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Abstract 
This study analyzes hydrocarbon reservoirs by using Amplitude-Versus-Offset (AVO) 

analysis and different inversion methods to investigate hydrocarbon reservoir in the 

Thrace Basin which is  located in northwest Turkey.  

A 3D seismic survey containing prestack data was provided by Turkish Petroleum 

Corporation as true amplitude NMO corrected 3D gathers.  

The quality of this land data was poor for AVO applications, and steps were taken to 

make it useful. Radon filtering proved to be extremely useful for this purpose. Although 

the application of this filter affected the AVO characteristics differently depending on 

the parameters selected for the filter, relative AVO characteristics remained useful for 

moderate filters.   

This use of this data for prestack interpretation was undertaken in two parts. AVO 

analysis of the amplitude trends in the prestack gathers provided insight into rock 

properties and anomalous behavior, apparently related to hydrocarbon content.  Prestack 

simultaneous inversion was also applied to the data, yielding images of the elastic 

properties of the potential reservoir rock.  

While it remains uncertain whether or not the anomalies observed represent 

hydrocarbon deposits of economic quality, this study does demonstrate that the data 

quality in this survey is sufficient to identify anomalies that are consistent with 

hydrocarbon-bearing zones.  The use of prestack processing techniques, particularly the 

Radon filter, improves the signal-to-noise ratio, allowing use of AVO studies and 

prestack inversion, but it also decreases the range of AVO differences, limiting the use 

of traditional AVO guidelines, but  the relative differences between background and 

potential pay remain observable.
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Introduction 
This study attempts to improve the exploration for hydrocarbon deposits in the Thrace 

basin by investigating the use of analysis of amplitude variations with angle of incidence 

of seismic reflections. A 3D seismic volume is analyzed through the use of Angle-

Versus-Offset (AVO) techniques and the use of simultaneous inversion of the prestack 

data. 

The area of interest is the most productive and massive sedimentary basin in Turkey, 

the Thrace basin, in terms of onshore gas presence. Three main formations are located 

in the basin; the Danisment, Osmancik and Mezadere Formations. Sandstones and 

carbonate provide good reservoir potential in the early Oligocene. Stratigraphic and 

Structural traps are located in the basin and crucial for reservoir localization.  

The Osmancik, Mezadere, Hamitabat and Sogucak formations, are the potential 

reservoir rocks. They are a sandstone, shales and sandy limestone structures. 

The quality of prestack data in the survey used here is poor and less than that often used 

for AVO and prestack inversion, largely as a result of difficult land conditions.  In order 

to prepare the data for such studies, Radon filtering was applied to the prestack gathers, 

and the AVO and inversion processes followed. 
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Chapter 1: Geologic Background and Data 

1.1 Geological Setting 
The Thrace Basin is one of the most significant hydrocarbon fields in Turkey. The basin 

is located in the European part of Turkey, in the northwestern part of the country. The 

Thrace Basin is a triangular shaped Tertiary basin is surrounded Strandja Massif to the 

north, the Sakarya Continent and the Marmara Sea to the south, and Rhodope Massif to 

the west, and Istanbul Palaeozoic Sea of Marmara to the east. The basin was created by 

extension at the end of in Mid Eocene to Late Oligocene times (Turgut et al., 1991). 

The Tertiary clastic sediments in the Thrace Basin  have a maximum thickness of about 

7.5 km and are very prolific for natural gas potential. The Turkish Petroleum 

Corporation has investigated the oil and gas potential of the Thrace Basin with over 400 

wells, 19 gas-condensate and three oil fields (Huvaz et al., 2005). 

Large quantities of gas associated with oil hydrocarbons are being produced in the basin. 

Source rocks occur in deep basin formations and central parts of the basin where 

transgressive marine sections are dominantly composed of shales and siltstones with 

abundant organic materials that generate hydrocarbon. Within this context, most 

favorable source rocks are the Gazikoy (mid-Eocene), Hamitabat (late-Eocene) and 

Mezardere (early-Oligocene) formations. Potential reservoir horizons in the Thrace 

Basin are the sandstone layers in the Hamitabat, Mezardere and Osmancik (late-

Oligocene) formations. The primary porosity is variable, but around 20% on average 

(Huvaz et al., 2005). 

The most  significant formation of this study is the Oligocene Osmancik Formation. The 

formation is a fine to coarse delta-front sandstone, sometimes pebbly grained cross-

bedded, and interbedded with greenish brown shales and siltstones. The Osmancık 

formation has 10–25% porosity and 0.1–10-md permeability. The formation consists of 

cross-bedded delta-front sandstones. The thickness of the Osmancık formation is about 

700 m (2296 ft).  
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The Northern part of the sedimentary structure is cut by NW-SE trending normal, lateral 

and transpressional faults. Main faults are the Babaeski Fault Zone, Luleburgaz Fault 

Zone, Kirklareli Fault Zone, Terzili Fault and Osmancik Fault. All of these faults are 

accepted as the plays of the northern branch of the North Anatolian Fault, and they were 

reactivated during the mid to Late Miocene Neo-tectonic period (Şen, 2009). 

The Osmancık formation, which is our study formation, is associated with structural 

traps in the Korudağ anticlinorium and its subparallel anticlines which represent a super-

giant petroleum trap complex. Structural and stratigraphic traps are both exploration 

targets and the deeper section of the basin is like kitchen area for all source rock 

formations. These formations are buried more than 3000 m deep, and are exposed to 

temperatures 80-140 °C (Turgut, 1991). 
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Chapter 2: Data set and well-tie 

2.1 Data set  
The Thrace Basin dataset came from TPAO for the purpose of my thesis studies. The 

3D data contains 494 inlines and 466 crosslines covering an area of 123 km2. We have 

three wells (well 1, well 2 and well 3) in the area. The Well 1 was chosen for correlation 

with the seismic data because it contains logs of high quality and appears to intersect a 

shaly sand layer with low P-wave velocity and density (1535-1565 m) which could be 

useful to track as a potential reservoir rock. 

 Table 1: Seismic data acquisition parameters 

Near-offset 35 m 

Far-offset 3385 m 

Fold 24 

Bin sized 25 m by 25 m 

Receiver Spacings 50 m 

Shot point spacing 50 m 

3D data obtained in rectangular grid N-S and Crosslines E-W 

Source Dynamite 

 
 

2.2 Seismic-Well Tie Process 
The target zone was chosen based on the low P-wave velocity and density at 1555m.  A 

complete set of logs identifying this layer is shown in Figure 2. 
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A zero-offset synthetic seismogram is shown in Figure 3, along with a seismogram 

obtained from stacking of the gather shown. After carefully adjusting the velocities, we 

achieved the best correlation coefficient (0.72) and more importantly 

the consistency between the seismic data and log by using statistical wavelet. In spite 

of the good correlation coefficient, the tie is not as good as one would like; this seems 

to be due to the rapidly varying nature of the seismic data in the vicinity of the well, 

itself a result of faulting and steeply dipping beds. The tie is only for correlation 

purposes, the pre-stack data will be used for improved interpretation. After the well-tie 

process, two horizons were selected and tracked: horizon 1 is a negative reflection at 

the top of the target, and horizon 2 a positive reflection at the base of the target. We will 

use horizon 1 for most of the AVO analysis. 
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Chapter 3: Data Enhancement 

3.1 Radon transform  
Noise data can cause misleading results and unrealistic interpretation. Pre-stack 

processing is necessary for successful AVO analysis. Radon filtering has some 

advantages when used before AVO analysis. For example, while the Radon method 

leaves some multiple energy (10%) at near offset, the f-k method leaves 30% of it (Ross, 

1999). In addition, Rickett et al. (2002) and DuBose (2003) report similar observations 

regarding the effect of a parabolic Radon transform on the preservation of AVO effects. 

Mahob et al. (1997) demonstrates a significant improvement in the extracted AVO 

information after Radon filtering and point out that the filtered data is in agreement with 

theoretical AVO behavior.  

The AVO data points before Radon filtering (Figure 8; left side) do not reveal a 

consistent trend. After Radon filtering (Figure 8, right side), the noise, apparently due 

to multiples, seems to be removed and in addition, the primary seismic-reflection events 

cluster more toward the theoretical curve.  On the other hand, the amount of amplitude 

increase observed with an offset in the raw data has been greatly reduced, to a much 

smaller AVO effect. 
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Chapter 4: AVO Analysis and Inversion Techniques 

4.1 AVO Analysis  
We are able to make use of reflected P-wave amplitudes to determine changes in elastic 

constants (Acoustic Impedance and Shear Impedance, or Vp, Vs, density) across an 

interface, using pre-stack data. When an incident P wave propagates from one layer into 

another, as it strikes the interface at an oblique angle, it splits into four components: 

reflected and refracted S waves, and reflected and refracted P-waves. The Zoeppritz 

equations provide the amplitudes of the various waves, given the elastic properties of 

the media on either side of the interface. Many approximations have been used to 

simplify the expressions describing this amplitude behavior, up to the critical angle, for 

reflected P-waves. For smaller (<35°) angles, a two-term approximation, which includes 

Acoustic (P) impedance (AI) and Shear(S) impedance (SI), can be used;  for larger 

angles (>40°), a three-term approximation in P-wave velocity (Vp), S-wave velocity 

(Vs), and density can be used (Aki and Richards, 1980). 

The three-term equation usually takes the form of:  

R(θ)= A+Bsin2(θ)+Csin2 (θ) tan2(θ)  

Where R(θ) is the reflection coefficient at the incident angle θ; A is called the AVO 

intercept or zero-offset reflection coefficient. B is referred to as the AVO slope or 

gradient and is a measure of the rate of change of the amplitude with an angle. C is 

called the curvature. These coefficients can be related to the elastic properties across the 

interface. 

The two-term equation (Shuey, 1976) for small angles (35°): 

R(θ)= A+Bsin2(θ) 

Extracted P-impedance and S-impedance information are reasonable and acceptable for 

a two-term solution. Density estimation is not available for a two-term approximation. 
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4.2 Classification of AVO 
In order to simplify discussions of AVO behavior, it has proven useful to refer to 

standard classifications. The first AVO classification for gas sands based on the normal 

incidence P-wave reflection coefficient was proposed by Rutherford and Williams 

(1989); in 1998 the classification was expanded by Castagna. Figure 13 shows the 

general classifications with the addition of a “flat spot” curve, representing typical 

hydrocarbon-water contacts. 

 

AVO studies often look for a feature that is different from the general trend, or 

anomalous. The classes for AVO can, in certain cases, be interpreted in terms of sand-

shale relationships if we assume that the interface being studied is at the transition from 

a shale layer to the underlying sand layer. The following discussion assumes that we are 

dealing with sands beneath shale in the first four classes and that the Vp/Vs ratio in 

sands is lower than in shales. 

 

Class 1: High Impedance Sands 

 Class 1 reflections occur when a high impedance sand lies beneath a lower-impedance 

shale layer. The zero offset reflection coefficient (and therefore the intercept) is positive; 

in general, the amplitude decays with increasing angle of incidence. The reflectivity can 

change polarity at great angles when sufficient offset range is available (Rutherford et 

al., 1989). 

 

Class 2:  Small Contrast in Impedance 

 This occurs when the shale and underlying sand have comparable values of impedance. 

It is undetectable in noisy data. Phase or polarity reversals often are observed with 

increasing offset (Rutherford et al., 1989). 

Class 3: Low Impedance Sand 

Class 3 reflections occur when a low-impedance sand underlies a higher-impedance 

shale. The zero offset reflection coefficient is negative and the intercept and gradient 
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are both strongly negative; the negative amplitudes increase in size with increasing 

angle of incidence. Class 3 is typical of “bright spots” (Rutherford et al., 1989). 

 

Class 4:  Low Impedance Sand with Higher Vp/Vs ratio 

In this case, the intercept is negative at zero offset, and then the amplitudes become 

smaller (less negative) with increasing angle (Castagna et al., 1997). 
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Review of data enhancement steps  

The following section reviews the processing steps used in this study, as have been 

described in the previous sections. 

1. The Radon transform was applied to reduce multiples and random noise in order to 

improve the signal-to-noise ratio in the pre-stack domain, as shown Figure 9. A high 

delta T of +50 ms and a low delta T of -50 were chosen.   

2. Trim static was applied to remove the residual NMO, as shown figure 11. A maximum 

of 10 ms shift was applied to the data.  

3. Identified a possible target zone at 1306 ms on seismic based on low P-wave velocity 

and density values at depths of 1555 m in well 1, as shown Figure 4. 

4. Extracted a statistical wavelet, as shown figure 3, and performed well-tie with the 

seismic data. We achieved 0.72 correlation coefficient and better consistency synthetic 

and real data, as shown Figure 4. 

5. Two horizons were picked on the CDP gathers involving the target zone. Horizon 1 

for the top of the layer and horizon 2 for the base of the layer. 

6.  Super gathers were created by averaging over 3 CDP bin locations, further enhancing 

the signal to noise ratio, as shown Figure 10.  

10. Angle gathers were created from the super gathers using the P-wave velocity from 

a well log. The maximum incident angle is 33°, as shown figure 13. 

12. After angle gathers were created, we are ready to use it for AVO analysis and for 

pre-stack inversion.  
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4.3 AVO Analysis:  
Having obtained low-noise angle gathers (super gathers), we are ready to proceed with 

the AVO analysis.  

AVO Gradient Analysis: 

A plot of amplitude versus sin2 of the angle of incidence can be fit with a two-term 

approximation to Zoeppritz equations, following the equation provided earlier.  The y-

intercept is the same as the zero-offset reflection amplitude, usually referred to as the 

“intercept” (A) in AVO studies. The slope of the straight line through the data points is 

referred to as the “gradient” (B). We calculate and interpret the intercept and gradient 

values for the target zone and nearby intervals.   

AVO behavior was calculated using the least squares method by fitting a two-term curve 

that approximates the Zoeppritz equation to all reflection amplitudes as a function of 

angle of incidence for each CMP gather. The AVO gradient analysis was to examine 

seismic gathers and show the intercept and gradient values for specific events within 

those gathers. AVO gradient curves were plotted by using a two-term approximation 

because of small angles at the target horizon, as shown Figure 15. Notice that data points 

follow the curves with very high correlations of 0.94 and 0.94. Intercept A is minus (-) 

and B gradient is minus (-) which indicates AVO Class 3. 

  

 

 

 

 

 

 





27 
 

AVO attribute volume: 

AVO Attribute Volumes were created to analyze a subset of our gathers in order to 

examine various attributes available from this analysis.  Here we used A*B product and 

scaled Poisson`s ratio. 

A*B product: 

The product of intercept and gradient, A*B, is shown in a seismic section in Figure 16. 

The AVO product shows a positive response at the top (in red) and base of the reservoir 

(also in red), which may suggest the presence of hydrocarbons. This attribute is often 

observed to work well for a class 3 AVO response. Both the top and base of the potential 

reservoir show positive values for A*B because the product in one case both numbers 

are negative (top of the reservoir) and in the other case both numbers are positive (base 

of the reservoir). 
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AVO cross plot: 

After AVO attributes were created, we are ready to display AVO cross plot. AVO cross 

plot helps to determine background trends and to identify anomalies, or departures from 

those trends. Hydrocarbon related “AVO anomalies” may show increasing or 

decreasing amplitude variation with offset. Conversely, brine-saturated “background” 

rocks may show increasing or decreasing AVO. “AVO anomalies” are properly viewed 

as deviations from this background and may be related to hydrocarbons or lithologic 

factors (Castagna, 1997). AVO cross plot was plotted as intercept versus gradient, 

shown Figure 18. The scale shows time in color. The red ellipse includes points that 

likely represent the top of a potential reservoir, and the blue ellipse includes points that 

likely represent the base of a reservoir; the general background trend is shown in green.  
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4.4 Pre-stack Inversion  
Pre-stack seismic inversion techniques provide valuable information of rock properties, 

lithology, and fluid content for reservoir characterization, based on the AVO 

characteristics of the seismic data. Pre-stack inversion is often conducted by fitting a 3-

term solution to the data, and the reliability of the results increases with increasing 

incident angle. The most accurate result of simultaneous pre-stack inversion of P-wave 

seismic data is P-impedance, which can be performed on short-offset data. S-impedance 

estimation becomes reliable as incident angles approach 30°, whereas density evaluation 

(and other derived elastic constants) becomes reliable only as incident angles approach 

45°. 

Advantage of the pre-stack inversion: 

We now extend the AVO theory to the pre-stack inversion case. In a post-stack 

inversion, we assume that the seismic ray strikes the boundary between two geological 

layers at an angle of zero degrees. In the pre-stack case, the angle of incidence is greater 

than zero, and an incident P-wave at any non-normal angle results in both reflected and 

transmitted P and S-waves, and the amplitudes of those reflected and transmitted waves 

can be computed using the Zoeppritz equations (Zoeppritz, 1919). Simultaneous 

inversion refers to performing the AVO extraction and computing the seismic 

impedance together. The inversion can be performed either to solve for a 3-term 

approximation to Zoeppritz (sometimes incorrectly called the complete solution) or a 2-

term solution. In practice, we use a modification of this solution. 

Equations for pre-stack inversion: 

Hampson et al. (2005) extend the work of Simmons and Backus (1996) and Buland and 

Omre (2003) to develop a new approach to yield P-impedance, S-impedance, and 

density as inversion products. Fatti et al. `s equation is formulated as (Buland et. al., 

2003): 

Modified Fatti equation: 

R(θ) = 0.5c1W(θ)DLp + 0.5c2 W(θ)DLs+c3 W(θ)DLD, (Fatti,1994) 
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W(θ) are the angle-dependent wavelets, D is the derivative matrix, and the L parameters 

are the natural logarithms of impedances and density: Lp=ln(AI), LD= ln(ρ) and  Ls= 

ln(SI).  

The Fatti equation solves AI reliably, but SI is less reliable, and density is poorly 

resolved. This is because the c2 factor defining the shear wave is smaller than the 

c1 factor, and the c3 factor is small.  Again, SI requires offsets out to about 30°, and 

density requires greater angles (as do all other parameters that require density to be 

removed from acoustic or shear impedances, such as Vp, Vs, bulk modulus, and shear 

modulus or rigidity).  

 

Pre-stack inversion analysis: 

Many aspects of pre-stack inversion are similar to those for post-stack (or “acoustic”) 

trace inversion. One needs to identify a wavelet and to create a “low-frequency” volume 

of the parameters being solved for.  But because some parameters are different from the 

post-stack case, they need special attention.  We initially use a 3-term solution in this 

study, in spite of the angle range limitation in our data. 

Estimation shear modulus: 

We need a shear-wave velocity log to perform pre-stack inversion, yet none was 

available from the wells in the area. Castagna`s equation was used to create a shear-

wave velocity log from the Vp log, using the mudrock equation (Castagna, 1985). 

 VP = 1.16VS + 1.36  (with units in km/s) 

 

Extracted wavelets: 

Two wavelets were extracted; a 16° near-angle wavelet and a 31° far-angle wavelet, as 

shown Figure 18. This helps to counter frequency-dependent absorption and NMO-

stretch that usually cause the far angle wavelets to be lower in frequency.  
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Background trend coefficients, synthetic and misfit calculations: 

Regression line fitting and regression coefficients were calculated via well logs. 

Synthetic traces were generated for each angle using the extracted wavelets. The 

difference between these synthetic gathers and the real gathers was minimized in an 

iterative solution, retaining adherence to AVO characteristics required by solutions to 

the 3-term approximation, yielding P impedance (AI), S-impedance (SI) and density 

(Dn). From these parameters, Vp, Vs, bulk modulus, and shear modulus or rigidity can 

also be calculated.  

 

P-impedance Volume: 

Lines from the final P-impedance volume are shown in Figures 21 and 22 along with 

the picked horizons. Our target horizon displays lower P-impedance value than 

surrounding formations. Low acoustic impedance can suggest potential reservoir rock 

and hydrocarbon content for our target zone, but is not proof of that. 
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4.5 LMR attribute 
The lambda-mu-rho (LMR) attribute was proposed by Goodway (1997) for the purpose 

of finding an “incompressibility” (lambda) related primarily to fluid-like properties, and 

rigidity (mu) related primarily to rock-like properties, to help determine fluid and 

lithology (Chopra et al., 2014).  By keeping the density (rho) is a factor with each elastic 

constant, the solution could be obtained from a 2-term solution, and is less dependent 

on very wide angles. We can estimate LMR parameters, Lambda-Rho (λρ) and Mu-Rho 

(μρ), volumes from the equations below (Goodway, 1997):  

λρ = AI2- 2SI2 

μρ =SI2 
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Chapter 5: Results and discussion  
AVO analysis and pre-stack inversion were performed in the Thrace Basin, Turkey. 

After pre-stack data enhancement process (super gather, trim static and angle gather), 

AVO analysis was performed for four different ranges of the Radon filter (Figure 39-

42). It was observed that the data points best fit the theoretical AVO curves at the +/-50 

ms range (Figure 3). In addition, the potential-hydrocarbon deviation from the general 

trend can be observed using data filtered with this setting (Figure 18). 

A two-term approximation to Zoeppritz equations fit the data well after the Radon 

filtering, recognizing a maximum angle of approximately 33°. Density solutions were 

not obtained from angle gathers because of small angles at the target horizon. 

The results of the AVO analysis seem, at first glance, to support the possibility that good 

reservoir rock is present, and hydrocarbons may be indicated.  The intercept-gradient 

product, A*B (Figure 16) shows a classical bright spot response with AVO class 3 

anomaly in the target horizon. Scaled Poisson’s ratio change (Figure 17) suggests a 

potential reservoir zone due to the strong contrast, with the top of the reservoir 

displaying a decrease; this may often be interpreted to be a result of the presence of 

hydrocarbons. The AVO cross plot (Figure 18) suggests that deviations from the 

background may be interpreted as  hydrocarbons or unusual lithologies.  

We plot the seismic data, with the departures from background A*B values highlighted, 

in Figure 33. The top of the reservoir (horizon 1) is displayed in red, indicating lower 

values (larger negative values) of A and B the base of the target reservoir (horizon 2) in 

blue (larger positive values), and the general background trend is shown in green. 
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While AVO analysis themselves are often used for interpretation, we wish to strengthen 

our interpretation, and we incorporated pre-stack inversion and extracted LMR 

attributes for this purpose. Fatti equation was used to control the pre-stack inversion, 

and P-impedance, S-impedance, and Density volumes were extracted. Because of the 

small angles at the target horizon (33°), the density estimation is not very reliable. 

However, P-impedance and S-impedance estimation are considered reliable. 

According to the composite log provided by the operator, the target formation appears 

to represent a shale oil reservoir at depths of 1535-1565 m. Both methods (AVO analysis 

and pre-stack inversion) used in this study provided attributes (A, B, A*B, LMR, etc) 

that are consistent with a potential hydrocarbon reservoir target at 1284-1306 ms at the 

location of Well-1 (1535-1565 m). 
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Chapter 6: Conclusion 
There were many features of the data that could lead an interpreter to conclude that there 

is a likely hydrocarbon reservoir located at the location indicated in Figure 34, and 

perhaps others as indicated in Figure 35.  But it is worthwhile to take a critical view of 

these results, as there are some fundamental weaknesses in the analysis so far.  These 

are due to the use of the Radon filter, which affected the AVO results, and to the use of 

a pseudo-shear log in the simultaneous inversion. 

After displaying AVO analysis for four different ranges of the Radon filter, we could 

observe the intercept (A) and the gradient (B) behaviors in the target formation. It was 

observed that the gradient (B) is reduced for each subsequent (smaller setting) Radon 

filter while the intercept (A) stays at approximately the same value. The gradient value 

is reduced for each the Radon filters that we applied, as shown in the Figure (change in 

B as function offset). This is because the far offsets are changed but the near offsets are 

not, as a result of the Radon filter.  B is related to Poisson ratio`s change. Poisson`s ratio 

change can be used as a fluid indicator in the formation, and is often used for 

distinguishing fluid effects from the lithologic effects; minimizing the value of B may 

cause misleading results.  

The intercept-gradient product, A*B (Figure 16) shows a classical bright spot response 

with AVO class 3 anomaly in the target horizon. Scaled Poisson’s ratio change (Figure 

17) suggests a potential reservoir zone due to the strong contrast, with the top of the 

reservoir displaying a decrease; this may often be interpreted to be a result of the 

presence of hydrocarbons. A*B product and Scaled Poisson`s ratio changes are due to 

the change in the gradient (B).  

Castagna`s mudrock equation was used to create a shear-wave velocity log from the Vp 

log in order to perform pre-stack inversion. The S-impedance should then correlate 

perfectly with the P impedance at the well, and it will also correlate extremely well in 

the seismic data. Careful comparison of P-impedance values to S-impedance values 

throughout the volume, but particularly in the areas highlighted for potential reservoir 
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rock, we see that the lower P-impedance is not associated with a similar drop in S-

impedance; this may distinguish hydrocarbon effects from the lithologic effects caused 

by lithology or porosity.  

One way of investigating the nature of a change in elastic properties is to reduce the 

evaluation to a basic elastic modulus – the shear modulus. This parameter should not be 

affected at all by the fluid content in the pores. Our estimation of the shear modulus 

shows a decrease from the background in the potential reservoir zone. However, density 

is used to estimate shear modulus from the shear impedance, and we know that our 

estimate of density based on inversion is probably unreliable, and linked strongly to the 

P-Impedance. We probably cannot use the shear modulus to settle the question of 

lithologic (porosity) or fluid content for the source of the low impedance potential 

reservoir rock. 

In any case, this study demonstrates that the data quality in this seismic survey is 

sufficient to identify anomalies that are consistent with hydrocarbon-bearing zones, 

based on the AVO attribute (A*B product, Scaled Poisson`s ratio change) and Pre-stack 

inversion results (low P-impedance, lambda–rho values). The potential target zone is 

identified (at the well location) at 1535-1565 m (1285-1306 ms). The reliance on these 

results could have been strongly improved if a shear-wave log had been run in the well. 
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