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Preface 

The contents in this publication covers five PhD projects I have done during my PhD 

period from 2012 Fall to 2016 Summer. The projects focus on atomistic exploration 

of tunnel functions, particularly, energy storage, in tunneled α-MnO2 nanostructures 

using in (ex) situ STEM technique.  

 

Chapter 3 covers the first project reviewing the application of in situ TEM technique 

in solving rechargeable battery problems. Mr. Yifei Yuan summarized and 

categorized the most recently updated literature in this area and wrote the review 

under direction of Dr. Jun Lu (Argonne National Laboratory) and Dr. Reza Yassar 

(University of Illinois at Chicago). 

 

Chapter 4 covers the second project utilizing in situ (S)TEM to study the dynamic 

lithiation and Li+-tunnel interaction in single α-MnO2 nanowire. Experiments were 

designed, conducted and analyzed by Mr. Yifei Yuan under direction of Dr. Reza 

Yassar. Dr. Anmin Nie (University of Illinois at Chicago), Dr. Christopher Johnson 

and Dr. Jun Lu helped the experimental aspect, while Dr. Gregory Odegard and Dr. 

Dennis Meng (Department of Mechanical Engineering, MTU) contributed for the 

simulation work of Li+-tunnel interaction and the material synthesis, respectively. 

 

Chapter 5 covers the 3rd project applying in situ TEM to study the reversible 

(de)sodiation and Na+-tunnel interaction in α-MnO2 nanowire and compare the 

sodiation with lithiation process. Mr. Yifei Yuan designed and carried out this project 

under direction of Dr. Jun Lu and Dr. Reza Yassar. Miss Lu Ma and Dr. Tanpin Wu 

(Argonne National Laboratory) collaborated for the cell level in situ synchrotron X-

ray scattering characterization of α-MnO2 cathode. Mr. Wentao Yao (Department of 

Mechanical Engineering, MTU) contributed for the synthesis of α-MnO2 nanowires. 

 

Chapter 6 systematically discusses the effect of large cations (K+ in this work) inside 

2×2 tunnels on the electrochemical performance of α-MnO2 as lithium ion battery 



 7 

cathode. Mr. Yifei Yuan designed and conducted this work under direction of Dr. Jun 

Lu and Dr. Reza Yassar. Dr. Chun Zhan (Argonne National Laboratory) and Miss 

Kun He (University of Illinois at Chicago) collaborated to help the experiments. Dr. 

Saiful Islam contributed for the DFT calculation of α-MnO2 electronic structure. Mr. 

Wentao Yao contributed for the synthesis of α-MnO2 nanowires. 

 

Chapter 7 explores the oriented attachment (OA) growth mechanism of α-MnO2 

nanowires during the hydrothermal synthesis process. Mr. Yifei Yuan designed and 

carried out this project under direction of Dr. Anmin Nie, Dr. Jun Lu and Dr. Reza 

Yassar. Mr. Wentao Yao contributed for the controlled synthesis of all the α-MnO2 

nanowires. Dr. Saiful Islam helped to conduct the DFT calculation of the energies of 

various α-MnO2 facets.       
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Abstract 

Alpha (α-) MnO2 is a well know transitional metal oxide possessing one dimensional 2×2 

(4.6 × 4.6 Å2) tunnels for accommodation of various ions. Such a characteristic tunneled 

structure has enabled the wide applications of α-MnO2 in the fields of ion exchange, 

molecular sieves, biosensor, catalysis and energy storage. This PhD dissertation focuses 

on the dynamic study of ion transport functionality of α-MnO2 at atomic level using an 

aberration corrected scanning transmission electron microscopy equipped with a special 

holder with a scanning tunneling microscopy probe. 

 

The wide application of in situ TEM studying the dynamic behaviors/reactions in 

rechargeable lithium ion battery is first reviewed. Li+-tunnel interaction during lithiation 

of a single α-MnO2 nanowire was then systematically studied in situ at sub-Å resolution. 

An asynchronous tunnel expansion was for the first time captured with an ordered Jahn-

Teller distortion theory proposed and confirmed further by DFT. Reversible Na+ insertion 

in the 2×2 tunnels of α-MnO2 is also explored and the tunneled structure is found to be 

less stable during sodiation than lithiation, which is explained by the larger Na+ ionic size 

and thus stronger Na+-tunnel interaction. The effect of large cations (K+) occupying the 

center of 2×2 tunnels on the electrochemical performance of α-MnO2 as a LIB cathode is 

systematically studied by controlling K+ concentration. It is found that the presence of K+ 

improves both the electronic conductivity and Li+ diffusivity of α-MnO2 nanowires, 

leading to superior discharge rate performance compared to the ones without K+ presence. 

The last project explores the oriented attachment (OA) growth mechanism of α-MnO2 in 

aqueous solution. The atomistic formation mechanism of the OA interface is 

demonstrated based on sub-Å analysis of the edge structures of related planes of α-MnO2. 

The tunnel-based nature of OA interface is evidenced by direct atomic imaging. The role 

of surface atomic arrangement at single-tunnel level in directing the self assembly of α-

MnO2 nanowires is clearly illustrated with strong DFT theory support.   
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Chapter 1. Introduction 

1.1. MnO2 polymorphs, structure, synthesis and application 

Manganese oxide (MnO2) has been used as an important mineral for tens of centuries 

in human history due to the abundance of Mn and O in soils and deep sea sediments 

and the ubiquitous existence of MnO2.
1 The polymorphic property of MnO2 enables 

the wide applications ranging from pigment,2 catalysis,3 molecular sieve4 and battery 

electrode5. These polymorphs are built based on the [MnO6] octahedral units, as 

shown in Figure 1.1a. There are various ways by which these units are interconnected 

by sharing their edges and corners, leading to the formation of various MnO2 phases. 

These polymorphs include layered phase (δ-MnO2) and A×B tunneled phase, where 

A and B stand for the number of [MnO6] units constructing the tunnel wall. The size 

variation among the tunnels further divides them into 3×3 tunnels (todorokite), 2×2 

tunnels (α-MnO2), 1×1 tunnel (β-MnO2) and 1×2 tunnels (γ-MnO2). Figure 1.1 

illustrates several common MnO2 polymorphs and their mineral names.6  

 

Figure 1.1. Crystallographic structures of MnO2: the atomic model for [MnO6] 

structural unit (a), β-MnO2 (1×1 tunnel, pyrolusite) (b), γ-MnO2 (1×2 tunnel, 

ramsdellite) (c), α-MnO2 (2×2 tunnel, cryptomelane or hollandite) (d), 3×3 tunneled 

todorokite (e), δ-MnO2 (layered, birnessite) (f). The tunnel size for each phase is 

shown under the image. The pink spheres indicate the presence of cations inside the 

tunnels and between layers.6 
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Among all the polymorphs, α-MnO2 featuring 2×2 tunnels (4.6 Å × 4.6 Å) is mostly 

studied due to its proper tunnel size to accommodate different ions, such as Ag+, Ba2+, 

Cu2+, K+, Rb2+.7 Smaller cations such as Li+, Na+, Mg2+ can also be reversibly 

inserted into and extracted out of the 2×2 tunnels,8,9 making α-MnO2 a good 

candidate for rechargeable supercapacitor and battery electrode when its particle size 

goes to nanoscale. α-MnO2 nanostructures are dominantly synthesized using the 

hydrothermal method in an aqueous solution environment, where MnO4
- and Mn2+ 

redox couples are mixed and heated to 120-180 oC in a sealed autoclave.10 The 

formation of 2×2 tunnels in solution requires the presence of big cations such as Ba2+, 

K+ and Ag+, which support the 2×2 tunnels and prevent them from collapse during 

synthesis. These cations will then stay in the as-formed tunnels and can thus affect the 

property and performance of MnO2 as battery electrode by modifying its electronic 

structure, crystallographic structure and morphology. Based on the cation species in 

the tunnels, α-MnO2 mineral is further named as cryptomelane (α-KxMnO2) and 

hollandite (α-BaxMnO2). 

 

In spite of the clear definition of different MnO2 structures, the practically 

synthesized MnO2 does not always exist in a pure phase state. 3×3, 2×7, 2×4, 2×3, 

2×2 tunnels were reported to coexist inside one sample by the usage of high 

resolution transmission electron microscopy.11,12 As a results, lots of structural 

distortion and crystalline defects have been observed but received no clear 

explanation due to the limited characterization methods to determine the highly 

localized signatures.13,14,15 The generally existing large tunnel cations with varying 

concentrations further make the clarification of tunneled structure difficult. It is 

apparent that such structural features should be clearly identified and quantified 

before the tunnel growth mechanism can be well understood to further achieve size 

control of targeted tunneled phase for specific applications. 

 

1.2. Primary battery cells using MnO2 
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As early as 1860s, MnO2 was used as the electrode in Leclanche wet cell and it has 

been widely commercialized as a cathode material in primary alkaline batteries for 

one and half centuries due to its low cost and abundance.5,16 The typical 

commercialized alkaline battery is zinc-manganese system (1.5 V) consisting of 

electrolytic MnO2 cathode, aqueous electrolyte (KOH), and Zn powder anode, as 

shown in Figure 1.2a and b.17 Such a primary battery type offers an energy density as 

high as 150 Wh/kg,18 and has dominated the primary battery market over one century. 

Till now, however, the detailed working mechanism for this primary battery is not 

clear. While the typical Zn2+ intercalation mechanism has been reported in this 

system,19,20 a competing conversion reaction accompanied with phase transition is 

also demonstrated.21,16  Due to the light weight of Li metal and its strong negative 

potential, primary 3 V Li-MnO2 batteries have also been commercialized since 1970s 

to meet various applications demanding high energy density over 220 Wh/kg. A 

nonaqueous electrolyte (lithium salts dissolved in organic solutions) is thus required 

to work safely with the metallic Li anode. In addition, the MnO2 cathode must go 

through high temperature pretreatment to remove any residual water before the 

battery reaction happens.22 A typical commercialized Li/MnO2 coin cell is shown in 

Figure 1.2c with the discharge reactions shown in Figure 1.2d, where Li+ intercalation 

into tunneled MnO2 is believed to be the dominant mechanism. Figure 1.2e compares 

the development of various primary batteries over the past century, where Zn-MnO2 

and Li-MnO2 systems are listed.18 Figure 1.2 f and g compares the first discharge 

curves for Zn-MnO2 (f) and Li-MnO2 (g) among various MnO2 polymorphs, where 

Zn-MnO2 system shows an averaged discharge voltage around 1.3 V and Li-MnO2 

system exhibits a much higher value about 3 V.23 
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Figure 1.2. (a, b) Picture and schematic showing a commercialized 1.5 V Zn-MnO2 

alkaline battery and the inside components.17 (c, d) Picture and schematic showing a 

commercialized 3 V Li/MnO2 primary battery and inside components. (e) History of 

development of primary batteries in view of energy density.18 (f, g) Comparison of 

the first discharge curves for Zn-MnO2 (f) and Li-MnO2 (g) among various MnO2 

polymorphs.23 

1.3. Rechargeable lithium ion batteries using α-MnO2 

electrode 

The fast development of rechargeable lithium ion battery (LIB) and its wide 

application in portable electronic devices, electric vehicles and electrical grids 

demand a cost-effective mass production starting form the raw materials supply. 

Current commercialized LIB mostly uses layered LiCoO2 (or olivine LiFePO4) as the 

cathode and graphite as the anode, and the working mechanism is shown in Figure 1.3 

with the corresponding reactions expressed in Equation (1.1-1.3):24  
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(1.1)   Li1-xCoO2 + xLi+ + xe- = LiCoO2, for cathode reaction 

(1.2)   LiC6 = Li1-xC6 + xLi+ + xe- , for anode reaction 

(1.3)   LiC6 + Li1-xCoO2 = Li1-xC6 + LiCoO2, for the full cell reaction 

 

Figure 1.3. Schematic showing how a lithium ion battery is charged and discharged. 

During charge, Li+ form the cathode side are extracted out and transported into the 

layered anode through the electrolyte. In discharge, Li+ stored inside the anode are 

released and transported into the cathode side, and the electrons are conducted from 

the out side circuit to power devices.24  

 

α-MnO2, with the characteristic 2×2 tunnels suitable for reversible Li+ intercalation, 

has been the research focus in the battery community for two decades. Research 

towards its application as a rechargeable lithium ion battery electrode was initiated in 

1990s, when Rossouw and Thackeray demonstrated the reversible Li+ insertion in α-

MnO2 with a discharge capacity higher than 180 mAh/g.25 This value is much better 

than commercialized olivine LiFePO4 (160 mAh/g), LiCoO2 (160 mAh/g), and the 

widely studied spinel LiMn2O4 (120 mAh/g).25,18,26 Table 1.1 and Figure 1.4 give the 

comparison among LixCoO2, LixFePO4, α-LixMnO2 and spinel (s-) LixMn2O4 as 

rechargeable lithium ion battery cathodes.5 It shows that the 3 V α-MnO2 cathode, 

although possessing a lower potential vs Li, offers both highest theoretical and 

practical capacities. The theoretical energy density of α-LixMnO2 is also much higher 

than the values of LixFePO4 and spinel LixMn2O4, and comparable to that of LiCoO2. 
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However, Co has very limited abundance in earth crust (0.001% wt), while the source 

for Mn is rich (0.1% wt). The real time price (on June 1st 2016) for 1 kg Mn metal is 

about 2.00 USD, while it is 23.7 USD for 1 kg Co of the same purity.27 It has been 

estimated that the raw material cost to synthesize MnO2 is about 1% the cost of Co 

raw materials.5 In addition, Co-based cathode materials offer poor over charge 

stability and environmental compatibility, whereas Mn-based oxide are stable upon 

charge and are also environmentally friendly.5 As such, there has been a long lasting 

driving force to explore the practical application of MnO2 in rechargeable lithium ion 

batteries.  

 

Table 1.1. Comparison among LixCoO2, LixFePO4, α-LixMnO2 and spinel s-

LixMn2O4 as rechargeable lithium ion battery cathodes. The definition of electrode 

utilization is to describe how much percentage of the theoretical capacity is achieved 

practically during battery cycling. 

 

 

One can also note from Table 1.1 and Figure 1.4 that α-MnO2 exhibits low electrode 

utilization upon cycling, which is less than 60% of the theoretical capacity and decays 

much faster with the increase of cycling numbers.5 It is generally believed that, as an 

intercalation electrode, the electrode utilization of α-MnO2 highly depends on the 

interaction between inserted Li+ and the 2×2 tunnels to host Li+, and that it is the 

tunnel instability that results in the low electrode utilization. Extensive studies have 

focused on characterization of Li-tunnel interaction using variety of methods, such as 

XRD,31,32 neutron scattering,33 TEM,34 and DFT simulation8. It gradually turns out 

that the Li+ insertion in tunneled a α-MnO2 is not a simple one-step intercalation, but 

a complicated multistep Li-tunnel interaction, as evidenced in Figure 1.5 showing the 

potential profile, CV scan as well as in situ XRD analysis for the first 
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discharge/charge cycle.25,32 It can be seen form Figure 1.5a and b that Li+ 

insertion/extraction into 2×2 tunnels is featured by two-stage reactions rather than a 

simple single-stage insertion/extraction.25 The in situ XRD analysis even observed 

excessive line broadening and a diffuse splitting of the diffraction peaks ((110) and 

(200)), which were attributed to a Jahn-Teller-induced phase change that was 

unknown by then.32 

 

Figure 1.4. Comparison of cycling performance of various cathode materials for 

rechargeable lithium ion battery. Commercialized LiCoO2
28 and LeFePO4,

29 and 

widely studied olivine LiMn2O4
30 are compared to the targeted MnO2 cathode.23 

 

Figure 1.5. (a) CV scanning curve of a Li/ α-MnO2 cell (scan rate = l mV/s). (b) The 

initial discharge curve of a Li/α-MnO2 cell at a current rate of 0.2 mA/cm2.25 (c) In 
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situ XRD patterns of a Li/ α-MnO2 cell during the first discharge/charge. The time 

resolved data show evolution of α-MnO2-(110), (200) and (211) peaks during cycling. 

A reversible (110)- and (200)-peak splitting behavior during discharge/charge is 

observed, indicting the existence of reversible phase transitions. 

 

Currently, it is accepted that the Jahn-Teller distortion of [MnO6] octahedral during 

the reduction of Mn4+ to Mn3+ is the main reason for the resulted tunnel instability 

upon Li+ insertion.35 Figure 1.6 clearly illustrates Jahn-Teller distortion when 

[Mn4+O6] is reduced to [Mn3+O6].
36 Yet, details are still missing such as how does 

Jahn-Teller distortion proceed during Li+ insertion? Also, how does the tunnel lattice 

respond at the unit cell level? And how does the macroscopic structural distortion 

happen during Li+ intercalation.  

 

Figure 1.6. Schematic showing the electron distribution on [Mn4+O6] and [Mn3+O6]. 

Mn4+ has 3 electrons on the 3d level, which are evenly distributed to the three t2g 

orbits possessing lower energy, so there is no orbit degeneracy and thus no Jahn-

Teller distortion. For Mn3+ with 4 electrons on the 3d level, the forth electron has to 

occupy eg orbit, where the orbit degeneracy happens and splits into z2 orbit and x2-y2 

orbit. [Mn3+O6] will then be stretched or compressed based on whether the forth 

electron occupies the z2 orbit ((t2g)3(dz2)1) or x2-y2 orbit ((t2g)3(dx2-y2)1).36  

1.4. The order of chapters 
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This dissertation is organized in a way that our findings spanning the growth 

mechanism of MnO2 nanostructures and their electrochemical behavior are explained 

in details. Chapter 2 discusses the key experimental methods for this PhD project. 

Specifically, the details of hydrothermal synthesis of α-MnO2 nanostructures are 

provided together with the necessary morphology and phase analysis techniques such 

as X-ray diffraction (XRD) and scanning electron microscopy (SEM). Ex situ 

analytical (scanning) transmission electron microscopy (S)TEM for the atomic 

resolution analysis of the tunneled structure is also introduced together with the 

(S)TEM sample preparation methods. The in situ TEM setup to obtain the battery 

cycling process of a single MnO2 nanowire is also explained in details. The coin cell 

level battery testing of MnO2 cathode is described in terms of the lamination 

operation, coin cell assembly, galvanostatic (potentiostatic) (dis)charge and in situ 

synchrotron XRD and X-ray absorption near edge spectroscopy (XANES) procedures.   

 

Chapter 3 provides a critical review on the application of in situ TEM technique in 

solving rechargeable battery problems. Real time observation of material behaviors 

using in situ TEM has been developed for decades, while its application exploring 

rechargeable lithium ion battery is relative new. Still, there have been more than 100 

in situ TEM articles reporting interesting findings regarding the working process of 

rechargeable LIBs. As such, our fundamental understanding of (dis)charge 

mechanisms is greatly deepened.  

 

Chapter 4 covers in situ (S)TEM to study the dynamic lithiation process in single α-

MnO2 nanowire. The aberration corrected (S)TEM enables us to observe the tunnel 

evolution during Li+ insertion at atomic resolution, and to establish the relationships 

among the tunnel dimension, the compositional change and the electronic structure 

evolution. An ordered Jahn-Teller distortion of [MnO6] octahedral is confirmed for 

the first time by both experiments and simulations. The resulted asynchronous unit 

cell expansion well explains the commonly observed low electrode utilization of α-
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MnO2 as LIB cathode, casting light on rational design of the electrode structures to 

improve the battery performance.  

 

Chapter 5 describes our study on the reversible (de)sodiation process in single MnO2 

nanowire and compare the sodiation with lithiation in the same nanostructured MnO2. 

Due to the difference in ionic diameters and electronegativities, Na+ insertion in the 

tunnels exhibits sharply difference against Li+ insertion in terms of Na+ (Li+)-K+ 

interaction, tunnel stability and phase transition. An efficient discharge voltage 

control was shown to well maintain the tunneled structure during reversible Na+ 

insertion. This work could guide future work focusing on improving the cycling 

performance of tunneled MnO2 as sodium on battery cathode.  

 

Chapter 6 systematically discusses the effect of K+ concentrations inside 2×2 tunnels 

on the electrochemical performance of α-MnO2 as LIB cathode. The concentration of 

K+ in the tunnels is quantitatively controlled, and the resulted Li+ diffusivity, 

electronic conductivity and the rate performance of Li/MnO2 coin cells are compared 

at each K+ concentration. This work comes to the conclusion that the presence of K+ 

is favorable for both Li+ and e- conductivity in the tunnels, and it also leads to 

improved battery performance compared to the ones without K+ in the tunnels.  

 

Chapter 7 explores the oriented attachment (OA) growth mechanism of α-MnO2 

nanowires during the hydrothermal synthesis process. The as-formed OA interfaces 

are further studied focusing on illustrating the interface atomic structure and the 

formation process of such interface. The atomic nature of the OA interface is clearly 

demonstrated with the detailed formation mechanism well understood at single tunnel 

level. This work is hoped to direct future synthesis work capable of controlled 

nanostructure engineering, especially for the synthesis of tunnel-based nanomaterials.  
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Chapter 2. Experimental Methods 

The experimental details are provided here for the synthesis of α-MnO2 nanowires 

used for all the projects, the working mechanism for the ACSTEM towards atomic 

level analysis of the tunneled MnO2 structure, and the in situ TEM and in situ 

synchrotron X-ray scattering techniques for real time study at single-particle level and 

bulk level, respectively. 

2.1. MnO2 nanowires synthesis  

α-MnO2 nanowires were synthesized hydrothermally using KMnO4 and MnSO4 as 

reactants in aqueous solution.1 Specifically, 0.9878 g of KMnO4 and 0.4226 g of 

MnSO4•H2O were dispersed in 80 mL of deionized (DI) water under constant stir for 

30 min to form a purple solution. The obtained slurry was then transferred to a 100 

mL Teflon-lined stainless steel autoclave, sealed and heated at 160 oC for 12 h. The 

synthesized nanowires were first separated from the solution by centrifugation, then 

washed with deionized (DI) water and ethyl alcohol, and finally dried in air at 60 oC 

for 12 h. During the synthesis process, K+ doped the initially formed 2×2 tunnels and 

remained trapped inside the tunneled structure. 

2.2. Ex situ structural and compositional analyses 

The ex situ atomic resolution imaging of the tunneled was done in an aberration 

corrected scanning transmission electron microscopy (ACSTEM), JEOL JEM-

ARM200CF, equipped with a 200 KV cold emission source. The images are formed 

by scanning the ultra small electron probe across the sample surface and collecting 

the elastically scattered signal below the sample using a high angle annular dark field 

(HAADF) detector. The HAADF contrast is sensitive to the atomic number (Z) of the 

detected elements and the heavier the atom is, the more the electrons will be scattered 

toward high angles. Atomic images were mostly acquired using a 22 mrad probe 

convergence angle and a 90 mrad inner-detector angle. This process is illustrated in 
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Figure 2.1. The elemental information and electronic structure of α-MnO2 nanowires 

were recorded on an Oxford X-max 80 SDD windowless X-ray detector and a 

postcolumn Gatan Enfina EELS spectrometer with a 45 mrad collection angle.  

 

For the direct imaging of the tunneled structure of α-MnO2 nanowires, 

ultramicrotome was utilized to cut the nanowires into slices within electron-

transparent thickness. For the cross section slices preparation, the nanowires are first 

fixed using Epofix embedding resin and Epofix hardener mixture; the sample is then 

placed under an Edge CraftTM diamond knife mounted in Ultramicrotome (Leica UCT) 

and is cut to slices, as shown in Figure 2.2. The slices are directly moved to copper 

grid and dried at 50 oC for 24 hours before TEM characterization. 

 

Figure 2.1. Schematic (left) showing the working mechanism of STEM with HAADF 

detector forming the Z-contrast images of α-MnO2 tunneled structure using the 

elastically scattered electrons below the sample. The directly transmitted beam can be 

further deflected by a curved electron energy loss spectrometer (EELS) and reach the 

detector recording the inelastic energy loss of the electrons. The right picture shows a 

JEOL JEM-ARM200CF.  
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Figure 2.2. (a-b) Pictures showing the ultramicrotome setups for cutting α-MnO2 

nanowires into slices. (c) Enlarged optical picture showing the sample being cut into 

slices.  

2.3. In situ techniques (TEM, XRD, XANES) for MnO2-

based battery  

To construct a working lithium ion battery inside TEM chamber, a specially designed 

TEM holder capable of biasing was applied for the in situ lithiation and sodiation 

study in single α-MnO2 nanowire. This “open cell” design is explained in Figure 2.3. 

The holder has two separated metallic rods near the sample imaging area with one rod 

fixed and the other movable. To build the battery, single α-MnO2 nanowire is first 
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attached by conductive epoxy to the fixed rod tip to be the working electrode, and Li 

(Na) metal is attached to the other rod tip and functions as the counter electrode. This 

step is finished inside a glove box filled with Ar. Transportation of the holder from 

glove box to TEM will result in a naturally grown Li2O (Na2O) layer on the surface of 

Li (Na) metal, and this layer can function as a solid-state electrolyte to facilitate the 

diffusion of Li+ and prevent e- conduction. Inside the TEM chamber, the movable rod 

with Li/Li2O (Na/Na2O) in its tip is piezoelectric controlled to connect to the working 

electrode (the nanowire). After the connection, the reversible ion insertion/extraction 

is achieved via a alternating the applied bias between -3 to 3 V. The evolution of 

nanowire morphology, phase and electronic structure during ion insertion/extraction 

is dynamically recorded.  

 

 

 

Figure 2.3. (Left): Picture of the in situ STM holder. (Right): Schematic showing the 

configuration of an “open cell” based on single α-MnO2 nanowire inside TEM chamber, 

where the bottom TEM images shows the nanowire being partially lithiated from the 

right side to the left side. 

 

To compensate for the single nanowire-level in situ TEM characterization, coin cell 

level battery in situ testing was also done using synchrotron X-ray scattering. The 

coin cell assembly and in situ testing setup are shown in Figure 2.4.2 In-situ 

Synchrotron XRD (λ=0.118 Å) was performed at Beamline 11-ID-C located in 

Advanced Photon Sources of Argonne National Laboratory. The tested coin cell was 

assembled using pre-punctured spacer and electrode caps for better X-ray penetration. 
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Figure 2.4. (a) Schematic showing the experimental setup for in situ synchrotron 

XRD of w working coin cell made of Li/α-MnO2 electrodes. (b) The specially 

designed cell holder and (c) a perforated coin cell for sufficient X-ray transmission. (d) 

Schematic showing the components of a realistic battery.2 
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Chapter 3. Understanding Materials Challenges for 

Rechargeable ion Batteries and new Chemistries 

using in situ TEM: A Review① 

3.1. Introduction and background 

Current rechargeable ion batteries face various problems that prevent them from 

extensive and intensive applications in both industry and our daily life. These 

problems exist in battery electrodes, electrolytes, and solid electrolyte interfaces (SEI), 

and can not be easily detected due to the required sealed working environment. Real-

time high resolution transmission electron microscopy techniques are emerging as 

powerful tool in revealing the underlying mechanisms responsible for the failure of 

rechargeable ion batteries such as gradual capacity fading during cycling, poor power 

supply at low temperatures, thermal runaway and overcharge instability.1 Figure 3.1 

illustrates a working rechargeable ion battery (centered schematic) where the most 

significant issues/problems existing in the anode, the cathode and the electrolyte are 

indicated. For each specific problem/issue, a proper TEM technique has been 

developed for real time study, as shown in each branched schematic in Figure 3.1.  

 

Table 3.1 summarizes battery materials/behaviors that have been analyzed using in 

situ TEM. We have divided these materials based on the related discoveries in terms 

of new electrode designs, electrolyte issues, and new battery chemistries. Finally, we 

will discuss the side effect of electron beam on the observed electrochemistry results, 

and to which extent the nanoscale discoveries by in situ TEM can be applied to real 

battery electrochemistry at bulk level. A contrast between this review and the 

previous reviews on in situ TEM2,3,4 is that the focus here is on the critical 

problems/issues in modern lithium ion batteries. The in situ TEM work on 

                                                 
① The material contained in this chapter is in preparation for submission to Nature 

Communications.  
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rechargeable batteries beyond lithium ions is also reviewed and compared with that of 

lithium ion batteries. 

 

 

Figure 3.1 Schematic of the existing critical problems/issues in a lithium ion battery 

and the corresponding in situ TEM technique to study each problem/issue. (a) Solid 

state open cell design in vacuum for dynamic study of the structure failure in a 

working electrode with high spatial resolution. This design utilizes a STM TEM 

holder capable of biasing. Li metal (counter electrode) covered by a thin Li2O layer 

(solid electrolyte) is attached to one circuit terminate, while the target material 

(working electrode) is attached to the other terminate. By piezoelectric manipulation 

in nanoscale, the target electrode is connected to Li/Li2O, and the (de)lithiation 

process can then be controlled by alternating the bias. (b) Sealed electrochemical 

liquid cell design for dynamic TEM study of SEI formation and Li (de)plating in a 

real liquid electrolyte environment. Such a cell is fabricated based on two Si chips 

with an O-ring for the sealing. The liquid thickness is controlled by the spacer size, 
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which is usually in tens of nanometers to several microns. Each electrode is built on 

the surface of the bottom chip with its working area emmersed in the liquid chamber. 

SixNy windows are used near the working area to ensure good electron transparence. 

(c) In situ heating stage inside TEM chamber for study of thermal stability of Mn-, 

Co-, Ni-based cathode materials. The Joule heating circuit is built around the sample 

area to heat the sample to set temperature.  (d) Open cell design based on ionic liquid 

which possesses extremely low vapor pressure5 and good fluidity ensuring the 

interface wetting between the electrode and the liquid electrolyte. Compared to the 

solid state open cell in (a), this design enables the achievement of a full battery setup 

instead of a half cell inside the TEM chamber, while the spatial resolution is 

comparable to that of the design in (a). (e) The open cell design for the dynamic study 

of the interfaces in a solid state battery. The battery is thinned down (typically by FIB) 

to tens of nanometers for good electron transmission. To cycle the battery in TEM, 

the thin film device is welded to one circuit terminate of a biasing holder from either 

the cathode or anode side, and the other side can be connected to the circuit by 

piezoelectric control.  
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Table 3.1. Categorized problems/issues associated with lithium ion batteries that have 

been studied by in situ TEM 

In situ TEM of rechargeable ion batteries 

Lithium Ion Battery Beyond 

Li+ Electrode Electrolyte 

Thermal 

Stability 
Charge Storage Mechanism 

Structural 

Engineering 
Liquid Solid 

Li-O2
6,7 

Li-S8,9 

Na/FeF2
10 

Na/MnO2
11

 

Na/CuO12 

Na/NiO13 

Na/SnO2
14 

Na/Zn4Sb3
15 

Na/Co9S8
16 

Na/Sn17 

Na/CNF18 

Na/P19,20 

Na/Sb21 

Na/WO3
22 

Ca/WO3
22 

Mg/Co3O4
23 

 

NCA24 

NMC25 

LFP26 

Intercalate Alloy Conversion A+B 

Defects6

7,83 

SEI27-30 

 

Li 

Plating2

7,30-33 

LATSPO34 

 

LiPON35,36 α-MnO2
37

 

 

LFP38-40 

 

LiMn2O4
41,

42 

 

Carbon43,44  

 

TiO2
45,46 

Si47-56 

 

Sn57 

 

Ge58,59 

 

Al60 

 

Zn61 

 

Ga62 

MnO2
37,46 

RuO2
63

 

CuO64 

Fe2O3
65

 

SnO2
66, 67 

FeF2
68 

MoS2
69 

ZnO61 

Co3O4
70 

CoS2
71 

MnFe2O4
72 

Fe3O4
73 

CeO2
74

 

WO3
22

 

NiO13,75 

Si-C76-79 

 

Si-

ZnO80 

 

CoS2-

C71 

 

NiO-

C75 

 

Si-Sn81 

 

Ge-Si82 

Note of Table 3.1. NCA stands for LixNi0.8Co0.15Al0.05O2 cathode, NMC for 

LixNiyMnzCo1−y−zO2 cathode, LFP for LiFePO4 cathode, LATSPO for slid state 

electrolyte based on Li-Al-Ti-Si-P-O. In the A+B composite expression, A stands for 

the core component and B stands for the shell or substrate component. CNF 

represents for carbon nanofibers. 

3.2. Summary: research on rechargeable ion batteries using 

in situ TEM 

3.2.1. Electrode 

Developing advanced electrode materials such as Mn-rich cathodes and Si anodes is 

facing critical problems that demand in depth understanding of the electrode behavior 
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and effective solutions. Electrode-related scientific challenges include, but are not 

limited to: how cathodes experience thermal degradation and compromise battery 

safety; what is the charge storage mechanism for different materials; how Li dendrites 

nucleate and grow; how repetitive cycling leads to gradual capacity fading. In situ 

TEM work has been shown to be quite powerful in exploring the mechanisms 

addressing these questions.  

 

3.2.1. 1. Thermal stability analysis 

With the increasing demand for densely packed lithium ion batteries for high energy 

density applications, especially in EV and EG, thermal safety is most challenging 

because thermal failure in one battery unit will likely result in a chain reaction for 

large scale thermal release and even explosion.84 Particularly, Co (Ni, Mn)-based 

transitional metal oxides, when at their charged states, are subject to O release into 

the electrolyte containing flammable organics,85 resulting in exothermal electrolyte 

oxidation and even explosion. Real-time understanding of the thermal decomposition 

is thus the prerequisite toward the effective improvement of battery safety.  

 

Incorporating an in situ heating stage into TEM, Hwang et al.24 studied the thermal 

decomposition of LixNi0.8Co0.15Al0.05O2 (NCA) cathode material up to 450 oC in 

vacuum, where a layered to rock-salt phase transition (Figure 3.2a and b) and the 

evolution of surface porosity associated with O release are dynamically recorded. The 

finding that some charged particles undergo morphological and structural change 

even below 100 oC suggests the importance of thermal inhomogeneity causing the 

failure of cathode materials at normal operating temperatures. Using EELS to explore 

the surface electronic structures of LixNiyMnzCo1−y−zO2 (NMC) cathode upon heating, 

the reduction of unstable Ni4+ is confirmed to be the driven force for the lattice O 

instability, as shown in Figure 3.2c-i.25 This indicates that although the incorporation 

of Ni increases the energy density,86 it also introduces thermal instability into the 

cathode. By varying the x, y, z values in NMC after fully charged, the authors 
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optimized the composition giving the best combination of high capacity and 

reasonable thermal stability. 

 

Figure 3.2. (a): Temperature dependence of oxygen K-edge EELS of one NCA 

particle showing the pre-edge peak of the O K-edge to move to the main peak with 

increasing temperature. (b): the ordered phase transitions first from layer to 

disordered spinel, and finally to rock-salt structures at high temperature.24 (c, d, e) BF 

images from pristine NMC811 at room temperature, 200 °C, and 400 °C, respectively. 

(f, g, h, i) EELS of oxygen K-edge, and the Mn, Co, Ni L2,3- edges at different 

temperatures. EELS and SAED patterns were acquired from the areas indicated in the 

TEM images.25 

 

3.2.1.2. Charge storage mechanisms/kinetics/failure mechanism analysis   

Li+ (de)intercalation, Li+ (de)alloying with single element, and conversion reaction 

have been widely recognized as three dominant mechanisms for energy storage in 

electrodes.87 The typical intercalation electrodes possess intrinsic structures with one-, 

two- or three dimensional openings to facilitate Li+ transport without any significant 

structural change (LiCoO2 and graphite). The alloying mechanism proceeds by direct 

bonding between inserted Li+ and the host element A (A for Si, Ge, Sn, etc.) with the 

formation of Li-A alloys. The conversion reaction happens when Li+ insert into 

nanosized binary compounds as denoted by MX (M for Fe, Co, Cu, etc. and X for O, 

S, F, etc.), resulting in reduction of M cations to M0 and formation of LiX. In general, 

the three mechanisms direct charge storage behaviors of electrode materials so 

differently that the resulted electrode capacity, morphology, volume and structure are 
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sharply distinct. In situ TEM technique has been extensively applied to clarify these 

charge storage mechanisms that determine distinct electrochemical performance of 

individual electrode material in terms of morphological, volumetric and structural 

evolution. 

 

           a. Intercalation Electrode: Phase Degradation 

Ideally, an intercalation-based electrode should be structurally stable without any 

obvious phase transition during repetitive ion insertion. In practice, however, many 

reports have pointed out phase instability of these materials, especially in the cathode 

side, which leads to fast capacity decay with battery cycling. So it is important to 

understand the structural evolution during charge/discharge in real time and explore 

any inhomogeneous phase transition thermodynamics and kinetics. In situ TEM has 

been reported to track the dynamic response of various intercalation-based materials 

such as one dimensional α-MnO2 and LiFePO4 (LFP), three dimensional spinel 

LiMn2O4 and two dimensional graphite.  

 

In the case of MnO2 cathode featuring one dimensional tunneled structure, Yuan et 

al.37 confirmed an asynchronous tunnel expansion across a-b plane that is driven by 

sequential Jahn-Teller distortion of [MnO6] octahedral, as shown in Figure 3.3a. This 

asynchronous expansion damages the initial tetragonal symmetry of MnO2 and the 

tunnel stability, intensively explaining the origins for low practical capacity of 

rechargeable Li/MnO2 batteries. Lee et al.42,41 studied the dynamic (dis)charge in 

single LiMn2O4 nanowire using the ionic liquid-based open cell design, where a 

cubic-tetragonal transition “fringe” region was clearly captured (Figure 3.3b). 

Unexpectedly, no fracture or crack is found in nanosized LiMn2O4, suggesting that 

the physical fracture and capacity fading of spinel materials caused by the notorious 

cubic-tetragonal transition88 could be greatly modified via nanoscale engineering. 

Holtz et al.40 studied the dynamic (de)lithiation of LFP nanoparticles in a sealed 

liquid cell containing aqueous electrolyte, which recovered the native working 

environment inside a real battery. The LFP particles immersed in liquid electrolyte 
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are found to experience inhomogeneous (de)lithiation based on their dynamic 

observation via a novel energy-filtered TEM technique (Figure 3.3c). This finding 

from real liquid electrolyte environment greatly compensates other in situ TEM 

reports showing either a solid solution zone (Figure 3.3d)39 or a LFP-FP phase 

boundary (Figure 3.3e)38 in partially (de)lithiated LFP. These kinetic features could 

reasonably account for the poor cycling performance of LFP-based cathodes during 

ex situ battery testing.  

 

Figure 3.3 (a) Schematic showing how the microscopic asynchronous unit cell 

expansion (left) during lithiation leads to macroscopic morphology change of α-

MnO2 nanowire based on both theoretical prediction (middle) and experimental 

observation (right).37 (b)  Schematic showing the reversible movement of a phase 

transition region (red) between Li-rich and Li-poor phases during cyclic 

voltammogram testing of the open cell with a single LiMn2O4 nanowire-based 

electrode.41 (c) The time-sequential energy-filtered TEM images of a LiFePO4/FePO4 

cluster during one charge/discharge cycle. The brighter region indicates Li-poor 
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FePO4 phase featuring a characteristic electron energy loss peak around 5 eV, based 

on which the contrast is formed.40 (d) Schematic model and corresponding TEM 

images of the phase transition during delithiation process of a LFP crystal, where the 

solid solution zone and the boundary migration are dynamically recorded.39 (e) 

Schematic of the migration direction of the LFP/FP phase boundary, where the 

lithium ion diffusion direction ([010]) is confirmed to be the same as the phase 

boundary migration direction. The green arrows mark the lithium ion insertion 

direction.38 

 

          b. Alloying electrodes—Volume change and capacity fading    

Among all the alloying-based electrodes, Si is of great interest not only due to its 

abundance in nature, but also because of the extremely high theoretical capacity of 

2200 mAh/g via the following reaction: Li+ + e- + Si = Li4.4Si. However, Si anodes 

usually undergo serious capacity fading due to the large volume change during 

repetitive cycling, preventing its further commercialization in the market. As such, 

intensive in situ TEM work has been done to explore the capacity fading mechanisms 

during Li-Si alloying process, which is summarized in Figure 3.4. Some important 

kinetic discoveries during (de)lithiation of Si include two-phase alloying 

mechanism,49,48,50 size-dependent fracturing47,51 and lithiation anisotropy (<110> 

preferred).56,55,52,54,53 In addition to Si, some other elemental materials such as Sn,57 

Ge,59,58 and Ga62 have also been explored by in situ TEM, where distinct (de)alloying 

behaviors are discovered compared to Si electrode. These in situ TEM studies have 

led to insightful understanding of the alloying mechanisms and the origins for poor 

cycling performance of alloying electrodes. Future battery work could greatly benefit 

from these in situ findings by focusing on size engineering, surface modification and 

growth control to improve the cycling stability and capacity of these alloying-based 

electrodes.  
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Figure 3.4. In situ TEM findings during (de)lithiation of Si anode. (a) Evolution of 

the morphology and two-phase microstructure (Si-LixSi core-shell) in one Si 

nanowire during lithiation.50 (b) Schematic showing the 150 nm critical size for 

lithiation of c-Si below which the particle can be smoothly lithiatied and above which 

fractures are initiate from the surface.47 (c) Crack formation during c-Si nanowire 

lithiation and tilted series images showing the dumbbell shape of the lithiated c-Si 

nanowire.56 (d) 3D simulation of a partially lithiated Si nanowire showing the 

formation of a dumbbell-shaped cross section along the axis direction.56 

 

            c. Conversion Reaction Mechanism—Low coulombic efficiency and capacity 

fading  

Transitional metal oxides, sulfides and fluorides show reversible Li+ storage through 

conversion reaction when falls into nanosize.89 The critical step during this 

conversion reaction is the formation of extremely small M nanoparticles with high 

specific surface area, which act as catalysts to improve the kinetics of the LiX-related 

reactions. Despite the decent capacity of these materials, several prominent problems 

exist, such as the low coulombic efficiency during the charge/discharge, the large 

overpotential and fast capacity fading.89 The conversion reversibility involving Li2O 

formation/decomposition is also unclear without the real time dynamic observation.  
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The fast capacity fading with cycles is largely attributed to the violent volume change 

during the repetitive (de)lithiation, which has been sufficiently proofed by open cell 

design exploring the (dis)charge of various materials such as RuO2
63, CuO,64 Fe2O3,

65 

SnO2,
66,67 FeF2,

68 MoS2,
69 ZnO,61 and MnO2

37. Figure 5a illustrates the volumetric 

evolution of a single RuO2 nanowire being partially lithiated, where the radial 

expansion is clearly shown.63 Some conversion electrodes such as SnO2 and ZnO also 

experience Li-Sn and Li-Zn alloying process after conversion, which thus results in 

more serious volume change. Another significant contribution of in situ TEM is the 

understanding of origins for improved activity of Li2O-related reactions in conversion 

reactions, where Li2O is electrochemically inactive in theory. High-mag in situ TEM 

has captured the formation of extremely small metallic nanograins (2-3 nm) during 

the lithiation-induced reduction of transitional metal oxides, such as Co3O4,
70, CoS2

71, 

Fe2O3
65, RuO2

63, MnO2
37, FeF2

68, CuO64, and MnFe2O4
72. Interestingly, these reduced 

metallic particles are found to be structurally interconnected with each other inside 

the Li2O matrix, as exampled in Figure 3.5a-c demonstrating the Ru/Li2O network 

after the in situ conversion reaction. The high surface area of the metallic nanograins 

and their network for fast electron conduction are critical for the improvement of the 

Li2O reversibility. Coulombic efficiency (CE) is an important parameter when one 

electrode material is evaluated. It reflects the reversibility of the electrode materials 

and the capacity retention upon cycling. The first cycle CE is generally low in 

conversion-based TMOs electrodes (75% for TMOs compared with 90% in 

graphite).90,91 In addition to the formation of thin SEI layers, the dominant origin for 

the low CE in TMOs is proposed to be related to the conversion reaction itself, which 

has been further confirmed by in situ TEM. For example, while the lithiation of CuO 

results in formation of superfine Cu nanograins, the delithiation proceeds in a 

different way that Cu2O appears to be the final product instead of CuO. The following 

cycles are thus based on reversible conversion of Cu/Cu1+ (375 mAh/g) instead of 

Cu/Cu2+ (670 mAh/g), where the reversible capacity is greatly reduced compared to 



 41 

the first cycle, as shown in Figure 3.5d and e.64 Such a conversion feature is also 

reported in other TMOs such as Fe2O3,
65  Fe3O4,

73 and Co3O4 nanoparticles70.  

 

Figure 3.5. (a) In situ TEM setup showing RuO2 nanowires attached to an Al rod and 

Li/Li2O electrode/electrolyte. The fully converted/expanded area is analyzed to be 

Ru/Li2O network, which is confirmed by HRTEM in (b,c).63 (d-e) Schematic showing 

Li-insertion and Li-extraction, and corresponding phase transitions at different stages 

in CuO NWs: (d) 1st cycle, (e) 2nd cycle. The low coulombic efficiency is caused by 

the irreversible conversion reaction between Cu0 and Cu2+.64 

 

The highly localized structural and morphological features in nanoscale during the 

conversion reaction requires the application of in situ TEM rather than any other 

collective in situ techniques such XRD, Raman and XPS. These in situ TEM findings 

strongly suggest the necessity of applying structural engineering and surface 

modification to improve the cycling stability of the TMO-based electrodes. 

 

      3.2.1.3. Compositional/structural engineering 

It is common to improve energy storage performance of materials using either 

structural or compositional methods such as designing NiO-carbon75 and Si-carbon 

composition92 and doping targeted electrode with trace of functional elements93. 

Although these methods indeed improve the battery performance of various materials, 

the detailed mechanisms are not clear and need to be studied in real time.  
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The importance of the spatial correlation between Si and carbon matrix and how 

various Si-C geometries affect the (de)lithiation behavior of the composite electrode 

are well explored, as shown in Figure 3.6a.79  The synergic interaction in other Si-C 

configurations such as Si-carbon nanofibers,77 Si-graphene54,76 and Si-C yolk-shell 

composites78 are also well understood. Generally, two mechanisms have been 

proposed to explain the improved performance of these composites based on in situ 

TEM studies. First, carbon matrix functions as a strong and flexible buffer for the 

huge Si volume change during (dis)charge; second, the carbon shells covering Si 

particles prevent the repetitive SEI formation/decomposition on Si surface, 

maintaining most of the active Si materials. These two mechanisms are illustrated in 

Figure 3.6b and c using the Si@void@C particles with a york-shell design.78 

 

Figure 3.6. (a) Schematic drawing showing the lithiation characteristics of the 

particles attached to and embedded in CNF. (left) Original structure. (middle) 

Lithiation of the particles embedded in CNF is delayed when compared to the 

particles attached to the CNF surface. The necking of the particles confined by the 

CNF is clearly shown. (right) Lithiation of the particles embedded in the CNF leads 

to the cracking of the CNF.79 (b) The schematic and in situ TEM images showing the 

free expansion of a core Si particle where carbon coating and the SEI layer on the 

outer surface are well maintained. (c) The superior cycling performance and the 

coulombic efficiency of the Si@void@C electrode.78 (d,e) Core−shell vs axial 
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lithiation of Ge one nanowire with and without a thin Si coating. The pure Ge 

nanowire experiences a core−shell lithiation mechanism and shows the tapered shape 

phase boundary, while the Ge/Si core/shell nanowire experiences an axial lithiation 

mechanism behavior in sharp contrast with that of pure Ge.82 (f) A HAADF image 

showing a lithiated SnO2 nanowire with twin boundaries and the corresponding EELS 

maps of O, Li and Sn taken from the rectangular area. Li+ diffuse form left to right. 

The twin boundaries and the dark strip along the [001] direction show stronger Li 

signals along the directions indicated by red arrows, whereas Sn signals are slightly 

weaker.83 

 

The sensitivity of in situ TEM to spatially localized reaction has enabled the dynamic 

exploration of the mechanisms regarding the modification of battery kinetics through 

composite engineering. Graphene additives change the lithiation kinetics of CoS2 

particles from a side-to-side mode to a core-shell conversion with homogeneous 

expansion and delayed fracturing, which is ascribed to the increased Li+ and e- 

conductivity by graphene.71 Similar kinetics modification has also been reported in 

other composites such as NiO-graphene75, Si-Sn81 and  Ge-Si82. Figures 3.6d and e 

illustrate the efficient modification of lithiation kinetics by nanoscale interface and 

bandgap engineering via coating Si on single Ge nanowire surface.82 

 

Inspired by the idea that ion transport could be accelerated along dislocation cores in 

crystals,94 some in situ TEM reports have demonstrated the important role of structure 

defects in the (de)lithiation of crystalline electrodes. One material being intensively 

studied is SnO2 nanowires, whose lithiation features stress-driven dislocation 

plasticity67 and twin boundary-assisted Li+ transport (Figure 3.6f)83. These findings 

disclose the positive roles of crystalline defects in improving the lithiation kinetics of 

nanostructured electrodes. As the material technology is being developed towards the 

controlled introduction of crystalline defects (dislocation, twin boundary, stacking 

faults), we could foresee the next generation rechargeable batteries with superior rate 

performance to greatly benefit from these fundamental studies.  
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3.2.2. Electrochemistry interface  

 

3.2.2.1. Solid electrolyte interface (SEI) and Li dendrite growth 

One fundamental challenge in battery characterization is the direct observation of SEI 

formation/decomposition and Li dendrite growth so as to understand and modify their 

behaviors correspondingly.95 Current post-mortem studies inevitably cast doubt on 

the authenticity to reflect the original working status of SEI formation and Li plating 

due to the demanded battery disassembly exposing the air-sensitive components to air 

and causing damage. In situ TEM has been proved to be a good method for this study.  

 

Cui’s group have demonstrated the selective deposition and stable encapsulation of 

lithium via heterogeneous metallic seeded growth (Figure 3.7),31 and the application 

of interfacial nanoscale engineering to guide Li plating and stabilize SEI32. The 

proposed substrate-dependent Li nucleation and the effectiveness of interfacial 

engineering could further guide the design of hollow nanocapsules with selective 

metallic substrates for Li anode and even inspire research of Li-O2 and Li-S batteries, 

where the stability of metallic Li anode is critical. 

 

Figure 3.7. (a,b) Voltage profile during Li deposition on hollow carbon shells without 

(a) and with (b) Au nanoparticles. The inset shows the SEM image after deposition as 

well as the corresponding schematic. Fully filled and partially filled carbon spheres 

are marked by blue and red arrows, respectively. (c) Schematic of Li metal 

nanocapsules design. Au are loaded inside hollow carbon spheres, where a large void 

space is reserved for Li metal. Li is expected to nucleate from the Au seed. Carbon 
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shells provide both confinement and protection of the Li metal, as well as conduction 

channels for both electrons and Li metal. (d) Schematic of open cell for in situ Li 

deposition study with TEM. (e-h) TEM snapshots of the Li deposition process inside 

carbon shells with Au during in situ Li metal plating.31 

 

Since SEI formation and Li plating typically happen in the real battery environment 

of aqueous and nonaqueous organic electrolytes, in situ liquid cell TEM has been 

increasingly used to study the evolution SEI and Li plating behaviors in liquid 

electrolyte.40,96,30 Zeng et al.27,28 studied the Li+ dendrite growth and SEI 

formation/decomposition dynamically using LiPF6/EC/DEC as the electrolyte and Au 

as the electrodes, as shown in Figure 3.8a and b, where Li dendrite grows fast starting 

from Li-Au alloying.  The deplating process is inhomogeneous and initiated from the 

tip part immersed in the electrolyte, leading to “dead” Li metal that is disconnected 

form the circuit, which is also reported by Leenheer et al.30 The SEI formation is 

initially fast and accompanied with gaseous products formation, while its growth 

stops later and indicates the electron-transport limited growth property. Similar 

behaviors were also reported by Mehdi et al.33, as shown in Figure 3.8 (c-e). 

Changing the liquid electrolyte to LiPF6/EC/DMC, Sacci et al.29 found that the SEI 

formation on the Au electrode is not uniform but in the shape of “dendrites” that are 

similar to Li dendrites. Further more, the SEI dendrite grows prior to the following Li 

deposition, implying the critical effect of electrolyte composition and its electrode 

decomposition on Li plating. These in situ observations could help to understand the 

kinetics of Li deposition and SEI growth and further to circumvent the related 

problems and battery failure. 
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Figure 3.8. (a) In situ observed growth of the SEI film with a gas bubble emerged 

between the Au electrode and the SEI film. b: In situ observed growth of Li dendrites 

from the counter electrode (Au).27 (c-e) HAADF images of Li deposition (d) and 

dissolution (e) at the interface between the Pt working electrode and the LiPF6/PC 

electrolyte. Note that while Li dendrite exhibits darker contrast than the surrounding 

liquid organic electrolyte does in the bright-field TEM in (b), it indeed shows a darker 

contrast in the dark-field STEM images in (c-e).33 

 

As one can see, the spatial resolution of the liquid cell falls far behind that of the open 

cell design where no thick liquid species are present, not to mention the elemental and 

electronic structure sensitivity. Some reports have demonstrated the possibility of 

extracting crystalline structure and electronic structure information of targeted 

materials immersed in aqueous solution97 and even organic electrolyte solvent.98 Still, 

future work should aim to increase the spatial resolution and the analytical ability of 

the liquid TEM technique by reducing the liquid thickness along electron path, 

replacing the electrodes (Au) with lighter/inert elements (carbon/graphene, etc.), 

shortening the path of characteristic X-ray to the detector and using target materials 

with larger electron scattering cross section.  

 

3.2.2.2. Solid State Electrolyte (SEI resistance, thickness effect, thermal, etc.) 
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Conventional lithium ion batteries with flammable and combustible liquid electrolyte 

generally have safety problems that limit their scalability and compatibility with 

metallic Li anode.84 Solid state electrolyte (SSE), on the other hand, is composed of 

safe and nonflammable materials and is compatible with metallic Li.99 In addition, the 

absence of liquid leakage in SSE allows more flexible configurations such as thin 

film and miniature batteries.100 Currently, however, there are several critical issues 

not well understood, such as electric potential distribution across the SSE/electrode 

interface, nanoscale (miniature battery) electrochemistry, complicated interfacial 

elemental interdiffusion and its effect on Li (de)plating, effect of temperature on Li+ 

diffusion and interface migration. To answer these questions clearly, in situ TEM 

coupled with localized elemental/valence detecting capability is intensively applied to 

dynamically track Li+ diffusion kinetics and SSE/electrode interface migration, 

providing insightful understanding of the ionic transport mechanisms.   

 

 

Figure 3.9. (a) The SEM (left), schematic (middle) and HAADF (right) images 

showing a Si-nanowire based lithium ion battery (NWLIB). These NWLIBs, with the 

electrolyte layer as thin as <200 nm, are further cycled inside TEM, with the structure 

evolution at the electrode/SSE interface dynamically recorded. (b) Schematic of the 

thin film nanobattery mounted on a TEM grid via focus ion beam operation. The 
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cathode is electrically connected to the grid and a piezo-controlled STM tip makes 

contact with the anode current collector. (c) TEM of STM tip connecting a thin film 

nanobattery. (d) Electrochemical profile of the in situ cell galvanostatically charged in 

the TEM. (e−g) HAADF images of the nanobattery stack along with Li K-edge 

concentration mapping of (e) pristine, (f) ex situ, and (g) in situ samples with scale 

bar representing 200 nm. (h−j) Li K-edge spectra from various parts of the layers 

displayed for (h) pristine, (i) ex situ, and (j) in situ samples.101 

 

Currently, two representative designs for the miniature solid state batteries are 

proposed for in situ study, i.e. the single nanowire-based battery and the thin film 

battery, as shown in Figure 3.9. Using the nanowire-based design, the rapid battery 

self-discharge phenomenon is found when the SSE layer is thinner than certain 

critical value (180 nm in case of LiCoO2/LIPON/Si).35 It is proposed that the space-

charge limited electronic conduction could shorten the anode and cathode directly 

through the electrolyte and lead to rapid self-discharge with void formation at the 

interface. Considering the rising demand for miniature 3D lithium ion batteries to 

power the microsystems operating without power hardwires or communications, this 

work provides useful metric guidelines for the future battery design. Wang et al.101 

carried out nanoscale spectroscopic characterization of a LiCoO2/LiPON/Si thin film 

battery across the LiCoO2/LiPON interface during charge, as shown in Figure 3.9b-i. 

A structurally disordered layer was for the first time captured and featured obvious 

chemical change with Co oxidation and Li oxide formation during charge, which 

accounts for the commonly observed interfacial impedance in solid state batteries. 

Applying in situ holography to the similar thin film design, Yamamoto et al.34 

quantified the dynamic 2D potential distribution caused by movement of lithium ions 

near the LiCoO2 cathode/Li-Al-Ti-Si-P-O electrolyte interface. 

 

With increasing research interest in all-solid-state batteries, the powerfulness of in 

situ TEM in detecting localized phase, composition, and electronic structure across 

interface regions will provide deep understanding of the (dis)charge reactions as well 
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as the failure mechanisms. As interfacial Li+ distribution has been detected directly by 

EELS in either STEM or EFTEM mode,102 it is hoped that the Li+ diffusion kinetics 

will be soon to be explored dynamically with more details unveiled. Another 

promising direction is about the dynamic study of the thermal response of the 

miniature solid state batteries and the Li+ diffusion across the electrode/SSE interface 

at different temperatures. With the fast development of lab-on-chip technology and 

the multifunctional TEM holders capable of biasing and heating simultaneously, the 

thermal-related in situ TEM study of SSE is expected to come out soon. 

 

3.2.3. Beyond lithium ion battery (Na+, Mg2+, Ca2+, Al3+, etc.) 

 

3.2.3.1.  Rechargeable batteries with metallic lithium anodes 

Current lithium ion batteries, although being suitable for small-scale devices, can not 

reach the high energy density or longevity requirement to power electric vehicles with 

comparable performance to that of internal combustion vehicles. Researchers are thus 

turning to new electrochemical couples such as Li-O2 or Li-S providing at least 5 

times the practical energy density of current lithium ion batteries.103 Up to now, 

however, neither of them is commercialized due to some significant hurdles that have 

not been well understood and overcome. In Li-O2 battery, the well known problems 

include formation of insulating Li2O2 during discharge, gradual passivation of 

electrode surface, and large charge overpotential.104  Li-S couple also suffers from 

insulating Li2S and S phases, large volume expansion as well as dissolvable 

intermediate polysulfides shuttling between anode and cathode.105,106 There are a few 

in situ studies, although not many, focusing on the dynamic study of  Li-S and Li-O2 

electrochemistry.  

 

Zhong et al.6 explored the origin for large charge overpotential in Li-O2 battery with 

the in situ design and observation shown in Figure 3.10 (a-c).The finding that the 

decomposition of Li2O2 always starts near the e- sink (carbon nanotubes) rather than 

the Li+ sink (Si) suggests the charge/oxidation kinetics to be limited by e- transport 
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rather than Li+ transport. Kushima et al. dynamically studied both the formation and 

decomposition of Li2O2 (Figure 3.10 (d-f)).7  While similar e- transport-limited charge 

reaction is observed, the discharge process surprisingly features Li2O2 accumulation 

near the interface between the electrolyte and the reaction product.  This is a strong 

indication that although the charge process is limited by e- conductivity, the discharge 

is limited by Li+ diffusion, resulting in large overpotentials during charge and 

discharge, respectively. The idea of directly using gas-rich solution in this liquid cell 

experiment can be potentially used in other in situ studies involving gas/liquid/solid 

electrochemical reactions, where the introduction of gas into the TEM chamber has 

always been a challenge. Although these two in situ reports utilized either solid state 

open cell or sealed liquid cell design, their findings regarding the charge kinetics 

agree well with each other. This further demonstrates the importance of designing 

conductive porous cathode materials with ability to confine the dissolution of Li2O2 

into the electrolytes. 

 

Figure 3.10. (a) Schematic of an in situ TEM microbattery based on a LiAlSiOx-

coated Si NW contacting a single Li2O2 particle. (b) High-magnification TEM image 

of the Li2O2 particle in (a) showing a MWCNT contacting the particle. (c) Oxidation 

of Li2O2 during application of a 10 V potential to the MWCNT/ Li2O2 positive 
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electrode against the Si NW negative electrode. The Li2O2 particle near the MWCNT 

bundle in Particle 1 is rapidly oxidized.6 (d) A sealed liquid cell mounted onto a 

Nanofactory STM holder capable of applying biasing. The cell is glued to two Au 

wires with conductive epoxy. (e-f) The formation and decomposition of Li2O2 on Au 

electrode surface during discharge (e) and charge (f).7  

 

For Li-S electrochemistry, a S8/Li2S interface during discharge was captured in real 

time by Xu et al.8, as shown in Figure 3.11 (a-c). The authors believe such an 

interface could prevent further Li+ diffusion into the bulk S due to the insulating 

character of Li2S, leading to the incomplete sulfur reduction during high-rate 

discharge. Kim et al.,9 on the other hand, proposed an opposite theory that the Li2S/S 

interface is electrically conductive (Figure 3.11 (d-i)), which is deduced based on the 

observation of a sharp and flat Li2S/S8 lithiation interface in sulfur nanowire covered 

by CNT. This discovery regarding the novel property of Li2S/S8 interface could guide 

further work on the modification/engineering of electrochemistry interfaces for 

improved battery performance. The application of protective layers (CNT) on sulpur 

also demonstrated an efficient method to study electron beam-sensitive materials for 

future in situ TEM study.  
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Figure 3.11. (a) Schematic showing the Li−S cell setup for in situ TEM investigation, 

(b) TEM images of the Li−S cell for its discharge process (1−60 s), (c) SAED 

patterns of sulfur and the formed new layer.8 (d–f) TEM images captured during 

lithiation of S confined in a carbon nanotube and (g–i) their corresponding diffraction 

patterns.9 

 

3.2.3.2. Rechargeable batteries with non-Li candidates.  

Li has limited abundance in earth crust, which can hardly meet the explosively 

growing demand for rechargeable batteries. People are thus seeking alternative charge 
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carriers for extensive energy storage applications. Beyond Li+, Na+ is a very 

promising candidate due to its rich storage in earth as well as the relatively light 

atomic weight.107 Some multivalent ions such as Mg2+, Ca2+ and Al3+ are also studied 

as promising candidates to replace Li+ due to their high energy density.108,109 

However, due to the variation in electronegativities and ionic sizes, the dynamic 

(dis)charge process is expected to exhibit distinct features compared to that in lithium 

ion batteries. The dynamic study in this area is still at the preliminary stage and 

current findings are frequently compared to that from the intensively studied Li+-

based electrochemistry. 

 

         a. Rechargeable Sodium Ion Battery 

                 Phase transition difference:  

To understand how ionic size and electronic structure of different ionic species affect 

the electrochemical performance and result in various failure mechanisms, many in 

situ TEM reports focus on the comparison of the phase transition in sodiation and 

lithiation of various electrode materials. Materials being compared include FeF2, 

MnO2 and CuO, where distinct (de)sodiation mechanisms are discovered. The 

sodiation of FeF2 nanoparticles is a multistep reaction involving regular conversion 

on the particle surface and a disproportionation reaction in the core, while the 

lithiation process is a direct one-step conversion reaction to Fe and LiF.10 Due to the 

different diffusion paths of Li+ and Na+ inside the tunnels,110,111 tunneled α-KxMnO2 

maintains its stability during lithiation up to Li1MnO2,
37 while it degrades much faster 

during sodiation before it reaches Na0.5MnO2,
11 as shown in Figure 3.12 (a-c). The 

(de)sodiation of CuO anode is totally reversible between CuO and Cu with Cu2O as 

the intermediate phase,12 whereas the previous (de)lithiation work of CuO64 only 

demonstrates partial reversibility with Cu2O as the final product. The physical 

properties of Li2O/Cu2O and Na2O/Cu2O interfaces should be responsible for the 

difference in reaction activity, which apparently requires more fundamental study. 
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Figure 3.12. (a-c) Comparison of lithiation and sodiation in K+-stabilized α-MnO2 

nanowires in terms of the stability of K+ in the tunnel and the phase evolution.11 (d) 

Schematic cartoons showing different reaction modes between sodiation and 

lithiation of NiO. The sodiation process exhibits a “shrinking-core” mode that 

thickens the Na2O surface layer and thus impedes further Na+ insertion, while the 

lithiation features finger-like heterogeneous reaction fronts enabling continuous 

lithiation.13 (e,f) Schematic showing how to define the sodiation length, and the 

comparison of sodiation vs lithiation front propagation speeds of Zn4Sb3, SnO2, and 

Co9S8/CNT nanowires.15 
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                   Kinetics difference: 

In addition to the phase transition variation, the reaction kinetics of sodiation and 

lithiation should also exhibit certain difference considering the distinct sizes of Na+ 

(1.02 Å) and Li+ (0.76 Å).111 Compared to the lithiation of NiO featuring a “finger-

like” heterogeneous reaction front, its sodiation is much delayed due to the 

“shrinking-core” mode that thickens the Na2O surface layer and thus impedes further 

Na+ insertion, as shown in Figure 3.12d.13 In terms of diffusion rate, Na+ diffusion 

was found to proceed 30 times slower than Li+ in SnO2 nanowire due to the larger 

size of Na+, the resulted higher Na+ diffusion barrier and the disconnected Sn network 

providing poor electron paths.14,67 Contrary to SnO2 electrochemistry, the 

counterintuitive influences are reported for the sodiation and lithiation processes in 

Zn4Sb3 nanowires15,112 and carbon nanofiber-confined Co9S8,
16,113 where sodiation 

proceeds faster than lithiation over one order of magnitude. Figures 3.12e and f 

summarize the reaction front kinetics of several electrodes focusing on the 

comparison of their lithiation and sodiation processes. It is predicted that the 

improved reaction kinetics in sodiation of these materials might be ascribed to the 

high electrical conductivity of various phases involved15.  

        Multivalent rechargeable batteries: 

Although many ex situ battery experiments have demonstrated the promising future 

for multivalent batteries, there are few in situ TEM reports exploring the dynamic 

cation (de)insertion mechanisms. Bivalent Ca2+ was first reported to be 

electrochemically inserted into single crystalline WO3 films using the open cell 

design in TEM, where an intercalation step (CaxWO3) prior to conversion of WO3 

into W and CaO is explicitly revealed at atomic scale.22 Luo et al.23 compared the 

Co3O4 nanocubes anode regarding the lithiation, Mg2+ insertion and Al3+ insertion. 

The experiments applied the same solid state open cell design with Li, Mg and Al as 

the counter electrodes, respectively. In contrast to the fast conversion kinetics for the 

lithiation, the insertion of Mg2+ shows no sign of conversion reaction of Co3O4 other 

than Mg plating on the surface in the form of Mg nanoparticles. Al3+ insertion is even 

more sluggish with no obvious reaction. Such a reaction sluggish is largely 
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determined by the inactive solid state oxide layers (MgO and Al2O3) covering the 

surface of metallic anodes, as well as the large repulsive forces encountered by the 

inserted multivalent cations. The achievement of multivalent cation insertion for in 

situ TEM study largely depends on the choice of a proper electrolyte with low cation 

diffusion barrier, and the counter electrode with large openings and little repulsive 

forces against continuous insertion. 

 

3.2.4. How electron beam affects the real electrochemistry in TEM 

 

Compared to other characterization techniques such as Raman, XRD and optical 

microscopy, electron microscopy provides information by direct particle-particle 

interaction, which results in easier sample damage and acquisition of fake information. 

For battery research, since the reaction essentially involves electron transfer, the 

effect from electron beam is thus more obvious with the possibility of changing the 

environment of the very original reactions. Li, being the lightest solid element in the 

current periodic table, is hard to detect by TEM due to its weak scattering cross 

section and vulnerability to beam radiation. As such, when the battery 

electrochemistry is studied dynamically using in situ TEM, extra care should be taken 

to consider the side effect induced by high energy electron beam, especially when the 

sample contains electron-sensitive liquid electrolyte. These side reactions include 

atomic knockout damage, radiolysis of liquid, bubble formation, surface 

contamination and particle precipitation.114 

 

Typical side effects for an open cell design include electron heating, material 

ionization, and atomic knock-on damage. Solid Li2O is not always stable under high 

energy electron beam, and its instability can affect the observed electrochemical 

behaviors.115 It has been reported that the electron beam can either slow down the 

lithiation process in Si nanowires2 or initiate the chemical lithiation of SnO2 

nanowires by decomposing the Li2O electrolyte into elemental Li and gas4, as shown 

in Figure 3.13 (a-f). In spite of these observed differences, the in situ electrochemistry 
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generally agrees with ex-situ real battery electrochemistry in terms of reaction 

kinetics and structural evolution. For example, Liu et al.56 reported the anisotropic 

lithiation of Si nanowires based on in situ TEM, while similar anisotropic Si 

expansion was also reported from ex situ coin cell-level testing.116 The reversible 

(de)lithiation of Ge nanowires and formation of nanopores are also confirmed by both 

in situ and ex-situ TEM recently.59,117 In fact, by taking sequential intermittent images 

(with limited exposure time) instead of continuous video recording, the effect from 

electron beam can be minimized.71  

 

Figure 3.13. (a, b) Schematic drawing (a) and TEM imaging (b) showing the 

retardation of the lithiation of Si nanowire by the imaging electron.2 (c) Schematic 

illustration of the in situ chemical lithiation design using a conventional TEM holder, 

where SnO2 nanowires are mixed with Li metal coated with native Li2O. (d-f) 

Lithiation of a SnO2 nanowire driven by the electron beam. Note that the nanowire 

showed the same microstructural evolution as reported in the in situ electrochemical 
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lithiation experiment.4 (g) Calculated concentrations of eh
−, H•, H2, H2O2, OH• and O2 

in water as functions of exposure time under electron beam.118 (h,i) Pt cyclic 

voltammetry in (h) for thick liquid and (i) for thin liquid environments in sealed 

liquid TEM cells. The blue curve is obtained with electron beam off while the red one 

is when beam is on. The in situ liquid TEM chips exhibited electrochemical activities 

qualitatively similar to that of ex situ microelectrodes. For extremely thin liquid layer 

of about 150 nm, the voltammetric profile exhibits a significant Ohmic drop in (i).40 

 

For sealed liquid cell TEM, Holtz et al.40 have demonstrated the accuracy of in situ 

liquid TEM in measuring the real battery electrochemistry by performing cyclic 

voltammetry of one Pt film, as shown in Figure 3.13h and i. The in situ C-V response 

agrees with the characteristic voltammetry of a polycrystalline Pt electrode at an 

appropriate current range regardless of the electron beam. This is an indication that 

liquid cell electrochemistry can replicate the situations of a conventional 

electrochemical battery, although the liquid thickness has been shown to affect the 

Ohmic resistance. It is also notable that electrolyte instability and even decomposition 

were also reported for liquid electrolyte in sealed liquid cell containing a range of 

aqueous/inorganic/salt complexes associated with state-of-the-art Li-ion battery 

systems118,119. Figure 13g shows the possible species generated by electron beam 

inside an aqueous solution, where various gases (bubbles) and free radicals could 

potentially affect the battery electrochemistry as well. Figure 3.14 shows how the SEI 

nucleates and grows on Li deposit when the liquid electrolyte (LiPF6/EC/DMC) is 

exposed to electron beam and decomposed.30 It is apparent that these side products by 

radiolysis should be carefully addressed before the observed behaviors using in situ 

TEM can be confidently applied to real battery environment.  



 59 

 

Figure 3.14. Beam-induced SEI growth. (a) BF STEM image of a Li grain during 

deposition and nearby 150 nm box for beam scanning in the electrolyte; (b) image 

after 5 min beam exposure. On the side of the Li grain closer to the beam exposure, a 

dark SEI deposit formed and grew; (c) image after 12 min beam exposure, where the 

location of the electrochemically stripped Li grain is indicated by a dotted yellow line; 

(d) image after scanning the beam in 75 nm boxes inside and outside the beam-

induced SEI; (e) approximate thickness of the SEI measured along the red dotted line 

in (a).30 

3.3. Conclusions 

We have categorized and summarized the current critical problems in rechargeable 

batteries (lithium ion, Li-O2, Li-S and sodium ion batteries) that have been explored 

by in situ (S)TEM in real time. Compared to other in situ techniques, (S)TEM enables 

the direct visualization of the electrochemical process in terms of the phase evolution 

and reaction kinetics. The sensitivity of (S)TEM in capturing localized information 

and inhomogeneity also compensate with other in situ methods such as XRD and 

Raman that are good at obtaining collective information. These in situ techniques 

have contributed significantly to the fundamental understanding of the operation of 

rechargeable batteries. 
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It is apparent that there are still many challenges during this early development stage 

of in situ TEM for battery study and worth of future research exploration. The 

decrease of spatial resolution by introduction of various electrochemical stimuli 

should be minimized. The artifacts not related to real battery electrochemistry should 

also be carefully interpreted with consideration of the actual TEM working 

environment and the high-energy electron beam effect. As batteries can work in 

various conditions, such as high temperature, compressive forces, intense light and 

ion radiation, it is also worth studying these effects dynamically by bringing as many 

stimuli into TEM chamber as possible. This goal could be probably achieved in the 

near future by delicate design of different TEM holder, chips and reaction chambers 

with the abilities of heating, lighting and compressing in addition to biasing. It could 

be foreseen that in situ TEM will be more extensively and intensively applied into the 

study of battery reactions in the future, together with the fast development of lab-on-

a-chip microprocessing technology.  
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Chapter 4. Asynchronous Crystal Cell Expansion 

during Lithiation of K+-Stabilized α-MnO2
② 

4.1. Introduction 

Manganese dioxide (MnO2) is well known as an important functional metal oxide 

being applied in the fields of biosensor, ion exchange, catalysis, molecular adsorption, 

and particularly, energy storage.1-4 These various applications originate from the 

polymorphic property of MnO2, which allows the existence of different structural 

forms (α-, β-, γ-, δ-types, etc.).5-7 These forms differ in the way the structure units 

([MnO6] octahedra) are interlinked. As such, they possess interlayers or tunnels with 

gaps of different sizes in Å range.8 Figure 4.1 illustrates crystal structures of tunnel-

based MnO2 polymorphs. Among them, hollandite α-MnO2 is body-centered 

tetragonal with I4/m space group and has one dimensional 2×2 (4.6 Å × 4.6 Å) and 

1×1 (1.9 Å × 1.9 Å) tunnels intergrowth along c axis,8 as shown in Figures 4.1c and 

4.1d. The 2×2 tunnels are generally stabilized by cations (NH4
+, Ba2+, Ag+, K+ etc.) 

introduced during synthesis process.2,9  

 

Its low cost, natural abundance10 and environmental friendliness11 make α-MnO2 one 

of the most important materials for electric energy storage in lithium ion battery, 

supercapacitor and Li-O2 battery. For this application, the presence of tunnels plays a 

key role as the reversible capacity is largely determined by tunnel-driven 

(de)intercalation of Li+.12-14 α-MnO2 is believed to show topotactic reduction of Mn 

(Li+ solid solution) during lithiation. Specifically, partially lithiated α-MnO2 was 

reported to show identical expansion tendency along a and b directions, and thus, the 

                                                 
② The material contained in this chapter was previously published in the Nano Letters. 

(Reprinted with permission from Y. Yuan, A Nie, G. Odegard, C. Johnson, J. Lun, R. 

S. Yassar. Nano Lett., 2015, 15, 2998–3007. Copyright © 2015 American Chemical 

Society)   
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tetragonal symmetry is maintained without any phase transition.15-17 On the other 

hand, several groups pointed out that the first galvanostatic discharge curve of Li/α-

MnO2 battery was characterized by stepwise potential variation or obvious voltage 

multi-plateaus, indicating existence of phase transition.18-20 Yet, none of them could 

provide direct structural evidence for these specific lithiation stages. In addition, it is 

still unclear what is the origin for the commonly observed low electrode utilization of 

α-MnO2, where the discharge capacity is less than 60% of the theoretical value.20 

 

 

Figure 4.1 (a-c): Crystal structures of β- (1×1 tunnel), γ- (1×2 tunnel), and α-MnO2 

(1×1 and 2×2 tunnels) using [MnO6] octahedra model demonstrating the tunnel 

structures by red dashed squares. (d): Atomic structure of one 2×2 tunnel and two 

adjacent 1×1 tunnels of α-MnO2 growing along [001] (c-axis). 

 

These uncertainties result mainly from two practical limitations: first, it is difficult to 

precisely characterize Å-sized tunnels in MnO2 due to resolution limitations of the 

most characterization techniques. Second, under electrochemical cycling, it is 

difficult to acquire structural and compositional information with any conventional 

ex-situ electrochemistry methods. In-situ Transmission Electron Microscopy (TEM) 

nanoscale electrochemistry studies using an “open-cell” concept has recently been 

developed21 and proved later by many experiments to be powerful in real-time study 
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of electrode materials such as graphene,22 Si,23-25 Ge,26 CuO,27 ZnO,28 TiO2,
29 SnO2,

30 

FeF2,
31 LiFePO4

32 and different nanocomposites33-35 under electrochemical cycling.  

 

In this paper, in-situ Scanning TEM (STEM) was used for the study of lithiation 

behavior in single crystalline α-MnO2 nanowire. Local morphological changes 

including lattice expansion and Mn valence evolution of the nanowire during 

dynamic lithiation process are revealed. Our findings show that α-MnO2 nanowire 

exhibits two types of tunnels: 1×1 and K+-stabilized 2×2 tunnels. Lithiation of α-

MnO2 nanowires is characterized by asynchronous behavior of lattice parameters a 

and b, resulting in a Tetragonal-Orthorhombic-Tetragonal (TOT) symmetrical 

transition of lithiated α-MnO2. This is contradicting to the widely accepted 

understanding that a and b lattice parameters expand synchronously when tetragonal 

α-MnO2 is discharged. DFT calculation reveals that the asynchronous lattice 

expansion originates from Li+ preferably occupying Wyckoff 8h sites inside 2×2 

tunnels in a specific sequence. The symmetry transition of α-MnO2 electrode during 

lithiation is expected to explain the appearance of stepwise potential variations during 

discharge and the commonly observed low electrode utilization in Li/MnO2 

batteries.10,36,37  

4.2. Methods 

The experimental details for the nanowire synthesis, TEM sample preparation, ex situ 

and in situ TEM operation and simulations are provided in Appendix A. 

4.3. Results and discussion 

Figure 4.2 shows the atomic structure of an α-MnO2 nanowire prepared via 

hydrothermal method.38 Figures 4.2a and b indicate that the nanowire is single 

crystalline α-MnO2 phase with growth direction (c-axis) along [001]. HAADF image 

of the nanowire viewed along <010> is given in Figure 4.2c with the corresponding 

Inverse Fast Fourier Transform (IFFT) image and simulated crystal structure along 
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<010> direction given in Figures 4.2d and e, respectively. The Mn atomic columns, 

marked by yellow dots in IFFT, can be easily identified. The appearance of O atoms 

in every two Mn columns contributes to the alternative changes in the brightness of 

Mn columns as marked by the yellow dots in two different sizes (Figure 4.2d). Close 

examination of figures 4.2c and d indicates that there are extra atomic columns lining 

up between two Mn columns, as marked by the pink dots. Considering the 

hydrothermal synthesis where potassium (K+) was present (see Supporting 

Information), these extra columns are indicative of K atoms acting as stabilizers 

inside 2×2 tunnels of α-MnO2. This was subsequently confirmed by energy dispersive 

spectroscopy (EDS) as discussed in the following. 

 

Figure 4.2 (a,b): TEM image of a single α-MnO2 nanowire and its SAED along 

<010>; (c): HAADF image of the same α-MnO2 nanowire along <010>; (d,e): IFFT 

of the original HAADF shown in (c) and the atomic model structure along <010> 

direction, respectively. Yellow spots indicate Mn atoms, while pink represents K and 

red indicates O atoms. (f): HAADF image of an α-MnO2 nanowire cross section and 

the corresponding SAED along [001] direction; (g): Atomic resolution HAADF 

image of an area in f (black dotted box) showing Mn atomic column (yellow), K 

column (pink), 1×1 (red dotted square) and 2×2 (blue dotted square) tunnels. Scale 
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bars in f and g are both 3 nm; (h): The simulated image of K+-occupied α-MnO2 

viewed along [001] direction; (i): EDS mapping of the green dotted box in g confirms 

the center atoms to be K (this figure is rotated 45o compared to g for viewer’s 

convenience). 

 

The HAADF image in Figure 4.2f shows the cross section of an α-MnO2 nanowire 

viewed along [001] zone axis (inset). The sample preparation method is provided in 

the Supporting Information. The magnified HAADF image in Figure 4.2g clearly 

shows that the atomic structure consists of two types of tunnels: the small 1×1 tunnels 

and the large 2×2 tunnels as indicated by the red and blue dashed squares, 

respectively. This definition is based on the number of [MnO6] octahedra in each 

side.39 The 1×1 tunnels are expected to have limited contribution to the discharge 

capacity while 2×2 tunnels determine the overall discharge capacity in cathodic 

application of α-MnO2 nanowires.40  

  

The bright spots surrounding each tunnel refer to Mn ([MnO6]) atomic columns 

(yellow dots) while the spots in the center of each 2×2 tunnel belongs to K ions (pink 

spots), as confirmed by EDS mapping of K signal in Figure 4.2i. To the authors’ 

knowledge, this [001] zone axis image is the first atomistic observation of the 

tunneled structure in α-MnO2 capturing the position of tunnel stabilizers.  

Considering figures 4.2d and g, the Wyckoff Position of K+ in α-MnO2 is determined 

to be 2a site (0, 0, 0), which is in excellent agreement with the theoretical K+ 

position41. The composition of the nanowire is thus determined to be K0.25MnO2.  

  

The in situ setup and time sequence TEM images of an α-MnO2 nanowire during 

lithiation along [010] zone axis are shown in Figure A1 and Movie A1 in Appendix A. 

They show that the lithiation process is associated with two distinct expansion fronts. 

The first expansion front proceeds quickly (42 nm/min on average) along the 

nanowire and results in fast radial expansion. Subsequently, the second expansion 

happens with slower propagation speed (28 nm/min) than the first reaction front, 
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indicating lithiation retardation probably due to the electrochemical-induced stresses. 

The section squeezed by these two reaction fronts maintains a constant diameter. For 

another α-MnO2 nanowire viewed along [100] zone axis, however, the lithiation 

process is sharply different as shown in Figure A2. In this nanowire, one cannot 

detect the two reaction front phenomena during lithiation, and instead, a gradual 

increase in diameter was observed. This is intriguing knowing that the [010] and [100] 

zone axes of α-MnO2 should essentially exhibit similar lithiation behavior due to the 

tetragonal crystal symmetry. It is unlikely that such a deviation is due to any 

experimental error as this observation was repeatable for nanowires under [010] 

(figures A3, A4a) and [100] (Fig.A4b, Movie A2) zone axes. It is worth mentioning 

that some pristine nanowires show “bundling” phenomenon (figures 4.3a, 4.5a, A3 

and A4b), which should be caused by lateral oriented attachment (OA) growth 

mechanism that is widely accepted for solution-grown α-MnO2 nanowires39,42,43. This 

mechanism is also confirmed in Fig.A5 showing that one secondary nanowire 

branches at its end while still maintains single crystalline property. Considering the 

facts that the OA mechanism still results in single crystals and that the two-step 

expansion (or single expansion) situation appears in both bundled and non-bundled 

nanowires (see figures A1-4) with varying diameters, the size and morphology factors 

can be excluded.  

 

Figure 4.3 shows the morphological analysis for the two nanowires viewed along 

[010] and [100] zone axes. Figure 4.3a shows the [010] projection of the partially 

lithiated nanowire where the two-reaction fronts feature is captured. The first reaction 

front (red dashed line) shows a conical shape visualized by contrast change indicating 

the existence of surface lithiation44. Since the conical angle (about 90o) here is much 

larger than the previously reported angle (15o-20o)44 for other materials, longitudinal 

lithiation is believed to play a key role in the formation of the first reaction front. The 

second reaction front (blue dashed line) appears to be relatively flat and results in 

formation of numerous small nanoparticles (marked as black circles) embedded in the 

matrix. The section between the two reaction fronts has a constant diameter with 
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uniform image contrast implying good structural stability upon lithiation in this area. 

As such, four zones A[010], B[010], C[010] and D[010] with distinct features are defined in 

Figure 4.3a. The quantitative description of changes in the diameter of this nanowire 

is represented in this figure.  

 

Figure 4.3 (a): [010] TEM projection of a partially lithiated α-MnO2 nanowire 

showing two lithiation reaction fronts. The red dashed line corresponds to the first 

reaction front and the blue dashed line relates to the second reaction front. Four zones 

with different characteristics are defined: Zone A[010] for unlithiated section of the 

nanowire, Zone B[010] for the expanded region associate with the first reaction front, 

Zone C[010] for the section with a constant diameter surrounded between two reaction 

fronts, and Zone D[010] for the fully expended region associated with the second 

reaction front and featured by numerous nanodomains (black circles). The right graph 

shows diameter evolution during lithiation. (b): [100] projection of the partially 

lithiated α-MnO2 nanowire showing a gradually expanding zone. Similarly, four 

zones are defined: Zone A[100] for pristine nanowire, Zone B[100] for stressed (dark 

contrast) section without diameter expansion, Zone C[100] for gradually expanding 

section and Zone D[100] for the final lithiated state featured by numerous nanodomains 

(black circles). The right graph shows diameter evolution during lithiation. The green 

triangles in Figure 3a and 3b indicate the fixed positions on two nanowires for 

diameter measurement. 
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Figure 4.3b shows the [100] projection of the partially lithiated α-MnO2 nanowire 

without observation of any two-reaction fronts feature. Instead, a gradually expanding 

Zone C[100] was observed as seen in the graph in Figure 4.3b. It is notable that 

although the two-reaction front feature is not detectable in this case, a highly stressed 

Zone B[100] appears just ahead of the gradually expanding Zone C[100]. Zone B[100] is 

characterized by the obvious dark contrast, indicating possible existence of lithiation-

induced strain in this area. Interestingly, Zone B[100]  shows no sign of diameter 

change.  

 

To better understand the underlying mechanisms responsible for the morphological 

evaluation of the nanowires viewed at [100] and [010] zone axes during lithiation, 

phase analysis is carried out. Figures 4.4a-d show SAED patterns for the four 

different zones (A[010]-D[010]) designated in Figure 4.3a for a partially lithiated 

nanowire viewed along [010] zone axis. In Zone A[010], the nanowire is still in pristine 

state (no lithiation). The (200) plane that is parallel to the growth direction [001] has a 

characteristic spacing of 4.9 Å, which equals to a/2 of α-MnO2 unit cell and thus is 

used as a signature of α-MnO2 tunneled structure. For Zone B[010], the diffraction 

pattern still belong to α-MnO2 phase but it is blurred and stretched along [100] 

direction, indicating the existence of structural distortion due to lattice deflection 

induced by Li+ intercalation. This can be attributed to Jahn−Teller distortion of 

[MnO6] units when Mn is partially reduced from smaller Mn4+ ions to larger Mn3+ 

ions due to the insertion of Li+.45 From Zone A[010] to Zone B[010], the (200) spacing 

increases from 4.9 to 5.3 Å. No distortion is observed along the longitudinal direction 

[001] further conforming the anisotropic expansion behavior of α-MnO2 as reported 

by others15,46. It is surprising to observe in Figure 4.4c that the tunneled structure 

inside Zone C[010] is well maintained with (200) lattice showing no obvious expansion 

throughout this zone, which is apparently squeezed by two swelling reaction fronts. 

The microscopically constant (200) spacing should account for the macroscopically 

observed constant diameter through Zone C[010] in Figure 4.3a. Figure 4.4d shows a 

completely different diffraction pattern for Zone D[010], where the bright and sharp 
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rings are indexed to be polycrystalline Li2O indicating the formation of Li2O 

following the second lithiation front. The diffused ring(s) relates to the formation of 

nanoparticles of Mn as shown in Zone D[010] by black circles in Figure 4.3a. The 

average diameter of Mn nanoparticles was measured to be 3 nm. HRTEM images in 

Figures 4.4e-h for the four zones clearly demonstrate the evolution of α-MnO2 (200) 

lattice and agree well with corresponding SAED patterns.  

 

Figure 4.4 (a-d): The corresponding SAED patterns from the four zones shown in 

Figure 4.3a. SAD pattern shown in (a) is for Zone A[010], (b) from the right end of 

Zone B[010], (c) from the right end of Zone C[010] and (d) for Zone D[010]. (e-h): The 

corresponding to the HRTEM images of zones A[010], B[010], C[010]  and D[010]. (i-l): 

The corresponding SAED patterns from the four lithiation zones shown in Figure 

4.3b where (i) is for Zone A[100], (j) is from the right end of Zone B[100], (k) is from 
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the right end of Zone C[100], and (l) is for Zone D[100]. (m-p): The corresponding 

HRTEM images for zones A[100], B[100], C[100]  and D[100]. The scale bar is 2 nm. 

 

Figures 4.4i-l show SAED patterns for the four lithiation zones marked as A[100]-D[100] 

in Figure 4.3b. Figure 4.4i confirms the pristine nanowire to be single crystalline α-

MnO2 viewed along [100] zone axis with its (020) spacing of 4.9 Å. The α-MnO2 

diffraction pattern in Figure 4.4j is blurred, indicating lattice distortion possibly due 

to initial lithiation in Zone B[100]. Overall, however, the (020) spacing is still 

maintained at 4.9 Å without obvious expansion. As evident from the diffraction 

pattern, small amount of Li2O forms during this stage confirming the existence of 

initial lithiation. Figure 4.4k shows that α-MnO2 pattern from Zone C[100] is further 

blurred but still maintains the tunneled structure as the (020) lattice is still clear and 

gradually expands from 4.9 to 5.3 Å. Figure 4.4l shows that the host in Zone D[100] is 

thoroughly reduced to Mn and Li2O via conversion reaction. Figures 4.4m-p show 

HRTEM images of (020) lattice for the four zones and they match the corresponding 

SAED patterns very well. 

 

The d spacing of 2.1 and 2.4 Å in figures 4.4h and p belong to the (411)Mn and 

(321)Mn planes, respectively. This confirms the formation of Mn nanoparticles in 

Zone D[010] and Zone D[100]. See also Figure A6 for more evidence. As such, one can 

conclude that under both [010] and [100] projections, Zone D is the fully lithiated 

stage featured by conversion reaction usually found in deep discharged transitional 

metal oxides. In this paper, however, we will not focus on this conversion reaction as 

it has been discussed extensively by others 31,47,48. 

 

For nanowires viewed along [100] and [010] zone axes, we focus on Zone B[010] and 

Zone B[100], Zone C[010] and Zone C[100], where the nanowires are partially lithiated 

and show interesting morphologies. Considering the facts that {020} spacing reflects 

the dimension of lattice parameters a and b, and that [010] TEM projection is 

sensitive to the evolution of lattice a but insensitive to that of b (vise versa for [100] 
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projection), we hypothesize that this morphological difference originates from 

asynchronous expansion of α-MnO2 unit cell along [100] (a direction) and [010] (b 

direction). Specifically, in the initial Li+ intercalation (zones B[010] and B[100]), lattice 

parameter a is expected to expand with b keeping constant; in the following Li+ 

intercalation stage (zones C[010] and C[100]), it is likely that a remains constant while b 

expands gradually to catch up with a. During this process, a/b ratio reaches a 

maximum value around 1.1 at the end of zones B[010] and  B[100] and then returns to 1 

at the end of zones C[010] and C[100], resulting in a Tetragonal-Orthorhombic-

Tetragonal (TOT) symmetry transition. It will be discussed below that the proposed 

asynchronous expansion is associated with sequential filling of tunnels in α-MnO2 

with lithium ions. As such, electron energy loss spectroscopy (EELS) was applied to 

quantify the lithiation degree in zones B and C under both [010] and [100] zone axes 

by analyzing the Mn valence evolution. Since the chemical signal is less dependent 

on crystallographic orientation, it is expected that Mn valence evolution under [010] 

and [100] projections should show similarity in zones B and C. 

 

To study the oxidation state evolution of Mn during lithiation, EELS line scans were 

performed on partially lithiated α-MnO2 nanowires viewed along [010] and [100] 

zone axes. Figures 4.5a-c depict the analysis for the partially lithiated nanowire under 

[010] projection, while figures 4.5d-f represent the nanowire under [100] projection. 

The EELS data were analyzed from three key locations 1, 2 and 3 indicated by yellow 

dots on both nanowires to conduct Mn valence analysis. Figures 4.5b and e show the 

constructed whole spectra where the prepeak (Kα) of oxygen K edge and Mn L3/L2 

white lines are indicated. The physical origins of these peaks and observed Mn peak 

shift are explained in the Supporting Information.    
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Figure 4.5 (a,d): [010] and [100] HAADF/TEM images of partially lithiated α-MnO2 

nanowires. The EELS data are extracted from three locations on the nanowire, i.e. 1 

for Zone A[010] and Zone A[100], 2 around the end of Zone B[010] and Zone B[100], 3 

around the end of Zone C[010] and Zone C[100]. (b,e): The EELS spectra constructed 

from locations 1, 2 and 3 where the zero loss peak was calibrated as energy reference 

point. The purple-colored frames indicate O-K edge and Mn-L3/L2 edges. (c,f): Mn 

valence identification based on reference data using ΔE Mn(L2-L3)  fingerprint; the 

black, red and blue dots correspond to locations 1, 2 and 3, respectively. Location 1 

with known Mn3.8+ valence is used to slightly offset the horizontal coordinate value 

for more precise valence identification of locations 2 and 3. 

 

The EELS data for MnO2 have several fingerprints that can be used to quantify Mn 

valence. The commonly used methods to analyze the valance change include the 

absolute energy shift of Mn white lines,49 white-line intensity ratio L3/L2
50,51, oxygen 

K prepeak splitting,52 branching energy difference ΔE(L2-L3)
53 and ΔE(L3-O Kα)54. 

In our study, ΔE(L2-L3)
53 and ΔE(L3-O Kα)54 are independently used as the 

fingerprints to analyze Mn valence in different lithiation stages. Considering that K+ 

presence could slightly alter the Fermi level of α-MnO2, the known valence state of 

Mn3.8+ (unlithiated composition is K0.25MnO2, which is rounded to be K0.2MnO2 for 

easier discussion) in Location 1 is used as an offset reference to the Mn valence study 

of locations 2 and 3. Since all the data points are obtained from the same line scan 
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across the same nanowire, these two ΔE methods are less likely to be affected by any 

instrumental variation. 

 

To better determine the EELS peak positions, the fine structure of each peak is 

demonstrated in figures A7a, b, d and e. Figures 4.5c and f show the fitted linear 

curves for ΔE (L2-L3) vs Mn valence from a reference53. The symbolic points for 

locations 1, 2 and 3 are placed accordingly in the graph based on their specific ΔE 

values obtained from fine analysis in figures A7b and e. During this process, 0.1 

offset value (for the Mn valence state) is calibrated and applied for valence 

quantification of locations 2 and 3. As such, the valence is determined to be Mn3.4+ 

and Mn2.8+ for locations 2 and 3 on [010] projected nanowire, and Mn3.4+ and Mn2.9+ 

for locations 2 and 3 on [100] projected nanowire. The alternative quantification 

method using ΔE(L3-O Kα) fingerprint is demonstrated in figures A7c and f. The Mn 

valence is determined to be Mn3.5+ and Mn3.0+ for locations 2 and 3 on [010] projected 

nanowire, and Mn3.5+ and Mn3.0+ for locations 2 and 3 on [100] projected nanowire. It 

is evident that these two independent methods give similar Mn valence evolution in 

partially lithiated nanowires. For each method, Mn valence evolution from Zone B[010] 

to Zone C[010] and from Zone B[100] to Zone C[100] is also similar, confirming the 

proposed asynchronous expansion. By averaging these two methods, experimental 

Mn valence evolution is determined as following: Mn(3.8+)
 is reduced to Mn(3.4+)

 in 

Zone B; Mn(3.4+)
 is further reduced to Mn(2.9+)

 in Zone C; Mn(2.9+) is thoroughly 

reduced to Mn(0) in the following conversion reaction 
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Figure 4.6 Demonstration of possible Li+ insertion sites in α-MnO2 as well as site 

occupancy energy calculation for possible Li+ insertion sites. It can be seen that 4c, 

4d and 8f sites are also initially preferred for Li+ insertion, but their insertion energy 

increases very fast upon further lithiation. Thus the capacity contribution from 1×1 

tunnels can be neglected here. 8h sites provide the lowest formation energy for Li+ 

insertion up to Li1K0.25MnO2. 

 

It is known that Jahn-Teller distortion55 occurs locally around certain [MnO6] units 

that are close to the insertion sites for lithium.45 According to our Density Functional 

Theory (DFT) simulation in Figure 4.6, there are different sites inside the 2×2 tunnels 

of K+-stabilized α-MnO2 that can accommodate Li+. Interestingly, the center position 

(2b or 4e) in the tunnel is calculated to be unfavorable for initial lithium insertion, and 

instead, 8h sites near the tunnel walls provide the lowest binding energy for lithium 

accommodation up to Li1MnO2. The Li+ occupancy at 8h sites of each 2×2 tunnel is 

not random but is predicted to exhibit a regular sequence. Figure 4.7a shows 

simulated Li+ occupancy at 8h sites based on two adjacent 2×2 tunnels (there are two 

tunnels in the periodic unit cell) with K+ placed at 2a sites.  
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Figure 4.7 (a): Schematic of the occupancy of 8h sites in the ground state structures 

of α-K0.25LixMnO2 (pink dots: K+ stabilizers at 2a sites; open circle: unoccupied 8h; 

solid circle: occupied 8h); dz
2 is the orbital that distorts upon Mn reduction by Li+ 

insertion. (b): Predicted behavior of lattice parameters a and b upon lithiation as well 

as their experimentally observed behavior during lithiation obtained from figures 4.4 

and 4.5. 

 

It can be seen that when the first lithium occupies the 8h site, the second Li+ 

preferably fills the same site in the adjacent 2×2 tunnel (equivalent to 

K0.25Li0.25MnO2). The third and fourth Li+ fill the 8h sites that are the most remote 

from the first and second Li+ in each 2×2 tunnel (equaling K0.25Li0.5MnO2). This 

behavior is due to their mutual repulsive force resulting in a low energy configuration. 

The result is a cooperative Jahn-Teller expansion of the two opposite octahedral 

[Mn(3+)O6] that strengthens each other to achieve unit cell expansion along [100] 

direction during lithiation Stage 1. Subsequently, inserted Li+ ions occupy the 

remaining 8h sites during lithiation Stage 2. This process is accompanied by another 

Jahn-Teller expansion of the unit cell solely along [010] direction. The result of this 

sequential 8h site filling is asynchronous expansion across a-b plane, where the lattice 

parameter a first increases in Stage 1 while it remains constant in Stage 2. On the 

other hand, the lattice parameter b remains unchanged in Stage 1 and then increases 

in Stage 2. The simulated Li+ occupancy sequence at 8h sites along [001] direction 

was also calculated based on a two-layer tunnel model with two Li+ inserted. The 

result is shown in Fig.A8 demonstrating five Li+ possible configurations. It can be 

seen that when c-axis lithiation is considered, the second Li+ prefers to occupy either 
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two remote 8h sites in one 2×2 tunnel (Situation 5) or two 8h sites in two 2×2 tunnels 

aligning parallel to c axis (Situation 1). Both of these two situations, with successive 

lithiation occurring, can result in a strengthened Jahn-Teller distortion along one 

specific direction (a-[100]), while situations 2 (strengthened distortion), 3 and 4 

(counterbalanced distortion) are less likely to appear thermodynamically.  

 

Fig. 4.7b illustrates the theoretical DFT calculation of the evolution of lattice 

parameters a and b as well as the in-situ TEM experimental data based on figures 4.4 

and 4.5. It can be seen that the trend in differential expansion of lattice parameters a 

and b is in agreement with TEM observation. However, it can also be seen that the 

magnitude in the predicted lattice parameters is larger for x > 0.25. This discrepancy 

in the magnitude is most likely caused by two reasons: first, DFT assumes tunnel 

stabilizer K+ to be fixed in Wyckoff 2a site upon Li+ insertion at 8h sites nearby, 

while partial removal of K atoms in the lithiated nanowire was experimentally 

observed (Figure A9); the second reason is the difficulty with DFT functionals 

accurately and simultaneously predicting a wide range of physical properties of 

materials containing transition metal elements, and the tendency of PBE functionals 

to overestimate lattice constants with transition metals56. It is speculated that the 

interconnected 2×2 tunnels affect Li+ occupancy sequence in each other through a 

chain interaction. Such an interaction would result in a macroscopically uniform 8h 

site occupancy configuration. Thus the nanowire macroscopically experiences 

asynchronous expansion first along [100] in Zone B and then along [010] direction in 

Zone C. Fig. 4.8 summarizes the whole process starting from unit cell simulation to 

experimental TEM observation.  

 

As such, the full discharge process in single α-K0.2Mn(3.8+)O2 nanowire can be written 

as: 

[α-K0.2Mn(3.8+)O2] tetragonal + 0.5Li+ + 0.5e- = [α-K0.1Li0.5Mn(3.4+)O2]orthorhombic  + 0.1[K]

↑    Stage 1 
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[α-K0.1Li0.5Mn(3.4+)O2]orthorhombic + 0.5Li+ + 0.5e- = [α-K0.1Li1Mn(2.9+)O2] tetragonal                   

Stage 2 

[α-K0.1Li1Mn(2.9+)O2] tetragonal + 3Li+ + 3e- = Mn(0) + 2Li2O + 0.1[K]                               

Conversion 

It is difficult to clearly distinguish and quantify the sole effect of K+ in this process 

due to its low concentration, so half K atoms are roughly supposed to be removed 

upon initial lithiation. The release of K stabilizers during tunnel degradation was 

possibly due to the weakening of tunnel restriction and their volatilization in vacuum 

environment.57  

 

Figure 4.8 Left: Simulated Li+ occupancy sequence at 8h sites in one 2×2 tunnel; 

Middle: 3D model showing the asynchronous expansion of single α-K0.25LixMnO2 

nanowire upon lithiation; Right: Predicted and observed morphology of one partially 

lithiated α-K0.25LixMnO2 nanowire under [010] and [100] zone axes 

 

Such a TOT symmetry transition involves Li+ accommodation in 8h sites with 

different insertion energy and can thus potentially account for the appearance of 

double cathodic peaks in the 1st cycle cyclic voltammetry curve of Li/α-MnO2 

batteries (Fig. A10). The reoccurrence of double peaks in the anodic scanning 

indicates that such a transition is reversible. To further demonstrate the symmetry 
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transition, the phase evolution during the first cycle of Li/α-MnO2 battery is 

investigated using in-situ synchrotron XRD in Fig.A11. It shows that among all 

characteristic peaks of α-MnO2, {200} and {600} show relatively apparent peak 

broadening upon lithiation. This is reasonable considering that they are directly 

related to the dimension of a (b). Besides the peak broadening, a weak shoulder 

peak(≈5.2 Å) splits away from {200} main peak (≈4.9 Å) during lithiation and 

stays until the cycle ends. The expanded 5.2 Å spacing is close to TEM observed 

value (≈5.3 Å) for expanded {200}. This peak splitting could thus be ascribed to the 

asynchronous expansion between a and b, indicating the existence of TOT transition 

in the working Li/α-MnO2 coin cell. Similar phenomenon was also reported in a 

recently published work using in-situ synchrotron XRD technique,[58] where 

“excessive line broadening” and “diffuse splitting of the peaks” were observed for a 

working Li/α-MnO2 battery and an unknown phase transition was proposed. In this 

sense, the current work here explained the underlying phase transition very well. 

There are, however, many other factors that could potentially affect the peaks’ 

behavior considering the complicated electrochemical environment inside a large-

scale coin cell rather than in the single nanowire-based open cell design. The related 

discussion is given in Supporting Information. 

4.4. Conclusion 

In summary, tetragonal α-MnO2 is featured by 1×1 and 2×2 tunnels. The 2×2 tunnels 

are supported by K+ and 1×1 tunnel are unfilled. DFT calculations show that 1×1 

tunnels have limited contribution to the discharge capacity of Li/α-MnO2 batteries. 

On the other hand, the 8h sites inside 2×2 tunnels are the most favorable sites for 

lithiation and thus determine the overall discharge capacity for the application of α-

MnO2 as a cathode material. In-situ TEM study reveals asynchronous expansion of 

tetragonal unit cell in α-MnO2 along a and b lattice directions upon lithiation. 

Specifically, in the first intercalation Stage 1, lattice parameter a expands while b 

keeps constant; in the following intercalation Stage 2, a remains constant while b 

expands gradually to catch up with a. Such an asynchronous expansion behavior is 
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well understood by our DFT calculation showing an energy-guided Li+ occupancy 

sequence at 8h sites inside each 2×2 tunnel. This asynchronous behavior leads to a 

TOT symmetry transition in α-MnO2 upon lithiation, which is believed to account for 

the appearance of multi lithiation stages when Li/α-MnO2 battery is discharged. The 

degradation of initial tetragonal symmetry and resulted structural instability in α-

MnO2 host during lithiation are expected to explain the commonly observed low 

electrode utilization of α-MnO2 in Li/α-MnO2 batteries. 

 

Our research provides fundamental understanding of lithiation property of α-MnO2 

and explores origins for its specific electrochemical behaviors, casting light on 

possible compositional modification and structural design to improve its energy 

storage performance in supercapacitor as well as Li/α-MnO2 and Li-O2 batteries. Such 

an asynchronous expansion behavior is expected to exist not only in Li+ storage but 

also for Na+ storage, as Na+ and Li+ both carry one charge and their ionic radii are 

both much smaller than the tunnel size in α-MnO2. 
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Chapter 5. Dynamic Study of (De)sodiation in alpha-

MnO2 nanowires③ 

5.1. Introduction 

Lithium ion batteries (LIB) have led the market of rechargeable energy storage 

devices for decades as a high-energy power source.1 However, due to the limited 

storage of Li source in the Earth’s crust and the wide-scale implementation of 

renewable energy in the fields of electric vehicles and portable devices, the world is 

now driven to explore new charge carriers as Li alternatives.2 Compared with Li+, 

Na+ possesses the same amount of charge while its resources are much richer in the 

world, making sodium ion batteries (NaIB) the ideal alternative to LIB.3 A substantial 

amount of research has been devoted to the development of electrode materials for 

NaIB, including nanostructured manganese oxides.3,4,5 

Manganese oxides are well known for the various polymorphs possessing different 

open structures to facilitate the initial Na+ insertion. Materials of this family include 

orthorhombic Na0.44MnO2,
6,7 Na0.66MnO2,

8 β-NaMnO2,
9 and α-(β-, λ-)MnO2

10,11,12,13, 

whose initial discharge capacity can be as high as 350 mAh/g. However, these 

materials always suffer from poor cycling performance with their capacity decaying 

very fast to even below 100 mAh/g before reaching 100 cycles.8,11 Although it has 

been explained theoretically that the fast capacity decay is due to the relatively large 

size of Na+ compared with Li+ that strongly affects the host structure, no in situ work 

has been performed to identify the character of such interactions. Besides, the 

dynamic response of nanostructured manganese oxides during repetitive (de)sodiation 

                                                 
③ The material contained in this chapter was previously published in Nano Energy. 

(Reprinted with permission from Y. Yuan, K. Amine, T. Wu, J. Lu, R. S. Yassar. 

Nano Energy, 2016, 19, 382-390. Copyright 2016, Elsevier.) 
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is currently not reported yet, leading to the lack of knowledge on the underlying 

electrochemical mechanisms. 

In this report, α-MnO2 nanowires featuring one dimensional tunneled structure 

(Supporting Information Figure B1) are studied by monitoring the morphology and 

phase evolution during electrochemical (de)sodiation using in situ transmission 

electron microscopy (TEM). It is found that the tunneled structure of α-MnO2 

maintains stable until Mn4+ is reduced to Mn3.5+, and the following deep sodiation 

lead to formation of Mn2O3 with polycrystalline Na2O. An intermediate phase 

Na0.5MnO2 is discovered during the first sodiation. This phase dominates the rest of 

(de)sodiation cycles through a reversible conversion reaction with Mn2O3 

polycrystals. The Mn valence evolution during (dis)charge of α-MnO2 at the coin cell 

level is also studied by in situ X-ray Absorption Spectroscopy (XAS) measurement, 

the result of which agrees well with the TEM observation. The sodiation of α-MnO2 

nanowires is further compared with our previous lithiation study of the same type of 

nanowires to understand the different electrochemical mechanisms of the cation-

tunnel interactions. The initial sodiation and lithiation proceed by the same tunnel-

driven intercalation mechanism until Mn4+ is reduced to Mn3.5+. For the following 

deep cation insertion, the tunnels can survive up to LiMnO2 (Mn3+) during lithiation, 

while the sodiation process results in fast tunnel degradation and intermediate phase 

formation around Mn3.5+, which is ascribed to the much stronger effect from inserted 

Na+ than Li+ on the host structure. 

5.2. Methods 

5.2.1. Material synthesis 

 

The nanowires are synthesized by a hydrothermal method using KMnO4 and MnSO4 

as the raw materials.14 During the formation of the tunneled structure in solution, K+ 

will be automatically trapped inside the tunnels.  
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5.2.2. Open cell design in TEM  

 

The open cell is built using the in situ STM TEM holder equipped with two dangling 

gold tips being connected to the outside circuit. The nanowires are glued to one Au 

tip by conductive epoxy, and the metallic sodium is attached to the other Au tip by 

scratching the tip across the surface of a sodium foil in glovebox. During the holder 

transfer into the TEM chamber, sodium metal is partially oxidized to Na2O, which 

functions as the solid electrolyte in the open cell design. The piezo-controlled 

movement is operated at single nanowire level to make it connected to the Na/Na2O 

on the other side, and an appropriate bias is then applied to initiate the sodiation 

process. The desodiation process is started by reversing the bias.  

 

Both ex situ and in situ TEM are performed inside the JEOL JEM-ARM200CF 

equipped with a 200 KV cold field emission electron source. The elemental 

information is obtained using an Oxford X-max 100TLE windowless SDD X-ray 

detector.  

 

5.2.3. Coin cell making 

 

The laminate contains α-MnO2 nanowires, PVDF and black P with the weight ratio of 

8:1:1. The coin cell was assembled using α-MnO2 nanowires as the cathode, glass 

microfiber as the separator, NaPF6 in EC/DEC as the electrolyte and metallic Na foil 

as the anode. Punched coin cell cases and spacers with Kapton window were used to 

guarantee X-ray transmission at Mn K-edge.  

5.2.4 In situ X-ray Absorption Spectroscopy.   

 

The XAS measurement for the Mn K-edge was performed at the Advanced Photon 

Source (APS) on the bending-magnet beamline 9-BM-B with electron energy of 7 

GeV and average current of 100 mA. The radiation was monochromatized by a Si 
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(111) double-crystal monochromator. Harmomic rejection was accomplished with an 

Rh-coated mirror. All spectra were collected in transmission mode. For energy 

calibration, a Mn foil was measured simultaneously at the reference ionization 

chamber. The peak of the first derivative of Mn foil was adjusted to the tabulated 

value of 6539 eV. The coin cell was first discharged to 1 V and then charged back to 

4 V at 0.1 C rate. X-ray absorption near edge spectra (XANES) data reduction and 

analysis were processed by Athena software.  

5.3. Results and discussion 

5.3.1. Basic structure characterization 

 

The basic structural characterization of the nanowires from both the lateral and axial 

TEM imaging is given in Figure 5.1. Figures 5.1a and b show that the nanowire is 

monocrystalline with a uniform diameter of about 60 nm and a [001] growth direction. 

The [010] lateral HAADF imaging in Figure 5.1c illustrates the atomic structure of α-

MnO2. Referring to the model in Figure 5.1d, Mn (red dots) as the tunnel walls and K 

(green dots) in the tunnel center are clearly identified. The [001] axial TEM imaging 

in Figure 5.1e demonstrates a square-shaped cross section of the nanowire. The 

atomic structure of the white framed area is given in Figure 5.1f, where the tunneled 

structure is directly captured with one 2×2 tunnel highlighted, surrounded by the Mn 

atoms (red dots) and occupied by one K+ atomic column (green dot). The accurate 

composition of the nanowire based on both the lateral and axial atomic imaging is 

thus determined to be K0.25MnO2. The inset of Figure 5.1f gives the atomic model, 

which agrees with the observation well. 
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Figure 5.1. (a,b) [010] Bright field TEM image of one α-MnO2 nanowire with its 

corresponding SAED; scale bar: 50 nm; (c,d) [010] HAADF STEM image of the α-

MnO2 nanowire with the atomic model given, where red is for Mn, blue for O and 

green for K; scale bar: 1  nm; (e) [001] TEM image of one cross sectioned α-MnO2 

slice with the SAED given in the inset; scale bar: 10 nm; (f) [001] HAADF STEM 

image showing the atomic tunneled structure. One 2×2 tunnel is highlighted by red 

dots standing for Mn atomic columns and the atomic model is given in the inset. 

Scale bar: 1 nm. 

 

5.3.2. In situ TEM of the sodiation and resulted phase evolution 
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The sodiation of two α-MnO2 nanowires is recorded in the Movie B1 and B2 in 

Appendix. It can be seen that the nanowires can be readily sodiated being evidenced 

by the obvious radial expansion. No apparent axial expansion is captured, indicating 

that the Na+ insertion is not an isotropic process. Despite the anisotropy, the host 

structure maintains stable as there is not any fracture or crack formation. To further 

explore the sodiation kinetics, the reaction front position is measured versus the 

sodiation time and the results are given in Supporting Information Figure B2. Both 

two curves generally follow the parabolic shape, which is the typical feature of a 

diffusion-controlled process described earlier by other in situ literatures15,16. This 

indicates that the sodiation in α-MnO2 nanowires is limited by Na+ diffusion instead 

of interface reaction.  

 

Figure 5.2 shows the analysis of the phase transition from one partially sodiated 

nanowire. Four sections are defined based on their sodiated morphologies, i.e. the 

pristine section before sodiation (b), the slightly sodiated section (c), the heavily 

sodiated section (d) and the fully sodiated section (e). The Selected Area Electron 

Diffraction (SAED) patterns from these four sections are provided in Figure 5.2b-e, 

respectively. As shown in Figure 5.2b, the pristine nanowire is viewed along [1 0 1
_

] 

zone axis with the (0 2 0) lattice diffraction (yellow ring) directly seen with a spacing 

of 4.95 Å. For section (c) that is slightly sodiated, the (0 2 0) spacing increases to 5.1 

Å, which can be explained by the gradually enhanced Jahn-Teller distortion when 

more Mn4+ are reduced by the inserted Na+. Although the host lattice is severely 

distorted, the parent α-MnO2 phase is well maintained as evidenced by the remaining 

[1 0 1
_

] patterns, indicating that the 2×2 tunnels are still active for Na+ insertion. 

However, several new ring-like diffractions (yellow arrows) are observed to coexist 

with the α-MnO2 patterns in Figure 5.2c and they are indexed to be Na0.5MnO2 (SG: 

Pnma). In the heavily sodiated section (d), the tunneled structure is totally degraded 

and the sole phase is indexed to be Na0.5MnO2. Upon the full sodiation, the 

metastable Na0.5MnO2 is finally converted to the polycrystalline Mn2O3 (white arrows) 

and Na2O (green arrow) as confirmed in Figure 5.2e.  
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Figure 5.2. (a) The in situ open cell design inside TEM chamber showing one α-

MnO2 nanowire being sodiated; (b-e) The corresponding SAED patterns from the 

four predefined sections in (a). 

 

As such, the tunneled structure of α-MnO2 maintains its stability until 0.5 Na+ are 

intercalated into the host with the subsequent formation of Na0.5MnO2 as an 

intermediate phase. The sodiation process can thus be written as a two-step based 

reaction: 

                          MnO2 + 0.5Na+ + 0.5e- = Na0.5MnO2                                      (5.1) 

                          Na0.5MnO2 + 0.5Na+ + 0.5e- = 0.5Mn2O3 + 0.5Na2O             (5.2) 

The presence of K+ is not considered in this part of discussion due to the complexity 

of different cations’ interaction, which, however, is further addressed in the last 

discussion part. 

 

5.3.3. In situ TEM of the sodiation/desodiation cycling 

 

The repetitive sodiation/desodiation of single nanowire is recorded in Movie B3 in 

Appendix B. It shows that the nanowire expands during sodiation and reversibly 

contracts during desodiation, and no fracture or crack is observed up to five cycles, 
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indicating the good reversibility of α-MnO2 nanostructures. The diameter of the 

nanowire is measured versus the sodiation time, and the result is shown in Figure 5.3a. 

The first full sodiation results in about 50% radial expansion while the first 

desodiation only leads to 15% contraction. The expansion and contraction rates of the 

rest cycles are limited within 20%, indicating that the mechanism dominating the first 

sodiation of the nanowire must be different from the mechanism during the rest 

(de)sodiation cycles.  

 

Figure 5.3. (a) The measured diameter versus sodiation time for one α-MnO2 

nanowire being repetitively cycled; the numeric percentages are for the diameter 

expansion (positive) and contraction (negative) during each event; (b-g) the 

corresponding SAED patterns of the same nanowire at different (de)sodiation states.  

   

To clarify the different mechanisms, the phase evolution of the same nanowire is 

characterized for the first two cycles with the results illustrated in Figure 5.3b-g. The 

first full sodiation (Figure 5.3b-d) features the formation of an intermediate phase 

Na0.5MnO2 and the final conversion to Mn2O3 and Na2O, which follows the similar 

two-step phase evolution as discussed in Figure 5.2. For the full desodiated phase, 

however, no crystalline α-MnO2 is detected, and the reformation of Na0.5MnO2 

dominates the reaction. Some residual Na2O polycrystals are detected, which is 

probably due to their poor electron conductivity that makes part of them difficult to 
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decompose during desodiation. During the 2nd full sodiation, the Na0.5MnO2 is totally 

converted to Mn2O3 and Na2O, while it appears again during the 2nd desodiation. So 

compared with the first sodiation process where α-MnO2 is sodiated to Na0.5MnO2 

and finally converted to Mn2O3 and Na2O, the following cycles are characterized by 

the reversible conversion reaction between Na0.5MnO2 and Mn2O3. It is also notable 

in Figure 5.3g that in the fully desodiated state, Mn2O3 cannot be totally converted 

back to Na0.5MnO2, which can be explained by the gradual pulverization of Mn2O3 

polycrystals during repetitive cycles that makes the electron path discontinuous inside 

Na2O matrix. As such, it is expected that the following cycles should exhibit very 

quick capacity fading as more and more Na2O accumulates in the electrode and thus 

gradually cuts off the electron conductive path. This capacity fading mechanism can 

also explain the reported fast capacity decay of NaIBs using manganese oxides as the 

electrode.11 It is apparent that certain methods should be utilized to improve the 

conductivity of Mn-based oxides for reversible Na+ storage, such as proper structure 

modification and surface coating of conductive materials.  

 

5.3.4. Coin-cell level in situ XAS measurement for (de)sodiation 

 

To study the mechanism of the (de)sodiation process of MnO2 nanowires in bulk 

scale, the cycling stability, the voltage profile and in situ XAS data were collected 

during the battery cycling where α-MnO2 nanowires were utilized as cathode and Na 

metal as anode. The cycling results are provided in Figure B3. It shows that the Na-

MnO2 battery initially shows a discharge capacity of 300 mAh/g while the capacity 

drops quickly with the cycles. After 50 cycles, both discharge and charge capacities 

are below 50 mAh/g, indicating the poor cycling stability of MnO2 electrode. The 

voltage profile during the first discharge/charge cycle is shown in Figure B4, where 

the discharge process exhibits one slope region (2.5 V – 1.3 V) and one plateau 

region (1.3 V – 1 V). The slope region should be related with the initial intercalation 

of Na+ into the tunneled structure and the plateau region should indicate the following 

conversion reaction to Mn2O3. It is notable that these two stages contribute almost 
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equal discharge capacity, agreeing well with the in situ TEM results, where 0.5 Na+ 

first intercalate into tunneled MnO2 (150 mAh/g in theory), and then extra 0.5 Na+ 

insertion results in the conversion reaction (150 mAh/g in theory). During the charge 

process, only about 130 mAh/g capacity is reversible, which also agrees with the 

partially reversible conversion from Mn2O3 to Na0.5MnO2 as confirmed by in situ 

TEM. Both the poor cycling stability and the large voltage hysteresis between 

discharge and charge can be ascribed to the poor reaction kinetics that is limited by 

the gradual formation of electron-insulating Na2O as well as the gradually isolated 

Mn-based redox centers.  

 

Figure 5.4. (a) Normalized XANES spectra of one NaIB with α-MnO2 nanowire 

electrode and standard Mn, MnO, Mn2O3 and MnO2; (b) Charge-discharge profile 

and the oxidation state of Mn during battery cycling.  

 

In situ XANES spectra, which are used for identifying the oxidation state of Mn are 

shown in Figure 5.4a with the spectra of the standard Mn, MnO, Mn2O3 and MnO2. 

The initial oxidation state of α-MnO2 nanowires (red solid line) is slightly lower than 

4+, compared with the standard MnO2 (blue dashed line). During the discharge 

process, the oxidation state of Mn continuously decreased and was close to 3+ when 

fully discharged to 1V (green solid line). During the charge, the oxidation state of Mn 

increased obviously (from green to purple solid line) but it was not totally recovered 

to its pristine state even fully charged to 4 V. To quantitatively analyze the Mn 

oxidation state change, the liner combination fitting (LCF) of the in situ XAS spectra 

with standard Mn2O3 and MnO2 was conducted. The LCF result with the battery 
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discharge-charge profile is shown in Figure 5.4b. The initial oxidation state of the α-

MnO2 nanowires was ~3.6+, which roughly matches the initial composition of the 

nanowires (K0.25MnO2). Then, it decreased to ~3.1+ at the end of discharge. During 

charge, the oxidation state of Mn increased to ~3.4+, which is probably in accordance 

with the state of charge observed in TEM when intermediate Na0.5MnO2 is the 

dominant phase. The fact that Mn cannot recover its oxidation state during charge to 

its initial state before discharge indicates that the first cycle is not totally reversible, 

which could be explained by the residual Na+ left in the α-MnO2 nanowires that can 

not be totally extracted out. The in situ XAS results thus agree well with the in situ 

TEM observation in terms of the Mn valence evolution and the reversibility of the 

host structure. 

 

5.3.5. Comparison between sodiation and lithiation in 2×2 tunnels 

 

It has been predicted that due to the size difference, Na+ is inserted into the 2×2 

tunnels of α-MnO2 via a distinct path compared with Li+.17 Specifically, many reports 

have pointed out that Li+ prefers to diffuse along the Wyckoff 8h sites that are off-

centered, while Na+ thermodynamically occupies the near-centered position inside the 

2×2 tunnels.17,18 Practically, since most hydrothermally synthesized α-MnO2 products 

inevitably have their 2×2 tunnels partially occupied by large cations (like K+ in our 

case), the complicated reactions inside the host are more than just Li+/Na+-tunnel 

interaction. It is thus expected here that α-MnO2 nanowire behaves distinctly during 

lithiation and sodiation in terms of tunnel stability, structure evolution, and phase 

transition.  

 

To confirm this hypothesis, the in situ sodiation of the same α-MnO2 nanowires is 

compared with our previous in situ lithiation work18 with the results shown in Figure 

5.5. Based on the EDS mappings of Mn, K and Na in Panel A and Panel B, it can be 

seen that both lithiation and sodiation can result in partial removal of K+ from the 

inserted area while Mn atoms maintain stable. This should be ascribed to the 
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repulsive forces exerted to K+ from inserted Li+ and Na+ possessing the same positive 

charge. It is worth noting that Na+ insertion has a stronger interaction with K+ than 

Li+ insertion does, resulting in more K+ being removed from the inserted tunnels as 

evidenced by the measured K/Mn atomic ratio. This finding confirms the previous 

prediction that Na+, with a larger cation size (1.02 Å) than Li+ (0.76 Å), diffuse 

through the host via a distinct path that is closer to the tunnel center.17,18 It is this 

centered path that results in stronger Na+ and K+ interaction because the latter atoms 

also occupy the tunnel center (Wyckoff 2a sites). The fact that K+ are easier to be 

removed upon sodiation indicates that the tunneled structure should be more 

vulnerable when it takes in Na+ than Li+, which is further confirmed in Panel C of 

Figure 5.5. 

 

It can be seen from Panel C that the phase evolutions during lithiation and sodiation 

are sharply different. The 2×2 tunneled structure of α-MnO2 is well maintained even 

one Li+ are intercalated into the unit MnO2 host.18 The tunneled structure becomes 

vulnerable when Na+ ions diffuse in, and is totally replaced by a new phase even 

before 0.5 Na+ are inserted in. Since it has been shown in Section 3.3 that the 

tunneled structure of α-MnO2 cannot be recovered once it is totally degraded, portion 

of the 1st discharge capacity contributed from the Na+ intercalation is no longer 

counted in the following cycles. In the sense, this mechanism well explains the fast 

capacity fading of α-MnO2 as a NaIB electrode immediately after its 1st cycle, as well 

as the fact that Li/MnO2 batteries generally exhibit higher cycleable capacity than 

Na/MnO2 batteries.19,20,21  
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Figure 5.5. (Panel A) The EDS maps of Mn and K for a partially lithiated K0.25MnO2 

nanowire; the atomic ratio of Mn and K from the fully inserted nanowire is given at 

the bottom; (Panel B) The EDS maps of Mn, K and Na for a partially sodiated 

K0.25MnO2 nanowire with the atomic ratio of K/Mn given at the bottom; (Panel C) 

The schematic showing the phase evolution of α-MnO2 nanowire electrode at 

different states of discharge (SOD) during lithiation18 and sodiation.  

 

It has been reported that large cations such as K+, Ba2+ and Ag+ are required to 

stabilize the large 2×2 tunnel cavity of α-MnO2 and the 2×2 tunneled phase is more 

likely to form when the concentration of the large cations is high.22,23 Small cations 

such as H+, Li+ and Na+ would not efficiently support the tunnels without the 

presence of large cations.24 Based on this, it is understandable that the tunneled 

structure is more vulnerable during sodiation than it is during lithiation, knowing that 

inserted Na+ result in the removal of more K+ form the tunnels than Li+ do. It is also 

worth mentioning that in the current experimental conditions, it is difficult to 

quantitatively study the K+ effect since K ions are hard to be dynamically tracked and 

imaged during Na+ (Li+) insertion, and the underlying interactions are more 

complicated than being discovered here. But it is reasonably to expect that future 

work, inspired by our current fundamental findings, could clear this ambiguity, and 

the electrochemical performance of MnO2-based electrodes could be efficiently 

improved by proper structural and compositional modifications.  
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5.4. Conclusion 

We reported for the first time the dynamic study of (de)sodiation mechanism in single 

α-MnO2 nanowire combining both in situ TEM and in situ synchrotron XAS. During 

first sodiation cycle, the tunneled structure of α-MnO2 can survive Na+ insertion when 

Mn4+ is gradually reduced to Mn3.5+. It is then followed by fast tunnel degradation 

with formation of an intermediate phase, Na0.5MnO2, and the final conversion to 

Mn2O3 and Na2O. The 1st desodiation process and the following cycles are dominated 

by the partially reversible conversion reaction between Na0.5MnO2 and Mn2O3. The 

comparison between lithiation and sodiation shows that the initial Na+ and Li+ 

insertion in α-MnO2 proceed via the same tunnel-driven intercalation mechanism 

accompanied by tunnel expansion until Mn4+ is reduced to Mn3.5+. For the subsequent 

deep insertion, the sodiation exerts a strong destructive effect on the tunneled 

structure of α-MnO2 that leads to fast tunnel degradation and phase transition, while 

the lithiation causes little tunnel degradation up to Mn3+. The difference in charge 

carrier (Na+/Li+) insertion mechanisms should be ascribed to Na+’s bigger ionic size 

and the resulted stronger interaction with the host structure than that of Li+.  

 

This work clarifies the underlying charge storage mechanisms when manganese 

oxides (α-MnO2) are utilized as NaIB electrodes. Although MnO2-based electrode has 

not been reported to give the best performance among various reported electrode 

candidates, we believe that the interaction mechanisms between inserted Na+ (Li+) 

and the host structure discovered in this work can help to further improve the 

electrochemical performance of these materials by proper structure engineering and 

chemical modification. 
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Chapter 6. The Influence of Large Cations on the 

Electrochemical Properties of Tunnel-Structured 

Metal Oxides④ 

6.1. Introduction  

Metal oxides with an internal tunnel structure such as α-MnO2, TiO2 and β-FeOOH 

are widely used for charge storage in rechargeable batteries and supercapacitors 

where charge carriers such as Li+, Na+ and Mg2+ can be reversibly inserted and 

extracted.1-4 Of these oxides, α-MnO2, which possesses the typical octahedral 

molecular sieve (OMS) structure, is characterized by well-ordered one dimensional 

1×1 and 2×2 tunnels,5 as illustrated in Figure C1. The 2×2 tunnel (4.6 Å × 4.6 Å) is 

large enough to accommodate charge carriers such as Li+, Na+ and Mg2+, enabling 

fast ion diffusion inside the tunnel cavity.6 In addition, Mn-based oxides are also low 

cost, environmentally friendly, and safer with respect to over-charge conditions 

compared to Co-based oxide electrodes.7 Consequently, α-MnO2 has been extensively 

studied as a promising cathode material for lithium (sodium and magnesium) ion 

batteries,8-11 lithium air batteries,12,13 and supercapacitors.14-16 

 

Recent research shows that large cations such as K+, Ba2+, and NH4
+ can be 

introduced during synthesis of α-MnO2.
17,18 These cations, which partially occupy the 

tunnel cavities at certain stabilized lattice sites, are expected to interact with the 

charge carrier (Li+, Na+, Mg2+) and thus affect the charge storage performance of α-

MnO2 where tunnel-driven (de)intercalation contributes to the overall capacity.16,18-20 

Despite considerable research devoted to improving the charge storage performance 

of α-MnO2, the underlying mechanism by which tunnel cations affect the 

insertion/extraction of charge carriers is poorly understood. 

                                                 
④The material contained in this chapter has been submitted to Nature Communications. 
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In the case of Li+ being the charge carrier, many researchers believe that the presence 

of large cations (K+, Ba2+) inside the 2×2 tunnels impedes the diffusion of Li+ by 

physical blocking and repulsive electrostatic forces.18,21-23 Others have pointed out 

that fast (de)intercalation of Li+ requires a stable tunnel structure, and the existence of 

cations helps to prevent the collapse of the tunnels.24,25 As yet, no conclusive 

evidence has been provided to clarify whether the tunnel cations promote or impede 

rapid migration of Li ions. An important factor that contributes to this ambiguity is 

the difficulty of visualizing these cations and determining their content and position, 

given the spatial resolution limits of most non-aberration corrected electron 

microscopes. It is apparent that there is a pressing need to understand the effect of 

tunnel cations on charge storage behavior of materials such as α-MnO2 to allow the 

synthesis methods and properties of such tunnel-structured oxides to be optimized. 

 

In this report, nanowires of K+-doped α-MnO2 were hydrothermally synthesized and 

the K+ concentration was controlled and differentiated by acid solution treatment. The 

effect of varying K+ concentration on the rate performance of a Li/α-MnO2 battery 

was studied systematically by measuring the electronic conductivity and Li+ 

diffusivity in the α-MnO2 cathode. The underlying mechanism was revealed using a 

powerful combination of aberration-corrected scanning transmission electron 

microscopy (ACSTEM), transmission electron microscopy (TEM), electrical 

response measurements of single α-MnO2 nanowires, electrochemical impedance 

spectroscopy (EIS), and density functional theory (DFT) simulations.   

6.2. Methods 

6.2.1. Materials synthesis and composition control 

 

α-MnO2 nanowires were synthesized hydrothermally using KMnO4 and MnSO4 as 

reactants in aqueous solution.14 Specifically, 0.9878 g of KMnO4 and 0.4226 g of 
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MnSO4•H2O were dispersed in 80 mL of deionized (DI) water under constant stir for 

30 min to form a purple solution. The obtained slurry was then transferred to a 100 

mL Teflon-lined stainless steel autoclave, sealed and heated at 160 oC for 12 h. The 

synthesized nanowires were first separated from the solution by centrifugation, then 

washed with deionized (DI) water and ethyl alcohol, and finally dried in air at 60 oC 

for 12 h. During the synthesis process, K+ doped the initially formed 2×2 tunnels and 

remained trapped inside the tunneled structure. 

 

The control of K+ concentration inside the 2×2 tunnels was achieved by acid 

treatment using concentrated HNO3. The as-synthesized nanowires were first soaked 

in HNO3 solution accompanied by magnetic stirring (800 rpm at 60 oC) for 1 and 4 

days. This procedure was followed by repeated washing of the nanowires with 

deionized water until the solution was neutralized (pH ≈ 7). These nanowires were 

finally heated at 280 oC in air. According to literature,7 280 oC dry heating is efficient 

in removal of any residual water in the tunnels. 

 

6.2.2. Structure, composition and thermal stability characterization 

 

Cross-sectional specimens were prepared using an ultramicrotome (Leica UCT). The 

nanowires were first mixed with cold-mounting epoxy resin (EPOFIX, Electron 

Microscopy Sciences) before subjecting them to 10 min supersonic vibrations. The 

hardener (EPOFIX, Triethylenetetramine, Electron Microscopy Sciences) was then 

added to speed up the solidification process in air at 60oC for 24 hours. After 

solidification, the sample was placed under an Edge CraftTM diamond knife mounted 

in an ultramicrotome (Leica UCT) to be cut into slices with a feeding step size of 500 

nm. 

 

(S)TEM characterization was performed using an aberration-corrected JEOL JEM-

ARM 200CF STEM equipped with a 200 keV cold-field emission gun, a high angle 

annular dark field (HAADF) detector, and an Oxford X-max 80 SDD X-ray detector. 
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HAADF images were acquired using a 22 mrad probe convergence angle and a 90 

mrad inner-detector angle. EELS data were captured in a postcolumn Gatan Enfina 

EELS spectrometer with a 45 mrad collection angle. The spectra were fitted using 

Gaussian function.  

 

XPS was obtained from a Kratos AXIS-165 Surface Analysis System with the spectra 

collected with a monochromatic Al Ka source (1,486.7 eV). For survey spectra, the 

data were collected at a pass energy of 80 eV (fixed analyser transmission mode), a 

step size of 1 eV and a dwell time of 200 ms. High-resolution regional spectra were 

collected with a pass energy of 20 eV (fixed analyser transmission mode), a step size 

of 0.1 eV and a dwell time of 500 ms. 

 

Gas adsorption analysis was performed using a micromeritics porosity analyzer 

(ASAP 2020), by subjecting solids to varying partial pressures of N2 at 77 K in a 

liquid nitrogen bath. All MnO2 samples were initially degassed on the instrument 

degassing station (180 oC at 10×10-3 torr for 4h). The measurement consists of 30 

points (15 adsorption and 15 desorption points).  For consistent and reliable results, 

data in the linear range of P/Po of 0.06-0.3 (R2=0.9999) was used to calculate the BET 

surface area. 

 

Thermogravimetric analysis was done with a SDT-Q600 TGA/ DSC instrument with 

100 ng sensitivity under high purity nitrogen atmosphere. In this experiment, 2.1 mg 

of sample was poured in a clean aluminum pan, then the sample was kept at 40 °C for 

30 min to stabilize the system and then it was heated to 450 °C with the rate of 

10 °C/min continuously.  

 

In situ TEM heating was done inside a JEOL 3010 TEM. The nanowires were first 

dispersed onto a TEM grid and then mounted to an in situ heating holder. After 

loaded into TEM chamber, the nanowires were heated to 450 oC with the rate of 10 
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oC/min. Data were collected at 25, 200, 280, 350, 400 and 450 oC after maintaining 

samples at each specific temperature for 5 min. 

 

6.2.3. In situ TEM testing of the I-V response of single α-MnO2 

nanowire  

 

The I-V response of a single α-MnO2 nanowire was obtained using a Nanofactory 

scanning tunneling microscope (STM) holder inside a JEOL 3010 TEM operated at 

300 KeV. An in situ STM holder was utilized to manipulate single α-MnO2 

nanowires into the desired position. All the tested nanowires have similar 

morphologies (50-60 nm in diameter and 500-700 nm in length). Each nanowire was 

first vertically attached to the tungsten (W) tip on one side of the circuit and moved 

toward the W tip on the other side using a piezoelectric control. To minimize contact 

effects, the W tips were electrochemically etched immediately before use. After a 

nanowire was connected to both W tips to form a complete circuit, a high voltage 

with a current of about 1 μA was applied to achieve a tight contact between the 

nanowire and the two tips.  

 

6.2.4. Ab initio computer modeling 

 

Calculations were performed based on density functional theory (DFT) with PAW 

potentials, as implemented in the VASP code. The HSE06 hybrid functional with 

25% Hartree-Fock exchange was applied, which has been demonstrated by others to 

describe well d electron localization and therefore can reproduce correct mixed 

charge states of transition metal oxides.16 For bulk calculations a planewave basis set 

cutoff energy of 500 eV and a minimum grid of 2×2×7 k-points were used in the 

Brillouin zone. The structure including lattice parameters and atomic positions were 

relaxed until the residue force on each atom is less than 0.03 eV/ Å. The calculated 

lattice parameters for K0.25MnO2 agree well with experiment, as shown in Table C3.  
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6.2.5. Electrochemical testing 

 

The electrode slurry was made of 80 wt% α-MnO2 nanowires, 10 wt% super P carbon 

and 10 wt% PVDF binder in N-methyl-pyrrolidinone (NMP). The mixture was then 

cast onto an Al foil to make the electrode. The electrode was dried at 75 oC for 4 

hours, followed by thorough drying at 75 oC overnight under vacuum. 

Electrochemical measurement of the first discharge capacity was carried out using 

CR2032 coin cells with Li metal as the counter electrode, 1.2 M LiPF6 in EC/EMC 

(3:7 by weight) as the electrolyte, and Celgard® 2325 membrane as the separator. 

Cells were cycled between 1.5 to 4 V at different rates calculated using 130 mAh/g as 

the practical capacity.  

 

Electrochemical impedance data were collected with a Solartron 1470E and 1451A 

cell testing system, using a 5 mV AC perturbation with frequencies ranging from 100 

KHz to 50 mHz. A three-electrode system was used so that the spectra obtained 

correspond to the impedance of the cathode side only. A Li metal wire was used as 

the reference electrode and a piece of Li foil was used as the counter-electrode. 

Spectra were fit according to the equivalent circuit in Figure 6.4a, where Re is the 

electrolyte resistance, Rct is the charge-transfer resistance, Cdl is the double layer 

capacitance that takes the roughness of the particle surface into account, and ZW is the 

Warburg diffusive impedance.23 The semicircle in the high frequency region of the 

impedance spectra can be assigned to the RctCdl elements, while the slope of curve in 

the low frequency region is governed by the Warburg diffusion of Li+ into the bulk of 

cathode particles. Galvanostatic intermittent titration technique (GITT) measurements 

were carried out with a negative current pulse at C/20 for 30 seconds, followed by 

relaxations for 5 hours. This sequence of discharge pulse followed by a relaxation 

time was repeated until the potential reached 1.5 V.  
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6.3. Results and discussion 

6.3.1. Structural characterization of α-KxMnO2 with different K+ 

contents 

 

Hydrothermally synthesized α-MnO2 nanowires were characterized using ACSTEM, 

and the results are shown in Figure 6.1. It can be seen from figures 6.1a and b that the 

α-MnO2 nanowire is monocrystalline, growing in the [001] direction with a uniform 

diameter. The [100] atomic resolution high angle annular dark field (HAADF) image 

in Figure 6.1c shows the 2×2 tunnels (dark stripes) surrounded by two Mn atomic 

columns (yellow spheres) corresponding to the tunnel walls on each side. It can also 

be seen that the 2×2 tunnels are decorated with ordered K atomic columns (pink 

spheres) around their center positions, based on which the [100] atomic model is 

provided in Figure 6.1d. K+ ions are successfully introduced during synthesis because 

excess K+ are present in solution to support the 2×2 tunnels during their initial 

formation. The down-tunnel image of one α-MnO2 nanowire (Figure 6.1e) shows that 

the nanowire has a square shaped cross-section with four {100} lateral surfaces. The 

corresponding crystal structure is shown in Figure 6.1f, in which 1×1 and 2×2 tunnels 

are clearly observed. 1×1 tunnels are essentially empty while each 2×2 tunnel is 

found to contain one atomic column, in good agreement with the lateral HAADF 

image in Figure 6.1c. The energy dispersive spectroscopy (EDS) along the [110] 

direction shown in Figure 1f confirmed the tunnel walls to be Mn and the central 

atoms inside the 2×2 tunnels to be K+ (Wyckoff 2a positions), from which the atomic 

model shown in the bottom inset of Figure 6.1f was constructed. From these 

observations, the K+ concentration in as-synthesized α-MnO2 was determined to be 

K0.25MnO2. 
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Figure 6.1. (a,b) A low-magnification TEM image of the as-synthesized α-MnO2 

nanowire and the corresponding [100] electron diffraction pattern; (c,d) The [100] 

HAADF image of the same nanowire with the representative atomic model. The 

yellow spheres indicate Mn atomic columns, while red and pink represent O and K+ 

ions, respectively. (e) A low-magnification [001] TEM image showing one cross 

section of α-MnO2 nanowire; (f) A [001] HAADF image revealing the atomic 

structure of tunneled α-MnO2 with the red dotted square demarcating a 2×2 tunnel 

and the blue dotted square a 1×1 tunnel. The green line indicates the region along 

which EDS linear scanning was carried out. The bottom inset shows a model of the 

tunnel structure viewed down the tunnel axis. Scale bars in (c) and (f): 1 nm. 
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The structural and compositional analyses of the nanowires after HNO3 treatment are 

carried out using X-ray powder diffraction (XRD) with Rietveld refinement and 

analytical STEM with EDS. The XRD results are shown in Figure 6.2. It can be seen 

that the α-MnO2 phase is well maintained during the acid treatment as no extra peak 

generation or elimination is observed. However, with the increase of treatment time, 

all the peaks gradually shift toward higher angles, and this trend is more clearly 

demonstrated by the inset image showing the (200)α-MnO2 peak. The Rietveld 

refinement in the table quantifies the trend of tunnel contraction during acid treatment 

by deriving lattice parameters a, b and c, where the anisotropic tunnel expansion 

(mainly along a-b plane) is indicated. The estimated K+ concentration further 

confirms that the tunnel contraction is essentially determined by the gradual removal 

of K+ from the tunnels.  

 

The atomic imaging of the tunnels with different K+ concentrations in Figure 6.3 

reveals that HNO3 treatment was effective in removing K+ from the 2×2 tunnels, and 

the K+ concentration can be controlled by altering the treatment time. After 1-day 

treatment, K+ has been partially removed from the nanowire, and the 2×2 tunnels are 

thus only partially filled. After 4-day treatment, α-MnO2 is essentially free of any K+ 

ions, as confirmed by both the HAADF image showing no K+ contrast (Figure 6.3c) 

and the lack of any K+ signal in the EDS spectra shown in the inset. The compositions 

of α-MnO2 nanowires without treatment and after 1- and 4-day acid treatment were 

thus deduced to be K0.25MnO2, K0.25-xMnO2 and undoped MnO2, respectively. It is 

also notable that the 2×2 tunnels slightly contract after K+ removal, as indicated by 

the {020} spacing changing from 4.97 Å for the untreated nanowire to 4.84 Å for the 

4-day treated nanowire. This tunnel contraction trend is clearly illustrated in figures 

6.3d-f. Although the tunnel experiences significant volume change, the overall 

tunneled structure of α-MnO2 is still maintained after K+ removal, enabling all these 

three types of nanowires to function as an intercalation cathode in a lithium ion 

battery.  
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Figure 6.2. XRD results of the three groups of nanowires after acid treatment over 

different time scales. The inset image is the enlarged view of the α-MnO2 (200) peak, 

where the gradual peak shift toward higher angle direction with increase of treatment 

time is observed. The table lists the calculated lattice parameters and compositions 

from the Rietveld refinement. 

 

There is a slight variation between XRD and atomic STEM imaging in determining 

the K+ concentration and lattice constants. This is understandable considering that 

STEM focuses on local atomic structure of a single nanowire, while XRD studies 

bulk information including the surface lattice and structural defects. In our case, since 

the composition of the nanowires without HNO3 treatment is determined by counting 

the Mn and K atoms in the STEM image, which is mathematically more accurate than 

XRD, we have identified these nanowires as K0.25MnO2. This indicates that all 2a 

sites inside the 2×2 tunnels are occupied by K+.26 The composition for 4-day treated 

nanowires is determined to be nominally MnO2 because both atomic STEM/EDS and 



 119 

Rietveld refinement hardly show any signal for K+. For 1-day treated nanowires, we 

express the composition using K(0.25-x)MnO2.  

 

Figure 6.3. (a-c) False-colored [100] HAADF images of α-MnO2 nanowires after (a) 

untreated, being treated with HNO3 for (b) 1 day, and (c) 4 days. Yellow spheres 

indicate Mn and pink spheres represent K+ inside 2×2 tunnels. The inset in each 

image shows the elemental concentrations of Mn, K and O based on EDS analysis of 

many nanowires. Scale bars: 1 nm. (d-f) The schematics of 2×2 tunnel cavity with 

different K+ concentrations showing the tunnel contraction when K+ ions are removed 

from the tunnel center. The pink spheres indicate K+ on the centered 2a sites. 

 

Previous studies suggest that the removal of K+ from 2×2 tunnels in acid solutions is 

explained by either the K+-H+ exchange mechanism,27,28 Mn oxidation mechanism, 

23,29 or the existence of both30. The critical difference between them is whether the 

Mn valence is increased or not. In our study, the dominant mechanism is found to be 

Mn oxidation to Mn4+ rather than K+-H+ exchange. The detailed analysis using 

electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy 

(XPS) is provided in Supporting Information Figure C2 and Figure C3, respectively. 

Both EELS and XPS confirm the existence of Mn3+ in the nanowires before acid 
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treatment (K0.25MnO2), while a portion of Mn3+ gradually decreases with increase of 

treatment time. The average Mn valence gradually increases to Mn4+ as a result of K+ 

removal. The exclusion of the K+-H+ exchange mechanism is not straightforward due 

to the difficulty in quantifying H concentration before and after acid treatment, which 

was done in a H2O-based solution. In this work, since both XPS and EELS confirm 

K+ removal to be accompanied by Mn oxidation rather than the K+-H+ exchange 

mechanism, the possibility of H+ presence in the tunnels is minimized. 

 

Prior to electrochemistry analysis, the surfaces and thermal stability of the nanowires 

were characterized to check whether the nanowires are affected by the acid treatment. 

The Brunauer–Emmett–Teller (BET) analysis in Supporting Information Table C1 

(Appendix C) shows no significant change in the surfaces of nanowires. 

Thermogravimetric analysis (TGA) and in situ TEM heating techniques are used to 

test the thermal stability of the nanowires after K+ removal from the tunnels, and the 

results and detailed analysis are shown in Supporting Information Figure C4 and 

Figure C5, respectively. The results confirm that the nanowires after K+ removal from 

the tunnels are thermally stable without any phase transition or tunnel collapse up to 

350 oC.    

 

6.3.2. Effect of K+ on electronic and ionic conductivities of α-MnO2 

nanowires  

 

Our previous simulation work17 suggest that 2×2 tunnels are the preferred Li+ 

transport channels in pure α-MnO2. We have also reported previously that Li+ ions 

thermodynamically occupy the off-centered Wyckoff 8h site inside each 2×2 tunnel 

rather than the tunnel center,8,17 which is also demonstrated by other groups.31 

Therefore, with K+ on the centered 2a sites and the tunnel expanded by K+, it is 

reasonable to expect the K+ concentration inside the 2×2 tunnels to affect both 

electronic and ionic transport and hence the electrochemical behavior of an α-MnO2 
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cathode. To examine these effects, the electronic conductivity and Li+ diffusivity of 

α-MnO2 nanowires with different K+ concentrations were characterized using in situ 

TEM and EIS methods.  

 

Figure 6.4. (a) Calculated electron density of states near the Fermi level region of 

K0.25MnO2 and pure MnO2. (b) Conductance of α-MnO2 nanowires with different K+ 

concentrations. Three nanowires were tested for each K+ concentration, as indicated 

by different colored bars. The inset shows the in situ TEM experimental setup and the 

I-V responses of the nine α-MnO2 nanowires. (c) Impedance spectra (Nyquist plots) 

and (d) linear fitting to Z’ vs. ω-1/2 plots in the low frequency range (<25 Hz) of the 

electrodes with K0.25MnO2, K0.25-xMnO2 or undoped MnO2 as the active material. The 

scatter points are the experimental data and the lines represent the simulation results 

using the equivalent circuit shown in (c).  
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The electronic structure was also examined by density functional theory (DFT) 

simulations and also by direct electrical probing within the microscope, the results of 

which are given in Figure 6.4a-b. This computational work complements and extends 

previous DFT studies8,16 on interstitial cation incorporation in α-MnO2. The simulated 

density of states (shown in Figure 6.4a) indicates that pure α-MnO2 has a band gap of 

approximately 2.8 eV suggesting semiconductor behavior, and agrees well with the 

reported value of Young et al.16  For K0.25MnO2, newly formed occupied states appear 

inside the original MnO2 bandgap , indicating mixed Mn4+ and Mn3+ in K0.25MnO2, 

which is compatible with previous reports.32 This indicates that the presence of K+ 

inside the 2×2 tunnels can enhance the electronic conductivity of α-MnO2 through 

electron hopping between Mn4+/Mn3+. 

 

For each K+ concentration, the conductivity of three nanowires was measured to test 

reproducibility. The I-V responses of all the nanowires with different K+ 

concentrations measured in situ in the microscope (inset of Figure 6.4b) are nonlinear 

but symmetric in the low-bias regime. This can be ascribed to the Schottky barriers 

formed between the semiconducting nanowire and the metal (W) electrodes.33 In the 

large-bias regime (8-10 V), the I–V curves exhibit a near-linear relationship, and the 

conductance (G) of the nanowires can be calculated according to G = dI/dV.34 G was 

calculated to be 0.15~0.19 μS for K0.25MnO2, 0.025~0.034 μS for K0.25-xMnO2, and 

0.0011~0.0050 μS for undoped MnO2; the results are plotted in Figure 6.4b, and 

details of the data fitting are provided in Supporting Information Table C2. Because 

of the similar diameters and lengths of the selected nanowires used for testing, the 

conductivities of nanowires with different K+ concentrations should exhibit similar 

trends as the conductance. It can be seen that K0.25MnO2 has a conductivity about 40 

times higher than that of pure α-MnO2, indicating the important role of tunnel cations 

in enhancing the electronic conductivity of α-MnO2 nanowires. The origin of the 

improved electronic conductivity of α-MnO2 containing K+ can be attributed to the 

electron hopping between heterovalent Mn pairs (Mn3+/Mn4+) induced by K+ 

doping.35,36 Increasing the cation content will produce more regions inside the 
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nanowire with mixed Mn3+/Mn4+ valence states, resulting in higher electronic 

conductivity.37  

 

Li+ diffusion in α-MnO2 nanowires with different K+ contents was characterized by 

EIS, and the results are shown in Figure 6.4c-d. Figure 6.4c shows the impedance 

spectra (Nyquist plots) of electrodes with K0.25MnO2, K0.25-xMnO2 or undoped MnO2 

as the active material. In the low frequency region the real part of the impedance (Z’) 

is linear against the -1/2 power of the angular frequency (ω-1/2), and the slope is called 

the Warburg coefficient (σ). Linear fits to the Z’ vs. ω-1/2 plots for the untreated and 

treated α-MnO2 electrodes are shown in Figure 4d, and the corresponding σ values are 

listed in Table 6.1. In addition, the equivalent circuit (inset of Figure 6.4c) was used 

to fit the spectra and the results are listed in Table 6.1. The charge transfer resistance 

(Rct) increased after K+ removal, indicating that doping with K+ enhances lithium 

intercalation near the electrode/electrolyte interface. 

 

The chemical diffusion coefficient of Li ions ( LiD
~

) inside an electrode can be derived 

using the following equation,38 
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where Vm is the molar volume of the active material, F is the Faraday constant, S 

denotes the active surface area of the positive electrode, and dE/dy is the slope of the 

open circuit potential (OCP) vs. the Li+ concentration y in LiyKxMnO2. The value of 

dE/dy was obtained from galvanostatic intermittent titration technique (GITT) 

measurements. The specific surface areas were obtained from BET results 

(Supporting Information Table C1), with 28.2 m2/g for K0.25MnO2, 26.8 m2/g for 

K0.25-xMnO2 after 1-day acid treatment and 26.7 m2/g for pure MnO2 after 4-day 

treatment, respectively. The measured values agree well with reported specific 

surface areas for hydrothermally synthesized α-MnO2 nanostructures which is in the 

range of 20-40 m2/g.12,39-41 The values of LiD
~

 are listed in Table 6.1 showing that the 
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chemical diffusion coefficient of Li+ is reduced by removal of K+. In addition, 

extending the time of acid treatment from 1 day to 4 days leads to a three-orders-of-

magnitude decrease in the value of LiD
~

. These results directly confirm that K+ in α-

MnO2 tunnels facilitates diffusion of Li+. Although there are currently no measured 

diffusion data on Li/K-MnO2 for direct comparison, the magnitudes of LiD
~

 are 

comparable to other electrode materials; for example, experimental diffusion 

coefficients of 10-8 to 10-12 cm2•s-1 have been reported for Li+ diffusion in layered 

oxide cathodes such as LiCoO2 and Li(Ni,Mn,Co)O2.
42,43,44 The increase of Li+ 

diffusivity by the addition of K+ can be attributed mainly to the expansion of the 

tunnel cavity by the large centered K+ cation at 2a sites. The improved e- conductivity 

is also beneficial for Li+ conductivity in the tunnels with K+ presence. 

 

Table 6.1 Transport properties derived from the impedance spectra (at T = 25 oC). 

 

 

6.3.3. Rate performance of α-MnO2 cathodes with different K+ 

concentrations 

 

Since the presence of tunnel cations improves both the electronic conductivity and Li+ 

diffusivity of α-MnO2, the rate performance of a Li/α-MnO2 battery would be 

expected to be enhanced when K+ occupy the tunnels. Before we examined the rate 

performance, the tunnel stability as well the stability of K+ inside the tunnels during 

repetitive cycling is characterized. Figure C6a-c in the Supporting Information shows 

the morphology and phase analysis of three groups of nanowires (K0.25MnO2, K0.25-
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xMnO2, pure MnO2) after 100 battery cycles (Li/α-KxMnO2 coin cells). Figure C6d 

shows the EDS quantification of K+ concentrations inside the tunnels before and after 

battery cycles for the electrode initially composed of K0.25MnO2 nanowires. The K+ 

concentration in the tunnels is slightly reduced after cycling (probably lost into the 

electrolyte), while the majority of K+ remains inside the nanowires. All the nanowires, 

including those with K+ (partially and totally) removed, retain their tunneled α-MnO2 

structure with no obvious morphology change during battery cycling. Therefore the 

good stability of K+ ions in the tunnels can retain their effect on the battery 

performance upon continuous cycling.  

 

To investigate the effect of K+ concentration on the first cycle performance, the 

galvanostatic discharge/charge curves for three groups of nanowires are shown in 

Figure C7 (Supporting Information). While all exhibit a discharge reaction around 2.5 

V vs Li/Li+, the discharge capacity of the nanowires without acid treatment (143 

mAh/g) is relatively lower than that of the treated nanowires (157 mAh/g and 170 

mAh/g), which can be ascribed to the addition of inactive mass of K+ into the 

electrode. Upon charge, however, the capacity of the treated nanowires is lower than 

the capacity of the nanowires with no treatment.  

 

To study the rate performance, the first discharge capacity of a Li/α-MnO2 battery 

under different current rates (0.1, 0.5, 1, 2 and 5 C) was measured for the three groups 

of nanowires. To make the comparison more straightforward, the discharge capacity 

at 0.1 C was normalized to 100%. From Figure 6.5a, it can be seen that the first 

discharge capacities of cathodes made of K0.25MnO2, K0.25-xMnO2 and undoped MnO2 

were all reduced when the C rate was increased from 0.1 to 5 C. The capacity 

retention behavior under high discharge currents, however, varied with different K+ 

concentrations. Li/K0.25MnO2 exhibited 62% capacity retention at 5 C, while Li/K0.25-

xMnO2 retained only 54% capacity and Li/MnO2 showed capacity retention as low as 

8% at 5 C. The cycling-rate performance of the three groups of nanowires is shown in 

Figure C8 (Supporting Information). While the capacity retention is similar for the 
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three groups at 1 C, it indeed shows better capacity retention at higher currents (2 C 

and 5 C) for the nanowires with the highest K+ concentration. The mechanisms 

accounting for the rate performance variation (especially during the first cycle) of K+-

doped nanowires is illustrated in Figure 6.5b. As discussed earlier, the presence of K+ 

in tunneled α-MnO2 not only improves electronic conductivity by boosting e- hopping 

via Mn3+/Mn4+ couples, but also enhances Li+ diffusivity.   

 

Figure 6.5. (a) Capacity measurements during the first discharge process of 

Li/K0.25MnO2, Li/K0.25-xMnO2 and Li/MnO2 based batteries at discharge rates of 0.1, 

0.5, 1, 2, and 5 C. The 0.1 C capacities were normalized to 100% for a 

straightforward comparison between different C rates. (b) 3D schematic showing how 

K+ doping facilitates Li+ accommodation by expanding the tunnel cavity and 

improves the electron conductivity by boosting the electron hopping mechanism 

during the electrochemical cycling inside a Li/α-MnO2 battery. The pink spheres 

indicate K+ occupying the centered 2a sites, green spheres indicate inserted Li+ on the 

off-centered 8h sites. The yellow octahedra represent [Mn4+O6] while the blue ones 

represent [Mn3+O6]. The red arrows indicate the electron hopping along Mn3+/Mn4+ 
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paths. (c-e) The schematics of single 2×2 tunnel showing the atomic configuration of 

K+ (pink) at centered 2a sites and Li+ (green) at off-centered 8h sites. The trend of 

tunnel contraction when K+ ions are removed from the tunnel center is also illustrated 

by the blue arrows. The atomic configuration of Li+, K+ and O2- in one 2×2 tunnel is 

calculated and explained in Supporting Information.  

 

Our investigation opens up further research opportunities in this area. For example, 

although not a trivial task, future atomistic simulations could be used to explore Li-

ion diffusion in these nanowire structures with large cations inside. It would also be 

interesting to explore replacing K+ with other cations such as Ag+, Ba2+, to examine 

models related to cation-tunnel interactions, such as charge-switching states proposed 

by Young et al.16, and to study the effect of trace amounts of H+ via sensitive 

techniques such as quasi-elastic neutron scattering. Currently, we have found no 

experimental evidence showing the direct capacity contribution from Li+ intercalation 

at 1×1 tunnel. Still, future work could explore the possibility of Li+ intercalation at 

1×1 tunnels as a competing mechanism agaist its insertion at 2×2 tunnels where large 

cations reside.  

6.4. Conclusions 

In this study, the effect of tunnel cations (K+) on the electrochemical performance of 

α-MnO2 cathodes was examined using a powerful combination of analytical 

aberration-corrected STEM, in situ TEM, electrochemical testing and ab initio 

modeling. α-MnO2 nanowires with different K+ concentrations were prepared and 

imaged at sub-ångstrom resolution to determine the structure of tunnels as well as the 

location and content of K+. It was found that the presence of K+ inside the 2×2 tunnels 

of α-MnO2 nanowires improves both their electronic conductivity and Li+ diffusivity. 

These enhancements facilitate favorable electrode kinetics, and thus result in good 

rate performance of Li/α-MnO2 based batteries.  
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The results of our systematic study provide a valuable framework for the rational 

selection of tunnel cations and their concentrations to improve the rate performance 

of tunnel-based intercalation electrodes. In addition, the positive effect of K+ 

incorporation suggests that further exploration of tunnel-based cathodes with new 

battery chemistries based on Na+, Mg2+, and Al3+ ions is also warranted.  
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Chapter 7. Atomistic Insights Into the Oriented 

Attachment of Tunneled Oxide Nanostructures⑤ 

7.1. Introduction 

Considerable attention has been devoted to the study of inorganic compounds with 

open tunnel structures. Materials in this category include, but are not limited to, 

zeolites,1,2 titanium silicates,3 TiO2
4,5 and MnO2-based molecular sieves.6-10 The 

characteristic tunnel-based structure allows these materials to accommodate and 

transport charge carriers (also called tunnel stabilizers) with different sizes and 

charges, enabling their wide application in catalysis, ion exchange and energy 

storage.11-14 Controlled synthesis is necessary to produce tunnel-based nanostructures 

with various tunnel sizes, morphologies and atomic ordering. However, this process is 

not fully understood and requires fundamental understanding of the growth 

mechanisms on the nanoscale and even at the single-tunnel level.   

 

Solution-based synthesis is often used to prepare tunnel-based materials, in the form 

of one-dimensional nanostructures.15-23 The growth mechanism is generally believed 

to be an oriented attachment (OA) process where primary particles aggregate by 

sharing a common planar interface and form a secondary particle with a uniform 

orientation, allowing the rational design of hierarchical nanostructures for functional 

devices.19,24-26 The driving force for the growth is thought to be the reduction of the 

surface energy when primary particles attach together.27-29 The as-formed OA 

interface is usually imperfect,30,31 because of the complex nature of different tunnel-

tunnel intergrowths32,33 as well as the strong interaction between tunnels and the inner 

stabilizers.34,35 It is still unclear how primary tunnels grow to form secondary 

                                                 
⑤ The material contained in this chapter was previously published in the ACS Nano. 

(Reprinted with permission from Y. Yuan, J. Lu, A. Nie, M. Saiful, R. S. Yassar. 

ACS Nano, 2016, 10, 539-548. Copyright © 2015 American Chemical Society.)   
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nanowires with precise alignment of tunnels. Understanding the atomic structure of 

tunnel-based materials during growth is crucial for designing nanomaterials in which 

the tunneled structure can be tailored and controlled for desired applications.  

 

α-MnO2 represents an important family of tunnel-based structures with well-aligned 

2×2 (4.6 Å × 4.6 Å) and 1×1 (1.9 Å × 1.9 Å) tunnels.16 Polyhedral and atomic models 

of α-MnO2 are illustrated in Figure 7.1. The larger 2×2 tunnels are generally 

stabilized by various cations, such as NH4
+, Ba2+, and K+.19 Here, K+-stabilized α-

MnO2 nanowires were investigated to understand their tunnel-based structures during 

growth. For the first time, the morphology evolution of α-MnO2 nanowires in aqueous 

solution environment was dynamically observed using liquid cell transmission 

electron microscopy (TEM), and sub-angstrom imaging of the tunneled interfaces 

was obtained using aberration-corrected scanning TEM (AC-STEM). The structural 

characterization was complemented by ab initio calculations to elucidate the surface 

energetics of K+-stabilized α-MnO2. It was found that primary α-MnO2 nanowires 

prefer to attach together laterally along their {110} surfaces to form larger secondary 

nanowires facilitated by the reduction of their surface energy. In contrast to the 

conventional 1×1 and 2×2 tunnels, the {110} interfaces are composed of 2×3 tunnels 

parallel to the 1×1 and 2×2 tunnels. The formation of the 2×3 tunnel-based {110} 

interfaces during the growth process is driven by reduction of the surface energy and 

bonding of [MnO5] units exposed at {110} surfaces with [MnOx] radicals in solution. 

The importance of K+ in forming the 2×3 tunnel-based interfaces during the oriented 

attachment growth is also demonstrated.  

 

Figure 7.1. Crystal structures of α-MnO2. (a) [MnO6] octahedra model (b) atomic 

model viewed along [001] (c-axis). The 2×2 and 1×1 tunnels are indicated by blue 
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and red dashed squares, respectively, in (a); The typical definition of a tunnel is based 

on the number of [MnO6] octahedra in each tunnel wall. R+ indicates the position of 

2×2 tunnel stabilizers such as NH4
+, Ba2+, and K+.  

7.2. Methods 

The details for nanostructure synthesis, structural characterization and the DFT 

calculations are provided in Appendix D. 

7.3. Results and discussion 

7.3.1. Morphology and phase evolution  

 

The morphology and phase evolution of MnO2 nanowires under different reaction 

times were studied using X-ray diffraction (XRD) and transmission electron 

microscopy (TEM), and the results are presented in Figure 7.2. XRD results show that 

the characteristic peaks (red indices) of α-MnO2 appear when the reaction time 

reaches 1.5 h. When the reaction time was increased from 1.5 to 9 h, the size and 

crystallinity of nanowires gradually improved, as indicated by the peak sharpening 

and intensity enhancing, respectively. From 9 to 12 h, the XRD peaks do not show 

any obvious difference, indicating stable and well-formed α-MnO2. Layered δ-MnO2, 

although not detected by XRD (probably on account of its low concentration and 

partial peak overlapping), was found by TEM to coexist with α-MnO2 nanowires 

grown for less than 1.5 h. However, for longer reaction times, no evidence of δ-MnO2 

was found. This finding agrees well with previous reports stating that layered δ-MnO2 

functions as the precursor for tunnel-based α-MnO2 nucleation and growth.18 Figure 

7.2 also shows that the primary α-MnO2 nanowires gradually attached to each other 

and formed secondary α-MnO2 nanowires with a larger diameter (marked as red 

dotted circles). This is indicative of a lateral OA mechanism operating during the 

growth of α-MnO2.  
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Figure 7.2. (a) XRD patterns for hydrothermally prepared α-MnO2 nanowires for 

reaction times of 1.5, 3, 6, 9, and 12 hours; (b-f) TEM images and selected area 

electron diffraction patterns (insets) of the samples after different reaction times. The 

upper inset in (f) shows the EDS results confirming the presence of K+. Scale bars are 

100 nm. 

 

The growth rate greatly decreased after 9 h, as confirmed by a slight change in the 

diameter of nanowires produced for reaction times between 9 and 12 h. The thickness 

contrast in each secondary nanowire is relatively uniform along the nanowire length. 

However, this is not the case radially. This indicates that primary nanowires share a 

common growth direction. The energy dispersive spectrometer (EDS) results in 

Figure 7.2f confirm the existence of a small concentration of potassium (K+), 

consistent with use of a K+-containing solution.  

 

To confirm that the secondary nanowires are formed by the ordered alignment of 

several primary nanowires, we investigated secondary nanowires using in situ liquid 

cell TEM.27,36-38 Interestingly, a high dose electron beam was sufficient to trigger the 

dissolution of secondary α-MnO2 nanowires immersed in KCl solution and break 
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them down to the original building blocks. The corresponding movie illustrating this 

process is provided as Movie D1 (played in real time) in the Supporting Information, 

and Figure 7.3 shows in situ time-lapse TEM images of the morphology evolution of 

a secondary α-MnO2 nanowire during this dissolution process. From 0 to 16 s, the 

secondary nanowire experienced isotropic dissolution both radially and axially in KCl 

solution. It is notable that the interface region (green arrows) was gradually etched 

during the dissolution process, which is demonstrated by the increase in brighter 

contrast. This finding indicates that the OA interface is metastable during the 

solution-based synthesis process. After 20 s, the interface was completely eliminated 

causing the detachment and misorientation of the two primary α-MnO2 nanowires 

(the rotation directions are marked by the yellow arrows in figures 7.3f, g and h). To 

confirm that the electron beam is the driving force for the dissolution, we 

intentionally kept the secondary nanowire in the liquid environment for one hour 

before it was exposed to the electron beam for the in situ recording.  Then the beam 

was turned on and the secondary nanowire was found in the well grown morphology 

with the OA interface clearly seen, indicating that no dissolution occurred when there 

was no electron beam. Hence, the dissolution of the oriented attachment interface can 

be attributed to the use of the electron beam. 

 

We propose that the radiation chemistry plays a critical role in the dissolution and 

detachment of α-MnO2 nanowires inside the TEM liquid cell. It has been reported 

that a water-based solution, when subjected to high dose electron beam, decomposes 

into excited and ionized species such as H+, OH-, H2, and H2O2.
39 Due to the different 

reaction kinetics among these species, for an initially neutralized solution, the entire 

liquid cell will gradually exhibit an increased H+ concentration and reduced pH.40 The 

acid environment, according to ex situ solution synthesis experiments for α-MnO2 

nanostructures, is detrimental to the maintenance of larger tunnels such as 2×2 and 

2×3 tunnels because the stabilizing effect of larger cations is weakened by H+ in 

solution.34 In the case of our KCl solution (with initial pH=7) that contains secondary 

α-MnO2 nanowires, the solution environment would gradually become H+ rich under 
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exposure to an electron beam. Such an acidic environment destabilizes the K+ 

residing inside the 2×2 tunnels and facilitates the ion exchange process between K+ 

and H+. Due to the much weaker tunnel stabilizing effect of H+ compared to K+,41 the 

2×2 tunnel-based structure will not be stable any more resulting in its gradual 

dissolution. The interface region is therefore more vulnerable under electron beam 

radiation and the removal of K+ stabilizers. This dynamic observation of the 

breakdown process directly confirms the existence of interfacial attachment that 

controls the growth process of α-MnO2 nanostructures in solution environment.  

 

Figure 7.3. In situ time-lapse TEM images show the morphology evolution of a 

secondary α-MnO2 nanowire in the liquid cell during its dissolution process driven by 

the incident electron beam. The green arrows in (a-e) indicate the OA interface region 

between two primary α-MnO2 nanowires experiencing gradual dissolution, and the 

yellow curved arrows in (f, g, h) indicate the rotation direction (detachment) between 

the two primary nanowires. Scale bars in all: 150 nm. 

         

7.3.2. Atomic structure of the oriented attachment-induced interface  

 

Figure 7.4a shows a TEM image of one secondary α-MnO2 nanowire viewed down 

[100]. The nanowire is composed of several well-aligned primary nanowires with 

diameters ranging from 10 to 20 nm. Despite the aggregation of multiple primary 
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nanowires, the secondary nanowire still appears to be monocrystalline, as confirmed 

by the corresponding selected area diffraction patterns (SAED), shown in Figure 7.4b. 

A high angular annular dark field (HAADF) image of one primary unit is shown in 

Figure 4c with the corresponding inverse fast Fourier transform (IFFT) given in the 

middle and the atomic model at the bottom. The 2×2 tunnel can be clearly seen to be 

surrounded by [MnO6] octahedral units (yellow dots) and supported by K+ atoms 

(pink dots) in their center, which agrees well with the atomic structure model. Results 

of the elemental analysis and the confirmation of the tunnel alignment along [001] are 

shown in Figure 7.6. Based on the SAED and HAADF results, the growth direction of 

α-MnO2 nanowires is determined to be [001], which is parallel to the tunnel direction. 

Imaging down [100] did not reveal clearly any interfaces between primary nanowires, 

implying that this direction is not parallel to the OA interface.  

 

Figure 7.4. (a) A TEM image of secondary α-MnO2 nanowires taken along [100]; (b) 

SAED pattern of the same region as (a); (c) A HAADF image of the blue-framed 

region of a primary nanowire in (a); the corresponding IFFT is given in the middle 

with the atomic model illustrated at the bottom, where yellow dots represent Mn, red 
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O and pink K+; the signal of K+ during HAADF imaging is weaker than that of Mn 

due to its smaller atomic weight.  Scale bar in (a) is 10 nm. 

 

Figure 7.5a is the [1 1
-

 1] view of another secondary nanowire, which exhibits 

monocrystalline characteristics, as indicated by the SAED pattern in Figure 7.5b. The 

fact that secondary α-MnO2 nanowires do not show multiple diffraction spots implies 

that the primary nanowires are precisely oriented with respect to each other. The 

interface is parallel to the electron beam when viewed down [1 1
-

 1] and it clearly 

extends throughout the entire secondary nanowire. HRTEM images of the interface at 

different locations (marked by the blue dotted squares) are given in figures 7.5c and 

7.5d. Within each individual primary nanowire, the d{110} spacing is 7 Å, while this 

value increases to 10 Å for the interfacial planes (dinterface). The HAADF imaging of 

the interface along [1 1
-

 1] is given in Figure 7.5e with the corresponding atomic 

model shown at the bottom. According to this atomic image, the {110} alignment of 

the interfaces is associated with the ordering of Mn atomic columns. The larger 

dinterface (10 Å) is a result of the addition of an extra row of Mn atoms in the center, 

which is probably introduced during the lateral OA growth. This result indicates that 

the α-MnO2 {110} surface can act as the common surface across which the primary 

nanowires attach to each other. The finding that the {110} interface spacing is larger 

than that of α-MnO2 {110} spacing also suggests that the growth of α-MnO2 in 

solution is an “imperfect” OA process, as defined in other materials systems.42 
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Figure 7.5. (a) A TEM image of one secondary α-MnO2 nanowire taken along [1 1
-

 1], 

where the {110} interface can be directly imaged; (b) SAED pattern of the same 

nanowire in (a); (c, d) HRTEM images of the OA-induced interface from the 

terminated and center parts of the nanowire, respectively; (e) A HAADF image of the 

white-framed interface region in (d); the corresponding atomic model is illustrated at 

the bottom, where yellow dots represent Mn, red O and pink K+.  Scale bars in (a) and 

(c, d) are 10 nm. 

 

To efficiently explore the atomic arrangement of the OA interface, a secondary 

nanowire was examined parallel to the nanowire axis (Figure 7.6). The [001] ABF 

image in Figure 7.6a shows that the nanowire has a square-shaped cross section with 

four {100} lateral surfaces. The red dashed lines in Figure 7.6a also indicate several 

{110} dark stripes inside the nanowire, indicating heterogeneity in the structure. 

Close examination of several other cross-sectioned specimens perpendicular to the 
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nanowire axis indicates that most lateral surfaces of the nanowires correspond to {100} 

planes, and that the {110} stripes are always present (Figure D1 in Appendix D).  

 

The bright central area in Figure 7.6a indicates that the secondary nanowire has a 

hollow section in the middle. Figure 7.6b is a HAADF image of the well-crystallized 

area where typical 1×1 and 2×2 tunnels of α-MnO2 are clearly observed. Closer 

inspection reveals that 1×1 tunnels are empty while each 2×2 tunnel is occupied by a 

column of atoms in its center. These atoms were later confirmed to be K+ (Figure 

7.6e). The position of K+ in the 2×2 tunnels was determined to be the Wyckoff 2a site 

(0, 0, 0) and the nanowire composition to be α-K0.25MnO2.  

 

To assist in determining the atomic-scale structure, we also performed ab initio 

density functional theory (DFT) calculations on the α-K0.25MnO2 bulk system with K+ 

ions on either the Wyckoff 2a (0, 0, 0) or 2b (0, 0, 1/2) sites, as illustrated in Figure 

D2. From these simulations the 2a site was found to be at least 300 meV lower in 

energy than the 2b site. This difference is significantly greater than the thermal 

energy at room temperature (kBT ~ 26 meV), which suggests that the predicted 

position of K+ ions in the central 2a site is in good agreement with the experimental 

observation. 
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Figure 7.6. (a) An ABF image of an α-MnO2 nanowire cross section viewed along the 

[001] zone axis; white and yellow squares indicate a perfect crystalline area and {110} 

defect-rich stripes, respectively; (b) False-colored HAADF image of the perfect 

crystalline area; blue and red squares indicate typical 2×2 and 1×1 tunnels of α-MnO2, 

respectively, and yellow and pink dots indicate atomic columns of Mn and K+, 

respectively; (c) False-colored HAADF image of the {110} defect-rich stripe 

revealing the 2×3 tunnels; (d) εxx mapping near the 2×3 tunneled {110} interface; (e, f) 

EDS line scans across a 2×3 tunnel-based interface along the two vertical directions 

labeled “e” and “f” in (c); (g) The atomistic model illustrating the {110} interface 

structure, with yellow balls for Mn, red for O and pink for K+.  Scale bars in b and c 

are 2 nm. 

 

The atomic-resolution HAADF image in Figure 6c obtained from one striped area 

shows that this stripe actually consists of 2×3 tunnels that are aligned parallel to the 

characteristic 1×1 and 2×2 tunnels of α-MnO2. The width of 2×3 tunnels was 

measured to be 10 Å, which is consistent with the dinterface spacing at the {110} 
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interface obtained from Figure 7.5c. This observation reveals that the 2×3 tunnel-

based stripe is in fact the {110} interface via which primary α-MnO2 nanowires 

laterally attach to each other. Figure 7.6d shows the εxx map around the {110} stripe, 

where a larger amount of strain is evident at the interface. 

 

Atomic-resolution elemental analysis around 2×3 tunnels was performed by taking 

EDS line scans along two vertical directions marked “e” and “f” in Figure 7.6c; the 

results are plotted in figures 6e and f, respectively. The linear profile of Mn and K 

along direction e indicates that Mn is present in the 2×2 tunnel walls, with one K 

signal peak detected at the center of each 2×2 tunnel, and two K signal peaks (green 

arrows in Figure 7.6e) inside the 2×3 tunnel. The linear profile around the 2×3 tunnels 

along direction f reveals that the tunnel walls are still constructed from Mn, with one 

K signal peak detected at the tunnel center. Based on these results, the atomic 

configuration around a {110} interface region was constructed and shown in Figure 

7.6g. The tunnel walls for both 2×2 and 2×3 tunnels are built from Mn atoms. 

Compared to the normal 2×2 tunnels stabilized by only one K+ atom column, two K+ 

columns exist inside the 2×3 tunnels. The presence of the extra K+ column is found to 

stabilize the 2×3 tunnel-based OA interface of α-MnO2, prevent structural collapse, 

and thus maintain the good crystallinity of solution-grown α-MnO2 nanowires. This 

significant finding is in agreement with the conjecture that larger tunnels require more 

cation columns as tunnel stabilizers,43 and implies the important role of excess 

solution cations during OA growth of tunneled structures.  

 

The fact that tunnel-based interfaces are always parallel to {110} planes indicates that 

the solution-based OA growth of α-MnO2 is a surface-controlled process. To examine 

this issue further, the energetics of a range of surfaces of α-MnO2 in the presence of 

K+ were explored by using well-established DFT methodology.44-46 The wide range of 

surface planes were initially selected based on the low energy surfaces found from 

previous studies of pure α-MnO2.
44  In Table 7.1 we list the calculated surface 

energies for α-K0.25MnO2. Such an analysis shows that the lowest energies correspond 
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to the (100) and (110) surfaces. Compared to other surfaces, the (211) surface also 

exhibits low energy, which was, however, not observed experimentally. Even if the 

(211) OA interface exists, the lateral surfaces of one secondary nanowire and its 

atomic arrangement along [001] would both be disrupted. The TEM observation 

indicates that the lateral surfaces of the nanowires are smooth and the atomic columns 

along [001] are well ordered (each column is clearly distinguishable with good 

contrast in the HAADF images in figures 7.6 and 7.7). These two facts indicate the 

low chances of (211) interface formation, which is thus not further explored in this 

work. Nevertheless, the DFT results clearly show that the (100) surface is 

considerably lower in energy than all other terminations, which is confirmed 

experimentally by Figure 7.6a (and Figure S1) showing the four lateral surfaces of α-

MnO2 nanowires to be parallel to {100} planes. The (110) surface is sufficiently 

favorable that we would expect it to dominate the morphology of the nanoparticles 

during the initial growth stages, in agreement with the experimental finding that 

interfaces are formed parallel to {110} planes.  

 

Table 7.1.  Calculated (DFT+U) surface energies for K0.25MnO2. 

Miller Index Surface Energy (Jm-2) 

(100) 0.44 

(110) 0.74 

(211) 0.78 

(210) 1.14 

(001) 1.17 

(101) 1.17 

(201) 1.19 

(111) 1.35 
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7.3.3. Atomistic mechanism for formation of 2×3 tunnel-based {110} 

interfaces  

 

We now turn to the edge structure of the low energy surfaces {100} and {110}, in an 

attempt to understand how the fundamental characteristics of the exposed surfaces in 

solution drive the formation of 2×3 tunnel-based {110} interfaces. The structure of a 

(100) surface obtained from HAADF imaging is shown in Figure 7.7a, with the 

atomistic relaxed surface from DFT calculations given for comparison in Figure 7.7b. 

The (100) surface is essentially composed of a series of intact 2×2 tunnels with a 

bisected 2×2 tunnel sitting between the intact tunnels, agreeing well with the 

simulated structure. There is little calculated distortion between the unrelaxed and 

relaxed surface for this cleavage plane, as is typical for energetically favorable 

surfaces. In addition, Figure 7.7b shows that the Mn ions in the surface region remain 

well coordinated with 75% remaining in 6-fold coordination, identical to Mn ions in 

the bulk. The remaining 25% of Mn ions have 5-fold coordination and are unsaturated. 

Moreover, half of the surface K+ ions reside within intact 2×2 tunnels in their 

preferred 8-fold coordination (as found in the bulk structure), with the other half 

maintaining a reduced 4-fold coordination. These structural features are likely to 

account for the low surface energies calculated for the {100} surfaces, and indicate 

that such {100} surfaces will be stable during the OA process. The fact that the {100} 

surface is covered by 2×2 tunnels instead of 1×1 tunnels is important for the 

improvement in performance of α-MnO2 nanostructured materials. The direct 

exposure of large 2×2 tunnels is likely to reduce the distance and energy barrier for 

ion diffusion, improving the rate performance of α-MnO2 in applications such as 

rechargeable battery electrodes,47-50 supercapacitors51-53 and Li-O2 battery catalysts.54-

57 Indeed, future generations of these energy storage technologies will depend 

crucially on new nanostructured materials. 
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Figure 7.7. (a) Atomic-resolution HAADF image of a (100) edge in an α-K0.25MnO2 

nanowire compared with (b) the calculated relaxed (100) surface structure of α-

K0.25MnO2. (c) Atomic-resolution HAADF image of a (110) edge in an α-K0.25MnO2 

nanowire compared with (d) the calculated relaxed (110) surface structure of α-

K0.25MnO2. Yellow balls are Mn, red are O, and pink are K. 

 

The structure of a (110) surface before the OA process begins can be seen in the 

HAADF image in Figure 7.7c. The simulated atomistic structure of the same surface 

is given in Figure 7.7d. The (110) surface forms a step-like edge that is covered by 

1×1 tunnels, matching the theoretical model very well. Like the (100) surface, there is 

relatively little calculated distortion between the unrelaxed and simulated relaxed 

structures, indicating that this surface is relatively stable. The atomistic model also 

shows that the Mn ions at the (110) surface remain in a high coordination 

environment, with two thirds in 6-fold coordination sites. The remaining Mn ions, 
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corresponding to the most exposed ions, are in 5-fold coordination. Furthermore, the 

outermost K+ ions are stabilized by a slight relaxation into the surface, which has the 

effect of increasing their coordination number from 4 to 5. The (110) surface has 

more unsaturated [MnO5] units than the (100) surface, a consequence of which is that 

the (110) surface is predicted to be less stable than (100). All the other surfaces have 

larger amounts of unsaturated [MnO5] units, with some even containing [MnOx] (x<5) 

units, making them unstable in solution. 

 

Based on the sub-angstrom resolution image of the (110) edge structure in Figure 7.7, 

we propose an atomistic model to explain the formation of 2×3 tunnels at a {110} 

interface between two primary crystals (termed Ia and Ib). This process is illustrated in 

Figure 7.8 with perspective views, and is divided into three steps. At the beginning of 

the first step when Ia and Ib initially form in solution with random but close 

orientations, the dominant surfaces should be {100} and {110} as both types of 

surface possess lower surface energies than other crystal planes. Since {110} surfaces 

are less stable than {100}, there is a tendency among the primary crystals to attach to 

each other along their {110} surfaces to minimize the overall energy. Consequently, 

Ia and Ib approach each other through van der Waals forces, which has been widely 

reported for the OA growth of nanostructure,27,28,58 and orient themselves parallel to 

their common {110} surfaces. In the second step, as Ia and Ib come into close 

proximity, the large repulsive force between exposed K ions on the {110} surfaces 

prevent them bonding. However, extra [MnOx] radicals in the surrounding solution 

are able to squeeze between the Ia and Ib crystals. In the third step, the extra [MnOx] 

radicals between the crystals bond with the dangling [MnO5] units from both {110} 

surfaces, resulting in the elimination of the two surfaces and formation of one 2×3 

tunnel-based {110} interface. This process should be energetically favorable as the 

unsaturated [MnO5] units of the {110} surfaces become saturated, forming the more 

stable [MnO6] units. Following the similar steps, more primary α-MnO2 nanowires 

can be gradually attached together across their exposed {110}, and the diameter of the 
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secondary nanowire could be gradually increased during the subsequent high order 

attachment in solution.  

 

The lateral OA mechanism results in the aggregation of only a few primary nanowires 

instead of long-range ordered structures. This should be due to the gradual decrease 

of the OA driving force, namely the elimination of pairs of {110} surfaces. At the 

early stages when a substantial number of {110} surfaces exist in the solution, the 

lateral OA via {110} should occur in a large scale to eliminate the overall surface 

energy of the system by elimination of {110} surfaces. At later stages when a limited 

number of {110} surfaces remain and the secondary nanowires are well grown, the 

OA growth of α-MnO2 nanowires is thus terminated. The effect of K+ during the 

solution growth of α-MnO2 nanostructures has been widely studied.34,59-61 However, 

these reports have focused on the formation of α-MnO2 phase instead of the defective 

interface. The conclusion has been that α-MnO2 can only nucleate and grow when 

there are excess K+ in solution because the large 2×2 tunnels need to be stabilized by 

certain cations such as K+. Otherwise, other MnO2 polymorphs (β-MnO2 or γ-MnO2) 

with smaller 1×1 and 1×2 tunnels will form when there are few or no K+. Based on 

our work, we find that K+ ions are important in the formation of the {110} OA 

interface because two K+ atomic columns are present in one large 2×3 tunnel. It is 

reasonable to expect that the {110} interface, which is composed of even larger 2×3 

tunnels, would not exist if there are no more K+ in the solution during the lateral OA 

stage to support the large tunnels. The presence of [MnOx] radicals in aqueous 

solution and the exact Mn oxidation state (“x” value) are difficult to be verified in the 

current experiment due to the strong effect from the liquid environment as well as 

various types of structural Mn-O bonds. Nevertheless, there might be other methods 

to confirm [MnOx], such as in situ X-ray Absorption Spectroscopy (XAS) providing 

electronic structure information. Such an experiment requires a sealed liquid cell with 

an X-ray transparent window, X-ray with high penetration energy, and also proper 

data interpretation to get rid of the signals from other Mn-O bonds; this is clearly a 

topic for future work.    
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Figure 7.8. Schematic diagrams illustrating the formation of a 2×3 tunnel-based {110} 

interface during OA of two primary α-MnO2 nanowires at the atomic level. The 

nanowires (Ia and Ib) are orientated parallel to the c axis ([001]) with their stable {100} 

surfaces and metastable {110} surfaces exposed in solution. The curved and straight 

green arrows in Step 1 indicate the rotating and linear approaching movements of the 

primary nanowires, respectively. Surrounding the nanowires is the aqueous solution 

environment containing MnSO4 and KMnO4 in excess.   

 

Although this study is not exhaustive, it does highlight an important area for further 

work on tunnel-based oxide nanostructures. Indeed, future studies could include 

rational design of various tunneled structures with ideal hierarchy, controllable 

dimension and morphology, and large-scale molecular dynamics simulations in 

solution-based systems.    

7.4. Conclusion 

K+-stabilized α-MnO2 nanowires were hydrothermally synthesized by an orientated 

attachment (OA) growth mechanism, and the structures of the nanowires and their 

interfaces were explored at the atomic scale. First, it was determined that primary α-

MnO2 nanowires prefer to combine laterally with each other by sharing their {110} 

surfaces to construct secondary α-MnO2 nanowires. This OA process is driven by the 

reduction of the surface energy and the tendency of dangling [MnO5] units at {110} 

surfaces to be saturated to form [MnO6] by bonding with [MnOx] radicals in solution. 

Second, the resulting {110} interfaces are defective and composed of 2×3 tunnels 
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supported by two K+ columns rather than a normal 2×2 tunnel supported by one K+ 

column. The presence of K+ excess in solution plays an important role during the 

formation and stabilization of the OA interface. 

 

This work provides greater fundamental understanding of the atomic structure at the 

surface and OA interface in one-dimensional tunneled α-MnO2. A key example is the 

finding that the (100) surface is covered by 2×2 tunnels while (110) is covered by 1×1 

tunnels; this suggests faster reaction at (100) surfaces than that at (110), since most 

reactions occur inside the large 2×2 tunnels. This understanding could guide selective 

surface engineering to synthesize α-MnO2 nanostructures for improved functional 

performance. With the increasing interest in crystal facet engineering, the importance 

of surface chemistry demonstrated here could inspire related research on tunnel-based 

oxide nanostructures for potential applications in catalysis, sensors and energy 

storage. 
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Chapter 8. Conclusion 

 

This PhD project first covers the application of in situ TEM technique in studying and 

solving the material problems in rechargeable ion batteries with details literature 

review.  The atomic mechanisms of tunnel-directed natural behaviors of α-MnO2 

nanostructures are then dynamically studied using in situ TEM. Four topics are 

covered including (1) the tunnel-driven Li+ transport in α-MnO2 nanowire, (2) tunnel-

driven Na+ transport and its comparison with Li+ transport, (3) the effect of large 

cations (K+) on the tunnel-driven Li+ transport property, and (4) the atomistic 

exploration of oriented attachment growth of α-MnO2 nanostructures. 

 

The in situ TEM of Li+ insertion in 2×2 tunnels of α-MnO2 nanowires reveals a novel 

asynchronous lattice expansion along a and b directions, which is originated from the 

sequential Jahn-Teller distortion of [Mn3+O6] caused by Li+ insertion. The 

microscopic asynchronous expansion leads to crystalline symmetry degradation from 

tetragonal to orthorhombic, generating undesired anisotropic volume change of α-

MnO2 nanostructures during lithiation. This fundamental discovery helps to explain 

the commonly observed poor cycling performance of α-MnO2 as a cathode material 

for rechargeable lithium ion battery, and provides insights towards efficient 

improvement of such cathode materials. 

 

The in situ TEM of reversible Na+ insertion/extraction in 2×2 tunnels of α-MnO2 

nanowires reveals an intermediate stage where tunneled structure evolves into spinel 

Na0.5MnO2 before it is totally reduced to Mn2O3. The comparison with Li+ insertion 

shows that the tunnels are more vulnerable during Na+ insertion, which is ascribed to 

the fact that the Na+ interacts with the tunnel walls much stronger than Li+ does. A 

voltage control (cycling between 4 -1.5 V in a Na/MnO2 battery) is thus designed and 

shown to be effective in maintaining the tunnel stability without significant capacity 

loss. 
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The presence of large K+ in 2×2 tunnels of α-MnO2 is demonstrated to be positive in 

improving both the electrical conductivity and the Li+ diffusivity. K+ in 2×2 tunnels 

expands the tunnel cavity across a-b plane, and thus allows more free space for Li+ 

diffusion through the off-centered 8h sites in the tunnels. With K+ doping, Mn4+ are 

partially reduced to Mn3+, and the generated Mn4+/Mn3+ couples function as the path 

ways for electron hoping, resulting in the improvement of e- conductivity. These two 

positive factors lead to an improved rate performance of α-MnO2 as a cathode of 

rechargeable lithium ion battery. 

 

The growth of α-MnO2 nanostructures during hydrothermal synthesis is confirmed to 

be an oriented attachment mechanism, where nanowires laterally attach with each 

other sharing their common {110} surfaces with only {100} exposed as the surfaces 

finally. This is driven by the surface energy reduction of the system with {110} 

predicted to possess higher surface energy than the most stable {100} surface. The 

formed {110} interface is essentially composed of well aligned 2×3 tunnels with each 

supported by two K+ atomic columns, indicating the important role of surface tunnel 

alignment in directing the oriented attachment growth in atomic level. 
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Chapter 9. Future Work 

 

The PhD projects shown here clearly illustrate the atomic structure of tunneled 

transitional metal oxides as well as their critical roles in energy storage and selective 

surface engineering. In addition, these studies demonstrate the powerfulness of 

aberration corrected electron microscopy in resolving atomic level reactions, and 

pave the way toward atomistic understanding of the multi-functionality of α-MnO2 in 

various applications. Therefore, several future directions are proposed and discussed 

below. 

9.1. In situ TEM study of multivalent cation insertion in α-

MnO2 

The urgent demand for rechargeable batteries with high energy density for electric 

vehicle application has necessitated the research beyond lithium ion battery to other 

systems, such as Li-O2, Li-S and multivalent batteries.1 Due to the relatively large 

size of the 2×2 tunnels, α-MnO2 nanostructure has been widely studied as a host for 

reversible insertion of Mg2+,2 Zn2+,3 and Ni3+ 4. The interaction between these cations 

and the tunneled structures is expected to be more complicated than Li+ (Na+) 

insertion due to their higher electrostatic polarization and the difference ionic sizes 

and electronegativities. Table 9.1 lists the ionic radii5 and electronegativities6 for 

several commonly used charge carriers. It is generally accepted that multivalent 

cations are more difficult to be inserted due to a high redox polarization effect caused 

by sluggish insertion/extraction kinetics.7 The higher charge of these cations polarize 

the host electrode during their intercalation and thus decrease the mobility and rate 

capability as the battery goes under cycling.8 
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Table 9.1. The ionic radii and electronegativities for Li, Na, Mg, Zn and Ca. 

 Li+ Na+ Mg2+ Zn2+ Ca2+ 

Ionic radius (in nm)5 0.68 0.97 0.66 0.74 0.99 

electronegativity6 0.95 0.90 1.2 1.5 1.0 

 

Up to now, there are hardly any in situ TEM reports realizing the insertion of 

multivalent cations into electrode materials. As far as the author is concerned, only 

Ca2+ was reported to be inserted into WO3 as a conversion-based electrode inside the 

TEM chamber, where a Ca2+ intercalation step prior to conversion is explicitly 

revealed at atomic scale for the first time.9 Mg2+ and Al3+ were also tried for the 

insertion into Co3O4 nanocubes in TEM, where no obvious ion insertion phenomena 

except sluggish reaction kinetics were observed.10 The possible insertion of Mg2+, 

Zn2+ and Ca2+, in 2×2 tunnels has been theoretically predicted based on comparison 

between the ionic sizes and the free open space inside one 2×2 tunnel, where 

maximum passable ionic radius calculated to be 1.30 Å.11 In addition, ex situ battery 

work has demonstrated the possibility for reversible insertion of Zn2+ and Mg2+ in α-

MnO2.
12,13 Yet, there are no successful in situ TEM reports. Therefore, many 

scientific questions remain unexplored. For example, Zn2+ insertion into α-MnO2 has 

been explained by several different mechanisms, such as two-phase intercalation and 

conversion reaction involving H+ participation. Even within the intercalation 

mechanism, different insertion products are reported, such as spinel ZnMnO2
14 and 

tunneled ZnxMnO2
15. For Mg2+ insertion, either reversible tunnel-driven intercalation2 

or conversion reaction mechanism13 has been proposed by ex situ characterization. It 

is apparent that an insightful dynamic understanding regarding the multivalent cation 

insertion mechanisms in tunneled nanostructures is necessary.  

 

The similar in situ TEM setup discussed previously in the dissertation could be used 

to explore the insertion mechanisms of multivalent cations in α-MnO2. However, 

some practical hurdles should be overcome before this “open cell” system can be 

used for the study of multivalent batteries. According to previous theoretical 
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calculations, the activation energy for Li+ migration in Li2O is in the range of 0.27-

0.33 eV,16 while this value for Mg2+ migration in MgO is as high as 1.4 eV.17 

Therefore, it might not be plausible by simply applying Mg/MgO (Zn/ZnO) as the 

counter electrode, as done for the Li+ and Na+ system via in situ TEM. In Li/Li2O and 

Na/Na2O system, a large overpotential is required to electrochemically insert Li+ and 

Na+ into the α-MnO2 working electrode, whereas it is possible that an even larger 

overpotential is required for Zn2+ and Mg2+ insertion, making the practical operation 

difficult. This problem is likely to be solved by applying nanosized oxide electrodes, 

considering the fact that many ions could diffuse with low energy barrier when the 

materials go into nanoscale.18,19 One method is thus proposed here using Mg 

nanowire as the counter electrode with its surface intentionally oxidized to act as the 

solid electrolyte. Figure 9.1 shows such a design. 

 

Figure 9.1. Schematic showing the open cell design using in situ TEM for 

Mg/MgO/α-MnO2 battery system. The Mg nanowire is pre-oxidized with a thin MgO 

layer on the surface. 

 

Specifically, the following task is proposed for the future work: 

Task: In situ TEM study of Mg2+ (Zn2+) insertion/extraction in α-MnO2 nanowires. 

The objective is to understand the complete Mg2+ (Zn2+)-tunnel interaction. Since 

both pure Mg2+ (Zn2+) intercalation and conversion reaction mechanisms are reported 

in literature, this work here aims to clarify how these mechanisms compete with each 
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other. The hypothesis is that, the competing mechanisms between intercalation and 

phase transition are highly dependent on the discharge rate: a low rate favors 

intercalation mechanism while a high rate favors phase transition to spinel phase. The 

experimental setup will follow Figure 9.1. The information to be captured and 

measured includes the phase evolution during Mg2+ (Zn2+) insertion/extraction (by 

SAED), the tunnel expansion (HRTEM) and any localized inhomogeneity (EELS and 

EDS), which are also compared at different current densities. Previous studies have 

also shown that the size,20 surface structure21 and morphology22 of α-MnO2 affect its 

performance in the fields of lithium ion battery and catalysis. For example, Li et al. 

have demonstrated that α-MnO2 nanowires exhibit a better capacity retention upon 

cycling when their lateral surfaces are {210}compared to {110}, which was attributed 

to the higher exposure rate of 2×2 tunnels to the electrolyte when {210} are the 

surfaces.21 Taking these into consideration, the effect of material size, surface 

structure and morphology will also be studied to see whether they affect the insertion 

mechanisms of multivalent cations. 

9.2. In situ liquid TEM studying the catalytic mechanism of 

α-MnO2 in Li-O2 battery 

As mentioned earlier, Li-O2 battery offers a much higher energy density and energy 

power than lithium ion battery and thus has a promising application in the fields of 

electric vehicles.23 The working process and discharge/charge reactions in a typical 

Li-O2 battery are illustrated in Figure 9.2a, where a metallic lithium anode, a porous 

air cathode and aprotic electrolyte are shown.23 During discharge, Li+ diffuse through 

the electrolyte from the metallic lithium anode into the porous cathode, where they 

meet oxygen and form various lithium oxides (Li2O2 for most of the cases). In charge, 

lithium oxides will decompose to Li+ and oxygen with Li+ diffusing back to the anode 

while O2 released to the outside. 
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Figure 9.2. (a) Schematic showing the working mechanisms of a Li-O2 battery as well 

as the reversible discharge and charge reactions.23 (b) a typical discharge−charge 

profile of an aprotic Li−O2 battery showing the large polarization.24 

 

One critical problem existing in Li-O2 system is the large overpotential during 

discharge and charge process, which is caused by sluggish reaction kinetics and 

reduces the energy efficiency and battery life, as shown in Figure 9.2b.24 To address 

this issue, people have developed various catalysts into the system to reduce the 

overpotentials and improve the reaction kinetics.25 Among these various catalysts, 

nanostructured α-MnO2 is widely used and shows outstanding catalysis performance 

by improving the kinetics of both discharge and charge processes.20 Figure 9.3a 

shows an example of utilizing α-MnO2 to improve the reaction kinetics of Li-O2 

battery during the discharge process (oxygen reduction reaction, i.e. ORR).26 It shows 

that under the same potential, the carbon cathode with MnO2 shows much higher 

ORR current than pure carbon cathode or the one with Ni doping. However, the 

catalysis mechanism of α-MnO2 in Li-O2 system is not well understood currently due 

to the lack of an efficient characterization method doing real time study. Questions 

such as whether 2×2 tunnels of α-MnO2 take part in the oxygen evolution reaction 

and oxygen reduction reaction, which surface of α-MnO2 has the best catalytic 

property, and why different MnO2 morphologies have distinct catalytic properties are 

thus difficult to answer.27 Figure 9.3(b-e) shows the morphology of discharged 

products without MnO2 (b) and with various phases and morphologies of MnO2, 
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where α-MnO2 nanotubes show obviously the formation of individual discharged 

microparticles.28 

 

Figure 9.3. (a) The linear scanning voltammograms (LSV) curves of C, Ni/C, α-

MnO2/C, and α-MnO2-NWs@Ni-NPs/C obtained at a rotation speed of 900 rpm and a 

potential scan rate of 1 mV/s.26 (b) SEM images of porous carbon cathode after 30 

cycles at a completely discharged state. The electrode shown in (b) did not include 

MnO2 nanostructures, while the electrodes in (c-e) include δ-MnO2 nanosheets, α-

MnO2 nanowires, and α-MnO2 nanotubes, respectively.28 

 

Here the dynamic study of catalytic mechanisms of α-MnO2 in a working Li-O2 

system is proposed based on the well developed liquid cell for in situ TEM study. The 

experimental design is shown in Figure 9.4. The design of the in situ liquid cell has 

been well explained in Chapter 3. To achieve a typical Li-O2 battery setup, LiCoO2 

cathode is pre-deposited onto the counter electrode, and built-in glassy carbon 

electrode is directly used as the cathode material to absorb O2. Single α-MnO2 

nanoparticle can be then implanted onto the carbon electrode via focus ion beam 

operation with Pt welding. The introduction of O2 into the system is achieved by 

utilizing an O2-rich liquid electrolyte obtained via flowing pure O2 through electrolyte 

for hours, which has been demonstrated to be effective in the liquid cell holder in 

TEM.29 The discharge and charge processes can be controlled by alternating the 

biasing applied to the counter electrode and the working electrode. Any particle 

deposition during discharge and dissolution during charge can be dynamically 

recorded and the reaction kinetics can thus be explored in real time. It has been 
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reported that the particle size and morphology affect the electrocatalytic activity of α-

MnO2 towards oxygen evolution reaction and oxygen reduction reaction, and the 

mechanism is, however, not clearly understood.22 As such, by varying the particle 

size and morphology of welded MnO2 nanostructures (particle, nanorod, nanotube, 

etc.), the difference in catalytic kinetics can also be studied. 

 

Figure 9.4. (a) Schematic showing the configuration of the liquid cell capable of 

biasing. The glassy carbon (yellow frame) is the working electrode, and the outer 

circular ring is the Pt reference electrode with LiCoO2 nanoparticles pre-deposited. (b) 

Enlarged view of the carbon working electrode. (c) Schematic showing the deposition 

of α-MnO2 particles with various morphologies as the catalyst on carbon electrode. 

 

Specifically, the task is described as follow: 

Task: In situ liquid TEM study of catalytic ability for different facets of α-MnO2. The 

hypothesis is that when α-MnO2 is in the shape of one-dimensional wires, the 

catalytic effect of Li-O2 reaction is better compared to the cases where α-MnO2 is in 

spherical shape. To do the experiment, α-MnO2 particles with various morphologies, 

such as wires and spheres will be first prepared and attached on to the working 

electrode of the liquid TEM chip as shown in Figure 9.4. The difference in catalytic 

ability of various particles can be understood based on the order and quantity that the 

discharge products precipitate on each α-MnO2 particle. The particle first exhibiting 
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the formation of Li2O2 as well as the largest amount of formation on its surface has 

the best catalytic property. 

9.3. Layer-to-tunnel growth mechanism study of MnO2 

nanostructures 

It is well accepted that all MnO2 phases with tunneled structures are generated form 

the layered MnO2 phase as the precursor, especially during the hydrothermal 

synthesis.30 For example, it has been widely reported that birnessite MnO2 (δ-MnO2) 

with a 7 Å interlayer spacing is the precursor for α-, β-, γ-MnO2 possessing different 

tunneled structures, while buserite MnO2 with a 10 Å interlayer spacing is the 

precursor for todorokite MnO2 (T-MnO2) with a 3×3 tunneled structure.31,32 Figure 

9.5 shows the ex situ SEM study of such a layer-to-tunnel transition.32 Currently, it is 

not clear how the layered structure transitions into the tunneled structure stably in the 

hydrothermal conditions and what is the atomic mechanism directing this long-range 

ordered phase transition. The concentration of large cations (Ba2+, K+ and Ag+) are 

also shown to affect the morphology and structure o the final products, which is 

however, poorly understood. For any controllable synthesis with desired tunnel size 

and dimension, it is critical to understand the atomic phase transition mechanism.  

 

Figure 9.5. SEM images of (a) todorokite plates and nanowires after 24-hour 

hydrothermal synthesis, (b) todorokite plates splitting into nanowires after 48-hour 

hydrothermal synthesis at 220 oC, and (c) low and (d) high magnification SEM 
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images of todorokite nanowires after hydrothermal synthesis at 220 oC for 4 days. 

Note in (b) that there is a geometrical relationship (120o) between the layered parent 

phase and the split nanowires.32 

  

A recent paper has pioneered the atomic scale exploration of layer-to-tunnel transition 

by simulating all possible atomic paths during this process. A layer shear-distortion 

mechanism is predicted as shown in Figure 9.6.33 However, there is currently no 

experimental exploration regarding the atomic level transition mechanism, and any 

simulation work is too early to be testified at this early stage. It is thus necessary to 

conduct experimental analysis to explore this mechanism in details.  

 

Figure 9.6. The intermediate stages during the phase transition from layered δ-MnO2 

to tunneled MnO2 (α-MnO2  on the left), (β-MnO2 in the middle) and  (R-MnO2 on 

the right).33 

 

The future task is described as follow: 

Task: Exploration of atomistic mechanisms accounting for the layer-tunnel transition. 

The objective is to understand the atomistic mechanism accounting for the layer-

tunnel transition. Our hypothesis is that the driving force for layer-tunnel transition is 

the reduction of the strain energy of each precursor layer caused by nonuniform Jahn-
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Teller distortion of [Mn3+O6]. To test the hypothesis, it is first required to obtain 

MnO2 layers/nanowires grown at different stages to differentiate the growth process. 

Atomic imaging of the cross sectional structures will be then performed to understand 

the gradual layer-tunnel transition process. EELS will be performed at both the layer 

region and the tunnel wall region to quantify the Mn valence. It is expected that the 

Mn valence at the tunnel wall should be close to 3+, while is it close to 4+ inside the 

layer region.  
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Appendix A. Supporting Information for Chapter 4⑥ 

A.1. Experimental details 

α-MnO2 nanowires are prepared via a low-cost, scalable hydrothermal synthesis 

method using KMnO4 and MnSO4 as reactants.1 For the cross section slices 

preparation, the nanowires are first fixed using Epofix embedding resin and Epofix 

hardener mixture; the sample is then placed under an Edge CraftTM diamond knife 

mounted in Ultramicrotome (Leica UCT) and is cut to slices at a feeding step size of 

500 nm. The slices are directly moved to copper grid and dried at 50oC for 24 hours 

before TEM characterization. 

 

The experiments were carried out inside an aberration-corrected JEOL JEM-ARM 

200CF STEM equipped with a 200 keV Schottky cold-field emission gun, a HAADF 

detector, and a postcolumn Gatan Enfina EELS spectrometer. 22 mrad probe 

convergence angle was used for all the images and spectra. The HAADF images were 

acquired using a 90 mrad inner-detector angle, and the EELS spectra were obtained 

with a 45 mrad collection angle.  

 

The in-situ setup is similar to the method used by others.2 The nanoscale 

electrochemical open cell used for in-situ observation is schematically illustrated in 

Figure S1a. Single α-MnO2 nanowire is attached by conductive epoxy to a gold wire 

to be the working electrode, and Li metal is attached to a tungsten tip and functions as 

the counter electrode. This step is finished inside a glove box filled with Ar. 

Transportation of the sample from glove box to TEM will result in a naturally grown 

Li2O layer on the surface of Li metal, and this layer can function as a solid-state 

electrolyte to facilitate the diffusion of Li+ from Li metal to α-MnO2. In-situ operation 

                                                 
⑥ The material contained in this chapter was previously published in the Nano Letters. 

(Reprinted with permission from Y. Yuan, A Nie, G. Odegard, C. Johnson, J. Lun, R. 

S. Yassar. Nano Lett., 2015, 15, 2998–3007. Copyright © 2015 American Chemical 

Society)   
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is achieved via a Nanofactory TEM-scanning tunneling microscope holder. Lithiation 

is initiated when a constant potential of -2 V is applied to MnO2 against Li counter 

electrode.  

 

Here it is worth to mention some practical facts about TEM operation. In our present 

situation, we cannot tilt the same nanowire 90o and change views between [010] and 

[100], although such method is the most efficient way to prove the proposed theory. 

Also, when using the in-situ holder, the highly sensitive device will be subjected to 

any vibration or noise, not to mention a purposed holder tilting, which will easily 

destroy the in-situ setup and the targeted nanowire will drop or move out of view. 

 

Electrode composed of 80 wt% of α-MnO2 nanowires, 10 wt% super P carbon and 10 

wt% of PVDF binder were well mixed in N-methyl-pyrrolidinone (NMP) to get a 

homogenous slurry. The obtained slurry was casted onto an Al foil to make electrode. 

The electrode was dried at 75 oC for 4 hours, and followed by being thoroughly dried 

at 75 oC overnight under vacuum. Electrochemical measurement was carried out on 

the CR2032 coin cell with Li metal as counter electrode, CELGARD 2325 membrane 

as the separator and 1.2 M LiPF6 in EC/EMC (3:7 by weight) as the electrolyte. 

Cyclic voltammetric (CV) curve of α-MnO2 in the coin cell was performed at a 

scanning rate of 0.05 mV s-1 in a voltage range of 1.5 V- 4 V using a multislit 

Solartron system. In-situ Synchrotron XRD (λ=0.118 Å) was performed at Beamline 

11-ID-C located in Advanced Photon Sources of Argonne National Laboratory. The 

slurry was made from the same components and ratios as mentioned above but with 

much higher loading amount on Al foil. The test coin cell was assembled using pre-

punctured spacer and electrode caps for better X-ray penetration, and was cycled at a 

0.05C rate between 1.5 V-4 V.         

A.2. Simulation details  

Spin-polarized DFT simulations were conducted to determine the most favorable Li+ 

insertion sites in the K0.25MnO2 crystal. For these simulations, version 5.2.12 of the 
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Vienna Ab Initio Simulation Package3,4,5. The DFT+U method was used for these 

simulations, as implemented in VASP using the rotationally invariant approach of 

Liechtenstein et al.6. For the transition metal Mn, it was assumed that U = 6.2 eV and 

J = 1.0 eV, based on the results of previous work7. The Perdew-Burke-Ernzerhof 

exchange-correlation functional was used8,9 with an optimized cut-off energy of 550 

eV. For Li atoms, the 1s and 2s states were treated as valence states. For the K atoms, 

the 3s, 3p, and 4s states were treated as valence states. For Mn, the 3s, 3p, 3d, and 4s 

states were treated as valence states. For O, the 2s and 2p states were treated as 

valence states. For all DFT simulations, relaxations were simulated for ionic positions, 

unit cell shape, and unit cell size. 

 

The K0.25MnO2 crystal was simulated first, followed by simulations of Li+ insertion 

into the Wychoff 2b, 4c,4d, 4e, 8f, 8g, 8h, and 16i sites; starting with a single Li+ 

atom and ending with Li+ saturation, as shown in Figure 6. Γ-centered Monkhorst-

Pack grids10 were generated for each of the systems with an optimized k-point grid 

spacing of 5×5×17. As can be seen in Figure 6, the unit cell consists of a 2×2 tunnel 

at the middle, partial 1×1 tunnels on each edge, and partial 2×2 tunnels at the corners. 

Therefore, given the periodic boundaries, a total of two 2×2 tunnels are simulated in 

the unit cell.  

 

The energies of formation for each level of Li+ insertion were calculated using 

 E f = Ex - 8x( )ELi - EK2Mn8O16   

where Ex is the electronic energy for the LixK0.25MnO8 unit cell (x defined as the 

number of inserted Li atoms/8), ELi is the energy for an Li solid in its ground state11 

(per Li atom), and EK2Mn8O16 is the energy associated with the unlithiated unit cell. 

The corresponding values of Ef are plotted in Figure 6. It is clear from this data that 

the 8h and 16i insertion sites have the overall lowest energies, and the 8h site is 

energetically most favorable at x = 1.  
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Because the 8h site shows the overall lowest energies, the Convex Hull method was 

used to investigate the reaction path for Li intercalation in the 8h site, similar to Ling 

and Mizuno12. The energy of formation is given by 

 E f = Ex - xELiK 0.25MnO2 - 1- x( )EK 0.25MnO2   

where Ex, ELiK0.25MnO2, and EK0.25MnO2 are the total energies of LixK0.25MnO2, 

LiK0.25MnO2  and K0.25MnO2, respectively. The lowest energies for each value of x 

corresponded to the most likely Li intercalation sites, and the lattice parameters 

reported in Figure 7 corresponded to these structures. 

 

A.3. Supporting figures  

 

Figure A1 a: Schematic of in-situ setup; b-j: Time sequence of TEM images of single 

MnO2 nanowire during lithiation (from left to right). The scale bar is 100 nm in each 

image; red bar indicates the first reaction front and blue bar indicates the second front. 

Bias: +2 V on Li side. View projection: [010] 
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Figure A2 Time sequence of TEM images of single α-MnO2 nanowire during 

lithiation (from right to left). The red bar indicates the single lithiation front. Bias: +2 

V on Li side. View projection: [100] 

 

 



 177 

Figure A3 a-h: Time sequence of TEM images of single α-MnO2 nanowire during 

lithiation (from left to right); i: High-mag TEM showing the second reaction front 

with sharply different contrast change. The first front is beyond view due to its fast 

moving. The white scale bar is 100 nm in each image; red bar indicates the first front, 

blue bar for the second front and green bar is where the projected diameter is 

measured to construct Figure S2j. Bias: +2 V on Li side. View projection: [010] 

 

 

Figure A4 Two nanowires being lithiated and viewed under [010] (top) and [100] 

(bottom) zone axes. The top nanowire is pristine with no “bundling” phenomenon, 

and two-front expansion (red for the first front and blue for the second front) features 

its lithiation. The bottom one is featured by striped contrast, indicating the existence 

of “bundling”, and single expansion front (red) features its lithiation. The images are 

aligned so that the nanowires are placed at the same level for better observation. Scale 

bars in all images: 100 nm. 
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Figure A5 a: one α-MnO2 nanowire showing “bundling” phenomenon with its SAED 

shown in the bottom; b: another α-MnO2 nanowire showing “bundling” phenomenon 

with its SAED and (200) dark field image shown in the bottom. It shows that both 

nanowires are essentially single crystalline, indicating a lateral oriented attachment 

mechanism to direct their solution growth process. 

 

 

Figure A6 a: HRTEM of Zone D[010] (D[100]) showing nanograins embedded in Li2O 

matrix; b: FFT of the same area proving these nanograins to be Mn; c: Constructed 

RGB image showing Mn nanograins with different crystallographic orientations (the 

color of each grain helps to identify which specific reciprocal spot it contributes to). 



 179 

 

 

Figure A7 (a, d): Fitted oxygen K-edge spectrum with prepeak O-Kα indicated; (b, e): 

Fitted Mn-L2,3 white lines; (c, f): Mn valence identification based on ΔE (Mn L3-O 

Kα) fingerprints. The black, red and blue dots correspond to locations (curves) 1, 2 

and 3, respectively; location 1 with known Mn3.8+ valence is used to slightly offset the 

horizontal coordinate value for more precise valence identification of locations 2 and 

3. (a-c) are analyses for the nanowire under [010] TEM projection; (d-f) are for the 

nanowire under [100] projection. Note that among all the different fitting functions 

(Gauss, Gaussin, Voigt) used, Gaussian function gives the smallest fitting error for 

calculating the energy difference between the energy loss peaks. Using Gaussian 

function, the standard error is 0.14 eV for Curve 1, 0.15 eV for Curve 2 and 0.2 eV 

for Curve 3. 

 

The oxygen K-edge prepeak (O-Kα) around 530 eV in Figures 5b (e) and Figure S6a 

(d) is due to transition from 1s core states to 2p states hybridized with Mn 3d orbitals, 

and the second peak around 545 eV is linked with the projected unoccupied oxygen p 

states mixed with Mn 4sp band at higher energy above the Fermi level. The intensity 

of O-Kα decreases as more Li+ are inserted, indicating less chance of electron transfer 

to dz
2 orbital due to increasing electron occupancy at dz

2 orbital when Mn is 

continuously reduced during lithiation. Manganese L3 and L2 white lines located 

between 640 eV and 660 eV correspond to electron transitions from 2p3/2 and 2p1/2 

core states to unoccupied 3d states localized on the excited Mn ions and are separated 
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by spin-orbit splitting ΔE(L2-L3). Upon lithiation, both L3 and L2 peaks shift toward 

lower energy side with L3 showing a larger shifting trend, indicating that the valence 

of Mn decreases during lithiation, which is already proved by previous work.    

 

Figure A8. Simulated Li+ occupancy sequence at 8h sites along [001] direction. Two 

2×2 tunnels along c-axis were built to simulate the formation and growth of a 

lithiation front. Five situations were simulated to determine the preferred 8h Li 

intercalation sites along the c-direction. The corresponding electronic energies are 

shown. These simulations were conducted using the same simulation parameters and 

methods described above. 

 

Figure A9 a: HAADF image of a partially lithiated nanowire with upper section 

unlithiated and lower section lithiated. b-d: EELS mapping for K,O and Mn elements. 



 181 

Partial removal of K in the lithiated section is confirmed by the weaker K signal than 

that in the unlithiated section. 

 

Figure A10. CV curve of α-K0.25MnO2 nanowire electrode (coin cell) at a scanning 

rate of 0.05 mV s-1 over voltage range of 1.5 V-4 V. Two cathodic peaks appear at 2.5 

V and 2.1 V, which likely corresponds to the Tetragonal-Orthorhombic transition and 

Orthorhombic-Tetragonal transition, respectively. In the following charge process, 

two anodic peaks appear at 2.9 V and 3.2 V, confirming the reversible 

lithiation/delithiation cycling in α-K0.25MnO2 nanowires. 

 

 

Figure A11. a: In-situ synchrotron XRD showing the structural evolution of a Li/α-

K0.25MnO2 coin cell during its first discharge-charge cycle. The strong star peaks 

correspond to the metallic background signals; b: Enlarged {200} peak region 
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showing that the main peak is broadened during lithiation with gradual appearance of 

a small peak to its left side.  

 

It is notable that the small peak to the left of {200} is equal to 5.20 Å spacing, which 

is close to the fully expanded {200} spacing from TEM observation. The coexistence 

of two peaks (5.20 Å and 4.93 Å) should correspond to the intermediate discharge 

state when a fully expanded and b is not expanded, i.e. at the end of Zone B 

(orthorhombic phase). Theoretically, the 4.93 Å peak should disappear when it 

reaches the end of discharge (around 1.5 V) and then appear again during charge. 

Actually, however, it is always shown in the pattern with only broadening behavior. 

This can be explained by the incomplete electrochemical reaction inside a large coin 

cell, where not all nanowires take part in the (de)lithiation. Vice verse, the fully 

lithiated nanowires cannot be thoroughly delithiated, so the 5.20 Å peak is always 

shown in the pattern since its first appearance during lithiation.   

 

Movie A1. Lithiation process of α-K0.25MnO2 nanowire under [010] TEM zone axis. 

Video is at ×8 rate. 

Movie A2. Lithiation process of α-K0.25MnO2 nanowire under [100] TEM zone axis. 

Video is at ×8 rate. 
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Appendix B. Supporting Figures for Chapter 5⑦ 

 

 

Figure B1． (a) Atomic model of α-MnO2 with a space group of I4/m and the 

tetragonal symmetry; red is for Mn and blue for O.  (b) [MnO6] octahedral model of 

K+-α-MnO2 where the green atoms are K+. 

 

Figure B2. The measured relationship between the sodiation front position and the 

sodiation time for two α-MnO2 nanowires as shown in the Movie B1 and Movie B2. 

 

                                                 
⑦ The material contained in this chapter was previously published in Nano Energy. 

(Reprinted with permission from Y. Yuan, K. Amine, T. Wu, J. Lu, R. S. Yassar. 

Nano Energy, 2016, 19, 382-390. Copyright 2016, Elsevier.) 
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Figure B3. The cycling performance of Na/α-MnO2 battery at a current of 0.1 C. 

 

Figure B4. The voltage profile during the first discharge/charge cycle between 4-1 V 

at a current rate of 0.1 C. 

Movies B1 (X8): One α-MnO2 nanowire being sodiated using the in situ open cell 

design inside TEM chamber. 

Movies B2 (X4): One α-MnO2 nanowire being sodiated using the in situ open cell 

design inside TEM chamber. 

Movie B3 (X64): One α-MnO2 nanowire being sodiated and desodiated for several 

cycles using the in situ open cell design inside TEM chamber. 
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Appendix C. Supporting Information for Chapter 6⑧ 

C.1. Supporting figures 

 

Figure C1. (a): Polyhedral model of α-MnO2 along [001] zone axis with 1×1 and 2×2 

tunnels indicated by the blue squares; (b): Atomic model showing one 2×2 tunnel and 

two adjacent 1×1 tunnels. The pink spheres refer to 2×2 tunnel stabilizers such as K+, 

Ba2+ and NH4
+. 

 

 

 

                                                 
⑧ The material contained in this chapter has been submitted to Nature Communications. 
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Figure C2. Top: The EELS results for three groups of nanowires (K0.25MnO2, K0.25-

xMnO2, pure MnO2). The green arrows indicate the existence of Mn3+. Bottom: The 

quantification of Mn valence evolution during acid treatment using two methods, (L2-

L3) and (L2/L3). 

 

According to the literature, there are two competing mechanisms explaining the 

removal of K+ from the 2×2 tunnels of MnO2 in an acid solution. One is K+-H+ 

exchange mechanism, and the other one is the redox mechanism. The detailed 

reaction paths for these two mechanisms were proposed by Feng et al.,1 where the 

reactions are given as:  

                      {K2}[□0.5MnIV
7.5]O16+2H+ = {H2}[□0.5MnIV

7.5]O16+2K+        

for K+-H+ exchange, and 

                      8{K2}[MnIII
2MnIV

6]O16+32H+ = 7{}[MnIV
8]O16+16K++8Mn2++16H2O     

for redox mechanism, where {}, [], and □ denote the (2×2) tunnel sites, octahedral 

sites for Mn, and octahedral vacant sites, respectively. The critical difference between 

these two mechanisms is whether Mn valence of the oxide is increased or not, which 

is however, not fully explored by the authors. Many groups also report the K+ 

removal results are explained by either the K+-H+ exchange2,3 or the redox 

mechanism4,5. Yet, there is no overall consensus as to which one is dominant due to 

the lack of a systematic study. 

 

Our conclusion from the present study is that the K+ removal from the 2×2 tunnels of 

MnO2 is dominated by the redox mechanism, i.e. the Mn valence is gradually 

increased to Mn4+ with the removal of K+. We systematically studied the Mn valence 

evolution for nanowires before HNO3 treatment, after 1-day treatment, and after 4-

day treatment using two different methods: electron energy loss spectroscopy (EELS) 

and X-ray photoelectron spectroscopy (XPS). If K+ removal was controlled by the 

K+-H+ exchange mechanism, then the Mn valence would have been unchanged. The 

results of XPS and EELS both confirmed that there is an obvious trend of Mn 

oxidation (up to Mn4+) with the gradual removal of K+ from the tunnels, which is a 
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solid proof that the K+ removal is dominated by direct Mn oxidation instead of the 

K+-H+ exchange mechanism. 

 

Fig. C2 shows the EELS data of the three groups of nanowires (top) with the 

quantification of Mn valence shown in the table (bottom). Three different signatures 

are used here to characterize the change of Mn valence. The green arrows indicate the 

existence of Mn3+ shoulder peak on the left side of the Mn4+ peak, which has been 

used as a signature of the Mn valence change.6 The gradual decrease of the shoulder 

peak intensity during the acid treatment confirms the gradual oxidation of Mn3+ to 

Mn4+ accompanying the removal of K+ form the tunnels. Another signature is the 

energy difference between Mn white lines (L2-L3), which is known to be sensitive to 

the change of Mn valence.6-8 The decrease of (L2-L3) value (shown in the bottom 

table of Fig. C2) during the treatment also confirms the oxidation of Mn. The third 

signature is the peak intensity ratio of L3/L2, which is also sensitive to Mn oxidation 

state.9 The decrease of the L3/L2 ratio (shown in the bottom table of Fig. C2) during 

the treatment further confirms the oxidation of Mn. The quantification details are 

given in the table with reference to reported standard values7. 

 

Fig. C3 gives the XPS data of the three groups of nanowires with both the original 

curves and the fitted curves. Fig. C3a confirms the gradual removal of K+ as 

evidenced by the decrease of K 2p signal during the treatment. Fig. C3b-d compare 

Mn 2p peaks for three groups of nanowires with emphasis on the quantification of 

Mn4+/Mn3+ intensity ratio. After fitting the curves, the ratio of the integrated intensity 

of Mn4+ and Mn3+ peaks is (i) 1:1 for the nanowires without treatment, (ii) 2.5:1 for 

the nanowires after 1-day treatment, and (iii) 5: 1 for the nanowires after 4-day 

treatment. This indicates the Mn valence in KxMnO2 nanowires being increased from 

Mn3.5+ (no treatment), to Mn3.71+ (1-day treatment) and to Mn3.83+ (4-day treatment). 

Note that XPS of the 4-day treated nanowires still shows a residual Mn3+ signal, 

which is probably due to the unsaturated Mn on the surface with 3+ valence states, 

which has been suggested by our recent work.10 
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Figure C3. a: The XPS survey curves for three groups of nanowires (black for no 

treatment, red for 1-day treatment, blue for 4-day treatment). b-d: The XPS results 

around Mn 2p peaks for three groups of nanowires. 

 

In short, our XPS and EELS results on the Mn valence analysis are consistent with 

each other, leading to the conclusion that the K+ removal process is dominated by the 

Mn oxidation mechanism rather than the K+-H+ exchange mechanism. So the 

possibility of H+ presence in the tunnels is minimized. 

 

We have considered the possibility of H+ residing inside the 2×2 tunnels as a result of 

the K+-H+ exchange mechanism.11 Due to the challenge in H+ detection, we can not 

completely exclude the existence of trace amount of H+ in the tunnels. However, if 

we assume that one K+ removal is compensated by one H+ insertion into the tunnels, 

there should be no Mn oxidation. Our detailed Mn valence analysis clearly indicates 
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Mn oxidation, and we therefore conclude that Mn oxidation is the dominant 

mechanism.   

 

Figure C4. TGA curve of the nanowires (pure MnO2) after 4-day acid treatment. 

 

We have excluded the possibility of residual water inside the tunnels by heating the 

nanowires at 280 oC in dry air (right after acid treatment) to remove any absorbed 

water. According to previous studies, 280 oC is high enough to remove any tunnel 

water.12,13 To confirm the removal of water as well as the thermal stability of the 

nanowires after K+ removal, we also carried out Thermogravimetric Analysis (TGA) 

on the nanowires after 4-day treatment, with the results shown in Fig. C4. It shows 

one weight loss trend (0.2%) from 60 oC to 130 oC,due to the evaporation of surface 

absorbed water from the nanowires. The second loss starts from 150 oC to 250 oC 

owing to the removal of tunnel water (1%). Above 250 oC, the nanowires maintain 

structural stability without any weight loss (O release, etc.) up to 450 oC. 

 

The in situ heating experiment was performed on a TEM heating stage, and the 

results are shown in Fig. C5. This real time study focused on tens of nanowires with 

one single nanowire targeted for the high-mag TEM imaging and diffraction. The 

selective area electron diffraction (SAED) pattern from these nanowires confirms that 

the tetragonal α-MnO2 phase is stable when heated to 280 oC based on indexing the 

polycrystalline pattern to be α-MnO2. The unchanged morphology of the nanowires 

(and the targeted single nanowire) also confirms the thermal stability at 280 oC. When 
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it is heated above 350 oC (to 450 oC), the SAED pattern of these nanowires is still 

indexed to be tetragonal α-MnO2 phase, but the polycrystalline pattern becomes ring-

like. In addition, the dynamic observation of one single nanowire shows that the 

nanowire’s single crystalline diffraction pattern also generates some new diffraction 

spots after 350 oC. Both signatures indicate the gradual polycrystallization of 

individual nanowire above 350 oC, although the tetragonal phase is maintained. The 

morphology evolution of the single nanowire further confirms the polycrystallization 

behavior, which starts with the surface pulverization around 350-400 oC and extends 

into the inner parts of the nanowire at 450 oC. The thermal-induced 

polycrystallization of α-MnO2 nanowires is probably driven by the formation of 

crystal interfaces and twin boundaries that are fast developing at high temperature.  

 

Figure C5. (Top two rows) In situ heating of several nanowires with their SAED 

recorded. (Bottom two rows) One nanowire is magnified for detailed phase and 

morphology analysis. 
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Both TGA and in situ heating inside TEM confirm that the nanowires are thermally 

stable at 280 oC.  Note that the thermal stability of the nanowires above 350 oC is 

characterized to be different in TGA and the in situ heating. This is understandable 

considering that the oxides are easier to release O under a TEM vacuum environment 

than in the N2-filled TGA atmosphere. 

 

 

Figure C6. (a-c): TEM images and the corresponding SAED patterns for the 

nanowires after 100 cycles as lithium-ion battery cathodes. Indexing of the diffraction 

rings indicates that the nanowires consist of tetragonal α-MnO2 and the tunnel 

structures are thus well maintained. (d): EDS analysis of the nanowires (K0.25MnO2 

nanowires without acid treatment) before and after 100 battery cycles at 0.1 C. K+ 

concentration in the nanowires is slightly affected by the battery cycling while the  

majority of K+ are still within the nanowires. It shows that K+ concentration in the 

tunnels is only slightly affected by the cycling, and a small amount of K+ might be 
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probably lost into the electrolyte while the majority of K+ remains inside the 

nanowires. 

 

 

Figure C7. The first discharge/charge profile for three groups of nanowires as lithium 

battery cathodes. The green line indicates the discharge reaction happening around 

2.5 V for all three cells, while the yellow one indicates the charge reaction around 3.2 

V for all three cells.  

 

To investigate the effect of K+ concentration during the first cycle, the galvanostatic 

discharge/charge curves for the three groups of nanowires are shown in Figure C7. 

While all three groups exhibit a discharge voltage around 2.5 V (vs Li/Li+), the 

variation in the first discharge capacity is observed among three groups of nanowires. 

The nanowires after 4-day acid treatment have a capacity of 170 mAh/g, compared to 

the capacity of 143 mAh/g for the nanowires without acid treatment, which can be 

ascribed to the addition of K+ that increases the inactive mass of the material. We 

have measured several cells and found that the discharge capacity for the nanowires 

without treatment is in the range of 130-143 mAh/g, so 130 mA/g is used as the 

practical 1 C rate. Upon charge, however, we observed the opposite trend. The 

capacity of the 4-day treated nanowires is lower than the nanowires without treatment.  

 

Figure C8 gives the rate performance of the three groups of nanowires during cycling. 

The discharge capacity of each cycle has been normalized to the capacity measured at 

0.1 C. While the capacity retention is similar for the three groups at lower current, it 

indeed shows higher capacity retention at higher current (2 C and 5 C) for the 

nanowires with the highest K+ concentration.  
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Figure C8. Cycling-rate performance of the three groups of nanowires (K0.25MnO2, 

K0.25-xMnO2, pure MnO2) as lithium battery cathodes at 1, 2 and 5 C. Each cycle is 

normalized to the discharge capacity at 0.1 C as shown in the inset. 

 

It is worth mentioning that the rate testing for all three groups of nanowires is 1 

C=130 mA/g (Note that the practical discharge capacity for nanowires without acid 

treatment is in the range of 130 mAh/g-143 mAh/g based on several experiments in 

our case). The actual capacity for 1-day (157 mAh/g) and 4-day (170 mAh/g) treated 

nanowires are higher than 130 mAh/g. In addition, due to the accumulation of many 

other factors (such as irreversible (de)lithiation), the effect of K+ concentration on the 

rate performance should gradually fade with increasing cycling times. Considering 

these effects, it is reasonable to expect a much better rate performance of K+-doped 

nanowires than that of the nanowires with K+ removed. 
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Figure C9.  GITT curves for the three groups of nanowires, where dE/dX is measured. 

 

 

Table C1. BET surface area for the three groups of nanowires (K0.25MnO2, K0.25-

xMnO2, pure MnO2)  (N2 isotherm). 

 K0.25MnO2 K0.25-xMnO2 pure MnO2 

 surface area (m2/g) 28.2 26.8 26.7 
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Table C2. Calculated conductance values for α-MnO2 nanowires (at T = 25 oC) 

stabilized by different concentrations of K+. The conductance values and error bars 

are for the linear fitting of all the curves in the region ranging from +8 V to +10 V. 

Composition  Conductance (i.e. slope) (μS) Error 

 

K0.25MnO2 

0.15253 0.00244 

0.16195 0.00303 

0.18614 0.00382 

 

K(0.25-x)MnO2 

0.03445 0.00112 

0.02485 0.00069 

0.03156 0.00041 

 

K0MnO2 

0.00496 0.00013 

0.00111 0.00003 

0.00122 0.00003 

 

Table C3. Calculated (DFT +U) and experimental lattice parameters of K0.25MnO2. 

Lattice Parameter Experimental value (Å) Calculated value (Å) 

a 9.94 10.03 

b 9.94 9.74 

c 2.857 2.88 

 

C.2. Calculation of the Li+, K+ and O2- arrangement in one 

2×2 tunnel 

We set rLi+=0.59 Å, rK+=1.37 Å, rO2-=1.21 Å following Young’s paper11 and establish 

the atomic model with a=b=9.82308 Å and c=2.85443 Å based on our XRD Rietveld 

refinement in Figure 6.2. Then the DO-O (the shortest distance of two O atoms 

surrounding one 8h site) is calculated to be 3.66 Å, DK-O=(the shortest distance of one 

K and one O surrounding one 8h site) is 4.64 Å. So the O-O distance allows a 
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maximum free spherical space with rmax= (3.66-2×1.21)/2=0.62 Å, while the K-O 

distance allows a maximum free spherical space of rmax=(4.64-1.37-1.21)/2=1.03 Å. 

So the theoretical maximum sphere that can be inserted around one 8h site is limited 

by DO-O and the resulted rmax is 0.62 Å, which is larger than that of Li+ (0.59 Å). This 

is an indication that Li+ can be inserted at 8h sites when K+ already occupy the 2a 

sites.  
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Appendix D. Supporting Information for Chapter 7⑨ 

D.1. Methods 

D.1.1. Sample peparation 

α-MnO2 nanowires were produced by a hydrothermal process using KMnO4 and 

MnSO4 as the reactants. The reaction was carried out in a Teflon-lined stainless steel 

autoclave at 160oC for 1.5, 3, 6, 9 and 12 h to obtain α-MnO2 nanowires at different 

stages of growth. To prepare electron-transparent slices of the nanowire cross sections, 

the nanowires were first mixed with cold mounting epoxy resin (EPOFIX, Electron 

Microscopy Sciences) under 10 min supersonic vibrations. Hardener (EPOFIX, 

Triethylenetetramine, Electron Microscopy Sciences) was then added into the 

solution to facilitate the solidification process in atmosphere at 60oC for 24 hours. 

After that, the solid solution was fixed on the sample stage of a Leica Ultracut UCT 

ultramicrotome equipped with a diamond knife. The nanowires were mechanically 

cut into slices at a feeding step size of 500 nm.  

D.1.2. Sample characterization 

Phase analysis was performed using powdered X-ray diffraction (XRD). The 

representative diameter of each sample was obtained statistically by averaging the 

diameters of tens of nanowires from different sample areas under low-magnification 

TEM. The atomic structure was analyzed using a spherical aberration-corrected JEOL 

JEM-ARM200CF scanning transmission electron microscope (STEM) equipped with 

a 200 kV cold-field emission gun, annular bright field (ABF) and high angle annular 

dark field (HAADF) detectors, and an energy dispersive spectrometer (EDS). A 22-

mrad-probe convergence angle was used for all STEM images. The HAADF images 

were captured using a 90-mrad inner-detector angle.   

                                                 
⑨ The material contained in this chapter was previously published in the ACS Nano. 

(Reprinted with permission from Y. Yuan, J. Lu, A. Nie, M. Saiful, R. S. Yassar. 

ACS Nano, 2016, 10, 539-548. Copyright © 2015 American Chemical Society.)   
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The in situ liquid cell TEM experiment was carried out using a commercialized liquid 

holder (Protochips. Poseidon 500) inside the JEOL JEM-ARM200CF STEM at an 

acceleration voltage of 200 kV. Two chips made of Si substrates with 50 nm thick 

Si3N4 layers were used to construct the liquid cell with the inner space of 150 nm, 

enabling good electron transparence. Since the Si3N4 was the working surface that 

directly contacted the aqueous solution, before assembling the liquid cell, the Si3N4 

surfaces were washed with methanol and then plasma cleaned for 1 min to remove 

contaminants and make the surface hydrophilic. The size of each Si3N4 window 

(where Si substrate was etched beforehand) was 550 μm × 20 μm. The two windows 

were aligned in parallel so that the imaging area was maximized. The flow of liquid 

into the cell was using a coaxial PEEKTM tubing with an inner diameter of 100 μm 

and the tubing was connected with a syringe, which contained 0.5 ml KCl solution. 

The concentration of K+ was kept at 0.03 mol/L, the same as it was in the actual 

solution during the hydrothermal synthesis. The electron dose rate was maintained 

approximately at 5.5 (± 0.5) × 103 e/(nm2·s). 

D.1.3. Ab initio computer modeling 

Surface calculations were performed using density functional theory (DFT) with 

PAW potentials, as implemented in the VASP code.1 The generalized gradient 

approximation (GGA) of Perdew-Burke-Ernzerhof (PBE)2 was applied with a 

Hubbard U correction, as this has been demonstrated to give a good description of the 

ion insertion, surface energies and electronic structure of α-MnO2,
3,4 and other 

transition metal oxides.5 A planewave basis set cutoff energy of 520 eV and a 

minimum grid of 3×3×7 k-points was used in the Brillouin zone for bulk calculations. 

The calculated lattice parameters for K0.25MnO2 agree well with experiment, as 

shown in Supporting Information Table S1, although the common tendency for 

PBE+U to slightly overestimate the unit cell volume is apparent. Surface energies 

were calculated based upon slabs with a minimum thickness of 20 Å, with surface 

energy converged against slab thickness. Full geometrical relaxation of the ionic 

positions was performed to incorporate surface relaxation effects. 
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D.2. Supporting figures and tables. 

Table D1. Calculated (DFT +U) and experimental lattice parameters of K0.25MnO2. 

Lattice 

Parameter 

Expt 

Å  

Calc 

Å 

a 9.866 9.990 

b 9.866 9.955 

c 2.857 3.022 

 

 

Figure D1. (a): [001] TEM image of an α-MnO2  slice after cross sectioning; b: 

SAED of the same slice in a; (c,d): [001] ABF images of two α-MnO2  slices vaguely 

showing closely packed 2×2 tunnels and {110} stripes (green dashed arrows). The 

white dashed arrows in (a) and (c) indicate inner holes and cracks. Scale bars: 10 nm. 

 

Figure D1 shows low magnification (S)TEM images of cross-sectioned α-MnO2 slices 

along the [001] zone axis. The specimens generally have a square-shaped cross 

section under this projection. However, some exhibited inner cracks and holes (white 

dashed arrows in (a) and (c)) that are probably caused by incomplete attachment of 

the primary nanowires. The lateral surfaces are characterized as parallel to {100} 

planes based on the corresponding SAED, indicating that the {100} surface is the 
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most stable in α-MnO2 during solution synthesis. It is notable in figures D1c and d 

that the slices feature many dark stripes embedded within them. Interestingly, all the 

stripes are orientated parallel to {110} planes and are essentially tunnel-based 

structures (Figure D1d). According to the typical OA mechanism where defective 

interfaces usually form between two attached primary units,6,7 these stripes should be 

an indication of interfaces (Figure 7.4d) that are introduced during the lateral OA 

process of primary α-MnO2 nanowires. 

 

Figure D2. Structure of K0.25MnO2 with Mn in yellow and O in red. The Wyckoff 2a 

sites are shown in green, and the 2b sites in blue. 
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