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Abstract 
Effective displays require symbol sets that are customized to specific tasks and 

performance goals. In order to create such sets, designers must account for the effects of 

top-down and bottom-up attention. The current work presents a pair of experiments that 

examined the effects of salience and cueing in a change detection tasks within the flicker 

paradigm (Rensink, O’Regan and Clark, 1997). Each trial, participants either received no 

cue or a cue indicating which symbol would be the target. This cueing manipulation 

isolated top-down effects to the cued condition. Consistent with previous studies 

(Orchard, 2012; Steelman, Orchard, Fletcher, Cockshell, Williamson & McCarley, 2013), 

Study 1 found a response time benefit for low salience symbols in the cued condition. 

Study 2 served as a replication of Study 1, but included a background manipulation that 

preserved the layout of the symbols while manipulating the symbol’s contrast to the 

background color. Results indicated a benefit for low salience symbols in the cued 

condition only on the black background, consistent with Study 1. However, low salience 

symbols showed no benefit on the gray or the white background in the cued condition, 

failing to support the hypothesis that low salience symbol show a cueing benefit. Chapter 

5 conducted an extended analysis of the data from Study 2 using a variety of multilevel 

models to investigate specific symbol characteristics that may drive response times. For 

both uncued and cued search, eccentricity and crowding effects predicted response times. 

For uncued search, response times decreased as salience increased and standard deviation 

increased. For cued search symbol discriminability and salience predicted response times.  

Implications for the design of symbols and symbol sets are discussed.
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 Chapter 1: Introduction  
The design of effective displays requires a symbol set customized to specific tasks 

and performance goals. For example, to increase the likelihood that a symbol will be 

found quickly a symbol should be both discriminable from other symbols and 

discriminable from the background. Not all tasks, however, require rapid detection of all 

symbols. In some cases, we may want to prioritize the detection of a single symbol (e.g., 

dangerous object). In others, we may want all symbols to be found equally efficiently. In 

order to design symbol sets that facilitate particular tasks and performance goals we must 

consider the two attentional mechanisms that drive our search behaviors.  

The mechanisms that guide our visual attention are grouped into two categories: 

bottom-up and top-down. Bottom-up processes bias our attention toward salient features 

within an image including color, contrast, luminance, motion and brightness (Itti & Koch, 

2001). Since salience is dependent on the surroundings, a symbol that is salient in one 

context may not be salient in another. Top-down processes, in contrast, bias our attention 

toward features of potential importance or high expectancy (Yarbus, 1967; Wolfe, 1994, 

Connor, Egeth, & Yantis, 2004). Feature guidance, one form of top-down control, guides 

attention towards specific properties of an object such as color and shape. The guidance 

by feature, specifically color, was the focus of the main study.  

Although the bottom-up and top-down processes are clearly defined, their exact 

relationship is not fully understood (Van der Stichgel, 2009). Some studies suggest a 

dominant role of top-down mechanisms, mainly in goal-directed tasks or tasks with 
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naturalistic images (Bacon & Egeth, 1997; Foulsham & Underwood, 2011), whereas 

other studies demonstrate that salience may override top-down goals (Theeuwes, 1991). 

Yet other studies suggest that bottom-up and top-down mechanisms interact in specific 

ways (Wolfe, 1994). It is difficult, however, to determine whether top-down or bottom-up 

factors are guiding attention. In many cases, the regions that are the most important for a 

task may also be the most salient ones (McCarley, Steelman, & Horrey, 2014).  

Disentangling the effects of top-down and bottom-up processes requires a 

paradigm that isolates the effects and a reliable measure of salience. Steelman, Orchard, 

Fletcher, Cockshell, Williamson and McCarley (2013) developed such a task using a 

cueing manipulation within the flicker-paradigm. Target-absent and target-present 

images, separated by a blank screen, are cycled through to create a “flicker” that masks 

the onset and the offset of the target. Participants’ task is to find the symbol that is 

appearing and disappearing within that flicker. Participants either received no cue or a 

cue indicating which symbol would be the target. This manipulation isolated top-down 

effects to the cued condition. In the uncued condition, salience alone should guide 

attention, as participants did not know the target’s identity. In this study, salience was 

measured using the Saliency Toolbox (Walther & Koch, 2006). Results showed faster 

response times for high salient symbols in the uncued condition, indicating the guidance 

by salience. However, in the cued condition results showed an unexpected benefit for low 

salient symbols, suggesting that top-down search may inhibit bottom-up control.  
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The current study seeks to replicate this effect and identify the mechanisms that 

may drive it. To disentangle the effects of bottom-up and top-down mechanisms the study 

used the same paradigm as Steelman et al. (2013). Salience was measured using the 

Saliency Toolbox (Walther & Koch, 2006). 

Study 1 served as a pilot study to replicate the effects from Steelman et al. (2013) 

using a custom symbol set that I designed using specific salience characteristics. Based 

on previous studies, I expected high salience symbols to be detected faster in the uncued 

condition, whereas in the cued condition, I expected a response time benefit for low 

salience symbols based on the results from Steelman et al. (2013). Results confirmed 

these expectations, successfully replicating the effect for low salience symbols in the 

cued condition.  

Study 2 used the same paradigm as Study 1, but added a background manipulation 

that preserved the layout of the symbols while manipulating the symbol’s contrast to the 

background color. This background manipulation varied each symbol’s salience. Results 

indicated a benefit for low salience symbols in the cued condition only on the black 

background, which aligns with the findings from Study 1 and Steelman et al. (2013). 

However, low salience symbols showed no benefit on the gray or the white background 

in the cued condition, contradicting with the existence of the low salience symbol benefit.  

Chapter 5 conducted an extended analysis of the data from Study 2 with the goal 

to investigate specific symbol characteristics that may drive the cueing effects observed 

in the studies. The overall goal was to identify and characterize the factors that make a 
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symbol a good cue. These factors can then be used to help develop design guidelines that 

support specific tasks and performance goals.    
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Chapter 2: Literature Review 
A sign is “something which represents or signifies an object to some interpretant” 

(Peirce, 1902). In the late 19th century the philosopher Charles S. Peirce distinguished 

between three kinds of signs: the icon, the index and the symbol. An icon physically 

resembles the object that it stands for. For example, the picture of a hospital may 

represent an actual hospital on an emergency map. In contrast, a symbol is an arbitrary or 

abstract object that has assigned meaning to it, which needs to be learned. For example, 

in the military a yellow clover represents an unknown entity and a blue horseshoe 

represents a friend. This manuscript focuses on symbols rather than icons. 

Existing symbol standards provide guidelines for designing symbols (Dymon, 

2003), but give little advice on how to assemble the overall symbol set. Since one symbol 

within a set affects all the other symbols, having guidelines for symbol sets is very 

important.  

 

Standards for Designing Symbols 
Numerous organizations provide symbol standards and design guidelines. The 

Department of Homeland Security (DHS) provides standards for emergency maps 

(ANSI, 2006; Martin & Black, 2007) that specify design requirements for point symbol 

markers and style guidelines for boundary lines (Kostelnick et al., 2008). The Department 

of Defense (D.O.D), on the other hand, provides symbol standards for military operations 

(MIL-STD, D. O. D., 2008). 
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The ANSI 415-2006 INCITS standard requires pictograms in emergency maps to 

facilitate the immediate response to an event (Cutter, 2003). The symbols need to convey 

important information quickly in high stress or pressure situations such as natural 

disasters, fires, and terrorist attacks. As part of the design process, the ANSI symbols 

were tested on workers of the public sector like fire fighters, first responders, and 

emergency managers in an online survey (fgdc.gov/HSWG/index.html). Participants 

were provided with a symbol and the meaning and had to either accept or reject the 

symbol and its definition. A separate comment section allowed them to make suggestions 

to improve the design. An acceptance rate for a symbol of 75% or higher was required to 

be implemented in the symbol set; otherwise symbols were reviewed and redesigned. 

Although the ANSI standard was tested before implementation, this particular test may 

be insufficient for guaranteeing that symbols will be interpreted correctly. After all, 

participants only had to accept the symbol –definition pairs; they did not need to guess 

the symbol meaning based on the symbol’s appearance alone. In fact, a later study asked 

50 firefighters whether they could identify the meaning of the 28 fire-related symbols and 

how they would respond to the symbols. Results showed that only 6 (out of 28) of the 

fire-related symbols were fully comprehended and achieved the required 75% quality rate 

(Akella, 2009).  

In addition to failing to achieve the required quality rate for most symbols, the 

symbol set was not tested as a whole. The previous studies did not examine whether 

symbols within the set could be easily discriminated from one another. Thus, even though 

the tests determined whether or not a symbol achieved the specified quality benchmark, 
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they did not test if the symbols would support the users’ performance goals and specific 

task requirements.  

Not all symbol sets use pictograms, however, some use abstract symbols with 

meaning assigned to them. The military, for example, uses abstract symbols to represent 

enemies, friends and unknown entities in their standard the MIL-STD-2525B and the 

newer version MIL-STD-2525C (MIL-STD2525C, D. O. D., 2008). An extract of both 

sets is depicted in Figure 1. The design of the symbols in this case is important to 

promote the military’s performance goals. A specific performance goal may be the rapid 

detection of a hostile or unknown symbol since they can potentially represent danger. In 

this case, rapid detection of a hostile entity (red house) may be more important than an 

assumed friend (blue horseshoe). 

 
Figure 1. Extract of symbols from the MIL-STD-2525B and MIL-STD-2525C (see 

Appendix A, http://www.dtic.mil/dtic/). 
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Some researchers have questioned if these symbols support ideal search behavior 

and particular performance goals. Fletcher, Arnold and Cockshell (2011) investigated the 

accurate and rapid detection of these symbols in a visual search task to see how well they 

perform, especially in cluttered environments. Participants, employees of the Defense 

Science and Technology Organization (DSTO) in Australia, received a cue indicating 

which symbol to look for and had to decide if that symbol was present or absent in each 

trial. Results indicated significantly longer search times for the friend, assumed friend, 

suspect and hostile symbols compared to the neutral and unknown symbol for the MIL-

STD-2525B. It would seem plausible that operators would want to prioritize suspects and 

hostile entities over neutral ones. So why might it take longer to find hostile symbols than 

unknown symbols?  One reason may be the symbols are not discriminable enough, which 

in return did not allow the operator to reduce the search set. For example, the suspect and 

hostile symbols share the same color and are only distinguished by using a dotted outline. 

This is also the case for the assumed friend and friend differences; they are both blue with 

only the dotted outline being different. This small difference may not be enough to allow 

the operator to restrict his or her search to a specific class of symbols, for example only 

hostile symbols. Fletcher et al. (2011) also investigated the newer version MIL-STD-

2525C. This modified version made small changes to the assumed friend and suspect 

symbols by adding white into the dashed frame line of the symbols. Results showed that 

these small changes speeded search times for the suspect and hostile symbols relative to 

the older MIL-STD-2525B. However, the assumed friend and friend symbols produced 

poorer search performance than the MIL-STD-2525B, resulting in a higher error rate and 
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higher search times. The results here highlight how important it is to consider not only 

the design of individual symbols, but the design of the entire set. Further, it is unclear 

why specific meanings were mapped to specific colors and shapes. To support a specific 

performance goal, it is therefore important to match entities to goals. For example, the 

most important entity should be deliberately assigned to the symbol that supports the 

most rapid detection.  

 

Change Detection 
Fletcher et al. (2011) used a visual search task to highlight differences in search 

efficiency. Not all tasks require the operator to search for a pre-specified target. Military 

operators, for example, engage in supervisory monitoring tasks, in which they monitor 

and track objects on displays. They are not searching for a specific target, but are 

expected to notice changes or the appearance of new entities on the screen. Change 

detection can be incredibly difficult particularly when the change occurs when attention 

is diverted or the change is occluded by another object or within a blink or saccade. For 

example, the military operator who completes supervisory monitoring tasks may have to 

focus his or her attention on one or more displays. If he or she looks away for a brief 

moment or blinks, he or she might miss the onset of an object. This difficulty detecting 

changes is termed change blindness and is formally defined as the failure to detect 

changes in objects and scenes due to the momentarily diversion of attention due to 

observer’s blinks or saccades when switching between monitors (Simons & Levin, 1997).  

As it would be inefficient to time changes with participants’ blinks, multiple paradigms 
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have been developed to mask the change and study the factors that may influence change 

blindness in the lab, for example, the superimposition of a “mud-splash” on the image 

that is viewed (O’Regan, Rensink, & Clark, 1999) or a flicker that uses a blank interval 

between an original image and modified version (Rensink, O’Regan, & Clark, 1997). 

This flicker paradigm was used to investigate the ability of operators from the Space and 

Naval Warfare System to detect task-relevant changes when monitoring multiple displays 

(DiVita, Obermayer, Nugent, & Nashville, 2004). Results showed that change blindness 

occurs even when monitoring displays with only 8 items. Notably, change blindness can 

not only occur when monitoring a few objects, it also occurs when participants are highly 

familiar with a scene. Henderson and Hollingworth (1999) illustrated change blindness 

by instructing participants to look for changes in naturalistic color images. These changes 

occurred during a saccade or a blink, but participants still failed to notice changes even 

though they were told to memorize the scene. 

The failure to notice changes shows just how important it is to ensure that 

operators can quickly and easily detect objects. However, to create symbol sets that 

support these specific performance goals, one needs an understanding of the attentional 

mechanisms that guide our attention.  

Attentional Mechanisms 
To design symbol sets that match performance goals we need to understand the 

two attentional processes that guide our attention. Bottom-up processes bias our attention 

toward salient features within an image (Itti & Koch, 2000), including color, contrast, 
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luminance, motion and brightness (Itti & Koch, 2001). Top-down processes, in contrast, 

bias our attention toward features of potential importance or high expectancy (Yarbus, 

1967; Wolfe, 1994, Connor, Egeth, & Yantis, 2004). 

Bottom-Up Processes 
Bottom-up processes can shift our attention involuntarily towards visually salient 

features based upon raw sensory input (Connor, Egeth, & Yantis, 2004). The term 

visually salient refers to distinctiveness or contrast in features like color, contrast, 

luminance, motion and brightness (Itti & Koch, 2001). Some features may guide our 

attention more easily than others. For example, when we search for a red symbol, it may 

easily stand out against a white background. However, since salience is dependent on the 

surrounding environment, an object that is salient in one context might not be salient in 

another (Wolfe & Horrowitz, 2004). Environment in this case may mean an object’s 

background. For example, finding that red symbol on a magenta background will be more 

difficult than on the white background. Environment, however, may also refer to an 

object’s surroundings including other objects within the same image. Targets that share 

more than a single property with the distractors such as shape, color, orientation or size 

show an increased search time (Treisman & Gelade, 1980). For example, if our red 

symbol is placed among magenta distractors, it will be more difficult to find than if it 

were placed among green distractors.  The amount of similar distractors also plays an 

important role. The more distractors are surrounding the target, the longer it may take to 

find the target (Tresiman & Souther, 1985).  
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However, the color and the number of distractors are not the only important 

features that capture our attention and influence search times. Yantis and Jonides (1984) 

proposed luminance to be an important factor when detecting new objects, but later 

studies showed no benefit for luminance to attract attention (Yantis & Gibson, 1994; 

Gellatly & Cole, 2000). The onset of a new object itself, however, captured people’s 

attention, independently from a luminance increment (Hillstrom & Yantis, 1994). A more 

recent study by Franconeri, Hollingworth and Simons (2005) investigated whether the 

onset of new objects captures attention or rather the transients (e.g., motion and looming) 

that these new objects create. In a set of experiments a new object was added to a display 

while a ring-shaped object passed in front (occlusion) or behind (control condition) the 

array. Results showed a search priority for new objects only in the control condition, 

indicating evidence for the transient hypotheses. These transients include changes in 

brightness (Enns, Austen, Di Lollo, Rauschenberger, & Yantis, 2001) and rapid motion 

(Abrams & Christ, 2003). 

Although these bottom-up factors may strongly influence attention capture and 

search time in some tasks, other tasks may be strongly influenced by the knowledge and 

experience of the viewer.  

Top-Down Processes 
Top-down mechanisms bias our attention toward things we learned, know or 

expect using long-term cognitive strategies (Connor, Egeth, & Yantis, 2004).  
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Feature guidance, one form of top-down control, can help us guide our attention 

towards specific features of an object such as color, shape, orientation or size (Wolfe & 

Horrowitz, 2004). Out of these features color seems to facilitate guidance the most 

(Hamker, 2004; Wolfe & Horrowitz, 2004). If we are searching for a specific symbol, for 

example, the hostile symbol, knowing that it is red may help us find it faster. Orchard 

(2012) compared detection performance involving 4 symbol sets, including 3 that 

distinguished targets using color and shape and a grayscale set using only different 

shapes. Orchard found faster detection times for colored symbol sets than grayscale sets, 

especially when participants were cued and knew what symbol to look for. Symbols that 

varied in color were better cues that reduced the search set. This reduced functional set 

leads to a faster detection of the target (Wolfe, Alvarez, Rosenholtz, Kuzmova, & 

Sherman, 2011).  

 In addition to feature guidance, spatial expectancy may bias our attention towards 

locations with a high probability of containing the target (Geng & Behrmann, 2005). In 

our example, we might expect a red hostile symbol to show up on a specific route or at 

specific times. Another form of expectancy is contextual cueing (Chung and Jiang, 1998), 

which is based on the implicit learning of associations between context and a target’s 

location. Thus, our attention is guided towards task-relevant aspects of a scene by our 

implicit memory. Brockmole and Henderson (2006) showed this effect in realistic 

images. Participants’ search time for a randomly placed target within a scene-image 

decreased with repetition as their ability to form scene-target associations increased. 
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These findings suggest that the semantic meaning and memory of a scene facilitate 

cueing. 

 Although, thus far bottom-up and top-down have been discussed as separate 

mechanisms, to be able to effectively create symbols and symbol sets that support 

specific performance goals, it is crucial to not only understand the top-down and bottom-

up mechanisms that may drive performance, but also how they may interact. 

 

Bottom-Up and Top-Down Interaction 
Unfortunately, the exact relationship between top-down and bottom-up is not 

clearly understood (Van der Stichgel, 2009).  Some studies suggest a dominant role of 

top-down mechanisms (Bacon, Egeth, 1997); others claim bottom-up control is dominant 

(Theeuwes, 1991) and yet others suggest they interact in specific ways (Connor et al., 

2004; Wolfe, 1994).  

Stirk and Underwood (2007) suggest that top-down factors may override the 

guidance by salience. In their study, they used photographs showing a variety of indoor 

scenes such as offices and kitchens as stimuli. A different object of the same size 

replaced one object within the scene. This object was either scene consistent or 

inconsistent and of high or low salience. Participants saw two of these photographs 

separated by a blank screen and had to decide if the images were the same or different. 

Results showed no difference in detection accuracy and speed for objects of high or low 

salience. However, inconsistent objects were detected faster than consistent with the 
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scene objects for both high and low salient objects. This study provides evidence for 

dominant top-down factors that may override the guidance by salience. 

On the other hand salient distractors can interfere with goals leading to longer 

search times, indicating that top-down mechanisms do not always override bottom-up 

mechanisms (Theeuwes, Kramer, Hahn, & Irwin, 1998). An experiment by Remington, 

Johnston and Yantis (1992) investigated if task specific goals would override salience. 

Participants made a two-choice response to a target located in one out of four boxes. 

Before the target screen, an abrupt-onset visual stimulus was flashed indicating in some 

trials where the target would appear (same box, different, center, or in all four boxes). In 

other trials, the onset would appear at nontarget locations. However, the participant was 

informed of the target-flash relationship before each trial leading to a goal-oriented 

search. Thus, in some cases participants had to ignore the flash to make the fastest 

response. Response times, however, indicated that in any case attention was drawn 

involuntary to the abrupt-onset stimulus. This study provides evidence for strong bottom-

up mechanisms regardless of top-down goals. 

Although some studies claim that top-down factors are dominant and others claim 

bottom-up factors are, in many cases it may be difficult to determine whether bottom-up 

and top-down factors are driving attention. In naturalistic images, it can be especially 

unclear why people look at certain regions. The regions can be salient or meaningful or 

the most salient regions might be also the most meaningful (Boyer, Smith, Yu, & 

Bertenthal, 2011; Foulsham & Underwood, 2011). In traffic, for example, are we looking 

at a stop sign because it is salient or because it is important or both? McCarley, Steelman 



DESIGNING BETTER SYMBOLS 16 
 

   

and Horrey (2014) investigated this question and showed that the most important 

information needed to make a decision is often located within salient regions. 

Together, these studies demonstrate the difficulty to understand the relationship 

between top-down and bottom-up mechanisms. Yet, understanding the interplay between 

these mechanisms is vital for creating useful symbol set design guidelines. Accordingly, 

one goal of the current project is to carefully control the effects of top-down and bottom-

up mechanisms. This requires a paradigm that can isolate the bottom-up and top-down 

effects and a reliable measure of salience. The following sections introduce several 

models that can be used to measure salience in an image and a paradigm that successfully 

isolated top-down and bottom-up factors.  

 

Salience Models 
Koch and Ullman (1985) introduced one measure of salience called saliency 

maps. This two-dimensional map represents the salience of objects on the basis of filters 

that are tuned to specific features like color, orientation, and contrast. The model then 

produces an individual saliency map for each feature. These maps then are combined 

together into an overall saliency map. A winner-take-all principle selects the most salient 

region in the image.  

Since Koch and Ullman first introduced the concept of a saliency map, numerous 

salience models have been developed and implemented. An up-to-date collection of 

existing salience models can be found online under saliency.mit.edu. This collection 

contains 56 different salience models and is still growing. Here, I choose to review four 
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different models based on their easy implementation into Matlab and their available 

documentation.  

Walther (Walther & Koch, 2006) originally created the Saliency Toolbox in the Koch 

Lab at the Californian Institute of Technology, based upon the previous work of Koch 

and Ullman. The model is implemented in Matlab and has a graphical user interface 

making it easy to use for practitioners. The Saliency Toolbox computes and displays a 

saliency map for any input image and provides eye movements and fixation predictions. 

The model has been widely used and has been cited over 50 times (saliencytoolbox.net).  

The Graph-Based Visual Saliency (GBVS) algorithm (Harel, Koch, & Perona, 

2006) was also created in the Koch lab with the goal to create a better and easier version 

of the Saliency Toolbox (Walther & Koch, 2006). The GBVS model gives higher 

salience values to objects in the middle of the image, which accounts for eccentricity 

effects that can typically be found in human data. This model produces its saliency map 

in two steps. First, activation maps are formed based on specific features such as color, 

intensity and orientation. Just like in the Saliency Toolbox (Walther & Koch, 2006), these 

features can be modified and weighted accordingly. The model has been validated in an 

eye movement study, reliably predicting the salient locations (Harel, Koch, & Perona, 

2006). Participant’s task was to look for a change in real-world images. The original 

image and a modified version of it were displayed alternatingly with a mask to hide the 

change. Results showed that the GBVS model predicted human fixations accurately 98% 

of the time, compared to a prediction of 84% for the Itti & Koch algorithm.  
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The Simpsal map (Harel, 2012) is a radically simplified version of the original Itti 

& Koch algorithm. It excludes the orientation channel and the ability to change the 

weighing of the maps.  It provides researchers with a simple code in Matlab to quickly 

create a saliency map. This simplified version is faster and more accurate in fixation 

predictions than the original Itti & Koch algorithm; it only varies slightly in output. 

However, the GBVS algorithm is more accurate than the simpsal model (Harel, 2012). 

Another recent model is the Image Signature model (Sigsal) (Hou, Harel, & 

Koch, 2012). It uses a binary, holistic image descriptor called image signature to tackle 

the figure-ground separation problem, which describes the problem of finding objects in a 

scene and distinguishing them from their background. This descriptor can be used to 

approximate a sparse foreground, which can be useful to detect salient regions. The 

saliency algorithm first resizes the input image to a 64 x 48 pixel representation and then 

creates a saliency map for each of the three color channels (RGB) based on the image 

signature. The sum across these three channel saliency maps creates the final saliency 

map.  As shown in Hou et al. (2012) the highest salient location calculated by the model 

was consistent with first fixations.  

All these models provide us with reliable measures of salience. However, we still 

need a paradigm that can isolate top-down and bottom-up effects. The next section will 

present a paradigm that has successfully isolated top-down factors to one condition.  
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Disentangling Bottom-Up and Top-Down effects 
Steelman, Orchard, Fletcher, Cockshell, Williamson and McCarley (2013) 

developed a task to disentangle and isolate the two processes using a cueing manipulation 

within the flicker-paradigm. In the flicker paradigm, target-absent and target-present 

images, separated by a blank screen, are cycled through, creating the appearance of a 

flicker with the target appearing and disappearing. Participants searched for a target that 

was flickering on and off. Although abstract symbols were drawn from the Naval Combat 

Data System and the Common Warfighting Symbology standard MIL-STD2525B that 

are used in the Australian and US Navy, participants were untrained in the use of these 

symbols. Participants viewed displays comprised of symbols drawn from one of four 

different sets containing seven different symbols. Set 1 (7C/4S) consisted of 7 different 

colors with 4 different shapes, Set 2 (4C/7S) had 4 colors and 7 shapes, Set 3 (7C/7S) had 

7 colors and 7 shapes and Set 4 was in gray scale.  In the cued condition, participants 

received a cue indicating which symbol identity would be the target. This manipulation 

isolated top-down effects to the cued condition. In the uncued condition, salience alone 

should guide attention, as participants did not know the target’s identity. Target saliency 

was measured using the Saliency Toolbox (Walther & Koch, 2006). Results showed a 

significant effect of cueing with faster response times in the cued condition compared to 

the uncued condition. Unexpectedly, they found a response time benefit for low salience 

symbols in the cued condition, suggesting that top-down search may inhibit bottom-up 

control with a stronger inhibition of high salient symbols. Individual symbols differed in 

a variety of salience characteristics such as the mean salience values and distributions, 
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which may influence a symbol’s effectiveness as a cue. However, this experiment did not 

have enough power to investigate this hypothesis and to analyze the data at the level of 

the individual symbol. These limitations motivated the current project. 

Current Project 
The current project seeks to use the knowledge of top-down and bottom-up 

control to design symbol sets that facilitate particular tasks and performance goals. This 

knowledge can then be used to help designers develop guidelines for display design.  

Chapter 3 introduces Study 1, a pilot study, designed to replicate the effects from 

Steelman et al. (2013). Study 1 used the same flicker paradigm introduced by Steelman et 

al. (2013) with the exception of a new symbol set. The new symbol set was designed with 

the goal to create symbols that differ on a variety of salience characteristics such as the 

mean salience value and shape of the salience distribution. A cueing manipulation 

isolated top-down factors to one condition. Response times for every trial were recorded. 

As found in Steelman et al. (2013), I expected a main effect of cueing, with cueing 

producing a faster response time compared to uncued trials. I further expected a 

significant interaction between cueing and color. In the cued condition, low salient 

symbols should show a response time benefit with response times increasing with target 

salience, consistent with Steelman et al. (2013). In the uncued condition, faster response 

times for high salient symbols should be found, indicating guidance by salience. Results 

confirmed these hypotheses, showing lower response times for cued compared to uncued 

trials and a response time benefit for low salient symbols in the cued condition. In the 
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uncued condition, the general response time pattern showed a benefit for high salience 

symbols but did not reach significance. Since results generally corresponded with 

previous work and expectations, Study 2 investigated whether the benefit for low salient 

symbols in the cued condition is an artifact of the black background color.  

Chapter 4 introduces Study 2, which investigated whether low salient symbols are 

generally better cues than high salient symbols. Study 2 tested the same hypotheses as 

Study 1 with the addition of using a background manipulation that preserves the layout of 

the symbols while manipulating the symbol’s contrast to the background color. This 

background manipulation should vary a symbol’s salience but maintain the effects 

observed in Study 1. On the black background, findings from Steelman et al. (2013) and 

Study 1 could be replicated, providing more evidence for a benefit for low salient 

symbols in the cued condition. However, this benefit was not found on the white or the 

gray background. Instead, results showed a response time benefit for one particular 

symbol, the blue symbol, in the cued condition across all backgrounds, indicating that 

other characteristics than salience may determine a symbol’s effectiveness as a cue.    

Chapter 5 conducted an extended analysis of data from Study 2 to investigate 

specific symbol characteristics including a variety of salience measures, clutter and 

distance from the center that may drive the cueing effects observed in the studies. The 

overall goal was to identify and characterize the factors that make a symbol a good cue. 

These factors can then be used to help develop design guidelines that support specific 

tasks and performance goal. 
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Chapter 3: Study 1 
Participants completed a visual search task within the flicker paradigm. Participants 

viewed images containing 40 symbols drawn from a set of four different symbols. 

Symbols were unfilled squares in yellow, red, blue or green. These symbols were 

designed to carefully limit top-down processes. The task was to find the target symbol 

that was disappearing and reappearing with each flicker of the display. Each trial, 

participants received either no cue or a cue indicating the identity of the target. The use of 

stimuli with no meaning coupled with a cueing manipulation allowed us to isolate top-

down factors to the cued condition.   

Symbols were designed in Matlab and symbol salience was measured using the 

Saliency Toolbox (Walther & Koch, 2006). Specifically, I chose this model over the 

others because it contains a graphical user interface making it is easy to use and therefore 

valuable to practitioners. It has also been successfully used in a variety of studies 

accurately predicting eye movements, dwell times and response times (Rutishauser, 

Walther, Koch, & Perona, 2004; Walther, Rutishauser, Koch, & Perona, 2005; Steelman, 

McCarley, & Wickens, 2013; Steelman et al., 2013).  

Study 1 served as a pilot study and sought to replicate the effects found in 

previous studies (Orchard, 2012; Steelman et al., 2013). My hypotheses are based upon 

their findings.
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H1: Results should show a main effect of cueing, with the cued trials producing a 

faster response times compared to uncued trials. 

H2: There should be a significant interaction between cueing and color. In the 

uncued condition, salience alone should guide attention, leading to faster response times 

for high salient symbols.  

H2a: In the current study, the average salience values range from .1 (blue symbol) 

to .7 (yellow symbol). Therefore, based on symbols’ average salience, I expect the fastest 

response times for the yellow symbols and the slowest response times for the blue 

symbols. 

H2b: In the cued condition, low salience symbols will show a response time 

benefit with faster response times for low salience targets. Therefore, based on the 

average symbol salience, I expect the fastest response times for the blue targets and the 

slowest response times for the yellow targets. 

Hypotheses are summarized in Table 1.  

 

Table 1 

 Hypotheses for Study 1 

 Effect Condition Expected Pattern of Effects 

H1 Main effect  Cuing RT cued < RT uncued 

H2 Significant interaction  Cueing + Color  

H2a  Uncued RTyellow < RTblue 

H2b  Cued RTblue < RTyellow 
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Methods 
Participants. 12 students were recruited through the university research 

participant pool (6 females and 6 males; Mage =20.04, SD =1.44). All had normal or 

corrected-to-normal visual acuity and normal color vision.  

Stimuli and Aparatus. Symbols were 30 x 30 pixel squares that subtended 1° x 

1° degree of visual angle.  The squares were unfilled and their outline had a stroke width 

of 3 pixels. Symbols were yellow (R=1, G=1, B=0), red (R=1, G=0.5, B=0.5), blue (R=0, 

G=0, B=0.5) or green (R=0.5, G=0.7, B=0.3). I used the Saliency Toolbox (Walther & 

Koch, 2006) to select the symbol colors. First, I created multiple variations of a 4-symbol 

set by changing the RGB values of the symbols on a black background. In order to better 

quantify the salience characteristics of each symbol, I measured the salience of every 

symbol in every image and created distributions of these salience values as illustrated in 

the profiles depicted in Figure 2. These distributions are characterized by the mean, 

median, standard deviation, skew and excess kurtosis (see Table 2). To normalize the 

salience values, I calculated the maximum salience ratio by dividing the symbol’s 

maximum salience by the image’s maximum salience. This value represents the highest 

salience value within the 64x64 tile and ensures that the most salient symbol within the 

image will always have a value of 1. In contrast, a value of 0 means the symbol is not 

salient and did not even register in the saliency map. I created salience profiles for 

multiple iterations of multiple symbol sets until I found a set of symbol profiles with a 

wide range of values, as illustrated in the salience profiles in Figure 2. For example, the 

yellow symbols’ distribution is flatter and wider suggesting salience values of yellow 
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symbols are not consistent across displays and location within each display. In some 

cases the yellow symbol may be the most salient symbol in the display, in others it may 

be less salient. The distribution of the blue symbol, however, has a narrower distribution 

across all displays, meaning that blue symbols consistently have low salience values, and 

in many cases have a value of zero. To the extent that the observer can use salience to 

guide search, perhaps a more narrow profile would support better top-down control than a 

symbol that is inconsistently salient with a wider distribution.  

 

Table 2 

Mean, Median, Standard deviation, Kurtosis and Skew of each symbol color based on the 

Saliency Toolbox (Walther & Koch, 2006). 

 Yellow Red Green Blue 

Mean  0.729 0.422 0.253 0.106 

Median  0.732 0.404 0.219 0.059 

StD  0.183 0.172 0.176 0.138 

Kurtosis 

Skew 

-0.369 

-.0369 

0.598 

0.684 

1.833 

1.236 

5.691 

2.355 
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Figure 2. Salience profile as a histogram representing each symbol’s salience distribution 
on a black background.   
 

Displays.  Each symbol was placed into a 64x64 pixel tile with one of five 

alignments for each symbol: upper left (3 pixels horizontally and vertically from the 

upper left corner), upper right (3 pixels horizontally and vertically from the upper right 

corner), center, lower left (3 pixels from the lower left corner), lower right (3 pixels from 

the lower right corner). Tiles were then placed randomly into a 12x12 grid. Each display 

contained 40 symbols arranged on a black background (Figure 3). The number of yellow, 

red, blue or green symbols as well as their placement varied randomly between images. 

Accordingly, each image contained approximately 10 symbols of each color.   



DESIGNING BETTER SYMBOLS 27 
 

   

 

Figure 3. Example image containing 40 symbols.  

 

 Three hundred 40-symbol images served as the target-present displays. For each 

target-present image I created 40 corresponding target-absent image, each having a 

different symbol eliminated from the display. Each participant viewed the same 300 

target-present images. Each participant viewed a different version of the displays. 

Accordingly, the target ID and location differed for each participant. For each of the 40 

sets of stimuli, I calculated the average distance from the target symbol to the center of 

the display. For each of the 4 colored targets the average distance from the center varied 

by no more than the width of a single tile.  

Stimuli were presented on a 23-inch LCD monitor at a resolution of 1920 x 1080 

pixels and a refresh rate of 120 Hz.  The corresponding visual angle of the display 

was 28° x 0.28° at a viewing distance of 57 centimeters. 
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Procedure and Design. As described earlier, participants performed a change 

detection task within the flicker paradigm (Rensink, O’Regan, & Clark, 1997), modeled 

after the task designed by Steelman et al. (2013). The stimuli presentation sequence is 

displayed in Figure 4. Target-absent stimulus and target-present stimulus were alternately 

displayed for 240 ms. They were separated by a black screen of 80 ms duration; this gave 

the illusion of a flickering screen with the target disappearing and reappearing on the 

screen. There was no time limit to identify the target, but participants were instructed to 

respond as quickly and accurately as possible. Each trial, participants examined the 

display and pressed the spacebar when they detected the target. After a response was 

detected, a confirmation screen appeared with white dots in place of the symbols. 

Participants indicated the target’s location by clicking on the dot that marked the location 

of the target in the first display. The use of dots on the confirmation screen discouraged 

any guessing strategies, especially for the cued trials, in which the color of the target was 

known. On cued trials, participants were presented with an image of the target symbol. 

The cue effectively reduced the search set to approximately 25% of the total search 

set. On uncued trials, participants were instructed that the target may be any one of the 4 

symbols. The presentation order of cued and uncued trials was randomized. 
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Figure 4. Stimuli presentation sequence. Target absent and target present images cycled 

through until participants detected the target. A response screen appeared after response 

detection.  

 

The experiment used a 2 x 4 design with cue (uncued vs cued) and symbol color 

(yellow, green, red, blue) as within-subject factors. Dependent variables included 

accuracy and response time (RT) for target detection. 

Analysis 
Data was analyzed using SPSS’s repeated-measures ANOVA and post hoc t-tests. 

P-values were adjusted using the Bonferroni correction. Greenhouse-Geisser corrections 

were used when the sphericity assumptions were violated.  The first ten trials for each 



DESIGNING BETTER SYMBOLS 30 
 

   

participant served as practice trials and were excluded from the analysis. Trials with 

incorrect responses (1.89% of all trials) or response times over 30 seconds (0.09% of all 

trials) were excluded from the analysis. All participants achieved an accuracy level of 

94% or higher; two participants obtained a score of 100%.   

 

Results 
The analysis showed a main effect of cueing, F(1, 11) = 113.38, p < 0.01, MSE = 

228195, 𝜂p
2 = 0.91. The cued condition elicited a faster response time (M=831.25s, 

SD=128.56s) than the uncued condition (M=3869.54s, SD=182.82s). 

There was also a significant main effect of symbol color, F(3,33) = 10.57, p < 

0.01, MSE =136675, 𝜂p
2 = 0.49) and a significant interaction between the cueing 

condition and the symbol colors, F(3,33) = 9.80, p < 0.01, MSE =202797, 𝜂p
2 = 0.47.  

To further examine this interaction, separate repeated-measures ANOVAs were executed. 

In the uncued condition, there was no significant difference between colors (p =0.2). 

Figure 5 shows the average response times for each symbol ordered by the most salient 

symbol on the left to the least salient symbol on the right. The blue symbol shows the 

fastest response time, which is consistent with the predicted pattern of response times. In 

contrast to H2b that predicted faster response times for the yellow symbol, the red 

symbol elicited a faster response than the yellow symbol.  
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Figure 5. Study 1 mean response times for the uncued condition.  Error bars represent 

within-subject standard errors (Cousineau, 2005). 

 

For the cued condition, in contrast, response times varied among the four symbols, F (3, 

33) = 31.38, p < 0.01, MSE =96792, 𝜂p
2 = 0.74. Post hoc tests showed that both the blue 

and red symbol elicited faster response times than both the yellow (both p < 0.01) and 

green symbols (both p < 0.05) (see Figure 6). All other pairwise comparisons were non-

significant  (all p-values>0.09). Cued response times are also listed in Table 3. 
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Figure 6. Study 1 mean response times for the cued condition. Error bars represent 

within-subject standard errors. 

 

Table 3 

Mean response times in milliseconds for each target color for the uncued and cued 

condition.  

 Yellow Red Green Blue 

Uncued 3865.18  
(SD=196.39) 

3645.11 
(SD=217.33) 

3878.46 
(SD=197.14) 

4089.40 
(SD=264.06) 

Cued 3047.37  
(SD=141.31) 

2598.83  
(SD=123.78) 

3413.20  
(SD=195.03) 

2265.60  
(SD=130.32) 

 

To further examine the cueing benefit, the cued response times were subtracted from the 

uncued response times and submitted to a repeated-measures ANOVA. Analysis revealed 
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a main effect of symbol color, F (3, 33) = 9.80, p < 0.01, MSE = 405594, 𝜂p
2 = 0.47. Post 

hoc tests showed a greater response time benefit for the blue symbol compared to the 

yellow symbol (p < 0.05) and the green symbol (p < 0.01). In both cases, the blue symbol 

showed a larger response time benefit. All response time benefits are reported in Table 4. 

 

Table 4 

Mean response time benefit in milliseconds for each target. 

 Yellow Red Green Blue 

Cueing benefit 817.80 
(SD=177.67) 

1046.29 
(SD=178.22) 

 465.28  
(SD=177.72) 

1823.80  
(SD=210.99) 

 

Discussion 
The current study investigated the effects of top-down and bottom-up control in a 

change detection task using four different-colored squares as symbols. A cueing 

manipulation isolated top-down effects to the cued condition. The uncued condition 

looked at the guidance by salience alone.  

As predicted in Hypothesis 1, there was a significant main effect of cueing with 

participants producing a faster response time in the cued condition than in the uncued 

condition. This means, when knowing the target identity, participants were able to find 

the target faster among its distractors. This is consistent with previous findings indicating 

the effectiveness of color in cueing (Orchard, 2012) and the successful reduction of the 

search set (Wolfe et al., 2011).   
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The data also supports Hypothesis 2, which predicted a significant interaction 

between cueing and color. However, for the uncued condition, there was no significant 

difference between symbol colors. Hypotheses 2a predicted a benefit for the yellow 

symbol compared to the blue symbol. Although a significant effect of color did not 

obtain, the general pattern of response times is consistent with Hypothesis 2a, with the 

blue symbol eliciting a slower response time compared to the yellow symbol.  

Notably, in the cued condition, the blue symbol – the least salient symbol within 

the set – produced the greatest response time benefit, consistent with Hypotheses 2b that 

predicted the fastest response times for the blue symbol. These results are consistent with 

those of Steelman et al. (2013) and Orchard (2012) who found a response time benefit for 

low salience symbols in the cued condition. Hypotheses 2b also suggested the slowest 

response times for the yellow symbol. The data, however, showed that not only the 

yellow but also the green symbol elicited significantly slower response times than the 

blue symbol.  

Study 1 successfully replicated effects from Steelman et al. (2013) indicating the 

existence of a response time benefit for low salience symbols. However, Steelman et al. 

(2013) and Study 1 both displayed symbols on a black background. To investigate 

whether the findings are an artifact of the symbol/black background combination, Study 2 

will add a background manipulation to the existing paradigm.  

Study 2 will be an expanded replication of Study 1. In addition to the black 

background, the same experiment will be conducted using a white and a gray 

background. The background manipulation maintains the position and color of every 
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symbol on the display. However, since changing the background color effects the 

symbol-background contrast, symbols that are highly salient on one background color 

may not be salient on another. This will also lead to different salience profiles of each 

symbol.  

As in Study 1, results should show a main effect of cueing, with cueing producing 

faster response times compared to uncued trials across all background conditions 

(Hypothesis 1). There should also be a significant three-way interaction between cueing, 

color and backgrounds (Hypothesis 2) and a significant interaction between cueing and 

color (Hypothesis 3). As different symbol colors will be the most and the least salient in 

each of the three background conditions, post-hoc paired t-tests should reveal that 

different colored symbols are fastest and slowest in each background condition. Across 

all backgrounds, high salience targets should therefore produce the fastest response times 

in the uncued condition and the slowest response times in the cued condition.
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Chapter 4: Study 2 

In Study 2, two more background colors (gray and white) were tested in addition 

to the black background from Study 1 (see Figure 7). This background manipulation 

changed each symbol’s salience profile, while preserving the symbols’ color and their 

location and arrangement within the display. As illustrated in Figures 8, 9 and 10 and 

Table 5, the salience profiles and salience characteristics have changed. For example, the 

yellow symbol was the highest salience symbol and the blue was the least salience 

symbol on the black background. On the white background, however, the yellow symbol 

is now the least salience symbol and the blue symbol is the highest.  

 

 

Figure 7. Example display containing 40 symbols on the black, white and gray 

background.
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Table 5 

Mean, Median, Standard deviation, Kurtosis and Skew of each symbol color depended on 

background color based on the Saliency Toolbox (Walther & Koch, 2006). 

BG  Yellow Red Green Blue 

 Mean  0.729 0.422 0.253  0.106 

 Median  0.732 0.404 0.219  0.059 

Black StD  0.183 0.172 0.176  0.138 

 Kurtosis 

Skew 

 

-0.369 

-.0369 

0.598 

0.684 

1.833 

1.236 

 5.691 

 2.355 

 Mean  0.181 0.308 0.185  0.816 

 Median  0.165 0.298 0.170  0.839 

White StD  0.099 0.112 0.113  0.142 

 Kurtosis  4.517 2.816 2.598  0.114 

 Skew  1.781 0.975 1.238 -0.746 

      

 Mean  0.660 0.268 0.081  0.787 

 Median  0.664 0.258 0.026  0.801 

Gray StD  0.149 0.113 0.124  0.149 

 Kurtosis -0.132 1.953 4.204 -0.128 

 Skew -0.133 0.924 2.089 -0.553 
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Figure 8. Salience Profile as histograms of each symbol on the black background. 
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Figure 9. Salience Profile as histograms of each symbol on the white background. 

 

 

Figure 10. Salience Profile as histograms of each symbol on the gray background. 
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Study 2 served as an extended replication of Study 1 with the addition of a 

background manipulation. My hypotheses are based on previous findings (Steelman et 

al., 2013; Study 1) with the exception that findings are dependent on the background 

condition.  

H1: Analysis should show a main effect of cueing, with cueing producing a faster 

response time compared to uncued trials for all background colors  

H2: There should be a significant three-way interaction between cueing, color and 

backgrounds.  

H3: There should also be a significant interaction between cueing and color. 

However this interaction should be mediated by background color. 

H3a: For the black background, in the cued condition, the blue symbol should 

elicit the fastest repose times and the yellow symbol the slowest.  

H3b: For the white background, in the cued condition, the yellow symbol should 

elicit the fastest response times and the blue symbol the slowest. 

H3c: For the gray background, in the cued condition, the green symbol should 

elicit the fastest response times and the blue symbol the slowest. 

H3d: For the black background, in the uncued condition the yellow symbol should 

elicit the fastest response times and the blue symbol the slowest. 

H3e: For the white background, in the uncued condition, the blue should elicit the 

fastest response times and the yellow symbol the slowest.   

H3f: For the gray background, in the uncued condition, the blue symbol should 

elicit the fastest response times and the green symbol the slowest.  
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Hypotheses are summarized in Table 6.  

Table 6 

 Hypotheses Study 2 

 BG Effect Condition Expected Pattern of Effect  

H1  Main Effect Cueing  

H2  Three-Way-

Interaction 

Cueing+Color+

BG 

 

H3  Sig. Interaction 

mediated by BG 

Color+Cueing  

H3a Black  Cued RTblue     <  RTyellow 

H3b White  Cued RTyellow <  RTblue 

H3c Gray  Cued RTgreen   <  RTblue 

H3d Black  Uncued RTyellow <  RTblue 

H3e White  Uncued RTblue     <  RTyellow 

H3f Gray  Uncued RTblue     <  RTgreen 

     

Methods 
The methods were generally consistent with Study 1, with the exception that three 

different background colors were used. This resulted in a 3 (background: black, gray or 

white) x 2 (cue condition: uncued, cued) x 4 (color: yellow, red, green, blue) mixed 

factorial design. Cueing and symbol color were manipulated within subjects. The 

background condition was manipulated between subjects.  

Participants. 94 students participated for course credit through the university 

research participant pool (29 females and 65 males; Mage = 19.87, SD =1.42). All had 

normal or corrected-to-normal visual acuity and normal color vision. There were 33 
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participants in the black background condition, 31 in the gray background and 30 in the 

white background condition. 

Analysis 
Data was analyzed using SPSS’s repeated-measures ANOVA and post hoc t-tests. 

P-values were adjusted using the Bonferroni correction. Greenhouse-Geisser corrections 

were used when the sphericity assumptions were violated. The first ten trials for each 

participant served as practice trials and were excluded from the analysis. 51 trials with 

slow reaction times (>30s) were also excluded, representing 0.18% of all trials. All 

participants reached an accuracy level of 94% or higher, with 30 participants obtaining a 

score of 100%.  

Results 
The analysis showed a significant effect for cueing, F (1, 91) =689.55, p < 0.01, 

MSE =867395, 𝜂p
2 = 0.88, symbol colors, F (3, 89) = 49.54, p < 0.01, MSE =258498, 𝜂p

2 

= 0.37, and background colors, F (2, 91) =9.03, p < 0.01, MSE =5060518, 𝜂p
2 = 0.17. 

There were three significant two-way interactions. First between the cueing condition and 

the symbol colors, F (3, 273) = 37.41, p < 0.01, MSE =241833, 𝜂p
2 = 0.29: second, 

between the cueing condition and background colors, F (2,91)= 18.92, p < 0.01, MSE 

=16410312, 𝜂p
2 = 0.29; and lastly, the interaction between the symbol colors and the 

background color, F (6, 273)= 7.39, p < 0.01, MSE =1909708, 𝜂p
2 = 0.14. The three-way 

interaction between cueing condition, symbol colors, and background colors also reached 
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significance, F (6, 273)= 4.86, p < 0.01, MSE =1174119, 𝜂p
2 = 0.10. To further examine 

these interactions, separate repeated-measures ANOVAs examined the effects of cueing 

and symbol color for each background. 

Black Background. For the black background the analysis showed a main effect 

for cueing, F (1, 32) = 306.87, p < 0.01, MSE =329690, 𝜂p
2 = 0.91, and for symbol colors, 

F (3, 96) = 19.82, p < 0.01, MSE =190386, 𝜂p
2 = 0.38.  

Notably, there was a significant interaction between the cueing condition and the symbol 

colors, F (3,96)= 42.31, p < 0.01, MSE =137667, 𝜂p
2 = 0.57. To further examine this 

interaction, two separate repeated-measures ANOVAs for the uncued and for the cued 

condition were executed.  

For the uncued condition, response times varied among the four symbols F (3, 96) = 

10.07, p < 0.01, MSE =212354, 𝜂p
2 = 0.24. Post hoc tests revealed faster response times 

for the yellow and the red symbol compared to the blue symbol (p < 0.01). All other 

pairwise comparisons were nonsignificant  (all p-values>0.051). Figure 11 shows mean 

response times for every symbol.  



DESIGNING BETTER SYMBOLS 44 
 

   

 

Figure 11. Study 2 mean response times for the uncued condition for the black 

background.  Error bars represent within-subject standard errors.  

 

For the cued condition, there was a main effect of symbol color, F (2.01, 64.21) =64.47, p 

< 0.01, MSE =172993, 𝜂p
2 = 0.67. Post hoc tests showed that both the blue and the red 

symbol elicited a faster response time than the yellow and the green symbol (p < 0.01). 

All other pairwise comparisons were nonsignificant  (all p-values>0.08). The response 

times are displayed in Table 7 and depicted in Figure 12.  
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Figure 12. Study 2 mean response times for the cued condition for the black background.  

Error bars represent within-subject standard errors. 

 

Table 7 

Mean response times in milliseconds for every symbol color for the uncued and cued 

condition for the black background. 

 Yellow Red Green Blue 

Uncued 3770.14 

(SD=126.73) 

3722.171 

(SD=120.212) 

3971.17 

(SD=111.44) 

4282.37 
(SD=144.17) 

Cued 2990.39  
(SD=85.54) 

2311.39  
(SD=63.31) 

3214.09  
(SD=104.45) 

2277.55  
(SD=66.19) 

 

To examine the cueing benefit a repeated measures ANOVA was executed. Results 

showed a main effect of symbol color, F (3, 96) = 42.31, p < 0.01, MSE = 275335, 𝜂p
2 = 

0.57. Post hoc tests showed a greater response time benefit for the blue symbol compared 
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to any other symbol color (p < 0.01).  The red symbol showed a greater benefit compared 

to the yellow and green symbol (p < 0.01).  All cueing benefits are displayed in Table 8.  

Table 8 

Mean response time benefit in milliseconds for each target color. 

 Yellow Red Green Blue 

Cueing benefit 779.75  
(SD= 99.67) 

1410.78 
 (SD=90.65) 

757.08 
(SD=77.59) 

2004.82 
(SD=144.36) 

 

White Background. For the white background the analysis showed main effects 

for cueing, F (1, 29) = 213.89, p < 0.01, MSE =993883, 𝜂p
2 = 0.88, and symbol color, F 

(3, 87) = 19.29, p < 0.01, MSE =327590, 𝜂p
2 = 0.40. 

There was a significant interaction between the cueing condition and the symbol colors, F 

(3, 87)= 10.55, p < 0.01, MSE =271388, 𝜂p
2 = 0.27. To further examine this interaction, 

two separate repeated-measures ANOVAs for the uncued and for the cued condition were 

executed.  

 

For the uncued condition, there was no significant difference in response time among 

colors, F (3, 87) = 2.43, p > 0.05, MSE =474555, 𝜂p
2 = 0.08 (see Figure 13). 
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Figure 13. Study 2 mean response times for the uncued condition for the white 

background.  Error bars represent within-subject standard errors. 

 

For the cued condition, the ANOVA resulted in main effect of symbol color, F (3,87) = 

64.52, p < 0.01, MSE =124424, 𝜂p
2 = 0.69 (see Figure 14). Post hoc tests showed that the 

blue and the red symbol elicited a faster response time than the yellow and the green 

symbol (p<0.01). The yellow symbol elicited a faster response time than the green 

symbol (p<0.01). Other pairwise comparisons were non-significant  (all p-values>0.27).  

All response times are reported in Table 9.  
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Figure 14. Study 2 mean response times for the cued condition for the white background.  

Error bars represent within-subject standard errors. 

 

Table 9 

Mean response times in milliseconds for every symbol color for the uncued and cued 

condition for the white background. 

 Yellow Red Green Blue 

Uncued 5018.15 
(SD= 260.41) 

4952.09 
(SD= 223.40) 

4912.82 
(SD= 223.08 

4578.78 
(SD= 187.01) 

Cued 3184.85  
(SD= 159.96) 

2640.69 
(SD=106.72) 

3616.88  
(SD=154.16) 

2489.96 
(SD= 116.61) 

 

A repeated-measures ANOVA examined cueing benefits. Results showed a significant 

difference between symbol colors, F (3, 87) = 10.55, p < 0.01, MSE = 54277, 𝜂p
2 = 0.27. 

Post hoc tests showed a greater response time benefit for the blue symbol compared to 
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the green symbol (p < 0.01).  The red symbol showed a greater benefit compared to the 

yellow symbol (p < 0.05); and the green symbol (p <0.01).  All response time benefits are 

displayed in Table 10. 

 

Table 10 

Mean response time benefit for each target color. 

 Yellow Red Green Blue 

Cueing benefit 1833.30  
(SD=195.92) 

2311.40  
(SD=148.70) 

1295.94 
(SD=189.05) 

2088.52 
(SD=155.89) 

 

 
Gray Background. For the gray background the analysis showed significant 

main effects for cueing, F (1, 30) = 234.81, p < 0.01, MSE =1318674, 𝜂p
2 = 0.89, and 

symbol colors, F (3, 90) = 26.99, p < 0.01, MSE =264361, 𝜂p
2 = 0.47. 

There was a also significant interaction between cueing and symbol color, F (3, 90)= 

8.85, p < 0.01, MSE =324372, 𝜂p
2 = 0.23. To further examine this interaction, separate 

repeated measures ANOVAs were executed for the uncued and for the cued condition. 

For the uncued condition, there was a main effect of symbol color, F (3,90) = 

7.05, p < 0.01, MSE=443850, 𝜂p
2 = 0.19. Post hoc tests revealed faster response times for 

the yellow symbol compared to both the red and green symbol (p < 0.01). The blue 

symbol showed a faster response time than the green symbol (p <0.05). All other 
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pairwise comparisons were nonsignificant  (all p-values>0.052). Mean response times for 

every symbol are depicted in Figure 15.  

 

 

Figure 15. Study 2 mean response times for the uncued condition for the gray 

background.  Error bars represent within-subject standard errors. 

 

For the cued condition, the ANOVA showed a main effect of symbol color, F (3,90) 

=47.46, p < 0.01, MSE =144883, 𝜂p
2 = 0.61. Post hoc tests showed that the blue symbol 

elicited a faster response time than all the other colors (p < 0.01). The red symbol 

produced a faster response time than the yellow and the green symbol (p < 0.01). All 

other pairwise comparisons were non-significant  (all p-values > 0.23). All response 

times are displayed in Table 11 and depicted in Figure 16.  
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Figure 16. Study 2 mean response times for the cued condition for the gray background.  

Error bars represent within-subject standard errors. 

 

Table 11 

Mean response time in milliseconds for every symbol color for the uncued and cued 

condition. 

 Yellow Red Green Blue 

Uncued 4942.58 
(SD=231.90) 

5446.27 
(SD= 274.06) 

5583.32 
(SD= 262.18) 

5007.49  
(SD= 268.19) 

Cued 3256.66  
(SD=182.95) 

2894.63 
(SD= 160.07) 

3484.40  
(SD=159.51) 

2404.85 
 (SD= 106.42) 

 

To examine the cueing benefits, a repeated measure ANOVA for the gray background 

was executed. Results showed main effect for symbol color, F (3, 90) = 8.85, p < 0.01, 
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MSE = 648744, 𝜂p
2 = 0.23. Post hoc tests showed a greater response time benefit for both 

the blue symbol (p < 0.01) and the red symbol (p < 0.01) compared to the yellow 

symbol. All response time benefits are displayed in Table 12. 

Table 12 

Mean Response time benefit in milliseconds for each target color. 

 Yellow Target Red Target Green Target Blue Target 

Cueing benefit  1685.92 
(SD= 176.86) 

2551.64  
(SD=194.33) 

2098.92 
(SD= 188.08) 

2602.63 
(SD= 208.42) 

 

Discussion 
Study 2 served as an expanded replication of Study 1 to determine if the cueing 

effects were truly driven by salience and were not an artifact of the particular set of 

symbol colors selected in Study 1. Study 2 used a background color manipulation to 

effect symbol salience. As salience is dependent on a target’s contrast relative to its 

surroundings (Wolfe & Horrowitz, 2004), manipulating the background color should 

affect the symbol salience, while maintaining the symbol’s color and arrangement on the 

display. As in Study 1, a cueing manipulation isolated top-down effects in the cued 

condition, whereas the uncued condition served to investigate salience-driven effects 

only.   

As predicted in Hypotheses 1, participants produced a faster response time in the 

cued condition than in the uncued condition for every background color. These findings 

are consistent with Study 1 and previous studies (Orchard, 2012; Steelman et al., 2013) 
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indicating top-down feature guidance based on color. When the viewers knew the target 

color, they were able to find the target more quickly.  

Analysis also found support for Hypotheses 2 that predicted a significant three-

way interaction between cueing, symbol color, and background color. After further 

investigating the interaction between symbol color and cueing individually for each 

background, a different pattern of effects for each background color was revealed. 

Although, Hypothesis 3 predicted different pattern of effects for each background color, 

the specific patterns observed were inconsistent with Hypotheses 3a, 3b, 3c, 3d and 3f. A 

comparison between expected and observed response times across studies and 

backgrounds is displayed in Figure 17.   

 

Figure 17. Summary of observed and expected response times across all backgrounds 

and studies. Numbers indicate the predicted response time pattern (ranked from fastest 

(1) to slowest (4)) based on a symbol’s average salience values.  
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For the uncued conditions, Hypotheses 3d, 3e and 3f predicted that high salience 

symbols should elicit faster response times than low salience symbols. However, since 

salience is dependent on the background, the color of the highest salience symbol should 

vary by background color. For the black background, the salience of each symbol (ranked 

from high to low) was yellow, green, red and blue. The yellow symbol elicited a faster 

response time than the blue symbol, which is consistent with the predicted ordering as 

illustrated in Figure 17. The red symbol, however, elicited faster response times than the 

yellow symbol, which is not perfectly consistent with the predicted ordering. 

Nevertheless, the results generally support Hypothesis 3d and are consistent with the 

general pattern of results from Study 1 and previous studies (Orchard, 2012; Steelman et 

al., 2013).   

For the white background, the predicted ordering based on the salience of each 

symbol (ranked from high to low) was blue, red, green and yellow. However, observed 

effects showed no difference between symbol colors. The general pattern of response 

times, however, follows the predicted pattern of effects with the lowest response times 

for the blue symbol and the highest response times for the yellow symbol, which aligns 

with Hypothesis 3e (see Figure 17). 

For the gray background, the predicted ordering based on salience of each symbol 

(ranked from high to low) was blue, yellow, red and green. As predicted the blue symbol 

elicited faster response times than the green symbol, consistent with Hypothesis 3e. 

However, the yellow elicited even faster response times than the blue symbol and the red 
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symbol produced lower response times than the green symbol, inconsistent with the 

predicted ordering.  

In summary, the results from each background condition support the hypothesis 

that high salience symbols elicit faster response times than low salience symbols in the 

uncued condition in which search was driven exclusively by bottom-up factors. Although 

salience did not perfectly predict the ordering of response times, in 1 out of 4 

studies/conditions the most salient target tended to produce the fastest response times and 

in 2 out of 4 studies/conditions the least salient target produced the slowest response 

times. 

In the cued condition, across all background conditions, Hypotheses 3a, 3b and 3c 

predicted that the low salience symbols would elicit faster response times than high 

salience symbols. For the black background, the salience of each symbol (ranked from 

low to high) was blue, red, green and yellow. The blue symbol elicited faster cued 

response times than the yellow symbol, supporting Hypothesis 3a and consistent with 

findings from Study 1. Inconsistent with the predicted ordering, however, the green 

symbol elicited the slowest response times instead of the yellow symbol (see Figure 17). 

For the white background, the salience of each symbol (ranked from low to high) 

was yellow, red, green and blue. However, I observed a different outcome that did not 

support this ordering and Hypothesis 3b. According to Hypothesis 3b, the yellow symbol 

should have produced a faster response time than the blue symbol. Surprisingly, the blue 

symbol once again elicited faster response times than the yellow symbol. The red symbol 
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instead of the blue symbol elicited the slowest response times. Overall, the predicted 

ordering was completely different than the predicted ordering.   

For the gray background, the salience of each symbol (ranked from low to high) 

was green, red, yellow and blue. Hypothesis 3c predicted the green symbol to show faster 

response times than the blue symbol. However, the blue symbol again produced faster 

response times than the green symbol, reversing the predicted ordering based on salience. 

The red symbol again showed the slowest response times, which is inconsistent with the 

predicted ordering that expected the red symbol to produce the second fastest results. In 

summary, across all backgrounds the blue symbol, the highest salience symbol on the 

white and the gray background and the lowest salience symbol on the black background, 

elicited the fastest cued response times.   

In contrast to previous studies (Steelman et al., 2013) and Study 1, response time 

data from the white and the gray background do not support the hypothesis that low 

salience targets are the best cues for cued trials. This inconsistency suggests that it is not 

the salience value that drives cued response times. What qualities does the blue symbol 

have that makes it such an effective cue across backgrounds? Below, I consider several 

possible explanations for this finding. 

It is possible that cueing benefits are not driven by the average salience values of 

the symbols as tested in Study 1 and 2, but other characteristics of a symbol’s salience 

profile (see Figure 18). To the extent that salience itself can be used as a cue, the width 

(standard deviation) of the salience distribution may provide an indicator of whether or 

not a target is a good cue. For example as illustrated in Figure 18, the blue symbol has a 
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narrower distribution, which may make it a better cue than a symbol with a wider 

distribution because, regardless of the layout of the particular display, the blue symbol 

consistently has a high salience value (white and gray backgrounds) or a low salience 

value (black background). This consistency may allow the viewer to more easily adopt an 

attentional set for that class of symbols and effectively ignore the other symbols.  The 

yellow symbol, in contrast, has a wider distribution as shown in Figure 18, indicating that 

the yellow symbol varies in salience across displays. This variability in salience may 

suggest that an individual symbol’s salience value may be more strongly affected by the 

arrangement of symbols within the display and surrounding clutter than a symbol with a 

more narrow salience distribution. Accordingly, this may make it more difficult for the 

viewer to easily reduce his or her search set. 

 

 

 

 

 

 

 

 

 

 

Figure 18. Salience Profile as histograms of each symbol on the black background. 
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Besides salience, another factor that could potentially influence the size of the 

cueing benefit is a symbol’s discriminability from other symbols. If a symbol is difficult 

to discriminate from another symbol within the same set, then the symbol will be less 

effective as a cue because the viewers cannot reduce their search set to a single color. In 

the current symbol set, perhaps the green and the yellow symbol were too similar to one 

another. If this was the case, the viewers would not be able to reduce their search set, 

which would lead to increased response times for the two symbols. In the black 

background condition, both the yellow and the green show a similar cueing benefit, 

which was over 1000 ms smaller than the cueing benefit of the red and the blue symbol, 

consistent with this explanation. For the white and the gray background conditions, the 

cueing benefit for green and for yellow are still smaller than for the red and the blue 

symbol. However, the cueing benefits for the green and the yellow symbol are also highly 

different, indicating that it is not simply a discriminability issue. 

To investigate this issue further requires a measure of symbol-symbol 

discriminability. Although salience may be, to some degree, driven by symbol-symbol 

discriminability, they are not the same concept. Salience should be influenced by both 

symbol-background contrast and symbol-symbol discriminability. Study 2 manipulated 

symbol-background contrast, but the symbol-symbol discriminability remained the same 

across all background colors. A preliminary study (Steelman & North, 2016) employed 

the perceptual Euclidian distance (PED) as a measure of symbol-symbol discriminability 

(Gijsenij, Gevers, & Lucassen, 2009). Results showed a strong negative correlation 
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between the average PEDAvg among symbol colors and the cued response times. These 

findings suggest that PEDAvg may be a useful measure of target-distractor similarity and 

may serve as a strong predictor of response times in cued search tasks. 

Although the average salience values did not drive response times strongly in the 

cued condition from Study 2, it may be possible that our measure of salience was not 

sensitive enough to detect salience differences between symbols in our symbol set.  In 

both Study 1 and 2 the maximum salience ratio was used instead of the maximum 

salience values to normalize the salience values. The maximum salience ratio was 

calculated by dividing the symbol’s maximum salience by the image’s maximum 

salience. Accordingly, the most salient symbol in the display always had a salience value 

of 1. Although, Steelman et al. (2013) used this calculation of salience in the previous 

work, this may not be the best approach as it may limit the ability to account for response 

times across background colors. Maximum salience values may be more useful in 

investigating differences between trials and background conditions. Therefore, future 

analyses should include the maximum salience values instead of the maximum salience 

ratio.  

Another concern is whether the Saliency Toolbox (Walther & Koch, 2006) 

provided a valid measure of symbol salience. Although the Saliency Toolbox provides a 

usable GUI and has been used in a variety of studies, other salience models may be more 

sensitive to salience differences between symbols in our symbol set. I passed the stimulus 

images through each of the four models summarized in the literature review, and they 
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produced different rank orderings of the symbols’ salience values. Table 13 provides an 

overview of the models and their accuracy in predicting the observed response times in 

the uncued condition. Accuracy, in this case, is defined as the correct ordering of 

response times based on a symbol’s average salience value as measured by the model. 

The Saliency Toolbox only predicted the exact observed response times ordering (blue, 

red, green, yellow; ranked high to low salience) on the white background. For the black 

background, the simpsal model (Model 3) accurately predicted the observed response 

times (red, yellow, green, blue) according to the mean salience values of each symbol. 

These results suggest that none of the models accurately predict the ordering of response 

times based on average salience values for all backgrounds.  

Table 13  

Accuracy of the 4 models in predicting observed response times based on the symbols 

average salience value. Each row lists the order of the symbols from slowest to fastest 

response times. A checkmark (✓) indicates that the model accurately predicted the 

ordering of response times for a given background.  

 Model 1: 

Sal. Toolbox 

Model 2: 

GBVS 

Model 3: 

Simpsal 

Model 4: 

SigSal 

Uncued Black  

(BGYR) 

 X X ü  X 

Uncued White 

(YGRB) 

ü  X  X X 

Uncued Gray  

(RGBY) 

 X X  X X 
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However, these results are based on the maximum salience ratio instead of the 

maximum salience values. Each model produces different salience profiles and salience 

values, indicating that the models may not be sensitive to salience differences between 

symbols, but rather are sensitive to different aspects. Table 14 shows the four models 

salience profile characteristics.  Future work should therefore investigate the other 

salience models in more detail including the use of the maximum salience values. 

Table 14 

Mean salience of each symbol color depended on background color based on the four 

salience models. 

BG Symbol Model 1: 

Sal. Toolbox 

Model 2: 

GBVS 

Model 3: 

Simpsal 

Model 4: 

SigSal 

 Yellow 0.7285 0.5532 0.5857 0.7217 

Black Red 0.4223 0.4803  0.6369 0.6142 

 Green 0.2532 0.3405  0.4406 0.5562 

 Blue 0.1059 0.2921 0.3869 0.4849 

      

 Yellow 0.1806 0.3293 0.4096 0.6913 

White Red 0.3082 0.3116 0.4049 0.6264 

 Green 0.1854 0.3876 0.4121 0.5880 

 Blue 0.8156 0.6222 0.6811 0.7135 

      

 Yellow 0.6598 0.5805 0.4277 0.7398 

Gray Red 0.2682 0.5003 0.4287 0.5860 

 Green 0.0807 0.3203 0.2915 0.5496 

 Blue 0.7874 0.3326 0.6676 0.6345 
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Chapter 5 presents an extended analysis of the data from Study 2 that addresses 

the concerns noted in this chapter. Using multilevel modeling, multiple symbol 

characteristics were included in various models to determine which factors drive response 

times in the uncued condition and which drive response times in the cued condition. The 

identification of these characteristics for each condition is imperative for creating useful 

symbol design guidelines.
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“The material contained in this chapter is in preparation for submission to a journal”.   

 

Chapter 5: Multilevel-Modeling 

The classic analysis, the repeated-measures ANOVA used in Chapter 4, is well 

suited to analyze the impact of categorical factors on a continuous response (Hammond, 

McClelland, & Mumpower, 1980). In Study 1 and 2, for example, the analysis 

investigated the effects of cueing and target color on detection time. However, one 

drawback of the ANOVA is that it can only use categorical predictors. The analysis of 

covariance (ANCOVA) may extend the ANOVA by including a continuous person-level 

covariate, but this is only appropriate if interactions between categorical factors and 

continuous covariates do not exist.  

Multi-level models (MLM) are a worthwhile alternative to ANOVAs to deal with 

hierarchy in data (Bryk &Raudenbush, 1992; Goldstein, 1991), such as in repeated 

measure and longitudinal designs, nested designs, and any complex mixed designs that 

include between-subject and within-subject factors. Additionally, in contrast to 

ANOVAs, MLMs can use any combination of categorical and continuous predictors 

(Hoffman & Rovine, 2007). As described in Chapter 4, Study 2 used a mixed-factor 

design with background as a between-subject factor and cueing and symbol color as 

within-subject categorical factors. As salience is a continuous predictor, I could not 

include it in the ANOVA directly. Instead I tested the effects of symbol color and made 

inferences about the relationship between salience and response times based upon the 

average salience of each color symbol. MLMs allow for the analysis of the effects of 

cueing and salience directly. 
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In addition to its ability to account for interactions between categorical and 

continuous factors, multilevel modeling also provides many other theoretical and 

statistical benefits. Theoretical benefits include the more accurate capture of reality and 

the ability to answer to questions about heterogeneity and group differences, specifically 

because it allows to analyze all the observations (e.g. all trials) that were obtained during 

data collection (Hoffman & Rovine, 2007). Statistical benefits entail greater power than 

aggregation because observations do not need to be averaged and the ability to explain 

more variance (Goldstein, 1991; Hox, 1995, Gould, 2016).  

The current analyses use data from Study 2 to investigate three questions. First, I 

examined which of the four salience models (Saliency Toolbox, GBVS, Simpsal, Sigsal) 

best predicts response times. As noted in Chapter 4, each salience model failed to predict 

the correct ordering of response times across background colors. The Saliency Toolbox 

predicted the correct ordering for the white background and the Simpsal model predicted 

the correct ordering for the black background. This is both a theoretical and practical 

concern. First, the fact that the models provide both quantitatively and qualitatively 

different predictions suggest that, at least for the current displays, the salience models 

may be capturing salience at different spatial scales. Determining which model best 

accounts for response times in these types of tasks and displays is essential for providing 

sound advice to practitioners who may want to use salience models as a tool for 

predicting response times.  

Second, a set of MLM analyses tested the hypotheses from Chapter 4, but using 

salience directly as a predictor. To make assumptions about salience in Chapter 4, I used 
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symbol color as a predictor because the ANOVA required the predictor to be a 

categorical variable. These results, however, may not be completely accurate because 

salience was not directly included in the analyses. As illustrated by the salience profiles 

shown in Figures 8, 9 and 10, even though the symbols had different average salience 

values, the salience distribution of each color target overlapped one another. In other 

words, although the blue targets had the lowest average salience, it did not mean that 

there were not any blue target that were more salient than some of the yellow, green, or 

red targets. The current MLM analyses assessed whether the conclusions from Chapter 4 

hold when salience is included in the model as a continuous factor. 

 Lastly, the current work examined which factors or combination of factors drive 

response times in the uncued and in the cued conditions. To investigate this question, I 

model response times from all three background-color conditions, with separate models 

for the uncued and cued conditions. If certain factors in a model predict response times 

across the three background colors used in the current study, the factors included in the 

model may be generalizable to other symbol sets and displays. If successful, the model 

may inform the development of customized symbol sets or may serve as a technique to 

help researchers or designers reliably estimate response times in cued and uncued visual 

search tasks.   

Methods 
Answering these questions required an expanded Study 2 data set that fully 

characterizes every symbol, in every image, for all three background colors. Using the 

four salience models reviewed in the introduction, I generated four salience maps for 
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each of the 300 stimulus images. From these four sets of salience maps, I created four 

versions of each symbol’s general salience profile and characterized each one by its 

average salience value, median, skew, excess kurtosis, and standard deviation. This 

means that every red symbol, for example, has the same average salience value, same 

median, same standard deviation, and so on. Rather than using the maximum salience 

ratio used in Study 1 and 2, calculated by dividing the symbol’s maximum salience by the 

image’s maximum salience, I used the maximum salience value, which is just the 

symbol’s maximum salience. Although these values are highly correlated, the maximum 

salience values may be more useful in investigating difference between trials and 

background conditions.   

I also created a measure of overlap that reflects the degree to which the salience 

profile of one color overlaps with the salience profiles of the other three colors.  As an 

additional measures of discriminability, I used perceptual Euclidian distance (Gisjenji, 

Gevers,& Lucassen, 2009) to calculate the average PED between each color and the color 

of the other three symbols (PEDAvg) and the PED between each symbol color and the 

background color (PEDBG). Equation 1 calculated the weighted distance between the 

RGB values of two colors, e and u. The following weights were chosen based on tests 

conducted by Gijsenij and colleagues (2009) that account for different effects on the 

perceived color distance of each color channel, wR= 0.2, wR=0.79 and wR=0.01.

 

 (Eq1). 
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Each individual symbol was also characterized by its maximum salience value 

that was normalized with respect to the maximum possible salience value of the salience 

model, distance from the center of the display, and nearest neighbor distances. All 

available variables are summarized in Table 15. The following section, however, only 

focuses on specific variables that I suspected were most likely to predict response times. 

 

Table 15 

 Parameters available for Analysis for Study 2 for the cued and uncued condition. In the 

third column, I indicate the factors that I believe will most strongly drive uncued and 

cued RT.  

 Parameters Predicted Effect on 

 

 

 

General Symbol 

 

 

 

 

 

Individual Symbol 

Mean 

Median 

Standard Deviation 

Skew 

Excess Kurtosis 

Overlap 

PEDAvg 

PEDBG  

 

Max. Salience Ratio 

Maximum Salience 

Distance from the center 

Nearest Neighbor distances (1-6) 

Uncued RT 

Uncued RT 

Cued RT 

 

 

Cued RT 

Cued RT 

Cued RT 

 

Uncued RT 

Uncued RT 

Uncued RT & Cued RT 

Uncued RT & Cued RT 
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Of the parameters listed in Table 15, I expected that some may drive response 

times in both the unuced and cued conditions. The location of the target within the 

display, for example, likely has a large effect on response times. Participants focused on 

the center of the screen before each trial, so it was expected that targets closest to the 

center of the display should elicit faster response times. Eccentricity effects are well 

documented in the literature, with response times and errors increasing as eccentricity 

increases (Carrasco, Evert, Chang & Katz, 1995; Sekuler & Ball, 1986).   

Targets also differ in their clustering or proximity to nearby symbols. In some 

cases, a target may lie within a cluster of other symbols; in other cases, it may be more 

isolated. The nearest neighbor distance provides one measure of clustering. A small 

nearest neighbor distance indicates that the target lies in close proximity to one or more 

symbols. Here I calculated 1st through 6th nearest neighbor distances. The 1st nearest 

neighbor distance represents the distance between the target and the closest symbol; the 

6th nearest neighbor distance represents the distance between the target and the 6th closest 

symbol. The response time for detecting a given target on a specific trial, then, may be 

affected based upon the number and proximity of nearby distractors, due to the effects of 

crowding, the phenomenon that perception is impaired when similar shapes are in close 

proximity of a target (Korte, 1923).  

Certain variables may be more useful for modeling response times in the uncued 

condition than in the cued condition. Which of these variables predict response times in 

the uncued condition? The general pattern of results from Study 1 and Study 2 suggested 
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that salience drives attention in the uncued condition. As uncued search should be 

exclusively driven by bottom-up mechanisms, the PEDBG may also predict uncued 

response times, as it is a measure of symbol-background contrast. The more similar the 

symbol is to its background, the more difficult it may be for the viewer to detect the 

target.  

What drives response times in the cued condition? Results from Study 2 showed 

that target salience does not determine the magnitude of the cueing effect. If salience 

does not drive cued response time, then perhaps the shape of the salience profiles can 

provide an indication of a symbol’s effectiveness as a cue. A symbol that has a narrower 

distribution (smaller standard deviation) may be a more effective because it is 

consistently high in salience or consistently low in salience. In contrast, a symbol with a 

wider distribution of salience values may indicate that the symbols’ salience is strongly 

affected by its position within the display or the presence of surrounding clutter. Another 

factor that may determine the size of the cueing effect is a symbol’s discriminability from 

other symbols. A symbol that is difficult to discriminate from another symbol in the same 

set would not allow the viewer to reduce the search set size as effectively as a symbol 

that was easy to discriminate from other symbols in the set. Symbol discriminability can 

be characterized by a symbol’s average perceptual distance in color space to all other 

symbols (PEDAvg) and/or the measure of salience profile overlap  

Multilevel models. MLMs distinguish between random effects and fixed effects. 

Random effects vary over all individuals. In this analysis, individuals are considered a 
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random effect. Fixed effects, on the other hand, are specified as constant over all 

individuals such as cueing and salience. Below I present numerous multilevel-models that 

each attempt to predict response times using specific fixed factors. Specific fixed factors 

include salience, cueing, standard deviation, overlap, distances from the center, nearest 

neighbor distances, PEDAvg and PEDBG. 

As in the previous analysis, the first ten trials for each participant served as 

practice trials and were excluded from the analysis. 51 trials with slow reaction times 

(>30s) were also excluded, representing 0.18% of all trials. All participants reached an 

accuracy level of 94% or higher, with 30 participants obtaining a score of 100%. This 

resulted in a total of 28,350 observations. Each multilevel model was 2-level random 

intercept model (Aguinis, Gottfredson, & Culpepper, 2013) because Level 2 stimuli 

factors were nested within participants at Level 1. Models used an unstructured 

covariance matrix using the lme function from the nlme package (Pinheiro, Bates, 

DebRoy, Sarkar, & R Core Team, 2015) in R 3.2.2 (R Core Team, 2015).  The ICC for 

the model suggested that response time was mildly clustered within participants, ICC = 

0.07, p = 0.02.  All R code is included in the Appendix B. The following section contains 

the results of 38 multilevel models that address three main purposes: 

1.  The first set of analyses assessed which salience model provides the best fit in 

the uncued condition in which top-down guidance is restricted. The purpose of 

these analyses is to select a salience model to use in all subsequent MLMs 

analyses. 
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2.  The second set of analyses addressed the same hypotheses presented in 

Chapter 4. However, the use of MLMs allows me to test for the effect of 

salience directly instead of inferring the effect of salience by testing the effect 

of symbol color.  

3. The final set of analyses examined whether any of the factors listed in Table 

15 may serve as a better predictor of response times than salience, in both the 

uncued und cued conditions.  

 

Analysis 1: Investigating Different Salience Models 
MLM 1-4 assessed which salience model best predicts uncued response times. 

Each model contained salience values generated from only one salience model as a fixed 

effect, using only uncued data separated by background color. Maximum salience values 

for each salience model were normalized with respect to the maximum observed salience 

value across all images and backgrounds. 

Results. The results of each model are listed in Table 16. The Saliency Toolbox 

Model (MLM1) revealed a significant effect of salience on response times for all three 

backgrounds, with response times decreasing as salience increased. The GBVS model 

(MLM2) and SigSal model (MLM4) both showed a significant effect of salience for the 

black and white backgrounds, with response times increasing as salience increased. For 

the gray background, the effect of salience was not significant. For the Simpsal model 

(MLM3), salience reached significance only for the black background, with response 

times increasing as salience increased.  
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Table 16 

Fixed effects on RTs for Multilevel Model 1-4 that investigated the different salience 

models using only uncued data.  

Model  Fixed Effect b SE df t p  d 

MLM 1a:  Intercept 4172.42 121.26 5030 34.41 < 0.01  

Black/ 

Sal.Toolbox 

Salience  -525.84 155.08 5030 -3.40 < 0.01 -0.10 

MLM 1b:  Intercept 5188.59 209.12 4450 24.81 < 0.01  

White/ 

Sal.Toolbox 

Salience  -761.78 224.40 4450 -3.39 < 0.01 -0.10 

MLM 1c:  Intercept 5689.83 246.20 4661 23.11 < 0.01  

Gray/ 

Sal.Toolbox 

Salience  -1096.2 207.05 4661 -5.29 < 0.01 -0.16 

MLM 2a:  Intercept 3824.07 126.44 5030 30.24 < 0.01  

Black/GBVS Salience  393.15 154.22 5030  2.55 < 0.05 0.07 

MLM 2b:  Intercept 4757.42 215.53 4450 22.07 < 0.01  

White/GBVS Salience  444.48 213.89 4450  2.08 < 0.05 0.06 

MLM 2c:  Intercept 5196.83 250.39 4661  20.75 < 0.01  

Gray/GBVS Salience  165.13 218.71 4661 0.76 =0.45 0.02 

MLM 3a:  Intercept 3755.16 139.73 5030 26.87 < 0.01  

Black/Simpsal Salience  473.21 177.65 5030 2.66 < 0.01 0.08 

MLM 3b:  Intercept 4863.28 224.45 4450 21.67 < 0.01  

White/Simpsal Salience  169.85 234.68 4450 0.72 =0.47 0.02 

MLM 3c:  Intercept 5387.52 253.34 4661 21.27 < 0.01  

Gray/ Simpsal Salience  -273.26 230.96 4661 -1.18 =0.24 -0.04 

MLM 4a:  Intercept 3601.60 155.26 5030 23.20 < 0.01  

Black/SigSal Salience  657.37 188.64 5030 3.48 < 0.01 0.09 

MLM 4b: Intercept 4425.37 270.26 4450 16.37 < 0.01  

White/ SigSal Salience  789.22 286.33 4450 2.79 < 0.01 0.08 

MLM 4c:  Intercept 5396.49 287.74 4661 18.75 < 0.01  

Gray/ SigSal Salience  -206.78 272.60 4661 -0.76 =0.45 -0.02 
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Discussion. Comparison of models based on each of the four different salience 

models revealed that only the Saliency Toolbox showed consistent effects across 

background colors, with response times decreasing as salience increased. This pattern of 

effects is consistent with the literature that shows that high salience targets should be 

detected faster in uncued search (Itti & Koch, 2001).  The GBVS, Simpsal, and Sigsal 

model showed inconsistent relationships between salience and response time across 

background colors. Notably, these results are consistent with the results presented in 

Chapter 4 that showed that each salience model predicted a different ordering of symbol 

colors. The discrepancy in salience model output may suggest that the three salience 

models measure something different than the Saliency Toolbox model. One possibility is 

that the models may differ in the spatial scale at which they assess salience. For example, 

some models may differentiate between the salience of clusters of symbols and others 

may differentiate between the salience of individual symbols. Future work should 

investigate this hypothesis by manipulating the size and clustering of symbols to 

determine which model may serve as the best algorithm for assessing salience across a 

range of symbols and displays.  

Although the Saliency Toolbox Models only showed small effects of salience 

(d<0.2), this model still produced the largest effect sizes of the four salience models and 

is therefore used in all further analyses.  
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Analysis 2: Extended Analysis from Chapter 4 
MLM 5-8 examined the effect of cueing, salience and background color on 

response times using the complete data set including both cued and uncued conditions. 

This analysis tested the same hypotheses as the ANOVA in Chapter 4; however, instead 

of using symbol color to make assumptions about the effect of salience, the current 

analyses used salience directly as a predictor.  

Results. Consistent with previous results; MLM 5 indicated a significant effect of 

cueing on response time, with faster response times for the cued condition (see Table 17). 

Salience also predicted response times. A non-significant interaction between cueing and 

salience indicated no differences in the salience effects between the uncued and cued 

conditions. The effect of salience on response time can be further characterized by a 

significant interaction between background and salience. For cued trials on the black 

background, response times increased with salience. For cued trials on the white and gray 

backgrounds, in contrast, response times decreased as salience increased.  

The three-way interaction between cueing, salience, and background was also 

reliable. To further examine the nature of this interaction, the backgrounds were modeled 

separately in MLM 6 – 8.  
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Table 17 

Fixed effects on RTs for Multilevel Model 5 using both cued and uncued trials. Cohen’s 

d and partial R2 reflect effect sizes.  

MLM  Fixed Effect b SE df t p d R2 

 Intercept 4089.83 84.48 28247 48.41 < 0.01   

 Cueing -923.26 29.28 28247 -31.53 < 0.01 -0.38 0.09 

 Salience  -720.22 67.02 28247 -10.75 < 0.01 -0.13 0.00 

 Black BG -689.19 117.79 91 -5.85 < 0.01 -1.2 0.16 

 White BG -231.18 120.58 91 1.92 = 0.06 0.40 0.14 

 Cueing x 

Black BG 

149.26 40.54 28247  3.68 < 0.01 0.03 0.00 

 Cueing x 

White BG 

56.53 41.44 28247 1.36 = 0.17 0.02 0.00 

5 Salience x 

Cueing 

62.05 67.00 28247 0.93 = 0.35 0.01 0.00 

 Salience x 

Black BG 

624.77 92.29 28247  6.72 < 0.01 0.08 0.00 

 Salience x 

White BG 

-327.30 98.86 28247 -3.32 < 0.01 -0.04 0.00 

 Salience x 

Cueing x 

Black BG 

366.11 92.29 28247  3.94 < 0.01 -0.04 0.00 

 Salience x 

Cueing x 

White BG 

-353.33 98.66 28247 -3.58 < 0.01 0.05 0.00 
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 MLMs 6 to 8 further investigated this three-way interaction. Table 18 shows the 

fixed effects for each background color modeled separately. Across all three background 

models, cueing had a significant effect on response times, with faster response times for 

cued than uncued trials. However, as described below, the effect of salience and the 

interaction between salience and cueing was not consistent across backgrounds.  

Table 18 

Fixed effects on RTs for Multilevel Model 6-8 for uncued and cued data with each 

background modeled separately.  

Model  Fixed Effect b SE df t p d 

6:  Intercept 3400.48 87.61 9976 8.82 < 0.01  

Black Cueing -774.23 40.43 9976 -19.15 < 0.01 -0.38 

 Salience  -95.29 92.81 9976 -1.03 = 0.30 -0.02 

 Salience x 

Cueing 

-428.53 92.85 9976  4.62 < 0.01  0.09 

        

7:  Intercept 4321.02 156.16 8867 27.67 < 0.01  

White Cueing -866.82 53.72 8867 -16.14 < 0.01 -0.34 

 Salience  -1047.56 132.70 8867 -7.89 < 0.01  0.17 

 Salience x 

Cueing 

-291.30 132.69 8867 -2.20 < 0.05 -0.05 

        

8:  Intercept 4548.14 184.50 9404  24.65 < 0.01  

Gray Cueing -1129.23 58.07 9404 -19.44 < 0.01 -0.40 

 Salience  -1017.95 121.95 9404 -8.35 < 0.01 -0.17 

 Salience x 

Cueing 

49.50 121.78 9404  0.41 = 0.68  0.01 
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For the black background (MLM6), salience alone did not influence response 

times. The interaction between salience and cueing, however, was significant. Response 

times increased as salience increased, but this effect was stronger in cued than uncued 

trials. For both the white background (MLM7) and the gray background (MLM8), 

salience showed a significant effect on response times, with response times decreasing as 

salience increased. However, for the white background, the interaction between salience 

and cueing was also significant, with response times decreasing as salience increased for 

both cued and uncued trials. In contrast, for the gray background (MLM8), the interaction 

between salience and cueing was not significant.   

 Overall, in the uncued condition, for the white and gray background, response 

times decreased as salience increased. On the black background, however, this 

relationship was not observed (see Figure 19).  

 

Figure 19. Model estimated RTs of each background color as a function of salience for 

uncued trials.  
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 For the cued condition, response times increased as salience increased (see Figure 

20) for the black background. For the white and gray background, however, this effect 

was reversed with response times decreasing as salience increased (see Figure 20).  

 

 

Figure 20. Model estimated RTs of each background color as a function of salience for 

cued trials.  

 

Discussion. Analysis 2 tested the same hypotheses as the ANOVA in Chapter 4; 

however, instead of using symbol color to make assumptions about the effect of salience, 

the current analyses used salience directly as a predictor.  

Consistent with previous results, response times were faster in the cued than in the 

uncued condition across background colors, indicating top-down feature guidance based 

on color. When the viewers knew the target color, they were able to find the target more 
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quickly. The three-way interaction between cueing, salience and background was also 

reliable. This interaction was further investigated by modeling each background color 

separately. For the uncued condition, results showed that for the white and the gray BG, 

RTs decreased as salience increased. This is consistent with the analysis results from 

Study 2 that indicated that high salience symbols elicit faster response times than low 

salience symbols in uncued trials. This decrease in response times, however, was not as 

strong for the black background as it was for the white and the gray ones, suggesting that 

the sizes of the salience effects are context dependent. Although the relationship between 

salience and response time was not perfectly consistent across all background colors, the 

results generally support the hypothesis that high salience symbols elicit faster RTs than 

low salience symbols in the uncued condition in which search was driven exclusively by 

bottom-up factors.   

Consistent with Study 2 results, in the cued condition, for the black background, 

response times increased as salience increased. For the white and the gray background, 

however, this effect was reversed, with response times decreasing as salience increases. 

The MLM analysis thus leads to the same conclusion presented in Chapter 4: the pattern 

of effects observed in the white and the gray background conditions do not support the 

hypothesis that low salience targets serve as more effective cues. These inconsistencies 

suggest that the size of the cueing benefit is driven by factors other than salience. The 

following MLMs therefore investigate additional target characteristics that may 

potentially serve as better predictors of response times in uncued and cued search.  
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Analysis 3: Investigating Other Factors Than Salience  
MLM 5-8 showed that salience does not consistently predict uncued and cued 

response times across background. The following models, therefore investigated whether 

salience itself or other factors better predict response times in uncued and cued search.  

To be able to support the development of customized symbol sets that match performance 

goals and to generalize the results to other symbol sets, the models excluded background 

as a factor and modeled uncued and cued trials separately.  

To investigate which factors best predicts response times in uncued search, 

uncued response times were modeled using maximum salience, standard deviation of the 

salience profile, overlap, the average PED (PEDAvg), background PED (PEDBG), a 

target’s distance from the center and nearest neighbor distances as fixed effects. Each 

factor was modeled in a separate model, as shown in Table 19. For the cued condition, 

the same fixed factors were modeled separately, as shown in Table 21.   

Results for uncued trials. Each MLM showed a significant effect for the fixed 

factor used in the model, except overlap (MLM11). Cohen’s d indicates the biggest 

effects for d6, d5, d4 and dcenter, suggesting that clustering and eccentricity effects play 

a role in predicting response times. All models that used uncued data were compared 

against each other using the BIC. Results show no significant differences between models 

MLM 9 to MLM 20 for uncued trials, (p>0.05) BIC range from 272934 to 273121. 
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Table 19  

Fixed effects on RTs for Multilevel Model 9- 20 only using uncued data.  

Model  Fixed Effect b SE df t p d 

MLM 9:  Intercept 4994.01 126.97 14143 39.33 < 0.01  

Salience Salience  -791.837 11.32 14143  -7.05 < 0.01 0.12 

MLM 10:  Intercept 6683.26 266.20 14143 24.94 < 0.01  

Std Std  -6369.57 802.29 14143  -7.94 < 0.01 -0.13 

MLM 11:  Intercept 4700.60 142.68 14143 32.94 < 0.01  

Overlap Overlap  50.78 273.64 14143 0.19 = 0.85 0.00 

MLM12:  Intercept 5023.07 172.94 14143 28.88 < 0.01  

PEDAvg PEDAvg -548.20 223.47 14143 -2.45 < 0.01 -0.04 

MLM 13:  Intercept 5036.54 126.89 14143 39.69 < 0.01  

PEDBG PEDBG -655.61 98.67 14143  -6.64 < 0.01 -0.11 

MLM 14: Intercept 5647.50 143.92 14143  39.24 < 0.01  

Dcenter dcenter -2.72 0.23 14143  -11.77 < 0.01 -0.20 

MLM 15: Intercept 5269.78 138.11 14143 38.16 < 0.01  

D1 D1 -6.59 0.81 14143  -8.18 < 0.01 -0.14 

MLM 16: Intercept 5494.17 146.12 14143 37.60 < 0.01  

D2 D2 -6.43 0.68 14143 -9.39 < 0.01 -0.16 

MLM 17: Intercept 5705.81 152.92 14143 37.31 < 0.01  

D3 D3 -6.51 0.62 14143  -10.50 < 0.01 -0.18 

MLM 18: Intercept 5904.30 157.88 14143  37.40 < 0.01  

D4 D4 -6.64 0.57 14143  -11.62 < 0.01 -0.20 

MLM 19: Intercept 6062.47 161.42 14143  37.56 < 0.01  

D5 D5 -6.61 0.53 14143  -12.49 < 0.01 -0.21 

MLM 20: Intercept 6261.04 164.84 14143 37.98 < 0.01  

D6 D6 -6.82 0.50 14143  -13.69 < 0.01 -0.23 
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MLM21 modeled all significant factors from Table 19 for uncued trials, resulting 

in 11 fixed factors (salience, Std, PEDAvg, PEDBG, dcenter, d1, d2, d3, d4, d5, d6).  All 

models and their fixed effects are depicted in Table 20. Results show significant effects 

for salience, standard deviation, dcenter, d1 and d6.  

MLM22 dropped PEDAvg, PEDBG and d2-d5 resulting in 5 fixed effects (salience, 

standard deviation, dcenter, d1 and d6). Results show significant effects of all fixed 

factors, with salience showing the lowest effect size (d=-0.04).  

MLM23 dropped salience as a fixed effect resulting in 3 fixed effects (dcenter, d1 

and Std). MLM23 showed significant effects for all fixed factors, with standard deviation 

having the largest effect size. Unexpectedly, as the standard deviation increases, response 

times decrease.  

Comparing MLM23 to all other models using uncued data (MLM9-22) showed a 

significant difference between models (p<0.05), with MLM23 having the lowest BIC out 

of all models, BIC ranging from 272865 – 273121. Overall, the combination of standard 

deviation, distance from the center and nearest neighbor distances resulted in the best 

prediction of response times but still only explained 2.6% of the variance (marginal 

R2=0.026).  This combination of fixed factors and the random effect of participants 

explained 10% of the variance (conditional R2=0.104). In comparison, a model with only 

uncued trials and salience as a fixed factor explained less than 1% of variance (marginal 

R2=0.004). 
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Table 20 

Fixed effects on RTs for Multilevel Model 21-23 using uncued data. 

Model  Fixed Effect b SE df t p d 

 Intercept 8471.17 470.67 14133 18.00 < 0.01  

 Salience -557.01 213.34 14133 -2.61 < 0.01 -0.04 

MLM Std -6882.71 1692.24 14133 -4.07 < 0.01 -0.07 

21 PEDAvg 60.87 269.71 14133 0.23 = 0.82  0.00 

 PEDBG 461.68 245.17 14133 1.88 =0.06  0.03 

 dcenter  -1.40 0.28 14133 -5.04 < 0.01 -0.09 

 D1 -3.30 1.12 14133 -2.94 < 0.01 -0.05 

 D2 -0.44 1.35 14133  -0.33 = 0.74 -0.00 

 D3 0.30 1.53 14133  0.19 = 0.85 -0.00 

 D4 -0.59 1.66 14133 -0.36 = 0.72 -0.01 

 D5 1.67 1.80 14133 0.93 = 0.35  0.02 

 D6 -5.33 1.38 14133 -3.87 < 0.01 -0.07 

        

MLM   Intercept 7922.38 337.78 14139 23.45 < 0.01  

22 Salience -373.64 155.24 14139 -2.41 < 0.05 -0.04 

 Std -4420.71 1104.84 14139 -4.00 < 0.01 -0.07 

 dcenter  -1.44 0.27 14139 -5.19 < 0.01 -0.09 

 D1 -3.26 0.89 14139 -3.69 < 0.01 -0.06 

 D6 -4.29 0.64 14139 -6.68 < 0.01 -0.11 

        

MLM  Intercept 8434.42 288.78 14140 28.89 < 0.01  

23 Std -6272.54 796.95 14140 -7.87 < 0.01  -0.13 

 dcenter -1.49 0.28 14140 -5.41 < 0.01 -0.09 

 D1  -2.95 0.88 14140 -3.37 < 0.01 -0.05 

 D6 -4.29 0.64 14140 -6.68 < 0.01  -0.11 
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Discussion. Various MLMs investigated a variety of symbol characteristics 

besides salience that may predict response times. For uncued trials, MLMs with only one 

fixed factor showed that distance from the center and nearest neighbor distances 

predicted response times, consistent with eccentricity effects (Sekuler & Ball, 1986) and 

crowding effects (van den Berg, Roerdink, & Cornelissen, 2007) that are typically 

observed in visual search tasks. MLMs that included more than one fixed factor 

confirmed the importance of distance from the center, nearest neighbor distances 1 and 6 

and standard deviation of a symbol’s salience profile in predicting response time. 

Interestingly, d6 showed a bigger effect size than d1 indicating that only including the 6th 

nearest neighbor distance may suffice. Out of these four factors, the standard deviation of 

the salience profile showed the strongest effect in predicting response times, with 

response times decreasing as the standard deviation of the target colors’ salience profile 

increases. In other words, symbol colors that had a wider range of salience values were 

found more quickly. Although, I hypothesized that the shape of the salience profiles may 

provide an indication of a symbol’s cueing benefit, I did not expect this relationship 

between the standard deviation of the salience profile and uncued response times. At this 

point, I am uncertain of what this finding may reflect. I considered whether this effect 

resulted from a strong correlation between standard deviation and the mean of the 

salience profile. Although, these two factors were highly correlated (r =0.9), the mean of 

the salience profile did not significantly predict uncued response times (p=0.11).  
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However, out of all these models, the best model (MLM23) only explained about 

2.5% of the variance, with only small effect sizes (d<0.02) for each fixed factor. One 

reason for these small effect sizes may be that these MLMs excluded the background as a 

factor in order to be able to generalize the results beyond this symbol set and display. 

However, after including the background color as a factor, results also showed small 

effect sizes (d<0.02). 

Results for cued trials. Results show a significant effect for salience (MLM 24), 

overlap (MLM 26), PEDAvg (MLM 27), dcenter (MLM29) and d1-d6 (MLM 30-35). 

Only standard deviation in MLM 25 and PEDBG in MLM 28 show no significant effect 

on response times. PEDAvg shows the biggest effect size, yet it remains small (d=-0.23).  

All models that used cued data were compared, resulting in no significant 

difference between models (p>0.05), BIC range from 256,848 to 257,031. To investigate 

whether multiple factors model response times more effectively and account for more 

variance, MLMs with multiple fixed factors were conducted.  

 

 

 

 

 

 



DESIGNING BETTER SYMBOLS 86 
 

   

Table 21 

Fixed effects on RTs for Multilevel Model 24-35 only using cued data. 

Model  Fixed Effect b SE df t p d 

MLM 24: Intercept 3140.77 71.38 14017 44.00 < 0.01  

Salience Salience -600.11 69.96 14017  -8.58 < 0.01 -0.14 

MLM 25: Intercept 3042.12 164.01 14017  18.55 < 0.01  

Std Std -379.45 469.37 14017 -0.76 = 0.44 -0.01 

MLM 26: Intercept 2520.63 83.36 14017  30.24 < 0.01  

Overlap Overlap 1443.04 171.40 14017 8.42 < 0.01 0.14 

MLM 27: Intercept 3981.71 102.39 14017 38.89 < 0.01  

PEDAvg PEDAvg -1871.54 137.67 14017  -13.59 < 0.01 -0.23 

MLM 28: Intercept 2986.83 73.25 14017 40.78 < 0.01  

PEDBG PEDBG -120.90 61.68 14017  -1.96 = 0.05 -0.03 

MLM 29: Intercept 2797,56 83.32 14017  33.58 < 0.01  

Dcenter dcenter 0.38 0.14 14017  -2.62 < 0.01 0.04 

MLM 30: Intercept 3168.54 79.37 14017  39.92 < 0.01  

D1 D1 -2.87 0.51 14017  -5.66 < 0.01 -0.10 

MLM 31: Intercept 3118.15 84.44 14017 39.32 < 0.01  

D2 D2 -1.58 0.43 14017  -3.71 < 0.01 -0.06 

MLM 32: Intercept 3121.77 89.067 14017  35.05 < 0.01  

D3 D3 -1.23 0.39 14017  -3.31 < 0.01 -0.06 

MLM 33: Intercept 3120.22 92.05 14017  33.90 < 0.01  

D4 D4 -1.08 0.35 14017  -3.05 < 0.01 -0.05 

MLM 34: Intercept 3107.95 94.53 14017 32.88 < 0.01  

D5 D5 -0.89 0.33 14017 -2.71 < 0.01 -0.05 

MLM 35: Intercept 3092.00 96.70 14017  31.98 < 0.01  

D6 D6 -0.73 0.31 14017  -2.36 < 0.05 -0.04 
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MLM 36 modeled all significant factors from Table 21 for cued data, resulting in 

10 fixed factors (salience, overlap, PEDAvg, dcenter, d1-6). All models and their fixed 

effects are displayed in Table 22. Results show significant effects for all fixed factors, 

with overlap showing the smallest effect size (d=0.04).  

MLM 37 dropped d2-d6 as fixed factors, resulting in 5 fixed factors (salience, 

PEDAvg, Overlap, dcenter, d1). MLM 37 showed significant effects for all fixed factors, 

with overlap showing the smallest effect size (d = -0.04).  Comparing MLM 27 to MLM 

26 results in a slightly better model fit (p<0.05).  

MLM38 dropped overlap as a factor, resulting in 4 fixed factors (salience, 

PEDAvg, dcenter, d1). All factors reached significance, with the highest effect size for 

PEDAvg (d=-0.18). 

Comparing MLM38 to all other models that used cued data only (MLM 24-37) 

resulted in the best model fit for MLM 38 (p < 0.05), BIC range 256816 – 257031. The 

combination of salience, PEDAvg, decenter and d1 results in the best model, but only 

explained 1.6% of the variance (marginal R2=0.016). This combination of fixed factors 

and the random effect of participants explained about 9% of the variance (conditional 

R2=0.092).  
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Table 22 

Fixed effects on RTs for Multilevel Model 36-38 using cued data. 

Model  Fixed Effect b SE df t p d 

MLM Intercept 3934.25 155.18 14008 25.35 < 0.01  

36 Salience -282.89 80.09 14008 -3.53 < 0.01 -0.06 

 PEDAvg -1480.95 163.94 14008 -9.03 < 0.01 -0.15 

 Overlap 405.47 192.65 14008 2.10 < 0.05 0.04 

 Dcenter  0.83 0.17 14008 4.76 < 0.01 -0.08 

 D1 -3.02 0.70 14008 -4.34 < 0.01 -0.07 

 D2 0.52 0.82 14008  0.63 = 0.53 -0.01 

 D3 -0.26 0.95 14008 -0.27 = 0.79 -0.00 

 D4 -0.29 1.04 14008 -0.28 = 0.78 -0.00 

 D5 -0.19 1.11 14008 -0.17 = 0.86 -0.00 

 D6 -0.07 0.84 14008 -0.79 = 0.43 -0.01 

        

MLM Intercept 3830.27 149.71 14013 25.58 < 0.01  

37 Salience -282.16 79.94 14013 -3.53 < 0.01 -0.06 

 PEDAvg -1479.68 163.89 14013 -9.03 < 0.01 -015 

 Overlap  406.12 192.63 14013 2.11 < 0.05 -0.04 

 Dcenter 0.59 0.15 14013 4.06 < 0.01 -0.09 

 D1 -3.42 0.52 14013 -6.63 < 0.01 -0.11 

        

MLM Intercept 4022.14 118.74 14014 33.87 < 0.01  

38 Salience -311.35 78.74 14014 -3.95 < 0.01  -0.07 

 PEDAvg -1589.14 153.98 14014 -10.38 < 0.01 -0.18 

 Dcenter 0.60 0.15 14014 4.10 < 0.01 -0.07 

 D1 -3.45 0.52 14014 -6.68 < 0.01  -0.11 
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Discussion. The following models investigated whether multiple fixed factors 

predicted response times in cued trials. MLMs with one fixed factor showed that salience, 

overlap, PEDAvg, distance from the center and nearest neighbor distances play a role in 

predicting cued response times. Models with multiple fixed effects confirmed that the 

best predictors of cued response times are PEDAvg, salience, distance from the center and 

the first nearest neighbor distance, explaining about 1.6 % of the variance. As PEDAvg 

was one of the best predictors of response time, the results suggest that symbol-symbol 

discriminability is particularly important in cued search. Symbols that can be 

discriminated from other symbols are a more effective cue leading to faster response 

times. Our measure of discriminability, PEDAvg, may be an easy-to-use tool that does not 

require any specialized software. Notably, the response time benefit found for the blue 

symbol in Study 2 across all backgrounds may be explained with the PEDAvg values. The 

blue symbol is farthest away in perceptual color space, making it on average easier to 

discriminate from other symbols. As illustrated in Figure 21, the PEDAvg values are not 

dependent upon the background color, with nearly identical effects of PEDAvg on 

response times across backgrounds. While PEDAvg may predict response times quite well, 

the different slopes suggest that the salience of the target still plays a role in predicting 

response times, particularly for targets that are close together in perceptual color space. 
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Figure 21. Model estimated RTs of each background color as a function of PEDAvg  for 

cued trials. A PEDAvg of 1 indicates high discriminability with a symbol being farther 

away from another symbol in color space. 
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“The material contained in this chapter is in preparation for submission to a journal”.   

 

Chapter 6: Conclusion 

The current project had one theoretical and one applied goal. First, I wanted to investigate 

and understand the interaction of bottom-up and top-down mechanisms in visual search 

tasks. Second, I wanted to use that knowledge to help develop design guidelines for 

customized symbol sets for effective displays that support specific tasks and performance 

goals.   

Chapter 3 presented an experiment that used the flicker paradigm to investigate 

the effects of top-down and bottom-up control in a change detection task. I created a 

customized symbol set, containing four different colored squares as symbols on a black 

background.  A cueing manipulation isolated top-down effects to the cued condition. For 

uncued trials, high salience symbols produced the fastest response times. For cued trials, 

results showed a response time benefit for low salience symbols on a black background, 

consistent with Orchard (2012) and Steelman et al. (2013). 

Chapter 4 used the same paradigm, but added two different background colors to 

investigate whether the benefit for low salience symbols was an artifact of the black 

background. As salience is dependent on a target’s contrast relative to its surroundings 

(Itti & Koch, 2001; Wolfe & Horrowitz, 2004), the background manipulation changed 

each symbol’s salience, while preserving the symbol’s color and location. Data was 

analyzed using SPSS’s repeated-measures ANOVA with symbol color as within-subject 

factor and background as a between-subject factor.  For uncued trials, participants 

generally detected high salience symbols faster than low salience symbols. These results 
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are consistent with the literature that shows that high salience targets should be 

detected faster in bottom-up search tasks (Itti & Koch, 2001). The benefit of low salience 

symbols on cued response times was replicated, however, only on the black background. 

Results from the white and the gray background did not support this hypothesis. The blue 

symbol showed the fastest cued response times across conditions, despite being the 

lowest salience target in one condition and the highest salience target in the others. The 

results suggest that it must be some other characteristic of the blue symbol that drives its 

cueing benefit.  

Chapter 5 extended the analyses from Chapter 4 using various multilevel models 

to (1) compare the utility of four different salience models’ algorithms in predicting 

response times in uncued search, (2) directly test the hypothesis that target salience 

predicts response times, and (3) determine how other symbol characteristics besides 

salience may influence response times in uncued and cued search.  

The comparison of the four salience models revealed different relationships 

between the salience and response times for each model. These differences between the 

models most likely indicate that certain models may be more sensitive to the salience of 

clusters of symbols than the salience of an individual symbol. 

The results of the MLM analyses generally supported the hypothesis that high 

salience symbols elicit faster response times than low salience symbols in the uncued 

condition. However, consistent with Chapter 4, response times for the cued condition did 

not support the hypothesis that low salience targets serve as more effective cues across 

backgrounds. Instead, the blue symbol was the most effective cue as a high salience 
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symbol and as a low salience symbol across conditions, suggests that other factors 

characteristics besides salience drive cued response times.  

The analyses to determine how other symbol characteristics besides salience may 

influence response times found that distance from the center and nearest neighbor 

distances significantly predicted response times in both uncued and cued conditions. 

Consistent with eccentricity effects typically observed in visual search tasks (Sekuler & 

Ball, 1986), response times were faster for targets located closer to the center of the 

display. The relationship between nearest neighbor distances is consistent with crowding 

effects (Korte, 1923). Crowding may impair the discrimination of objects and the ability 

to accurately respond to the object in clutter (van den Berg, Roerdink, & Cornelissen, 

2007; Whitey & Levi, 2012). A target that is part of a cluster, therefore, may not be 

detected or detected more slowly than a target that is farther located from its neighbors. 

In uncued search, results from the original analyses (Chapter 3 & 4) indicate an 

effect of salience, with high salience targets being detected faster than low salience 

targets, which is consistent with the literature (Itti & Koch, 2001). Results of the MLM 

analysis, however, indicated that the standard deviation of the salience profile showed the 

strongest effect in predicting response times, with response times decreasing as the 

standard deviation of the target colors’ salience profile increases. In other words, symbol 

colors that had a wider range of salience values tended to be found more quickly.  

Although I hypothesized that the shape of the salience profiles may provide an 

indication of a symbol’s cueing benefit, I did not expect this relationship between the 
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standard deviation of the salience profile and uncued response times. At this point, I am 

uncertain of what this finding may reflect.  

In cued search, the results from the previous chapters indicated that PEDAvg plays 

a role in predicting response times. As illustrated in Figure 21, PEDAvg was an effective 

predictor for cued response times across conditions. However, the different slopes 

indicated that salience still played an important role in predicting cued response times. 

Thus, the combination of salience and PEDAvg may serve as a good predictor of cued 

response times.  

Although all these factors reached significance in the analyses of the uncued and 

cued condition, they explained less than 2% of the variance (MLM23 and MLM36). The 

difference in participants explained the most variance, leading to a total of 10% including 

fixed and random effects. The results of this work suggest the following 

recommendations for effective display design.  

In guided and unguided search, the target’s distance from the center and the 

nearest neighbor distances influence response times. Results of the MLM analyses 

indicated that the response time for detecting a given target on a specific trial might be 

affected by both the number and proximity of nearby distractors due to the effects of 

crowding and clustering. These findings are consistent with eccentricity effects (Sekuler 

& Ball, 1986) and crowding effects (Korte, 1923; van den Berg, Roerdink, & 

Cornelissen, 2007) found in the literatures. Crowding, for example, may impair the 

discrimination of objects and the ability to accurately respond to an object in clutter 

(Whitey & Levi, 2012). A target that is part of cluster, therefore, may not be detected or 
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detected more slowly than a target that is farther located from its neighbors. If a task 

requires the operator to detect an entity accurately and rapidly, then this entity should be 

placed on the center of the display free of clutter. For example, if the location of an 

important onset such as a visual alert can be controlled, then it should be located near the 

center of the display to promote faster detection. Although it may not always be possible 

to control the location of entities as in many supervisory monitoring tasks, knowing that 

eccentricity and crowding may influence response times can be useful for training 

operators to prioritize scanning peripheral regions within the display or areas of dense 

clutter.  

In unguided search or when viewers may or may not know specifically what they 

are looking for within a display, salience should be considered when assigning identities 

to symbols. If the task requires the rapid detection of a particular entity (such as an 

enemy or suspected enemy), then that entity should be deliberately assigned to the most 

salient symbol within the symbol set to support the most rapid detection. Notably, it is 

important to consider not only the design of individual symbols, but the design of the 

entire set as salience is dependent on a target’s contrast relative to its surroundings 

(Wolfe & Horrowitz, 2004). This means that all other symbols need to be considered as 

well as the background upon which the symbol will be placed on. As illustrated in 

Chapter 4, different colored backgrounds change a symbol’s salience profile, such that a 

symbol that is highly salient when placed on one background may not be salient when 

placed on another background, even when the color and locations of surrounding symbols 

remain fixed. This implies that designer should anticipate that the performance 
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characteristics of a symbol set may vary across displays and applications. The detection 

of a blue emergency telephone, for example, may be very different on a green 

background on a recreational park map than on a white background city map.   

In guided search, symbol sets should be designed to maximize the discriminability 

of targets. As demonstrated in Chapter 5, symbols that can be more easily discriminated 

(larger PEDAvg) from other symbols tend to be more effective cues, leading to faster 

response times. If the task requires the operator to prioritize the detection of a particular 

entity, then this entity should be assigned to the symbol with the largest PEDAvg value 

within the symbol set. If all entities have equal priority, the symbol set should be 

designed such that the symbols are equally spaced in perceptual color space. Although 

color typically plays a larger role in the discriminability of targets (Steelman et al., 2013), 

there are other features such as shape and size that may also influence the discriminability 

of targets.  

Although I have provided specific recommendations about the characteristics that 

may influence response times, these recommendations must be qualified. As the analyses 

in Chapter 5 demonstrated, despite their statistical significance within the models, these 

factors accounted only for a small amount of variance in the data. In order to develop 

more specific guidelines for designers, additional work is necessary to identify other 

factors that may serve as good predictors of response times in cued and uncued search 

tasks. Despite this qualification, the current work provides a systematic attentional 

approach that can be used to identify key design features to support the creation of 

customized symbol sets that match performance goals.  
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Appendix A 

This documentation is for Figure 1. The material used to create Figure 1 arrived 

from the Department of Defense (D. O. D.,2008) which lies in the public domain and has 

been approved for public distribution (see screenshot below).   
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Appendix B 

library(nlme)	
library(visreg)	
library(MuMIn)	
dataset	<-	read.csv("~/Desktop/finalreduced062016.csv",	sep=";",	dec=",
")	
dataset$NewSub=factor(dataset$NewSub)	
	
#####	Effect	Coding	###########	
	
###	CuedorUncued	
#	z=CuedorNot	original,	z.e1:	cued=1,	uncued=-1	
dataset	<-	within(	dataset,	{	
		z	<-	CuedOrNot	
		cueing	<-	ifelse(	CuedOrNot=="1",	1,		
																				ifelse(	CuedOrNot=="0",	-1,	NA	)	)		
})	
####	Background	
#1=Black,	2=White,	3=Gray	
dataset	<-	within(	dataset,	{	
		a	<-	Session	
		black	<-	ifelse(	Session=="1",	1,		
																			ifelse(	Session=="2",	0,		
																											ifelse(	Session=="3",	-1,	NA		)	)	)		
		white	<-	ifelse(Session=="1",	0,		
																		ifelse(	Session=="2",	1,		
																										ifelse(	Session=="3",	-1,	NA	)	)	)		
			
})	
###########	Normalize	PED	and	PEDBG	##########	
dataset	<-	within	(dataset,{	
		BGPEDn	<-	(BGPED/255)	
})	
dataset	<-	within	(dataset,{	
		PEDn	<-	(MeanPED/255)		
})	
#Normalize	salience	values	
	
dataset	<-	within	(dataset,{	
		SalMax1n	<-	(SalMax1/2.4533)	
})	
dataset	<-	within	(dataset,{	
		SalMax2n	<-	(SalMax2/1)	
})	
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dataset	<-	within	(dataset,{	
		SalMax4n	<-	(SalMax4/1.05076)	
})	
dataset	<-	within	(dataset,{	
		SalMax3n	<-	(SalMax3/1)		
})	
dataset	<-	within	(dataset,{	
		SalMax5n	<-	(SalMax5/1.0162)			
})	

#	If	we	only	want	to	use	cued	or	uncued	responses,	within	the	selected	
background		

#black	

cuedonlyblack	<-	subset(blackonly,	cueing	>0	)	#	data	with	only	cued	re
sponses	

uncuedonlyblack	<-	subset(blackonly,cueing	<	0)	#data	only	uncued	

#white	

cuedonlywhite	<-	subset(whiteonly,	cueing	>0	)	#	data	with	only	cued	re
sponses	

uncuedonlywhite	<-	subset(whiteonly,cueing	<	0)	#data	only	uncued	

#gray		

cuedonlygray	<-	subset(grayonly,	cueing	>0	)	#	data	with	only	cued	resp
onses	

uncuedonlygray	<-	subset(grayonly,cueing	<	0)	#data	only	uncued	

#select	uncued	and	cued,	all	BG	colors			

cuedonly	<-	subset(dataset,	cueing	>0	)	#	data	with	only	cued	responses	

uncuedonly	<-	subset(dataset,cueing	<	0)	#data	only	uncued	

#	If	we	only	want	to	use	one	BG,	separate	data			

blackonly	<-	subset(dataset,	Session	==1	)	#	data	with	only	black	

whiteonly	<-	subset(dataset,	Session	==2	)	#	data	with	only	white	

grayonly	<-	subset(dataset,	Session	==3	)	#	data	with	only	gray	

#ICC	baseline	model	with	no	predictors		

baseline.model	<-	lme(	RT	~	1,	random=~1|NewSub,	na.action	=	"na.exclud
e",	data=dataset	)	
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summary(	baseline.model	)	#have	to	sqaure	random	effect	stddev	and	resi
dual.		

#std^2	/	std^2	+	residual^2	in	random	effects		

ICC	<-	841.8011*841.8011/	(841.8011*841.8011+3067.71*3067.71)	

ICC	#0.07	

rICC	<-	sqrt(((43.10829)^2)/(((43.10829)^2)+28256))	

rICC	

#####################	INVESTIGATE	SALIENCE	MODELS	#####################
####	

#	MODEL	1	

model1bu	<-	lme(	RT	~	SalMax1n,	method="ML",	random=~1|NewSub,	data=unc
uedonlyblack	)	#method	ML	then	anova	works'	

summary(model1bu)	

model1wu	<-	lme(	RT	~	SalMax1n,	method="ML",	random=~1|NewSub,	data=unc
uedonlywhite	)	#method	ML	then	anova	works'	

summary(model1wu)	

model1gu	<-	lme(	RT	~	SalMax1n,	method="ML",	random=~1|NewSub,	data=unc
uedonlygray	)	#method	ML	then	anova	works'	

summary(model1gu)	

#	MODEL	2	

model2bu	<-	lme(	RT	~	SalMax2n,	method="ML",	random=~1|NewSub,	data=unc
uedonlyblack	)	#method	ML	then	anova	works'	

summary(model2bu)	

model2wu	<-	lme(	RT	~	SalMax2n,	method="ML",	random=~1|NewSub,	data=unc
uedonlywhite	)	#method	ML	then	anova	works'	

summary(model2wu)	

model2gu	<-	lme(	RT	~	SalMax2n,	method="ML",	random=~1|NewSub,	data=unc
uedonlygray	)	#method	ML	then	anova	works'	

summary(model2gu)	

#	MODEL	3	
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model3bu	<-	lme(	RT	~	SalMax4n,	method="ML",	random=~1|NewSub,	data=unc
uedonlyblack	)	#method	ML	then	anova	works'	

summary(model3bu)	

model3wu	<-	lme(	RT	~	SalMax4n,	method="ML",	random=~1|NewSub,	data=unc
uedonlywhite	)	#method	ML	then	anova	works'	

summary(model3wu)	

model3gu	<-	lme(	RT	~	SalMax4n,	method="ML",	random=~1|NewSub,	data=unc
uedonlygray	)	#method	ML	then	anova	works'	

summary(model3gu)	

#	MODEL	4	

model4bu	<-	lme(	RT	~	SalMax5n,	method="ML",	random=~1|NewSub,	data=unc
uedonlyblack	)	#method	ML	then	anova	works'	

summary(model4bu)	

model4wu	<-	lme(	RT	~	SalMax5n,	method="ML",	random=~1|NewSub,	data=unc
uedonlywhite	)	#method	ML	then	anova	works'	

summary(model4wu)	

model4gu	<-	lme(	RT	~	SalMax5n,	method="ML",	random=~1|NewSub,	data=unc
uedonlygray	)	#method	ML	then	anova	works'	

summary(model4gu)	

rbu1	<-	sqrt(((-3.40)^2)/(((-3.40)^2)+5030))	

rbu1	

dbu1<-	(2*(-3.40))/sqrt(5030)	

dbu1	

rwu1	<-	sqrt(((-3.39)^2)/(((-3.39)^2)+4450))	

rwu1	

dbu1<-	(2*(-3.40))/sqrt(5030)	

dbu1	

dwu1<-	(2*(-3.39))/sqrt(4450)	

dwu1	

dgu1<-	(2*(-5.29))/sqrt(4461)	
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dgu1	

rgu1	<-	sqrt(((-5.29)^2)/(((-5.29)^2)+4461))	

rgu1	

dgu1<-	(2*(-5.29))/sqrt(4461)	

dgu1	

#model2	

rbu2	<-	sqrt(((2.55)^2)/(((2.55)^2)+5030))	

rbu2	

rwu2	<-	sqrt(((2.08)^2)/(((2.08)^2)+4450))	

rwu2	

rgu2	<-	sqrt(((0.76)^2)/(((0.76)^2)+4461))	

rgu2	

dbu2<-	(2*(2.55))/sqrt(5030)	

dbu2	

dwu2<-	(2*(2.08))/sqrt(4450)	

dwu2	

dgu2<-	(2*(0.76))/sqrt(4461)	

dgu2	

#model3	

rbu3	<-	sqrt(((2.66)^2)/(((2.66)^2)+5030))	

rbu3	

rwu3	<-	sqrt(((0.72)^2)/(((0.72)^2)+4450))	

rwu3	

rgu3	<-	sqrt(((-1.18)^2)/(((-1.18)^2)+4461))	

rgu3	

dbu3<-	(2*(2.66))/sqrt(5030)	

dbu3	
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dwu3<-	(2*(0.72))/sqrt(4450)	

dwu3	

dgu3<-	(2*(-1.18))/sqrt(4461)	

dgu3	

#model4	

rbu4	<-	sqrt(((3.28)^2)/(((2.48)^2)+5030))	

rbu4	

rwu4	<-	sqrt(((2.79)^2)/(((2.79)^2)+4450))	

rwu4	

rgu4	<-	sqrt(((-0.76)^2)/(((-0.76)^2)+4461))	

rgu4	

dbu4<-	(2*(3.28))/sqrt(5030)	

dbu4	

dwu4<-	(2*(2.79))/sqrt(4450)	

dwu4	

dgu4<-	(2*(-0.76))/sqrt(4461)	

dgu4	

##############	ANALYSIS	LIKE	CHAPTER	4,	SALIENCE	AS	PREDICTOR	#########	

#salience,	cueing	and	BG,	plus	interactions,	HFES	version	

model14a	<-	lme(	RT	~	SalMax1n+cueing+black+white+cueing*black	+cueing*
white+	

																			cueing*SalMax1n+white*SalMax1n+black*SalMax1n+cueing
*SalMax1n*white+cueing*SalMax1n*black,	random=~1|NewSub,	method=	"ML",	
data=dataset	)	#method	ML	then	anova	works'	

summary(model14a)	

anova(model14a)	

#salience.	r	

#cueing		r		

#	black	R2,	r	
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r.squaredGLMM(model14a)	

#effect	sizes	salience		

rsalience	<-	sqrt(((-10.74679)^2)/(((-10.74679)^2)+28247))	

dsalience<-	(2*(-10.74679))/sqrt(28247)	

dsalience	

r2salience	<-	((1/28247)*117.6020)/(1+(1/28247)*117.6020)	

r2salience	

#cueing		

rcueing	<-	sqrt(((-31.53199)^2)/(((-31.53199)^2)+28247))	

dcueing<-	(2*(-31.53199))/sqrt(28247)	

dcueing	

r2cueing	<-	((1/28247)*2642.3488)/(1+(1/28247)*2642.3488)	

r2cueing	

#black		

rblack	<-	sqrt(((-5.85065)^2)/(((--5.85065)^2)+91))	

dblack<-	(2*(-5.85065))/sqrt(91)	

dblack	

r2black	<-	((1/91)*17.3589)/(1+(1/91)*17.3589)	

r2black	

dwhite<-	(2*(1.91718))/sqrt(91)	

dwhite	

r2white	<-	((1/91)*1.2584)/(1+(1/91)*1.2584)	

r2white	

r2cueingblack	<-	((1/28247)*135.6328)/(1+(1/28247)*135.6328)	

r2cueingblack	

dcb<-	(2*(2.68176))/sqrt(28247)	

dcb	
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r2cueingwhite	<-	((1/28247)*5.8321)/(1+(1/28247)*5.8321)	

r2cueingwhite	

dcw<-	(2*(1.36403))/sqrt(28247)	

dcw	

r2sc	<-	((1/28247)*1.6846)/(1+(1/28247)*1.6846)	

r2sc	

dsc<-	(2*(0.92613))/sqrt(28247)	

dsc	

r2sw	<-	((1/28247)*0.1312)/(1+(1/28247)*0.1312)	

r2sw	

dsw<-	(2*(-3.31683))/sqrt(28247)	

dsw	

r2sb	<-	((1/28247)*44.29)/(1+(1/28247)*44.29)	

r2sb	

dsb<-	(2*(6.72401))/sqrt(28247)	

dsb	

r2scw	<-	((1/28247)*3.0440)/(1+(1/28247)*3.0440)	

r2scw	

dscw<-	(2*(-3.58123))/sqrt(28247)	

dscw	

r2scb	<-	((1/28247)*15.5241)/(1+(1/28247)*15.4242)	

r2scb	

dscb<-	(2*(3.94007))/sqrt(28247)	

dscb	

##############	THREEWAY	INTERACTION	BG	SEPARATE		######################	

#Black	only	

modelblack	<-	lme(	RT	~	SalMax1n+cueing+cueing*SalMax1n,	random=~1|NewS
ub,	method=	"ML",	data=blackonly	)	#method	ML	then	anova	works'	
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summary(modelblack)	

dc6<-	(2*(-1.02663))/sqrt(9976)	

dc6	

ds6<-	(2*(-19.14913))/sqrt(9976)	

ds6	

dsc6<-	(2*(4.61537))/sqrt(9976)	

dsc6	

#White	only		

modelwhite	<-	lme(	RT	~	SalMax1n+cueing+cueing*SalMax1n,	random=~1|NewS
ub,	method=	"ML",	data=whiteonly	)	#method	ML	then	anova	works'	

summary(modelwhite)	

dc7<-	(2*(-16.135363))/sqrt(8867)	

dc7	

ds7<-	(2*(-7.894251))/sqrt(8867)	

ds7	

dsc7<-	(2*(-2.19526))/sqrt(8867)	

dsc7	

#Gray	only		

modelgray	<-lme(	RT	~	SalMax1n+cueing+cueing*SalMax1n,	random=~1|NewSub
,	method=	"ML",	data=grayonly	)	#method	ML	then	anova	works'	

summary(modelgray)	

dc8<-	(2*(-19.443621))/sqrt(9404)	

dc8	

ds8<-	(2*(-8.34739))/sqrt(9404)	

ds8	

dsc8<-	(2*(0.406451))/sqrt(9404)	

dsc8	
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#####################################################################	

################	Models	9	-20		UNCUED	DATA,	ONE	FIXED	FACTOR	##########	

#Salience		

modelnew9	<-	lme(	RT	~	SalMax1n,	method=	"ML",random=~1|NewSub,	data=un
cuedonly	)	#method	ML	then	anova	works'	

summary(modelnew9)	

#sal	sig	

dnew9<-	(2*(-7.05036))/sqrt(14143)	

dnew9	

#Standard	Deviation	

modelnew10	<-	lme(	RT	~	Std1,	method=	"ML",random=~1|NewSub,	data=uncue
donly	)	#method	ML	then	anova	works'	

summary(modelnew10)	

dnew10<-	(2*(0.18557))/sqrt(14143)	

dnew10	

#Overlap	

modelnew11	<-	lme(	RT	~	OverlapRaw1,	method=	"ML",random=~1|NewSub,	dat
a=uncuedonly	)	#method	ML	then	anova	works'	

summary(modelnew11)	

dnew11<-	(2*(-7.05036))/sqrt(14143)	

dnew11	

#PED		

modelnew12	<-	lme(	RT	~	PEDn,	method=	"ML",random=~1|NewSub,	data=uncue
donly	)	#method	ML	then	anova	works'	

summary(modelnew12)	

dnew12<-	(2*(-2.453129))/sqrt(14143)	

dnew12	

#BG	PED		
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modelnew13	<-	lme(	RT	~	BGPEDn,	method=	"ML",random=~1|NewSub,	data=unc
uedonly	)	#method	ML	then	anova	works'	

summary(modelnew13)	

r.squaredGLMM(modelnew13	

)	

dnew13<-	(2*(-6.64438))/sqrt(14143)	

dnew13	

#dcenter	

modelnew14	<-	lme(	RT	~	dcenter,	method=	"ML",random=~1|NewSub,	data=un
cuedonly	)	#method	ML	then	anova	works'	

summary(modelnew14)	

#	

dnew14<-	(2*(-11.76892))/sqrt(14143)	

dnew14	

#d1	

modelnew15	<-	lme(	RT	~	d1,	method=	"ML",random=~1|NewSub,	data=uncuedo
nly	)	#method	ML	then	anova	works'	

summary(modelnew15)	

#	

dnew15<-	(2*(-8.17958))/sqrt(14143)	

dnew15	

#d2	

modelnew16	<-	lme(	RT	~	d2,	method=	"ML",random=~1|NewSub,	data=uncuedo
nly	)	#method	ML	then	anova	works'	

summary(modelnew16)	

#	

dnew16<-	(2*(-9.38532))/sqrt(14143)	

dnew16	
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#d3	

modelnew17	<-	lme(	RT	~	d3,	method=	"ML",random=~1|NewSub,	data=uncuedo
nly	)	#method	ML	then	anova	works'	

summary(modelnew17)	

#	

dnew17<-	(2*(-10.49892))/sqrt(14143)	

dnew17	

#d4	

modelnew18	<-	lme(	RT	~	d4,	method=	"ML",random=~1|NewSub,	data=uncuedo
nly	)	#method	ML	then	anova	works'	

summary(modelnew18)	

#	

dnew18<-	(2*(-11.62269))/sqrt(14143)	

dnew18	

#d5	

modelnew19	<-	lme(	RT	~	d5,	method=	"ML",random=~1|NewSub,	data=uncuedo
nly	)	#method	ML	then	anova	works'	

summary(modelnew19)	

#	

dnew19<-	(2*(-12.48802))/sqrt(14143)	

dnew19	

#d6	

modelnew20	<-	lme(	RT	~	d6,	method=	"ML",random=~1|NewSub,	data=uncuedo
nly	)	#method	ML	then	anova	works'	

summary(modelnew20)	

#	

dnew20<-	(2*(-13.69479))/sqrt(14143)	

dnew20	
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anova(modelnew9,	modelnew10,	modelnew11,	modelnew12,modelnew13,	modelne
w14,	modelnew15,	modelnew16,	

						modelnew17,	modelnew18,	modelnew19,	modelnew20)	

##########	MODELS	21-32	ONlY	CUED	DATA,	ONE	FIXED	FACTOR		#############	

modelnew17	<-	lme(	RT	~	SalMax1n,	method=	"ML",random=~1|NewSub,	data=c
uedonly	)	#method	ML	then	anova	works'	

summary(modelnew17)	

dnew17<-	(2*(-8.57851))/sqrt(14017)	

dnew17	

modelnew18	<-	lme(	RT	~	Std1,	method=	"ML",random=~1|NewSub,	data=cuedo
nly	)	#method	ML	then	anova	works'	

summary(modelnew18)	

dnew18<-	(2*(-0.764446))/sqrt(14017)	

dnew18	

modelnew19	<-	lme(	RT	~	OverlapRaw1,	method=	"ML",random=~1|NewSub,	dat
a=cuedonly	)	#method	ML	then	anova	works'	

summary(modelnew19)	

dnew19<-	(2*(8.41919))/sqrt(14017)	

dnew19	

modelnew20	<-	lme(	RT	~	PEDn,	method=	"ML",random=~1|NewSub,	data=cuedo
nly	)	#method	ML	then	anova	works'	

summary(modelnew20)	

dnew20<-	(2*(-13.59456))/sqrt(14017)	

dnew20	

modelnew21	<-	lme(	RT	~	BGPEDn,	method=	"ML",random=~1|NewSub,	data=cue
donly	)	#method	ML	then	anova	works'	

summary(modelnew21)	

dnew21<-	(2*(-1.95999))/sqrt(14017)	

dnew21	
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modelnew22	<-	lme(	RT	~	dcenter,	method=	"ML",random=~1|NewSub,	data=cu
edonly	)	#method	ML	then	anova	works'	

summary(modelnew22)	

dnew22<-	(2*(2.61925))/sqrt(14017)	

dnew22	

modelnew23	<-	lme(	RT	~	d1,	method=	"ML",random=~1|NewSub,	data=cuedonl
y	)	#method	ML	then	anova	works'	

summary(modelnew23)	

dnew23<-	(2*(-5.65702))/sqrt(14017)	

dnew23	

modelnew24	<-	lme(	RT	~	d2,	method=	"ML",random=~1|NewSub,	data=cuedonl
y	)	#method	ML	then	anova	works'	

summary(modelnew24)	

dnew24<-	(2*(-3.70781))/sqrt(14017)	

dnew24	

modelnew25	<-	lme(	RT	~	d3,	method=	"ML",random=~1|NewSub,	data=cuedonl
y	)	#method	ML	then	anova	works'	

summary(modelnew25)	

dnew25<-	(2*(-3.3113))/sqrt(14017)	

dnew25	

modelnew26	<-	lme(	RT	~	d4,	method=	"ML",random=~1|NewSub,	data=cuedonl
y	)	#method	ML	then	anova	works'	

summary(modelnew26)	

dnew26<-	(2*(-3.05367))/sqrt(14017)	

dnew26	

modelnew27	<-	lme(	RT	~	d5,	method=	"ML",random=~1|NewSub,	data=cuedonl
y	)	#method	ML	then	anova	works'	

summary(modelnew27)	

dnew27<-	(2*(-2.70603))/sqrt(14017)	

dnew27	
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modelnew28	<-	lme(	RT	~	d6,	method=	"ML",random=~1|NewSub,	data=cuedonl
y	)	#method	ML	then	anova	works'	

summary(modelnew28)	

dnew28<-	(2*(-2.35854))/sqrt(14017)	

dnew28	

anova(modelnew17,	modelnew18,	modelnew19,	modelnew20,	modelnew21,	model
new22,	modelnew23,	

						modelnew24,	modelnew25,	modelnew26,	modelnew27,	modelnew28)	

	

#####	MODELS	32-	35,	UNCUED	DATA	ONLY,	MORE	FIXED	FACTORS	#############	

modelun32	<-	lme(	RT	~	SalMax1n+Std1+PEDn+BGPEDn+dcenter+d1+d2+d3+d4+d5
+d6,	method=	"ML",random=~1|NewSub,	data=uncuedonly	)	#method	ML	then	a
nova	works'	

summary(modelun32)	

dnew32s<-	(2*(-2.610876))/sqrt(14017)	

dnew32s	

dnew32st<-	(2*(-4.067206))/sqrt(14017)	

dnew32st	

dnew32ped<-	(2*(0.225665))/sqrt(14017)	

dnew32ped	

dnew32pedbg<-	(2*(1.883118))/sqrt(14017)	

dnew32pedbg	

dnew32dc<-	(2*(-5.034372))/sqrt(14017)	

dnew32dc	

dnew32d1<-	(2*(-2.940495))/sqrt(14017)	

dnew32d1	

dnew32d2<-	(2*(-0.318156))/sqrt(14017)	

dnew32d2	
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dnew32d3<-	(2*(0.193725))/sqrt(14017)	

dnew32d3	

dnew32d4<-	(2*(-0.335424))/sqrt(14017)	

dnew32d4	

dnew32d5<-	(2*(0.928960))/sqrt(14017)	

dnew32d5	

dnew32d6<-	(2*(-3.865563))/sqrt(14017)	

dnew32d6	

modelun33	<-	lme(	RT	~	SalMax1n+Std1+dcenter+d1+d6,	method=	"ML",random
=~1|NewSub,	data=uncuedonly	)	#method	ML	then	anova	works'	

summary(modelun33)	

anova(modelun32,modelun33)	

dnew33s<-	(2*(-2.406919))/sqrt(14017)	

dnew33s	

dnew33std<-	(2*(-4.001235))/sqrt(14017)	

dnew33std	

dnew33dc<-	(2*(-5.186381))/sqrt(14017)	

dnew33dc	

dnew33d1<-	(2*(-3.687166))/sqrt(14017)	

dnew33d1	

dnew33d6<-	(2*(-6.684414))/sqrt(14017)	

dnew33d6	

modelun34	<-	lme(	RT	~	Std1+dcenter+d1+d6,	method=	"ML",random=~1|NewSu
b,	data=uncuedonly	)	#method	ML	then	anova	works'	

summary(modelun34)	

r.squaredGLMM(modelun34)	
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dnew34std<-	(2*(-7.870636))/sqrt(14017)	

dnew34std	

dnew34dc<-	(2*(-5.412538))/sqrt(14017)	

dnew34dc	

dnew34d1<-	(2*(-3.371773))/sqrt(14017)	

dnew34d1	

dnew34d6<-	(2*(-6.682366))/sqrt(14017)	

dnew34d6	

#uncued	black	

modelun34black	<-	lme(	RT	~	Std1+dcenter+d1+d6,	method=	"ML",random=~1|
NewSub,	data=uncuedonlyblack	)	#method	ML	then	anova	works'	

summary(modelun34black)	

r.squaredGLMM(modelun34black)	

dnew34blackst<-	(2*(-4.354207))/sqrt(5027)	

dnew34blackst	

#uncued	white	

modelun34w	<-	lme(	RT	~	Std1+dcenter+d1+d6,	method=	"ML",random=~1|NewS
ub,	data=uncuedonlywhite	)	#method	ML	then	anova	works'	

summary(modelun34w)	

r.squaredGLMM(modelun34w)	

#uncued	gray	

modelun34g	<-	lme(	RT	~	Std1+dcenter+d1+d6,	method=	"ML",random=~1|NewS
ub,	data=uncuedonlygray	)	#method	ML	then	anova	works'	

summary(modelun34g)	

r.squaredGLMM(modelun34g)	

anova(modelun33,modelun34,modelun32,modelun9,	test="Chisq")	

cor(uncuedonlyblack$Std1,	uncuedonlyblack$Mean1)	

cor(uncuedonlywhite$Std1,	uncuedonlywhite$Mean1)	

cor(uncuedonlygray$Std1,	uncuedonlygray$Mean1)	
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cor(uncuedonlyblack$Std1,	uncuedonlyblack$Skew1)	

cor(uncuedonlywhite$Std1,	uncuedonlywhite$Skew1)	

cor(uncuedonlygray$Std1,	uncuedonlygray$Skew1)	

cor(uncuedonlyblack$Std1,	uncuedonlyblack$EK1)	

cor(uncuedonlywhite$Std1,	uncuedonlywhite$EK1)	

cor(uncuedonlygray$Std1,	uncuedonlygray$EK1)	

cor(uncuedonly$Std1,	uncuedonly$Median1)	

cor(uncuedonly$Std1,	uncuedonly$Skew1)	

cor(uncuedonly$Std1,	uncuedonly$EK1)	

cor(uncuedonly$Std1,	uncuedonly$d1)	

cor(uncuedonly$Std1,	uncuedonly$dcenter)	

cor(uncuedonly$Std1,	uncuedonly$d6)	

cor(dataset$Std1,	dataset$Mean1)	

cor(uncuedonly$Std1,	uncuedonly$Median1)	

cor(uncuedonly$Std1,	uncuedonly$Skew1)	

cor(uncuedonly$Std1,	uncuedonly$EK1)	

anova(modelun34,modelnew9,modelnew11)	

anova(modelnew9,	modelnew9a,	modelnew9b,	modelnew9c,	modelnew9d,	modeln
ew10,	modelnew11,	modelnew12,		

						modelnew13,	modelnew14,	modelnew15,	modelnew16,	modelun33,modelun
34)	

###########	MODELS	36	-	38,	CUED	DATA	ONLY,	MORE	FACTORS	M	############	

modelnew36	<-	lme(	RT	~	SalMax1n+PEDn+OverlapRaw1+dcenter+d1+d2+d3+d4+d
5+d6,	method=	"ML",random=~1|NewSub,	data=cuedonly	)	#method	ML	then	an
ova	works'	

summary(modelnew36)	

dnew36s<-	(2*(-3.532179))/sqrt(14017)	

dnew36s	
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dnew36ped<-	(2*(-9.03551))/sqrt(14017)	

dnew36ped	

dnew36o<-	(2*(2.104669))/sqrt(14017)	

dnew36o	

dnew36dc<-	(2*(-4.758713))/sqrt(14017)	

dnew36dc	

dnew36d1<-	(2*(-4.34617))/sqrt(14017)	

dnew36d1	

dnew36d2<-	(2*(0.628166))/sqrt(14017)	

dnew36d2	

dnew36d3<-	(2*(-0.271751))/sqrt(14017)	

dnew36d3	

dnew36d4<-	(2*(-0.277762))/sqrt(14017)	

dnew36d4	

dnew36d5<-	(2*(-0.170508))/sqrt(14017)	

dnew36d5	

dnew36d6<-	(2*(-0.794145))/sqrt(14017)	

dnew36d6	

modelnew37	<-	lme(	RT	~	SalMax1n+PEDn+OverlapRaw1+dcenter+d1,	method=	"
ML",random=~1|NewSub,	data=cuedonly	)	#method	ML	then	anova	works'	

summary(modelnew37)	

dnew37s<-	(2*(-3.529842))/sqrt(14017)	

dnew37s	

dnew37ped<-	(2*(-9.028403))/sqrt(14017)	

dnew37ped	

dnew37o<-	(2*(2.108285))/sqrt(14017)	

dnew37o	
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dnew37dc<-	(2*(5.059468))/sqrt(14017)	

dnew37dc	

dnew37d1	<-	(2*(-6.627157))/sqrt(14017)	

dnew37d1	

modelnew38	<-	lme(	RT	~	SalMax1n+PEDn+dcenter+d1,	method=	"ML",random=~
1|NewSub,	data=cuedonly	)	#method	ML	then	anova	works'	

summary(modelnew38)	

r.squaredGLMM(modelnew38)	

#black	cued	only		

modelnew38black	<-	lme(	RT	~	SalMax1n+PEDn+dcenter+d1,	method=	"ML",ran
dom=~1|NewSub,	data=cuedonlyblack	)	#method	ML	then	anova	works'	

summary(modelnew38black)	

r.squaredGLMM(modelnew38black)	

dnew38blackped	<-	(2*(-6.324093))/sqrt(4911)	

dnew38blackped	

dnew38blackd1	<-	(2*(--5.865705))/sqrt(4911)	

dnew38blackd1	

#white	cued	only		

modelnew38w	<-	lme(	RT	~	SalMax1n+PEDn+dcenter+d1,	method=	"ML",random=
~1|NewSub,	data=cuedonlywhite	)	#method	ML	then	anova	works'	

summary(modelnew38w)	

r.squaredGLMM(modelnew38w)	

#gray	cued	only	

modelnew38g	<-	lme(	RT	~	SalMax1n+PEDn+dcenter+d1,	method=	"ML",random=
~1|NewSub,	data=cuedonlygray	)	#method	ML	then	anova	works'	

summary(modelnew38g)	

r.squaredGLMM(modelnew38g)	
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dnew38s	<-	(2*(-3.95429))/sqrt(14017)	

dnew38s	

dnew38ped	<-	(2*(-10.37862))/sqrt(14017)	

dnew38ped	

dnew38dc	<-	(2*(4.09543))/sqrt(14017)	

dnew38dc	

dnew38d1	<-	(2*(-6.67561))/sqrt(14017)	

dnew38d1	

anova(modelnew17,	modelnew18,	modelnew19,	modelnew20,	modelnew21,	model
new22,	modelnew23,	

						modelnew24,	modelnew25,	modelnew26,	modelnew27,	modelnew28,modeln
ew36,modelnew37,modelnew38)	

anova(modelnew36,modelnew37,modelnew38)	
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