliability of a line is the complement of the probability of 

failure.  

 

Transmission line ends are assumed to be between two substations, between a substation 

and a branching point, or between any two branching points. The span between support 

structures of transmission lines is usually long enough that the failure of one support 

structure will lead to service failure of the line. This is unlike in distribution system where 

the spans are relatively short and the failure of one pole may not necessarily lead to service 

failure of the line. If a transmission line is modeled as a series system, the lower bound of 

the probability of failure of the line is obtained by assuming that the failure modes are fully 

dependent. The upper bound, on the other hand, is obtained by assuming that the failure 

modes are fully independent. The lower and upper bounds of the probability of failure are 

given by Equation (3.21). 
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𝑚𝑚𝑝𝑝𝑚𝑚[𝑃𝑃𝑆𝑆] ≤ 𝑃𝑃𝑓𝑓𝐿𝐿 ≤ 1 −�[1 − 𝑃𝑃𝑆𝑆]
𝑁𝑁

𝑖𝑖=1

 (3.21) 

 

where 𝑃𝑃𝑓𝑓𝐿𝐿 is the probability of failure of the line; 𝑃𝑃𝑆𝑆 is the probability of failure of a single 

support structure; and N is the total number of support structures in the line. In this research, 

full independence is assumed between the modes and hence the upper limit in Equation 

(3.21) is used for evaluating transmission line failure. This is reasonable due to the long 

span between structures.   
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4. Targeted Hardening of Distribution Systems Subjected to 

Hurricanes1 
 

4.1 Introduction 
 

Over the years, several methods of hardening the distribution system have been studied. 

One of the methods studied extensively is undergrounding the system (e.g. Francis et al. 

(2011), Brown (2009), Xu and Brown (2008b), CVSCC (2004), FPSC (2005), LIPA 

(2005), TDA (2006)). However, most of these studies concluded that undergrounding is 

not cost-effective. Another method being currently studied is targeted hardening of current 

overhead distribution systems. Targeted hardening involves strengthening important 

support structures as well as structures with very high probability of failure. Important 

structures include distribution poles that serve a large number of customers, poles that serve 

critical customers (hospitals, fire stations, police stations, economic centers) and poles that 

are difficult to access. Brown (2009) studied the hardening of 10% of distribution poles in 

Texas and estimated the net benefit derived from it. Bjarnadottir et al. (2014) studied 

targeted hardening of distribution poles in Florida by replacing poles that fail with poles 

that are one class higher.  

 

The above studies did not attempt to identify risk-critical parts of the system to be 

strengthened or evaluate the effect of the targeted hardening on overall system reliability. 

To determine the critical parts or components of a system, some form of component 

importance measure is required. This, in turn, requires evaluating the reliability of the 

whole system. However, previous studies (e.g. Han et al. (2013), Shafieezadeh et al. 

(2014a), Bjarnadottir et al. (2013), Ryan et al. (2014b)) conducted on the vulnerability of 

distribution systems to hurricane and extreme wind damage focuses on evaluating the 

reliabilities of individual poles rather than the whole system.    

                                                 
1 A version of this chapter was previously published in Reliability Engineering & System Safety and is re-
used herein with permission from Elsevier. The permission is presented in Appendix B. 



40 

 

This chapter presents and demonstrates a framework that can be used to evaluate the 

effectiveness of targeted hardening measures. The framework includes fragility analysis 

considering decay of poles, hurricane hazard analysis, system reliability evaluation, 

component importance measure, and cost analysis. The flow chart of the general 

framework is shown in Figure 4.1. The framework is explained and demonstrated at the 

same time using a notional power distribution system.  
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Figure 4.1 Flowchart of proposed framework 
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4.2 Power Distribution System Model 
 

The power system model adopted for demonstrating the framework is shown in Figure 4.2. 

It is the power system of a virtual city called “Micropolis” developed at Texas A&M 

University for use in infrastructure risk research and planning (Brumbelow et al., 2007; 

Bagchi, 2009; Bagchi et al., 2009). The city has approximately 5000 residents in a 

historically rural region. The city is assumed to be located on the east coast of Florida, with 

the middle of the city located at 27.6oN and 80.4oW. The city has one substation supplied 

by a sub-transmission line (138 kV rating) running through the city. Two three-phase 

feeders emanate from the substation to deliver power to the entire city by branching off to 

smaller three-phase sub-branches and single-phase laterals. The dots in Figure 4.2 represent 

the poles while the conductor wires are represented by solid lines. Most of the left side of 

the city is served by an underground system. However, in this research, the underground 

system is transformed to an overhead system so that the entire system can be considered. 

 

Figure 4.2 only shows poles carrying distribution transformers and directly serving 

customers. However, the city is approximately 2 miles by 1 mile. Therefore, there are a lot 

more poles in the city than shown in Figure 4.2. The number of poles in each line is found 

based on the span of the poles which is taken as 46 m as will be discussed subsequently. 

The total number of poles in the city is approximately 661. The total circuit line is 

approximately 30.3 km. There are an estimated 434 residential, 15 industrial, and 9 

commercial/institutional customers in the city including 3 schools and 3 churches 

(Brumbelow et al., 2007). Figure 4.3 shows the line diagram of the power distribution 

system. The system is assumed to be radially operated at all times. Radially operated 

implies there is a unique path from the source of power to each component or customer.      
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Figure 4.2 Micropolis power distribution system 
[© IEEE. Reprinted, with permission, from Bagchi et al. (2009). Modeling the impact of fire 
spread on the electrical distribution network of a virtual city. Paper presented at the North 

American Power Symposium (NAPS), 2009. See Appendix C] 
 

 

Figure 4.3 Micropolis power distribution system line diagram 
[© IEEE. Reprinted, with permission, from Bagchi et al. (2009). Modeling the impact of fire 
spread on the electrical distribution network of a virtual city. Paper presented at the North 

American Power Symposium (NAPS), 2009. See Appendix C] 
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4.3 Design of Poles 
 

The poles supporting the distribution lines are assumed to be southern pine wood poles as 

they are the dominant used in the U.S. (Gustavsen & Rolfseng, 2000; Wolfe & Moody, 

1997). The poles are designed using the reliability-based method recommended by ASCE-

111 (2006). Figure 4.4 shows the distribution poles layout. A typical distribution pole that 

is 13.7 m high is considered. The three-phase main feeder poles are assumed to support 

three Aluminum Conductor Steel Reinforced (ACSR) conductor wires with diameters of 

18.3 mm. They are also assumed to support one all-aluminum conductor (AAC) neutral 

wire with a diameter of 11.8 mm. The single-phase laterals are assumed to support two 

ACSR conductor wires and one AAC neutral wire. All the poles are assumed to have a 

span of 46 m for wind pressure calculations (Short, 2006). 

 

 

Figure 4.4 Distribution poles layout  

(a) three-phase line poles (b) single-phase line poles 

0.3 m 
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The poles are designed for NESC (2002) grade C construction for weather-related loads 

which are often the controlling conditions (ASCE-111, 2006). The design equation that 

controls reliability of weather-related events is given by (ASCE-111, 2006): 

 

𝜙𝜙𝑅𝑅𝑛𝑛 > 𝑒𝑒𝑜𝑜𝑜𝑜𝑒𝑒𝑐𝑐𝑝𝑝 𝑝𝑝𝑜𝑜 [1.1𝐷𝐷𝐿𝐿 𝑝𝑝𝑒𝑒𝑑𝑑 𝛾𝛾𝑄𝑄50] (4.1) 

 

where ϕ is strength factor, Rn is the nominal strength, DL is dead loads, γ is load factor, and 

Q50 is 50-year return period wind load. The design 50-year return period 3-sec gust wind 

speed for the chosen location is about 52 m/s based on ASCE-7 (2010). Based on the wind 

speed, the wind force acting on the pole and the wires can be calculated using Equation 

(4.2) from ASCE-74 (1991). ASCE-111 (2006) recommends the use of this equation for 

both transmission and distribution support structures.  

 

𝐹𝐹 = 𝑄𝑄𝐾𝐾𝑧𝑧𝐾𝐾𝑧𝑧𝑧𝑧(𝑉𝑉)2𝐺𝐺𝐶𝐶𝑓𝑓𝐴𝐴 (4.2) 

 

where F is force (N), Q is air density factor, Kz is exposure coefficient, V is basic 3-sec 

gust wind speed, G is gust response factor, Cf is force or drag coefficient, Kzt is topographic 

factor, and A is the area projected on a plane normal to the wind direction (m2).  To account 

for P-Δ effect, ASCE-111 (2006) recommends using the method developed by Gere and 

Carter (1962). The method involves determining an amplification factor to account for the 

P-Δ effect. The amplification factor is given by Equation (4.3). 

 

𝐴𝐴𝑚𝑚𝑝𝑝𝑝𝑝𝑅𝑅𝑐𝑐𝑝𝑝𝑝𝑝𝑅𝑅𝑝𝑝𝑒𝑒 𝑜𝑜𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝 =
1

1 − �𝑉𝑉𝐿𝐿𝑃𝑃𝑐𝑐𝑐𝑐
�
 (4.3) 

 

where VL is total factored vertical load, Pcr is buckling load given by Equation (4.4). 

𝑃𝑃𝑐𝑐𝑐𝑐 = �
𝜋𝜋2 × 𝑀𝑀𝑀𝑀𝐸𝐸 × 𝐼𝐼𝑧𝑧𝑡𝑡𝑡𝑡

[2𝐿𝐿]2 × 144
��

𝐷𝐷𝑏𝑏𝑡𝑡𝑧𝑧𝑧𝑧𝑡𝑡𝑚𝑚
𝐷𝐷𝑧𝑧𝑡𝑡𝑡𝑡

�
2.7

 (4.4) 
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where MOE is the mean modulus of elasticity, Itop is the moment of inertia at top of pole, 

L is the distance from the ground line to centroid of horizontal loads, Dbottom and Dtop are 

the bottom and top diameters, respectively.  Class 4 and class 5 southern pine poles are 

initially assumed to be sufficient for the three-phase and single-phase lines respectively. 

The values of the variables in Equation 4.2 are given in Table 4.1 while the parameters 

related to the poles are given in Table 4.2. Note that the initial strength and geometry of 

the poles are found in ANSI-O5.1 (2002). Comparing the required and actually ground line 

circumferences from Table 4.2, it can be seen that the class 4 and class 5 southern pine 

poles are adequate for the three-phase and single-phase lines, respectively as assumed. 

 

Table 4.1 Design variables 

variable Mean values for pole Mean values for wires 

G 0.948 0.85 

Cf 0.9 1.0 

Kz 0.951 1.029 

Q 0.613 0.613 

Kzt 1.0 1.0 

A (m2) 
2.644 for class 4 and 2.439 for 

class 5  

0.842 per conductor 

and 0.543 for neutral  
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Table 4.2 Poles parameters 

Parameter 
Three-phase 

poles 

Single-phase 

poles 

Strength, Rn (MPa) 55.2 55.2 

Strength factor, 𝜙𝜙 0.79 0.79 

Top circumference (m) 0.53 0.48 

Circumference at 1.8 m from butt (m) 0.89 0.83 

Total ground line moment (N-m) 69,212 55,760 

Amplification factor 1.1 1.1 

Design ground line moment (N-m) (Amp factor * total GLM)  76,133 61,336 

Required section modulus (m3) 0.00175 0.00141 

Required circumference at ground line (m) 0.82 0.763 

Actual circumference at ground line (m) 0.884 0.824 

 

 

4.4 Decay of Wood Poles 
 

Wood poles are susceptible to decay due to fungal attack and are also vulnerable to attack 

by insects and woodpeckers. Decay usually occurs at the ground level or just below the 

ground. The rate of decay of wood depends on several factors such as timber species, 

climatic conditions (temperature, rainfall, and humidity), initial preservative treatment, and 

nature of fungal/insect attack. This means that any decay model can only be an 

approximation. The decay model from Li et al. (2005) and Shafieezadeh et al. (2014b) is 

adopted in this research. The strength of poles as a function of time is given by Equation 

(4.5).   

 

𝑅𝑅(𝑝𝑝) = 𝑅𝑅𝑡𝑡[1 − min(max(𝑝𝑝1𝑝𝑝 − 𝑝𝑝2, 0) , 1) × min(max(𝑝𝑝1𝑝𝑝𝑏𝑏2 , 0) , 1)] (4.5) 

 

where R(t) is the strength at time t, Ro is the initial strength. The values of 𝑝𝑝1, 𝑝𝑝2, 𝑝𝑝1, and 

𝑝𝑝2 were found from regression analysis as 0.014418, 0.10683, 1.3 x 10-4, and 1.846 
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respectively by Li et al. (2005) and Shafieezadeh et al. (2014b). Figure 4.5 shows the 

residual strength remaining as a function of time for southern pine poles calculated using 

Equation (4.5). According to the NESC (2002), wood poles should be replaced or 

reinforced when their strength falls below 67% of the initial strength. From Figure 4.5, this 

will happen when the poles are around 73 years old. The long service life of the poles from 

the decay model might be because the poles used to develop the model are in-service poles 

that have undergone periodic maintenance. 

 

 

Figure 4.5 Residual strength of poles as a function of time 

 

Shafieezadeh et al. (2014b) also used the data from Li et al. (2005) to plot the variation of 

c.o.v of southern pine poles with age. The plot showed that as the poles age, the uncertainty 

in the strength increases. The figure developed by Shafieezadeh et al. (2014b) is used to 

obtain the c.o.v of the pole strength at different ages in this study.  The above decay model 

has shortcomings because it does not incorporate variation in soil properties as well as 

variation in decay rate due to wood specie. Due to these shortcomings, location-specific 

models can be developed by utility companies to obtain more accurate results. 
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4.5 Fragility Analysis 
 

Fragility analysis is required to calculate the probability of failure of the power lines. 

Fragility is the probability of failure of a structure subjected to a given load. Monte Carlo 

simulation is used to calculate the probabilities of failure of the poles while varying the 

basic 3-sec gust wind speed. For each random variable with uncertainty, 1,000,000 random 

values were generated. Only flexural failure due to wind load is considered in the analysis. 

It is acknowledged that other failure mechanisms such as foundation failure and failure 

caused by falling trees and flying debris are also important in practice. However, there is a 

lack of data to include these failure mechanisms in the structural reliability formulation. If 

such data become available, these failure mechanisms can be easily included.  

 

The probabilities of failure were calculated by counting the number of cases where the 

stress demand at the ground line exceeds the corresponding stress capacity. Even though 

the poles are tapered, the critical stress for short poles, such as the ones normally used in 

distribution systems, is commonly at the ground line (ASCE-111, 2006). The limit state 

function for the fragility analysis is given by: 

 

𝐺𝐺(𝑝𝑝) = 𝑅𝑅(𝑝𝑝) − 𝑆𝑆 (4.6) 

 

where R(t) is the strength of the poles at any time t and S is the stress demand at the ground 

line caused by wind speed. The steps of the fragility analysis are summarized in the flow 

chart of Figure 4.6. 
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Figure 4.6 Fragility analysis flowchart 

 

The initial strength of the poles is determined from ANSI-O5.1 (2002) while the strength 

as the system ages is determined by considering decay of the poles as described previously. 

The stress due to applied wind load is determined using the force from Equation ((4.2). The 

uncertain parameters related to the pole strength and applied stress and their c.o.v are 

summarized in Table 4.3.  
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Table 4.3 Strength and load parameters and their statistics 

Random variable 
Probability 

distribution 
c.o.v Source  

Fiber Strength (kPa) Lognormal Varies with time Shafieezadeh et al. (2014b) 

Pole Height above ground (m) Normal 0.03 Assumed  

Wind Area (m2) Normal 0.06 Wolfe and Moody (1997) 

G Normal  0.11 Ellingwood and Tekie (1999) 

Cf Normal  0.12 Ellingwood and Tekie (1999) 

Kz Normal  0.06 ASCE-111 (2006) 

 

The fragility curves of the poles at different ages are shown in Figure 4.7 and Figure 4.8. 

It can be seen that because of decay, the probabilities of failure given wind speed increases 

as the poles age. It can also be seen that compared to the three-phase poles, the single-

phase poles have slightly lower probabilities of failure even though they have a slightly 

smaller ground line diameter. This is because the single-phase poles carry fewer conductors 

as shown in Figure 4.4. 

 

Overhead lateral lines use pole-mounted distribution transformers (DTs) to serve 

customers. Typical 25kVA rated DTs are assumed to serve most of the customers in 

Micropolis and each DT is assumed to serve an average of four customers (Gonen, 2014). 

It is acknowledged that higher rated transformers are required for few of the customers in 

the city such as churches and industrial buildings. For a lateral line like line 20 in Figure 

4.2 and Figure 4.3 which serves 48 residential customers and is about 1.4 km long, it has 

12 poles carrying DTs out of a total of about 30 poles. Based on information from 

commercially available pole mounted DTs, the DTs on the poles are assumed to be 0.39 m 

in diameter, 0.61 m in cylinder height, and weighing about 160 kg.  

 

Fragility curves of new and 60-year-old single-phase poles carrying DTs are shown in 

Figure 4.8. It can be seen that the presence of DTs slightly increases the probabilities of 

failure at different wind speeds. For example, at a wind speed of 60 m/s, new lateral line 

poles without DTs have a probability of failure of 0.19 compared to 0.22 for new poles 
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with DTs. For poles that are 60 years old, the probability of failure at 60 m/s with and 

without DTs is 0.56 and 0.60, respectively.    

 

 

Figure 4.7 Fragility curves of three-phase line poles at 0, 20, 40, and 60 years 

 

 

Figure 4.8 Fragility curves of single-phase line poles at 0, 20, 40, and 60 years 
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The lognormal distribution is assumed to describe the fragility models as recommended by 

Bjarnadottir et al. (2013). A Kolmogorov-Smirnov test was carried out to confirm this 

assumption. The lognormal CDF is given by: 

 

𝐹𝐹𝑅𝑅(𝑒𝑒) = 𝛷𝛷 �
𝑝𝑝𝑒𝑒(𝑒𝑒/𝑚𝑚)

𝜁𝜁
� (4.7) 

 

where m is the median of the fragility function, and ζ is the logarithmic standard deviation 

of intensity measure. 

 

 

4.6 Hurricane Risk Assessment 
 

There are two ways to assess hurricane risk (Li, 2012). The first method is probabilistic 

hurricane analysis where historical hurricane records are used to develop probability 

density function for key hurricane parameters such as the location of origin, translation 

speed, heading angle, central pressure, and radius to maximum wind location. Monte Carlo 

simulation is then performed to simulate future hurricanes which can be used to estimate 

maximum wind speeds as demonstrated by Vickery et al. (2000b). The wind speed from 

the above simulation is then modeled as a random variable and convolved with fragility 

model to assess the risk of structures or components as demonstrated by Li and Ellingwood 

(2006). 

 

The second method is a scenario-based approach where the effect of a specific simulated 

or historical hurricane is studied rather than the aggregated effect of all possible hurricanes 

as in the previous approach. Another difference between the two methods is that 

probabilistic analysis considers the probability of occurrence of different levels of 

hurricanes while scenario-based analysis assumes a selected level of hurricane (e.g. 200-

year return period hurricane or category 4 hurricane). 
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4.6.1 Probabilistic Analysis 
 

Using the probabilistic analysis, the annual probability of failure of the poles is estimated 

by convolving the structural fragility with a hurricane wind speed model as proposed by Li 

and Ellingwood (2006). The annual probability of failure is given by: 

 

𝑃𝑃𝑓𝑓 = � 𝐹𝐹𝑅𝑅(𝑒𝑒)𝑜𝑜𝑣𝑣(𝑒𝑒)𝑑𝑑𝑒𝑒
∞

0
 (4.8) 

 

where FR(v) is the cumulative distribution function (CDF) of the structural fragility and 

fv(v) is the probability density function (PDF) of the hurricane wind speed. Vickery et al. 

(2000b) conducted simulations of hurricanes and proposed that the Weibull distribution is 

appropriate for hurricane wind speed prediction. The PDF of the Weibull equation is given 

by: 

 

𝑜𝑜𝑣𝑣(𝑒𝑒) =
𝛼𝛼
𝑣𝑣
�
𝑒𝑒
𝑣𝑣
�
𝛼𝛼−1

exp �− �
𝑒𝑒
𝑣𝑣
�
𝛼𝛼
� (4.9) 

 

where v is the wind speed, and u and α are the parameters of the Weibull distribution. The 

wind speed v, is related to the return period (T) of the hurricane by: 

 

𝑒𝑒 = 𝑣𝑣 �− ln �
1
𝑇𝑇
��

1
𝛼𝛼

 (4.10) 

 

The 50, 100, 250, and 500-year return period 3-s gust wind speeds for the chosen location 

are estimated to be 56, 60, 67, and 72 m/s, respectively from Vickery et al. (2009b). The 

Weibull parameters are then calculated using Equation (4.10) as u = 26.7 and α = 1.85. 

The annual probabilities of failure of the poles considering decay over time are calculated 

and plotted in Figure 4.9. It can be seen from the figure that the annual probabilities of 

failure increase with age due to decay of the poles. It can also be seen that the presence of 
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distribution transformers (DTs) has little effect on the annual probability of failure of the 

single-phase poles. For subsequent analysis, the fragility results of lateral line poles without 

DTs will be used as they are the dominant network vulnerability.   

 

 

Figure 4.9 Annual probability of failure with age 

 

 

4.6.2 Scenario-Based Analysis 
 

Hurricane Jeanne has been selected for demonstrating the proposed framework. Hurricane 

Jeanne became a tropical storm on 14 September 2004 and made landfall on the east coast 

of Florida on 26 September as a category 3 hurricane (Lawrence & Cobb, 2005). Hurricane 

track data and recorded wind speeds are obtained from the North Atlantic Hurricane 

Database (HURDAT) from the National Oceanic and Atmospheric Administration 

(NOAA, 2015b) website. The database provides the location (latitude and longitude) as 

well as the maximum wind speed and central pressure of the hurricane mostly at 6-hour 
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intervals. However, accurate analysis of a relatively small area such as the study area, in 

this case, cannot be done considering 6-hour intervals as the hurricane can cover a long 

distance within this period. 

 

To obtain finer records of the hurricane wind speeds and central pressure, the 6-hour 

records are interpolated linearly to obtain 30-minute interval records. Linear interpolation 

has been shown to produce accurate results (Jayaram & Baker, 2010). At every time instant, 

the wind speed at any location from the hurricane eye can be determined using the wind-

field model developed by Holland (1980) as: 

 

𝑉𝑉𝐺𝐺 =

⎣
⎢
⎢
⎡
�
𝑅𝑅𝑚𝑚𝑎𝑎𝑚𝑚
𝑝𝑝

�
𝐵𝐵

�
𝐵𝐵∆𝑝𝑝 exp �− �𝑅𝑅𝑚𝑚𝑎𝑎𝑚𝑚𝑝𝑝 �

𝐵𝐵
�

𝜌𝜌
� +

𝑝𝑝2𝑜𝑜2

4
⎦
⎥
⎥
⎤
1
2�

−
𝑝𝑝𝑜𝑜
2

 (4.11) 

 

where Rmax is the radius to maximum wind speed, r is the distance from hurricane eye to 

point of interest, determined using the Haversine formula, B is the Holland parameter, Δp 

is the central pressure difference, ρ is air density (1.15 kg/m3), and f is the Coriolis 

parameter. Rmax, B, and f are given by (FEMA, 2011; Powell et al., 2005): 

 

ln𝑅𝑅max. = 2.556 − 0.000050255∆𝑝𝑝2 + 0.042243032𝜓𝜓 (4.12) 

𝐵𝐵 = 1.881 − 0.00557𝑅𝑅𝑚𝑚𝑎𝑎𝑚𝑚 − 0.010917𝜓𝜓, 𝜎𝜎𝐵𝐵 = 0.286 (4.13) 

𝑜𝑜 = 2Ω sin𝜑𝜑 (4.14) 

 

where ψ is the storm latitude, Δp is the central pressure difference, Ω is the earth’s angular 

velocity (7.292 x 10-5 rad/s), and φ is the local latitude. The HURDAT data provides the 

central pressure for the hurricanes at each time step. The central pressure difference, Δp, is 

found by subtracting the central pressure from atmospheric pressure at a distance beyond 

the effect of the hurricane which is typically 1,013 millibars (Xu & Brown, 2008b; Wang 

& Rosowsky, 2012).  
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The gradient wind speed above is converted to surface wind speed using a factor of 0.8 

(Vickery et al., 2009a; Vickery et al., 2000a). However, structural damage is more related 

to peak gust wind speed which is the maximum instantaneous wind speed. Therefore, a 

gust factor is needed to convert the surface wind speed. The gust model developed by 

Engineering Sciences Data Unit (ESDU, 1982, 1983) has been shown to be adequate for 

modeling gust factors (Xu & Brown, 2008b). Xu and Brown (2008b) conducted a 1000-

year simulation to estimate the 3-sec gust factor using the ESDU model and found that the 

distribution of the calculated values of the factor is highly concentrated around 1.287 with 

a standard deviation of 0.002. This value has been adopted for use in this research. 

 

The study area, in this case, is relatively small compared to the size of the hurricane. 

Consequently, the variation of wind speed across the study area is very minimal. Therefore, 

only the maximum wind speed at the middle of the power distribution system is considered 

and all the poles are assumed to be subjected to this particular wind speed. Figure 4.10 

shows the variation of the surface wind speed at the middle of the distribution system at 

various time intervals as the hurricane travels along its track.   

 

 
Figure 4.10 Surface wind speed variation at the center of study area 
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4.7 System Reliability Evaluation 
 

The system reliability model presented in Chapter 3 is used here. The reliability of line 33 

(which has 19 poles) in Figure 4.3 over time is plotted in Figure 4.11 as an example using 

the lower and upper bounds of the probabilities of failure of the line from probabilistic 

hurricane analysis. As expected, the reliability decreases over time as the poles in the line 

decay. The lower and upper bounds of the probabilities of failure of line 33 for the scenario-

based hurricane analysis are 0.53 and 1.00 respectively, calculated assuming the hurricane 

strikes when the poles are new. It should be noted that failure of cross arms is neglected in 

the above analysis. The probabilities of failure of end poles are also ignored since they are 

an order of magnitude smaller than the probabilities of failure of intermediate poles. 

 

 

 

Figure 4.11 Reliability of line 33 with age using probabilistic hurricane analysis 
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line 44 as can be seen from Figure 4.2. Three-phase feeder lines branched off to single-

phase laterals to deliver power to the customers through ‘service drops’ from distribution 

transformers. For simplicity sake, Bagchi et al. (2009) categorized the amount of load 

consumed by customers in Micropolis into few distinct profiles with all customers 

belonging to each profile having a fixed load demand (kVA) all through the year. However, 

in this research, new average demand has been assigned to each customer group based on 

the average power consumption of customers of a utility company in Florida obtained from 

EIA (2013). It is assumed that all customers have a fixed demand shown in Table 4.4 

throughout the year. Based on the fixed consumption, the load served by each line is the 

sum of all loads downstream of the line. 

  

Table 4.4 Load profiles for consumers across Micropolis 

Customer type Consumption 

Residential  1.5kW/h 

City churches 5kW/h 

City schools 10kW/h 

Industrial (Feeder 1) 39.4kW/h 

Central business district (Feeder 2) 10.1kW/h 

Feeder 1 total 1,334kW/h 

Feeder 2 total 394kW/h 

System total 1,728kW/h 

 

The system reliability is plotted in Figure 4.12 using the annual probabilities of failure 

calculated using probabilistic hurricane analysis. The system reliability is calculated using 

both the upper and lower bounds of probabilities of failure of the lines evaluated 

previously. The system reliability using the upper bounds is 97.8% and 60.2% at 0 and 70 

years respectively. Using the lower bounds, the reliability is 99.6% and 96.8% at 0 and 70 

years respectively. The system reliability for the event-based analysis was calculated to be 

15.3% and 3.2% for the lower and upper bounds of line failures respectively.  
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Figure 4.12 System reliability with age using probabilistic hurricane analysis 
 
 
 

4.8 Component Importance Index 
 

In a given system, some components are more important for the reliability of the system 

than others. Determining the relative importance of all components/lines in the distribution 

system is essential for targeted hardening. The component importance index is usually used 

in probabilistic risk assessment to identify components and subsystems whose reliability 

need to be improved to reduce risk to the whole system (Rausand & Høyland, 2004). One 

of the methods of evaluating the relative importance of system components is risk 

achievement worth (RAW). RAW is a measure of the “worth” of component i in achieving 

system reliability. It is defined as the ratio of the conditional system unreliability if 

component i has failed to the actual system unreliability. RAW of component i is defined 

as (Rausand & Høyland, 2004): 

 

𝑅𝑅𝐴𝐴𝑅𝑅(𝑅𝑅) =
1 − 𝑅𝑅𝑆𝑆(𝑄𝑄𝑖𝑖 = 1)

1 − 𝑅𝑅𝑆𝑆
        𝑜𝑜𝑝𝑝𝑝𝑝 𝑅𝑅 = 1,2, … ,𝑒𝑒 (4.15) 
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where 𝑅𝑅𝑆𝑆(𝑄𝑄𝑖𝑖 = 1) is the system reliability when component (line) i has failed while 𝑅𝑅𝑆𝑆 is 

the reliability of the original system. The risk achievement worth of all the lines in the 

system is calculated using the upper bounds of line failures when the poles are new and 

presented in Figure 4.13.   

  

 

Figure 4.13 Risk achievement worth of lines 
 

 

It can be seen from Figure 4.13 that as expected, lines with higher loads have higher risk 

achievement worth. The main feeder lines have higher RAW than the laterals because the 

delivery of power to the laterals depends on the reliability of the feeder lines. For example, 

line 1 has the highest RAW because the delivery of power to all the laterals on feeder 1 

depends on the reliability of line 1. Line 9 on the other hand, have a relatively high RAW 

because it serves an industrial area with high power consumption. This will guide decision-

making when selecting the part of the system to be strengthened.  
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4.9 Targeted Hardening Strategies 
 

Three strategies will be considered to demonstrate the proposed framework. These are: 

 

i. Strategy 1: Hardening only the main feeder lines 

ii. Strategy 2: Hardening all lines with RAW ≥ 2.5 

iii. Strategy 3: Hardening all lines 

 

In all the above three cases, hardening means using a pole that is one class higher than that 

designed previously. This means using class 3 and 4 poles instead of class 4 and 5 for the 

three-phase main feeder lines and single-phase laterals, respectively. Both strategies 1 and 

2 are considered as targeted hardening measures. Strategy 1 is chosen because power 

delivery to all the laterals lines depends on the reliability of the main feeder lines. However, 

some lateral lines serving heavy loads have higher RAW than some feeder lines as can be 

seen from Figure 4.13. Hence, strategy 2 is chosen and RAW set at ≥ 2.5 so as to harden 

both feeder and lateral lines that have a significant effect on system reliability. Strategy 3 

is chosen to investigate the difference between targeted hardening and hardening the whole 

system. 

 

Figure 4.14 shows the improvement in system reliability using all three strategies for 

probabilistic hurricane analysis. The system reliability is evaluated using the upper bound 

of line failure probability. System reliability at 0 years is improved from 97.8% to 99.1%, 

99.2%, and 99.5% using strategies 1, 2, and 3 respectively. At 70 years, i.e. with poles that 

are 70 years old, the system reliability is improved from 60.2% to 73.4%, 75.2%, and 

79.6% using strategies 1, 2, and 3 respectively.  
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Figure 4.14 System reliability improvement after targeted hardening 

 

 

For the scenario analysis, the system reliability improvements are shown in Table 4.5. 

There is no specific requirement on the level of reliability required for a power distribution 

system. Each utility company can assign a required level of reliability based on which the 

level of hardening can be selected.   

 

Table 4.5 System reliability comparison for scenario-based analysis 

State of System Reliability using lower bounds Reliability using upper bound 

Original system 15.3% 3.2% 

Strategy 1 36.8% 3.2% 

Strategy 2 40.3% 3.2% 

Strategy 3 47.3% 3.2% 
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4.10 Cost Analysis 
 

Utility companies and governments are concerned about the monetary costs and benefits 

of any hardening or disaster mitigation strategy. Decisions are usually made by considering 

the cost effectiveness of hardening methods. To evaluate the cost-effectiveness of the three 

proposed strategies above, cost analysis is performed for both probabilistic and scenario-

based hurricane analysis. The net benefit, defined as benefit minus cost, is evaluated for 

each hardening strategy. The benefit of a hardening strategy is the reduction in damages 

associated with the hardening strategy while the cost is the cost of implementing the 

hardening strategy. 

 

 

4.10.1 Probabilistic Hurricane Analysis 
 

Life cycle cost analysis is performed for the probabilistic hurricane analysis. The method 

proposed by Chang (2003) has been adopted for the cost analysis as it considers indirect 

costs. The various costs considered are explained below.   

 

i. Mitigation cost (CM): this is the cost of hardening the system using the 3 proposed 

strategies. It includes the cost of buying new stronger poles and installation cost.  

 

ii. Maintenance cost: this is the cost of periodic maintenance carried out by utility 

companies. This includes cost of preventive maintenance, tree trimming, wildlife 

protection, and so on. The maintenance cost for the entire life span of a system is 

given by: 

 

𝐶𝐶𝑚𝑚 = ��𝑚𝑚𝑖𝑖(𝑚𝑚𝑖𝑖 , 𝑝𝑝) ∙ (1 + 𝑝𝑝)−𝑧𝑧
𝑖𝑖𝑧𝑧

 (4.16) 
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where 𝑚𝑚𝑖𝑖 is the annual maintenance cost for element i which depends on material 

properties 𝑚𝑚𝑖𝑖 and the year of analysis t; 𝑧𝑧(𝑝𝑝) is a discount factor; and y is the 

discount rate.  

 

iii. Repair cost: this is the cost of repairing the damage to the system due to hurricanes. 

In this case, it is the cost of replacing failed poles. Failed poles are replaced with 

new poles of the same class. Consequently, the age distribution of poles in the 

system changes every year. The repair cost for the entire lifespan of the system is 

given by: 

 

𝐶𝐶𝑐𝑐 = ��[𝐹𝐹𝑖𝑖(𝑚𝑚𝑖𝑖, 𝑝𝑝) ∙ 𝑝𝑝𝑖𝑖] ∙ 𝑧𝑧(𝑝𝑝)
𝑖𝑖𝑧𝑧

 (4.17) 

 

where 𝐹𝐹𝑖𝑖 is the annual probability of failure of element i, and 𝑝𝑝𝑖𝑖 is the unit repair 

cost of element i.  

 

iv. Revenue loss: this is the cost incurred by the utility company due to interruptions 

in power supply to the customers caused by damage due to hurricanes. The total 

loss in revenue is given by: 

 

𝐶𝐶𝑣𝑣 = �𝑉𝑉 ∙ 𝑝𝑝 ∙ 𝑧𝑧(𝑝𝑝)
𝑧𝑧

 (4.18) 

 

where V is the annual demand not met; and p is the unit price of electricity. V is a 

function of time to completely restore the system which in turn depends on the 

amount of damage (number of failed poles) and the number of repair crew units. 

Ouyang and Dueñas-Osorio (2014) assumed the restoration time for each failed 

pole to follow a normal distribution with a mean of 5 hours and standard deviation 

of 2.5 hours. Brown (2009) estimated the mean time to restoration for overhead 

line failure to be 4 hours.  Here, it is assumed that the mean time to restore a failed 

line due to pole failure is 4 hours. It is also assumed that on average, there will be 
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1 repair crew unit allocated to the city throughout a year. It is acknowledged that 

the number of repair crews varies between disaster and non-disaster periods. This 

will be better reflected in the scenario-based hurricane analysis.  

 

The average annual outage hours for each line is found by multiplying the number 

of failed poles by the time to restore each pole. The number of failed poles is the 

product of the annual probability of failure for each pole group and the total 

number of poles for that age group. Finally, the annual unmet demand for each 

line is the product of average annual outage hours and total hourly consumption in 

the line. 

 

v. Societal economic loss: this is the direct economic loss resulting from the 

interruption in power supply. The total economic loss over the lifespan of the 

system is given by:  

 

𝐶𝐶𝑒𝑒 = �𝐸𝐸 ∙ 𝑧𝑧(𝑝𝑝)
𝑧𝑧

 (4.19) 

 

where E is the expected annual direct economic loss. E for each line is the product 

of average annual outage hours and monetary loss per hour. The monetary loss per 

hour for each customer category is adopted from LaCommare and Eto (2006) and 

shown in Table 6.  

      

The total life cycle cost is then calculated using Equation (4.20). 

 

𝐿𝐿𝐶𝐶𝐶𝐶 = 𝐶𝐶𝑀𝑀 + 𝐶𝐶𝑚𝑚 + 𝐶𝐶𝑐𝑐 + 𝐶𝐶𝑣𝑣 + 𝐶𝐶𝑒𝑒 (4.20) 

 

To perform the life-cycle cost analysis, the lifespan of the system is required. In this case, 

the lifespan of the system is assumed to be the same as the life span of the distribution 

poles. The service life of wood poles has been a subject of much discussion. According to 

the NESC (2002), wood poles should be replaced or reinforced when their strength falls 
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below 67% of the initial strength. Most utilities use 30 to 40 years as an estimated service 

life (Mankowski et al., 2002). However, research and several surveys show that the service 

life of wood poles can range from 60 to 80 years depending on specie, location, and 

maintenance (Morrell, 2008; Stewart, 1996). Datla and Pandey (2006) determined the 

approximate life expectancy of wood poles to be 69 years based on a study of 100,000 

distribution poles. 

 

The time scale considered for the life-cycle cost analysis is 70 years based on the amount 

of time it takes for the poles to degrade to approximately 67% of their original strength as 

plotted in Figure 4.5. In carrying out the life-cycle cost analysis, the following assumptions 

are made: 

 

i. Maintenance cost remains constant and is the same for original and hardened 

system. Hardening the system might reduce the annual maintenance cost but 

there is a lack of data to quantify this potential reduction. 

ii. Demand remains constant over the years 

iii. Cost per unit of electricity remains constant 

 

All the information needed for the life-cycle cost analysis is given in Table 4.6.  
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Table 4.6 Life cycle cost analysis parameters 

Parameters  Value Source  

Class 3 SP poles (13.7 m) $544/pole ATS (2014) 

Class 4 SP poles (13.7 m) $479/pole ATS (2014) 

Class 5 SP poles (13.7 m) $441/pole ATS (2014) 

Cost of pole replacement under normal condition $2,500/pole Taras et al. (2004) 

Cost of pole replacement under storm condition $4,000/pole Xu and Brown (2008b) 

Annual maintenance cost, 𝑚𝑚𝑖𝑖 $4,000/circuit mile Francis et al. (2011) 

Discount rate, y 4% 
Bastidas-Arteaga and 

Stewart (2015) 

Unit price, p $0.11/kWh Xu and Brown (2008b) 

Economic loss (residential) $2.70/h LaCommare and Eto (2006) 

Economic loss (commercial) $886/h LaCommare and Eto (2006) 

Economic loss (industrial) $3,253/h LaCommare and Eto (2006) 

Average consumption (residential) 1.5kW/h EIA (2013) 

Average consumption (commercial) 10.1kW/h EIA (2013) 

Average consumption (industrial) 39.4kW/h EIA (2013) 

Average consumption (schools) 10kW/h Assumed 

Average consumption (churches) 5kW/h Assumed 

 

 

Two cases are considered for the life-cycle cost analysis. Case 1 is when the hardening 

strategies are carried out at the construction stage of a new system, i.e. the utility company 

decided to build a stronger system from the beginning. In this case, the mitigation cost is 

the additional cost needed to use stronger poles instead of the poles that have been shown 

to be sufficient during the design.  

 

In Case 2, it is assumed the system exist as it is and proactive hardening strategies are 

employed. In this case, however, it will illogical to assume the hardening measures will be 

carried out few years after the distribution system is constructed. According to Bjarnadottir 

et al. (2014), the age of distribution poles in Florida ranges from 0 to 50 years. For Case 2, 

it is assumed that the system and all the poles are 20 years old when the hardening measures 

are carried out. In this case, the mitigation cost includes the cost of buying new stronger 
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poles and the cost of removing and replacing existing poles. The life cycle cost analysis is 

then performed considering a life span of 50 years which is how much longer the 

unhardened system is expected to last.  

 

 

4.10.1.1 Case 1: hardening at construction stage  

 

The results of the LCC analysis for Case 1 of the probabilistic hurricane analysis are shown 

in Table 4.7. It can be seen from the table that as expected, strengthening measures lowers 

the repair cost, revenue loss, and economic loss. It can be seen that all three strengthening 

strategies result in lower life-cycle cost compared to the un-hardened system with strategy 

3 providing the highest net benefit. The savings as a result of hardening comes mostly from 

a reduction in repair cost and societal economic losses which more than made up for the 

initial hardening investment. Strategy 3, which entails hardening the entire system, has the 

lowest life cycle cost because the difference in the costs of the three classes of poles is 

small. For example, a class 3 pole cost about $65 more than a class 4 pole. The effect of 

this can be seen in Table 4.7 where it costs an additional $29, 000 to use stronger poles to 

construct the whole system from the beginning. 

 

Table 4.7 also demonstrates the importance of various components of the life cycle cost. 

For the unhardened system, about 48% of total cost are economic losses suffered by the 

customers due to power outages. This dropped to an average of 31% with the 3 hardening 

strategies. It can also be noted that routine maintenance costs outweigh repair costs and 

revenue losses combined. For example, for the unhardened system, the maintenance cost 

constitutes about 39% of the total cost compared to repair cost and revenue loss which 

combined constitutes about 13% of the total cost.     

 

From a utility company’s perspective, the total cost excluding the societal economic losses 

may be of more interest. All three hardening measures have lower life cycle cost than the 

unhardened system even if economic losses are excluded with strategy 3 having the lowest 
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cost. Again, this is due to the low additional cost needed to construct a system with stronger 

poles. 

  

Table 4.7 LCCA results for probabilistic hurricane analysis – Case 1 ($1,000s) 

Cost category 
Unhardened 

system 

Strategy 1 Strategy 2 Strategy 3 

Mitigation cost, 𝐶𝐶𝑀𝑀 - 9 14 29 

Maintenance cost, 𝐶𝐶𝑚𝑚 1,762 1,762 1,762 1,762 

Repair cost, 𝐶𝐶𝑐𝑐 588 514 480 268 

Revenue loss, 𝐶𝐶𝑣𝑣 8 5 4 4 

Societal Economic loss, 𝐶𝐶𝑒𝑒 2,155 1,050 992 978 

Total LCC 4,513 3,339 3,253 3,041 

Total LCC w/o Ce 2,358 2,290 2,260 2,062 

Net benefit - 1,174 1,260 1,472 

Net benefit w/o Ce - 68 98 296 

 

 

During disasters such as hurricanes, considerable damage can occur to buildings and other 

infrastructure systems other than power systems. This usually reduces economic activities 

even if the power system is not damaged. It also reduces electricity consumption as 

businesses close and residents evacuate. To account for this reduction, the revenue and 

economic losses in Table 4.7 are reduced. However, due to lack of literature on the estimate 

of the reduction in economic activities and power consumption, four levels of reduction, 

10%, 20%, 30%, and 50%, are considered as shown in Table 4.8. It can be seen from Table 

4.8 that the pattern of the total life cycle cost after reductions of economic and revenue 

losses remains the same as that in Table 4.7. All three strategies resulted in positive net 

benefit with strategy 3 having the highest. However, the contribution of the economic loss 

to the total life cycle cost reduces as expected.    
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Table 4.8 LCCA results with reductions in revenue and economic losses ($1,000s) 

Cost  Strategy 1 Strategy 2 Strategy 3 

Net benefit with 10% reduction in 𝐶𝐶𝑣𝑣 and 𝐶𝐶𝑒𝑒  1,063 1,144 1,354 

Net benefit with 20% reduction in 𝐶𝐶𝑣𝑣 and 𝐶𝐶𝑒𝑒 952 1,027 1,236 

Net benefit with 30% reduction in 𝐶𝐶𝑣𝑣 and 𝐶𝐶𝑒𝑒 841 910 1,118 

Net benefit with 50% reduction in 𝐶𝐶𝑣𝑣 and 𝐶𝐶𝑒𝑒 620 677 882 

 

 

4.10.1.2 Case 2: hardening 20 year-old system 

 

The results of the LCC analysis for Case 2 are shown in Table 4.9. Considering the total 

life cycle cost, all three hardening measures have lower total costs than the unhardened 

system. Among the 3 strategies, strategy 1 gives the highest net benefit followed by 

strategy 2. Strategy 3 gives the lowest net benefit among the three. This shows the 

importance of targeted hardening measures for existing systems because it implies that 

unlike in Case 1, it is more economical to employ targeted hardening than hardening the 

whole system. If societal economic losses are excluded, it can be seen that none of the 

hardening strategies is cost effective as implied by the negative net benefit. This is due to 

the high cost of carrying out the mitigation strategies because existing poles need to be 

removed, and stronger poles need to be purchased and installed.  
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Table 4.9 LCCA results for probabilistic hurricane analysis – Case 2 ($1,000s) 

Cost category 
Unhardened 

system 

Strategy 1 Strategy 2 Strategy 3 

Mitigation cost, 𝐶𝐶𝑀𝑀 - 424 652 1,978 

Maintenance cost, 𝐶𝐶𝑚𝑚 1,614 1,614 1,614 1,614 

Repair cost, 𝐶𝐶𝑐𝑐 689 580 526 199 

Revenue loss, 𝐶𝐶𝑣𝑣 9 5 4 3 

Societal Economic loss, 𝐶𝐶𝑒𝑒 2,524 821 729 707 

Total LCC 4,836 3,443 3,525 4,501 

Total LCC w/o Ce 2,312 2,622 2,795 3,794 

Net benefit - 1,392 1,311 335 

Net benefit w/o Ce - -310 -483 -1,482 

 

 

When a reduction in overall economic activities and electricity demand due to damage to 

buildings and other infrastructure systems is taken into account, the total life cycle costs 

with four levels of reductions are shown in Table 4.10. It can be seen that with a reduction 

of 10% in both economic and revenue losses, the pattern is the same as in Table 9 with all 

three strategies having positive net benefits. However, with a reduction of 20% and higher, 

only strategies 1 and 2 are cost effective.  

 

Table 4.10 LCCA results with reductions in revenue and economic losses ($1,000s) 

Cost  Strategy 1 Strategy 2 Strategy 3 

Net benefit with 10% reduction in 𝐶𝐶𝑣𝑣 and 𝐶𝐶𝑒𝑒  1,221 1,131 152 

Net benefit with 20% reduction in 𝐶𝐶𝑣𝑣 and 𝐶𝐶𝑒𝑒 1,051 951 -30 

Net benefit with 30% reduction in 𝐶𝐶𝑣𝑣 and 𝐶𝐶𝑒𝑒 880 771 -212 

Net benefit with 50% reduction in 𝐶𝐶𝑣𝑣 and 𝐶𝐶𝑒𝑒 539 411 -577 
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4.10.2 Scenario-based analysis 
 

For the scenario-based hurricane analysis, the total incurred costs due to hurricane damage 

as well as costs of mitigation are computed. The incurred costs due to hurricane damage 

include repair cost, revenue loss, and economic losses. The repair cost is calculated using 

the number of poles that fail which is found by multiplying the probability of failure by the 

number of poles. The revenue and economic losses are calculated by assuming that the 

average time to repair a failed pole is 4 hours. For a category 3 hurricane such as the one 

considered here, utility companies drastically increases the number of repair crew units for 

affected areas including hiring external crews from other utility companies (Xu & Brown, 

2008b). Here, it is assumed that 6 crew units are assigned to the city for speedy restoration.  

 

As in the case of probabilistic hurricane analysis, two cases have been considered here as 

well. Case 1 is when the system is constructed initially with stronger poles based on the 3 

hardening measures and the hurricane strikes the city in the year the system was 

constructed. Case 2 is hardening an existing 20-year old system and the hurricane strikes 

the city immediately following the hardening measures.    

 

 

4.10.2.1 Case 1: hardening at construction stage  

 

The results of the cost analysis for Case 1 are shown in Table 4.11. It can be seen that the 

pattern is similar to the results for the probabilistic hurricane analysis. All the three 

hardening strategies results in lower incurred cost compared with the unhardened system 

with strategy 3 providing the highest benefit followed by strategy 2. However, in this case, 

repair costs are considerably higher than economic losses. The repair costs constitute 64%, 

75%, 75%, and 60% for the unhardened system, and strategy 1, 2, and 3, respectively. 
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Table 4.11 Cost analysis results for scenario hurricane – Case 1 ($1,000s) 

Cost category 
Unhardened 

system 

Strategy 1 Strategy 2 Strategy 3 

Mitigation cost, 𝐶𝐶𝑀𝑀 - 9 14 29 

Repair cost, 𝐶𝐶𝑐𝑐 1,594 1,400 1,291 663 

Revenue loss, 𝐶𝐶𝑣𝑣 3 2 2 1 

Societal Economic loss, 𝐶𝐶𝑒𝑒 906 448 421 414 

Total Cost 2,503 1,859 1,727 1,108 

Total Cost w/o Ce 1,597 1,411 1,307 693 

Net benefit - 645 776 1,396 

Net benefit w/o Ce - 186 290 904 

 

 

Table 4.12 shows the results of the total life cycle costs with reductions in economic and 

revenue losses. It can be seen that the pattern is the same as in Table 4.11 where all the 3 

hardening strategies result in savings compared with the unhardened system with strategy 

3 giving the lowest cost saving. 

 

Table 4.12 Cost analysis results with reductions in revenue and economic losses 
($1,000s) 

Cost  Strategy 1 Strategy 2 Strategy 3 

Net benefit with 10% reduction in 𝐶𝐶𝑣𝑣 and 𝐶𝐶𝑒𝑒  599 727 1,346 

Net benefit with 20% reduction in 𝐶𝐶𝑣𝑣 and 𝐶𝐶𝑒𝑒 553 679 1,297 

Net benefit with 30% reduction in 𝐶𝐶𝑣𝑣 and 𝐶𝐶𝑒𝑒 507 630 1,248 

Net benefit with 50% reduction in 𝐶𝐶𝑣𝑣 and 𝐶𝐶𝑒𝑒 415 532 1,149 

 

 

The implication of the uncertainties in the assumed values of repair time and number of 

repair crew units on net benefit of mitigation strategies has also been investigated. Figure 

4.15 shows a plot of the net benefit when repair time is varied while the number of repair 

crew units is kept constant at 6 as initially assumed. It can be seen that the net benefit 



75 

increases significantly as the repair time increases for all mitigation strategies. This implies 

that mitigation strategies are more cost-effective in cases where it takes utility companies 

longer to repair failed poles. This is important for decision making especially for areas 

where access is usually hindered after hurricanes. In such cases, adopting measures to 

reduce the level of damage can be highly cost-effective.     

 

Figure 4.16 shows a plot of the net benefit with varying number of repair crew units while 

repair time is kept constant at 4 hours as initially assumed. It can be seen that the net benefit 

decreases as the number of repair crew units increases. However, the impact becomes 

insignificant as the number of crew units exceeds about 15. This implies that for utility 

companies with few repair crew units or for distribution systems with few allocated repair 

crew units, deploying mitigation strategies can result in higher monetary benefit.  

 

 

Figure 4.15 Impact of repair time on net benefit of mitigation strategies (Case 1) 
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Figure 4.16 Impact of number of repair crew units on net benefit (Case 1) 

 

 

4.10.2.2 Case 2: hardening 20 year-old system 

 

The results for Case 2 are shown in Table 4.13. It can be seen that if total costs are 

considered, only strategies 1 and 2 are cost effective. Strategy 3 results in negative net 

benefit due to the high cost of mitigation. If societal economic losses are excluded, none 

of the hardening measures are cost effective.   
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Table 4.13 Cost analysis results for scenario hurricane – Case 2 ($1,000s) 

Cost category Unhardened system Strategy 1 Strategy 2 Strategy 3 

Mitigation cost, 𝐶𝐶𝑀𝑀 - 424 652 1,978 

Repair cost, 𝐶𝐶𝑐𝑐 1,625 1,425 1,312 663 

Revenue loss, 𝐶𝐶𝑣𝑣 3 2 2 1 

Societal Economic loss, 

𝐶𝐶𝑒𝑒 
922 449 

421 414 

Total Cost 2,551 2,300 2,387 3,057 

Total Cost w/o Ce 1,629 1,851 1,966 2,643 

Net benefit - 251 164 -506 

Net benefit w/o Ce - -223 -337 -1,014 

 

 

Table 4.14 shows the total life cycle costs after reductions in economic and revenue losses. 

For a reduction of 10%, 20%, and 30%, strategies 1 and 2 are cost-effective as before. 

However, for a reduction of 50%, only strategy 1 is cost-effective. Strategy 3 is not cost-

effective for all reductions.  

 

 

Table 4.14 Cost analysis results with reductions in revenue and economic losses 
($1,000s) 

Cost  Strategy 1 Strategy 2 Strategy 3 

Net benefit with 10% reduction in 𝐶𝐶𝑣𝑣 and 𝐶𝐶𝑒𝑒  203 113 -557 

Net benefit with 20% reduction in 𝐶𝐶𝑣𝑣 and 𝐶𝐶𝑒𝑒 156 63 -608 

Net benefit with 30% reduction in 𝐶𝐶𝑣𝑣 and 𝐶𝐶𝑒𝑒 108 13 -659 

Net benefit with 50% reduction in 𝐶𝐶𝑣𝑣 and 𝐶𝐶𝑒𝑒 13 -88 -761 

 

 

The impacts of repair time and number of repair crew units on net benefit of mitigation 

strategies are shown in Figure 4.17 & Figure 4.18, respectively. From Figure 4.17, it can 

be seen that the cost-effectiveness of the mitigation strategies depends on the repair time. 
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For example, strategy 3 is only cost effective when the average repair time is ≥ 8 hours. 

From Figure 4.18, it can be seen that as the number of repair crew units increases, the 

mitigation strategies become ineffective. This is because increasing repair crew units 

decrease power outage hours which in turn decreases societal economic losses and revenue 

losses. 

 

    

 

Figure 4.17 Impact of repair time on net benefit of mitigation strategies (Case 2) 
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Figure 4.18 Impact of number of repair crew units on net benefit (Case 2) 
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This chapter presented a framework for evaluating the effectiveness of targeted hardening 

measures for power distribution systems subjected to hurricanes. The framework 

incorporated hurricane hazard analysis, system reliability evaluation, component 

importance measure, cost analysis as well as aging of support structures. A notional power 

distribution system was used to demonstrate the framework.  

 

The results from the case study considered showed the importance of evaluating system 
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From the results, it can be concluded that strengthening an entire distribution system is 

only cost-effective for new systems. Using stronger poles than required by design for the 

entire system at construction stage of new systems resulted in lower life-cycle cost in all 

cases. However, for older systems, targeted hardening was shown to be cost-effective 

relative to hardening an entire system. The case study also showed that mitigation strategies 

can be cost-effective for distribution systems in less accessible areas or areas where fewer 

repair crew units are available which usually leads to prolonged repair time.    

 

The results from the considered case study also showed the importance of considering 

economic losses in evaluating the cost effectiveness of hardening measures. It was shown 

that some hardening strategies that might not be cost effective for a utility company can be 

very cost effective if societal economic losses are considered. This is important especially 

for municipal utilities which are owned by city governments. In such cases, the high cost 

of mitigation measures or additional cost of constructing a stronger system can be easily 

compensated by the huge savings in economic losses. 
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5. Potential Impact of Climate Change on Distribution 

Systems Subjected to Hurricanes2 
 

5.1 Introduction 
 

Long-term investment and planning in the power sector need to consider uncertainties in 

future hazard trends. One such uncertainty is the potential impact of climate change on 

hurricane hazard. The Fifth Assessment Report of the Intergovernmental Panel on Climate 

Change (IPCC) noted the variation in weather patterns and projected an increase in the 

intensity of storms (Zamuda et al., 2013; IPCC, 2013). With the potential increase in the 

intensity of hurricanes in the long-term due to climate change, the cost of damage to 

distribution system is expected to rise. Consequently, a report by the members of the 

electric utilities project of the World Business Council on Sustainable Development 

(WBCSD) called on all utility companies to build expertise in analyzing climate 

information to better understand climate change related risks and to develop adaptation and 

resiliency strategies to cope with such risks (WBCSD, 2014).   

 

The potential impact of climate change is magnified when aging of power distribution 

infrastructure is considered, which has been determined to be one of the main issues facing 

the power system in the United States (U.S.) (ASCE, 2013). With the inherent uncertainty 

in the prediction of variation in weather patterns as well as the time-dependent strength of 

infrastructure components, a better understanding of the potential varied risks is essential 

for informed decision making. Therefore, there is a need to investigate the possible impact 

of climate change on power distribution systems and come up with economically feasible 

adaptation strategies. 

 

                                                 
2 A version of this chapter was previously published in Journal of Infrastructure Systems and is re-used herein 
with permission from ASCE. The permission is presented in Appendix D. 
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Bjarnadottir et al. (2013) and (2014) presented a probabilistic framework for evaluating the 

potential impact of climate change on hurricane risk assessment of power distribution poles 

and proposed various adaptation strategies. The framework incorporated probabilistic 

hurricane analysis, age-dependent fragility of poles, and life cycle cost analysis. The effect 

of climate change was modeled by assuming a linear change in wind speed of -5% to 25% 

over a 100-year period. Francis et al. (2011) presented a hybrid economic input-output life 

cycle cost analysis method for evaluating the cost-effectiveness of climate change 

adaptation strategies of distribution systems. Failure of distribution poles, spans, and pad-

mounted transformers was considered in the study. The effect of climate change was 

modeled through the use of count regression analysis and data mining techniques that 

describe the relationship between climate variability and North Atlantic tropical cyclone 

counts in the U.S.        

    

While the above studies constitute great strides in studying the impact of climate change 

on power distribution systems, they are limited to component-level risk assessment. A 

more informed decision on the effectiveness of adaptation strategies can be made when the 

reliability of the entire distribution system is evaluated. This will allow determining the 

parts of the system with greater impact on reliability which ought to be strengthened. 

 

In this chapter, the framework of Chapter 4 is extended to integrate the potential impact of 

climate change on hurricane patterns. A hurricane simulation model is adopted to enable 

the variation in both intensity and frequency to be considered. Adaptation strategies are 

proposed and their cost-effectiveness investigated. Micropolis power distribution system 

is used to demonstrate the framework. Class 4 and class 5 southern pine poles as designed 

in Chapter 4 are used for the three-phase and single-phase lines, respectively. All poles are 

assumed to be new at the start of the system reliability analysis.  
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5.2 Hurricane Risk Assessment  
 

Hurricane simulation is the most widely used method of hurricane risk analysis for design 

and assessment of structures and infrastructure (Vickery et al., 2000b). Hurricane 

simulation models involve using site-specific statistics of key hurricane parameters and 

Monte Carlo simulation for assessing hurricane hazard level. Conducting hurricane 

simulation is the best way to account for the potential effect of climate change on hurricane 

hazard as it will allow for the modification of parameters such as frequency and intensity 

within the simulation model.  

  

The distribution and statistical moments of the basic parameters needed for hurricane 

simulation are obtained from records of historical hurricanes. The most complete and 

reliable historical data for north Atlantic hurricanes is provided by the North Atlantic 

Hurricane Data Base (HURDAT) and compiled by the Oceanographic and Meteorological 

Laboratory at National Oceanic & Atmospheric Administration (NOAA, 2015a). 

 

The current HURDAT data contains details for hurricanes from 1851 – 2013. Key 

parameters provided in the HURDAT data include approximate landing position, 

maximum sustained (1-minute) surface wind speed, Saffir-Simpson category, central 

pressure, and affected states. The complete hurricane simulation method is explained 

below.  

 

        

5.2.1 Hurricane Simulation Model 
 

The various parameters, their statistics, and how they are determined are explained below 

based on the model developed by Xu and Brown (2008a). 
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i. Annual hurricane frequency 

 

The number of hurricanes for any given year can be simulated according to a Poisson 

distribution (Chen et al., 2004; Huang et al., 2001a; Xu & Brown, 2008b; Mudd et al., 

2014a). The Poisson distribution is modeled as: 

 

𝑜𝑜(𝑚𝑚) =
𝜆𝜆𝑚𝑚

𝑚𝑚!
𝑒𝑒−𝜆𝜆;   𝑚𝑚 = 0,1,2, … (5.1) 

 

where x is the number of hurricanes per year, λ is the average number of hurricanes in a 

given year computed from historical records, and f(x) is the probability of x hurricanes in 

a given year.  

 

ii. Landfall position 

 

The landing position of a simulated hurricane is usually expressed in latitude and longitude. 

The landing position is assigned based on the distribution of historical hurricanes landing 

in a specific area by assuming uniform distribution or by dividing the coastline into bins as 

suggested by Xu and Brown (2008a) and Huang et al. (2001a).  

 

iii. Approach angle 

 

The approach angle shows the direction a hurricane heads to after making landfall. The 

approach angle is measured with North as 0 degrees. Based on historical data, the approach 

angle is modeled with a bi-normal distribution (Xu & Brown, 2008a; Toth & Szentimrey, 

1990): 

 

𝑜𝑜(𝜃𝜃) =
𝑝𝑝1

√2𝜋𝜋𝜎𝜎1
𝑒𝑒𝑚𝑚𝑝𝑝 �−

1
2
�
𝜃𝜃 − 𝜇𝜇1
𝜎𝜎1

�
2

� +
(1 − 𝑝𝑝1)
√2𝜋𝜋𝜎𝜎2

𝑒𝑒𝑚𝑚𝑝𝑝 �−
1
2
�
𝜃𝜃 − 𝜇𝜇2
𝜎𝜎2

�
2

� (5.2) 
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where 𝜇𝜇1 and 𝜇𝜇2 are the means, 𝜎𝜎1 and 𝜎𝜎2 are the standard deviations of the approach angle, 

and 𝑝𝑝1 is the weighting factor. The landing position and approach angle determine the path 

of a hurricane after landfall. Xu and Brown (2008a) demonstrated that it is reasonable to 

assume hurricanes travel along a straight path in Florida due to the narrow shape of the 

state. 

 

iv. Translation velocity 

 

Translation velocity is the forward speed of the hurricane. It can be modeled as a lognormal 

distribution as (Vickery & Twisdale, 1995a; Georgiou et al., 1983; Brown, 2009; Huang et 

al., 2001a): 

 

𝑜𝑜(𝑐𝑐) =
1

√2𝜋𝜋𝑐𝑐𝜁𝜁
𝑒𝑒𝑚𝑚𝑝𝑝 �−

1
2
�
𝑝𝑝𝑒𝑒𝑐𝑐 − 𝜆𝜆

𝜁𝜁
�� (5.3) 

 

where c is the translation velocity, 𝜆𝜆 is the logarithmic mean, and 𝜁𝜁 is the logarithmic 

standard deviation. The translation velocity is assumed to be constant after landfall (Xu & 

Brown, 2008a).  

 

v. Central pressure difference 

 

This is the difference between atmospheric pressure at the center and at the periphery of 

the hurricane. The central pressure difference is modeled from historical data using the 

Weibull distribution (Georgiou et al., 1983; Vickery & Twisdale, 1995a; Huang et al., 

2001b; Xu & Brown, 2008a) as: 

 

𝑜𝑜𝑣𝑣(𝑒𝑒) =
𝛼𝛼
𝑣𝑣
�
∆𝑝𝑝
𝑣𝑣
�
𝛼𝛼−1

exp �− �
∆𝑝𝑝
𝑣𝑣
�
𝛼𝛼

� (5.4) 

 

where ∆𝑝𝑝 is the central pressure difference, and u and α are the parameters of the Weibull 

distribution determined from historical data. 
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vi. Central pressure filling rate 

 

The rise in central pressure (which results in weakening of intensity) of the hurricane after 

landfall is modeled as (Xu & Brown, 2008a; Huang et al., 2001a; Vickery & Twisdale, 

1995b): 

 

∆𝑝𝑝(𝑝𝑝) = ∆𝑝𝑝𝑡𝑡 𝑒𝑒𝑚𝑚𝑝𝑝(−𝑝𝑝𝑝𝑝) (5.5) 

 

where ∆𝑝𝑝(𝑝𝑝) is the central pressure difference at time t, ∆𝑝𝑝𝑡𝑡 is the central pressure 

difference at landfall, 𝑝𝑝 is a decay constant. For Florida, a is given by (Vickery & Twisdale, 

1995b): 

 

𝑝𝑝 = 0.006 + 0.00046 ∙ ∆𝑝𝑝𝑡𝑡 + 𝜀𝜀 (5.6) 

 

where 𝜀𝜀 is an error term that is normally distributed with a mean of zero and standard 

deviation of 0.025. 

 

vii. Maximum wind speed at landfall 

 

The maximum wind speed at landfall is proportionally assigned based on the simulated 

central pressure difference as suggested by Xu and Brown (2008a). Table 5.1 shows the 

relationship between hurricane category, minimum central pressure, and maximum 

sustained wind speed (NOAA, 2015c). 
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Table 5.1 The Saffir-Simpson hurricane scale 

Hurricane Category Saffir-Simpson wind 
speed range (mph) 

Central pressure range 
(mbar) 

1 74 – 95 ≥ 980 

2 96 – 110 965 – 979 

3 111 – 130 945 – 964 

4 131 – 155 920 – 944 

5 > 155 < 920 

 

 

viii. Maximum wind speed decay 

 

Hurricane wind speed decays after landfall due to friction by land mass and reduction in 

storm’s moisture. The most widely used speed decay model is known as KD95 developed 

by Kaplan and DeMaria (1995). The model is based on the assumption that hurricane wind 

speeds decay at a rate proportional to their landfall intensity and decay exponentially over 

land. The wind speed at any given time is given by (Kaplan & DeMaria, 1995; DeMaria et 

al., 2006): 

 

𝑉𝑉(𝑝𝑝) = 𝑉𝑉𝑏𝑏 + (𝑅𝑅𝑉𝑉0 − 𝑉𝑉𝑏𝑏)𝑒𝑒−𝛼𝛼𝑧𝑧 (5.7) 

 

where R is a sea-land wind speed reduction factor with a value of 0.9, Vb = 13.75 m/s and 

is a constant “background” intensity, V0 is the maximum sustained 1-min wind speed at 

landfall, and α = 0.095 h-1 which is a decay constant.  

 

ix. Radius to maximum winds 

 

This describes the range of the most intensive hurricane wind speed. FEMA (2005) 

developed the equation for the radius of maximum winds Rmax as: 
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ln𝑅𝑅𝑚𝑚𝑎𝑎𝑚𝑚 = 2.556 − 0.000050255∆𝑝𝑝2 + 0.042243032𝜑𝜑 (5.8) 

 

where φ is the storm latitude and Δp is the central pressure difference. A similar model can 

also be found in Vickery and Twisdale (1995a). 

 

x. Radial wind field model 

 

The variation of wind speed from hurricane eye to periphery is modeled by a radial wind 

field model. The gradient wind speed (VG) at any location at any time instant is given by 

(Holland, 1980; Vickery et al., 2009a): 

 

𝑉𝑉𝐺𝐺 =

⎣
⎢
⎢
⎡
�
𝑅𝑅𝑚𝑚𝑎𝑎𝑚𝑚
𝑝𝑝

�
𝐵𝐵

�
𝐵𝐵∆𝑝𝑝 exp �− �𝑅𝑅𝑚𝑚𝑎𝑎𝑚𝑚𝑝𝑝 �

𝐵𝐵
�

𝜌𝜌
� +

𝑝𝑝2𝑜𝑜2

4
⎦
⎥
⎥
⎤
1
2�

−
𝑝𝑝𝑜𝑜
2

 (5.9) 

 

where Rmax is the radius to maximum wind speed, r is the distance from hurricane eye to 

point of interest, B is the Holland parameter, Δp is the central pressure difference, ρ is air 

density (1.15 kg/m3), and f is the Coriolis parameter. The Holland parameter, B, can be 

determined from (Holland, 1980): 

 

𝐵𝐵 =
𝜌𝜌𝑒𝑒�𝑉𝑉𝑚𝑚2�
∆𝑝𝑝

 (5.10) 

 

where Vm is the maximum wind speed, e is the base of natural logarithm, Δp is the central 

pressure difference, ρ is air density.  

 

The gradient wind speed in Equation (5.9) needs to be converted to surface wind speed to 

assess the performance of infrastructure systems. The conversion factor can range from 0.8 

for weaker storms to 0.86 for intense storms (Vickery et al., 2000a; Vickery et al., 2009a). 

Furthermore, the surface wind speed needs to be converted to 3-sec gust wind speed as 
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structural damage is more related to peak gust wind speed which is the maximum 

instantaneous wind speed. Therefore, a gust factor is needed to convert the surface wind 

speed. The gust model developed by Engineering Sciences Data Unit (ESDU, 1982, 1983) 

has been shown to be adequate for modeling gust factors (Xu & Brown, 2008a). Xu and 

Brown (2008a) conducted a 1000-year simulation to estimate the 3-sec gust factor using 

the ESDU model and found that the distribution of the calculated values of the factor is 

highly concentrated around 1.287 with a standard deviation of 0.002. This value has been 

adopted for use in this research.  

 

The steps for the hurricane simulation are shown in Figure 5.1. The simulation is carried 

out for 200,000 hurricane seasons.  
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Figure 5.1 Hurricane simulation model flowchart 
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The required parameters for the hurricane simulation can be obtained from historical 

records compiled in HURDAT. For Florida, which is the selected location for this research, 

historical hurricane record in HURDAT are provided for four different regions namely 

southeast, southwest, northeast, and northwest. The selected study area is assumed to be 

located in southeast Florida. Historical hurricanes that made landfall in Florida are 

summarized in Table 5.2 (NOAA, 2015a; Xu & Brown, 2008a). 

 

 

Table 5.2 Hurricane occurrence in different parts of Florida from 1851 – 2014 

Hurricane 
category 

No. of occurrence 
Southeast Northeast Southwest Northwest 

1 8 3 12 20 
2 9 3 7 13 
3 10 0 6 13 
4 3 0 3 0 
5 1 0 1 0 

Total 31 6 29 46 
 

 

The statistical parameters of the variables computed from historical records are given in 

Table 5.3 for different regions of Florida (Xu & Brown, 2008b; Huang et al., 2001a).  

 

Table 5.3 Statistics of hurricane simulation parameters for different regions of Florida 

Variable Distribution  Distribution parameters 
Southeast Northeast  Southwest Northwest  

Annual frequency, λ Poisson  0.2 0.039 0.1871 0.297 
Approach angle, θ 
(degrees) 

Bi-normal  𝜇𝜇1 = 310  
𝜎𝜎1 = 30 
𝜇𝜇2 = 35  
𝜎𝜎2 = 15 
𝑝𝑝1 = 0.9 

 

𝜇𝜇1 = 345  
𝜎𝜎1 = 5 

𝜇𝜇2 = 285  
𝜎𝜎2 = 10 
𝑝𝑝1 = 0.5 

 

𝜇𝜇1 = 40  
𝜎𝜎1 = 25 
𝜇𝜇2 = 300 
𝜎𝜎2 = 30 
𝑝𝑝1 = 0.63 

 

𝜇𝜇1 = 35  
𝜎𝜎1 = 25 
𝜇𝜇2 = 295 
𝜎𝜎2 = 40 
𝑝𝑝1 = 0.5 

 
Central pressure 
difference 

Weibull  𝑣𝑣 = 64.831 
𝛼𝛼 = 3.465 

 

𝑣𝑣 = 42.751 
𝛼𝛼 = 3.929 

Translation velocity Lognormal  𝜆𝜆 = 2.3 − 0.00275𝜃𝜃* 
𝜁𝜁 = 0.3 

*Parameters were found to be correlated with approach angle (Xu & Brown, 2008b, 2008a) 
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Figure 5.2 shows the spatial variation of a simulated hurricane at landfall. Note that in the 

model above, only hurricanes that landed in Florida are considered for evaluating the 

required parameters and the model start at the point of landfall rather than at locations in 

the Atlantic Ocean or the Gulf of Mexico. Furthermore, both central pressure filling rate 

and maximum wind speed decay discussed in the hurricane simulation model above will 

be used as suggested by Xu and Brown (2008a) since there is no empirical equation relating 

the central pressure and wind speed after landfall.  
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Figure 5.2 Surface wind speed variation for a simulated hurricane 

 

 



93 

5.2.2 Hurricane Simulation Model Validation 
 

The simulation model described above is used to estimate the annual maximum hurricane 

wind speed for 200,000 years at a particular location (27.6oN, 80.4oW) on the east coast 

of Florida which is the assumed location of the case study to be discussed later. The 

maximum annual hurricane wind speed can be modeled by an extreme value (EV) 

distribution (Yeo et al., 2014; Coles & Simiu, 2003; Jagger et al., 2001; Jagger & Elsner, 

2006). All the three types of EV distributions, namely Gumbel, Fréchet, and reversed 

Weibull (or simply Weibull), were fitted to the data as shown in  

Figure 5.3. It can be seen from the figure that Fréchet distribution provides the best fit for 

the data followed by Weibull distribution.  On the other hand, Gumbel distribution does 

not seem to fit the data. Hence it is not considered for further analysis. 

 

The scale and shape parameters of the Weibull distribution determined using the maximum 

likelihood method in MATLAB are 26.24 and 1.88 respectively. The shape, scale, and 

location parameters of the Fréchet distribution are found to be 0.19, 8.66, and 16.12, 

respectively. 
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Figure 5.3 CDF of max annual hurricane wind speed with fitted distributions 

To validate the hurricane simulation model, wind speeds corresponding to different mean 

recurrence intervals (MRI) for the chosen location are calculated and compared to values 

in ASCE-7 (2010) as shown in Table 5.4 and plotted as hazard curves in Figure 5.4. The 

wind speeds corresponding to different return periods can be obtained from the fact that, 

assuming independent maximum annual hurricane wind speeds, the probability of 

exceeding N-year MRI wind speed in t years is given by: 

 

𝐹𝐹𝑧𝑧(𝑒𝑒 > 𝑉𝑉) = 1 − �1 − �
1
N
��
𝑧𝑧

 (5.11) 

 

From Table 5.4, it can be seen that the wind speeds for different MRIs predicted by the 

Weibull distribution are very close to those obtained from ASCE-7 (2010). For the Fréchet 

distribution, however, even though it is a better fit to the data than Weibull distribution, it 
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resulted in unrealistically high wind speeds, especially for larger MRIs. This anomaly has 

been documented in the literature which is why the Fréchet distribution is not 

recommended for modeling maximum annual hurricane wind speeds (Yeo et al., 2014). 

The Weibull distribution is therefore chosen for modeling the wind speed data. Note that 

the ASCE-7 (2010) wind speeds corresponding to different MRI were extracted from ATC 

(2015).  

 

 

Table 5.4 Comparison of wind speeds corresponding to different return periods 

MRI (years) ASCE-7 (2010) 
values (m/s) 

Values predicted 
by Weibull (m/s) 

Values predicted 
by Fréchet (m/s) 

10 39  41 40 

25 47  49 54 

50 52  54 66 

100 58  59 80 

300 65  67 108 

700 70  71 129 

1700 75  76 157 
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Figure 5.4 Wind speeds comparison 

 

5.3 Non-stationary Hurricane Wind Model due to Climate Change 
 

The biggest source of uncertainty for future climate prediction is the level of management 

of greenhouse gas emissions by society (IPCC, 2013). Consequently, studies on the effect 

of climate change on infrastructure are approached by considering various future climate 

change scenarios. Different climate change scenarios are adopted to investigate what might 

happen in the future under a particular assumption. These scenarios provide starting points 

for examining an uncertain future and evaluating the effects such scenarios might have on 

civil infrastructure systems. 

 

The most recent climate change scenarios proposed by IPCC (2013) are based on 

greenhouse gas concentration pathways (CPs) which are determined by their radiative 

forcing at the end of the 21st century. Radiative forcing is defined by ASCE (2015) as the 

“change in the balance between incoming and outgoing radiation caused by changes in 

greenhouse gas concentrations and other atmospheric constituents, while other aspects of 

the atmosphere are held constant”. Four Representative Concentration Pathways (RCPs) 
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were produced by IPCC (2013) that correspond to radiative forcing levels of 8.5, 6.0, 4.5, 

and 2.6 watts/m2 and are termed RCP 8.5, RCP 6.0, RCP 4.5, and RCP 2.6, respectively. 

It might be of interest to note that the forcing level in 2005 was estimated to be 1.6 watts/m2 

(Bernstein et al., 2007). Older climate change scenarios method used by the IPCC is the 

SRES scenarios details of which can be found in IPCC (2000). 

 

The effect of the above scenarios on the frequency and intensity of hurricanes has been a 

subject of much discussion. Bender et al. (2010) modeled the effect of one of the SRES 

climate change scenarios on the frequency of Atlantic hurricanes and concluded that the 

frequency of the most intense hurricanes (category 3-5) is expected to increase through the 

year 2100. Knutson et al. (2010) concluded that the global frequency of tropical cyclones 

will either decrease or remain unchanged with the authors predicting a decrease between -

6 to -34%. Projections for individual basins were reported to be up to ±50% with very low 

confidence. It was however reported that the frequency of the most intense storms will 

“more likely than not increase by a substantially larger percentage in some basins”. 

Knutson et al. (2010) also projected the intensity of tropical cyclones, measured as mean 

maximum wind speed, to increase between +2% to +11% globally. 

 

Some studies have also shown a link between an increase in sea surface temperatures (SST) 

and hurricane frequency (Mann & Emanuel, 2006; Mann et al., 2007; Elsner et al., 2008).  

Mudd et al. (2014a) used the Community Earth System Model (CESM) of the National 

Center for Atmospheric Research (NCAR) to model the increase in sea surface temperature 

(SST) at the year 2100 under RCP 8.5 scenario. The resulting SST was then used in a 

hurricane simulation model that takes into account changes in SSTs. The authors concluded 

that under future climate scenario RCP 8.5 in 2100, the maximum wind speed associated 

with Atlantic hurricanes is expected to increase.  

 

Staid et al. (2014) reported the bounding range for change in hurricane intensity from 

existing literature to be between -20% to +40%. Landsea et al. (2010) on the other hand 

reported the range of future hurricane frequency to be between -30% to +35%. Based on 
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these estimates and the above literature review, the following climate change scenarios 

(CCSs) at the end of the 21st century are assumed for this study: 

 

i. CCS1: no change in frequency, +20% change in intensity 

ii. CCS2: +20% change in frequency, no change in intensity 

iii. CCS3: -20% change in frequency, +20% change in intensity 

iv. CCS4: +20% change in frequency, +20% change in intensity 

v. CCS5: +35% change in frequency, +40% change in intensity 

vi. CCS6: +35% change in frequency, -20% change in intensity 

 

The change in frequency and intensity from the present time to the end of the 21st century 

is assumed to be linear as suggested by Stewart et al. (2014). It is however noted that 

considerable interdecadal and intradecadal variations can occur in the trend (Stewart et al., 

2014; Mudd et al., 2014b). The above climate change scenarios are incorporated into the 

hurricane simulation model by altering certain parameters. For frequency variation, the 

parameter of the Poisson distribution, λ, is altered. For intensity variation, the randomly 

sampled central pressure difference at landfall is increased or decreased by a percentage 

depending on the climate change scenario being considered.  

 

The hazard curves for the chosen location on the east coast of Florida are plotted in Figure 

5.5 for the baseline scenario (no change) and the six CCSs above. It can be noted from the 

figure that changes in intensity have higher effect on wind speeds than changes in 

frequency. For example, CCS1 (no change in frequency, +20% change in intensity) results 

in higher wind speeds at all return periods than CCS2 (+20% change in frequency, no 

change in intensity). The same conclusion can be drawn by comparing CCS2 and CCS3. 

Among the six scenarios, only CCS6 (+35% change in frequency, -20% change in 

intensity) resulted in a decrease in wind speed at all return periods despite 35% increase in 

frequency.   
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Figure 5.5 Hazard curves for different climate scenarios 

 

 

5.4 System Reliability Results 
 

The system reliability results for the no change scenario (baseline) and the six selected 

climate scenarios are plotted in Figure 5.6 for the period 2010 to 2100. It can be seen that 

the pattern of change in system reliability follows the pattern in Figure 5.5 as expected. All 

scenarios except CCS6 (+35% change in frequency, -20% change in intensity) resulted in 

a decrease in system reliability over the years. CCS2 (+20% change in frequency, no 

change in intensity) and CCS5 (+35% change in frequency, +40% change in intensity) 

resulted in the least and highest decrease in reliability over time, respectively. For example, 

at 2080, the system reliability decreased from 67% for the baseline case to 63% and 40% 

for CCS2 and CCS5, respectively. This implies that climate change can have a significant 

effect on system reliability over time. 
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According to NESC (2002), wood poles should be replaced or reinforced when their 

strength falls below 67% of the initial strength. This will happen when the poles are around 

70 years old as seen in Figure 4.5 in the previous chapter. Consequently, in this case, the 

poles in the system that survived from 2010 to 2080 will be replaced as part of a periodic 

maintenance program which is not considered in Figure 5.6. This will, however, be 

reflected in the LCCA section when pole replacement due to both periodic maintenance 

and wind-induced failure is considered.  

 

 

Figure 5.6 System reliability results for different climate scenarios 

 

5.5 Adaptation Strategies 
 

Increase in hurricane wind speed due to climate change which consequently causes a 

decrease in reliability of the system as shown above warrants some form of climate change 
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adaptation strategies to be implemented. Three climate change scenarios, CCS2 (+20% 

change in frequency, no change in intensity), CCS4 (+20% change in frequency, +20% 

change in intensity), and CCS5 (+35% change in frequency, +40% change in intensity) are 

selected to demonstrate the life cycle cost analysis procedure for comparing various climate 

change adaptation strategies. CCS4 and CCS5 are chosen because they resulted in the 

highest decrease in system reliability over time. CCS2 is chosen because it resulted in only 

a slight decrease in system reliability. Therefore, it will give an indication of whether 

adaptation strategies are cost-effective when the level of climate change is very small. Two 

adaptation strategies are proposed below. 

 

Strategy 1: Strengthening entire system  

 

In this strategy, all new distribution systems are to be constructed with poles that are one 

class higher than the required pole class determined using the design method recommended 

in ASCE-111 (2006). The adaptation cost is then the additional cost needed to use stronger 

poles instead of the poles that have been shown to be sufficient during the design. The 

distribution system model in this research is assumed to be strengthened during 

construction in 2010. 

 

Strategy 2: Strengthening parts of a system  

 

This strategy is similar to Strategy 1 except that here, only the main feeder lines, which 

deliver electric power to the laterals, are replaced with poles that are one class higher. 

The improvement in system reliability when the two adaptation strategies are applied to 

CCS5 is shown in Figure 5.7. Strategy 1 results in higher improvement in system reliability 

as expected. At 2080 for example, the system reliability is 40%, 65%, and 56% for the 

unhardened system, strategy 1, and strategy 2, respectively. Note that pole replacement is 

not considered in the plot of Figure 5.7.        
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Figure 5.7 System reliability improvement for CCS5 

 

 

5.6 Life Cycle Cost Analysis Result 
 

The LCCA is carried out for the years from 2010 to 2100. The LCCA is first performed to 

compare the baseline case and the three selected climate change scenarios and the results 

are shown in Table 5.5 and Figure 5.8. It can be seen that the LCC increases as the severity 

of climate change increases. In this case, the LCC increased by 2%, 6%, and 12% for CCS2, 

CCS4, and CCS5, respectively.    
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Table 5.5 LCCA results for different scenarios ($1,000s) 

Cost category No climate 
change 

CCS2 CCS4 CCS5 

Maintenance cost, 𝐶𝐶𝑚𝑚 1,871 1,867  1,857  1,846 
Repair cost, 𝐶𝐶𝑐𝑐 432 448 489 541 
Revenue loss, 𝐶𝐶𝑣𝑣 6 6 7 7 
Societal Economic loss, 𝐶𝐶𝑒𝑒 1,600 1,665 1,802 1,987 
Total LCC 3,909 3,986 4,155 4,381 
Percentage Increase in LCC 
(%) 

- 2 6 12 

 

 

 

Figure 5.8 LCC results for different climate scenarios 

 

The results of the LCCA for the selected climate change scenarios and the adaptation 

strategies are shown in Table 5.6, Table 5.7, and Table 5.8. For all the three scenarios, the 

adaptation strategies lower the repair cost, revenue loss, and societal economic losses. The 

total LCC for all three cases is also plotted in Figure 5.9 and it can be observed that strategy 

1 results in lower LCC in all cases even though it has higher adaptation cost than strategy 

2.  
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Table 5.6 LCCA results for CCS2 scenario ($1,000s) 

Cost category Unhardened system Strategy 1 Strategy 2 
Adaptation cost, 𝐶𝐶𝑀𝑀 - 29 9 
Maintenance cost, 𝐶𝐶𝑚𝑚 1,867  1,897 1,874 
Repair cost, 𝐶𝐶𝑐𝑐 448 337 420 
Revenue loss, 𝐶𝐶𝑣𝑣 6 5 5 
Societal Economic loss, 𝐶𝐶𝑒𝑒 1,665 1,211 1,236 
Total LCC 3,986 3,479 3,544 
Total LCC w/o Ce 2,321 2,268 2,308 
Net benefit - 507 442 
Net benefit w/o Ce - 53 13 

 

Table 5.7 LCCA results for CCS4 scenario ($1,000s) 

Cost category Unhardened system Strategy 1 Strategy 2 
Adaptation cost, 𝐶𝐶𝑀𝑀 - 29 9 
Maintenance cost, 𝐶𝐶𝑚𝑚 1,857  1,889 1,864 
Repair cost, 𝐶𝐶𝑐𝑐 489 420 459 
Revenue loss, 𝐶𝐶𝑣𝑣 7 5 5 
Societal Economic loss, 𝐶𝐶𝑒𝑒 1,802 1,312 1,339 
Total LCC 4,155 3,655 3,676 
Total LCC w/o Ce 2,353 2,343 2,337 
Net benefit - 500 479 
Net benefit w/o Ce - 10 16 

 

Table 5.8 LCCA results for CCS5 scenario ($1,000s) 

Cost category Unhardened system Strategy 1 Strategy 2 
Adaptation cost, 𝐶𝐶𝑀𝑀 - 29 9 
Maintenance cost, 𝐶𝐶𝑚𝑚 1,846 1,880 1,854 
Repair cost, 𝐶𝐶𝑐𝑐 541 392 504 
Revenue loss, 𝐶𝐶𝑣𝑣 7 5 6 
Societal Economic loss, 𝐶𝐶𝑒𝑒 1,987 1,402 1,435 
Total LCC 4,381 3,708 3,808 
Total LCC w/o Ce 2,394 2,306 2,373 
Net benefit - 673 573 
Net benefit w/o Ce - 88 21 
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Figure 5.9 Total life cycle cost 

 

From Table 5.6, it can be seen that even for a slight increase in hurricane wind speed 

(CCS2), both strategies 1 and 2 resulted in a net benefit of nearly $500,000. This is mainly 

because the cost of upgrading to a pole that is one class higher than the required class is 

very low. For example, class 3 poles cost only $65 higher than class 4 poles while class 4 

poles cost only $38 higher than class 5 poles.   

 

From the results in Table 5.6, Table 5.7, and Table 5.8, the societal economic cost is shown 

to have a significant impact on the total LCC. In all cases, societal economic losses 

constitute at least 35% of the total LCC. The net benefit for all cases dropped considerably 

if societal economic losses are not considered. For example, in Table 5.6, the net benefit 

dropped from $507,000 to $53,000 for strategy 1 if the societal cost is ignored. This is 

important because considering societal economic losses or otherwise in LCCA depends on 

the entity carrying out the analysis. Utility companies might not include societal economic 

losses when making decisions on future investment. However, it might be very important 

for governments and communities.   
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Figure 5.10 shows a plot comparing the net benefit of the adaptation strategies for the three 

selected climate change scenarios. It can be observed that the net benefit of deploying the 

adaptation strategies increases with the severity of the climate change scenario especially 

for strategy 2. For strategy 1, CCS2 and CCS4 showed similar net benefits while the highest 

net benefit is observed for CCS5 which is the worst climate change scenario.    

 

 

Figure 5.10 Net benefit of adaptation strategies 

 

To account for a reduction in economic activities during disasters, the revenue and 

economic losses in Table 5.6, Table 5.7, and Table 5.8 are reduced. However, due to lack 

of literature on the estimate of the reduction in economic activities and power consumption, 

reduction of 0 to 90% is considered as shown in Figure 5.11. It can be seen from Figure 

5.11 that the net benefit decreases linearly with a reduction in revenue and economic losses. 

Both adaptation strategies result in positive net benefits for all climate change scenarios 

even with a reduction of 90% in revenue and economic losses.   
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Figure 5.11 Net benefit considering reduction in revenue and economic losses 

 

It should be noted that the results presented in this paper involve a certain degree of 

uncertainties. For example, there is considerable uncertainty in the prediction of variation 

of hurricane intensity and frequency. The consideration of six climate change scenarios 

that cover a range of possible variations is a simple way of taken such uncertainties into 

account. Uncertainties in hurricane simulation parameters such as approach angle and 

central pressure difference were accounted for through their corresponding probability 

distributions as well as by running 200,000 simulations. Uncertainties in the time-

dependent strength of the poles were considered using the coefficient of variation of the 

strength of the poles which also varies with time. As the literature on climate change impact 

on hurricane intensity and frequency as well as the time-dependent strength of poles 

continues to grow, new findings that can be used to better quantify the uncertainties can be 

easily incorporated into the proposed framework. 
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5.7 Conclusions  
 

In this chapter, the potential impact of climate change on distribution systems subjected to 

hurricanes is evaluated. The effectiveness of various climate change adaptation strategies 

is also investigated. The framework can be used by utility companies and government 

agencies for decision making in long-term investment planning and pre-disaster 

preparedness in power distribution system infrastructure.   

 

The results of the case study show that climate change can have an impact on system 

reliability and life cycle cost of distribution systems depending on the severity of the 

potential change. For example, a 35% increase in frequency and 40% increase in the 

intensity of hurricanes will reduce the system reliability by 40% in 2080 and lead to a 12% 

increase in life cycle cost by the end of the century. The results also show that adaptation 

strategies can be cost-effective in improving system reliability to adapt to the impact of 

climate change. If the entire system is strengthened at construction stage, the life cycle cost 

could be reduced by about 15% by the end of the century for a climate change scenario that 

resulted in 35% increase in frequency and 40% increase in the intensity of hurricanes. The 

results further demonstrate the importance of considering the cost incurred by society as a 

whole due to power outages during hurricane events. The framework can be applied 

directly to an existing system if the age distribution of the poles is known.  
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6. Reconfigurability Enhancement for Distribution Systems 

Subjected to Hurricanes3 
 

6.1 Introduction  
 

Most distribution systems in the U.S. are radial systems (Brown, 2008). In such systems, 

there is a unique path from the source of power to each component or customer. 

Consequently, if there is a fault at any point in a line, all customers downstream of the point 

will lose power. In a region with several cities, independent distribution systems, each with 

its own substation/substations are used for power supply. In such a case, a potentially cost-

effective method of storm hardening is rerouting of power from one distribution system to 

another by constructing additional distribution lines and installing control switches to 

improve the redundancy of the systems. This will allow customers downstream of failed 

line to be supplied by a feeder from another substation that is not in the vicinity of a storm. 

This concept is demonstrated using Figure 6.1 which shows three independent distribution 

systems.  

 

Constructing additional distribution lines (dotted lines) with normally open (NO) switches 

to connect feeders from the three independent substations can improve their reliabilities.  

For example, looking at the hurricane path in Figure 6.1, it is very likely that the upstream 

of lines 1 and 2, served by substations A and B, will likely fail and cut off power to all 

customers downstream. In such a case, customers downstream of the affected lines can 

receive power from feeders 3 and 4 emanating from substation C.  

 

 

                                                 
3 A version of this chapter has been submitted to Journal of Infrastructure Systems.  
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Figure 6.1 Schematic of proposed storm hardening strategy 

 

While rerouting of power within a single distribution system after minor disturbances has 

been studied over the years (e.g. Viswanadha Raju and Bijwe (2008), Enacheanu et al. 

(2008), Ramos et al. (2005), Chouhan et al. (2009), Faza et al. (2007)), systematic study of 

rerouting between independent systems after a catastrophic event such as hurricane that 

takes into account the topography and the spatial nature of distribution system, as well as 

hurricane wind has not been carried out. This chapter studies the effectiveness of 

constructing new distribution lines with Normally Open switches in improving the 

reliability of radially operated distribution systems subjected to hurricanes. Unlike in 



111 

Chapters 4 and 5 where a single distribution system (one substation and its feeders) was 

considered, a system of several independent distribution systems is considered here.  

 

 

6.2 Power Distribution System Model 
 

For the purpose of the proposed study, a GIS model of the distribution system of parts of 

Florida is developed as shown in Figure 6.2. It should be noted that only the 3-phase main 

feeder lines are shown in Figure 6.2. The region consists of several unconnected networked 

distribution systems or ‘islands’. Each island consists of one or more substation with 

feeders that are radially operated due to the presence of normally open switches at several 

locations within the system. The entire study area has 20 substations and 73 feeders. Each 

feeder is divided into lines (switchable sections) using sectionalizing switches. The 

distribution system covers an area of approximately 10,000 square miles.  

 

For simplicity, all the laterals lines per feeder mile are lumped as one load point for system 

reliability evaluation. Based on feeder customer density for the study area reported by the 

utility company serving the area, the average number of customers is assumed to be 200 

per feeder mile. The total length of all the feeder lines in the study area is about 1,080 miles 

serving approximately 216,800 customers.  

 

Due to lack of data on location of sectionalizing switches in the systems, the following 

placement points are assumed for the switches in the system:   

 

i. Sectionalizer placement at the beginning of each lateral line 

ii. Sectionalizer placement at every branching point of the main feeder lines 

iii. Sectionalizer placement at every mile of the main feeder lines 
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To enable power reconfiguration in the event of a hurricane, additional lines with tie 

switches will be constructed to connect any two ends of feeders. This is a simple 

combinatorial problem where the number of possible combinations is given by 

𝑒𝑒!/((𝑒𝑒 − 2)! 2!). This will result in a very high number of possible combinations as some 

feeders among the 73 feeders in the area have several ends. To reduce the possible number 

of combinations, the following constraints are set: 

 

i. New lines will only be constructed to connect feeders from different 

substations as the aim is to provide additional independent source of power 

to feeders   

ii. Only new lines that connect feeders from different distribution islands will 

be considered 

iii. New lines should not be more 20 miles long 

 

Among the reduced possible number of new lines, the shortest one is chosen for each feeder 

so as to minimize the cost of construction. In all cases, the radial structure of the system is 

maintained. Topographical constraints are also considered in the construction of new lines, 

i.e. new lines are assumed to follow the road network of the study area just like most of the 

existing distribution lines.  

 

17 new lines are proposed for the study area to demonstrate the framework and are shown 

in Figure 6.2. Manually-operated Normally Open switches are added to the new lines to 

maintain the radial nature of the systems. As the aim of this research is to investigate the 

effectiveness of constructing additional lines with switches to connect feeders between 

different distribution islands, the optimization of switching operations within each 

individual island is not considered in the research. 
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Figure 6.2 Notional power distribution system of parts of Florida (3-phase feeder lines) 

[Basemap © OpenStreetMap Contributors)
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6.3 Hurricane Hazard Analysis 
 

Studying the effectiveness of constructing new distribution lines require consideration of 

the path and the spatial variation of wind speeds of hurricanes. Hence, for the hurricane 

hazard analysis, a scenario-based approach is proposed in this framework. This entails 

selecting historical hurricanes that passed through a selected study area or simulating 

synthetic hurricanes. Three historical hurricanes are selected for this study. These are 

Hurricane Jeanne, Hurricane Charley, and Hurricane Wilma. Hurricane Jeanne made 

landfall on the east coast of Florida on 26 September 2004 as a category 3 hurricane 

(Lawrence & Cobb, 2005). Hurricane Charley made landfall on the southwest coast of 

Florida on 13 August 2004 as a category 4 hurricane (Pasch et al., 2005). Hurricane Wilma 

made landfall on 24 October 2005 as a category 3 hurricane.  

 

The paths of these hurricanes are shown in Figure 6.2. The variation of gradient wind speed 

with distance from hurricane eye for the three historical hurricanes as they made landfall 

is shown in Figure 6.3. The study area is divided into 10 mile x 10-mile grids. For each 

hurricane, the gradient wind speed at any location at every time instant is calculated and 

then converted to 3-sec gust wind speed using methodology discussed in Chapter 4. 
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Figure 6.3 Vortex shape of gradient wind speed for the 3 historical hurricanes at landfall 

 

 

6.4 Component Vulnerability 
 

The poles supporting the distribution lines are assumed to be southern pine wood poles as 

it is the dominant material used in the U.S. (Gustavsen & Rolfseng, 2000; Wolfe & Moody, 

1997). According to Florida Power & Light, the company serving the selected study area, 

class 2 wood poles are used to support main feeder lines as part of their storm hardening 

plan. It is therefore assumed herein that all the poles supporting the distribution feeder lines 

are class 2 southern pine wood poles.   

 

A typical distribution pole that is 13.7 m high is considered. The poles are assumed to 

support three Aluminum Conductor Steel Reinforced (ACSR) conductor wires with 

diameters of 18.3 mm as well as one all-aluminum conductor (AAC) neutral wire with a 
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diameter of 11.8 mm. All the poles are assumed to have a span of 46 m for wind pressure 

calculations (Short, 2006). It is acknowledged that the span can vary with location and 

between urban and rural areas. For the purpose of demonstrating the framework, however, 

the span is assumed to be constant. The fragility curve of the poles is shown in Figure 6.4. 

Note that in this study, the poles are assumed to be new, i.e. no decay.  

 

 

Figure 6.4 Fragility curve of main feeder line poles 
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calculated by subtracting the cost from the benefit. If the net benefit is positive, then 

constructing additional lines is considered cost-effective. The various costs considered are 

discussed below. 

 

i. Mitigation cost: this is the cost of constructing additional distribution lines with 

NO switches to connect feeders from different substations. 

ii. Repair cost: this is the cost of repairing failed distribution lines due to hurricane 

winds. In this case, it is the cost of replacing failed distribution poles with new 

poles of the same class. The repair cost is given by Equation (6.1). 

𝐶𝐶𝑐𝑐𝑡𝑡 = �𝑃𝑃𝑓𝑓𝑡𝑡 ∙ 𝑁𝑁 ∙ 𝐶𝐶𝑐𝑐

𝑛𝑛

𝑖𝑖

 (6.1) 

where 𝐶𝐶𝑐𝑐𝑡𝑡 is the repair cost for line i; 𝑃𝑃𝑓𝑓𝑡𝑡 is the probability of failure of a pole; 

𝑁𝑁 is the number of poles in a line, 𝐶𝐶𝑐𝑐 is the unit repair cost of poles; and 𝑒𝑒 is 

the number of lines in a system.   

iii. Revenue loss: this is the cost incurred by the utility company due to the 

interruption in power supply. The loss due to unmet demand caused by the 

failure of distribution lines is given by Equation (6.2). 

𝑈𝑈𝐷𝐷 = � 𝐾𝐾𝑖𝑖(𝑝𝑝) ∙ 𝑝𝑝(𝑝𝑝)𝑑𝑑𝑝𝑝

𝑧𝑧𝑟𝑟

𝑧𝑧=0

 (6.2) 

where 𝑈𝑈𝐷𝐷 is the loss due to unmet demand; 𝐾𝐾𝑖𝑖(𝑝𝑝) is the average hourly demand 

on line i at time t; 𝑝𝑝(𝑝𝑝) is the unit price of electricity at time t; 𝑝𝑝𝑐𝑐 is the time to 

restore service to a line. 𝑝𝑝𝑐𝑐 depends on the number of failed poles in a line as 

well as in lines upstream of the line being considered. The total revenue loss is 

then given by Equation (6.3).  
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𝐶𝐶𝑐𝑐𝑣𝑣 =
1
𝑅𝑅
�(𝑈𝑈𝐷𝐷|𝑄𝑄𝐿𝐿𝑖𝑖) ∙ Pr (𝑄𝑄𝐿𝐿𝑖𝑖)
𝑛𝑛

𝑖𝑖

 (6.3) 

where 𝐶𝐶𝑐𝑐𝑣𝑣 is the total revenue loss for a system; (𝑈𝑈𝐷𝐷|𝑄𝑄𝐿𝐿𝑖𝑖) is the loss due to 

unmet demand given that power is not delivered to line i; Pr (𝑄𝑄𝐿𝐿𝑖𝑖) is the 

probability that power is not delivered to line i; R is the number of repair crew 

units; and 𝑒𝑒 is the number of lines in a system.  

iv. Societal economic losses: this is the direct economic loss to customers due to 

the interruption in power supply. The economic loss for a line after a hurricane 

event is given by Equation (6.4).    

𝐸𝐸𝐿𝐿 = � 𝐿𝐿(𝑝𝑝)𝑑𝑑𝑝𝑝

𝑧𝑧𝑟𝑟

𝑧𝑧=0

 (6.4) 

where 𝐿𝐿(𝑝𝑝) is the monetary loss per hour; 𝑝𝑝𝑐𝑐 is the time to restore power to a 

line. The total societal economic loss is then given by Equation (6.5). 

𝐶𝐶𝐸𝐸 =
1
𝑅𝑅
�(𝐸𝐸𝐿𝐿|𝑄𝑄𝐿𝐿𝑖𝑖) ∙ Pr (𝑄𝑄𝐿𝐿𝑖𝑖)
𝑛𝑛

𝑖𝑖

 (6.5) 

where 𝐶𝐶𝐸𝐸 is the total societal economic loss for a system; 𝐸𝐸𝐿𝐿 is the economic 

loss for a line; R is the number of repair crew units; and 𝑒𝑒 is the number of lines 

in a system.  

 

The various costs, restoration times, power consumption, and economic loss for various 

customer types are given in Table 6.1. Due to lack of data on the number and specific 

locations of customer types in the study area, it is assumed that 2 customers per feeder 

mile, or 1% of all customers per feeder mile, are commercial customers while the rest are 

residential customers. 
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Table 6.1 Cost analysis parameters 

Parameters  Value Source  

Cost of constructing new lines (switches included) $350,000 Gregory et al. (2006) 

Cost of pole replacement under storm condition $4,000/pole Xu and Brown (2008b) 

Unit price of electricity $0.11/kWh Xu and Brown (2008b) 

Economic loss (residential) $2.70/h LaCommare and Eto (2006) 

Economic loss (commercial) $886/h LaCommare and Eto (2006) 

Average consumption (residential) 1.5kW/h EIA (2013) 

Average consumption (commercial) 10.1kW/h EIA (2013) 

Number of repair crew units available 10 Assumed  

Restoration time of failed pole 4 hours Brown (2009) 

Discount rate 4% 
Bastidas-Arteaga and 

Stewart (2015) 

   

 

6.6 Results 
 

6.6.1 System Reliability Results 
 

The results of the system reliability analysis are shown in Figure 6.5, Figure 6.6, and Figure 

6.7. As mentioned earlier, due to the radial nature of distribution systems, each substation 

is considered as a separate system. For each line in a system, the maximum wind speed 

experienced by the line as each hurricane passes through the study area is used in the 

evaluation of system reliabilities shown in Figure 6.5, Figure 6.6, and Figure 6.7.  

 

It can be observed from Figure 6.5, Figure 6.6, and Figure 6.7 that constructing new lines 

with NO switches improved the reliabilities of the systems. However, the level of 

improvement depends on the path of the hurricane, number of new lines connected to a 

system, and length of the new lines. For example, the reliability of system 9 only improves 
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by about 30% when hurricane Jeanne passes through even though there are 3 new lines 

supplying the system from 3 different substations. This is because both the alternative 

sources of energy, as well as the new lines, are in the path of the hurricane. Considering 

system 10, however, which also has 3 new lines connected to it, its reliability improved by 

about 79% because two of the three new lines, as well as the substations feeding them, are 

further away from the path of hurricane Jeanne. The length of the new lines affects the 

level of improvement in system reliability because the longer the lines, the higher the 

probability of failure during hurricanes. In this case, most of the new proposed lines are 

more than 10 miles long. This drastically limits the effect these lines will have in improving 

system reliability.  

 

Figure 6.7 shows that hurricane Charley mostly affected systems 1 – 5 as can be inferred 

from the path of the hurricane in Figure 6.2. Among these 5 systems, only systems 1, 3, 

and 5 have new additional lines. The reliability of system 3 increased from about 1% to 

3% due to the additional lines. 
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Figure 6.5 System reliability results for Hurricane Jeanne 

 

 

Figure 6.6 System reliability results for Hurricane Wilma 
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Figure 6.7 System reliability results for Hurricane Charley 

 

6.6.2 Cost Analysis Results 
 

The results of the cost analysis are shown in Table 6.2. It can be seen that in general, 

constructing the new distribution lines for the system considered is not cost-effective. This 

is due to the high cost of constructing the new lines which, in this case, is over $50 million 

as seen in Table 6.2. This is mainly due to the long distance between the ends of the feeders 

connected by the new lines. Additionally, some poles in the new lines will fail especially 

for a new line in the path of the hurricane. This leads to increase in repair cost for the 

modified system as compared to the original system. The repair cost increased by about 

17%, 11%, and 11% for the modified system after Hurricanes Jeanne, Wilma, and Charley, 

respectively.  

 

The addition of new lines did not significantly reduce revenue loss and societal economic 

losses. Revenue loss decreased by about 2.6%, 1.5%, and 0.4% for Hurricanes Jeanne, 
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Wilma, and Charley, respectively. Societal economic losses decreased by 3.7%, 1.4%, and 

0.2%, for Hurricanes Jeanne, Wilma, and Charley, respectively. In fact, the increase in 

repair cost is greater than benefit from the decrease in revenue loss and societal economic 

losses combined. This implies that in this case, repair cost should be the main concern for 

utility companies.   

 

Table 6.2 Cost analysis results ($1,000s) 

Cost Category 

Hurricane Jeanne Hurricane Wilma Hurricane Charley 

Original 

system 

Modified 

system 

Original 

system 

Modified 

system 

Original 

system 

Modified 

system 

Mitigation - 50,190 - 50,190 - 50,190 

Repair 1,471 1,722 2,059 2,289 3,004 3,329 

Revenue loss 76 74 136 134 232 231 

Societal economic loss 5,049 4,864 8,972 8,849 15,317 15,291 

       

Net benefit (NB) - -50,254 - -50,295 - -50,489 

NB w/o societal cost - -50,438 - -50,418 - -50,515 

 

 

6.7 Conclusions 
 

This chapter studies system reliability improvement due to power reconfiguration through 

the construction of additional lines with normally open (NO) switches to connect systems 

supplied by different power sources. Cost analysis to study the cost-effectiveness of the 

proposed risk mitigation strategy is also performed. The case study used indicate that 

constructing new lines to connect feeders from different substations can improve the 

reliability of the systems. However, the level of improvement depends largely on hurricane 

path, the number of new lines constructed as well as the length of the new lines. 
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In the case study considered, construction of additional lines is not cost-effective mainly 

due to the high cost of constructing the lines. It can be concluded that the cost-effectiveness 

of such strategy will largely depend on the length of the new lines that need to be 

constructed. While the mitigation strategy might not be attractive economically, the 

improvement in system reliability can improve customer satisfaction and help maintain 

power supply to critical facilities during natural disasters. Additionally, increase in repair 

cost due to the addition of new distribution lines can outweigh savings from both revenue 

loss and societal economic losses. Consequently, mitigation strategies that lower the repair 

cost might be more attractive, economically, for utility companies. This includes using 

stronger poles for the lines or shortening the spans of the lines.        

 

In this study, a topological-based method of evaluating system reliability was used. This 

method only takes into account the topological constraint in distribution system 

reconfiguration and does not incorporate the engineering or physical aspects of the system 

which will require performing complex power flow analysis. To account for electrical 

constraints such as voltage drop and equipment overload, a complete power flow analysis 

based on the physical and engineering details of the system is recommended for future 

research. 
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7. Multi-Hazard Risk Assessment Framework4 
 

7.1 Introduction 
 

Natural hazards can be concurrent/non-concurrent and dependent/independent. For 

example, high winds, waves, and storm surge during hurricanes are dependent and 

concurrent hazards. Earthquakes can cause tsunamis, landslides, and fires which make 

them dependent hazards. Seismic and hurricane hazards can be described as independent 

and non-concurrent hazards. Regardless, within the life span of infrastructure systems 

located in regions vulnerable to both hazards, there is a possibility of such infrastructure 

being subjected to such independent hazards that are different in nature. Therefore, 

effective mitigation of risks to infrastructure due to natural hazards requires understanding, 

evaluation, and interaction of (a) all hazards that can cause significant threats and, (b) the 

vulnerability of infrastructure subjected to the hazards. Consequently, the United Nations 

(UN) in its Johannesburg Plan called for increased effort in integrated, multi-hazard risk 

assessment as part of a comprehensive disaster management plan (UN, 2002). 

 

Hazard events differ in nature, intensity, return periods, and magnitude measurement 

method. Therefore, the first challenge of multi-hazard risk analysis is comparability of 

hazardous events (Carpignano et al., 2009; Li et al., 2012; Marzocchi et al., 2012). Hazards 

with different probabilities of occurrence, such as earthquakes and hurricanes, are difficult 

to compare. For example, a low probability/high consequence earthquake can cause as 

much damage as recurrent high probability/low consequence hurricanes. The second 

difficulty in multi-hazard risk analysis is the comparison of vulnerabilities of exposed 

elements (Carpignano et al., 2009). Different hazards can affect different elements in a 

region or different components of a system. For example, substations and transmission 

lines can be more vulnerable to different hazards and the parameters used to measure their 

vulnerabilities are not the same.    

                                                 
4 A version of this chapter has been submitted to ASCE Journal of Structural Engineering. 



 

126 

 

Multi-hazard risk assessment pertaining dependent concurrent hazards is approached in 

two ways. One way is to analyze each single hazard independently and then calculate multi-

hazard risk by weighted summation of single-hazard risk results or indices (Bell & Glade, 

2004; Mosquera-Machado & Dilley, 2009). The other approach is a truly integrated 

analysis of hazards, exposure, and vulnerability through joint probability distribution of 

hazards, multi-dimensional vulnerability, and integration of vulnerability surface with joint 

hazard distribution (Ming et al., 2015). Multi-hazard risk assessment of independent non-

concurrent hazards is usually carried out through comparative approach using a common 

index. This is feasible because risk is not measured in hazard-specific units but in damage 

or loss-specific units such as damage to properties or disruption to economic activities 

(Kappes et al., 2012).    

 

While development of multi-hazard risk analysis framework for buildings and bridges have 

been ongoing in recent years, risk analysis of spatially-distributed civil infrastructure 

systems such as electric power and water systems have so far been limited to mostly single-

hazard considerations (e.g. Adachi and Ellingwood (2010), Winkler et al. (2010), Song and 

Ok (2010), Duenas-Osorio and Hernandez-Fajardo (2008), Kim and Kang (2013), Ryan et 

al. (2014a)). As these systems usually cover large areas and can be subjected to multiple 

hazards within their lifetime, there is a need to develop a framework to study the impact of 

multiple hazards on such systems. This is essential for pre-disaster decision making 

regarding mitigation strategies as certain mitigation strategies for one hazard might be 

ineffective or even increase the risk for other hazards. 

 

Ouyang et al. (2012) conducted a multi-hazard study of electric power systems subjected 

to concurrent hazards as part of a multi-stage resilience framework. The concurrent hazards 

considered are hurricane hazard and random hazards (equipment failure, trees, animals, 

human errors) whose co-occurrence was modeled by a Poisson process. Multi-hazard effect 

of concurrent hurricane and random hazards was also studied in the context of cascading 

failure of interdependent infrastructure systems by Ouyang and Dueñas-Osorio (2011). The 
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hazards considered in the above studies differ greatly in terms of frequency and 

consequence. Whereas hurricanes usually cause large disruptions and widespread damage 

to infrastructure systems, damage due to random hazards is usually localized and relatively 

short in duration.      

 

This chapter presents a framework for multi-hazard risk assessment of electric power 

systems under seismic and hurricane wind hazards. Two multi-hazard risk assessment 

methods are also presented. The first method is a comparative approach using proposed 

risk curves due to multi-hazard, while the second method is a cumulative approach based 

on the annual probability of system failure. The proposed multi-hazard risk assessment 

models can be used to prioritize investment in mitigation strategies by ranking hazards 

based on the level of risk they pose in the short- and long-term.  

 

Figure 7.1 shows a flowchart of the proposed framework. In this chapter, the risk 

assessment part of the framework (items 1 to 4 of the left side of Figure 7.1) is discussed. 

Multi-hazard risk mitigation strategies and their cost-effectiveness are discussed in Chapter 

8. The framework is demonstrated using a notional power system assumed to be located in 

Charleston, SC, New York, NY, and Seattle, WA. The proposed framework considers the 

fragilities of transmission lines and substations. The proposed framework can also be 

extended to carry out multi-hazard risk assessment of distribution systems when data for 

fragilities of distribution components (lines and poles) subjected to earthquakes, hurricane 

wind, falling trees, and flying debris is available.  
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Figure 7.1 Flowchart of proposed multi-hazard risk assessment framework 

SYSTEM DEFINITION 
Location, system topology, etc.  

Hurricanes Earthquakes 

Fragility analysis of transmission lines 
and substations  

Risk comparison/ 
summation 

FINISH 

1. Hazard Identification: 
Identify hazards that may impact the system 

  

3. System-level Risk Assessment: 
Quantify risk to entire system due to each 

hazard using indicators such as system 
reliability, cost of damage etc. 

   

4. Multi-Hazard Risk Assessment: 
Aggregate or compare risks using common 

index 
 

5. Risk Mitigation: 
Identify critical system components and select 

mitigation strategies   

Probabilistic or scenario-
based hazard analysis 

Topological-based system reliability 
evaluation 

Evaluate component importance index 

Select mitigation strategy 

Re-evaluate system reliability 

Perform cost analysis 
6. Cost-effectiveness evaluation: 
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using cost-benefit analysis, life-cycle cost 
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Strategy cost-effective? 
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No 

7. Decision: 
Select desired mitigation strategy based on 

system reliability and cost consideration  

2. Component-level Risk Assessment 
(a) Hazard analysis: choose probabilistic or 

scenario-based hazard analysis 
(b) Component vulnerability analysis: quantify 

vulnerability of components to hazards 
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7.2 Electric Power System 
 

The electric power system adopted to demonstrate the proposed framework is shown in 

Figure 7.2 and is based on the electric power system of Shelby County, Tennessee modified 

from Shinozuka et al. (1998). It is assumed herein that the system is located in three cities, 

namely Charleston, New York, and Seattle. The power system is superimposed on the map 

of the three locations using the georeferencing tool in ArcGIS. This allows the coordinates 

of each substation or any point within the system to be determined.    
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Figure 7.2 Notional electric power system
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The power system consists of high voltage gate stations, medium voltage substations, and 

low voltage substations. The gate stations are assumed to be the source nodes or supply 

stations in this case since the system doesn’t have generating plants of its own. The medium 

and low voltage substations are the demand nodes which are distribution substations that 

directly serve customers. Power flow through the network is modeled so that edges 

connected to supply nodes are unidirectional while all other edges are bidirectional except 

those supplying terminal substations such as L5 and M5 in Figure 7.2. To estimate the 

number of transmission structures in each line, the span is assumed to be 800 ft. (Philipson 

& Willis, 2006; Davidson et al., 2003). 

 

Number of customers is adopted for use in evaluating system reliability. The number of 

customers served by the system in its original location in Shelby county, Tennessee is about 

400,000 (Shelby-County, 2015). Based on this information and for the purpose of 

demonstrating the proposed framework, all the low voltage substations are equally 

assumed to serve 10,000 customers each while the medium voltage substations are assumed 

to serve 14,000 customers each. The total number of customers served by the system is 

therefore 398,000. Detailed information on the power system is given in Table 7.1. 
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Table 7.1 Notional power system information 

Description  

Number of high voltage gate stations (supply nodes) 8 

Number of medium voltage distribution substations (demand nodes) 17 

Number of low voltage distribution substations (demand nodes) 16 

Approximate area covered by system  2,590 km2 

Total number of customers served by system (based on actual numbers 

from Shelby-County (2015))  
398,000 

Number of customers served by low voltage substations 10,000 

Number of customers served by medium voltage substations 14,000 

Number of transmission lines 66 

Span of transmission line support structures 244 m (800 ft.) 

Total number of transmission structures 1,715 

Location of G1 in Charleston, SC  33oN, 80.2oW 

Location of G1 in New York, NY 40.76oN, 73.47oW 

Location of G1 in Seattle, WA 47.6oN, 122.3oW 

 

     

7.3 Hazard Analysis 
 

Hazard analysis for structures and infrastructure systems can be carried out in two ways, 

namely probabilistic analysis and scenario-based analysis (Adachi & Ellingwood, 2010; 

Li, 2012). Probabilistic analysis considers the aggregated effect of all possible hazard 

levels. In a probabilistic analysis, hazard levels are weighted by their respective probability 

of occurrence. In a scenario-based approach, the effect of a specific hazard level is 

considered (e.g. 200-year return period hurricane or a magnitude 6.5 earthquake).  

 

In the context of multi-hazard analysis where risks due to different hazards are compared 

using an index, adopting a scenario-based approach such as comparing worst case scenarios 

of various hazards can be biased (Li & Ellingwood, 2009). In such a case, all possible 
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intensities of hazards should be considered which makes probabilistic hazard analysis more 

suitable for multi-hazard risk assessment. However, application of probabilistic seismic 

hazard analysis to spatially distributed infrastructure systems has been shown to be limited 

by Adachi and Ellingwood (2010). This is because the spatial variation of intensity for a 

severe earthquake is lost in the aggregation process of probabilistic analysis. The 

probabilistic approach, however, allows risks to be annualized which is essential in 

decision making regarding long-term investment in mitigation strategies. This approach 

also provides a way for risk comparison due to different competing hazards. In this chapter, 

both probabilistic and scenario-based hazard analysis are considered and discussed. The 

limitation of both approaches can be overcome by adopting a probabilistically weighted 

deterministic hazard scenarios approach. This will be discussed in Chapter 8.   

 

7.3.1 Seismic Hazard Analysis 
 

To perform probabilistic seismic hazard analysis (PSHA), seismic-hazard source and 

attenuation models are used. Seismic-hazard source model describes the location, 

magnitude and occurrence time of an earthquake while attenuation models describe the 

decay of seismic intensity from source to a particular site. The end result of PSHA is a 

seismic hazard curve that gives the annual rate of exceedance of a ground motion intensity 

measure (e.g., peak ground acceleration or spectral acceleration). The most extensively 

used hazard curves are developed by the U.S. Geological Survey (USGS) based on the 

mainshock records of the U.S. (USGS, 2015a; Petersen et al., 2014). The annual rate of 

exceedance of seismic intensity measure, IM, is often modeled by a power law expression 

such as the one given by Equation (7.1) (Cornell et al., 2002; Sewell et al., 1996; 

Kameshwar & Padgett, 2014). 

 

𝑒𝑒(𝐼𝐼𝑀𝑀) = 𝑅𝑅0(𝐼𝐼𝑀𝑀)−𝑘𝑘 (7.1) 
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where 𝑒𝑒(𝐼𝐼𝑀𝑀) is the annual probability of exceeding intensity measure, IM; and 𝑅𝑅0 and 𝑅𝑅 

are empirical constants. The power law in Equation (7.1) is linear on a log-log space. 

Bradley et al. (2007) demonstrated that the above power law overestimates the hazard 

within the low and high-intensity regions of the hazard curve and underestimates the hazard 

between the design basis earthquake (DBE) and maximum considered earthquake (MCE) 

intensity levels (see Figure 7.3). To remedy such anomaly, Bradley et al. (2007) proposed 

a hyperbolic function in a log-log space as given by Equation (7.2). 

 

𝑒𝑒� = 𝑝𝑝 ∙ 𝑒𝑒𝑚𝑚𝑝𝑝 �𝑝𝑝 �ln �
𝑃𝑃𝐺𝐺𝐴𝐴
𝑐𝑐
��

−1

� (7.2) 

 

where 𝑒𝑒� is the annual probability of exceeding a certain peak ground acceleration; 𝑝𝑝, 𝑝𝑝 and 

𝑐𝑐 are constants determined by fitting the above equation over a hazard curve such as the 

one obtained from USGS (2015a).  

 

Figure 7.3 shows the hazard curve plotted using data from USGS (2015a) for a location in 

a coastal area of South Carolina. The power model in Equation (7.1) is fitted to the USGS 

hazard curve using the method proposed by Jalayer (2003) while the hyperbolic model in 

Equation (7.2) is fitted using non-linear least square regression analysis. The constants 𝑅𝑅0 

and 𝑅𝑅 in Equation (7.1) are found to be 0.000192 and 1.072, respectively. The constants 𝑝𝑝, 

𝑝𝑝, and 𝑐𝑐 in Equation (7.2) are found to be 0.33, 30.02, and 42.36, respectively. It can be 

seen from Figure 7.3 that the hyperbolic function is more suited to the curve for the entire 

range of seismic intensities. The hyperbolic function is therefore adopted for use in this 

research. The steps for the probabilistic seismic hazard analysis are shown in Figure 7.4. 
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Figure 7.3 Seismic hazard curve for Charleston, SC (32.8oN 79.9oW) 

 

 

Figure 7.4 Probabilistic seismic hazard analysis 

 

In a scenario-based approach, the seismic intensity at various locations away from the 

epicenter of a given earthquake is determined using available attenuation models. Toro et 

al. (1997) developed a stochastic attenuation relationship from extensive analysis of ground 

motion data for central and eastern North America. The result of the study can be directly 

applied to hard rock and can be applied to soil sites by using amplification factors. The 

proposed attenuation equation is: 

 

ln(𝑃𝑃𝐺𝐺𝐴𝐴) = 𝐶𝐶1 + 𝐶𝐶2(𝑀𝑀− 6) + 𝐶𝐶3(𝑀𝑀− 6)2 − 𝐶𝐶4 ln𝑅𝑅𝑀𝑀

− (𝐶𝐶5 − 𝐶𝐶4)𝑚𝑚𝑝𝑝𝑚𝑚 �ln �
𝑅𝑅𝑀𝑀
100

� , 0� − 𝐶𝐶6𝑅𝑅𝑀𝑀 + 𝜀𝜀𝑒𝑒 + 𝜀𝜀𝑎𝑎 
(7.3) 

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

0.001 0.01 0.1 1 10

An
nu

al
 p

ro
ba

bi
lit

y 
of

 e
xc

ee
da

nc
e

PGA (g)

Data from PSHA

Parametric fit, Eq. (1)

Parametric fit, Eq. (2)

DBE (10% PE in 50 yrs.)

MCE (2% PE in 50 yrs.)

Identify the location 
of all relevant system 
components (latitude 

and longitude)  

Obtain seismic hazard 
curve data from USGS 
for each component 

location 

Fit appropriate 
function to USGS 

hazard curve  

Evaluate function 
parameters (a, b, 

& c)  



 

136 

𝑅𝑅𝑀𝑀 = �𝑅𝑅𝑖𝑖𝑏𝑏2 + 𝐶𝐶72 
(7.4) 

 

where PGA is the peak ground acceleration in units of g; 𝐶𝐶1 through 𝐶𝐶7 are constants; M is 

either moment magnitude or body wave magnitude; 𝑅𝑅𝑖𝑖𝑏𝑏 is the closest horizontal distance 

to the earthquake rupture in km; and 𝜀𝜀𝑒𝑒 and 𝜀𝜀𝑎𝑎 are measures of epistemic and aleatory 

uncertainties respectively and depend on magnitude and distance. This model is adopted 

for use in this research. 

 

The 1886 Charleston earthquake which is the strongest earthquake on record to hit South 

Carolina is selected for demonstrating the framework. The earthquake occurred on August 

31, 1886, and had a magnitude of 7.3 and epicenter at 32.9oN and 80oW shown in Figure 

7.2 (USGS, 2015b). The attenuation model given by Equation (7.3) and soil amplification 

factors from FEMA (2009) are then used to estimate the PGA at the location of each 

component.  

 

7.3.2 Hurricane Hazard Analysis 
 

The probabilistic and scenario hurricane hazard analysis discussed in Chapter 4 is used 

here. Figure 7.5 shows the steps for the probabilistic approach. The hazard curves for 

Charleston, New York, and Seattle are shown in Figure 7.6. Hurricane Hugo, the strongest 

hurricane on record to strike South Carolina, has been selected for the scenario-based 

hurricane hazard analysis. Hurricane track data and recorded wind speeds are obtained 

from the National Oceanic and Atmospheric Administration (NOAA, 2015b).  

 

 

Figure 7.5 Probabilistic hurricane analysis 
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Figure 7.6 Hurricane hazard curves  

Charleston (32.8oN 79.9oW), New York (40.71oN 74oW), and Seattle (47.6oN 122.3oW) 

 

 

7.4 Component Vulnerability Analysis 
 

The structural components of electric power systems considered in this study are the 

substations and transmission structures/lines. Since the objective of this study is to model 

multi-hazard risk assessment, the fragilities of the system components are taken from 

existing literature.  

 

7.4.1 Substation Fragility 
 

Due to the nature and weight of substation components, substations are rarely damaged by 

hurricane winds. Rather, flooding resulting from storm surge is of greater concern for 

substations (Brown, 2009). Since only hurricane winds are considered in this research, it 
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is assumed that substations are not affected by hurricanes. Substations are however 

vulnerable to earthquakes due the presence of brittle components that have considerable 

mass (Vanzi, 1996; Eidinger & Kempner, 2012). FEMA (2010) modeled the seismic 

fragility of substations subjected to seismic hazard using lognormal distribution and 

provided the fragility parameters. The seismic fragility parameters provided are for high 

voltage, medium voltage, and low voltage substations. The substations are also classified 

based on whether the subcomponents are anchored to resist seismic loads or not. 

 

FEMA (2010) considered five damage states for the seismic fragility of substations. These 

are none, slight/minor, moderate, extensive, and complete. These damage states are defined 

based on the percentage of subcomponents being damaged rather than power flow within 

the substation. In this study, it is assumed that substations in extensive or complete damage 

states will lose their functionality and are considered failed (Dueñas‐Osorio et al., 2007). 

Since exceeding extensive damage state is a prelude to exceeding complete damage state, 

the substations are hence considered failed in extensive damage state.  The fragility 

parameters for extensive damage of the three classes of substations are shown in Table 7.2 

(FEMA, 2010). In Chapter 8, all the damage states will be considered for evaluating the 

cost-effectiveness of mitigation strategies.  

 

Table 7.2 Lognormal parameters for seismic fragility of substations with anchored 
components  

(Damage state: extensive) 

Substation 

Classification  
Median PGA (g) Dispersion  

Low voltage 0.45 0.45 

Medium voltage 0.35 0.40 

High voltage 0.20 0.35 

 

Figure 7.7 shows the seismic fragilities of the substations for the damage state of extensive 

damage based on the lognormal parameters in Table 7.2. The seismic fragilities of the 
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substations are calculated with respect to peak ground acceleration (PGA) because facilities 

such as substations and distribution circuits are mostly vulnerable to PGA unless they are 

located in liquefiable or landslide zones in which case they will sometimes be vulnerable 

to peak ground displacement (PGD) (FEMA, 2010). 

 

 

Figure 7.7 Seismic fragility curves of substations for extensive damage state 

 

 

7.4.2 Transmission Line Fragility 
 

Transmission towers are rarely damaged by the actual shaking of the ground during 

earthquakes as they are designed for severe loads such as combined wind and ice, extra 

loads due to the collapse of adjacent towers and so on. Instead, the damage is mostly due 

to foundation failures caused by landslides, ground fracture, and liquefaction. However, 

there is a lack of data to include such failures in analytical studies (Shinozuka et al., 2005). 

Therefore, it is assumed in this research that the transmission structures are not affected by 

earthquakes.  
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The fragility of transmission line support structures subjected to wind load depends on 

several factors such as variability in tower types, load direction, and the potential for 

cascading failure. These factors make analytical fragility analysis of transmission lines 

quite complex. Another viable approach is through the use of empirical failure data to plot 

the fragility curve of transmission structures. One advantage of transmission structure 

fragility developed from empirical data over fragility curves developed using analytical 

methods is that in analytical method, it is difficult to combine several failure mechanisms 

such as flexural and foundation failure together. In most cases, only one failure mechanism 

is considered at a time in analytical fragility analysis. Fragility curves developed based on 

empirical data remedy this shortcoming to a greater extent.  

 

Brown (2009) developed a fragility curve for transmission support structures subjected to 

hurricane winds based on 10-year storm-related damage data provided by four coastal 

utility companies. According to the data, a total of 1,947 transmission structures were 

damaged or replaced in the 10-year period. The exponential model fitted to the damage 

data is given by Equation (7.5). The fragility curve is shown in Figure 7.8. It should be 

noted that the fragility of transmission structures depends on the type of structure as well 

as the conductor span. The fragility function given by Equation (7.5) however did not take 

these factors into account. Rather, it based on general damage data collected by the utility 

companies. Therefore, the adoption of Equation (7.5) here is for the purpose of 

demonstrating the proposed framework. Accurate fragility data can be developed by 

individual utility companies to guide decision making.      

 

𝑃𝑃(𝐶𝐶 < 𝐷𝐷) = 𝑚𝑚𝑅𝑅𝑒𝑒{[(2 ∙ 10−7)𝑒𝑒0.0834∙𝑣𝑣], 1} (7.5) 

 

where 𝐶𝐶 is capacity; 𝐷𝐷 is demand; and 𝑃𝑃(𝐶𝐶 < 𝐷𝐷) is the probability of failure at a given 

wind speed, 𝑒𝑒. For hurricane hazard analysis, all the structures in a single line are assumed 

to be subjected to the same wind speed. 
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Figure 7.8 Fragility curve of transmission support structures 

 

 

7.5 Component Risk Assessment  
 

The seismic risk to infrastructure components using the probabilistic seismic hazard 

analysis is performed by convolving component fragility with the seismic hazard curve. 

The annual probability of exceeding a certain damage state is given by Equation (7.6). 

 

𝑃𝑃𝐴𝐴 = � 𝐹𝐹𝑅𝑅(𝐼𝐼𝑀𝑀) ∙ �
𝑑𝑑𝑒𝑒�

𝑑𝑑(𝐼𝐼𝑀𝑀)� 𝑑𝑑(𝐼𝐼𝑀𝑀)
∞

0
 (7.6) 

 

where 𝑃𝑃𝐴𝐴 is the annual probability of exceeding a specified damage state; 𝐹𝐹𝑅𝑅(𝐼𝐼𝑀𝑀) is the 

fragility function given a certain level of intensity measure, IM, which is modeled with a 

lognormal function for substations in this case; and 𝑒𝑒� is the seismic hazard function given 

by Equation (7.2). 
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For scenario-based seismic hazard analysis, the risk to components of an infrastructure 

system is defined as the probability of failure given a specific level of seismic intensity. 

The risk is evaluated directly from the fragility curves of the components.  

 

Using the probabilistic hurricane analysis, the risk to infrastructure components is 

quantified using the annual probability of failure which is estimated by convolving the 

structural fragility with a hurricane wind speed model as: 

 

𝑃𝑃𝐴𝐴 = � 𝐹𝐹𝑅𝑅(𝑒𝑒)𝑜𝑜𝑣𝑣(𝑒𝑒)𝑑𝑑𝑒𝑒
∞

0
 (7.7) 

 

where FR(v) is the cumulative distribution function (CDF) of the structural fragility given 

a wind speed v; and fv(v) is the probability density function (PDF) of the hurricane wind 

speed.  

 

For the scenario-based hurricane analysis, the risk to components is defined as the 

probability of failure given a specific level of wind speed. The risk is evaluated directly 

from the fragility curves of the components.   

   

The results of the components risk analysis are shown in Figure 7.9 for Charleston. It can 

be seen from Figure 7.9(a) that the seismic risk to substations increases with increasing 

voltage rating. The high voltage gate stations (G1 – G8) are more vulnerable while the low 

voltage substations are generally the least vulnerable. This can also be inferred from the 

fragility curves of the substations in Figure 7.7. For the seismic risk result shown in Figure 

7.9(b) based on the scenario earthquake, the seismic risk depends on both the substation 

voltage rating as well as the location of each substation relative to the epicenter of the 

earthquake. The component fragility results for the transmission lines subjected to 

hurricane winds are given in Figure 7.9(c) & Figure 7.9(d). The fragilities of the lines 

depend both on location and length of lines.  
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Figure 7.9  Component risk results for Charleston 

(a) PSHA, (b) scenario earthquake, (c) probabilistic hurricane analysis, and (d) scenario 
hurricane 
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7.6 System Reliability Results 
 

System reliability depends on the accessibility of each substation from supply gate stations. 

Accessibility here is modeled as the probability of power not being delivered to a substation 

which is discussed in Chapter 3. The results of the accessibility of the demand substations 

are given in Figure 7.10 for Charleston. It can be seen from Figure 7.10(b) that a lot of the 

substations will not be able to receive power following the scenario earthquake as most of 

the supply stations (G1 to G8) will likely fail following the earthquake as can be seen from 

their fragilities in Figure 7.9(b).  

 

From Figure 7.10(c) & Figure 7.10(d), it can be seen that accessibility of the substations 

under hurricane hazard depends largely on the topology of the transmission lines supplying 

power to each substation. For instance, M5 has one of the highest probability of power not 

delivered in Figure 7.10(c) because, despite the fact that it can be supplied by 5 gate stations 

through several routes, its accessibility relies largely on the reliability of line 16.   
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Figure 7.10  Accessibility of demand substations in Charleston 

(a) PSHA, (b) scenario earthquake, (c) probabilistic hurricane analysis, and (d) scenario 
hurricane 
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The result of the system reliability analysis is summarized in Table 7.3 for Charleston. It 

can be seen from the table that for both the probabilistic seismic and hurricane hazard 

analysis, the system reliability is similar to probabilistic seismic hazard analysis resulting 

in a slightly lower reliability. Considering the scenario-based approach, on the other hand, 

the scenario earthquake has a much more devastating impact on system reliability (30.27%) 

than the scenario hurricane (90.93%). This can be attributed to the fragility of system 

components under both hazards. The gate stations and substations have much higher 

probabilities of failure under the giving earthquake than the transmission lines have under 

the giving hurricane as seen in Figure 7.9(b) & Figure 7.9(d). Another reason has to do 

with the fact that the failure of a transmission line will have far less impact on system 

reliability than the failure of a substation or most especially supply gate stations. Further 

discussion on comparison of the two hazards will follow in the next section. 

 

Table 7.3 Electric power system reliability results for Charleston 

Hazard Analysis Type Hazard Description System 

Reliability (%) 

Probabilistic seismic hazard 

analysis (annual risk) 

Aggregated effect of all possible 

seismic hazard levels 

99.89 

Scenario-based seismic hazard 

analysis (risk due to one event) 

7.3 magnitude earthquake (strongest 

earthquake on record to hit SC) 

30.27 

Probabilistic hurricane hazard 

analysis (annual risk) 

Aggregated effect of all possible 

hurricane hazard levels 

99.96 

Scenario-based hurricane hazard 

analysis (risk due to one event) 

Category 4 hurricane Hugo (strongest 

hurricane on record to hit SC) 

90.93 
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7.7 Multi-Hazard Risk Assessment 
 

7.7.1 Risk Comparison Based on Risk Curves 
 

For comparison of seismic and hurricane risks, it is imperative to use some kind of a 

common risk indicator. In this research, system reliability is used. Here, the concept of a 

multi-hazard risk curve is introduced. Such a risk curve shows a plot of system reliabilities 

against corresponding return periods (or exceedance probabilities). This allows direct 

quantitative comparison of the risks for the range of return periods covered by both hazards. 

To construct the multi-hazard risk curves, several return periods (or annual probabilities of 

exceeding various hazard levels) are selected and their corresponding PGA and wind speed 

at locations of all substations and lines calculated. System reliability corresponding to each 

hazard level (PGA and wind speed) is then evaluated. The multi-hazard risk curves of the 

power system in Charleston, New York, and Seattle are shown in Figure 7.11.  
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Figure 7.11 Multi-hazard risk curves 
(a) Charleston, (b) New York, (c) Seattle 
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From Figure 7.11(a), it can be seen that at higher return periods (lower exceedance 

probabilities) greater than about 460 years, the risk is clearly dominated by seismic hazard 

in Charleston. For instance, at a return period of 700 years, the system reliability due to 

seismic hazard is 12% compared to 62% due to hurricane hazard. It can also be seen that a 

2000-year return period earthquake will cause a complete shutdown of the system (0% 

reliability) as compared to a 10,000-year return period hurricane that will cause the same 

impact. 

 

For more frequent events with return periods less than 460 years, it can be seen from Figure 

7.11(a) that hurricane hazard has more impact on the system than the seismic hazard. Both 

hazards have the same effect on system reliability at a return period of about 460 years. 

From Figure 7.11(b), it can be seen that the pattern in New York is similar to that in 

Charleston with seismic hazard dominating the risk at return periods higher than 2,200 

years. Compared to Charleston, however, it can be seen that both the seismic and hurricane 

risks are lower in New York.  

 

Looking at the multi-hazard risk curve for Seattle in Figure 7.11(c), it can be seen that 

earthquake is clearly the dominant hazard at all return periods. Windstorms seem to pose 

very little risk to the system in this location. For instance, at a return period of 1000 years, 

the system reliability is about 1% for the corresponding seismic hazard level while it is 

98% for windstorms. At lower return periods, 200 years, for example, the system reliability 

is 78% and 99% for seismic and storm hazards, respectively.        

 

The information gathered from the multi-hazard risk curves is valuable in decision making 

regarding risk mitigation investment as it gives information on the impact of both low-

probability high-consequence events as well as frequent events on system reliability 

(Ellingwood & Wen, 2005). 

 

The wind speeds used to develop the hurricane curves in Figure 7.11 were obtained from 

ATC (2015) as mentioned earlier, which were developed based on hurricane simulations 



 

152 

by Vickery et al. (2000b) in which 20,000 hurricane years were simulated. Therefore, it 

should be noted that the maximum simulated year of 1,000,000 years shown in Figure 7.11 

is for demonstrating the change of system reliability vs return period of seismic and 

hurricane hazards.  

 

Risk comparison can also be made based on stipulated design hazard level. The design 

wind speed is the wind speed with a return period of 50 years (2% exceedance annually) 

as suggested by ASCE-74 (2009). The design PGA is the PGA with traditionally a return 

period of 475 years (ASCE, 2005; Li & Ellingwood, 2009). The design hazard levels and 

the corresponding system reliabilities are shown in Table 7.4. Note that the PGA and wind 

speeds in Table 4 are those for the locations of G1 and line 13, respectively, and are shown 

to give an indication of the general variation of the hazards in the three locations. 

 

It can be seen from Table 7.4 that for Charleston, the design seismic hazard level has a 

higher impact than hurricane hazard with corresponding system reliabilities of 76.8% and 

99.8%, respectively. Both design hazard levels have a similar impact on the system in New 

York while, in Seattle, design seismic hazard level has far greater impact than hurricane 

hazard with corresponding system reliabilities of 13.9% and 99.9%, respectively.    

 

Note that the variation of system reliability between the three locations especially when 

considering seismic hazard is the fact that while design hazard levels vary (for example, 

design PGA is 0.303g in Seattle as compared to 0.042g in New York), the power system, 

in this case, is exactly the same in all three locations. In practice, structural components of 

the system will be designed for the appropriate hazard level in each location.   
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Table 7.4 Multi-hazard risk comparison based on stipulated design hazard level  

(PGA and wind speed are for location of G1 and line 13, respectively) 

Location 

Seismic Hazard Hurricane Hazard 

PGA (g) (475-yr 

return period) 

System 

Reliability 

Wind (m/s) (50-yr 

return period) 

System 

Reliability 

Charleston  0.199 76.8 43 99.8 

New York  0.042 100 39 99.9 

Seattle 0.303 13.9 37 99.9 

 

 

7.7.2 Multi-Hazard Risk Based on Annual Probability of System Failure 
 

The comparisons based on multi-hazard risk curves in the previous section is conditional, 

as the system reliability evaluations are based on scenario-based hazard analysis. Here, the 

comparison is made based on the aggregated effect of all possible hazard levels which is 

the basis for probabilistic hazard analysis. The system reliability results calculated based 

on the annual probability of damage to system components in the three locations are given 

in Table 7.5. The annual probability of system failure, defined as the complement of system 

reliability is plotted in Figure 7.12. The results show that in Charleston and Seattle, seismic 

hazard has a greater effect on the annual measure of system reliability, unlike in New York 

where hurricane hazard has a slightly higher effect. Considering the combined effect of 

both hazards, the system has a higher annual probability of failure in Seattle followed by 

Charleston and New York. 

 

Even though hurricanes and earthquakes are independent non-concurrent hazards, 

annualizing the risk (measured as system unreliability in this case) allows for the 

summation of the risks due to both hazards. For example, in the case of Charleston, there 

is a 0.11 annual probability of system failure due to earthquakes and 0.04 annual 

probability of system failure due to hurricanes. The total annual probability of system 
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failure due to both hazards is thus 0.15. It should be noted that the risks due to both hazards 

cannot be summed in the case of comparison based on scenario hazard.   

 

Table 7.5 Multi-hazard risk comparison based on annual probability of damage of 
components 

Risk Indicator 
Charleston  New York Seattle 

Seismic  Hurricane Seismic  Hurricane Seismic Hurricane 

System reliability 

(%)  
99.89 99.96 99.98 99.97 99.80 99.97 

 

 

 

Figure 7.12 Annual probability of system failure 

 

The similarity in the impact of the two hazards on system reliability in Table 7.5 is because 

all hazard levels are weighted by the probabilities of their occurrence. Consequently, even 

though a high magnitude earthquake can cause severe damage to the system, for example, 

the probability of its occurrence is low. Similarly, a low-intensity hurricane with a high 

probability of occurrence will cause slight damage to the system. Note that the annual 
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probability of system failure is “by average”, which means a hazard event could 

dramatically change it as seen in the scenario-based result in Table 7.3.    

 

 

7.8 Conclusions 
 

A multi-hazard risk assessment framework has been presented in this chapter for 

considering the impact of seismic and hurricane hazards on electric power systems. A more 

comprehensive risk assessment that takes into account the potential impact of all possible 

natural hazards on power systems will help to guide pre-disaster preparation as well as 

decision making regarding cost-effective mitigation strategies. A notional electric power 

system assumed to be located in Charleston, SC, New York, NY, and Seattle, WA was 

used to demonstrate the proposed framework. Multi-hazard risk curves developed using a 

topological-based system reliability indicator were used to compare the two hazards. 

Furthermore, system reliability evaluated based on stipulated design hazard levels as well 

as the annual probability of damage to structural components of the system were also used 

for risk comparison. 

 

The case study considered shows that multi-hazard risk assessment enables the comparison 

and/or aggregation of different risks to electric power systems and can reveal the 

contribution of each hazard to the overall risk to the system. The case study also illustrates 

the importance of considering low-probability high-consequence events in disaster 

mitigation decisions. Based on the results obtained, mitigation efforts should be considered 

to reduce the potential impact of such events. However, the cost-effectiveness of deploying 

such mitigation measures should be evaluated and is the topic for the next chapter.  
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8. Multi-Hazard Risk Mitigation Framework5 
 

8.1 Introduction 
 

Decision making regarding mitigation of multiple hazards differs from that of single hazard 

mitigation in the sense that before the level or type of mitigation strategy is selected, a 

decision needs to be made on which of the various competing hazards deserves greater 

attention. This is compounded by the fact that there are limited resources available for 

mitigation of risks from competing hazards. For example, by 2020, the investment gaps for 

distribution and transmission infrastructure are estimated to be $57 billion and $37 billion, 

respectively (ASCE, 2013). Therefore, both identification and prioritization of risks are 

essential for decision making regarding investment in mitigation strategies.    

 

Multi-hazard assessment and mitigation were investigated for residential construction (Li 

& Ellingwood, 2009), bridges (Kameshwar & Padgett, 2014), and commercial buildings 

(Wen & Kang, 2001). However, there have not been studies on mitigation strategies for 

electric power systems. Existing studies on mitigation strategies for electric power systems 

focus on single hazards (e.g. Romero et al. (2015), Chang (2003), Shinozuka et al. (2005), 

Salman et al. (2015)). However, investment in long-term mitigation of risks needs to take 

into account all possible hazards that can affect the system over its entire lifespan. 

Therefore, there is a need to investigate the cost-effectiveness of mitigation strategies in 

reducing the overall risks to infrastructure that are vulnerable to multiple hazards. This 

requires a comprehensive multi-hazard risk-based assessment.  

 

As resources for risk mitigation strategies are limited, any framework for multi-hazard risk 

mitigation should attempt to identify risk-critical parts of a system that when strengthened, 

will have a greater impact on overall system performance. To determine critical parts of a 

                                                 
5 A version of this chapter has been submitted to Reliability Engineering & System Safety. 
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system for resource allocation, some form of component importance measure is required. 

This, in turn, requires evaluating a measure of system reliability.     

 

This chapter presents the second part of the framework in Chapter 7 to study the 

effectiveness of multi-hazard risk mitigation strategies for electric power systems subjected 

to hurricanes and earthquakes. Unlike in Chapter 7, probabilistic and scenario-based hazard 

analysis are combined into a probabilistically weighted deterministic hazard scenarios 

model that consider both spatial variation in hazard intensity as well as probabilistic nature 

of hazard occurrence. A new component importance measure that considers multi-element 

failure in a networked system is also proposed. Cost-effectiveness of various mitigation 

strategies is investigated through life cycle cost analysis. The framework is demonstrated 

using the same notional electric power network in Chapter 7. However, in this case, two 

locations: Charleston, SC, and New York, NY are used. Seattle is not considered here due 

to lack of data to perform hurricane simulation which is necessary for the probabilistically 

weighted deterministic scenarios approach.  

 

 

8.2 Hazard Analysis 
 

As discussed earlier, application of probabilistic hazard analysis to spatially distributed 

infrastructure systems has been shown to be limited (Adachi & Ellingwood, 2010). This is 

because the spatial variation of intensity for a severe hazard event is lost in the aggregation 

process of probabilistic analysis. Furthermore, in carrying out cost-effectiveness analysis, 

estimation of revenue loss and direct economic losses to society due to power outage 

depends on power outage duration following a specific event. Scenario-based approach, on 

the other hand, cannot capture all possible hazard levels in an area. In such a case, a 

probabilistically weighted deterministic hazard scenarios approach can be employed. This 

entails selecting a suite of hazard events under which system performance can be measured. 

The risk assessment is then carried out by weighing each hazard event with its respective 
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probability of occurrence. Consequently, the probabilistic nature of hazard occurrence and 

spatial variation of hazard intensities are reconciled. 

 

8.2.1 Seismic Hazard Analysis 
 

To model the seismic risk in the two chosen locations, a suite of earthquake scenarios with 

their corresponding annual probabilities of occurrence is required. The aim is to select 

enough earthquake scenarios to closely replicate the seismic hazard curves obtained from 

USGS (2015a). The scenario earthquakes, in this case, are selected from a catalog of 

earthquakes for Central and Eastern United States (CEUS) compiled in the Central and 

Eastern United States – Seismic Source Characterization (CEUS – SSC) for Nuclear 

Facilities report (EPRI et al., 2012). The scenarios are selected to represent all seismic 

source zones in the area, as well as the range of damaging earthquakes that are possible in 

the area as suggested by Chang et al. (2000). Nine and eight scenario earthquakes from a 

shortlist are selected for Charleston and New York, respectively, from the CEUS-SSC 

report. The selection is made so as to cover all possible hazard levels as accurate as possible 

and also to reduce computational effort. 

 

The selected scenario earthquakes from CEUS-SSC are from historical records and might 

not represent the entire risk in a given location, i.e., earthquake events of higher magnitude 

than those recorded are possible. Therefore, the maximum probable earthquake (MPE) 

from de-aggregation analysis of earthquakes from USGS (2008) at a risk level of 2% in 50 

years is also included in the list of scenario earthquakes for Charleston. The MPE 

corresponding to a risk level of 2% in 50 years and 1% in 200 years are selected for New 

York. The MPEs account for future events of higher magnitudes as MPE is defined as the 

largest predicted earthquake a fault is capable of generating (Robert, 2002). This makes a 

total of 10 scenario earthquakes for both locations as shown in Table 8.1.  

 

For each scenario earthquake, the peak ground acceleration (PGA) at any location within 

the power network is evaluated using the attenuation relationship developed by Toro et al. 
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(1997). An initial annual probability of exceeding the calculated PGA level is assigned so 

as to closely match the hazard curve from USGS (2015a) at a particular site. The annual 

probability of exceedance is then revised iteratively to minimize the error between the 

actual hazard curve from USGS (2015a) and the hazard curve based on the chosen scenario 

earthquakes.  

 

The locations of the 8 gate stations (G1 – G8) are used as control points to adjust the annual 

probabilities of exceedance. This is because if only one location is used to assign the 

probabilities, the resulting scenarios and their corresponding probabilities might not 

accurately model the hazard curves in other locations. Using 8 control points will ensure 

that the resulting scenarios and their corresponding probabilities can model the hazard in 

the entire area covered by the electric power system. Figure 8.1 shows the hazards curves 

for the locations of G1, G5, and G8 for Charleston and New York. It can be seen that the 

hazard curves based on the selected scenario earthquakes match the actual hazard curves 

from USGS (2015a). 

 

Note that the annual probability of exceedance assigned to each seismic event or PGA level 

is cumulative of the probabilities of occurrence of events that will produce the same level 

of PGA or higher. Therefore, the probability of occurrence of an event is found by 

subtracting the appropriate annual probabilities of exceedance as shown in Table 8.1.  
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Table 8.1 Selected scenario earthquakes and their annual probabilities of occurrence 

Charleston New York 

Epicenter 
Magnitude 

Annual prob. 

of exceedance 

Annual prob. 

of occurrence 

Epicenter 
Magnitude 

Annual prob. 

of exceedance 

Annual prob. of 

occurrence Lat. Long. Lat. Long. 

33.75 81.38 4.5 0.021 0.006 40.79 74.25 3.1 0.0225 0.0085 

34.01 80.8 5.2 0.015 0.006 40.8 74 2.7 0.0140 0.0010 

32.9 80 4.0 0.009 0.003 40.1 74.5 4.4 0.0130 0.0015 

33.4 80.42 5.3 0.006 0.002 40.46 74.3 4.1 0.0115 0.0024 

32.9 80 5.5 0.004 0.0024 41 74.5 4.7 0.0091 0.0021 

32.9 80 6.7 0.0016 0.0001 41.11 73.85 4 0.0070 0.0006 

32.9 80 6.8 0.0015 0.0001 40.98 73.83 3.7 0.0064 0.0034 

32.9 80 6.9 0.0014 0.0003 40.8 74 4.8 0.0030 0.0020 

32.9 80 7.3 0.0011 0.0008 40.85 73.5 4.8* 0.0010 0.0003 

33.05 80.17 7.4* 0.0003 0.0003 40.85 73.5 5.4* 0.0007 0.0007 

* Maximum probable earthquake (MPE) from de-aggregation analysis 
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Figure 8.1 Seismic hazard curves  

(a) G1-Charleston; (b) G5-Charleston; (c) G8-Charleston; (d) G1-NY; (e) G5-NY; and (f) 
G8-NY 
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8.2.2 Hurricane Hazard Analysis 
 

For hurricane hazard, the hurricane simulation model used in Chapter 5 is also used here. 

The flow chart of the simulation model is shown again in Figure 8.2 for convenience. The 

required parameters for the hurricane simulation in South Carolina are taken from Huang 

et al. (2001a) and shown in Table 8.2. The parameters for New York City are found by 

fitting probability distributions to histograms of the parameters from Lin et al. (2010). It 

should be noted that while the simulation parameters for South Carolina from Huang et al. 

(2001a) are obtained from records of historical hurricanes, the parameters for New York 

from Lin et al. (2010) are based on simulated hurricanes due to lack of adequate historical 

data for New York.  

 

Wind speed decay after landfall due to friction and reduction in storm’s moisture for 

Charleston and New York is modeled using the model developed by Kaplan and DeMaria 

(1995) and Kaplan and DeMaria (2001), respectively. As the location of the power system 

is within approximately 50 miles of the coast in both locations, each hurricane is assumed 

to travel in a straight line from landfall to when it will pass through the study area. This 

assumption has been shown to be reasonable for areas within 50 miles of the coast (Brown, 

2009). The simulation is carried out for 10,000 hurricane seasons. 
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Figure 8.2 Hurricane simulation model flow chart 

 

 

Randomly sample number of hurricanes (n) in a given year 
based on hurricane frequency 

For hurricane i, randomly sample landing position, 
approach angle, translation speed, central pressure 

difference 

Compute max wind speed at landfall and radius 
to max wind  

Compute wind speed at pt. of interest using 
wind field model 

Determine next location of hurricane 

Update central pressure and max wind speed using 
decay models  

Re-compute wind speed at pt. of interest using 
wind field model 

Hurricane 
dissipated? 

  

End of hurricane 
  

i = n? 
  

End hurricane season 

Yes 

Yes 

No 

No 

i = i+1 



 

164 

Table 8.2 Statistics of hurricane simulation parameters 

Variable Distribution  Distribution parameters 

South Carolina New York 

Annual frequency, λ Poisson  0.306 0.26 

Approach angle, θ (degrees) Normal/Uniform  μ = 2.19 

σ = 42.77 

0 – 75 

Central pressure difference Weibull  u = 51.12 

k = 3.155 

u = 32.34 

k = 2.85 

Translation velocity Lognormal  λ = 1.787 

ζ = 0.513 

λ = 2.545 

ζ = 0.437 

 

For each hurricane, the maximum wind speeds at the middle of each transmission line are 

recorded as the hurricane passes through the study region. The maximum wind speed at 

the location of G1 is also recorded based on which the annual probability of exceedance is 

assigned to each recorded wind speed so as to match the resulting hazard curve with that 

obtained from ASCE 7-10 model which can be accessed from ATC (2015) for any location. 

Figure 8.3 shows a plot of the hazard curves at the location of G1 using wind speeds from 

ATC (2015) and from the hurricane simulation model described. 

 

 

Figure 8.3 Hurricane hazard curves  
(a) G1 – Charleston (b) G1 – NY 
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Using the probabilistically weighted deterministic hazard scenarios approach, the annual 

probability of failure of any system component can be calculated using Equation (8.1). 

 

𝑃𝑃𝐴𝐴 = �Pr(𝐹𝐹|𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) ∙ Pr (𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅)
𝑛𝑛

𝑖𝑖=1

 (8.1) 

 

where 𝑃𝑃𝐴𝐴 is the annual probability of failure of a component;  Pr(𝐹𝐹|𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) is the 

probability of failure of the component given the occurrence of hazard event i; Pr (𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) 

is the annual probability of occurrence of hazard event i; and n is the total number of hazard 

events. Note that Equation (8.1) assumes independence between hazard events occurrence. 

 

 

8.3 Component Vulnerability 
 

Fragilities of substations and transmission structures discussed in the previous chapter are 

used here. However, in the original system, the substations are assumed to have standard 

(unanchored components). The fragility parameters of the three classes of substations are 

shown in Table 8.3 (FEMA, 2010). All four damage states will be considered in the cost 

analysis section. However, for the purpose of demonstrating other parts of the framework, 

it is assumed that substations in extensive damage state will lose their functionality and are 

considered failed (Dueñas‐Osorio et al., 2007).  
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Table 8.3 Lognormal parameters for seismic fragility of substations with standard 
components 

Substation 

Classification  
Damage State Median PGA (g) Dispersion  

Low voltage 

Slight/minor 0.13 0.65 

Moderate  0.26 0.50 

Extensive  0.34 0.40 

Complete  0.74 0.40 

Medium voltage 

Slight/minor 0.10 0.60 

Moderate  0.20 0.50 

Extensive  0.30 0.40 

Complete  0.50 0.40 

High voltage 

Slight/minor 0.09 0.50 

Moderate  0.13 0.40 

Extensive  0.17 0.35 

Complete  0.38 0.35 

 

 

8.4 Multi-Hazard Risk Assessment 
 

As explained in the previous chapter, multi-hazard risk assessment of independent non-

concurrent hazards such as earthquakes and hurricanes is usually carried out through 

comparative approach using a common index. This is feasible because risk is not measured 

in hazard-specific units but in damage or loss-specific units such as damage to properties 

or disruption to economic activities (Kappes et al., 2012). The common risk indicator 

adopted here is system reliability (or unreliability). This allows direct quantitative 

comparison of the risks for the range of return periods (or annual probabilities of 

exceedance) covered by both hazards. Figure 8.4 shows the multi-hazard risk curves for 

the power system in the 2 locations for selected hazard levels.  
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Figure 8.4 Multi-hazard risk curves 

(a) Charleston, SC (b) New York, NY 
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It can be seen from Figure 8.4(a) that at lower annual exceedance probabilities in 

Charleston, the risk due to seismic hazard is higher than that from hurricane hazard. For 

example, the annual probabilities of exceeding a system unreliability of 80% are about 

0.0012 and 0.0008 for seismic and hurricane hazards, respectively. At higher annual 

exceedance probabilities, the risk due to hurricane hazard is higher. In other words, there 

is a higher probability that seismic hazard will cause major disruption to the system than 

hurricane hazard while there is a higher probability that hurricanes will cause minor 

disruptions to the system. 

 

In the case of New York, it can be seen from Figure 8.4(b) that risk due to hurricane hazard 

is higher for the entire range of data plotted. In general, it can be seen that risk to the system 

due to both hurricane and seismic hazards is higher in Charleston than New York. For 

example, the annual probabilities of exceeding a system unreliability of 6% due to 

hurricane hazard are about 0.0045 and 0.0017 for Charleston and New York, respectively. 

Similarly, the probabilities due to the seismic hazard are 0.0045 and 0.0009 for Charleston 

and New York, respectively.        

 

Even though hurricanes and earthquakes are independent non-concurrent hazards, 

annualizing the risk (measured as system unreliability in this case) can make the summation 

of risk due to both hazards feasible. Risk can be annualized by weighing each hazard level 

with its annual probability of occurrence. This is important when it comes to evaluating 

the cost-effectiveness of mitigation strategies as will be discussed later on.  

 

For the sake of comparison, the probabilistic method used to plot the multi-hazard risk 

curves in Figure 7.11 in the previous chapter is used to plot the curves for the range of 

return periods in Figure 8.4. The comparison for Charleston is shown in Figure 8.5. It can 

be seen that risk curves from the two methods are similar. Relatively, the probabilistically 

weighted deterministic scenarios approach overestimates the risk in some sections of the 

curves. The comparison for New York is shown in Figure 8.6 where the probabilistically 
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weighted deterministic scenarios approach results in higher risk than the probabilistic 

analysis.  

 

The advantage of the probabilistic analysis used in the previous chapter is that it considers 

the entire range of hazard levels. However, the hazard levels corresponding to different 

return period at different locations does not necessarily occur at the same time or during 

the same hazard event. This is why the spatial variation of hazard intensity is lost in the 

aggregation process. The probabilistically weighted deterministic scenarios approach on 

the other hand models the spatial variation of hazard intensity during each event. However, 

due to the limitation on computational effort, the number of hazard events that can be 

considered is limited. Consequently, the approach might not cover the entire range of 

possible hazard levels. 
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Figure 8.5 Comparison between probabilistically weighted deterministic scenarios 
method and probabilistic method for Charleston  

(a) Seismic curves (b) Hurricane curves 
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Figure 8.6 Comparison between probabilistically weighted deterministic scenarios 
method and probabilistic method for New York  

(a) Seismic curves (b) Hurricane curves 
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8.5 Component Importance Measure 
 

Mitigation strategies for distributed infrastructure systems such as electric power systems 

invariably involve strengthening system components (substations and transmission line 

support structures in this case). Strengthening an entire system may, however, not be cost-

effective as some components have a greater effect on overall system reliability than others. 

Decisions on investment in mitigation strategies can be better made if the impact of 

strengthening different components on system reliability can be quantified. This can be 

achieved using some form of a measure of component importance. 

 

One of the most widely used measures of component importance is Risk Achievement 

Worth (RAW). RAW is an indicator of two measures, (i) the ‘worth’ of a component in 

achieving the current level of system reliability, and (ii) the importance of maintaining or 

improving the current reliability of a component. RAW of each component, i, is given by 

Equation (8.2) (Rausand & Høyland, 2004). 

 

𝑅𝑅𝐴𝐴𝑅𝑅(𝑅𝑅) =
1 − 𝑅𝑅𝑆𝑆(𝑄𝑄𝑖𝑖 = 1)

1 − 𝑅𝑅𝑆𝑆
        𝑜𝑜𝑝𝑝𝑝𝑝 𝑅𝑅 = 1,2, … ,𝑒𝑒 (8.2) 

 

where 𝑅𝑅𝑆𝑆(𝑄𝑄𝑖𝑖 = 1) is the system reliability when component i has failed while 𝑅𝑅𝑆𝑆 is the 

reliability of the original system. The risk achievement worth of all the substations and 

transmission lines in the system is presented in Figure 8.7 for the system in Charleston 

using annual probabilities of component failures.   

 

 

 

 

 



 

173 

 

 

Figure 8.7 Risk achievement worth of components in Charleston  
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It can be seen from Figure 8.7(a) that the RAW of the substations in each class is very 

similar. All gate stations (G1 – G8) have RAW of about 1.2, medium voltage substations 

(M1 – M17) have RAW of about 24.4 (with two exceptions), and low voltage substations 

(L1 – L16) have RAW of about 17.8. The lack of variation in RAW for each substation 

class is due to the redundancy in the system. For example, the gate stations should have 

had the largest RAW considering the fact that they are the supply stations, however, there 

is always more than one gate station supplying power to each demand substation. 

Consequently, failure of any one gate station will have a minimal impact on system 

reliability. 

 

Looking at the demand substations (low and medium voltage), their RAW is very similar 

for each class because there is always an alternative path for power delivery from gate 

stations to demand stations even if a substation along a certain path of power delivery fails. 

Hence, failure of any demand substation will only cut-off power to the customers directly 

connected to it. The only exception is M3 and M14. This is because looking at Figure 7.2, 

it can be seen that power delivery to M4 depends on the reliability of M3 because there is 

no alternative path from any gate station to M4. Hence, failure of M3 will not only cut-off 

power to customers directly connected to it, but also to customers connected to M4. 

Similarly, power delivery to L5 depends on M14. A similar observation can be made from 

Figure 8.7(b) for transmission lines where lines such as 12 and 26 have higher RAW 

because of lack of redundancy to the substations they serve. 

 

In general, it can be seen that RAW (and other similar component importance measures 

that consider the failure of single elements such as Risk Reduction Worth (RRW)) is not 

an effective measure of component importance in a complex system with high redundancy 

such as the power system considered in this case. This is because failure or removal of a 

single component will not significantly impact system reliability because the failure of the 

system or a significant part of the system is caused by combinations of failure of several 

components which make up the various minimal cut sets of the system.   
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A better measure of component importance for redundant systems such as the power 

system in this study should take into account the number of minimal cuts that a component 

affects. The Fussel-Vesely importance measure takes this into account by defining 

component importance as a ratio of the probability of failure of at least one minimal cut 

containing the component in question at time t to the probability that the system is failed 

at time t (Fussell, 1975). In other words, the component contributes to system failure when 

a minimal cut set containing the component failed. This is, however, applicable to binary 

systems that can be defined as either functioning or not. That is, it applies to systems where 

the failure of at least one minimal cut set leads to overall system failure. In the case of 

electric power networks with several load points, failure of power delivery to one 

substation or one minimal cut set does not imply system failure. This implies that the 

system has several functional states. 

 

To overcome the above shortcomings, the following component importance index is 

proposed: 

 

𝐼𝐼𝑖𝑖 =
1 − 𝑅𝑅𝑆𝑆_𝑎𝑎𝑣𝑣

1 − 𝑅𝑅𝑆𝑆
        𝑜𝑜𝑝𝑝𝑝𝑝 𝑅𝑅 = 1,2, … , 𝑒𝑒 (8.3) 

 

where 𝐼𝐼𝑖𝑖 is the importance index of component 𝑅𝑅; 𝑅𝑅𝑆𝑆_𝑎𝑎𝑣𝑣 is the average system reliability 

among all scenarios where a minimal cut set containing component 𝑅𝑅 is failed; and 𝑅𝑅𝑆𝑆 is 

the reliability of the original system. The proposed component importance index models 

multi-element failure which is required to bring about overall system failure in a networked 

system. This is important as natural hazards such as earthquakes usually results in the 

failure of multiple elements at a time. Hence, the proposed index models the likelihood that 

a combination of failed elements that contain the element in question contributes to overall 

system failure. 𝑅𝑅𝑆𝑆_𝑎𝑎𝑣𝑣 takes into account the fact that a component can appear in several 

minimal cut sets that govern power delivery to several subsystems or substations. Figure 

8.8(a) & Figure 8.8(b) show the importance index of substations and transmission lines in 

the system, respectively, using the proposed measure. 
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Figure 8.8 Importance index of components in Charleston  
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From Figure 8.8(a), it can be seen that the substations with the lowest importance index (Ii 

< 20) are L4, L5, L6, L8, L14, and L16. This is because their failure does not affect power 

delivery to other substations. All the gate stations show relatively high importance index 

as they are the supply stations and failure of a combination of gate stations will cut power 

supply to several demand stations. Looking at Figure 8.8(b), it can be seen that transmission 

lines with Ii < 20 are lines whose failure will not affect power delivery to more than one 

substation. Transmission lines such as lines 33 and 40 whose failure, especially in 

combination with other lines, will cut-off power supply to several substations have 

relatively higher Ii.    

        

 

8.6 Multi-Hazard Mitigation Strategies 
 

Seven mitigation strategies have been selected to demonstrate the proposed framework, 

based on the result of component importance measure above. These are: 

 

1. Strengthening substations with 𝐼𝐼𝑖𝑖 > 100 (7 substations = 17%) 

2. Strengthening substations with 𝐼𝐼𝑖𝑖 > 70 (16 substations = 39%) 

3. Strengthening transmission lines with 𝐼𝐼𝑖𝑖 > 100 (7 lines = 11%) 

4. Strengthening transmission lines with 𝐼𝐼𝑖𝑖 > 80 (24 lines = 36%) 

5. Strengthening substations and transmission lines with 𝐼𝐼𝑖𝑖 > 100 

6. Strengthening substations with 𝐼𝐼𝑖𝑖 > 70 and transmission lines with 𝐼𝐼𝑖𝑖 > 80 

7. Strengthening entire system (substations and transmission lines)    

 

The first 6 strategies are selected to represent different levels of targeted hardening of the 

system. The last mitigation strategy is chosen to investigate the effectiveness of targeted 

hardening as opposed to hardening the entire system. 
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Strengthening substations involve substituting standard components with anchored/seismic 

components. While the current requirement for substation component design called for 

anchored components, a lot of existing substations are composed of standard unanchored 

components (Knight & Kempner Jr, 2009a). The fragility of anchored substations is taken 

from FEMA (2005) in which it is modeled with lognormal distribution with parameters 

given in Table 8.4.  

 

Table 8.4 Lognormal parameters for seismic fragility of substations with anchored 
components 

Substation 

Classification  
Damage State Median PGA (g) Dispersion  

Low voltage 

Slight/minor 0.15 0.70 

Moderate  0.29 0.55 

Extensive  0.45 0.45 

Complete  0.90 0.45 

Medium voltage 

Slight/minor 0.15 0.60 

Moderate  0.25 0.50 

Extensive  0.35 0.40 

Complete  0.70 0.40 

High voltage 

Slight/minor 0.11 0.50 

Moderate  0.15 0.45 

Extensive  0.20 0.35 

Complete  0.47 0.40 

 

 

 

Strengthening transmission lines involve strengthening existing transmission line support 

structures to conform with the current National Electrical Safety Code (NESC) standard 

which requires all transmission structures over 60 ft. to be designed for extreme wind and 

ice loadings (IEEE, 2012). The fragility function for upgraded transmission structures 
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developed based on damage data from utility companies is given by Equation (8.4) (Brown, 

2009). 

 

𝑃𝑃𝑆𝑆 = 𝑚𝑚𝑅𝑅𝑒𝑒{[(2 ∙ 10−8)𝑒𝑒0.0834∙𝑣𝑣], 1} (8.4) 

 

where 𝑃𝑃𝑆𝑆 is the probability of failure of a transmission support structure at a given wind 

speed, 𝑒𝑒.  

 

The fragility curves of existing transmission structures using Equation ((7.5) and upgraded 

transmission structures using Equation ((8.4) are plotted in Figure 8.9. 

 

 

Figure 8.9 Fragilities curves of existing and hardened transmission structures 
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8.7 Evaluation of Cost-Effectiveness through Life-cycle Cost 

Analysis 
 

To investigate the effectiveness of mitigation strategies and prioritize investment, a 

decision-supporting tool is required to estimate costs and benefits, as well as the economic 

efficiency of mitigation policies. In this study, the net discounted benefit is used as a 

decision-support tool to estimate the benefit of the proposed mitigation strategies. The net 

discounted benefit is evaluated by calculating and discounting the costs and benefits arising 

over time, and the difference taken. The total costs and benefits are calculated through a 

life-cycle cost analysis over the remaining lifespan of the system. The benefit is the 

reduction in damages due to mitigation, while the cost is the cost of implementing the 

mitigation strategy. A fixed discount rate is used to convert costs over time to their 

equivalent present value. If the net discounted benefit is positive (benefits exceed costs), 

then the mitigation strategy is considered effective. 

 

 The various costs considered in the life cycle cost analysis are discussed below: 

 

i. Mitigation cost: this is the cost of implementing a specific mitigation strategy which 

is assumed to be carried out in the first year of analysis. 

 

ii. Maintenance cost: this is the cost of periodic maintenance performed by the utility 

company on the substation and transmission lines. The total maintenance cost for each 

component for the entire analysis period is given by Equation (8.5). 

 

 

𝐶𝐶𝑚𝑚 = ��𝑚𝑚𝑖𝑖(𝑝𝑝) ∙ (1 + 𝜆𝜆)−𝑧𝑧
𝑖𝑖𝑧𝑧

 (8.5) 

 



 

181 

where 𝑚𝑚𝑖𝑖 is the annual maintenance cost for element i at year t; and λ is the discount 

rate.  

 

iii. Repair cost: this is the cost of repairing damage to the system after an earthquake or 

hurricane. For damage to substations due to earthquakes, the annual repair cost for 

each substation is given by Equation (8.6) which is based on the theorem of total 

probability. 

 

𝐶𝐶𝑐𝑐𝑠𝑠 = ���Pr(𝑑𝑑|𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) ∙ Pr (𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) ∙ 𝐶𝐶𝑑𝑑

𝑛𝑛

𝑖𝑖=1

𝐷𝐷

𝑑𝑑=1𝑧𝑧

∙ (1 + 𝜆𝜆)−𝑧𝑧 (8.6) 

 

where 𝐶𝐶𝑐𝑐𝑠𝑠 is the annual repair cost per substation;  Pr(𝑑𝑑|𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) is the probability 

of occurrence of damage state d given the occurrence of seismic event i; Pr (𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) 

is the annual probability of occurrence of seismic event i; 𝐶𝐶𝑑𝑑 is the cost of repairing 

the substation in damage state d; D is the total number of damage states; and n is the 

total number of seismic events.  

 

For damage to transmission lines after hurricanes, the repair cost is the cost of 

replacing failed transmission structures. Failed structures are replaced with new ones 

of the same class. The repair cost for a line for the entire lifespan of the system is 

given by Equation (8.7). 

 

𝐶𝐶𝑐𝑐𝐿𝐿 = ��Pr(𝐹𝐹𝑠𝑠|𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) ∙ Pr(𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅)
𝑛𝑛

𝑖𝑖=1

∙ 𝑁𝑁 ∙ 𝐶𝐶𝑐𝑐 ∙ (1 + 𝜆𝜆)−𝑧𝑧
𝑧𝑧

 (8.7) 

 

where 𝐶𝐶𝑐𝑐𝐿𝐿 is the repair cost of transmission line; Pr(𝐹𝐹𝑠𝑠|𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) is the probability of 

failure of a structure given hurricane event i; Pr (𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) is the annual probability 

of occurrence of hurricane event i; 𝑁𝑁 is the total number of structures in a line; and 

𝐶𝐶𝑐𝑐 is the unit repair cost of structures in a line. Note that unlike substations, 
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transmission structures and lines are modeled with only one damage state which is 

defined as failure. 

 

iv. Revenue loss: this is the cost incurred by the utility company due to the interruption 

in power supply caused by earthquakes and hurricanes. It is a function of unmet 

demand, the time to restore the system after an event, and the unit cost of electricity. 

For failure of substations due to seismic hazard, the unmet demand for a substation 

is given by Equation (8.8). 

 

𝑈𝑈𝐷𝐷 = � 𝐾𝐾𝑖𝑖(𝑝𝑝) ∙ 𝑝𝑝(𝑝𝑝)𝑑𝑑𝑝𝑝

𝑧𝑧𝑟𝑟

𝑧𝑧=0

 (8.8) 

 

where 𝑈𝑈𝐷𝐷 is the unmet demand; 𝐾𝐾𝑖𝑖(𝑝𝑝) is the demand on substation i at time t; 𝑝𝑝(𝑝𝑝) is 

the unit price of electricity at time t; 𝑝𝑝𝑐𝑐 is the time to repair the substation. The time 

to repair substations depends on the type and damage level of the substation. The 

revenue loss due to the failure of a substation is then given by Equation (8.9).  

 

𝐶𝐶𝑅𝑅𝑠𝑠 = ���(𝑈𝑈𝐷𝐷|𝑑𝑑 ∙ 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) ∙ Pr(𝑑𝑑|𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) ∙ Pr (𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅)
𝑛𝑛

𝑖𝑖=1

𝐷𝐷

𝑑𝑑=1𝑧𝑧

∙ (1 + 𝜆𝜆)−𝑧𝑧 (8.9) 

 

where 𝐶𝐶𝑅𝑅𝑠𝑠 is the total revenue loss due to failure of substation; (𝑈𝑈𝐷𝐷|𝑑𝑑 ∙ 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) is 

the unmet demand given damage state d and event i; Pr(𝑑𝑑|𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) is the probability 

of occurrence of damage state d given the occurrence of seismic event i; Pr (𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) 

is the annual probability of occurrence of seismic event i.   

 

For transmission line failure due to hurricanes, failure of a single transmission line 

does not necessarily cut power to customers if there are other routes available for 

power to reach a particular substation. Hence, revenue loss due to hurricane hazard 

is calculated by considering the failure of all transmission lines supplying power to a 

substation. The unmet demand for a substation due to the failure of transmission lines 
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is also calculated using Equation (8.8), where 𝑝𝑝𝑐𝑐 is the time to repair the transmission 

lines in this case. The revenue loss for a substation due to the failure of transmission 

lines is then calculated using Equation (8.10).  

 

𝐶𝐶𝑅𝑅𝐿𝐿 = ��(𝑈𝑈𝐷𝐷|𝐹𝐹 ∙ 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) ∙ Pr(𝐹𝐹|𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) ∙ Pr (𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) ∙
𝑛𝑛

𝑖𝑖=1𝑧𝑧

(1 + 𝜆𝜆)−𝑧𝑧 (8.10) 

 

where 𝐶𝐶𝑅𝑅𝐿𝐿 is the annual revenue loss due to failure of transmission lines; (𝑈𝑈𝐷𝐷|𝐹𝐹 ∙

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) is the unmet demand given failure of all lines and event i; Pr(𝐹𝐹|𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) 

is the probability of failure of all transmission lines supplying power to a substation 

given the occurrence of hurricane event i; Pr (𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) is the annual probability of 

occurrence of hurricane event i. 

 

Pr(𝐹𝐹|𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) =  Pr (𝐿𝐿1 ∩ 𝐿𝐿2 ∩ …∩ 𝐿𝐿𝑘𝑘|𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) (8.11) 

 

Pr (𝐿𝐿1 ∩ 𝐿𝐿2 ∩ …∩ 𝐿𝐿𝑘𝑘) is the probability of failure of all transmission lines supplying 

power to a substation, where the failures are assumed to be independent. 

 

v. Societal economic loss: this is the direct economic loss to customers resulting from 

the interruption in power supply. For damage to substations due to earthquakes, the 

economic loss for a substation during a seismic event is given by Equation (8.12). 

 

𝐸𝐸𝐿𝐿 = � 𝐿𝐿(𝑝𝑝)𝑑𝑑𝑝𝑝

𝑧𝑧𝑟𝑟

𝑧𝑧=0

 (8.12) 

 

where 𝐿𝐿(𝑝𝑝) is the monetary loss per hour; 𝑝𝑝𝑐𝑐 is repair time of the substation. The total 

societal economic loss for each substation is then given by Equation (8.13). 
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𝐶𝐶𝐸𝐸𝑠𝑠 = ���(𝐸𝐸𝐿𝐿|𝑑𝑑 ∙ 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) ∙ Pr(𝑑𝑑|𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) ∙ Pr (𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅)
𝑛𝑛

𝑖𝑖=1

𝐷𝐷

𝑑𝑑=1𝑧𝑧

∙ (1 + 𝜆𝜆)−𝑧𝑧 (8.13) 

 

where 𝐶𝐶𝐸𝐸𝑠𝑠 is the total societal economic loss due to failure of substation; (𝐸𝐸𝐿𝐿|𝑑𝑑 ∙

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) is the expected economic loss given damage state d and event i; 

Pr(𝑑𝑑|𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) is the probability of occurrence of damage state d given the 

occurrence of seismic event i; Pr (𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) is the annual probability of occurrence of 

seismic event i. 

 

As in the case of revenue loss, failure of one transmission line due to hurricane might 

not necessarily lead to a power outage and economic loss to customers. Hence, the 

failure of all lines connected to a substation is considered. The economic loss for a 

substation due to the failure of lines is given by Equation (8.14). 

 

𝐶𝐶𝐸𝐸𝐿𝐿 = ��(𝐸𝐸𝐿𝐿|𝐹𝐹 ∙ 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) ∙ Pr(𝐹𝐹|𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) ∙ Pr (𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) ∙
𝑛𝑛

𝑖𝑖=1𝑧𝑧

(1 + 𝜆𝜆)−𝑧𝑧 (8.14) 

 

where 𝐶𝐶𝐸𝐸𝐿𝐿 is the annual societal loss due to failure of transmission lines; (𝐸𝐸𝐿𝐿|𝐹𝐹 ∙

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) is the economic loss given failure of all lines and event i; Pr(𝐹𝐹|𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) is 

the probability of failure of all transmission lines supplying power to a substation 

given the occurrence of hurricane event i; Pr (𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 𝑅𝑅) is the annual probability of 

occurrence of hurricane event i. 

 

The remaining service life of the system, i.e., the period of time over which the life cycle 

cost analysis is performed is assumed to be 50 years. Information regarding cost, time to 

repair failed elements, economic loss per customer, and average power consumptions are 

given in Table 8.5. It is acknowledged that the relevant data for cost analysis will vary from 

region to region and utility companies should use their own data when performing the 

analysis. The data in Table 8.5 is adopted to demonstrate the proposed framework. Low 

voltage substations are assumed to contain one 25 MVA transformer, medium voltage 
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substations are assumed to contain two 25 MVA transformers, while high voltage 

substation are assumed to contain four 75 MVA transformers. It is also assumed that 1% 

of all customers served are commercial customers, 0.01% are industrial customers while 

the rest are residential customers. 
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Table 8.5 Life cycle cost analysis parameters 

Parameters  Value Source  

Mitigation cost for transmission lines $60,000/structure Brown (2009) 

Cost of transmission structure replacement 

under storm condition 
$120,000/structure Brown (2009) 

Annual maintenance cost (transmission lines) $40/mile Brown (2009) 

Unit price of electricity, p $0.11/kWh Xu and Brown (2008b) 

Economic loss (residential) $2.70/h LaCommare and Eto (2006) 

Economic loss (commercial) $886/h LaCommare and Eto (2006) 

Economic loss (industrial) $3,253/h LaCommare and Eto (2006) 

Average consumption (residential) 1.5kW/h EIA (2013) 

Average consumption (commercial) 10.1kW/h EIA (2013) 

Average consumption (industrial) 39.4kW/h EIA (2013) 

Transmission line repair time 3 days Romero et al. (2015) 

Substation repair time (minor/slight damage) 1 day FEMA (2010) 

Substation repair time (moderate damage) 3 days FEMA (2010) 

Substation repair time (extensive damage) 7 days FEMA (2010) 

Substation repair time (complete damage) 30 days FEMA (2010) 

Cost of low voltage substation $2.8 million Balducci et al. (2006) 

Cost of medium voltage substation $5.6 million Balducci et al. (2006) 

Cost of high voltage substation $33.7 million Balducci et al. (2006) 

Mitigation cost for substations 2% of cost Assumed 

Substation repair cost (damage state: 

slight/minor) 
5% of cost 

Assumed based on definition of 

damage states from FEMA 

(2010) 

Substation repair cost (damage state: moderate) 40% of cost Same as above 

Substation repair cost (damage state: extensive) 70% of cost Same as above 

Substation repair cost (damage state: complete) 100% of cost Same as above 

Annual maintenance cost (low voltage) $30,000 Assumed 

Annual maintenance cost (medium voltage) $60,000 Assumed 

Annual maintenance cost (high voltage) $90,000 Assumed 

Discount rate 4% 
Bastidas-Arteaga and Stewart 

(2015) 
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The results of the life cycle cost analysis are presented in Table 8.6 & Table 8.7. The net 

benefit, as well as the net benefit excluding societal economic losses, are plotted in Figure 

8.10 & Figure 8.11. It can be seen that the mitigation strategies reduce the repair cost, 

revenue loss, and the societal economic losses. Looking at the results for Charleston in 

Table 8.6 and Figure 8.10, it can be seen that only strategies 1 and 2, which entails 

hardening only substations, resulted in positive net benefit when societal economic losses 

are considered. Recall that strategy 1 entails strengthening 7 substations or 17% of the total 

substations while strategy 2 entails strengthening 16 substations or 39% of all substations. 

It can be seen from Table 8.6 and Figure 8.10 that strategy 2 yields more benefit than 

strategy 1. Strategy 7, which entails hardening the entire system, resulted in the highest 

reduction in losses. For example, the societal economic losses reduced from about $93 

million for the unhardened system to about $59 million for strategy 7. However, the high 

cost of implementing the mitigation strategy outweighs the total benefit which renders the 

strategy the most cost ineffective.   
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Table 8.6 Cost analysis results for Charleston, SC ($1000s) 

Cost Category Unhardened 
system Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5 Strategy 6 Strategy 7 

Mitigation - 3,594 6,064 8,940 36,780 12,534 42,844 111,092 
Maintenance 49,830 49,830 49,830 49,830 49,830 49,830 49,830 49,830 
Repair 24,703 23,083 21,495 24,655 24,505 23,035 21,297 19,881 
Revenue loss 1,127 1,062 1,007 1,120 1,112 1,055 993 714 
Societal economic loss 93,282 87,900 83,376 92,718 92,051 87,336 82,145 59,050 
         
LCC 168,942 165,470 161,773 177,263 204,279 173,791 197,109 240,566 
LCC w/o societal loss 75,661 77,569 78,397 84,546 112,228 86,454 114,964 181,516 
Net benefit (NB) - 3,473 7,169 -8,321 -35,336 -4,848 -28,167 -71,624 
NB w/o societal loss - -1,909 -2,737 -8,885 -36,567 -10,794 -39,304 -105,856 

 

Table 8.7 Cost analysis results for New York, NY ($1000s) 

Cost Category Unhardened 
system Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5 Strategy 6 Strategy 7 

Mitigation - 3,594 6,064 8,940 36,780 12,534 42,844 111,092 
Maintenance 49,830 49,830 49,830 49,830 49,830 49,830 49,830 49,830 
Repair 3,322 2,862 2,617 3,297 3,219 2,837 2,514 2,232 
Revenue loss 67 66 64 67 66 65 63 27 
Societal economic loss 5,582 5,496 5,315 5,505 5,444 5,418 5,177 2,236 
         
LCC 58,802 61,848 63,890 67,639 95,340 70,685 100,428 165,418 
LCC w/o societal loss 53,220 56,353 58,576 62,134 89,896 65,267 95,251 163,181 
Net benefit (NB) - -3,046 -5,089 -8,837 -36,538 -11,883 -41,627 -106,616 
NB w/o societal loss - -3,133 -5,356 -8,914 -36,675 -12,047 -42,031 -109,961 
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Figure 8.10 Net benefit of mitigation strategies (Charleston, SC) 

 

 

Figure 8.11 Net benefit of mitigation strategies (New York, NY) 
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On the other hand, strategies 3 and 4, which entails hardening only transmission lines, are 

not cost effective in Charleston. This is because, based on the costs in Table 8.5, it is far 

more expensive to harden transmission lines than substations. With resources for 

mitigation strategies usually limited, it will be far more rewarding, economically, to invest 

in strengthening substations against seismic hazard in this case than strengthening 

transmission lines against hurricane hazard.  

 

It can also be seen from Table 8.6 and Figure 8.10 that if the societal economic losses are 

not included in the analysis, none of the mitigation strategies is cost effective in Charleston, 

with the highest net benefit being -$1.9 million for strategy 1. The decision to include 

societal economic losses will depend on the entity carrying out the cost analysis. Privately 

owned utility companies might not consider societal economic losses in their analysis. 

Municipal utilities owned by city governments, on the other hand, will likely consider all 

aspects of the costs.     

 

Comparing Charleston and New York, it can be seen that while some of the mitigation 

strategies are cost effective in Charleston, none is cost effective in New York. This is 

because both the seismic and hurricane hazard risks are lower in New York than 

Charleston. This is evident from the total life cycle cost (LCC) of the system in the two 

locations. For example, the LCC in Charleston for the unhardened system is about $169 

million, while the corresponding LCC in New York is about a third of that (about $59 

million). This implies that the system will be subjected to considerably higher risk from 

earthquakes and hurricanes in Charleston. 

 

The mitigation strategies are largely ineffective, economically, due to the high cost of the 

mitigation strategies. As stated earlier, all the costs adopted in Table 8.5 are for 

demonstrating the proposed framework and might not be reflective of the actual costs in a 

particular location. 
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If the discount rate of 4% in Table 8.5 is reduced by half to 2%, i.e., the present value of 

future cost is increased, then mitigation strategies 1 and 2 are cost effective in Charleston 

with higher net benefit than using a discount rate of 4% as seen in Figure 8.12. For example, 

the net benefit of strategy 1 increased from about $3.5 million to about $6.5 million for 

discount rates of 4% and 2%, respectively. Even with a discount rate of 2%, none of the 

mitigation strategies is cost effective in New York as seen in Figure 8.13.   

  

It is interesting to note that if the cost of mitigation for substations, which is assumed as 

2% of substation cost in Table 8.5, is changed to 5% of substation cost, none of the 

mitigation strategies is cost effective in both locations with a discount rate of 4%. 

 

 

Figure 8.12 Net benefit of mitigation strategies with 2% discount rate (Charleston, SC) 

 

-120,000

-100,000

-80,000

-60,000

-40,000

-20,000

0

20,000
Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5 Strategy 6 Strategy 7

N
et

 b
en

ef
it 

($
1,

00
0s

)

Net Benefit

NB w/o Societal loss



 

192 

 

Figure 8.13 Net benefit of mitigation strategies with 2% discount rate (New York, NY) 
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was shown based on the case study considered that it will be more cost effective to invest 

in seismic risk mitigation of substations in Charleston than it is to invest in hurricane risk 

mitigation of transmission lines.    

 

It can be concluded that the cost effectiveness of multi-hazard risk mitigation strategies 

depends on the level of risk on the system in any given location. For regions with relatively 

moderate seismic and hurricane risks such as Charleston, certain mitigation strategies can 

be cost effective. For regions such as New York where both the seismic and hurricane 

hazard risks are relatively low, mitigation strategies might not be attractive, economically. 

However, mitigation strategies can lead to improvement in system reliability which can 

positively impact customer satisfaction and reduce power outage to critical facilities during 

disasters. 

 

It can also be concluded based on the case study that whole scale hardening of a system is 

not cost effective. Rather, targeted hardening that entails identifying critical components 

of the system should be considered by utility companies. Critical components can be 

identified based on their impact on overall system reliability using the proposed component 

importance measure, or criticality can be evaluated based on facilities connected or served 

by a component. 
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9. Summary, Conclusions, Applications, and Future Work 
 

9.1 Summary 
 

This research developed a framework for system-level risk assessment and management 

for electric power systems subjected to hurricanes and earthquakes. Parts of the framework 

include a topological-based system reliability model, probabilistic and scenario-based 

hazard analysis, climate change modeling, component vulnerability, component 

importance measure, multi-hazard risk assessment method, and cost analysis. Notional 

electric power systems assumed to be located in various regions of the U.S. were used to 

demonstrate the proposed framework. Several risk mitigation strategies were also proposed 

and their efficiency and cost-effectiveness studied. The research and its contributions are 

summarized below. 

 

1. A topological-based system reliability method was developed for both radial 

topology typical for distribution systems as well as networked topology typical for 

transmission systems. This was done by formulating the accessibility of system 

components using reliability block diagrams, fault tree diagrams, and enumeration 

of minimal cut sets in a networked system. 

 

2. A framework for targeted hardening of distribution systems subjected to hurricanes 

was presented. The framework can be used to identify critical parts of the systems 

for risk mitigation strategies. The framework was demonstrated using a distribution 

system assumed to be located in Florida. 

 

3. The potential impact of climate change on hurricane hazard was modeled through 

a hurricane simulation model that allows the variation in both intensity and 

frequency to be considered. 
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4. A multi-hazard risk assessment approach for electric power systems subjected to 

hurricanes and earthquakes was presented. A comparative approach using risk 

curves as well as a cumulative approach based on annualized risk were proposed.  

 

5. A component importance measure appropriate for networked systems was 

proposed. The proposed measure considers multi-element failure to take into 

account redundancy in transmission networks as well as widespread damage 

observed during natural hazards.  

 

6. A probabilistic-based cost analysis approach for multi-hazard risk assessment was 

presented to take into account the uncertainties in both hazard occurrence and 

damage estimation. 

 

7. Several risk mitigation strategies were proposed and their efficiency in improving 

system reliability as well as their cost-effectiveness was evaluated.        

 

 

9.2 Conclusions  
 

Major conclusions and findings from the proposed framework and the case studies 

considered are summarized below. 

 

1. The limitation of the topological-based system reliability method depends on the 

type of risk mitigation strategy being considered. For example, in the case of risk 

mitigation using stronger support structures for distribution and transmission 

systems, or anchoring substations, the system exist as it is and its engineering 

properties such as voltage are not changed. Consequently, the topological-based 

approach can appropriately model the damage in the system which is basically 

related to structural component strength. In other mitigation strategies, however, 

such as constructing new distribution lines to connect feeders from different 
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substations, the applicability of the topological-based model is limited. Power flow 

analysis is required to determine whether a given substation can supply power to 

additional customers not in its primary area as well as check other factors such as 

voltage drop which can be prohibiting for the mitigation strategy. 

 

2. Implementing risk mitigation strategies to entire systems is usually not cost-

effective. Identifying and strengthening critical components of a system can be 

cost-effective and should be considered by utility companies.    

 

3. Designing and building stronger systems at the construction stage can be more cost-

effective than strengthening existing systems. As such, natural hazard risk 

mitigation strategies should be considered at the design stage of new systems. 

 

4. Societal economic losses can constitute a huge percentage of total losses after a 

hazard event. Results from the risk assessment of all levels of power systems and 

all types of mitigation strategies considered point to the considerable impact of 

power outages to the economy. Policy makers and especially municipal utility 

companies owned by governments should consider such losses in any risk 

mitigation studies. 

 

5. Considerable uncertainty exists in climate modeling and the impact of climate 

variation on hurricane hazard. As such, a scenario-based approach should be 

adopted by utility companies to study what might happen under different climate 

scenarios. 

 

6. Multi-hazard risk assessment and management for electric power systems can be 

carried out using probabilistically weighted deterministic hazard scenarios 

approach. While this approach might not consider the entire range of possible 

hazard levels, it does allow the modeling of spatial variation of hazard intensity for 

distributed infrastructure systems.       



 

197 

 

7. Finally, it can be noted from the formulations and results that considerable 

uncertainties exist in all stages of risk assessment of infrastructure systems 

subjected to natural hazards. From hazard occurrence, to damage quantification, to 

consequence analysis, aleatory and epistemic uncertainties exist. The aim, 

therefore, as summarized astutely by the quote below, is to find a basis for damage 

reduction. 

 

 “Only if we accept that complete prevention is ultimately unattainable, our 

rethinking of disasters leads us towards a policy of long-term loss reduction. 

And for this type of mitigation policy, the precise measure of risks (prediction 

of damages; assessment of uncertainty or complexity) might not be necessary, 

or even important. The crucial point is to provide the basis for damage 

reduction, i.e., to identify which areas are subject to different levels of 

potential damage and which factors determine such damage. This, in turn, can 

be used to identify the actions that must be taken to reduce future damage, 

even if we cannot quantify them exactly.” -  Weichselgartner (2001) 

  

 

9.3 Applications and Recommendations for Future Study 
 

In general, the proposed framework can be used for pre-disaster preparation, mitigation, 

and post-disaster response planning. The specific ways in which the framework can help 

achieve these are summarized below. 

 

1. The proposed framework incorporates uncertainties inherent in risk due to natural 

hazards by adopting a probabilistic-based approach in hazard analysis, component 

vulnerable, and quantification of risk through a probabilistic system reliability 

measure. As such, the framework can be used as a tool for risk assessment to 
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evaluate existing power systems or proposed new systems considering various 

sources of uncertainties.      

 

2. The framework can also be used at the design stage to investigate the cost-

effectiveness of building a more reliable system than otherwise required. 

 

3. The framework can be used to determine critical parts of the system to strengthen, 

compare the cost-effectiveness of various mitigation strategies, and prioritize risk 

from competing hazards. 

 

4. Identification of critical systems components based on system topology can help 

decision making regarding post-disaster repairs which can lead to improvement in 

resilience. 

 

5. The framework can also be used to make post-disaster decisions regarding whether 

to restore the system to its original state or to replace failed components with 

stronger, more reliable ones. 

 

The present research has also helped to identify the following areas for future studies: 

 

1. Electric power systems are critical to the operation of many infrastructure systems. 

Therefore, risk mitigation strategies employed for electric power systems will 

inevitably improve the performance of other infrastructure systems during natural 

hazard events. As such, cost savings from such improvement can be incorporated 

in future studies of the cost-effectiveness of mitigation strategies. 

 

2. While the proposed framework can help with post-disaster response planning, a 

comprehensive method for systematic restoration of electric power systems is 

needed to improve resilience. Such method should consider not only component 

importance but restoration times and repair crew allocations. 
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3. While the current study focused on hurricanes and earthquakes which are 

independent and non-concurrent hazards, there is a need to develop a framework 

for risk assessment of concurrent and/or dependent hazards such as earthquakes and 

tsunamis, and hurricanes and storm surge. 

 

4. In this study, aging of wood distribution poles was considered. However, aging and 

deterioration of other system components need to be considered in a long-term risk 

assessment approach. This requires testing and data collection to be able to quantify 

deterioration in component strength and how it affects system functionality as well 

as costs. 

 

5. Other natural hazards such as ice storms, floods, tornados etc. also pose a great 

threat to electric power systems across the world. Modeling of such hazards and the 

risk they pose needs to be explored.    

 

6. Finally, a methodology for community resilience can be developed through an 

integrated risk assessment that considers the complex interdependent nature of 

modern infrastructure systems. 
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