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Abstract

For human beings, the origin of life has always been an interesting and mysterious matter,

particularly how life arose from inorganic matter through natural processes. Polymerization

is always involved in such processes. In this paper we built what we refer to as ideal

and physical models to simulate spontaneous polymerization based on certain physical

principles. As the modeling confirms, without taking external energy, small and simple

inorganic molecules formed bigger and more complicated molecules, which are necessary

ingredients of all living organisms. In our simulations, we utilized actual ranges of

parameters according to their experimentally observed values. The results from the

simulations led to a good agreement with the nature of polymerization. After sorting out

through all the models that were built, we arrived at a final model that, it is hoped, can

be used to simply and efficiently describe spontaneous polymerization using only three

parameters: the dipole moment, the distance between molecules, and the temperature.
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Chapter 1

Background

1.1 Introduction

Many studies have been done in the area of evolution since several centuries ago, but

advanced research on the origin of life started only in the 20th century, resulting from

developments in modern microbiology and biochemistry. Biopoiesis (or abiogenesis) is

the study of how life may have arisen from inorganic matter through natural processes.

Particularly, the term is typically related with the rise of life on Earth.

The biologist John Desmond Bernal, who coined the term biopoiesis, suggested that there

were three well defined "stages" that could be used to describe the origin of life [4]:
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† Stage 1: The development of biological monomers

† Stage 2: The development of biological polymers

† Stage 3: The evolution from molecules to cell

Most amino acids, typically essential components of life, can form through natural and

inanimate chemical reactions, proven by the Miller-Urey experiment [5], [6], which was

focused on simulating hypothetical conditions of early Earth in a laboratory, and testing

for the occurrence of chemical origins of life. Similar procedures happened in other

fundamental biochemicals, like nucleotides and saccharides. These biochemicals usually

are ingredients of more complex molecules, such as proteins, polysaccharides, and nucleic

acids (DNA, RNA). These three molecules are crucial to all life functions and can be found

in all living organisms.

As Timothy Gowers’s proposed in his Polymath project [7], a simple model should be

constructed to describe abiogenesis but not necessarily evolution. He mentioned two ideas

related to this topic, Cellular Automaton [8] and Self-organized Criticality [9]. Based on

these two ideas, there are several properties the model should have:

1. The model should be dynamic and follow simple rules.

2. The outcome of the modeled process should not be too random nor too simple, and

it should depend to a large extent on whether certain critical values of parameters are

2



exceeded.

3. The model should have a randomized initial status, but it also should have a certain

level of robustness in the outcome.

4. The model should be able to produce macroscopic structures, which can be easily

identified and classified based on some interesting criteria.

5. There should be interactions among those structures, and the interaction should lead

to an optimal consequence.

6. Nontrivial outcomes should eventually emerge with high probability. However, there

might be some preconditions, which will limit the probability. After all, not all

planets in the universe have life.

Motivated by this, we built probabilistic models in both two dimensions and three

dimensions to describe abiogenesis in Stage 2. Before describing our models, we first

introduced some fundamental concepts related to our models.
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1.2 Dipoles

1.2.1 Types Of Dipoles

In nature, there are mainly two kinds of dipoles, electric and magnetic ones. In this thesis,

we only focus on topics related to electric dipoles. The definition of an electric dipole is: a

pair of opposite but equal electric charges separated by a small distance.

1.2.2 Dipole Moment

1.2.2.1 Electric Dipole Moment

The dipole moment is the product of magnitude of each charge and the distance of

separation between the charges:

p = qd, (1.1)

where q is the absolute value of the two charges and d is the displacement vector from the

negative charge to the positive charge.

4



Also, one has the superposition principle: the total dipole moment of a system can be

obtained through vector addition.

The dipole moment is an important attribute of a dipole, since it provides an overall polarity

measure, which will in turn affect the performance of dipole. The following discussion

is limited to static phenomena; neither time-dependent nor dynamic polarization will be

covered.

1.2.2.2 Molecular Dipole Moment

Many molecules have dipole moments because positive and negative charges are distributed

nonuniformly over various atoms inside the molecules. Dipole moments exist in common

molecules such as water, as well as in biomolecules such as proteins.

As mentioned in Section 1.2.2.1, we limit out discussion to static phenomena. Then our

main concern is with permanent dipoles: there are two atoms in such a dipole, where one

of them attracts more electrons, becoming more negative, and the other one becomes more

positive, so that a stable dipole is formed. However, some molecules with dipolar groups

inside do not show overall dipole moment at all because of cancellation of polarity. The

highest molecular dipole moments are between 10 D and 11 D (measured in the units

named debye, symbol: D) [10].
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1.2.2.3 Bond Dipole Moment

Another important concept is the bond dipole moment, which is closely associated with the

molecule dipole moment. A chemical bond usually forms when the balance between the

forces of repulsion and electrostatic attractions is attained in the binding region. There are

two kinds of chemical bond, ionic and covalent ones. A covalent bond can be recognized

by the sharing of electrons between atoms. The prefix co- indicates the atoms both "own"

the electrons. On the contrast, ionic bond is formed as one atom "takes away" electrons

from the other. However, pure ionic bonding does not exist since the electrons can not be

completely privately-owned in the binding region. Therefore, ionic and covalent binding

are two extreme cases of reaching this electrostatic equilibrium. The bond dipole exists if a

difference in polarity across the bond exists. Bond dipole moment can be calculated in the

same way as electric dipole moment, which provides the measurement of the polarity of a

chemical bond. Between the two extremes, ionic and covalent binds, a complete spectrum

of bond dipole moment densities exists [11].

The total dipole moment of all covalent bonds in a molecule will be zero if the charge

distribution is symmetric which will cancel the molecular polarity. Therefore dipole

moments can take values from zero to the ionic extreme which approaches the product

ner (where n is the number of electrons moved during the formation process of the ionic

bond, e is the charge of electron, r is the bond length) [11]. Typical dipole moments for

6



(a) Covalent bond (b) Ionic bond

Figure 1.1: Chemical bond examples. These figures are licensed under the
Creative Commons Attribution-Share Alike license [2], [3].

simple diatomic molecules (a bond can be modeled as diatomic molecule) are in the interval

of 0 to 11 D [10].

1.3 Spontaneous Polymerization

"Polymerization is a process of monomer molecules reacting together in a chemical

reaction to form three-dimensional networks or polymer chains" [12]. In general, polymers

that consist of repeated long chains or structures of the same monomer unit are referred

to as homopolymers, whereas polymers that consist of at least two kinds of monomer

molecules are referred to as copolymers. In this project, we only deal with homopolymers

with chain-growth polymerization, which is a polymerization process where unsaturated

monomer molecules add on to the beginning or end of a growing polymer chain one at
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a time [12]. It involves the linking together of molecules incorporating chemical bonds

, which means the properties of chemical bonds play a crucial role in the process of

polymerization. There is another type of polymerization mechanism called step-growth

polymerization, which involves reactions between functional groups of monomers, but it is

not considered here.

1.4 Boltzmann Factor, Partition Function, And State

Probabilities

For a point charge q, if the potential V is known at this point, then the potential energy this

point charge has is

U = qV. (1.2)

The potential V at a given position is generated by all charges in a system except the charge

at the given position. Both the potential and potential energy in the above equation are

scalar and additive

V = ∑
j

Vj and U = ∑
j

Uj, (1.3)

where Vj is the potential generated by jth charge at the given position; similarly for Uj.

8



For a dipole with charges of equal magnitude but opposite sign, the potential energy it has

can be written as

U = (+q)V++(−q)V− (1.4)

V+ is the potential at +q, V− is the potential at −q.

In physics, the Boltzmann factor is defined as:

e−
U

kBT = e−βU (1.5)

where

β =
1

kBT
,

kB is known as the Boltzmann constant, T is temperature. Then β is inversely proportional

to temperature.

In a system with only discrete values of energy Ui, the partition function is

Z = ∑
i

e−
Ui

kBT = ∑
i

e−βUi . (1.6)

Systems in equilibrium at temperature T have probability Pi of occupying state i with
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energy Ui, where

Pi =
e−βUi

Z
=

e−βUi

∑
i

e−βUi
. (1.7)

Based on the above discussion, it is obvious that, if a dipole has a large potential energy,

then it is unlikely to stay in state i for long. Instead, it will move to a position or orientation

which have a lower potential energy. This follows from the law of conservation of energy,

since the energy for movement is from the decrease of the potential energy. By (1.7), we

can calculate the probability of a specified dipole’s next movement given the locations and

directions of the particular dipole and its neighbors.

10



Chapter 2

Modeling

As stated in Section 1.1, the models may reflect the two ideas, Cellular Automaton [8] and

Self-organized Criticality [9].

Cellular automata are mathematical idealizations of a system. The time and space variables

in this system are discrete. The space usually contains a regular uniform lattice, which can

be extended repeatedly and infinitely, with a value of discrete variable at each site. The

system’s state can be identified by the values of the variables. A cellular automaton evolves

in step of a discrete time variable. For example, moving from state i to state i+ 1 can

be considered as one step. The variable value at one site is affected by the values of its

neighbors, which are defined as all immediately adjacent sites. The updates of variable

values at each site are determined by the values of their neighbors at the previous time step,

11



and based on a definite set of "local rules" [8].

Bak, Tang and Wiesenfeld’s 1987 paper [9] demonstrated that in a self-organized system

observed complexity will emerge regardless of details of the system: the emergence of

critical behavior does not depend on the model parameters. Self-organized criticality in our

topic generally implies the system will be developing spontaneously, and will eventually

stabilize, regardless of the system’s parameters.

According to the discussion above, our model will consist of a regular uniform lattice, in

which there will be several blocks of the same size. The blocks of the lattice are assumed

to be adjacent to one another so as to extend repeatedly and infinitely. At each site (or

cell), there will be a dipole in it, with a few orientations, such as up, down, left, right in

the case of a two-dimensional lattice. The local interaction, which only occurs within the

immediately adjacent neighbors of a site, can be determined by (1.2) and (1.4).

Since potential energy is a scalar quantity, it is possible to sum up the energy of all

interactions between the central dipole and its neighbors. Thereafter, we can predict the

movement of a specified dipole using (1.7). To be more specific, there are two kinds of

movements:

1. Orientation change: the dipole stays in the current site, only its orientation changes.

2. Position change: the dipole moves to an empty adjacent site from the previous one.

12



The orientation change is relatively simple to consider. We just need to calculate the

potential energies of the particular dipole with all possible six orientations (in the 3D

case) based on the configuration of its current neighbors. The position change is a little

more complicated. The dipole will move to an empty adjacent site and leave its current site

empty. Consequently, we need to calculate potential energies of this dipole with all possible

orientations at every possible new site based on the distribution of its new neighbors.

A dipole in a specified position with a specified orientation is in a certain state, and it has a

corresponding potential energy level and a Boltzmann factor level. After listing all possible

states the dipole could move into, we can estimate the probability of a given movement of

this dipole.

Let us say that such a movement was "successful" if the dipole did change either its

orientation or position. Each successful movement will also be referred to as a round for

brevity.

2.1 Ideal 2D Model [1]

In this case, each molecule is modeled as a small square in a lattice. It is polarized, that

is, has a certain dipole moment, which may be oriented right, left, up, or down. The small

squares form a grid, thus together constituting a big square (2D lattice). The big square

13



is one of the uniform blocks in the whole system, which is a periodic extension from the

square to R2. This is illustrated in Figure 2.1.

Figure 2.1: Four of adjacent 20×20 blocks, of which three are shown with
oriented cells

In a two dimensional space, the potential of an electric charge q at distance r from it can be

simplified as:

V =−q lnr (2.1)

14



if q is measured in an appropriate unit (otherwise, there may be an extra constant factor

present).

Suppose a is the ratio of the length of the dipole d to the length of the square side l,

a =
d
l

,

so that 0 ≤ a < 1.

For simplicity, assume for now that every cell is a unit square with l = 1, and the charge is

also unit: q = 1.

According to the dipoles’ orientations and positions, there are several different potential

energies of interaction between two dipoles:

15



1. → ← ln
1

1−a2

2.
→

→
ln(1+a2)

3.
→

↑
0

4.
→

→
ln

√
1+

a2

4

5.
↓

→
ln

4+a2

4−a2

The energy of interaction of the above two head-to-head dipoles (Pattern 1) is

− ln(1+a)− ln(1−a)+ ln1+ ln1 = ln
1

1−a2

The energy of following patterns can be obtained similarly.

Remark 1: If any one of a pair of dipoles changes its orientation to the opposite one, the

energy changes only in sign.
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Remark 2: If any of the five above patterns is rotated, the energy does not change.

When 0 < a < 1, one has the following inequalities:

1
1−a2 > 1+a2 >

4+a2

4−a2 >

√
1+

a4

4
> 1

This indicates that the energies of the five above cases follow the sequence

pattern 1 > pattern 2 > pattern 5 > pattern 4 > pattern 3 ,

which implies that dipoles are most likely to be aligned as "head to tail" (opposite to pattern

1, which has lowest potential energy), since the system tends to have the lowest potential

energy (at which state it is stable).

As stated at the beginning of Section 2.1, the cell size is set to be 1 by 1, with no unit. From

(2.1), (1.4), the Boltzmann factor becomes

e−βUi = e−β fi(a), (2.2)

where fi(a) is the potential energy of the given dipole in state i, which can be obtained by

summing up the quantities in the corresponding patterns above. The expression of fi(a)

is determined by the configuration of the given dipole and its neighbors. Therefore, given

the distribution of dipoles, we only need the values of a,T to determine the corresponding
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probability. Then (1.7) can be written as

Pi =
e−β fi(a)

∑
i

e−β fi(a)
, (2.3)

where the value of a reflects the relation between the dipole length and the molecule size,

β is inversely proportional to the temperature, refer to

β =
1

kBT
.

It is necessary to clarify the definition of the polymer length. The polymer length in this

project means the number of dipoles in the polymer. Inside the red box in Figure 2.1, there

are two polymers of length 5 and 6, respectively. If we only take the top left block into

account, then the polymer in the 19th column oriented down, inside the red box will be

cut into two parts, of lengths 2 and 4. So, we need to take the periodicity convention. In

particular if a polymer takes an entire row or column of the 20 by 20 square, its length is

taken to be 20, even though its "actual" length might be considered to be infinity.

Before polymerization, all the dipoles in the lattice are randomly distributed and oriented.

The positions and orientations of dipoles are arbitrary with no order. There seldom will be

polymers with length more than 3. Such a random initial distribution of dipoles is shown

in Figure 2.2
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Figure 2.2: Dipole distribution at the beginning of the polymerization
process within a 20×20 block in 2D.

We simulated polymerization by setting qualitative parameters. Here are four cases:

† a = 0.5,β = 1, relatively small dipole size, with high temperature.

† a = 0.5,β = 2, relatively small dipole size, with low temperature.

† a = 0.9,β = 1, relatively large dipole size, with high temperature.

† a = 0.9,β = 2, relatively large dipole size, with low temperature.

After 1000 successful dipole movements in the polymerization process, many more

polymers are seen. However, Figure 2.3 shows that, when a = 0.5 and β = 1 (small dipole

size and high temperature) the degree of polymerization is not as high as in the other three

cases during a certain time period.
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a = 0.5,β = 1 a = 0.5,β = 2

a = 0.9,β = 1 a = 0.9,β = 2

Figure 2.3: Dipole distribution at the presumed end of the polymerization
process within a 20×20 block in 2D with different parameter settings.

2.2 Ideal 3D Model

Of course, the 3D case is much more realistic. In this case, each molecule is modeled as a

small unit cube. Inside each cube there is a dipole, which may be oriented right, left, up,
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down, front, or back. The small cubes together form a big cube (3D lattice). The big cube

is one of the uniform blocks in the whole system, which is the periodic extension of the

cube to R3.

The 3D case is in principle very similar to the 2D one. The main difference is the formula

for the potential. Unlike (2.1), in 3D space the potential is defined as

V = q/r (2.4)

if q and r are expressed in appropriate units of measurement; see Appendix C.

Suppose a is the ratio of the length of the dipole d to the length of the cube side l:

a =
d
l
,

so that 0 ≤ a < 1.

For simplicity, assume for now that every cell is a unit cube with l = 1.

According to the dipoles’ orientations and positions, there are several different potential

energies of interaction between two dipoles:
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2D Patterns:

1. → ← q2

(
2

1−a2 −2

)

2.
→

→
q2

(
2− 2√

1+a2

)

3.
→

↑
0

4.
→

→
q2

(
√

2−
√

1+(1−a)2 +
√

1+(1+a)2
√

a4 +4

)

5.
↓

→
q2

⎛
⎝ 2

√
2

2− a2

2

− 2√
2+ a2

2

⎞
⎠

For the first pattern,

q2

1−a
+

q2

1+a
− q2

1
− q2

1
= q2

(
2

1−a2 −2

)
.

The energy of following patterns can be obtained similarly.
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3D Patterns:

6. q2

(
2√
3
− 1√

3+a2 −2a
− 1√

3+a2 +2a

)

7. q2

⎛
⎝ 1√

3+ a2

2 +2a
+

1√
3+ a2

2 −2a
− 2√

3+ a2

2

⎞
⎠

8. q2

(√
2− 2√

a2 +2

)

9. 0

Remark 1: If any one of a pair of dipoles changes its orientation to the opposite one, the

energy changes only in sign.

Remark 2: If any of the nine above patterns is rotated, the energy does not change.

In order to get a clear data visualization image, we set the block cube size to be 10 by 10

by 10, and the probability of any given cell being occupied by a dipole to be 0.05. In three
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Figure 2.4: Dipole distribution at the beginning of the polymerization
process within a 10 × 10 × 10 block in 3D. Note for colors of the
small arrows: blue–right, cyan–left, white–up, black–down, red–front,
green–back.

dimensions, formula (2.3) still applies. By setting appropriate values of a and β , qualitative

understanding of polymerization can be obtained.

As shown in Figure 2.4, initially all the dipoles and their orientations in the cube are

randomly distributed. In three dimensions, there are too many cells obscuring one another

to get a complete visualization image, even though the cube is 10 by 10 by 10 cells (whereas

the square was 20 by 20 cells).

Use same a,β values as Section 2.1, the visualization images of dipoles after 600 successful
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Figure 2.5: Dipole distribution at the presumed end of the polymerization
process within a 10× 10× 10 block in 3D when a = 0.5,β = 1, relatively
small dipole size, with high temperature

movements are shown as in Figure 2.5 to Figure 2.8 .

From Figure 2.5 and Figure 2.6 , when the dipole length is relatively small (a = 0.5)

it is not easy to distinguish after-polymerization from prior-polymerization (Figure 2.4),

nor to tell the difference between high temperature (β = 1) and low temperature (β = 2).

However, there are significantly good degrees of polymerization when the dipole length

is relatively large (a = 0.9) (Figure 2.7 and Figure 2.8). The difference between high

temperature (β = 1) and low temperature (β = 2) when a = 0.9 is still hard to tell based

only on these 3D images.
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Figure 2.6: Dipole distribution at the presumed end of the polymerization
process within a 10× 10× 10 block in 3D when a = 0.5,β = 2, relatively
small dipole size, with low temperature

2.3 Physical 3D Model

So far, our main focus was to build ideal models describing the process of polymerization,

with β value chosen arbitrarily. Now, we want to tie the model with real physical world.

There are three issues should be taken into consideration:

a). Use real physical parameters to describe the model more accurately.

b). Set restrictive conditions based on certain physical principles.
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Figure 2.7: Dipole distribution at the presumed end of the polymerization
process within a 10× 10× 10 block in 3D when a = 0.9,β = 1, relatively
large dipole size, with high temperature

c). Need quantitative measurements to evaluate degree of polymerization besides

graphics.

Issue a): We need to define variables in appropriate units.

† l: molecule size (or generally distance between two molecules), measured in Å,

10−8cm. for instance, l = 5 means the molecule size is 5 Å. Then dipole length

d = la.

† ν : the number of elementary charge, |q|= νe,ν ∈ R+, where e is elementary charge
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Figure 2.8: Dipole distribution at the presumed end of the polymerization
process within a 10× 10× 10 block in 3D when a = 0.9,β = 2, relatively
large dipole size, with low temperature

or charge of electron.

† Md: "scale of dipole moment", Md = νd = ν la. This is transformed scale of typical

dipole moment shown in Section 1.2.2. The relation between dipole moment and

"scale of dipole moment" is Md =
||p||
eÅ

.
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According to (2.4) and nine potential energy patterns in Section. 2.2, the potential energy

of a given dipole in state i in the new physical model is

Ui = fi(a) · (ν)
2

l
(2.5)

= fi(a) · (ν la)2

a2l3 (2.6)

= gi(a) ·
M2

d

l3 , (2.7)

where fi(a) is a function of configuration of the given dipole and its neighbor at state i,

which can be obtained by summing up the quantities in the corresponding nine patterns in

Section. 2.2. Set gi(a) =
fi(a)
a2 . Further discussion about (2.7) is in Appendix B.

Based on (1.7) and (2.7), after coordinating various units among all parameters, Boltzmann

factor can be written as

e−βUi = e−β
M2

d
l3

gi(a) (2.8)

= e−γ·gi(a). (2.9)
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As shown in Appendix C, in our units system, γ = 557 · 300K
T

· M2
d

l3 , see (C.11). 557 here is

a constant without unit to coordinate the units between our units system and standard CGS

system. Define ε =
Md

l
3
2

as polarization coefficient.

If we substitute β and fi(a) in (2.3) by γ and gi(a), then state probability is Pi =

e−γ·gi(a)

∑
i

e−γ·gi(a)
. Unlike β , which is only inversely associated with temperature, γ contains more

information about a system, like the dipole moment, the distance between molecules and

the temperature. This setting of parameters appears to be a good agreement with realistic

phenomena.

Issue b): The following restrictive conditions should be set:

1. a < 0.5. In our model, dipole consists of two opposite point charges. To make sure

the dipole is stable, a should be less than 0.5. Or the point charges might be attracted

to another cell.

2. 5 ≤ l ≤ 10. Molecules presented in organic synthesis usually have a dimension

starting from a few Å. Our main concern is not those macromolecules (like DNA)

which have already finished polymerization, but small molecules which are going to

be involved in the process of polymerization. Therefore we set l be in the range of 5

Å to 10 Å.

3. 0<Md ≤ 2.1. As mentioned in Section 1.2.2.3, typical dipole moment for a chemical
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bond is from 0 D to 11 D. However, the highest range 10 D to 11 D only exists in a

highly ionic bond, which always contains a heavy metal atom that usually does not

present in organic system. Then in our model the bond dipole moment is set to be in

the range of 0 D to 10 D. Md here has already been adjusted according to our units

system, see Appendix C.

4. 300 ≤ T ≤ 600. Set temperature to be in the range of 300K to 600K. Although 600K

is rare in nature, it is still possible, like around volcanic vent.

Based on the above criteria, value of γ falls in the interval (0,19.651]. γ can not be zero,

which means no polarity and hence polymerization will not happen. The values of a are

set to be in three levels: 0.1, 0.2, 0.3. When a takes values from these three levels, gi(a)

mentioned in (2.7) and (2.9) becomes a quantity cF which only slightly depends on a, see

Appendix D.

Issue c): Even the graphics will give a general idea about the degree of polymerization,

it is not as informative as a quantitative measurement, such as a table describing numbers

of polymer chains with different length and orientations, with which we can extract more

information about degree of polymerization, see Table 2.1.

There are two reasonable way to define chains. First, all polymers and independent

monomers can be considered as chains, we call this "all chains". Second, only polymers

with length greater than or equal to two can be called chains, we call this "nontrivial
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chains". Hence, there are two measurements for average length of chains and number

of chains.

From Table. 2.1, NOA is identical to NONT, while ALOA is as same as ALONT. The

reason is there is no independent monomer in all the six tables above, which leads to no

difference between those two measurements. Meanwhile, it is obvious that when γ = 5

the degree of polymerization is higher than γ = 13 according to number of longer chains.

regardless of a levels.

However, there are only two values of γ and corresponding information here. It does not

provide enough information about the effect of γ on degree of polymerization. More data

is needed to make reliable inference. Besides, Table 2.1 gives a good detailed view but is

not ideal for comparisons. New measurement should be developed to monitor degree of

polymerization among all γ values.

2.4 Range-adjusted Physical 3D Model

In the previous section, we focused on several physical criteria on molecular level, like

the distance between molecules, dipole moment. To be more accurate, we are taking the

experimentally observed ranges of the parameters on atomic level into consideration. Due

to our assumption, polymerization could only happen when dipole moments exist. Thereby
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Table 2.1
Full descriptive information of polymerization under different setting of
parameters. NOD:total number of dipoles; NOA: number of all chains;

ALOA: average length of all chains; NONT: number of nontrivial chains;
ALONT: average length of nontrivial chains.

γ = 5 γ = 13

a = 0.1

chain Orientation
length Right Left Up Down Front Back

1 0 0 0 0 0 0
2 0 0 0 1 1 1
3 0 1 2 3 1 1
4 0 0 1 2 4 1
5 0 0 2 3 0 2
6 0 0 1 0 2 1
7 0 0 0 0 1 0
8 0 0 0 0 0 0
9 0 0 0 0 0 0
10 1 1 6 4 2 3

NOD 10 13 86 74 60 55
NOA 1 2 12 13 11 9

ALOA 10 6.5 7.17 5.69 5.45 6.11
NONT 1 2 12 13 11 9

ALONT 10 6.5 7.17 5.69 5.45 6.11

chain Orientation
length Right Left Up Down Front Back

1 0 0 0 0 0 0
2 1 2 2 4 2 1
3 3 2 1 1 1 2
4 2 4 0 0 3 2
5 2 1 1 1 1 1
6 0 0 0 0 2 4
7 0 0 1 1 1 0
8 0 0 0 0 4 2
9 0 0 0 0 0 0
10 0 0 0 0 2 4

NOD 29 31 19 23 95 101
NOA 8 9 5 7 16 16

ALOA 3.63 3.44 3.8 3.29 5.94 6.31
NONT 8 9 5 7 16 16

ALONT 3.63 3.44 3.8 3.29 5.94 6.31

a = 0.2

chain Orientation
length Right Left Up Down Front Back

1 0 0 0 0 0 0
2 0 1 0 0 1 2
3 1 1 2 0 0 0
4 0 0 0 2 1 0
5 0 0 0 0 1 1
6 0 0 2 2 2 2
7 0 0 0 1 1 0
8 0 0 0 0 1 2
9 0 0 0 0 0 0
10 3 2 3 2 4 3

NOD 33 25 48 47 78 67
NOA 4 4 7 7 11 10

ALOA 8.25 6.25 6.86 6.71 7.09 6.7
NONT 4 4 7 7 11 10

ALONT 8.25 6.25 6.86 6.71 7.09 6.7

chain Orientation
length Right Left Up Down Front Back

1 0 0 0 0 0 0
2 0 0 2 0 4 2
3 2 1 2 2 0 3
4 3 4 5 3 3 2
5 3 2 0 3 4 2
6 0 0 1 0 1 2
7 0 1 0 0 0 0
8 0 0 1 3 0 0
9 0 0 0 0 1 0

10 1 0 1 1 0 0
NOD 43 36 54 67 55 43
NOA 9 8 12 12 13 11

ALOA 4.78 4.5 4.5 5.58 4.23 3.91
NONT 9 8 12 12 13 11

ALONT 4.78 4.5 4.5 5.58 4.23 3.91

a = 0.3

chain Orientation
length Right Left Up Down Front Back

1 0 0 0 0 0 0
2 2 2 0 0 0 0
3 2 1 0 1 0 0
4 1 1 2 1 0 0
5 0 0 1 0 2 0
6 1 0 0 0 0 2
7 1 3 1 2 1 1
8 0 0 1 2 1 0
9 0 0 0 0 0 0
10 1 1 2 2 3 4

NOD 37 42 48 57 55 59
NOA 8 8 7 8 7 7

ALOA 4.63 5.25 6.86 7.13 7.86 8.43
NONT 8 8 7 8 7 7

ALONT 4.63 5.25 6.86 7.13 7.86 8.43

chain Orientation
length Right Left Up Down Front Back

1 0 0 0 0 0 0
2 3 3 0 4 3 3
3 1 3 1 1 2 0
4 2 2 1 1 0 0
5 0 1 1 1 0 2
6 1 1 1 1 2 3
7 1 0 1 2 0 0
8 0 0 1 1 1 1
9 0 0 1 0 0 0
10 0 0 2 2 2 1

NOD 30 34 62 68 52 52
NOA 8 10 9 13 10 10

ALOA 3.75 3.4 6.89 5.23 5.2 5.2
NONT 8 10 9 13 10 10

ALONT 3.75 3.4 6.89 5.23 5.2 5.2
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we do not take covalent bond without polarity into account, but polar covalent bond and

ionic bond, which two can be simply modeled as diatomic molecules. Typical amount of

charges in such bond are in the range of 0 to 3e. The smallest bond is ’H-H’, the simplest

hydrogen bond, with length 0.74 Å [13].

In addition to the restrictive conditions mentioned in Section 2.3, the new model should

satisfy the following criteria:

1. a < 0.5.

2. 1 ≤ l ≤ 10.

3. la > 0.7.

4. 0 < Md = ν la ≤ 2.1.

5. 0 < ν ≤ 3.

6. 300 ≤ T ≤ 600.

In the range-adjusted physical model, set the shortest dipole length to be 0.7 Å, the

molecule size to be in the range 1 Å to 10 Å (wider than the one mentioned in Section2.3),

ν to be any positive real number less than 3.

Section 2.3 explained the limitation of dipole distribution table. Then another measurement
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Table 2.2
γ interval and corresponding parameters based on physical criteria.

a γmin Md γmax l Md T
0.1 0+ 0+ 7.16 7 2.1 300
0.2 0+ 0+ 57.29 3.5 2.1 300
0.3 0+ 0+ 193.36 2.33 2.1 300

which can illustrate the changes related to various γ values is urgently needed. From dipole

distribution tables, it is easy to extract total number of polymer chains for all six orientations

and corresponding average length of chains. Of course, there are still two measurements

for these two quantities, see Section 2.3 Issue c).

Table 2.2 shows the interval of γ and corresponding parameter values when γ reach its

boundary. For example when a = 0.1, γ is close at 0 when Md is close to 0, and γ reach its

maximum 7.16 when l = 7,Md = 2.1,T = 300. Using γ intervals shown in Table.2.2, we are

able to record all information which shows the effect of γ on the degree of polymerization.

The results are shown in the next chapter.
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Chapter 3

Results & Conclusions

3.1 Results

Since in the 10 by 10 by 10 3D lattice, the occupation rate is set to be 0.05 for each

orientation, which implies the total number of dipoles is approximately 300. The same

initial 3D lattice were used through all simulations.

3.1.1 Physical 3D model with t=600

Fix t at 600. It limits the total number of successful movements to 600. Averagely, 600

will allow each dipole moves twice.
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ALOA, a=0.1
  ALOA fit, a=0.1
ALOA, a=0.2
  ALOA fit, a=0.2
ALOA, a=0.3
  ALOA fit, a=0.3

Figure 3.1: Average length of all chains in physical 3D model with t=600.
Count both polymers and independent monomers as chains.

Figure 3.1 and Figure 3.2 show average length of chains in two measurements, while

Figure 3.3 and Figure 3.4 present number of chains in two measurements.

None of traditional fitting functions, such as polynomial, works well for these data sets due

to lack of monotony in the curve trend. Therefore we designed a monotonic kernel fitting

function which concentrates on the curves of the scatter plots. The design of this kernel

function can be found in Appendix. E. From Figure 3.1 to Figure 3.4, the goodness of fit is

decent. The R2 value for all the fittings are above 0.85.

First, in Figure 3.4, the curve went up sharply when 0 < γ < 2, decreased a little as γ
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ALONT, a=0.1
  ALONT fit, a=0.1
ALONT, a=0.2
  ALONT fit, a=0.2
ALONT, a=0.3
  ALONT fit, a=0.3

Figure 3.2: Average length of nontrivial chains in physical 3D model with
t=600. Count only polymers as chains.

approaching 5 and then became flat. Compared with Figure 3.3, it is clear that most

monomers quickly form polymers with length two when γ goes from 0 to 2. As γ keeps

increasing, longer chains are developed (polymers with length two become parts of longer

chains) and hence the number of nontrivial chains will decrease.

An important finding is that the differences in degree of polymerization among all a levels

are quite slight. Those fitting curves are really close to each other. The finding coincides

with the discussion in Appendix D, which proves that the potential energy of dipoles mainly

depend on the configuration of dipoles instead of a levels and hence a has weak influence
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NOA, a=0.1
  NOA fit, a=0.1
NOA, a=0.2
  NOA fit, a=0.2
NOA, a=0.3
  NOA fit, a=0.3

Figure 3.3: Number of all chains in physical 3D model with t=600. Count
both polymers and independent monomers as chains.

on the degree of polymerization. With higher value of a, the average length of chains will

be just a little bigger and the number of chains will be a litter smaller.

Another finding is that even we used two measures to describe average length and number

of chains, the differences between these two measurements vanished after reaching certain

points. For example, when γ > 6 the differences are tiny (this finding can be seen clearly

in Figure 3.9 and Figure 3.10 in the next section). The differences only exist significantly

when γ is small (less than 2). With the degree of polymerization becoming higher, there

are much less independent monomers in the 3D lattice, thereby the two measures turn to be

identical, refer to Table 2.1.
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NONT, a=0.1
  NONT fit, a=0.1
NONT, a=0.2
  NONT fit, a=0.2
NONT, a=0.3
  NONT fit, a=0.3

Figure 3.4: Number of nontrivial chains in physical 3D model with t=600.
Count only polymers as chains.

Although the kernel fitting function works perfectly here, it requires different combinations

of the kernel functions designed for the particular patterns. From Figure 3.1 to Figure

3.4, we had already used three different forms of fitting functions. Besides, the forms of

combinations of kernel fitting functions are too complicated to interpret the meaning of the

parameters. In the following sections, there are several patterns that need extra effort to

design the fitting function. But the main reason we abandon curve fitting in the following

sections is that not all the points from the data sets are useful (this will be discussed later).

Curve fitting based on those unnecessary points will be misleading. Therefore we only use

scatter plots in the coming sections to show the trend of data.
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3.1.2 Physical 3D model with t=1500

In previous section, we set maximal successful movement t = 600 for all cases. When

t = 600, Matlab code is still able to return outcomes. However, when t is increasing,

like t = 1000, higher γ value will lead to an endless calculation. The reason for the

dead loop is the definition of successful move, which is the discrete time variable t. We

defined that only if the dipole changed its position or orientation, it will be counted as

a successful move. But some systems might reach a stable status, in which dipoles will

seldom change its position or orientation any more. In this situation, a computer will run

for a quite long time to simulate those unimportant movements. Thereby, a stop rule is

necessary. The rule can be defined as: if any randomly chosen dipole remains its position

and orientation after a hypothetical move, this will add 1 to "stable status indicator"; when

this indicator accumulates consecutively to 300, then stable status reaches. Consequently,

the time variable, which recorded the number of successful moves, provides important

information about the process of polymerization. Define the number of successful moves

as actual time, ta. t is the upper bound of ta.

Figure 3.5 to Figure 3.8 show the two quantities, average length and number of chains,

measured under different definitions of chains. Quantities using the definition of "all

chains" are plotted by solid markers, as quantities using the definition of "nontrivial chains"

are plotted by hollow markers. Figure 3.9 and Figure 3.10 make comparisons between
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Figure 3.5: Average length of all chains in physical 3D model with t=1500.
Count both polymers and independent monomers as chains.

those two measure methods for average length and number of chains respectively. It can

be observed the curves under the two measures begun to merge around γ = 2 and overlap

after γ = 4, when the scatter plot show that those hollow markers are filled by those solid

markers.

Compared with plots in Section 3.1.1, there are two main differences in this section:

† Curve patterns.

† Vertical values of critical points.
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Figure 3.6: Number of all chains in physical 3D model with t=1500. Count
both polymers and independent monomers as chains.

In Section 3.1.1, for average length of chains, the curves first went up and then became flat

in both measures (Figure 3.1, Figure 3.2), while the curves of number of chains in both

measures became flat when γ > 4 (Figure 3.3, Figure 3.4). In current section, the curves

of average length of chains first rapidly reached their peaks and then decreased gradually

(Figure 3.9). While the curves of number of chains went down to their bottoms around

γ = 4 and then increased gradually (Figure 3.10).

Another obvious difference is about the vertical critical value. In Figure 3.1 and Figure 3.2,

the values of maximal average length are around 5. In Figure 3.9, the value of maximal

average length is above 7. Since the total number of dipoles is fixed, increase in average
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Figure 3.7: Average length of nontrivial chains in physical 3D model with
t=1500. Count only polymers as chains.

length means decrease in number of chains.

The reason for these disparities is the time variable, which is the successful movements

of dipoles. In Section 3.1.1, t is fixed at 600, in every system dipoles made totally

600 successful movements. On the contrast, not all system in this section fulfilled 1500

movements, Figure 3.11 illustrates this. When γ < 4, the system made 1500 successful

movements, which means the system was still unstable. After γ = 4, t started to drop

dramatically, which indicates the system became stable.

After comparing Figure 3.11 with all others from Figure 3.1 to Figure 3.4, we found that the
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Figure 3.8: Number of nontrivial chains in physical 3D model with t=1500.
Count only polymers as chains.

inflections (change in curve trend) happened when the system was getting stable (around

γ = 4).

Before the system becomes stable, there still is potential for monomers to form longer

polymer chains. As a result, we should exclude unstable systems in our comparisons.

However, the unfinished process of polymerization did provide some valuable information.

It explicitly illustrated that if given enough time, systems with lower γ value have potential

to form longer chains. This will be discussed in Section 3.2.
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3.1.3 Range-adjusted physical 3D model with t=1500

Due to those restrictions in Section 2.4, γ has different intervals for each level of a, see

Table 2.2. The interval of γ when a = 0.3 is much wider than a = 0.1. The scatter plot

patterns of each a level show that their vertical values are close to each other and somehow

overlapped at same γ . Horizontally, the patterns of a = 0.2 is an extension of patterns of

a = 0.1; the patterns of a = 0.3 is an extension of patterns of a = 0.2. See Figure 3.12 to

Figure 3.17.

An interesting finding is that when γ > 20, all the curves become flat. When 0 < γ < 20,

all the scatter plot patterns are similar to previous ones in Section 3.1.2, including average

length of chains, number of chains, and time.
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3.2 Conclusions

3.2.1 Dominant Parameters

Based discussions in Section 3.1, we can divide γ values into several small intervals when

t = 1500:

† (0,2]: System is unstable. ta stays at 1500. Lot of monomers rapidly form polymers

with length two. Average length of chains in two measurements are both growing,

number of nontrivial chains is growing as well while number of all chains is falling.

† (2,4]: System is still unstable. ta stays at 1500. Plots under two measurements

start to merge and overlap. Polymers with length two become part of longer chains.

Average length of chains in two measurements keep increasing, number of chains in

two measurements are decreasing.

† (4,20]: System turns to be stable. ta drops dramatically. Plots under two

measurements are identical. Average length of chains decreases gradually while

number of chains rise slowly.

† 20+: System remains stable. ta stays around 450. Two measurements are identical.

Both average length (around 4.5) and number of chains (around 65) stay unchanged.
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Since we are only interested in stable systems, and when γ > 20 no obvious changes

happen, then our main focus should be 5 ≤ γ < 20 while t = 1500 (since when 4 ≤ γ < 5

there still are some unstable systems, we exclude this interval). The physical 3D model can

be simply used for this purpose if we exclude data when γ < 5.

Because two measurements are identical in this interval, it does not matter which one we

use. The total number of dipoles is fixed, so if we know average length of chains then the

number of chains can be easily calculated. The scatter plot pattern implies that curve fitting

will perform well. We used two approaches to fit the curves, quadratic polynomial fitting

(Figure 3.19) and kernel function fitting (Figure 3.20).

From Figure 3.19 and Figure 3.20, the difference among all three a levels are slight when

5 ≤ γ < 20. Thereby, in our final model, the only dominant parameter will be γ . Both

quadratic polynomial fitting and kernel function fitting give R2 value around 0.75, which

shows decent goodness of fit. Although these two fitting curves are almost same when

5 ≤ γ < 20, see Figure 3.21, there are two crucial differences between them:

† γ < 5: The quadratic polynomial fitting curves are close to each other among all three

a levels. The fitting functions have similar coefficients. Therefore we can combine

three fitting curves to one using mean of corresponding coefficients. This can not be

done under kernel fitting functions due to disparity in curve patterns when γ < 5. And

the disparity leads to big differences in the corresponding coefficients of the fitting
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Figure 3.19: Quadratic polynomial fitting using data in 5 ≤ γ < 20 in final
3D model.

functions.

† γ > 20: The quadratic polynomial fitting curves will go up dramatically, which does

not coincide with our findings in Figure 3.16. On the contrast, the kernel fitting

functions will go flat in this interval.

Using mean of estimated coefficients among three a levels in the quadratic polynomial

fitting functions, we get the relation between γ and average length of all chains:

ALOA = 0.01083γ2 −0.4147γ +8.706 (3.1)
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Figure 3.20: Kernel function fitting using data in 5 ≤ γ < 20 in final 3D
model.

Recall

γ = 557ε2 300K
T

(3.2)

= 557
M2

d

l3

300K
T

. (3.3)
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Substituted γ in 3.1 by 3.3, we get

ALOA = 0.01083(557
M2

d

l3

300K
T

)2 −0.4147(557
M2

d

l3

300K
T

)+8.706. (3.4)

It seems that quadratic fitting is a good choice to predict the average length of all chains in

stable systems when γ < 5. But based on reality, kernel fitting function is more appropriate

because it is monotonic. If we could have eliminated the disparity in curves of kernel fitting

functions when γ < 5, kernel fitting function would be undoubtedly the best choice.

Through all the above discussions, we draw the conclusion that the degree of

polymerization can be determined by only three parameters, dipole moment, distance

between molecules, and circumstance temperature. The parameter a is not important when

a is small.
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3.2.2 The Role Of Time Limit

Time limit has no effect on the degree of polymerization of systems that reach stable before

arriving at the time limit. However, time limit greatly determines the performance of

polymerization in systems which will not be stable until the time limit. For instance, this

difference can be found in Figure 3.1 (t = 600) and Figure 3.5 (t = 1500). From Figure

3.19, the quadratic fitting curve when γ < 5 seems to be a plausible way to predict average

length of chains in stable systems. However, this should be verified by more simulated data

sets.

3.3 Future Plans

With recent development in monitoring molecular charge distribution accurately [14],

our model provides a possible approach to predict the performance of polymerization.

However, to further improve the availability of our model, the following plans can be

applied:

† The most possible and reasonable plan is to apply larger limit value of successful

movements t. As mentioned in Section 3.2.2, using much larger limit value of t will

extract more information about stable system with small γ . It will enable us to test
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the fitting curves in Figure 3.19 and Figure 3.20 by using new data, and then improve

our kernel fitting functions if possible.

† The second plan is to increase the block size. In our 3D models, we used 10 by 10 by

10 cube as a block. In reality, the polymer chain can consist of hundreds monomers.

† The last plan could be a better generalized model. In all of our models, orientations

of dipoles are discrete. It is possible to model it using continuous orientation variable

in 3D.

The above plans are all about improving our models. Another aspect is to verify our models.

Since there are no data about the origin of life, it is impossible to verify our models through

that way. However, there are a lot of chemical experiments about polymerization have

been done. Is is plausible to use polymerization data to verify out models even though the

molecules in that processes are larger than simple and inorganic molecules.
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Appendix A

Matlab Code

function n=countF(M)

% Front(orientation of center cell in 3*3*3 matrix), count the

% number to calculate the potential-----

% a1*n1+a2*n2+a3*n3+a4*n4+a5*n5+a6*n6+a7*n7

n1=(M(2,2,1)==-3)+(M(2,2,3)==-3)-(M(2,2,1)==3)-(M(2,2,3)==3);

n2=(M(2,1,2)==3)+(M(2,3,2)==3)+(M(1,2,2)==3)+(M(3,2,2)==3)...

-(M(2,1,2)==-3)-(M(2,3,2)==-3)-(M(1,2,2)==-3)-(M(3,2,2)==-3);

n3=(M(1,2,1)==3)+(M(3,2,1)==3)+(M(1,2,3)==3)+(M(3,2,3)==3)+...

(M(2,1,1)==3)+(M(2,3,1)==3)+(M(2,1,3)==3)+(M(2,3,3)==3)-...

(M(1,2,1)==-3)-(M(3,2,1)==-3)-(M(1,2,3)==-3)-(M(3,2,3)==-3)-...
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(M(2,1,1)==-3)-(M(2,3,1)==-3)-(M(2,1,3)==-3)-(M(2,3,3)==-3);

n4=(M(1,2,1)==-2)+(M(3,2,1)==2)+(M(1,2,3)==2)+(M(3,2,3)==-2)+...

(M(2,1,1)==1)+(M(2,3,1)==-1)+(M(2,1,3)==-1)+(M(2,3,3)==1)-...

(M(1,2,1)==2)-(M(3,2,1)==-2)-(M(1,2,3)==-2)-(M(3,2,3)==2)-...

(M(2,1,1)==-1)-(M(2,3,1)==1)-(M(2,1,3)==1)-(M(2,3,3)==-1);

n5=(M(1,1,2)==3)+(M(1,3,2)==3)+(M(3,1,2)==3)+(M(3,3,2)==3)-...

(M(1,1,2)==-3)-(M(1,3,2)==-3)-(M(3,1,2)==-3)-(M(3,3,2)==-3);

n6=(M(1,1,1)==3)+(M(1,3,1)==3)+(M(3,1,1)==3)+(M(3,3,1)==3)+...

(M(1,1,3)==3)+(M(1,3,3)==3)+(M(3,1,3)==3)+(M(3,3,3)==3)-...

(M(1,1,1)==-3)-(M(1,3,1)==-3)-(M(3,1,1)==-3)-(M(3,3,1)==-3)-...

(M(1,1,3)==-3)-(M(1,3,3)==-3)-(M(3,1,3)==-3)-(M(3,3,3)==-3);

n7=(M(1,1,1)==-2)+(M(1,3,1)==-2)+(M(3,1,1)==2)+(M(3,3,1)==2)+...

(M(1,1,3)==2)+(M(1,3,3)==2)+(M(3,1,3)==-2)+(M(3,3,3)==-2)-...

(M(1,1,1)==2)-(M(1,3,1)==2)-(M(3,1,1)==-2)-(M(3,3,1)==-2)-...

(M(1,1,3)==-2)-(M(1,3,3)==-2)-(M(3,1,3)==2)-(M(3,3,3)==2)+...

(M(1,1,1)==1)+(M(1,3,1)==-1)+(M(3,1,1)==1)+(M(3,3,1)==-1)+...

(M(1,1,3)==-1)+(M(1,3,3)==1)+(M(3,1,3)==-1)+(M(3,3,3)==1)-...

(M(1,1,1)==-1)-(M(1,3,1)==1)-(M(3,1,1)==-1)-(M(3,3,1)==1)-...

(M(1,1,3)==1)-(M(1,3,3)==-1)-(M(3,1,3)==1)-(M(3,3,3)==-1);

n=[n1,n2,n3,n4,n5,n6,n7];

function n=countR(M)
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% Right(orientation of center cell in 3*3*3 matrix), count the

% number to calculate the potential----

% a1*n1+a2*n2+a3*n3+a4*n4+a5*n5+a6*n6+a7*n7

n1=(M(2,1,2)==-1)+(M(2,3,2)==-1)-(M(2,1,2)==1)-(M(2,3,2)==1);

n2=(M(2,2,1)==1)+(M(1,2,2)==1)+(M(2,2,3)==1)+(M(3,2,2)==1)...

-(M(2,2,1)==-1)-(M(1,2,2)==-1)-(M(2,2,3)==-1)-(M(3,2,2)==-1);

n3=(M(2,1,1)==1)+(M(2,3,1)==1)+(M(2,1,3)==1)+(M(2,3,3)==1)+...

(M(1,1,2)==1)+(M(1,3,2)==1)+(M(3,1,2)==1)+(M(3,3,2)==1)-...

(M(2,1,1)==-1)-(M(2,3,1)==-1)-(M(2,1,3)==-1)-(M(2,3,3)==-1)-...

(M(1,1,2)==-1)-(M(1,3,2)==-1)-(M(3,1,2)==-1)-(M(3,3,2)==-1);

n4=(M(2,1,1)==3)+(M(2,3,1)==-3)+(M(2,1,3)==-3)+(M(2,3,3)==3)+...

(M(1,1,2)==2)+(M(1,3,2)==-2)+(M(3,1,2)==-2)+(M(3,3,2)==2)-...

(M(2,1,1)==-3)-(M(2,3,1)==3)-(M(2,1,3)==3)-(M(2,3,3)==-3)-...

(M(1,1,2)==-2)-(M(1,3,2)==2)-(M(3,1,2)==2)-(M(3,3,2)==-2);

n5=(M(1,2,1)==1)+(M(3,2,1)==1)+(M(1,2,3)==1)+(M(3,2,3)==1)-...

(M(1,2,1)==-1)-(M(3,2,1)==-1)-(M(1,2,3)==-1)-(M(3,2,3)==-1);

n6=(M(1,1,1)==1)+(M(1,3,1)==1)+(M(3,1,1)==1)+(M(3,3,1)==1)+...

(M(1,1,3)==1)+(M(1,3,3)==1)+(M(3,1,3)==1)+(M(3,3,3)==1)-...

(M(1,1,1)==-1)-(M(1,3,1)==-1)-(M(3,1,1)==-1)-(M(3,3,1)==-1)-...

(M(1,1,3)==-1)-(M(1,3,3)==-1)-(M(3,1,3)==-1)-(M(3,3,3)==-1);
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n7=(M(1,1,1)==2)+(M(1,3,1)==-2)+(M(3,1,1)==-2)+(M(3,3,1)==2)+...

(M(1,1,3)==2)+(M(1,3,3)==-2)+(M(3,1,3)==-2)+(M(3,3,3)==2)-...

(M(1,1,1)==-2)-(M(1,3,1)==2)-(M(3,1,1)==2)-(M(3,3,1)==-2)-...

(M(1,1,3)==-2)-(M(1,3,3)==2)-(M(3,1,3)==2)-(M(3,3,3)==-2)+...

(M(1,1,1)==3)+(M(1,3,1)==-3)+(M(3,1,1)==3)+(M(3,3,1)==-3)+...

(M(1,1,3)==-3)+(M(1,3,3)==3)+(M(3,1,3)==-3)+(M(3,3,3)==3)-...

(M(1,1,1)==-3)-(M(1,3,1)==3)-(M(3,1,1)==-3)-(M(3,3,1)==3)-...

(M(1,1,3)==3)-(M(1,3,3)==-3)-(M(3,1,3)==3)-(M(3,3,3)==-3);

n=[n1,n2,n3,n4,n5,n6,n7];

function n=countU(M)

% Up(orientation of center cell in 3*3*3 matrix), count the

% number to calculate the potential----

% a1*n1+a2*n2+a3*n3+a4*n4+a5*n5+a6*n6+a7*n7

n1=(M(1,2,2)==-2)+(M(3,2,2)==-2)-(M(1,2,2)==2)-(M(3,2,2)==2);

n2=(M(2,2,1)==2)+(M(2,1,2)==2)+(M(2,3,2)==2)+(M(2,2,3)==2)...

-(M(2,2,1)==-2)-(M(2,1,2)==-2)-(M(2,3,2)==-2)-(M(2,2,3)==-2);

n3=(M(1,2,1)==2)+(M(3,2,1)==2)+(M(1,2,3)==2)+(M(3,2,3)==2)+...

(M(1,1,2)==2)+(M(1,3,2)==2)+(M(3,1,2)==2)+(M(3,3,2)==2)-...

(M(1,2,1)==-2)-(M(3,2,1)==-2)-(M(1,2,3)==-2)-(M(3,2,3)==-2)-...

(M(1,1,2)==-2)-(M(1,3,2)==-2)-(M(3,1,2)==-2)-(M(3,3,2)==-2);
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n4=(M(1,2,1)==-3)+(M(3,2,1)==3)+(M(1,2,3)==3)+(M(3,2,3)==-3)+...

(M(1,1,2)==1)+(M(1,3,2)==-1)+(M(3,1,2)==-1)+(M(3,3,2)==1)-...

(M(1,2,1)==3)-(M(3,2,1)==-3)-(M(1,2,3)==-3)-(M(3,2,3)==3)-...

(M(1,1,2)==-1)-(M(1,3,2)==1)-(M(3,1,2)==1)-(M(3,3,2)==-1);

n5=(M(2,1,1)==2)+(M(2,3,1)==2)+(M(2,1,3)==2)+(M(2,3,3)==2)-...

(M(2,1,1)==-2)-(M(2,3,1)==-2)-(M(2,1,3)==-2)-(M(2,3,3)==-2);

n6=(M(1,1,1)==2)+(M(1,3,1)==2)+(M(3,1,1)==2)+(M(3,3,1)==2)+...

(M(1,1,3)==2)+(M(1,3,3)==2)+(M(3,1,3)==2)+(M(3,3,3)==2)-...

(M(1,1,1)==-2)-(M(1,3,1)==-2)-(M(3,1,1)==-2)-(M(3,3,1)==-2)-...

(M(1,1,3)==-2)-(M(1,3,3)==-2)-(M(3,1,3)==-2)-(M(3,3,3)==-2);

n7=(M(1,1,1)==1)+(M(1,3,1)==-1)+(M(3,1,1)==-1)+(M(3,3,1)==1)+...

(M(1,1,3)==1)+(M(1,3,3)==-1)+(M(3,1,3)==-1)+(M(3,3,3)==1)-...

(M(1,1,1)==-1)-(M(1,3,1)==1)-(M(3,1,1)==1)-(M(3,3,1)==-1)-...

(M(1,1,3)==-1)-(M(1,3,3)==1)-(M(3,1,3)==1)-(M(3,3,3)==-1)+...

(M(1,1,1)==-3)+(M(1,3,1)==-3)+(M(3,1,1)==3)+(M(3,3,1)==3)+...

(M(1,1,3)==3)+(M(1,3,3)==3)+(M(3,1,3)==-3)+(M(3,3,3)==-3)-...

(M(1,1,1)==3)-(M(1,3,1)==3)-(M(3,1,1)==-3)-(M(3,3,1)==-3)-...

(M(1,1,3)==-3)-(M(1,3,3)==-3)-(M(3,1,3)==3)-(M(3,3,3)==3);

n=[n1,n2,n3,n4,n5,n6,n7];

function w=weight(a,b,M)

% checked

a1=2/(1-a^2)-2;
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a2=2-2/sqrt(1+a^2);

a3=sqrt(2)-(sqrt(1+(1-a)^2)+sqrt(1+(1+a)^2))/sqrt(a^4+4);

a4=2*sqrt(2)/(2-a^2/2)-2/sqrt(2+a^2/2);

a5=sqrt(2)-2/sqrt(2+a^2);

a6=2/sqrt(3)-1/sqrt(3-2*a+a^2)-1/sqrt(3+2*a+a^2);

a7=1/sqrt(3+a^2/2+2*a)+1/sqrt(3+a^2/2-2*a)-2/sqrt(3+a^2/2);

% a1=-2/(1-a^2)+2;

% a2=-2+2/sqrt(1+a^2);

% a3=-sqrt(2)+(sqrt(1+(1-a)^2)+sqrt(1+(1+a)^2))/sqrt(a^4+4);

% a4=-2*sqrt(2)/(2-a^2/2)+2/sqrt(2+a^2/2);

% a5=-sqrt(2)+2/sqrt(2+a^2);

% a6=-2/sqrt(3)+1/sqrt(3-2*a+a^2)+1/sqrt(3+2*a+a^2);

% a7=-1/sqrt(3+a^2/2+2*a)-1/sqrt(3+a^2/2-2*a)+2/sqrt(3+a^2/2);

e=[a1,a2,a3,a4,a5,a6,a7];

wcR=exp(-b*e*countR(M)’);

wcL=1/wcR;

wcU=exp(-b*e*countU(M)’);

wcD=1/wcU;

wcF=exp(-b*e*countF(M)’);

wcB=1/wcF;

w=[wcR,wcL,wcU,wcD,wcF,wcB];

function subM=submat(i,j,k,M)

%pick the submatrix from the big Matrix

m=size(M,1);
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subM=M([1+mod(i-2,m),1+mod(i-1,m),1+mod(i,m)],...

[1+mod(j-2,m),1+mod(j-1,m),1+mod(j,m)],...

[1+mod(k-2,m),1+mod(k-1,m),1+mod(k,m)]);

function [Mnew,N]=upd(a,b,n,M)

%update function. a is the length of dipole.

% b is the Bolzman constant. n

%is times of loops. M is initial matrix.

N=1;

t=0;

dirs=[1,-1,2,-2,3,-3];

m=size(M,1);

while N<=n

if t>300 break;end

% really really really important!!initialize matrix

WM=[];pos=[];

IJK=ceil(m*rand(1,3));

i0=IJK(1);j0=IJK(2);k0=IJK(3);

if M(i0,j0,k0)==0

continue

end

org=M(i0,j0,k0); %original direction%

M(i0,j0,k0)=0;

subM=submat(i0,j0,k0,M);

i1=[1+mod(i0-2,m),1+mod(i0-1,m),1+mod(i0,m)];

j1=[1+mod(j0-2,m),1+mod(j0-1,m),1+mod(j0,m)];
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k1=[1+mod(k0-2,m),1+mod(k0-1,m),1+mod(k0,m)];

%find 0’s and record their positions

[x,y]=find(subM==0);

z=ceil(y/3);

y=1+mod(y-1,3);

pos=[i1(x)’,j1(y)’,k1(z)’];

n0=length(x);

%weight matrix for submatrix

for i=1:n0

WM(i,:)=weight(a,b,submat(pos(i,1),

pos(i,2),pos(i,3),M));

end

u=sum(sum(WM));

v=u*rand(1);

WMT=WM’;

WMR=WMT(:);

n1=1+sum(cumsum(WMR)<v);

np=ceil(n1/6); %number to locate position

nd=1+mod(n1-1,6); %number to locate direction

%if direction in the chosen cell doesn’t change

%, then not count%

if org==dirs(nd) && pos(np,1)==i0

&& pos(np,2)==j0 && pos(np,3)==k0

M(i0,j0,k0)=org;
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t=t+1;continue;

end

M(pos(np,1),pos(np,2),pos(np,3))=dirs(nd);

N=N+1;

t=0;

end

Mnew=M;

N=N-1;

%generate a m*m*m matrix

function M=gen(p,m)

dirs=[0 1 -1 2 -2 3 -3];

%directions, index for the following, index search

R=rand(m,m,m);

%use logic judge get numbers indicate times

%when they are ture, then could get

%the corresponding interval,use 1+..

%since index start from 1, 0 cant work.

result=1+(R>=1-6*p)+(R>=1-5*p)+(R>=1-4*p)

+(R>=1-3*p)+(R>=1-2*p)+(R>=1-p);

M=dirs(result); %map resuslt(1 2 3 4 5 6 7) to dirs

%count the length of chains

function C=lofc(A)

m=size(A,1);

75



C=zeros(m+5,6);

while sum(sum(sum(abs(A))))~=0

IJK=ceil(m*rand(1,3));

i0=IJK(1);j0=IJK(2);k0=IJK(3);

n=0;

if A(i0,j0,k0)==0 continue;end

switch A(i0,j0,k0)

case 1

i=i0;j=j0;k=k0;

%if A(i,1+mod(j-2,m),k)==1 continue;end

while A(i,1+mod(j-2,m),k)==1

n=n+1;

A(i,1+mod(j-2,m),k)=0;

j=1+mod(j-2,m);

end

i=i0;j=j0;k=k0;

while A(i,j,k)==1

n=n+1;

A(i,j,k)=0;

j=1+mod(j,m);

end

C(n,1)=C(n,1)+1;

case -1

%if A(i,1+mod(j,m),k)==-1 continue;end

i=i0;j=j0;k=k0;

76



while A(i,1+mod(j,m),k)==-1

n=n+1;

A(i,1+mod(j,m),k)=0;

j=1+mod(j,m);

end

i=i0;j=j0;k=k0;

while A(i,j,k)==-1

n=n+1;

A(i,j,k)=0;

j=1+mod(j-2,m);

end

C(n,2)=C(n,2)+1;

case 2

%if A(1+mod(i,m),j,k)==2 continue;end

i=i0;j=j0;k=k0;

while A(1+mod(i,m),j,k)==2

n=n+1;

A(1+mod(i,m),j,k)=0;

i=1+mod(i,m);

end

i=i0;j=j0;k=k0;

while A(i,j,k)==2

n=n+1;

A(i,j,k)=0;

i=1+mod(i-2,m);

end
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C(n,3)=C(n,3)+1;

case -2

%if A(1+mod(i-2,m),j,k)==-2 continue;end

i=i0;j=j0;k=k0;

while A(1+mod(i-2,m),j,k)==-2

n=n+1;

A(1+mod(i-2,m),j,k)=0;

i=1+mod(i-2,m);

end

i=i0;j=j0;k=k0;

while A(i,j,k)==-2

n=n+1;

A(i,j,k)=0;

i=1+mod(i,m);

end

C(n,4)=C(n,4)+1;

case 3

%if A(i,j,1+mod(k,m))==3 continue;end

i=i0;j=j0;k=k0;

while A(i,j,1+mod(k,m))==3

n=n+1;

A(i,j,1+mod(k,m))=0;

k=1+mod(k,m);

end

i=i0;j=j0;k=k0;

while A(i,j,k)==3
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n=n+1;

A(i,j,k)=0;

k=1+mod(k-2,m);

end

C(n,5)=C(n,5)+1;

case -3

%if A(i,j,1+mod(k-2,m))==-3 continue;end

i=i0;j=j0;k=k0;

while A(i,j,1+mod(k-2,m))==-3

n=n+1;

A(i,j,1+mod(k-2,m))=0;

k=1+mod(k-2,m);

end

i=i0;j=j0;k=k0;

while A(i,j,k)==-3

n=n+1;

A(i,j,k)=0;

k=1+mod(k,m);

end

C(n,6)=C(n,6)+1;

end

end

C(m+2,:)=sum(C(2:m,:));

C(m+4,:)=sum(C(1:m,:));

for i=1:6

for j=1:m
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C(m+1,i)=C(m+1,i)+j*C(j,i);

end

C(m+3,i)=(C(m+1,i)-C(1,i))/C(m+2,i);

C(m+5,i)=C(m+1,i)/C(m+4,i);

end

C(isnan(C)==1) = 0;

function [C,time,beta]=cnep1(B,n)

d=size(B,1)+5;

C=zeros(d,6,n);

time=zeros(1,n);

beta=linspace(0.01,7.1614,n);

for i=1:n

[A,t]=upd(0.1,100*beta(i),1500,B);

C(:,:,i)=lofc(A);

time(i)=t;

%m=length(C);

%D(i,1)=beta(i);

%number of chains%

%D(i,2)=sum(C(m-1,:));

%average length of chains%

%D(i,3)=C(m-1,:)*C(m,:)’/D(i,2);

end

function [C,time,beta]=cnep2(B,n)
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d=size(B,1)+5;

C=zeros(d,6,n);

time=zeros(1,n);

beta=linspace(0.01,57.2914,n);

for i=1:n

[A,t]=upd(0.2,25*beta(i),1500,B);

C(:,:,i)=lofc(A);

time(i)=t;

%m=length(C);

%D(i,1)=beta(i);

%number of chains%

%D(i,2)=sum(C(m-1,:));

%average length of chains%

%D(i,3)=C(m-1,:)*C(m,:)’/D(i,2);

end

function [C,time,beta]=cnep3(B,n)

d=size(B,1)+5;

C=zeros(d,6,n);

time=zeros(1,n);

beta=linspace(0.01,193.359,n);

for i=1:n

[A,t]=upd(0.3,100/9*beta(i),1500,B);

C(:,:,i)=lofc(A);

time(i)=t;

%m=length(C);
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%D(i,1)=beta(i);

%number of chains%

%D(i,2)=sum(C(m-1,:));

%average length of chains%

%D(i,3)=C(m-1,:)*C(m,:)’/D(i,2);

end

function [C1,t1,C2,t2,C3,t3,beta]=cnepall(B,n)

C1=zeros(size(B,1)+5,6,n);C2=zeros(size(B,1)+5,6,n);

C3=zeros(size(B,1)+5,6,n);

beta=linspace(0.01,19.651,n);

t1=zeros(1,n);

t2=zeros(1,n);

t3=zeros(1,n);

%beta=linspace(0.01,40,n);

for i=1:n

[A1,ti1]=upd(0.1,100*beta(i),1500,B);

[A2,ti2]=upd(0.2,25*beta(i),1500,B);

[A3,ti3]=upd(0.3,100/9*beta(i),1500,B);

C1(:,:,i)=lofc(A1);C2(:,:,i)=lofc(A2);C3(:,:,i)=lofc(A3);

t1(i)=ti1;t2(i)=ti2;t3(i)=ti3;

%m=length(C1);

%D1(i,1)=beta(i);D2(i,1)=beta(i);D3(i,1)=beta(i);

%number of chains%

%D1(i,2)=sum(C1(m-1,:));

%D2(i,2)=sum(C2(m-1,:));
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%D3(i,2)=sum(C3(m-1,:));

%average length of chains%

%D1(i,3)=C1(m-1,:)*C1(m,:)’/D1(i,2);

%D2(i,3)=C2(m-1,:)*C2(m,:)’/D2(i,2);

%D3(i,3)=C3(m-1,:)*C3(m,:)’/D3(i,2);

end

function h=matu(B)

A=zeros(size(B)+2);

n=length(A);

A(2:n-1,2:n-1,2:n-1)=B;

Ur=zeros(size(A));

Ul=zeros(size(A));

Vu=zeros(size(A));

Vd=zeros(size(A));

Wf=zeros(size(A));

Wb=zeros(size(A));

Ur(A==1)=1;

Ul(A==-1)=-1;

Vu(A==2)=-1;

Vd(A==-2)=1;

Wf(A==3)=-1;

Wb(A==-3)=1;
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% U(A==0)=0;V(A==0)=0;W(A==0)=0;

% U(A==1)=1;V(A==1)=0;W(A==1)=0;

% U(A==-1)=-1;V(A==-1)=0;W(A==-1)=0;

% U(A==2)=0;V(A==2)=1;W(A==2)=0;

% U(A==-2)=0;V(A==-2)=-1;W(A==-2)=0;

% U(A==3)=0;V(A==3)=0;W(A==3)=1;

% U(A==-3)=0;V(A==-3)=0;W(A==-3)=-1;

T=zeros(size(A));

% [x,y,z]=meshgrid(0.5:1:n-0.5,0.5:1:n-0.5,-0.5:-1:-n+0.5);

[xr,yr,zr]=meshgrid(0:1:n-1,0.5:1:n-0.5,0.5:1:n-0.5);

[xl,yl,zl]=meshgrid(1:1:n,0.5:1:n-0.5,0.5:1:n-0.5);

[xu,yu,zu]=meshgrid(0.5:1:n-0.5,1:1:n,0.5:1:n-0.5);

[xd,yd,zd]=meshgrid(0.5:1:n-0.5,0:1:n-1,0.5:1:n-0.5);

[xf,yf,zf]=meshgrid(0.5:1:n-0.5,0.5:1:n-0.5,1:1:n);

[xb,yb,zb]=meshgrid(0.5:1:n-0.5,0.5:1:n-0.5,0:1:n-1);

% [x,y,z]=meshgrid(0,0:1:n,0:1:n);

% [sx sy sz] = meshgrid(0:1:10,0:1:10,0:-1:-10);
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% verts=stream3(x,y,z,T,V,T,x,y,z);

% streamline(verts)

% % view(3)

% % alpha(0.6);

% % axis tight

% % shading interp;

% % camlight; lighting gouraud

% hold on;

% verts=stream3(sx,sy,sz,T,V,T,sx,sy,sz);

% streamtube(verts,1);

% alpha(0.7);

% % streamtube(x,y,z,T,V,T,x,y,z);

% view(3)

% axis tight

% shading interp;

% camlight; lighting gouraud

% hold on;

quiver3(xr,yr,zr,Ur,T,T,’b’,’LineWidth’,1.5);

hold on;

quiver3(xl,yl,zl,Ul,T,T,’c’,’LineWidth’,1.5);

hold on;

% coneplot(Ur,T,T,xr,yr,zr);
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% hold on;

%

% coneplot(Ul,T,T,xl,yl,zl);

% hold on;

vertsr=stream3(xr,yr,zr,Ur,T,T,xr,yr,zr);

streamtube(vertsr,1)

alpha(0.6)

hold on;

vertsl=stream3(xl,yl,zl,Ul,T,T,xl,yl,zl);

streamtube(vertsl,1)

alpha(0.6)

hold on;

quiver3(xu,yu,zu,T,Vu,T,’r’,’LineWidth’,1.5);

hold on;

quiver3(xd,yd,zd,T,Vd,T,’g’,’LineWidth’,1.5);

hold on;

vertsu=stream3(xu,yu,zu,T,Vu,T,xu,yu,zu);

streamtube(vertsu,1)

alpha(0.6)

hold on;

vertsd=stream3(xd,yd,zd,T,Vd,T,xd,yd,zd);
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streamtube(vertsd,1)

alpha(0.6)

hold on;

quiver3(xf,yf,zf,T,T,Wf,’k’,’LineWidth’,1.5);

hold on;

quiver3(xb,yb,zb,T,T,Wb,’w’,’LineWidth’,1.5);

hold on;

vertsf=stream3(xf,yf,zf,T,T,Wf,xf,yf,zf);

streamtube(vertsf,1)

alpha(0.6)

hold on;

vertsb=stream3(xb,yb,zb,T,T,Wb,xb,yb,zb);

streamtube(vertsb,1)

alpha(0.6)

hold off;

view(3)

shading interp;

camlight; lighting gouraud

%***********************************%

% vertsl=stream3(xl,yl,zl,Ul,T,T,x,y,z);
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% streamline(vertsl)

% hold off;

% axis tight

function h=mat3dv(A)

U=zeros(size(A));

V=zeros(size(A));

W=zeros(size(A));

n=length(A);

U(A==0)=0;V(A==0)=0;W(A==0)=0;

U(A==1)=1;V(A==1)=0;W(A==1)=0;

U(A==-1)=-1;V(A==-1)=0;W(A==-1)=0;

U(A==2)=0;V(A==2)=1;W(A==2)=0;

U(A==-2)=0;V(A==-2)=-1;W(A==-2)=0;

U(A==3)=0;V(A==3)=0;W(A==3)=1;

U(A==-3)=0;V(A==-3)=0;W(A==-3)=-1;

% X=ones(size(A));

% Y=ones(size(A));

% Z=ones(size(A));

T=zeros(size(A));

% [x,y,z]=meshgrid(0.5:1:19.5,0.5:1:19.5,-0.5:-1:-19.5);

% quiver3(x,y,z,U,T,T,’r’);

% grid minor;

% view(30,40);

% camproj perspective;
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[x,y,z]=meshgrid(0.5:1:n-0.5,0.5:1:n-0.5,-0.5:-1:-n+0.5);

% for i=1:4

% subplot(2,2,i);

% i=1;

% quiver3(x(:,:,1+5*(i-1):5*i),y(:,:,1+5*(i-1):5*i),

z(:,:,1+5*(i-1):5*i),T(:,:,1+5*(i-1):5*i),

T(:,:,1+5*(i-1):5*i),W(:,:,1+5*(i-1):5*i),’y’);

% hold on;

% quiver3(x(:,:,1+5*(i-1):5*i),y(:,:,1+5*(i-1):5*i),

z(:,:,1+5*(i-1):5*i),U(:,:,1+5*(i-1):5*i),

T(:,:,1+5*(i-1):5*i),T(:,:,1+5*(i-1):5*i),’b’,’LineWidth’,2);

% hold on;

% quiver3(x(:,:,1+5*(i-1):5*i),y(:,:,1+5*(i-1):5*i),

z(:,:,1+5*(i-1):5*i),T(:,:,1+5*(i-1):5*i),

V(:,:,1+5*(i-1):5*i),T(:,:,1+5*(i-1):5*i),’r’,’LineWidth’,2);

% hold off;

% % end

% view(30,40);

% camproj perspective;

quiver3(x,y,z,T,T,W,’k’,’LineWidth’,2);

hold on;
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quiver3(x,y,z,U,T,T,’b’,’LineWidth’,2);

hold on;

quiver3(x,y,z,T,V,T,’r’,’LineWidth’,2);

hold off;

% end

view(30,40);

camproj perspective;

%

% daspect([1,1,1]);

% h=coneplot(X,Y,Z,U,V,W,’nointerp’,0.4);

% set(h,’FaceColor’,’blue’,’EdgeColor’,’none’)

% view(30,40);

% camproj perspective;
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Appendix B

Generalized Dipole Moment And

Potential Energy Of Dipole

The dipole moment is the sum of the products of the amount of each charge and the distance

between their centroid. The centroid of charges in a system is similar to the center of mass

of a system [11]. Dipole moment can be described as

p =
n

∑
i=1

qiri, (B.1)

where qi is the quantity of ith charge with signs, ri is the distance vector from system

centroid to the ith charge. The simplest example of this is a dipole with equal magnitude

but opposite sign charges separated by some distance.
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With the definition of electric field E, Coulomb’s law for the electric field at a point r due

to a point charge q is

E =
qr
r3 . (B.2)

Similarly, the electric field at a point r due to a number of point charges qn, located at

positions rn, is given by

E(r) =
n

∑
i=1

qi(r− ri)

|r− ri|3
. (B.3)

The energy of dipole in an external electric field can be written as

Up =−p ·E. (B.4)

An object with polarity is influenced by a torque τ when presented in an external electric

field. The torque will align the dipole with the field, and result in an orientation of lower

potential energy. For a spatially uniform electric field E, the torque is given by

τ = p×E. (B.5)

In general, the torque can be calculated if we know the dipole moment and the distribution
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of electric field around the dipole.

The potential energy of two dipoles p and p′, a distance r apart, is given by

Upp′ =−p ·Ep′ =
p ·p′ −3(p · r̂)(p′ · r̂)

r3 , (B.6)

where r̂ =
r
|r| , Ep′ is electric field generated by p′.

Since each dipole moment in uniform lattice has same mode, therefore ||p|| = ||p′||,

according to (B.6),

Upp′ =−p ·Ep′ = −p ·p′ −3(p · r̂)(p′ · r̂)
r3 (B.7)

= −||p||2 cosθpp′ −3cosθpr cosθp′r
r3 (B.8)

=
||p||2

r3 f , (B.9)

where scale function f describes the position association among p,p′,r.
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Appendix C

Units Transformation

In Section 2.2, we mentioned if q and r are in appropriate units, the potential energy can

be written as (2.4), V = q/r. The unit system is centimeter-gram-second (CGS) system of

units, which only uses centimeter, gram, second as three base units, all the other units can

be derived from these three base units.

We shall use the following two units in CGS system:

† Unit of charge: statC:= 1 statC = 1g
1
2 · cm

3
2 · s−1

† Unit of energy: erg:= 1erg = 1g · cm2 · s−2

For elementary charge e:

94



1e = 4.80320425×10−10statC.

For angstroms Å:

1 Å = 10−8 cm

For Boltzmann constant kB:

kB = 1.3806488×10−16erg ·K−1.

For the unit of dipole moment D:

1 D = 10−18 statC · cm

= 10−10 statC ·Å

≈ 0.2082 eÅ.

The potential energy of two point elementary charges separated by one angstrom in (1.2)
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can be adjusted in the following form

U =
e2

Å
(C.1)

=
(4.80320425×10−10statC)2

10−8cm
(C.2)

= 2.30708×10−11erg. (C.3)

Then inside Boltzmann factor (1.5),

βU =
U

kBT
(C.4)

=
U

kB ·300K
· 300K

T
(C.5)

=
2.30708×10−11erg

1.3806488×10−16erg ·K−1 ·300K
· 300K

T
(C.6)

= 557 · 300K
T

(C.7)

K is unit ’Kelvin’ for temperature T .

Since the above equations are derived for two point elementary charges separated by one
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angstrom. If the charge q and distance r become q = νe and r = l in our units, then

βU = 557 · 300K
T

· ν2

l
(C.8)

Furthermore, if energy U is specified in state i in our 3-D physical model,

βUi = 557 · 300K
T

· ν2

l
· fi(a) (C.9)

= 557 · 300K
T

· ν2l2a2

l3 · fi(a)
a2 (C.10)

= 557 · 300K
T

· M2
d

l3 ·gi(a). (C.11)
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Appendix D

Taylor Series Expansion Of The

Configuration Factor cF

Using Taylor series to expand expressions in Section 2.2 around 0 to the second power:
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Pattern Initial Expression Taylor Series Expansion

1
2

1−a2 −2 2a2 +O(a)3

2 2− 2√
1+a2

a2 +O(a)3

3 0 0

4
√

2−
√

1+(1−a)2 +
√

1+(1+a)2
√

a4 +4
− a2

4
√

2
+O(a)3

5
2
√

2

2− a2

2

− 2√
2+ a2

2

3a2

4
√

2
+O(a)3

6
2√
3
− 1√

3+a2 −2a
− 1√

3+a2 +2a
O(a)3

7
1√

3+ a2

2 +2a
+

1√
3+ a2

2 −2a
− 2√

3+ a2

2

a2

3
√

3
+O(a)3

8
√

2− 2√
a2 +2

a2

2
√

2
+O(a)3

9 0 0

From all the above extensions, when a is close to 0, all nine patterns can be expressed in

term of c f ·a2, where c f is a constant specified by a particular pattern. Then g(a) mentioned

in (2.7) only very slightly depends on value of a, g(a) = ∑c f + O(a)3 = cF + O(a)3.

Consequently, given same configuration, the difference of potential energies U among all

three a levels (a = 0.1,a = 0.2,a = 0.3) are tiny.

99



Appendix E

Monotonic Kernel Fitting Function

As mentioned in Section 3.1, we need a fitting function to capture the monotonic curve

trends in various intervals. This can be fulfilled through setting an always non-negative

function as the derivative of the fitting function. And the non-negative function will be our

kernel function k(x). Support the curve fitting function is C(x) and its derivative is C′(x).

A good choice of kernel function is

k(x) =
1

coshx2 .

k(x) can be scaled and shifted to l(x):

l(x) = k(x−a
b )
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For Figure 3.1 and Figure 3.2, C′(x) should be always non-negative, and it should be close

0 around x = 0 and this requires C′(x) in the form

C′(x) = xl(x)

= x
[
ck(x−a

b )
]
.

C(x) =
∫

C′(x)dx =
∫

x
[
ck(x−a

b )
]

dx

= −b2
1c1 log(cosh x−a

b )+bcx tanh x−a
b + c0,

where b,c should be greater than 0, c0 is the initial value in integration.

For Figure 3.3, C′(x) should be always non-positive.

C′(x) = l(x)

C(x) =
∫

C′(x)dx =
∫

ck(x−a
b )dx

= bc tanh x−a
b + c0,

where b,c should be less than 0, c0 is the initial value in integration.
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For Figure 3.4, it gets more complicated. It’s not monotonic anymore. However, we can

cut the whole interval into two parts at some point φ around γ = 2. In those two parts, the

trends are still monotonic, increasing and decreasing respectively. Only one kernel will not

be enough to get a good fit. Then C′(x) should be written as

C′(x) = (φ − x) [l1(x)+ l2(x)]

= (φ − x)
[
c1k(x−a1

b1
)+ c2k(x−a2

b2
)
]
,

C(x) =
∫

C′(x)dx

= b2
1c1 log(cosh x−a1

b1
)+b2

2c2 log(cosh x−a2
b2

)

+b1c1(φ − x) tanh x−a1
b1

+b2c2(φ − x) tanh x−a2
b2

+ c0,

where b1,b2,c1,c2 are greater than 0 and t is around 2. c0 is the initial value in integration.

So C′(x) will be positive when x < φ and negative after that.
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