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Abstract 

Transmission Loss prediction accuracy is highly dependent on a good understanding of the 

angular distribution of incident field on the panel. Traditionally, the incident field has been 

assumed to be either completely random (equal probability of incidence at all angles from 0° 

- 90°) or field incidence (where the field is assumed to be completely diffuse between 0° -

78°). Studies1-3 have shown that these models are not completely representative of the 

incident field. This incident field is studied in the Michigan Tech Transmission Loss suite 

using two different methods in this study; beamforming and acoustic intensity. The 

beamforming method uses a linear array and the acoustic intensity method uses an intensity 

probe mounted on a rotating platform that measures the incoming sound energy at different 

angles as it is swept over a range of angles. The results from these two methods show that the 

incident field approximately follows a 
0.8cos ( )  distribution. 

 

1. Introduction 

Transmission Loss (TL) is defined as the ratio of incident sound power to transmitted sound 

power through a barrier4. TL is an important metric used in automobile, aircraft and building 

industries to evaluate the acoustic performance of barriers and panels. Measurement of TL is 

a time consuming and involved process. This has incentivized development of analytical 

models that accurately predict TL of a panel based on its physical properties. Although there 

are models available that can predict TL to some accuracy, studies1,3 have shown that 

correlation between test TL and analytically estimated TL can be improved.  

TL is measured by placing the specimen in an environment where there is a diffuse field on 

one side of the panel and the transmitted sound power is measured on the other side of the 

panel. A diffuse field is said to be present when there is spatial diffusion, where there is equal 

energy density at all points in the field and angular diffusion, where there is equal probability 

of energy incidence from all angles5. Although most well designed reverberant rooms may 

fulfil the first condition, the second condition is harder to meet6. 

In analytical TL calculations, integration over a range of angles is considered to obtain an 

angle averaged TL1. As explained previously, inducing a true angularly diffuse field is very 

difficult. This causes a deviation between analytical estimations of TL and measured TL. In 
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conventional calculations, the incident field is assumed to be either completely random (equal 

probability of incidence at all angles from 0° - 90°) or field incidence (where the field is 

assumed to be completely diffuse between 0° -78°) where grazing incidence is not taken into 

account1,3,6. These fields are illustrated in Figure 1. 

 

Figure 1: Random incidence(l) and field incidence(r) 

Until recently, there were only a few studies that attempted to understand the angular 

distribution of reverberant field at the wall7-9. Kang1,2 and Lynch and Bauch3, recently have 

attempted to systematically study the incident field at the TL testing window. These studies 

indicate that rather than using uniform fields or field truncation, a model based on angle 

dependent sound field to be more appropriate. There have also been studies by Schiller10, 

Hasan11, Nelisse12 and others to study the sound field in the reverberant chamber using 

analytical and numerical methods. Schiller employs an analytical method and proposes a 

finite aperture correction that can be used to correct for the incident field10. Hasan uses 

numerical methods to study the spatial and angular distribution of energy in the reverberant 

room11.   

This study attempts to evaluate the incident field at the wall of the reverberant chamber using 

experimental methods. Previous studies using experimental methods to study the angular 

distribution of the incident field use two main techniques, beamforming3,13 and acoustic 

intensity1,3. Kang1 uses the acoustic intensity method to study the incident field. Lynch and 

Bauch3 uses both acoustic intensity and beamforming methods to study the incident field 

albeit at different test facilities. The beamforming method was performed at the Pennsylvania 

State University TL suite, also described in Bauch13, and the intensity method was performed 

at Gulfstream.  
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In Kang1, the intensity probe was mounted in the aperture of the TL testing suite at the level 

of the panel. The source room was excited similar to when a TL test is performed14.The 

intensity probe was then rotated over a range of angles to obtain the intensity at each angle of 

incidence. This method is similar to the approach used by Lynch3 at Gulfstream. In the Penn 

State study, beamforming was performed by using two 41-point linear arrays to study the 

angular distribution of the incident field in both horizontal and vertical axes. 

There is a discrepancy between the values predicted by the field incidence and random 

incidence models and the experimental results in all the studies. Kang1 suggests a Gaussian 

distribution model for the diffuse field description while the model suggested by Lynch and 

Bauch3 is a cos1.2(Ɵ). These models show a better correlation to the experimental results and 

show a 1 – 2 dB reduction in discrepancy when compared to the field incidence model.  

Although the studies have empirically identified different models, they were all performed at 

different facilities using very different equipment and conditions. In order to determine which 

method of describing the incident field is most representative, the studies will need to be 

performed in the same facility under similar conditions. 

The purpose of this study is to evaluate the two methods of incident field characterization in 

the same facility and under similar testing conditions to understand if there are any 

differences between the test methods and also evaluate relative merits of each method. 

2. Theory 

2.1 Transmission Loss 

Transmission Loss is the ratio of sound power incident on a panel to the sound power 

transmitted through the panel. Transmission Loss is an important metric used to measure the 

effectiveness of a sound barrier. The relation for Transmission Loss is given by 

1010log incident

transmitted

W
TL

W

 
  

 
  

(5) 

where, Wincident is the incident sound power on the panel or acoustic system and Wtransmitted is 

the sound power transmitted through the panel. 
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Figure 2: TL curve and different regions of interest on the curve4 

Transmission Loss is a function of frequency and properties of the panel15. In low 

frequencies, TL is a function of the bending stiffness of the panel. At high frequencies, TL is 

a function of the damping and shear forces. The frequency below which bending stiffness 

dominates is called the fundamental panel mode (fp). The frequency at which the 

wavenumber of the flexural vibration of the plate is equal to the wavenumber in the fluid is 

called coincident frequency (fc)9. The region between fundamental panel mode and coincident 

frequency is the mass controlled region as shown in Figure 2. In this region, the panel 

behaves as a limp mass and its TL is only a function of its mass surface density. The TL in 

this region is given by the mass law described in the next section. This is a region of interest 

in many acoustic problems. 
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2.2 Transmission Loss test using the two room technique 

 

Figure 3: Schematic representation of TL test using the two room method 

The two-room TL test using sound intensity is described in the ASTM E 2249 standard. In 

this test, the panel to be tested is mounted in an aperture between the reverberation and 

anechoic chambers as shown in Figure 3. The reverberation chamber is the source room 

where sound sources are placed in the corners to achieve a diffuse field. The reverberant field 

is sampled at various locations spatially and the spatially averaged sound pressure can be 

used to calculate the sound power of the sources as will be explained in the next section. The 

transmitted sound power is measured by measuring the surface averaged intensity of the 

panel as described in ASTM E 2249 and ISO 9614 -216. The surface averaged sound intensity 

level and spatially averaged sound pressure levels can be used to compute the TL of the panel 

using the following relation 

 1 10 106 10log ( ) 10log ( )s In mITL L S L S      
  (1) 

Where ITL is the Intensity Transmission Loss in dB, L1 is the averaged sound pressure level 

in the source room in dB, Ss is the area of sample contained in measurement volume in m2, 

InL  is the surface averaged sound intensity of the panel in dB, Sm is the total area of the 

intensity measurement surface in m2. 

2.3 Reverberation time: 

Reverberation time is an important characteristic of a reverberation chamber. This measure is 

important to understand as it affects the frequency ranges in which we can use the 
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reverberation chamber for acoustic measurements as will be explained in further sections. 

Reverberation time is the time taken by a sound to decay by 60 dB in a given room15. It is 

measured by exciting a room to a steady state, turning off the source and measuring the decay 

of the sound. Measurement of reverberation time of a room is described in ISO 338217. It can 

also be estimated using equations like Sabine reverberation time relation. The Sabine 

definition of reverberation time is given as4, 

60

0.161V
T

A
  

(2) 

where, V is the volume of the room in cubic meters, The room absorption A is a product of , 

the average surface absorption coefficient of the room and S, the total surface area of  the 

room in squared meters. A is expressed is Sabins.  

Understanding of the reverberant time is important in this case because the relation between 

sound pressure and sound power in a reverberant field is given by 

10

4
10logw pL L

A

 
   

 
  

(3) 

where Lp is the averaged sound pressure in dB re 20 µPa in the reverberant field and Lw is the 

sound power of the sources in dB re 1 pW. 

2.4 Diffuse field theory 

A diffuse field is said to be present in a room when the three following conditions are met5: 

1) The energy density measured at all points in the room is the same 

2) There is equal probability of energy incidence from all angles of incidence. 

3) The phase relations between any two waves are random at every point in the room. 

To achieve diffuse field, there should be sufficiently high modal density in the room to not 

have any distinct nodal or anti nodal points. At very low frequencies, when the wavelength is 

more than twice as long as any dimension of the room, the room behaves like a duct and only 

plane waves can propagate in it4. At slightly higher frequencies standing waves will 

propagate in the room with distinct nodal and anti-nodal points that are stationary. These 

standing waves occur at frequencies that are half integer multiples of any dimension of the 

room18. It is only at sufficiently high frequencies that the room will have sufficient modal 
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density to be diffuse. The theoretical frequency that divides the diffuse an non-diffuse field in 

a room is called the Schroeder frequency19. This is given by the following formula 

2000s

T
f

V
   

(4) 

where, T is the T60 time in seconds and V is the volume of the room in cubic meters. The 

Schroeder frequency is important to be noted in a reverberant chamber since it is considered 

to be the frequency above which the reverberant room is sufficiently diffuse and is the 

frequency above which measurements are considered in a reverberant chamber. 

2.5 Mass Law 

The mass law is an approximation of the transmission of a panel in the mass controlled 

region. In this region, the transmission coefficient is given by 

1
2

cos
( ) 1

2

s

o o

m

c


 
 





  
    
   

  

(6) 

where   is the angle dependent transmission coefficient,   is the angular frequency in 

radian/s, ms is the surface mass density of the panel in kg/m2, o  is the density of the 

medium in kg/m3 and co is the speed of sound in the medium in m/s. The angle dependent TL 

is given by 

10

1
10logTL



 
  

 
  

(7) 

 

2.6 Beamforming 

Beamforming is a technique of spatial filtering where signals from a desired direction are 

amplified and those from undesirable directions are attenuated20. It is used for directed 

transmission or reception of sound waves and also for sound imaging21. Beamforming can be 

performed in both time and frequency domains. It can be used to create a two or three 

dimensional image of the source. Similar to an intensity probe, the phase of the incoming 

wave is used to identify the angle of incidence in a linear array. The simplest beamformer is a 
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one dimensional array. The methods used in a one dimensional beamformer can be extended 

to two and three dimensional arrays20.  

 

Figure 4:Plane wave incident on an array20 

Figure 4 shows a simple array on which a plane wave is incident. In this case, the time or 

phase delay between the reference microphone and any other microphone in the array will be 

a function of speed of sound, the distance between the microphone and the reference 

microphone and the angle of incidence of the sound wave. The time and phase delays 

between the microphones are important since this will be the one variable that will be used to 

spatially filter the incoming sound waves based on angle of incidence.    

2.7 Frequency domain beamforming: 

Frequency domain beamforming is the method used in this study as it allows us to study the 

diffusion characteristics of different frequencies. In this method, the beam is formed by 

applying a calculated phase shift to the signal at each sensor20. This phase shift is given by 

sin( )mb b

d
t m

c
     

(8) 

where, tmb is the phase shift that is applied to the signal of each sensor, m is the mth
 sensor in 

the array, d is the center - center distance between any two sensors in the array and b  is the 

required beam steering angle. 
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The Fourier transform of the time signal is obtained and the phase shift is applied at every 

frequency bin. In addition to the speed of sound, distance from the reference microphone and 

steering angle of the beam, the weight in the weighted sum is also a function of frequency 

since phase difference between two microphones is affected by the wavelength. The steered 

beam is then given by13 

1

0

( , ) ( ) nb

M
j t

b m

m

P H e
  






    
(9) 

where, P is the complex sound pressure in Pa, Hm is the frequency response function (frf) of 

the mth microphone with the reference microphone and   is the angular frequency in rad/s. 

2.8 Beam pattern: 

The beams that are obtained from the beamformer are inherently directional in nature since 

the signals received by the array elements vary  with the direction of arrival22. The beam 

pattern has to be corrected for to ensure the obtained beam is an accurate representation of the 

sound pressures at the desired angle of incidence. The correction factor is given by 

2

1

1

2 ( )cos(2 )sinc(2 / )
M

o

m

M
DI

M M m mdu d  






 
    

(10) 

sin( )b
o

f
u

c


   

(11) 

where, DI is the directivity index, M is the total number of sensors in the array, d is the 

center-center distance between sensors in the array,   is the wavelength of the beam in m, f 

is the frequency in Hz and c is the speed of sound in m/s. The directivity factor is subtracted 

from the decibel value of the sound pressure level from the beamformer to obtain the 

corrected beam. 

2.9 Acoustic Intensity: 

Sound intensity or acoustic intensity is a measure of the amount of acoustic energy passing 

through a given area 23. Acoustic intensity can be used to identify the amount of sound energy 

that is flowing through a specific area at a specific angle. This is because intensity is a vector 

quantity whose direction is normal to that of the measurement area4. 
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W IA   (12) 

where, W is sound power in Watts, I is sound intensity in W/m2 and A is area in m2. 

Acoustic intensity is measured using intensity probes. There are two main types of intensity 

probes, p-p (pressure – pressure) intensity probes and p-u (pressure – velocity) intensity 

probes24. In this study, p-p type of intensity probe is used to make all measurements. The 

pressure – pressure intensity probe uses a set of two phase matched microphones separated by 

a fixed distance to measure the pressure and the phase difference between the two 

microphones is used to calculate the intensity. The intensity from p-p probe is calculated 

using the following relation 

12Im( )G
I

r



  

(13) 

where, G12 is the cross spectrum between the two microphones in the intensity probe, Im(G12) 

is the imaginary part of the cross spectrum,   is the angular frequency in rad/s,   is the 

density of the medium in kg/m3 and r  is the distance between the two microphones in 

meters.  

2.10 Phase calibration of intensity probe 

The intensity measured by the probe is highly sensitive to the relative phase between the two 

microphones since the phase difference between the microphones is the value considered in 

calculating the intensity. The relative phases between the microphones hence have to be 

noted and corrected for to ensure accurate value of intensity is calculated. The phase 

mismatch calibration of the intensity probe is made by placing the microphones on two 

different openings on either side of the pistonphone and the cross spectrum between the 

microphones and auto spectra of each microphone is measured. The microphones are then 

switched and the same measurements are made again. The phase correction is then calculated 

as  

12 ( )/2

12 12( ) ' ( )
iC

G G e
    (14) 

12
12

21

H
C angle

H

 
  

 
  

(15) 
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where, XYH  is the Frequency Response Function (FRF) of microphone X with respect to 

microphone Y, 12'G  is the uncorrected cross spectrum between microphones 1 and 2 and 12G  

is the corrected cross spectrum between the two microphones. 

3. Methods 

3.1 Reverberation time: 

The reverberation time was measured using a Larson Davis Sound Level Meter (SLM). The 

reverberation chamber was excited to a steady state using a B&K sound source and the 

background levels were noted and the excitation levels were ensured to be 45 dB above 

background as per the ISO 3382:2008 standard17. The sound level meter was placed in the 

center of the room and the room was excited. When the source was shut off, the SLM 

measured the T20 and T30 times and calculated the T60 time of the reverberation chamber. 

3.2 Beamforming: 

Beamforming was performed to characterize the angular distribution of the incident sound 

field along the vertical, horizontal and diagonals of the TL window. The TL window at the 

Michigan Tech TL suite is 660 mm vertically and 673 mm horizontally. Four arrays were 

used to perform the TL study. The point at the center was used as the reference microphone 

since it was the common point for all arrays. The location of the reference point is shown in 

Figure 6. The horizontal and vertical arrays had 60 points each and the diagonals had 84 

points each. Seven traversing and one reference ¼” PCB array microphones were used to 

collect the sound pressure time data. The phase references between each traversing 

microphone and the reference microphone was measured and corrected to ensure that the 

relative phase differences between the microphones was accounted for. 
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Figure 5:Panel to mount array(l) and Location of reference microphone in the array(r) 

The center to center distance between each point on the array was 19.05 mm. The array was 

made on a ¾” MDF panel mounted on the TL window as shown in Figure 7. The 

microphones were mounted flush on the array panel such that they did not intrude into the 

source room. Since the distances between the microphones was small, this could have 

affected the sound field being measured. 

 

Figure 6: Array mounted on the panel for test. 

The source room was energized using 3 sources. A B&K source was used along with 2 

speakers placed in the corners. The room was excited using a broadband white noise between 
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300 – 10k Hz. The minimum frequency for which beamforming results were processed was 

500 Hz. This was because the room is not diffuse below 500 Hz. This value was arrived at by 

performing the reverberation time test and computing the Schroeder frequency as explained 

previously. The Schroeder frequency of the room was estimated to be 504 Hz. 

The cross spectra of each microphone with respect to the reference microphone and the auto 

spectra of the reference microphone was recorded for each set of data. A total of 42 sets of 

data were recorded for 288 array points. In this study, the absolute value at each point on the 

array is not important. What was of importance was to study the relative levels between each 

traversing microphone and the reference microphone. The FRF was computed from the auto 

spectra and cross spectra of the microphones. This ensured that the values obtained from 

different data sets could be used together. The data was sampled at 25600 Hz with a 

frequency resolution of 1 Hz. The data was averaged 120 times for each data set.  

The data was then phase corrected in the same way that the intensity probe was phase 

calibrated. This phase corrected data from each data set was compiled and normalized to form 

the four arrays and the phase shift for each microphone was calculated based on the distance 

of the traversing microphone from the reference microphone25. This phase shift is applied to 

each traversing microphone for all angles of incidence. The output from this is a matrix that 

has the complex sound pressures of each frequency for all angles of incidence from 0 – 180 

degrees.  

The output of the beamformer has to be corrected for directivity since the beam width 

changes as the beam is steered away from normal incidence. The output from the beamformer 

is normalized using the maximum incidence level at each frequency as reference. The output 

of the directivity index obtained from Equation 10 is a decibel value that is subtracted from 

the decibel output of the beamformer to obtain the corrected level for each frequency for 

incidence angles from 0° - 180° in 1° increments. 

3.3Acoustic intensity: 

The acoustic intensity method was also used to characterize the angular diffusivity of the 

reverberation chamber. The intensity probe was fixed on a rotating platform such that the 

probe could be swept over a range of angles and the center of the probe was at the point at 
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which the panel would be present when mounted. The measurement was made at 37 different 

points from 0° – 180° in 5° increments.  

 

 

Figure 7: Setup of acoustic intensity method 

The mount was designed such that the intensity probe microphones would be at the center 

line horizontally, vertically and diagonal to the window. It was also made such that the probe 

did not intrude into the source room and the center point between the two microphones would 

not have an arc while the probe was swept through its range of motion. Figure 9 shown the 

setup for the intensity method. 

The source room was excited in a similar way as during the beamforming method. The cross 

spectra of the two microphones were recorded for each angle increment and the sound 

intensity was computed for every 5° increment in angle of incidence. The intensity was then 

calculated using Equation 13. The measurements were made in all four axes; horizontal, 

vertical and two diagonals as shown in Figure 9. 
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The intensity measured by this method is then converted to third octave bands. The maximum 

value for each third octave band at each angle is used as reference to convert the One-Third 

Octave (OTO) intensity to decibels. 

 

 

  

  

Figure 8: Acoustic intensity probe setup for all four axes of measurement; Clockwise from above (1) Horizontal 
axis (2) Vertical axis (3) Diagonal 1 axis (4) Diagonal 2 axis 
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4. Results 

4.1 Reverberation time: 

The measured T60 time for Leq of white noise between 300 – 10000 Hz was 3.07s in the 

reverberation chamber and the volume of the reverberation chamber is 48.3345 cubic meters. 

From this, the Schroeder frequency of the reverberation room was calculated to be 504.8 Hz. 

It is because of this that the lowest OTO that is considered in this study is 500 Hz as the room 

is not diffuse below 500 Hz. 

4.2 Intensity method: 

Figures 9 - 16 show the results from the intensity method of the angular distribution 

evaluation. Here, diagonal 1 refers to the diagonal passing the bottom left corner to the top 

right corner and diagonal 2 refers to the diagonal passing through top left corner to the 

bottom right corner. The results are for 500 Hz OTO to 5000 Hz OTO on to which the 

0.8cos ( )  function is plotted. The results plotted are sound intensity level in dB referenced to 

the maximum value of intensity in every OTO. The plots show that the maximum intensity is 

near the normal incidence angle.  

 

Figure 9:Low frequency Intensity results for horizontal axis 
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Figure 10: High frequency Intensity results for horizontal axis 

 

Figure 11: Low frequency Intensity results for vertical axis 
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Figure 12: High frequency Intensity results for vertical axis 

 

Figure 13:Low frequency Intensity results for diagonal 1 axis 



23 
 

 

Figure 14: High frequency Intensity results for diagonal 1 axis 

 

Figure 15: Low frequency Intensity results for diagonal 2 axis 
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Figure 16: High frequency Intensity results for diagonal 2 axis 

These results are similar to the beamforming results and they show that the range of sound 

intensity values are between 0 - 4 dB re max intensity. The 
0.8cos ( )  function agrees well 

with the angular distribution of incident energy. 

4.3 Beamforming results: 

The results from the beamforming method are shown in Figures 17 - 24 for all axes. The 

results shown below are for OTO from 500 Hz to 5000 Hz onto which the 
0.8cos ( )  function 

is plotted. The results are in decibel value of the sound pressure with reference to the 

maximum incident value in every OTO. The results as shown below, show that the variance 

in the sound pressure level over the range of angles on the panel is 0 - 5 dB re maximum 

incidence they are not absolute decibel values measured at the panel. The results also confirm 

that the maximum incidence in all cases is close to the normal incident angle.  
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Figure 17: Low frequency beamforming for horizontal axis 

 

Figure 18:High frequency beamforming for horizontal axis 
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Figure 19: Low frequency beamforming for vertical axis 

 

Figure 20:High frequency beamforming for vertical axis 
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Figure 21:Low frequency beamforming for diagonal 1 axis 

 

Figure 22: High frequency beamforming for diagonal 1 axis 
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Figure 23:Low frequency beamforming for diagonal 2 axis 

 

Figure 24:High frequency beamforming for diagonal 2 axis 

There are some interesting findings from the above plots. The high frequency results seem 

less diffuse than the low frequency results and this is noteworthy since theoretically, higher 
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frequencies would be expected to be more diffuse than lower frequencies. Also, the 

correction factor 
0.8cos ( )  does not appear to fit the beamforming results as much as the 

intensity results. The difference between the two experimental results might explain the 

differences in the results. While the intensity probe was placed in the center of the window, 

away from any corners or edges, the beamformer had microphones that went up to the corner 

of the panel. There was also the array mounting panel present in the window while the 

beamforming measurements were made. 

5. Conclusions  

From the results, it can be seen that the angular distribution of incident energy cannot be 

described either by random incidence or a field truncated incidence model. In the Michigan 

Tech reverberant chamber, the 
0.8cos ( ) function is seen to describe the incident field for 

certain OTO in the intensity method. The results from the beamforming method do not 

describe the incident field in a way that is consistent between different OTO and different 

axes. 

As indicated previously, the intensity and beamforming methods have not been performed in 

the same location under similar conditions. The results show that the distributions obtained 

by analyzing the field using the two methods are different and there is also some difference in 

the distribution based on the OTO under study. Based on these findings, rather than using one 

distribution model for all frequencies, different models might have to be used based on the 

OTO and also the method of incident field evaluation. 

6. Future work 

A TL study should be performed in the Michigan Tech TL suite and the correction factors 

obtained from both the methods can be used to compare with the measured TL and the 

relative accuracies can be compared.  

Round robin tests between different test facilities should be done for both methods and TL of 

the same sample should be measured at both locations. Using the correction factors obtained 

using both methods, the accuracy of each method can be compared to the other. 

The beamforming results show a sinusoidal variation of incident field at higher frequencies. 

This could be because the panel on which the microphones are mounted is excited by the 

sound field and has modes at these frequencies. These modes, when coupled with the 
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microphones could affect the beamforming results. This is because the beamforming results 

are highly sensitive to relative phases between microphones. When the array mounting panel 

is undergoing modes, the microphones might not all be on the same plane as to the reference 

microphone, causing phase relations that occur based on these modes rather than the direction 

of incident sound energy. This effect can be studied by performing the beamforming study 

with a setup that does not contain the panel. Understanding the effect panel modes have on 

the beamforming results will inform further designs of array mounts for beamforming studies. 
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8. Appendix 

Appendix A 

Beamforming code 

clear 
clc 
%close all 
addpath('Data', 'Matlab_code'); 
tic 
%% Initialize file names 
% Initialize array with the individual test results to load the  

% cross 
% spectra 

  
test_list=['Set01.mat'; 'Set02.mat';... 
    'Set03.mat'; 'Set04.mat'; 'Set05.mat'; 'Set06.mat'; ... 
    'Set07.mat'; 'Set08.mat'; 'Set09.mat'; 'Set10.mat';... 
    'Set11.mat'; 'Set12.mat'; 'Set13.mat'; 'Set14.mat'; ... 
    'Set15.mat'; 'Set16.mat'; 'Set17.mat'; 'Set18.mat';... 
    'Set19.mat'; 'Set20.mat'; 'Set21.mat'; 'Set22.mat';... 
    'Set23.mat'; 'Set24.mat'; 'Set25.mat'; 'Set26.mat'; ... 
    'Set27.mat'; 'Set28.mat'; 'Set29.mat'; 'Set30.mat';... 
    'Set31.mat'; 'Set32.mat'; 'Set33.mat'; 'Set34.mat';... 
    'Set35.mat'; 'Set36.mat'; 'Set37.mat'; 'Set38.mat'; ... 
    'Set39.mat'; 'Set40.mat'; 'Set41.mat'; 'Set42.mat'];     

     

     
%% Distance of mic from reference 

  
d=0.00925; 

  
%% Read test data and populate the different X and Auto spectra 

  
% Initialize the G variable to take in all the data in blocks 
G=zeros(10000,8,42); 
% G is a 3-d matrix with row=freq, col=x and auto spec for each 
% data set z-dir=specific data set 
% Put data in the G matrix from the test data 
for i=1:42 
    load(test_list(i,:)); 
    G(:,:,i)=Cspec(:,1:8); 
    clear Cspec; 
end 

  
% Isolate only frequencies between 401 to 6000 
G1=G(401:6000,:,:); 

  
% Isolate only the first 8 columns of the C spec data 
% Col 1 = Autospec of ref Col 2:7 = Crossspec of ref with array mics 
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G2=G1(:,1:8,:); 

  
% Isolate the auto and cross spectra from G2 
Aspec=G2(:,1,:); 
Aspec=squeeze(Aspec); 

  
% Isolate the cross spectra from G2 
Xspec=G2(:,2:8,:); 

  
fprintf('\nCompleted populating G\n'); 

  
%% Phase calibration 

  
load('C.mat'); 
Corr=exp((1j*C)./2); 
Corr=Corr(401:6000,:); 
for i=1:42 
    XC(:,:,i)=Xspec(:,:,i).*Corr; 
end 

  
%% Normalize all Xspec wrt the Aspec of that measurement 
for i=1:41 
    for j=1:7 
        Xspec_norm(:,j,i)=XC(:,j,i)./Aspec(:,i); 
    end 
end 
 Xspec_norm(:,1,42)=XC(:,1,42)./Aspec(:,42); 
% Concatenate the normed X spec end to end i.e. create 2-d from 3-d 
Xspec3=zeros(5600,288); 
j=1; 
for i=1:41 
   Xspec3(:,j:j+6)=Xspec_norm(:,:,i); 
   j=j+7; 
end 
% Xspec2= normalized Xspec  
Xspec3(:,288)=Xspec_norm(:,1,42); 

  
%% Isolate the different sections of the data 

  
% Horizontal Xspecs 
Xhl=Xspec3(:,1:30); 
Xhr=Xspec3(:,31:60); 

  
Xh(:,2:31)=Xhl; 
Xh(:,32:61)=Xhr; 
Xh(:,1)=1; 

  
% Vertical Xspecs 
Xvu=Xspec3(:,61:90); 
%Xvu=fliplr(Xvu_int); 
Xvl=Xspec3(:,91:120); 
Xv(:,2:31)=Xvu; 
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Xv(:,32:61)=Xvl; 
Xv(:,1)=1; 

  
% Diagonal Xspecs 
Xdl1=Xspec3(:,121:162); 
Xdu1=Xspec3(:,163:204); 
Xdu2=Xspec3(:,205:246); 
Xdl2=Xspec3(:,247:288); 
Xd1(:,2:43)=Xdl1; 
Xd1(:,44:85)=Xdu1; 
Xd1(:,1)=1; 

  
Xd2(:,2:43)=Xdu2; 
Xd2(:,44:85)=Xdl2; 
Xd2(:,1)=1; 

  

  
lf=401; 
uf=6000; 
df=1; 
sigs=Xv; 
num_mics=60; 
toc 
fprintf('\nInitiating beamforming\n'); 
[B, Bint, LpB, LpB1, dir, corr1, corr2, 

re]=beamform5(lf,df,uf,num_mics, d, sigs); 
save('Horizontal_results_05302016_vert.mat', 'B', 'LpB', 'LpB1', 

'dir', 'corr1',... 
    'corr2', 're'); 
fprintf('\nComplete\n'); 
toc 
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Appendix B 

Beamform5 function 

function [B, Bint, LpB, LpB1, dir, corr1, corr2, 

re]=beamform5(lf,df,uf,num_mics, d, sigs) 
%% Enter the data about test setup 

  
%Speed of sound 
c=343.59; 
%Enter number of microphones in horizontal axis 
nh=num_mics; 
%Enter spacing between the microphones in mm (center to center) 
d=d; 

  
%% Distance from reference 
% Horizontal axis; right of reference 
for i=1:30 
    dfrh(i+1)=(31-i)*d; 
end 
% Horizontal axis; left of reference 
for j=31:60 
    dfrh(j+1)=(j-30)*d; 
end 

  
dfrh(1)=0; 
% Vertical axis; above reference 
for k=61:90 
    dfrv(k-60+1)=(k-60)*d; 
end 
% Vertical axis; below reference 
for l=91:120 
    dfrv(l-60+1)=(l-90)*d; 
end 

  
dfrv(1)=0; 
% Diagonal axis; above reference 
for i=1:42 
    dfrd1(i+1)=(43-i)*d; 
end 
% Diagonal axis; below reference 
for j=43:84 
    dfrd1(j+1)=(j-43)*d; 
end 

  
dfrd1(1)=0; 

  
dfr=dfrv; 
%% Beamforming 
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FRF2=sigs; 
% Horizontal 
angles=-90:90; 
radians=angles.*(pi/180); 
freqs=lf:df:uf; 
w=(2*pi).*freqs; 

  
xx=(uf-lf)/df; 
xx=xx+1; 
Bint=zeros(xx,181,(nh+1)); 
% Apply phase shifts and calculate the beaamformed result 
for i=1:xx 
    for j=1:181 
        for k=1:(nh+1) 
            tnb=(dfr(k)/c)*sin(radians(j)); 
            Bint(i,j,k)=FRF2(i,k)*exp(-1j*w(i)*tnb); 
        end 
    end 
end 
fprintf('\nComplete populating B\n'); 
B=zeros(xx,181); 
% Bint=abs(Bint); 
for i=1:(nh+1) 
    B(:,:)=B(:,:)+Bint(:,:,i); 
end 
B=abs(B); 
fprintf('\nComplete squeezing B\n'); 

  
% Isolate the maximum beamformed value for each frequency 

  
[re,ang]=max(B,[],1); 

  
% Decibel of beamformed result re max at each frequency bin 
for i=1:181 
    for j=1:xx 
        LpB(j,i)=20.*log10(B(j,i)./re(j)); 
    end 
end 
fprintf('\nCompleted LpB\n');  
% Decibel of beamformed result re normal incidence at each frequency 

bin 
for i=1:181 
    for j=1:xx 

         
        LpB1(j,i)=20.*log10(B(j,i)./B(j,91)); 
    end 
end 
fprintf('\nCompleted LpB1\n'); 

  

  

  
%% Directivity index 
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for i=1:xx 
    for j=1:181 
        uo(i,j)=sin(radians(j))*freqs(i)/c; 
    end 
end 

  
lamb=c./freqs; 

  
for i=1:xx 
    for j=1:181 
        D_int=0; 
        for k=1:(nh+1) 
            D_int=D_int+(nh-

k)*cos(2*pi*k*d*uo(i,j))*sinc(2*k*d/lamb(i)); 
        end 
        dirint(i,j)=D_int; 
    end 
end 

  
dir=nh^2./(nh+2.*dirint); 
corr2=LpB1-dir; 
bf1=LpB; 
bf2=LpB1; 
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Appendix C 

Intensity method  

clear 
clc 
close all 
%% Read the data 

  
test_points=['Intensity01.mat';'Intensity02.mat'; 

'Intensity03.mat';... 
    'Intensity04.mat'; 'Intensity05.mat'; 'Intensity06.mat'; 

'Intensity07.mat';... 
    'Intensity08.mat'; 'Intensity09.mat'; 'Intensity10.mat'; 

'Intensity11.mat';...  
    'Intensity12.mat'; 'Intensity13.mat'; 'Intensity14.mat'; 

'Intensity15.mat';... 
    'Intensity16.mat'; 'Intensity17.mat'; 'Intensity18.mat'; 

'Intensity19.mat';...  
    'Intensity20.mat'; 'Intensity21.mat'; 'Intensity22.mat'; 

'Intensity23.mat';... 
    'Intensity24.mat'; 'Intensity25.mat'; 'Intensity26.mat'; 

'Intensity27.mat';...  
    'Intensity28.mat'; 'Intensity29.mat'; 'Intensity30.mat'; 

'Intensity31.mat';... 
    'Intensity32.mat'; 'Intensity33.mat'; 'Intensity34.mat'; 

'Intensity35.mat';...  
    'Intensity36.mat'; 'Intensity37.mat']; 

  
for i=1:37 
    load(test_points(i,:)); 
    Xpwrs(:,i)=Cspec(:,2); 
end 

  
%% Intensity 
% I=imag(p1p2*)/(2*omega*rho*deltar) 
rho=1.29; 
deltar=0.012; 
f=1:10000; 
omega=transpose(2*pi*f); 
Ximag=imag(Xpwrs)*1i; 
den=-1./(omega*rho*deltar); 

  
% Intensity value for each angle 
for i=1:37 
    I(:,i)=Ximag(:,i)./den; 
end 

  
I=abs(I); 

  
% Calculate the OTO value for Intensity method 
for i=1:37 
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[TOB,I_TOB(:,i)]=BandFiltering(transpose(f),I(:,i),'xtype','freq','y

type','linear','octaveorder',3,'outtype','linear'); 
end 

  
for i=1:27 
    re(i)=max(I_TOB(i,:)); 
end 
% Decibel values of Intensity re max value at each OTO 
for i=1:27 
    I_dB_TOB(i,:)=10*log10(I_TOB(i,:)./re(i)); 
end 

  
angles=-90:5:90; 
ang=(angles.*pi)./180; 
dist=cos(ang).^0.8; 
distdb=10*log10(dist./dist(19)); 

  
% Plot the OTO values 
figure(1) 
spec=['o' 'x' '+' '*' '.']; 
plot_color=['r' 'y' 'g' 'b' 'k']; 
angles=-90:5:90; 
hold on 
for i=1:5 
    plot(angles, I_dB_TOB(i+13,:),'color', 

plot_color(i),'Marker',spec(i)); 
end 
plot(angles,distdb,'color','r','LineWidth',2); 
title('Low frequency Intensity method results horizontal'); 
xlabel('Angle (degrees)','FontSize',15); 
ylabel('Sound Intensity Level (dB re max value)','FontSize',15); 
legend('500 Hz TOB', '630 Hz TOB', '800 Hz TOB','1000 Hz OTO', '1250 

Hz OTO','cos^(0.8)'); 
xlim([-90,90]); 
ylim([-5,0]); 

  
hold off 
set(gca,'FontSize',15) 
figure(2) 
spec=['^' '^' '.' '*' '+' 'x' 'o']; 
plot_color=['c' 'r' 'y' 'g' 'b' 'k' 'c']; 
angles=-90:5:90; 
hold on 
for i=6:11 
    plot(angles, I_dB_TOB(i+13,:),'color', plot_color(i-

5),'Marker',spec(i-5)); 
end 
plot(angles,distdb,'color','r','LineWidth',2); 
title('High frequency Intensity method results horizontal'); 
xlabel('Angle (degrees)','FontSize',15); 
ylabel('Sound Intensity Level (dB re max value)','FontSize',15); 
legend('1600 Hz OTO', '2000 Hz OTO',... 
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    '2500 Hz OTO', '3150 Hz OTO', '4000 Hz OTO', '5000 Hz 

OTO','cos^(0.8)'); 
xlim([-90,90]); 
ylim([-5,0]); 

  
hold off 
set(gca,'FontSize',15) 
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