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3. Abstract

We present a method for solving a fluid-fluid interaction problem (two convection-dominated

convection-diffusion problems adjoined by an interface), which is a simplified version of the

atmosphere-ocean coupling problem. The method resolves some of the issues that can be

crucial to the fluid-fluid interaction problems: it is a partitioned time stepping method, yet

it is of high order accuracy in both space and time (the two-step algorithm considered in this

report provides second order accuracy); it allows for the usage of the legacy codes (which is

a common requirement when resolving flows in complex geometries), yet it can be applied to

the problems with very small viscosity/diffusion coefficients. This is achieved by combining the

defect correction technique for increased spatial accuracy (and for resolving the issue of high

convection-to-diffusion ratio) with the deferred correction in time (which allows for the usage of

the computationally attractive partitioned scheme, yet the time accuracy is increased beyond

the usual result of partitioned methods being only first order accurate) into the defect-deferred

correction method (DDC). The results are readily extendable to the higher order accuracy cases

by adding more correction steps. Both the theoretical results and the numerical tests provided

demonstrate that the computed solution is unconditionally stable and the accuracy in both

space and time is improved after the correction step.

vi



4. Introduction

When attempting to solve a two-domain fluid-fluid interaction problem in a large domain

with complex geometries, several key issues immediately appear. The more complicated the

setting is, the more we are inclined to use the legacy codes - highly optimized black box

subdomain solvers. This is often the only available option, because the monolithic, coupled

problem can be difficult to efficiently discretize and solve. Thus, an attractive approach to some

problems (as an ambitious underlying goal, consider the hurricane prediction, an atmosphere-

ocean application on a huge domain with very complex boundaries and turbulent atmosphere

flow) is the partitioned time stepping method which would decouple the problem and allow for

the easy implementation of subdomain solvers. Additionally, these subdomain equations can

be solved in parallel, if the data is explicitly passed across the shared interface at each time

step.

Keeping with the goal of modelling the turbulent atmosphere-ocean flows using the preex-

isting codes for the atmosphere (separately) and the ocean, we seek, as a starting point of our

project, an unconditionally stable partitioned time stepping method for fluid-fluid problems.

Two of these methods, the IMEX method and the data-passing scheme, were proposed and

thoroughly investigated in [15]; the data-passing scheme, introduced in this paper, was proven

to be unconditionally stable for the two-domain heat-heat coupled problem. The same group of

authors then successfully applied this method to the atmosphere-ocean coupled problem, prov-

ing that there exists a modification of the interface condition that allows for the unconditional

stability of the data-passing scheme.

In this paper we aim at improving two existing flaws of this method: it is only first order

accurate in space and time, and it is not designed for the turbulent (or convection-dominated)

flows. Many turbulence models are available for the Navier-Stokes equations at high Reynolds

numbers, but most of them do not allow for the usage of legacy codes (see, e.g., [20] for a

deferred correction method combined with a turbulence model).

As a step towards the turbulent atmosphere-ocean coupling, we consider the two-domain

convection-diffusion problem at high convection-to-diffusion ratio (in the computational tests

we take the ratio of convection to diffusion coefficients to be 105). The interface condition

is the linearized version of the rigid-lid condition used in meteorology, see [14] for a more

detailed discussion on the rigid-lid condition and the references therein. In order to create an

unconditionally stable, second order accurate in both space and time, partitioned time stepping

method, we apply the combined defect and deferred correction techniques to the data-passing

scheme of [15]. The combination of the defect and deferred correction was introduced and
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successfully tested in [2] in application to the one-domain Navier-Stokes equations.

Consider the d-dimensional domain (in this report we consider d = 2) Ω that consists of

two subdomains Ω1 and Ω2 coupled across an interface I (example in Figure 1 below).

The problem is: given bi ∈ Rd, νi > 0, fi : [0, T ] → H1(Ωi)
d, ui(0) ∈ H1(Ωi)

d and κ ∈ R,

find (for i = 1, 2) ui : Ωi × [0, T ]→ Rd satisfying

ui,t − νi∆ui + bi · ∇ui = fi, in Ωi, (4.1)

−νi∇ui · n̂i = κ(ui − uj), on I, i, j = 1, 2 , i 6= j , (4.2)

ui(x, 0) = u0
i (x), in Ωi, (4.3)

ui = gi, on Γi = ∂Ωi \ I. (4.4)

Let

Xi := {vi ∈ H1(Ωi)
d : vi = 0 on Γi}.

For ui ∈ Xi we denote u = (u1, u2), f = (f1, f2) and X := {v = (v1, v2) : vi ∈ H1(Ωi)
d :

vi = 0 on Γi, i = 1, 2}. A natural subdomain variational formulation for (4.1)-(4.4), obtained

by multiplying (4.1) by vi, integrating and applying the divergence theorem, is to find (for

i, j = 1, 2, i 6= j) ui : [0, T ]→ Xi satisfying

(ui,t, vi)Ωi
+νi(∇ui,∇vi)Ωi

+

∫
I

κ(ui−uj)vids+(bi·∇ui, vi)Ωi
= (fi, vi)Ωi

, for all vi ∈ Xi. (4.5)

The natural monolithic variational formulation for (4.1)-(4.4) is found by summing (4.5) over

i, j = 1, 2 and i 6= j and is to find u : [0, T ]→ X satisfying

(ut,v) + ν(∇u,∇v) +

∫
I

κ[u][v]ds+ (b · ∇u,v) = (f ,v),∀v ∈ X, (4.6)

where [·] denotes the jump of the indicated quantity across the interface I , (·, ·) is the L2(Ω1 ∪

Ω2) inner product and ν = νi in Ωi.

Figure 1 illustrates the subdomains considered here, representative of commonly studied

models in fluid-fluid and fluid-structure interaction, [10, 11, 15]. Comparing (4.6) and (4.5) we

see that the monolithic problem (4.6) has a global energy that is exactly conserved, (in the

appropriate sense), (set v = u in (4.6)). The subdomain sub-problems (4.5) do not possess a

subdomain energy which behaves similarly due to energy transfer back and forth across the

interface I. It is possible for decoupling strategies to become unstable due to the input of

non-physical energy as a numerical artifact.

Fluid-structure interaction problems, in particular blood flow models, are another typical

application of partitioned methods. In these models the equations of elastic deformation of

an arterial wall are coupled to equations of fluid flow through the vessel. Recently, it has
2
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Figure 1: Example subdomains, coupled across an interface I.

been shown partitioned methods may be employed for this problem with the addition of a

stabilization term on the fluid-structure interface. A defect correction step is implemented to

recover optimal time accuracy, (see [11]).

In this report, a second order in space and time, non-overlapping uncoupling method for

(4.1)-(4.4) is presented: the two-step Defect-Deferred Correction (DDC) method. At each

step of the method the interface term in (4.5) is advanced in time to give one step black box

decoupling of the subdomain problems in Ω1 and Ω2. Additionally, the deferred correction

technique allows for the different time scales to be used in different domains, and even for the

different terms within the same equation (see the work of Minion et al, [28, 7, 29] and the

references for more details). This is important when the rapidly changing atmospheric flow

is coupled the ocean flow that is changing at a much slower pace; also, the diffusion and the

convection terms sometimes need to be modelled at different time scales.

The general idea of any Defect Correction Method (DCM) can be formulated as follows

(see, e.g., [30, 8]):

Find a unique solution of Fx = 0, by

DCM: Use an approximation F̃ to build an iterative procedure:

F̃ x1 = 0, (4.7)

xi+1 = (I − F̃−1F )xi, i ≥ 1.

The choice of a particular approximation F̃ determines the defect correction method in

use. The general idea of defect correction and deferred correction methods for solving partial

differential equations has been known for a long time, see the survey article [8]. Defect correction

was proven computationally attractive in fluid applications. See, e.g., [24, 18, 23, 2, 4, 25] and

references therein for other defect correction work relevant to fluids.
3



The main advantage of the deferred correction approach is that a simple low-order method

can be employed, and the recovered solution is of high-order accuracy, due to a sequence of

deferred correction equations.

The classical deferred correction approach could be seen, e.g., in [19]. However, in 2000 a

modification of the classical deferred correction approach was introduced by Dutt, Greengard

and Rokhlin, [17]. This allowed the construction of stable and high-order accurate spectral

deferred correction methods. In [27] M.L. Minion discusses these spectral deferred correction

(SDC) methods in application to an initial value ODE

φ′(t) = F (t, φ(t)), t ∈ [a, b] (4.8)

φ(a) = φa.

The solution is written in terms of the Picard integral equation; a polynomial is used to inter-

polate the subintegrand function and the obtained integral term is replaced by its quadrature

approximation. In the case when the right hand side of the ODE can be decomposed into a sum

of the stiff and non-stiff terms, a semi-implicit spectral deferred correction method (SISDC) is

introduces, which allows to treat the non-stiff terms explicitly and the stiff terms implicitly.

These SISDC methods for solving ordinary differential equations are further discussed in [27].

The remainder of this work is organized as follows: in Section 5, notation and mathemat-

ical preliminaries are given and the two-step defect-deferred correction method is introduced

(Algorithm 5.1). The unconditional stability of the proposed method is proven in Section 6.

Convergence results are presented in Section 7, and computations are performed to investigate

stability and accuracy of a two-step DDC algorithm in Section 8.

4



5. Method Description, Notation and Preliminaries

This section presents the numerical schemes for (4.1)-(4.4), and provides the necessary

definitions and lemmas for the stability and convergence analysis. For D ⊂ Ω, the Sobolev

space Hk(D) = W k,2(D) is equipped with the usual norm ‖·‖Hk(D), and semi-norm |·|Hk(D),

for 1 ≤ k <∞, e.g. Adams [1]. The L2 norm is denoted by ‖·‖D. For functions v(x, t) defined

for almost every t ∈ (0, T ) on a function space V (D), we define the norms (1 ≤ p ≤ ∞)

‖v‖L∞(0,T ;V ) = ess sup
0<t<T

‖v(·, t)‖V and ‖v‖Lp(0,T ;V ) =

(∫ T

0

‖v‖pV dt

)1/p

.

The dual space of the Banach space V is denoted V ′.

Let the domain Ω ⊂ Rd (typically d = 2, 3) have convex, polygonal subdomains Ωi for

i = 1, 2 with ∂Ω1 ∩ ∂Ω2 = Ω1 ∩ Ω2 = I. Let Γi denote the portion of ∂Ωi that is not on I, i.e.

Γi = ∂Ωi \ I. For i = 1, 2, let Xi =
{
v ∈ H1(Ωi)

d | v|Γi
= gi

}
, let (·, ·)Ωi

denote the standard

L2 inner product on Ωi, and let (·, ·)Xi
denote the standard H1 inner product on Ωi. Define

X = X1×X2 and L2(Ω) = L2(Ω1)×L2(Ω2). For u,v ∈ X with u = [u1, u2]T and v = [v1, v2]T ,

define the L2 inner product

(u,v) =
∑
i=1,2

∫
Ωi

uivi dx ,

and H1 inner product

(u,v)X =
∑
i=1,2

(∫
Ωi

uivi dx+

∫
Ωi

∇ui · ∇vi dx
)
,

and the induced norms ‖v‖ = (v,v)
1/2

and ‖v‖X = (v,v)X
1/2

, respectively. The case where

gi = 0, i = 1, 2 will be considered here, and can be easily extended to the case of nonhomoge-

neous Dirichlet conditions on ∂Ωi \ I.

Lemma 1. (X, ‖·‖X) is a Hilbert space.

Proof. The choice of boundary conditions for X1 and X2 will ensure Xi ⊂ H1(Ωi), i = 1, 2
are closed subspaces. Hence by the definitions of (·, ·)X and ‖·‖X , (X, ‖·‖X) is a Hilbert space.

The following discrete Gronwall’s lemma and its modified version from [22] will be utilized

in the subsequent analysis.

Lemma 2. (Gronwall’s lemma) Let k, M , and aµ, bµ, cµ, γµ, for integers µ > 0, be nonnegative
numbers such that

an + k

n∑
µ=0

bµ ≤ k
n∑
µ=0

γµaµ + k

n∑
µ=0

cµ +M for n ≥ 0. (5.1)

Suppose that kγµ < 1, for all µ, and set σµ ≡ (1− kγµ)
−1

. Then,

an + k

n∑
µ=0

bµ ≤ exp

(
k

n∑
µ=0

σµγµ

){
k

n∑
µ=0

cµ +M

}
for n ≥ 0. (5.2)

5



The restriction on the time step can be waived if γn = 0.

Lemma 3. (Modified Gronwall’s lemma) Let k, M , and aµ, bµ, cµ, γµ, for integers µ > 0, be
nonnegative numbers such that

an + k

n∑
µ=0

bµ ≤ k
n−1∑
µ=0

γµaµ + k

n∑
µ=0

cµ +M for n ≥ 0. (5.3)

Then, with σµ ≡ (1− kγµ)
−1

,

an + k

n∑
µ=0

bµ ≤ exp

(
k

n−1∑
µ=0

σµγµ

){
k

n∑
µ=0

cµ +M

}
for n ≥ 0. (5.4)

5.1. Discrete Formulation

Let Ti be a triangulation of Ωi and Th = T1 ∪ T2. Take Xh
i ⊂ Xi to be conforming finite

element spaces for i = 1, 2, and define Xh = Xh
1 ×Xh

2 ⊂ X. It follows that Xh ⊂ X is a Hilbert

space with corresponding inner product and induced norm. We shall consider Xh
i to be spaces

of continuous piecewise polynomials of degree m ≥ 2.

For tk ∈ [0, T ], uk will denote the discrete approximation to u(tk).

A partitioned time stepping approach for the heat-heat equations in the same setting as

(4.1)-(4.4) was introduced by Connors, Howell, Layton in [15]. The analogue of this data-

passing scheme for our problem is presented below.

5.2. First-order Data-Passing Scheme

Let ∆t > 0, fi ∈ L2(Ωi). For each M ∈ N,M ≤ T
∆t , given uni ∈ Xi,h, n = 0, 1, 2, · · · ,M −1,

solve on each subdomain (for i, j = 1, 2, i 6= j) to find un+1
i ∈ Xi,h satisfying

(
un+1
i − uni

∆t
, vi

)
+ νi(∇un+1

i ,∇vi) + κ

∫
I

(un+1
i − unj )vi ds+ (bi · ∇uni , vi)

= (fi(t
n+1), vi), ∀vi ∈ Xi,h . (5.5)

This scheme was extensively studied in [15] and was proven to be unconditionally stable

and first order accurate. Moreover, in [14] the authors were able to extend this scheme to the

atmosphere-ocean problem and prove (using a subtle modification of the jump condition) that

the unconditional stability stands.

Based on this scheme, we now introduce the defect-deferred algorithm to increase the

method’s accuracy and expand the set of applications to include the flows at very high convection-

to-diffusion ratio. The artificial viscosity is chosen to be the first order accurate spatial ap-

proximation to stabilize the convection-dominated flows; the defect correction algorithm (4.7)

is then combined with the spectral deferred correction approach of [28].
6



Throughout the remainder of this paper we will use tu, u, cu to denote, respectively, the

true solution, the defect step approximation and the correction step approximation.

The defect correction method, based on the artificial viscosity approximation of (5.5), would

lead to the following system of equations.(
un+1
i − uni

∆t
, vi

)
+ (νi + h)(∇un+1

i ,∇vi) + (1 +
h

νi
)κ

∫
I

(un+1
i − unj )vi ds+ (bi · ∇uni , vi)

= (fi(t
n+1), vi), ∀vi ∈ Xi,h(

cun+1
i − cuni

∆t
, vi

)
+ (νi + h)(∇cun+1

i ,∇vi) + (1 +
h

νi
)κ

∫
I

(cun+1
i − cunj )vi ds+ (bi · ∇cuni , vi)

= (fi(t
n+1), vi) + h(∇un+1

i ,∇vi) +
h

νi
κ

∫
I

(un+1
i − unj )vi ds, ∀vi ∈ Xi,h.

However, if the interface condition (4.2) is modified to replace νi with νi + h, this results in(
un+1
i − uni

∆t
, vi

)
+ (νi + h)(∇un+1

i ,∇vi) + κ

∫
I

(un+1
i − unj )vi ds+ (bi · ∇uni , vi) (5.6)

= (fi(t
n+1), vi), ∀vi ∈ Xi,h(

cun+1
i − cuni

∆t
, vi

)
+ (νi + h)(∇cun+1

i ,∇vi) + κ

∫
I

(cun+1
i − cunj )vi ds+ (bi · ∇cuni , vi)

= (fi(t
n+1), vi) + h(∇un+1

i ,∇vi), ∀vi ∈ Xi,h.

Both the modified and non-modified jump conditions were compared numerically, in favor

of (5.6) (see Section 8). Therefore, only the theory for this approach will be considered below.

The deferred correction algorithm applied to the model problem (5.5) is as follows.(
un+1
i − uni

∆t
, vi

)
+ νi(∇un+1

i ,∇vi) + κ

∫
I

(un+1
i − unj )vi ds+ (bi · ∇uni , vi)

(5.7a)

= (fi(t
n+1), vi), ∀vi ∈ Xh

i(
cun+1
i − cuni

∆t
, vi

)
+ νi(∇rn+1

i ,∇vi) + κ

∫
I

(rn+1
i − rnj )vi ds+ (bi · ∇rni , vi) =

1

∆t
In+1
n (ui).

(5.7b)

Here rki = cuki − uki , k = 0, 1, ..., N .

In+1
n (ui) is a numerical quadrature approximation to

∫ tn+1

tn
F (τ, ui(τ))dτ , where F (t, ui) =

(fi(t), vi)− νi(∇ui(t), vi) + κ
∫
I
(ui(t)− uj(t))vids+ (bi · ∇ui(t), vi).

Remark 5.1. Provided the integral terms In+1
n (ui) are computed with the accuracy of order

O((∆t)2), after 1 correction iteration the above procedure will produce an approximate solution
with global accuracy O((∆t)2). If the points tm ∈ [tn, tn+1] are chosen to be Gaussian quadrature
nodes, then the integral is being computed with a spectral integration rule, which is the reason
for the name spectral deferred corrections. For the two-step method the spectral integration
simplifies to the trapezoid rule.

7



The variational formulation of the two-step Defect Deferred Correction methods is obtained

by combining the defect and deferred correction techniques (5.6)-(5.7) into the following

Algorithm 5.1 (Two Step DDC). Let ∆t > 0, M = T
∆t , fi ∈ L2(Ωi). Given uni , find

un+1
i ∈ Xh

i , i, j = 1, 2, i 6= j, n = 0, 1, 2, · · · ,M − 1, satisfying(
un+1
i − uni

∆t
, vi

)
+ (νi + h)

(
∇un+1

i ,∇vi
)

+ κ

∫
I

(un+1
i − unj )vids+ (bi · ∇uni , vi)

=
(
fn+1
i , vi

)
, ∀vi ∈ Xi,h (5.8)

Also, given cuni , find cun+1
i ∈ Xh

i satisfying(
cun+1
i − cuni

∆t
, vi

)
+ (νi + h)

(
∇cun+1

i ,∇vi
)

+ κ

∫
I

(cun+1
i − cunj )vids+ (b · ∇cuni , vi)

=

(
fn+1
i + fni

2
, vi

)
− ∆t

2

(
bi · ∇(

un+1
i − uni

∆t
), vi

)
+ ∆t

(νi + h)

2
(∇(

un+1
i − uni

∆t
),∇vi)

+
κ

2
∆t

∫
I

(
un+1
i − uni

∆t
)vids+

κ

2
∆t

∫
I

(
un+1
j − unj

∆t
)vids+h

(
∇(

un+1
i + uni

2
),∇vi

)
, ∀vi ∈ Xi,h.

(5.9)

The terms in the right hand side of (5.9) are written in a form that hints at the reason

for the increased accuracy of the correction step solution. Note also that the structure of the

left hand side (and therefore the matrix of the system) is identical for (5.8) and (5.9); thus, a

simple and computationally cheap artificial viscosity data-passing approximation is computed

twice to achieve higher accuracy while maintaining the unconditional stability.
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6. Stability

In this section we prove the unconditional stability of both the defect step and the correction

step approximations.

6.1. Stability of Defect approximation
Lemma 4. (Stability of Defect approximation) Let un+1 ∈ Xh satisfy (5.8) for each n ∈{

0, 1, 2, · · · , T∆t − 1
}

. Then ∃C > 0 independent of h, ∆t such that un+1 satisfies:

∥∥un+1
∥∥2

+ (ν + h)∆t

n+1∑
k=1

‖∇uk‖2 + κ∆t(‖un+1
1 ‖2I + ‖un+1

2 ‖2I)

≤ C

{
‖u0‖2 + κ∆t(‖u0

1‖
2

I + ‖u0
2‖

2

I) +
2

ν + h
∆t

n+1∑
k=1

‖fk‖2−1

}
.

Proof. Choose vi = un+1
i in (5.8), i 6= j to obtain(

un+1
i − uni

∆t
, un+1
i

)
+ (ν + h)

∥∥∇un+1
i

∥∥2
+
(
b · ∇uni , un+1

i

)
+

∫
I

κ(un+1
i − unj )un+1

i ds =
(
fn+1
i , un+1

i

)
.

Applying the Cauchy-Schwarz inequality and summing over i,j=1,2 , i 6= j , yields∥∥un+1
∥∥2 − ‖un‖2

2∆t
+ (ν + h)

∥∥∇un+1
∥∥2

+
(
b · ∇un,un+1

)
+ κ
∥∥un+1

1

∥∥2

I
+ κ
∥∥un+1

2

∥∥2

I

−κ‖un1‖I
∥∥un+1

2

∥∥
I
− κ‖un2‖I

∥∥un+1
1

∥∥
I
≤
∥∥∇un+1

∥∥∥∥fn+1
∥∥
−1
.

Young’s inequality allows to ”hide” all the u-terms, leading to the telescoping series in the left
hand side (LHS)∥∥un+1

∥∥2 − ‖un‖2

2∆t
+ (ν + h)

∥∥∇un+1
∥∥2

+
κ

2
(
∥∥un+1

1

∥∥2

I
− ‖un1‖

2
I) +

κ

2
(
∥∥un+1

2

∥∥2

I
− ‖un2‖

2
I)

≤ ν + h

4

∥∥∇un+1
∥∥2

+
1

ν + h

∥∥fn+1
∥∥2

−1
+
ν + h

4

∥∥∇un+1
∥∥2

+
|b|2

ν + h
‖un‖2

Summing over the time levels and multiplying by 2∆t, we obtain∥∥un+1
∥∥2

+ (ν + h)∆t

n+1∑
k=1

∥∥∇uk∥∥2
+ κ∆t(

∥∥un+1
1

∥∥2

I
+
∥∥un+1

2

∥∥2

I
)

≤
∥∥u0

∥∥2
+ κ∆t(

∥∥u0
1

∥∥2

I
+
∥∥u0

2

∥∥2

I
) +

2

ν + h
∆t

n+1∑
k=1

∥∥fk∥∥2

−1
+

2|b|2

ν + h
∆t

n∑
k=0

∥∥uk∥∥2

The summation in the last term on the right hand side does not include the time level (n+ 1).
Therefore, using the modified Gronwall’s Lemma, we obtain∥∥un+1

∥∥2
+ (ν + h)∆t

n+1∑
k=1

∥∥∇uk∥∥2
+ κ∆t(

∥∥un+1
1

∥∥2

I
+
∥∥un+1

2

∥∥2

I
)

≤ C

{
‖u0‖2 + κ∆t(‖u0

1‖
2

I + ‖u0
2‖

2

I) +
2

ν + h
∆t

n+1∑
k=1

‖fk‖2−1

}
Hence, the initial approximation u is unconditionally stable. We conclude the proof of

stability of the DDC approximations by considering the second step approximation cu.
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6.2. Stability of Correction Step of DDC

Theorem 5 (Stability of Correction Step of DDC). Let cun+1 ∈ Xh satisfy (5.9) for
each n ∈

{
0, 1, 2, · · · , T∆t − 1

}
. Then ∃C > 0 independent of h, ∆t such that cun+1 satisfies:

∥∥cun+1
∥∥2

+ (ν + h)∆t

n+1∑
k=1

∥∥∇cuk∥∥2
+ κ∆t(

∥∥cun+1
1

∥∥2

I
+
∥∥cun+1

2

∥∥2

I
) ≤ C

[
‖cu0‖2 + κ∆t(‖cu0

1‖
2

I

+‖cu0
2‖

2

I) +
1

ν + h

{
‖u0‖2 + κ∆t(‖u0

1‖
2

I + ‖u0
2‖

2

I) +
1

ν + h
∆t

n+1∑
k=1

‖fk‖2−1

}]
.

Proof. Choosing vi = cun+1
i in (5.9) gives(

cun+1
i − cuni

∆t
, cun+1

i

)
+ (νi + h)

∥∥∇cun+1
i

∥∥2
+
(
bi · ∇cuni , cun+1

i

)
+

∫
I

κ(cun+1
i − cunj )cun+1ds =

(
fn+1
i + fni

2
, cun+1

i

)
− ∆t

2

(
b · ∇(

un+1
i − uni

∆t
), cun+1

i

)
+

∆t(νi + h)

2

(
∇(

un+1
i − uni

∆t
),∇cun+1

i

)
+

1

2
κ

∫
I

(un+1
j − unj + un+1

i − uni )cun+1
i ds

+ h

(
∇(

un+1
i + uni

2
),∇cun+1

i

)
.

Compared to the proof of stability of the defect solution u, there are four extra terms in
the RHS. They are bounded as follows. After the summation over i = 1, 2 we obtain∣∣∣∣∆t2

(
b · ∇(

un+1 − un

∆t
), cun+1

)∣∣∣∣ ≤ 1

2

∣∣(b · ∇cun+1,un+1)
∣∣+

1

2

∣∣(b · ∇cun+1,un)
∣∣

≤ 2ε(ν + h)‖∇cun+1‖2 +
|b|2

16ε(ν + h)
(‖un+1‖2 + ‖un‖2).

Similarly ∣∣∣∣ν + h

2
(∇un+1,∇cun+1)− ν + h

2
(∇un,∇cun+1)

∣∣∣∣ ≤ 2ε (ν + h)‖∇cun+1‖2

+
ν + h

16 ε
(‖∇un+1‖2 + ‖∇un‖2).

Using again the Cauchy-Swcharz and Young’s inequalities, we find a bound on the h-term
as follows∣∣∣∣h(∇(

un+1 + un

2
),∇cun+1

)∣∣∣∣ ≤ 2ε(ν + h)‖∇cun+1‖2 +
h2

16ε(ν + h)
(‖∇un+1‖2 + ‖∇un‖2) .

Summing over the time levels, choosing ε = 1
28 allows us to hide the ∇cu-terms in the LHS.

There are also eight boundary terms

κ

2

∫
I

(un+1
2 − un2 + un+1

1 − un1 )cun+1
1 ds+

κ

2

∫
I

(un+1
1 − un1 + un+1

2 − un2 )cun+1
2 ds.

For each of the eight terms, use the Cauchy-Schwarz inequality, followed by the Young’s
inequality and use the trace theorem to obtain the bounds

‖cun+1
i ‖2I ≤ ‖cun+1

i ‖2∂Ωi
≤ CTrace‖∇cun+1

i ‖2Ωi

‖un+1
i ‖2I ≤ ‖un+1

i ‖2∂Ωi
≤ CTrace‖∇un+1

i ‖2Ωi
.

Utilizing the stability bound on the defect solution u completes the proof.
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7. Convergence analysis

We start by proving the accuracy estimate of the defect solution.

7.1. Accuracy of Defect Solution

Theorem 6. (Accuracy of Defect Solution) Let tui(t;x) ∈ L2(0, T ;X) solve (4.1)–(4.4) for all
t ∈ (0, T ). Let also tui,t(t;x) ∈ L2(0, T ;X) and tui,tt(t;x) ∈ L2(0, T ;L2(Ωi)), i = 1, 2. Then
∃C > 0 independent of h, ∆t such that for any n ∈ {0, 1, 2, · · · ,M − 1 = T

∆t − 1}, the solution

un+1
i of (5.8) satisfies

‖tun+1−un+1‖2+(ν+h)∆t

n+1∑
j=1

‖∇(tuj−uj)‖2+κ∆t

2∑
i=1

‖tun+1
i −un+1

i ‖2I ≤ C(h2+∆t2) (7.1)

Proof. Restricting the test functions to Xh, write (4.5) at time tn+1 as

(
tun+1
i − tuni

∆t
, vi

)
Ωi

+ (νi + h)(∇tun+1
i ,∇vi)Ωi

+ κ

∫
I

(tun+1
i − tunj )vids+ (bi · ∇tuni , vi)Ωi

= (fn+1
i , vi)Ωi + h(∇tun+1

i ,∇vi)Ωi +

(
tun+1
i − tuni

∆t
− tun+1

i,t , vi

)
Ωi

−∆t

(
bi · ∇(

tun+1
i − tuni

∆t
), vi

)
Ωi

+ κ

∫
I

(tun+1
j − tunj )vids

(7.2)

Denote
tun+1

i −tun
i

∆t − tun+1
i,t ≡ ρn+1

i . Subtract (5.8) from (7.2) to obtain the equation for the

error, en+1
i = tun+1

i − un+1
i , i = 1, 2. For any vi ∈ Xh

i(
en+1
i − eni

∆t
, vi

)
Ωi

+ (νi + h)(∇en+1
i ,∇vi)Ωi

+ κ

∫
I

(en+1
i − enj )vids+ (bi · ∇eni , vi)Ωi

= h(∇tun+1
i ,∇vi)Ωi

+ (ρn+1
i , vi)Ωi

−∆t

(
bi · ∇(

tun+1
i − tuni

∆t
), vi

)
+∆tκ

∫
I

(
tun+1
j − tunj

∆t

)
vids, i 6= j.

(7.3)

Do the summation over i = 1, 2; decompose the error en+1 = (ũn+1−un+1)−(ũn+1−tun+1) =
φn+1 − ηn+1, for some ũn+1 ∈ Xh and take v = φn+1 ∈ Xh. Then ∀n ≥ 0(

φn+1 − φn

∆t
,φn+1

)
+ (ν + h)(∇φn+1,∇φn+1) + κ

∑
i=1,2

∫
I

(φn+1
i )2ds = h(∇tun+1,∇φn+1)

+(ρn+1,φn+1)+∆tκ

∫
I

(
tun+1 − tun

∆t

)
φn+1ds+

(
ηn+1 − ηn

∆t
,φn+1

)
+(ν+h)(∇ηn+1,∇φn+1)

−∆t

(
bi · ∇(

tun+1
i − tuni

∆t
),φn+1

)
+ κ

∫
I

φn+1ηn+1ds+ κ
∑
i 6=j

∫
I

enjφ
n+1
i ds+ (b · ∇ηn,φn+1)

− (b · ∇φn,φn+1) +
|b|2

4ε(ν + h)
(∆t)2‖∇

(
tun+1 − tun

∆t

)
‖2 (7.4)
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Using the Cauchy-Schwarz and Young’s inequalities followed by the Trace theorem gives

‖φn+1‖2 − ‖φn‖2

2∆t
+ (ν + h)(‖∇φn+1‖2 + κ‖φn+1

1 ‖2I + κ‖φn+1
2 ‖2I ≤ ε(ν + h)‖∇φn+1‖2

+
h2

4ε(ν + h)
‖∇tun+1‖2 + ε(ν + h)‖∇φn+1‖2 +

C2
PF

4ε(ν + h)
‖ρn+1‖2 + ε(ν + h)‖∇φn+1‖2

+
C4
Trace∆t

2κ2

4ε(ν + h)
‖∇
(
tun+1 − tun

∆t

)
‖2 + ε(ν + h)‖∇φn+1‖2 +

C2
PF

4ε(ν + h)
‖η

n+1 − ηn

∆t
‖2

+ε(ν+h)‖∇φn+1‖2+
(ν + h)

4ε
‖∇ηn+1‖2+ε(ν+h)‖∇φn+1‖2+

C4
Traceκ

2

4ε(ν + h)
‖∇ηn+1‖2+

κ

2
‖φn+1

1 ‖2I

+
κ

2
‖φn+1

2 ‖2I+
κ

2
‖φn1‖2I+

κ

2
‖φn2‖2I+ε(ν+h)‖∇φn+1‖2 +

C4
Traceκ

2

4ε(ν + h)
‖∇ηn‖2 +2ε(ν+h)‖∇φn+1‖2

+
|b|2

4ε(ν + h)
‖ηn+1‖2 +

|b|2

4ε(ν + h)
‖φn‖2 (7.5)

Moving the four boundary integrals from the RHS to the LHS, choosing ε = 1
18 , summing over

the time levels, using the modified Gronwall’s lemma (notice that the last term in the RHS
contains the sum over time levels up to n only) and the triangle inequality (to pass from φn+1

to en+1) completes the proof.

In order to prove the accuracy estimate for the correction approximation, we will need the

following

7.2. Accuracy of Time Derivative of the Error in the Defect Step

Theorem 7. (Accuracy of Time Derivative of the Error in the Defect Step) Let the assump-
tions of Theorem 6 be satisfied. Also, let ∆u ∈ L2(0, T ;L2(Ω)) and uttt ∈ L2(0, T ;L2(Ω)).
Then ∃C > 0 independent of h, ∆t such that for any n ∈ {0, 1, 2, · · · ,M − 1 = T

∆t − 1} , the

discrete time derivative of the error
en+1
i −ein

∆t satisfies

‖e
n+1 − en

∆t
‖2 +(ν+h)∆t

n∑
j=1

‖∇
(
ej+1 − ej

∆t

)
‖2 +

κ∆t

2

n∑
j=1

2∑
i=1

‖e
j+1
i − eji

∆t
‖2I ≤ C

(
h2 + (∆t)2

)
.

(7.6)

Proof. Taking vi =
φn+1
i −φn

i

∆t ∈ Xi,h in (7.3) leads to(
en+1
i − eni

∆t
,
φn+1
i − φni

∆t

)
Ωi

+ (νi + h)(∇en+1
i ,∇(

φn+1
i − φni

∆t
))Ωi

+κ

∫
I

(en+1
i − enj )

φn+1
i − φni

∆t
ds+ (bi · ∇eni ,

φn+1
i − φni

∆t
)Ωi

= h(∇tun+1
i ,∇(

φn+1
i − φni

∆t
))Ωi

+ (ρn+1
i ,

φn+1
i − φni

∆t
)Ωi

−∆t

(
bi · ∇(

tun+1
i − tuni

∆t
),
φn+1
i − φni

∆t

)
+ ∆tκ

∫
I

(
tun+1
j − tunj

∆t

)
φn+1
i − φni

∆t
ds, i 6= j.

(7.7)
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Also, take vi =
φn+1
i −φn

i

∆t in (7.3) at the previous time level, and subtract the resulting

equation from (7.7). Denoting sn+1
i ≡ φn+1

i −φn
i

∆t , summing over i = 1, 2 we obtain for n ≥ 1

‖sn+1‖2 − (sn+1, sn) + (ν + h)∆t‖∇sn+1‖2 + ∆t(b · ∇sn, sn+1)

+
∑

i,j=1,2,i6=j

∆t

∫
I

κ(sn+1
i − snj )sn+1

i ds = ∆t

(
ηn+1 − 2ηn + ηn−1

(∆t)2
, sn+1

)

+(ν + h)∆t

(
∇(

ηn+1 − ηn

∆t
),∇sn+1

)
+ ∆t

(
b · ∇(

ηn − ηn−1

∆t
), sn+1

)
+

∑
i,j=1,2,i6=j

∆t

∫
I

κ

(
ηn+1
i − ηni

∆t
−
ηnj − η

n−1
j

∆t

)
sn+1
i ds+ h∆t

(
∇(

tun+1 − tun

∆t
),∇sn+1

)

+∆t

(
ρn+1 − ρn

∆t
, sn+1

)
+

∑
i,j=1,2,i6=j

(∆t)2

∫
I

κ

(
tun+1

j − 2tunj + tun−1
j

(∆t)2

)
sn+1ds

(7.8)

Using the Cauchy-Schwarz and Young’s inequalities leads to

1

2
‖sn+1‖2 − 1

2
‖sn‖2 + (ν + h)∆t‖∇sn+1‖2 +

∆tκ

2
‖sn+1

1 ‖2I +
∆tκ

2
‖sn+1

2 ‖2I

≤ ε(ν + h)∆t‖∇sn+1‖2 +
C2
PF∆t

4ε(ν + h)
‖η

n+1 − 2ηn + ηn−1

(∆t)2
‖2

+ε(ν + h)∆t‖∇sn+1‖2 +
1

4ε(ν + h)
∆t‖b‖2‖sn‖2

+ε(ν + h)∆t‖∇sn+1‖2 +
(ν + h)∆t

4ε
‖∇(

ηn+1 − ηn

∆t
)‖2

+ε(ν + h)∆t‖∇sn+1‖2 +
‖b‖2∆t

4ε(ν + h)
‖η

n+1 − ηn

∆t
‖2 + 2ε(ν + h)∆t‖∇sn+1‖2

+
C4
Traceκ∆t

4ε(ν + h)

(
‖∇(

ηn+1 − ηn

∆t
)‖2 + ‖∇(

ηn − ηn−1

∆t
)‖2
)

+ ε(ν + h)∆t‖∇sn+1‖2

+
h2∆t

4ε(ν + h)
‖∇(

tun+1 − tun

∆t
)‖2 + ε(ν + h)∆t‖∇sn+1‖2

+
C2
PF∆t

4ε(ν + h)
‖ρ

n+1 − ρn

∆t
‖2 +

∆tκ

4
‖sn+1

1 ‖2I

+
∆tκ

4
‖sn+1

2 ‖2I + (∆t)2∆tκ
∑
i=1,2

‖ tu
n+1
i − 2tuni + tun−1

i

(∆t)2
‖2I .

(7.9)

Summing over the time levels, multiplying both sides by 2, letting ε = 1
16 and using the

modified Gronwall’s lemma gives

‖sn+1‖2 + (ν + h)∆t

n+1∑
i=2

‖∇si‖2 +
κ∆t

2

n+1∑
i=2

2∑
j=1

‖sij‖2I ≤ C
(
‖s1‖2 +O(h2 + (∆t)2)

)
(7.10)

In order to get a bound on ‖s1‖2, consider (7.3) at n = 0. Note also that we choose u0
i so that

(tu0
i−u0

i , vi) = 0,∀vi ∈ Xh
i , i = 1, 2 . Thus, e0 = −η0 and φ0 = 0. We let v = s1 = φ1−φ0

∆t = φ1

∆t
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to obtain

‖s1‖2+
(ν + h)

∆t
‖∇φ1‖2+κ‖φ1

1‖2I+κ‖φ1
2‖2I =

(
η1 − η0

∆t
, s1

)
+(ν+h)(∇η1,∇s1)+(b·∇η0, s1)

+
∑

i,j=1,2,i6=j

∫
I

κ(η1
i −η0

j )s1
i ds+h(∇tu1,∇s1)+(ρ1, s1)+

∑
i,j=1,2,i6=j

∆t

∫
I

κ

(
tu1
j − tu0

j

∆t

)
s1
i ds

(7.11)

Using the Cauchy-Schwarz and Young’s inequalities, we show the following

‖s1‖2 +
(ν + h)

∆t
‖∇φ1‖2 +

κ

2
‖φ1

1‖2I +
κ

2
‖φ1

2‖2I

≤ C

[
‖η

1 − η0

∆t
‖2 + (ν + h)‖∆η1‖2 + ‖b‖2‖∇η0‖2

+
∑

i=0,1,j=1,2

κ‖∇ηij‖2 + h2‖∆tu1‖2 + ‖ρ1‖2 + (∆t)2κ
∑
j=1,2

‖
tu1
j − tu0

j

∆t
‖2I

] (7.12)

Inserting (7.12) into (7.10) completes the proof.

We now have all the intermediate results that are needed for proving the accuracy of the

correction step solution cu.

7.3. Accuracy of Correction Step

Theorem 8. (Accuracy of Correction Step) Let the assumptions of Theorem 7 be satisfied.
Then ∃C > 0 independent of h, ∆t such that for any n ∈ {0, 1, 2, · · · ,M − 1 = T

∆t − 1}, the

solution cun+1
i of (5.9) satisfies

‖tun+1−cun+1‖2 +(ν+h)∆t

n+1∑
j=1

‖∇(tuj−cuj)‖2 +κ∆t

2∑
i=1

‖tun+1
i −cun+1

i ‖2I ≤ C
(
h4 + (∆t)4

)
(7.13)

Proof. First, sum (7.2) at time levels tn and tn+1 and divide by 2, to obtain in Ωi , i = 1, 2:(
tun+1
i − tuni

∆
, vi

)
+ (νi + h)(∇tun+1

i ,∇vi) +

∫
I

κ(tun+1
i − tunj )vids+ (bi · ∇tuni , vi)

=

(
fi(tn+1) + fi(tn)

2
, vi

)
+

∆t(νi + h)

2

(
∇(

tun+1
i − tuni

∆t
),∇vi

)
+ h

(
∇(

tun+1
i + tuni

2
),∇vi

)
+
κ∆t

2

∫
I

(
tun+1
i − tuni

∆t

)
vids+

κ∆t

2

∫
I

(
tun+1
j − tunj

∆t

)
vids−

∆t

2

(
bi · ∇(

tun+1
i − tuni

∆t
), vi

)

+

(
tun+1
i − tuni

∆t
−
tun+1
i,t + tuni,t

2
, vi

)
(7.14)

For the O(∆t2)-term introduce the notation

(
tun+1

i −tun
i

∆t − tun+1
i,t +tun

i,t

2 , vi

)
≡ γn+1

i . Subtract

14



the correction step equation (5.9) from (7.14). We obtain for i, j = 1, 2, i 6= j(
cen+1
i − ceni

∆t
, vi

)
+ (νi + h)(∇cen+1

i ,∇vi) +

∫
I

κ(cen+1
i − cenj )vids+ (b · ∇ceni , vi)

=
∆t(νi + h)

2

(
∇(

en+1
i − eni

∆t
),∇vi

)
+ h

(
∇(

en+1
i + eni

2
),∇vi

)
+ (γn+1

i , vi)

+
κ∆t

2

∫
I

(
en+1
i − eni

∆t

)
vids+

κ∆t

2

∫
I

(
en+1
j − enj

∆t

)
vids−

∆t

2

(
bi · ∇(

en+1
i − eni

∆t
), vi

)
(7.15)

Similarly to the error decomposition in the case of the defect approximation, decompose cen+1
i =

tun+1
i − cun+1

i = φn+1
i − ηn+1

i , φi ∈ Xi,h. We now choose vi = φn+1
i ∈ Xi,h in (7.15), sum over

i = 1, 2 and use the Cauchy-Schwarz and Young’s inequalities to obtain bounds on the terms

in (7.15), similar to what we did for equation (7.4). The bounds on en+1 and en+1−en

∆t from
Theorem 6 and Theorem 7 complete the proof.
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8. Computational Testing

The convergence properties of the two-step DDC method (Algorithm 5.1) are investigated

quantitatively in the case of a test problem with the known solution (see [15]).

Assume Ω1 = [0, 1]× [0, 1] and Ω2 = [0, 1]× [−1, 0], so I is the portion of the x-axis from 0

to 1. Then n1 = [0, −1]T and n2 = [0, 1]T . For ν1, ν2, and κ all arbitrary positive constants,

the right hand side function f from (4.1) is calculated so that the true solution is given by

ui = (ui1, ui2), i = 1, 2

u11(t, x, y) = x(1− x)(1− y)e−t

u12(t, x, y) = −x(1− x)(1− y)e−t

u21(t, x, y) = x(1− x)(1 +
ν1

κ
− ν1

ν2
y − (1 +

ν1

ν2
+
ν1

κ
)y2)e−t

u22(t, x, y) = −x(1− x)(1 +
ν1

κ
− ν1

ν2
y − (1 +

ν1

ν2
+
ν1

κ
)y2)e−t .

This choice of u satisfies the interface conditions (4.2) and the boundary conditions (4.4) with

g1 = g2 = 0. The computations were performed using finite element spaces consisting of

continuous piecewise polynomials of degree 2. The code was implemented using the software

package FreeFEM++ [21].

8.1. Convergence rate study

Computational results are provided for κ = 1 and for the moderate (ν1 = ν2 = 1) and small

(ν1 = ν2 = 0.00001) values of the diffusion coefficients. In the following tables, the norm ‖u‖

is the discrete L2(0, T ;L2(Ω)) norm, given by

‖u‖ =

(
N∑
n=1

∆t|u(tn)|2L2(Ωi)

)1/2

, (8.1)

and |u|H1 is the discrete L2(0, T ;H1(Ω)) seminorm, given by

|u|H1 =

(
N∑
n=1

∆t|∇u(tn)|L2(Ω)

)1/2

, (8.2)

where N = T/∆t. Tables ?? and 2 compare the cases of modified vs. non-modified jump

condition in Algorithm 5.1 for νi = 1. Tables 3 and 4 perform the same comparison for the case

of convection-dominated flows at νi = 0.00001. The errors are calculated in the norms (8.1)

and (8.2).
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Table 1: Errors for computed approximations, ν = 1, non-modified jump condition

DEFECT SUBSTEP

h ∆t ‖u(tn)− un‖L2 rate |u(tn)− un|H1 rate

1/4 1/4 4.09893e-2 1.53394e-1

1/8 1/8 2.4502e-2 0.74 8.99462e-2 0.77

1/16 1/16 1.34949e-2 0.86 4.91759e-2 0.87

1/32 1/32 710272e-3 0.92 2.57988e-2 0.93

1/64 1/64 364762e-3 0.96 1.32293e-2 0.96

CORRECTION SUBSTEP

h ∆t ‖u(tn)− cun‖L2 rate |u(tn)− cun|H1 rate

1/4 1/4 1.50131e-2 5.94415e-2

1/8 1/8 5.37793e-3 1.48 2.0774e-2 1.51

1/16 1/16 1.85568e-3 1.53 7.34807e-3 1.49

1/32 1/32 7.06498e-4 1.39 2.9411e-3 1.32

1/64 1/64 3.08825e-4 1.19 1.34023e-3 1.13

Table 2: Errors for computed approximations, ν = 1, modified jump condition

DEFECT SUBSTEP

h ∆t ‖u(tn)− un‖L2 rate |u(tn)− un|H1 rate

1/4 1/4 4.10392e-2 1.5309e-1

1/8 1/8 2.42801e-2 0.75 8.9456e-2 0.77

1/16 1/16 1.33056e-2 0.86 4.87916e-2 0.87

1/32 1/32 6.98608e-3 0.92 2.55628e-2 0.93

1/64 1/64 358342e-3 0.96 1.3099e-2 0.96

CORRECTION SUBSTEP

h ∆t ‖u(tn)− cun‖L2 rate |u(tn)− cun|H1 rate

1/4 1/4 1.36326e-2 5.50424e-2

1/8 1/8 4.61153e-3 1.56 1.80651e-2 1.60

1/16 1/16 1.36977e-3 1.75 5.36588e-3 1.75

1/32 1/32 3.78436e-4 1.85 1.49775e-3 1.84

1/64 1/64 1.00268e-4 1.91 4.02327e-4 1.89
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Table 3: Errors for computed approximations, ν = 10−5, non-modified jump condition

DEFECT SUBSTEP

h ∆t ‖u(tn)− un‖L2 rate |u(tn)− un|H1 rate

1/4 1/4 7.91115e-2 5.3402e-1

1/8 1/8 7.08314e-2 0.15 5.44157e-1 -0.02

1/16 1/16 5.9474e-2 0.25 5.6404e-1 -0.05

1/32 1/32 5.31807e-2 0.16 6.32873e-1 -0.16

1/64 1/64 5.11973e-2 0.05 7.7229e-1 -0.28

CORRECTION SUBSTEP

h ∆t ‖u(tn)− cun‖L2 rate |u(tn)− cun|H1 rate

1/4 1/4 7.3621e-2 5.61272e-1

1/8 1/8 6.06277e-2 0.28 5.98215e-1 -0.09

1/16 1/16 5.45552e-2 0.15 6.79845e-1 -0.18

1/32 1/32 5.32717e-2 0.03 8.45552e-1 -0.31

1/64 1/64 5.23807e-2 0.02 1.10753 -0.38

Table 4: Errors for computed approximations, ν = 10−5, modified jump condition

DEFECT SUBSTEP

h ∆t ‖u(tn)− un‖L2 rate |u(tn)− un|H1 rate

1/4 1/4 9.23371e-2 3.64616e-1

1/8 1/8 7.30489e-2 0.33 3.06128e-1 0.25

1/16 1/16 4.72726e-2 0.62 2.27403e-1 0.42

1/32 1/32 2.71885e-2 0.79 1.62003e-1 0.48

1/64 1/64 1.46477e-2 0.89 1.14559e-1 0.49

CORRECTION SUBSTEP

h ∆t ‖u(tn)− cun‖L2 rate |u(tn)− cun|H1 rate

1/4 1/4 6.75345e-2 2.89442e-1

1/8 1/8 3.59619e-2 0.90 2.15663e-1 0.42

1/16 1/16 1.47159e-2 1.28 1.55311e-1 0.47

1/32 1/32 5.43386e-3 1.44 1.12958e-1 0.45

1/64 1/64 1.87323e-3 1.54 8.05629e-2 0.48
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9. CONCLUSION

Clearly, the correct way of implementing the proposed method is to modify the interface

condition so that the diffusion coefficient is treated consistently throughout the problem. Also,

when the convection-to-diffusion ratio is moderate (νi = 1) the observed convergence rates are

in full agreement with the theoretical findings. When the diffusion coefficient is very small

compared to the spatial mesh diameter, convergence rates in the L2(0, T ;L2(Ω))-norm start to

deteriorate, but the correction step still gives a clear advantage over the first order accurate

defect approximation. However, the accuracy in the L2(0, T ;H1(Ω))-seminorm has decayed

drastically; this is due to the fact that for the chosen values of ν the mesh is much too coarse;

the term ν + h, appearing in the error estimates of the method, is now almost equal to h,

which immediately affects both the a priori error estimates and the computational results.

This suggests, that if the legacy codes are to be used for the coupled convection-dominated

convection-diffusion problem in the manner of Algorithm 5.1, then one has to refine the mesh

substantially in order to capture the gradient of the true solution. Notice, however, that the

solution itself is well modelled (in the L2(0, T ;L2(Ω))-norm) even on a coarse mesh.
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