
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's 
Reports - Open 

Dissertations, Master's Theses and Master's 
Reports 

2010 

Edge coloring BIBDS and constructing MOELRs Edge coloring BIBDS and constructing MOELRs 

John S. Asplund 
Michigan Technological University 

Follow this and additional works at: https://digitalcommons.mtu.edu/etds 

 Part of the Mathematics Commons 

Copyright 2010 John S. Asplund 

Recommended Citation Recommended Citation 
Asplund, John S., "Edge coloring BIBDS and constructing MOELRs ", Master's Thesis, Michigan 
Technological University, 2010. 
https://doi.org/10.37099/mtu.dc.etds/202 

Follow this and additional works at: https://digitalcommons.mtu.edu/etds 

 Part of the Mathematics Commons 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.mtu.edu%2Fetds%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.37099/mtu.dc.etds/202
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.mtu.edu%2Fetds%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages


Edge Coloring BIBDs and
Constructing MOELRs

By
JOHN S. ASPLUND

A THESIS

Submitted in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE IN MATHEMATICAL SCIENCES

MICHIGAN TECHNOLOGICAL UNIVERSITY
2010

© 2010 John S. Asplund





This thesis, "Edge Coloring BIBDs and Constructing MOELRs", is hereby ap-
proved in partial fulfillment of the requirements for the degree of MASTER OF
SCIENCE IN MATHEMATICAL SCIENCES.

DEPARTMENT:
Mathematical Sciences

Signatures:

Thesis Advisor
Dr. Melissa Keranen

Department Chair
Dr. Mark Gockenbach

Date





Acknowledgements

I would like to dedicate this first to Nancy Lachapelle for her everlasting support and love.
Thank you darling. Thank you Mom and Dad for all the visits and trips to Walmart and
the support you have given me. They did not go unnoticed. Dave Kamin, I wish you could
be here to right now. It has been too long since our last talk. I am sure I speak for your
family when I say we miss you and await your return. Make sure you bring back souvenirs.
I would also like to thank Diane Gutekunst for supporting me throughout my graduate
career. You have been able to support me from afar with your bountiful gifts of assorted
candies, goodies, and words of encouragement. Thank you for all that you have given me.

Next I would to thank Melissa Keranen for her support and assistance throughout this
book. Without you, this would not have been possible. I know I put a lot of strain on you
with the constant questions especially since you are in the process of raising two beautiful
children, Lily and Maija.

I would like to thank Don Kreher for his assistance in the beginning of Chapter 6. I
would also like to thank Richard Fears with his assistance in creating bibdchecker.

Finally, I would like to thank everyone else that put up with my constant barrage of
questions including Dave Clark, Richard Fears, Margaret Perander, Jeanne Meyers, and
Tori Conners. Without all of you this may not have been possible.

i



Abstract

Chapter 1 is used to introduce the basic tools and mechanics used within this thesis. Some
historical uses and background are touched upon as well. The majority of the definitions
are contained within this chapter as well.

In Chapter 2 we consider the question whether one can decompose λ copies of monochro-
matic Kv into copies of Kk such that each copy of the Kk contains at most one edge from
each Kv. This is called a proper edge coloring (Hurd, Sarvate, [29]). The majority of the
content in this section is a wide variety of examples to explain the constructions used in
Chapters 3 and 4.

In Chapters 3 and 4 we investigate how to properly color BIBD(v, k, λ) for k = 4, and
5. Not only will there be direct constructions of relatively small BIBDs, we also prove
some generalized constructions used within.

In Chapter 5 we talk about an alternate solution to Chapters 3 and 4. A purely graph
theoretical solution using matchings, augmenting paths, and theorems about the edge-
chromatic number is used to develop a theorem that than covers all possible cases. We
also discuss how this method performed compared to the methods in Chapters 3 and 4.

In Chapter 6, we switch topics to Latin rectangles that have the same number of symbols
and an equivalent sized matrix to Latin squares. Suppose ab = n2. We define an equitable
Latin rectangle as an a× b matrix on a set of n symbols where each symbol appears either⌈

b
n

⌉
or b b

n
c times in each row of the matrix and either

⌈
a
n

⌉
or b a

n
c times in each column

of the matrix. Two equitable Latin rectangles are orthogonal in the usual way. Denote a
set of k a× b mutually orthogonal equitable Latin rectangles as a k–MOELR(a, b; n). We
show that there exists a k–MOELR(a, b; n) for all a, b, n where k is at least 3 with some
exceptions.
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Chapter 1

Introduction

This thesis is the result of the author’s interest in furthering recently developed fields in
combinatorial designs. The goal of this thesis is to construct proper colorings of complete
graphs using balanced incomplete block designs and expand the known results of mutually
orthogonal equitable Latin rectangles. With that said, now we begin with an introduction
to graph theory.

1.1 Graphs
To begin, a graph, G, is an ordered pair (V, E) comprised of a set of vertices V and a
collection of unordered pairs of vertices called edges E. The order of the graph is |V |, the
number of vertices. To be more precise, we will only deal with graphs that are simple and
undirected. A simple graph is a graph with no loops or multiple edges between two distinct
vertices. If an edge connects a vertex to itself we say the edge is a loop. A graph may
have several edges between the same two vertices. These edges are called multiple edges.
Figure 1.1 is an example of a simple graph. A simple graph is a complete graph if every
pair of vertices is joined by an edge. The complete graph with v vertices is denoted Kv.

Graph colorings have a wide variety of real world applications including radio wave
assigning. Suppose we have six different radio stations at different distances from each
other. If two radio stations are within 100 miles of each other then they cannot use the
same frequency. To apply graph colorings to this problem, draw six vertices to represent
the six radio stations. Place an edge between two vertices if they are within 100 miles
of each other. The frequencies will be represented by colors. So if radio station a and b
are within 100 miles, we need to color the vertices different colors because they cannot
use the same frequency. In other words, if we give a coloring that uses the least number
of colors possible on the vertices of the graph we created, we find the least number of
radio signals we can possibly use without landing on some other stations signal. This is
useful considering how many radio signals are continually flooding the air waves around
populated areas such as Chicago and New York City.

There are several ways to color graphs including two of the most popular methods:
vertex-coloring and edge-coloring. We are most interested in coloring the edges of a graph.

1



Let v be the number of vertices. The maximum number of edges possible in a simple graph

is
(

v

2

)
=

v(v − 1)

2
. Much has been done in the field of graph coloring which is why we

will touch on both of the two previously mentioned sub-divisions of graph coloring. For a
more in-depth look into the properties, definitions, and theorems of graph theory, see [20].

1.1.1 Vertex-Colored Graphs
Two vertices are adjacent if they share a common edge. Two edges can be adjacent as well
as long as they share a common vertex. Two edges are adjacent if they share a common
vertex. A labeling of the vertices of a graph G by the colors {1, 2, . . . , k} in such a way
that adjacent vertices receive different colors is called a k–coloring of G. The chromatic
number, χ(G), of a graph G is the smallest integer k such that G has a k–coloring.

There are many applications of vertex coloring. When scheduling a set of interfering
jobs, one can use a conflict graph. A conflict graph is a simple graph where an edge
between two vertices represents when two corresponding jobs are unable to be executed at
the same time. This can happen if two jobs share a resource like machinery or personnel or
interfere in some other way. Let the colors represent time slots and every job require one
time slot. This creates a one to one correspondence with the vertices and colors because a
vertex or a job can only be completed once. If the colors represent one hour intervals then
the chromatic number is the minimum number of hours required to finish all v jobs. For
more examples of vertex-coloring see [35].

1.1.2 Edge-Colored Graphs
Intuitively, a proper edge-coloring is an assignment of colors to the edges of a graph such
that no adjacent edges share a color. Formally, we may define a proper edge-coloring as
follows.

Definition 1.1. Let G = (V, E) be a graph and C = {1, 2, . . . , k} be a set of colors. A
proper coloring1 or proper edge-coloring is a labeling of the edges with colors from C in
such a way where no two adjacent edges share a color in common.

If we properly color a complete graph Kk, each color is used at most once when coloring
the edges of Kk making each Kk panchromatic. A graph is panchromatic if the graph has
a unique color on each edge. Figure 1.1 depicts a properly colored graph of five vertices
and six edges with minimum number of colors so that no two adjacent edges are given the
same color.

A matching of a graph G is a set of edges where no two edges share a vertex. Another
way to say this is the graph has a 1-factor. Suppose we select the two blue edges of Fig-
ure 1.1. Since these two edges are non-adjacent, we have a matching. The same is true if
we select the red or green sets of edges as well.

1For simplicity we will use this word rather than proper edge-coloring.
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Blue

Green

Red

Red

Green

Blue

Figure 1.1: A properly colored graph.

Matching problems have many applications. We consider the date-match problem rep-
resented in Figure 1.2, an example from [39]. This figure is called a bipartite graph because

boy 1 girl 1

girl 2boy 2

girl 4

boy 3

boy 4

girl 6

boy 5 girl 5

boy 6

girl 3

boy 7

Figure 1.2: A date-match problem

it separates the vertices into two partition classes or sets where two vertices within the same
partition class are non-adjacent. Suppose there are several boys and girls, and each girl fa-
vors some of the boys. What condition is necessary to make a date-matching in which
every girl is assigned to one of her favorite boys? Consider a graph in which boys and girls
correspond to vertices and a vertex corresponding to a girl is joined to vertices correspond-
ing to boys whom the girl favors. Then there is a date-matching if and only if the graph has
a matching containing all vertices corresponding to girls. The dashed edges give a possible
matching given the requirements in the question.

Make note that if S is a set, then S\{u} or S − {u} means take S and remove all
elements of {u} from S.

How do we generate a matching of G with as many edges as possible? One such way
is through the use of alternating paths and augmenting paths. First consider an arbitrary
matching called M which consists of edges from a graph G. A path in G which starts at an

3



unmatched vertex in X and then contains an edge from E\M , an edge from M , an edge
from E\M , an edge from M , and so on, is an alternating path with respect to M . An
alternating path P that ends in an unmatched vertex of the set Y is called an augmenting
path as seen in Figure 1.3. The bold edges on the left graph are the current matching. By
removing the edges from the matching M that are from the augmenting path P in Figure 1.3
and add the edges that were not in M but were in P , then the matching M ′ has a larger
matching than M as seen in the right graph in Figure 1.3.

X Y

M

P

X Y

M ′

Figure 1.3: Using augmenting paths on alternating path P of matching M

The first paper on edge-coloring problems was published by Tait back in 1889. In this
paper he proved that the four-color conjecture is true if and only if one can edge-color every
planar 3-connected cubic graph using three colors. The four-color conjecture states that one
can color a map using only four colors so that any adjacent countries have different colors.
The four-color theorem was proven in 1976 with the use of computers. Later, in 1980,
Hoyler proved edge-coloring problems are NP–complete. This means it is very unlikely
that edge-coloring problems are able to be solved in polynomial-time. With this result, it
shows us that we need to develop methods that will efficiently color graphs giving rise to
one reason the problem in this thesis was pursued.

1.2 Designs

A balanced incomplete block design (BIBD(v, k, λ)) with parameters (v, b, r, k, λ) is a
pair (V ,B) where V is a v-set of points and B is a collection of b k-subsets of V , called
blocks, such that each element of V is contained in exactly r blocks and any pairs of points
of V is contained in exactly λ blocks. A BIBD is complete if it has no repeating blocks and
contain

(
v
k

)
blocks. We denote this as BIBD(v, k, λ) because the values for b and r can be

calculated with only v, k, and λ.
To explain designs further we will use one of the most common examples in design

theory; the Fano plane seen in Figure 1.4. Each line on this figure and the circle rep-
resent the seven blocks of the design. Our goal is to construct a BIBD(7, 3, 1) so let
V = {0, 1, 2, 3, 4, 5, 6}. The parameters of a BIBD(7, 3, 1) tell us we are going to make
blocks of size 3, 3-subsets, and we will see any pair of points appear exactly once. Let

4



0

2

6

5

1

4 3

Figure 1.4: The Fano plane.

B1 = {0, 1, 3} be the first block where B1 ∈ B. From this we will develop a set of blocks
cyclically from B1 modulo 7. Here is the set of seven blocks we develop from B1.

{0, 1, 3} {1, 2, 4} {2, 3, 5} {3, 4, 6} {4, 5, 0} {5, 6, 1} {6, 0, 2}

These seven blocks make up B and so we have constructed a BIBD(7, 3, 1). We know we
have constructed all the blocks because there is a formula for finding the number of blocks;

b =
v(v − 1)

k(k − 1)
λ. In our case,

b =
v(v − 1)

k(k − 1)
λ =

7(6)

3(2)
· 1 = 7.

Due to the complexity of designs, this method of cyclically constructing designs does
not always work. It is only because this design is cyclic that we may construct it in this
fashion. Keep this in mind when we talk about designs being sufficient.

The numbers v, b, r, k, and λ are parameters of the BIBD. A special type of BIBD
called a triple system (TS(v, λ)) is a BIBD where k = 3. And a special type of triple
system called Steiner triple system (STS(v)) is a BIBD where λ = 1 and k = 3 or a
triple system where λ = 1. The necessary conditions under which a BIBD exists are given
below.

Theorem 1.2. (Hanani, [28]) The necessary conditions for the existence of a
BIBD(v, b, r, k, λ) are

1. vr = bk

2. r(k − 1) = λ(v − 1)

5



Though the first questions in design theory were contrived many centuries ago, our fo-
cus will begin in 1847 when Kirkman [31] dealt with the existence of STS(v) which exist
for all v ≡ 1, 3 (mod 6). Kirkman had a famous schoolgirl problem [32] that dealt with
STS designs:

Fifteen young girls in a school walk out three
abreast in succession; it is required to arrange
them daily, so that no two shall walk two abreast.

Because there are 15 young girls, v = 15. When the girls walk three abreast, this means
that we group the girls together in groups of size three. Thus we have an example of an
STS(15) or a BIBD(15, 3, 1).

Significant contributions to this field include Euler in 1782, Kirkman in 1847, Moore
in 1896, Bose in 1939, and Wilson in 1972. Hanani also contributed by determining the
necessary and sufficient conditions of BIBDs with block size 4 and 5 with any λ value.
Later, he published a survey over 100 pages long, detailing the previous existence results
for blocks of size 3, 4, and 5. He then extended the results to block size 6 and any λ ≥ 2.

Design theory has numerous applications throughout many fields, but the general con-
sensus is that one of the most useful applications of design theory is in setting up experi-
mental designs. One such application can be summed up as making a consumer experiment
where consumers try products and give responses to questionnaires about the products they
try. All the products are alterations of one main concept such as fast food experiments
where a group of 30 to 40 consumers try out different types of foods. Since it is a princi-
pal feature that all samples be evaluated the same number of times, a balanced incomplete
block design contains this and more features making it ideal for this type of experiment.
We also want to have pairs of samples to be evaluated the same number of times by some
consumer. To do this, we just let the consumer represent a block of different samples. Since
each sample occurs r times and each pair of samples occurs λ times, the experimental de-
sign is said to be a BIBD.

A large list of parameters for BIBDs are listed in [16] by Cochran and Cox. Since
their designs were meant for agricultural applications which had limited resources (i.e.
animals and field plots) the number of repetitions is limited. The number of repetitions
that consumer experiments tend to have at least 30 to 40. So the size of designs limits
the usefulness with real world applications but with ever increasing technology, it does not
seem infeasible that larger designs may be used in the near future.

Another type of design we will focus heavily on is the group divisible design or (GDD).
A group divisible design of index λ, (k, λ)− GDD(mu), is a triple (V ,G,B) where V is a
finite set of v = mu points, G is a partition of V into parts (groups) whose sizes lie in a set
of positive integers, and B is a family of subsets (blocks) of V that satisfy the following.

1. If B ∈ B, then |B| = k.
2. If two elements are in the same group, then this pair cannot be in any block.
3. |G| > 1.
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We use exponential notation to denote the type of the GDD. For example, a GDD having
u groups of size m would be referred to as a GDD(mu) as in Figure 1.5. A pair of distinct
points coming from two distinct groups of a GDD is called a transverse pair. A GDD is
uniform if all groups have the same size and denoted as k − GDD(mu).

Group 1 Group 2 . . . Group u− 1 Group u
•1 •1 . . . •1 •1

•2 •2 . . . •2 •2
...

... . . . ...
...

•m •m . . . •m •m

Figure 1.5: k–GDD(mu)

GDDs can be extended to BIBDs by making sure every pair of points occurs in λ
blocks. This method is similar to Wilson’s Fundamental Construction [51]. As an example,
consider a 4–GDD(44) setup as in Figure 1.6. Our goal is to create a BIBD(16, 4, 1). We

A

B

C

D

Group 1 Group 2 Group 3 Group 4

Figure 1.6: One block of a 4− GDD(44)

know this GDD exists because the necessary and sufficient conditions for the existence of
a (4, λ)− GDD(mu) were found by Zhu in [55]. They are given in the following theorem.

Theorem 1.3. The necessary and sufficient conditions for the existence of a (4, λ) −
GDD(mu) are

1. u ≥ 4,

2. λ(u− 1)m ≡ 0 (mod 3), and

3. λu(u− 1)m2 ≡ 0 (mod 12),

with exception of (m, u, λ) ∈ {(2, 4, 1), (6, 4, 1)}, in which case no such GDD exists.

In a GDD, every transverse pair occurs in exactly λ blocks. This means that if λ = 1,
every pair occurs in exactly one block or group. The only pairs that have not been accounted
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for are those that lie in the same group. We know by Hanani in [28] that the necessary
conditions in Theorem 1.2 are sufficient for the following v values with k = 4:

k λ Conditions for v
4 1 1,4 (mod 12)
4 2 1 (mod 3)
4 3 0,1 (mod 4)
4 6 all

Consider the set of points in a group as the set of points from which we form a design.
From these set of four points we can form a BIBD(4, 4, 1) design by the table above.
Because we do this to each group, we add the blocks from each BIBD(4, 4, 1) on each
group to the blocks we formed from the blocks of the GDD. This action of forming BIBDs
on groups will be known as placing a BIBD on each group. This ensures that each pair
among the groups has λ = 1. Therefore, there exists a BIBD(16, 4, 1).

Non-uniform GDDs have also been studied.

Theorem 1.4. (Ge, Ling, [24]) A 4 − GDD(4um1) exists if and only if either u = 3 and
m = 4, or u ≥ 6, u ≡ 0 (mod 3) and m ≡ 1 (mod 3) with 1 ≤ m ≤ 2(u− 1).

Theorem 1.5. (Zhu, [55]) The necessary conditions for the existence of a uniform (5, λ)−
GDD(mu) are as follows.

1. u ≥ 5,

2. λ(u− 1)m ≡ 0 (mod 4), and

3. λu(u− 1)m2 ≡ 0 (mod 20).

Theorem 1.6. (Ge, Rees, Zhu, [25]) A 4 − GDD(1um1) exists if and only if u ≥ 2m + 1
and either m, u + m ≡ 1 or 4 (mod 12) or m, u + m ≡ 7 or 10 (mod 12).

Another class of GDDs that have been studied are (5, λ)–GDD.

Theorem 1.7. (Ge, Ling, [24]) The necessary conditions for the existence of a 5−GDD(mu)
in Theorem 1.5 are also sufficient, except when mu ∈ {25, 211, 35, 65}, and possibly where

1. mu = 345, 365;

2. m ≡ 2, 6, 14, 18 (mod 20) and

(a) m = 2 and u ∈ {15, 35, 71, 75, 95, 111, 115, 195, 215};

(b) m = 6 and u ∈ {15, 35, 75, 95};

(c) m = 18 and u ∈ {11, 15, 71, 111, 115};

(d) m ∈ {14, 22, 26, 34, 38, 46, 58, 62} and u ∈ {11, 15, 71, 75, 111, 115};
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(e) m ∈ {42, 54} or m = 2α with α ≡ 1, 3, 7, 9 (mod 10) and 33 ≤ α ≤ 2443,
and u = 15;

3. m ≡ 10 (mod 20) and

(a) m = 10 and u ∈ {5, 7, 15, 23, 27, 33, 35, 39, 47};

(b) m = 30 and u ∈ {9, 15};

(c) m = 50 and u ∈ {15, 23, 27};

(d) m = 90 and u = 23;

(e) m = 10α, α ≡ 1 (mod 6), 7 ≤ α ≤ 319, and u ∈ {15, 23};

(f) m = 10β, β ≡ 5 (mod 6), 11 ≤ β ≤ 443, and u ∈ {15, 23};

(g) m = 10γ, γ ≡ 1 (mod 6), 325 ≤ γ ≤ 487, and u = 15;

(h) m = 10δ, δ ≡ 5 (mod 6), 449 ≤ δ ≤ 485, and u = 15;

Theorem 1.8. (Assaf, Bluskov, Greig, Shalaby, [11]) Let λ ≥ 2. The necessary conditions
for the existence of (5, λ) − GDDs of type mu in Theorem 1.5 are also sufficient, except
possibly when λ = 2, u = 15 and either m = 9 or gcd(m, 15) = 1.

Let B be a set of blocks in a GDD or BIBD. A parallel class or resolution class is a
collection of blocks that partition the point-set of the design. A design is resolvable if the
blocks of the design can be partitioned into parallel classes.

A resolvable balanced incomplete block design (RBIBD) is a balanced incomplete
block design where the design is resolvable. The following are the necessary conditions for
the existence of a RBIBD(v, k, λ):

1. λ(v − 1) ≡ 0 (mod k − 1),

2. v ≡ 0 (mod k).

From [22], these conditions are known to be sufficient for any k and λ, if v is large enough.

Theorem 1.9. [7, 36, 23]. An RBIBD(v, 5, λ) exists for λ = 1, 2, 4, if any of the following
conditions is satisfied:

1. λ = 1, v ≡ 5 (mod 20) and v 6= 45, 185, 225, 345, 465, 645;

2. λ = 2, v ≡ 5 (mod 10) and v ≥ 50722395;

3. λ = 4, v ≡ 0 (mod 5) except for v = 10 and possibly for
v = 15, 70, 75, 90, 95, 135, 160, 185, 190, 195.

In the same manner, a resolvable GDD is a GDD where the blocks of the design can
be partitioned into parallel classes, denoted as RGDD.
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Theorem 1.10. (Ge, Ling, [24]) The necessary conditions for the existence of a 4 −
RGDD(mu), namely, u ≥ 4, mu ≡ 0 (mod 4) and m(u − 1) ≡ 0 (mod 3), are also
sufficient except for (m, u) ∈ {(2, 4), (2, 10), (3, 4), (6, 4)} and possibly excepting: m = 2
and u ∈ {34, 46, 52, 70, 82, 94, 100, 118, 130, 142, 178, 184, 202, 214, 238, 250, 334, 346};
m = 10 and u ∈ {4, 34, 52, 94}; m ∈ [14, 454] ∪ {478, 502, 514, 526, 614, 626, 686}
and u ∈ {10, 70, 82}; m = 6 and u ∈ {6, 54, 68}; m = 18 and u ∈ {18, 38, 62};
m = 9 and u = 44; m = 12 and u = 27; m = 24 and u = 23; and m = 36 and
u ∈ {11, 14, 15, 18, 23}.
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Chapter 2

Proper Edge Colorings of BIBD(v, k, λ)

Even though the problem is stated in graph theoretic terms, the focus of this thesis remains
to be design theory. In this chapter we will give a multitude of examples of the problem at
hand and an example of every construction we use in Chapters 3 and 4. Pictorial represen-
tations will be used when appropriate.

2.1 The Focus
Before we start, make note that Z+ represents the set of positive integers not including zero.
We consider the following question

Question. Let G = (V, E) be a graph and {1, 2, . . . , k} be a set of colors. Can one
decompose λ copies of monochromatic Kv into copies of Kk such that each copy of Kk

contains at most one edge from each Kv?

A graph is monochromatic if all the edges of the graph are colored with the same color.
Constructing panchromatic Kk graphs from λ monochromatic Kv graphs is the same as
properly coloring Kk graphs using the edges of the monochromatic graphs. Note that λ
denotes the number of colors used as well as the number of monochromatic graphs.

In [29] Hurd and Sarvate translated this graph theory problem into a problem based on
designs. Let us consider the graph G = (V, E) being the complete graph on v vertices such
that |V | = v and |E| =

(
v
2

)
= v(v−1)

2
. We copy this graph λ times and give a unique color to

each copy giving us λ colors. We label all vertices in each copy of Kv so as to distinguish
which edge we remove based on the vertices that connect them. So each Kk must have
k labeled vertices from V . Because we are trying to properly color a Kk graph, we will
remove at most one edge from each monochromatic Kv. For a Kk to be properly colored,
there need to be at least

(
k
2

)
unique colors so each edge in the Kk can have a unique color.

It follows that λ ≥
(

k
2

)
for us to have a chance of properly coloring each Kk. Let b be the

number of Kk graphs we create through this decomposition of the λ copies of Kv.
Suppose we represent the vertices of each Kk = (V0, E0) as a set {v1, v2, . . . , vk} of

vertices where v1, v2, . . . , vk ∈ V0 ⊂ V . Because the graph is complete on Kk it is easy to
form the complete graph on k vertices from the set {v1, v2, . . . , vk}. Each one of these sets
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will be of the same size k, and we shall denote each of these sets as Bi such that Bi ∈ B for
all i = 1, 2, . . . , b. Because a particular edge appears once in each of the λ copies of Kv,
there are λ copies of this edge, each with a different color. We must ensure the number of
times a particular edge is seen among the Kk graphs is λ. This is the same as confirming
every pair of distinct vertices is in exactly λ of the Bi. At this point, notice that each set, or
as we will call them blocks, has identical size k where each vertex is chosen from a set of
v vertices and we must make sure that the number of pairs we see among all the blocks is
λ. This is identical to the definition of balanced incomplete block design. As such, rather
than saying we will color the pairs of points in a design so as to create properly colored Kk

graphs from Kv graphs, we will say we have a properly colored design. So our objective
for this paper equates to showing we can properly color a BIBD(v, k, λ).

We want to decompose λ copies of monochromatic Kv into copies Kk such that each
copy of Kk contains at most one edge from each Kv. A proper coloring, or proper edge-
coloring, of a BIBD(v, k, λ) is an assignment of colors to the edges of a Kk denoted by a
block of the design (a block of the design denotes the Kk graph) with the properties:

1. each edge in a Kk graph generated from the points in a block receives a different
color;

2. every edge is used exactly λ times;
3. every color is used exactly once among the λ copies of an edge.

In [29] Hurd and Sarvate discussed and solved the cases where λ = mk(k − 1)/2 for
any BIBD(v, k, λ). They also found the sufficient conditions for the existence of a properly
colored triple system TS(v, λ). The following theorems are some results found by Hurd
and Survate in [29].

Theorem 2.1. The necessary conditions are sufficient for the existence of a TS(v, λ) which
has a proper coloring.

Theorem 2.2. Suppose that there exists a BIBD(v, k, λ), (V ,B) with λ = mk(k − 1)/2,
m ∈ Z+. Then the blocks of B can be properly colored with λ colors so that no two edges
in any block have the same color.

Theorem 2.3. (Hurd, Sarvate, [29]) If a BIBD(v, k, 1) exists, then for the index λ ≥
k(k − 1)/2 there exists a BIBD(v, k, λ) whose edges can be taken from λ monochromatic
copies of Kv so that no two edges in a block have the same color.

As an example of properly coloring the block structure of a Kk using the structure of a
BIBD we will give a graphical representation of a proper coloring of three monochromatic
K7 into panchromatic K3. Suppose we have three K7 graphs, a blue, a red, and a green
one. Let {0, 1, 3} be a block of vertices that will make up one vertex set of a panchromatic
K3. Note all pairs and triples here are listed with braces to indicate the sets are unordered.
Color edge {0, 1} red, edge {1, 3} green, and edge {0, 3} blue. To do this we remove the
respective colored edges from the monochromatic K7 graph to construct the panchromatic
K3. This is shown in Figure 2.1 with gray dashed lines indicating the edge has been re-
moved from a K7. Now we can repeat this block two more times to get three copies of
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this vertex set with different colors. The second block is based on the same vertex set, so
color edge {0, 1} blue, edge {1, 3} red, and edge {0, 3} green. Again, we remove edges
from the same monochromatic K7 graphs to construct the panchromatic K3. This is shown
in Figure 2.2. We perform the same task for the last copy of this block by coloring edge
{0, 1} green, edge {1, 3} blue, and edge {0, 3} red. This is shown in Figure 2.3.

0

1

2

34

5

6

Red

0

1

2

34

5

6

Green

0

1

2

34

5

6

Blue

Red

Blue
Green

0

1

3

Figure 2.1: 1st of three colored copies of a block from a BIBD(7, 3, 3)

As one can see, we have 3 copies of a single K3 from λ = 3 copies of K7. Because we
can cyclically permute the block {0, 1, 3} modulus 7 to get the remaining blocks the next
block we would use is {1, 2, 4}. The same procedure just used on the block {0, 1, 3} would
be applied to this new block. This procedure will continue through each block until all the
K3 have been drawn with unique colorings on each edge, giving us a proper coloring.

Because the case where k = 3 is completely solved in [29], we focused on the cases
where k = 4 and 5. We will need to know the necessary and sufficient conditions from
the existence of a BIBD(v, 4, λ) and a BIBD(v, 5, λ) if we are to form any link between
properly colored graphs and coloring the incidence structure of a BIBD.
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Figure 2.2: 2nd of three colored copies of a block from a BIBD(7, 3, 3)
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Figure 2.3: 3rd of three colored copies of a block from a BIBD(7, 3, 3)
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The necessary and sufficient conditions for the existence of a BIBD(v, 4, λ) were obtained
by Hanani in [28]. They are as follows:

If λ ≡ 1, 5 (mod 6), then v ≡ 1, 4 (mod 12).

If λ ≡ 2, 4 (mod 6), then v ≡ 1 (mod 3).

If λ ≡ 3 (mod 6), then v ≡ 0, 1 (mod 4).

If λ ≡ 0 (mod 6), then v ≥ 4.

If λ ≡ 1, 5 (mod 6), then we can properly color a BIBD(v, 4, λ) by applying Theorem 2.3,
and if λ ≡ 0 (mod 6), then we can properly color a BIBD(v, 4, λ) by applying Theo-
rem 2.2. Therefore, in Chapter 3 we need only consider BIBD(v, 4, λ) with λ ≡ 2, 3, 4
(mod 6).

The necessary and sufficient conditions for the existence of a BIBD(v, 5, λ) were ob-
tained by Hanani in [28]. They are as follows:

If λ ≡ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 (mod 20), then v ≡ 1, 5 (mod 20).

If λ ≡ 2, 6, 14, 18 (mod 20), then v ≡ 1, 5 (mod 10).

If λ ≡ 4, 8, 12, 16 (mod 20), then v ≡ 0, 1 (mod 5).

If λ ≡ 10 (mod 20), then v (mod 2).

If λ ≡ 0 (mod 20), then v ≥ 5.

If λ ≡ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 (mod 20), then we can properly color a BIBD(v, 5, λ)
by applying Theorem 2.3, and if λ ≡ 0, 10 (mod 20), then we can properly color a
BIBD(v, 5, λ) by applying Theorem 2.2. Therefore, in Chapter 4 we need only consider
BIBD(v, 5, λ) with λ ≡ 2, 4, 6, 8, 12, 14, 16, 18 (mod 20).

Our main result, based on the above cases, is as follows. We prove the following theo-
rems later.

Theorem. There is a proper edge coloring for every BIBD(v, 4, λ) if λ ≥ 6.

Theorem. There is a proper edge coloring for every BIBD(v, 5, λ) if λ ≥ 10 except pos-
sibly when λ = 2k, k ≥ 5, v ≡ 15, 35, 75, 95 (mod 100) and λ = 14, 18.

2.2 Examples of Direct Constructions
The methods we will use in this section will be described in full detail later in this thesis.
The incidence matrix of a design is a (0, 1)-matrix where the rows are indexed by the v
points and the columns are indexed by the b blocks. In this matrix, each entry receives a
1 if the point lies in a block and 0 otherwise. This incidence structure has several useful
properties. The sum of entries down each column is k and the sum of the entries across
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B1 B2 B3 B4 B5 B6 B7

0 1 0 0 0 1 0 1
1 1 1 0 0 0 1 0
2 0 1 1 0 0 0 1
3 1 0 1 1 0 0 0
4 0 1 0 1 1 0 0
5 0 0 1 0 1 1 0
6 0 0 0 1 0 1 1

Figure 2.4: Incidence matrix of a BIBD(7, 3, 1)

each row is r which is the repetition number or the number of blocks a point will appear
in. As an example we will use the BIBD(7, 3, 1) we constructed in Section 1.2. Figure 2.4
depicts the incidence matrix for a BIBD(7, 3, 1).

Using the incidence matrix in Figure 2.4 we can form a more useful structure known
as the edge-incidence matrix. An edge-incidence matrix is a (0, 1)-matrix where the rows
are indexed by all possible pairs from V and the columns are indexed by the b blocks of the
design. The matrix has a 1 in entry (i, j) if pair i is contained in block j, and an entry of
0 otherwise. A couple special properties of this matrix are that the sum of entries across
each row is λ and the sum of entries down each column is

(
k
2

)
. Figure 2.5 depicts the

edge-incidence matrix of the previous incidence matrix of a BIBD(7, 3, 1).

B1 B2 B3 B4 B5 B6 B7

{0, 1} 1 0 0 0 0 0 0
{1, 2} 0 1 0 0 0 0 0
{2, 3} 0 0 1 0 0 0 0
{3, 4} 0 0 0 1 0 0 0
{4, 5} 0 0 0 0 1 0 0
{5, 6} 0 0 0 0 0 1 0
{6, 0} 0 0 0 0 0 0 1
{0, 2} 0 0 0 0 0 0 1
{1, 3} 1 0 0 0 0 0 0
{2, 4} 0 1 0 0 0 0 0
{3, 5} 0 0 1 0 0 0 0
{4, 6} 0 0 0 1 0 0 0
{5, 0} 0 0 0 0 1 0 0
{6, 1} 0 0 0 0 0 1 0
{0, 3} 1 0 0 0 0 0 0
{1, 4} 0 1 0 0 0 0 0
{2, 5} 0 0 1 0 0 0 0
{3, 6} 0 0 0 1 0 0 0
{4, 0} 0 0 0 0 1 0 0
{5, 1} 0 0 0 0 0 1 0
{6, 2} 0 0 0 0 0 0 1

Figure 2.5: Edge-incidence matrix of a BIBD(7, 3, 1)
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To simplify our results we will use circulant matrices. A circulant matrix is an n × n
square matrix, in which each row (except the first) is obtained from the preceding row by
shifting the elements cyclically one column to the right. Figure 2.6 is a 7 × 7 circulant
matrix whose first row is [1000000].

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

Figure 2.6: A 7× 7 circulant matrix.

An edge-coloring for a BIBD(v, k, λ) (V ,B) can be described by providing an edge-
coloring incidence matrix. An edge-coloring incidence matrix is an edge-incidence matrix
that has been given a coloring to each pair of points in the design. In the example from
the beginning of this section we color each pair of points in a convenient pattern. It should
be noted that there does not need to be one of each color in each column. We will use the
colors from the set {c1, c2, c3} to color Figure 2.7.

B1 B2 B3 B4 B5 B6 B7

{0, 1} c1 0 0 0 0 0 0
{1, 2} 0 c1 0 0 0 0 0
{2, 3} 0 0 c1 0 0 0 0
{3, 4} 0 0 0 c1 0 0 0
{4, 5} 0 0 0 0 c1 0 0
{5, 6} 0 0 0 0 0 c1 0
{6, 0} 0 0 0 0 0 0 c1

{0, 2} 0 0 0 0 0 0 c2

{1, 3} c2 0 0 0 0 0 0
{2, 4} 0 c2 0 0 0 0 0
{3, 5} 0 0 c2 0 0 0 0
{4, 6} 0 0 0 c2 0 0 0
{5, 0} 0 0 0 0 c2 0 0
{6, 1} 0 0 0 0 0 c2 0
{0, 3} c3 0 0 0 0 0 0
{1, 4} 0 c3 0 0 0 0 0
{2, 5} 0 0 c3 0 0 0 0
{3, 6} 0 0 0 c3 0 0 0
{4, 0} 0 0 0 0 c3 0 0
{5, 1} 0 0 0 0 0 c3 0
{6, 2} 0 0 0 0 0 0 c3

Figure 2.7: Edge-colored incidence matrix of a BIBD(7, 3, 1)
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In general, this is the edge-colored matrix M defined by

M = M [{x, y}, B] =

{
ci if {x, y} ∈ B has color ci,
0 if {x, y} 6∈ B

where c1, c2, . . . , cλ are the colors for all pairs {x, y} ∈
(V

2

)
and B ∈ B. Note that

(V
2

)
is

the set of all pairs of V . So the Figure 2.7 could be represented as

(c1)I

(c2)A
6

(c3)I

where I is the 7 × 7 identity matrix and A is the 7 × 7 circulant matrix whose first row is
[0100000].

As an example, our goal is to properly color a BIBD(5, 4, λ). We form the edge-
incidence matrix for a BIBD(5, 4, 3) as in Figure 2.8. Each block represents the six edges

B1 B2 B3 B4 B5

{1,2} 0 0 1 1 1

{2,3} 1 0 0 1 1

{3,4} 1 1 0 0 1

{4,5} 1 1 1 0 0

{5,1} 0 1 1 1 0

{1,3} 0 1 0 1 1

{2,4} 1 0 1 0 1

{3,5} 1 1 0 1 0

{4,1} 0 1 1 0 1

{5,2} 1 0 1 1 0

Figure 2.8: Edge-incidence matrix for a BIBD(5, 4, 3)

of a unique K4. The notation {1, 2} represents the edge between vertex 1 and vertex 2 in
the graph. To color this design, we replace each “1” with an entry ci which represents the
color i for i = 1, 2, . . . , λ. Our matrix must have the property that each entry ci appears
exactly once in every row and column. We can color the first 5 edges of the blocks in the
BIBD(5, 4, 3) using 3 colors, and we can color the last 5 edges of the BIBD(5, 4, 3) using
3 colors to get the following edge-coloring incidence matrix using 6 colors in Figure 2.9.

Let A be the 5 × 5 circulant matrix whose first row is [01000]. Then we can represent
this edge-coloring incidence matrix in terms of A as follows.

(c1)A
2 + (c2)A

3 + (c3)A
4

(c4)A + (c5)A
3 + (c6)A

4
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B1 B2 B3 B4 B5

{1,2} 0 0 c1 c2 c3

{2,3} c3 0 0 c1 c2

{3,4} c2 c3 0 0 c1

{4,5} c1 c2 c3 0 0

{5,1} 0 c1 c2 c3 0

{1,3} 0 c4 0 c5 c6

{2,4} c6 0 c4 0 c5

{3,5} c5 c6 0 c4 0

{4,1} 0 c5 c6 0 c4

{5,2} c4 0 c5 c6 0

Figure 2.9: Edge-Coloring Incidence Matrix for a BIBD(5, 4, 3)

Next we form a properly colored BIBD(5, 4, λ). To form a properly colored
BIBD(5, 4, λ) with λ = 3s, s ≥ 2, we simply repeat the blocks of the BIBD(5, 4, 3)
s times and follow the same coloring scheme with different colors. Define Mi as the fol-
lowing sub-matrix. Note that all subscripts are computed (mod λ) where we identify c0

with cλ.

Mi =
(c1+3i)A

2 + (c2+3i)A
3 + (c3+3i)A

4

(c4+3i)A + (c5+3i)A
3 + (c6+3i)A

4

Then the edge-coloring incidence matrix of a properly colored BIBD(5, 4, λ) with λ = 3s,
s ≥ 2 is given by

M = M0 M1 · · · Mk−1 .

The matrix M has the property that every color c1, c2, . . . , cλ = c0 is seen exactly once
in each row, and every color is seen at most once in every column. Therefore, M is an
edge-coloring incidence matrix of a properly colored BIBD(5, 4, λ). We state this result as
a lemma.

Lemma 2.4. There exists a properly colored BIBD(5, 4, λ) where λ = 3s, s ∈ Z+, s ≥ 2.

As an example of this lemma, we provide the edge-coloring incidence matrix of a prop-
erly colored BIBD(5, 4, 9) in Figure 2.10.

At this time, let us bring focus to why we want to repeat each block of a BIBD(v, k, λ)
enough times to get λ ≥

(
k
2

)
. In each Kk, there are

(
k
2

)
colors. Because each row of the

matrix represents an edge and we need at least each edge to appear in
(

k
2

)
colors, we must
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B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15

{1,2} 0 0 c1 c2 c3 0 0 c4 c5 c6 0 0 c7 c8 c9

{2,3} c3 0 0 c1 c2 c6 0 0 c4 c5 c9 0 0 c7 c8

{3,4} c2 c3 0 0 c1 c5 c6 0 0 c4 c8 c9 0 0 c7

{4,5} c1 c2 c3 0 0 c4 c5 c6 0 0 c7 c8 c9 0 0

{5,1} 0 c1 c2 c3 0 0 c4 c5 c6 0 0 c7 c8 c9 0

{1,3} 0 c4 0 c5 c6 0 c7 0 c8 c9 0 c1 0 c2 c3

{2,4} c6 0 c4 0 c5 c9 0 c6 0 c8 c3 0 c1 0 c2

{3,5} c5 c6 0 c4 0 c8 c9 0 c7 0 c2 c3 0 c1 0

{4,1} 0 c5 c6 0 c4 0 c8 c9 0 c7 0 c2 c3 0 c1

{5,2} c4 0 c5 c6 0 c7 0 c8 c9 0 c1 0 c2 c3 0

Figure 2.10: Edge-Coloring Incidence Matrix of a properly colored
BIBD(5, 4, 9).

have
(

k
2

)
unique colors in each row. But the number of entries in each row is λ. Thus

λ ≥
(

k
2

)
.

The following example illustrates one of the main ideas used in the construction of a
properly colored BIBD(v, 4, λ) design.

Example 2.5. A properly colored BIBD(17, 4, 9).

Because a BIBD(17, 4, 1) does not exist we cannot apply Theorem 2.3. It is known by
Theorem 1.3 that a (4, 1)− GDD(44) (V ,B,G) exists where V is the point set, B is the set
of blocks, and G is the set of groups G1, G2, G3, G4. We will construct a BIBD(17, 4, 9)
design on V ∪ {∞}. Let A, B, C,D ∈ V . For each block {A, B, C,D} of the GDD, make
9 copies of the block. Let K4 represent this block as in Figure 2.11. We can see that given
a block {A, B, C,D} implies there is an edge between each point in the block.

A B

CD

Figure 2.11: K4
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Our goal is to color each edge of this block a different color using the colors ci ∈
{c1, . . . , c9}. Each corresponding edge in the 9 copies of the block must also be a different
color. So we form a 6× 9 matrix. The rows of the matrix will be indexed by the 6 edges of
K4, and the columns will be indexed by the 9 copies of our block. The entries will represent
the color of each edge. We must see every color c1, . . . , c9 exactly once in each row and at
most once in any column. The matrix for our 9 colored copies of {A, B, C,D} is shown in
Figure 2.12.

B1 B2 B3 B4 B5 B6 B7 B8 B9

{A, B} c1 c2 c3 c4 c5 c6 c7 c8 c9

{A, C} c9 c1 c2 c3 c4 c5 c6 c7 c8

{A, D} c8 c9 c1 c2 c3 c4 c5 c6 c7

{B, C} c7 c8 c9 c1 c2 c3 c4 c5 c6

{B, D} c6 c7 c8 c9 c1 c2 c3 c4 c5

{C, D} c5 c6 c7 c8 c9 c1 c2 c3 c4

Figure 2.12: First 6 rows of a LS(9)

Notice this matrix is simply the first 6 rows of an LS(9), a Latin square of side 9.
Because an LS(9) is a 9×9 matrix and we only need 6 rows, we can always properly color
the blocks of a GDD. We do this for each block of the GDD.

The only pairs that have not been covered are pairs that lie within the groups and pairs
that involve {∞} as in Figure 2.13. These pairs need to be covered 9 times. So con-

Group 1 Group 2 Group 3 Group 4

¥

Figure 2.13: Coloring within groups of a GDD

struct a properly colored BIBD(5, 4, 9) on each group Gi ∪ {∞} for i = 1, 2, 3, 4. This
exists by Lemma 2.4. Now we have colored every block of the GDD and every group.
We know through the use of Wilson’s Construction from [51] that our GDD will yield a
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BIBD(17, 4, 3), which we can copy 3 times to generate a properly colored BIBD(17, 4, 9).

Example 2.6. A properly colored BIBD(24, 4, 9).

Our goal here is to describe the process of using 4–RGDDs when k = 4. As we
defined before, a group divisible design is resolvable when we can separate the blocks into
parallel classes. This allows us to add points to parallel classes and still hold the properties
of a design and the RGDD. Let Pi for i = 1, 2, 3, 4, 5 denote the parallel classes in the
4–RGDD(54) which exists by Theorem 1.10. Also let {∞1,∞2,∞3,∞4} be four new
points as in Figure 2.14.

Group 1 Group 2 Group 3 Group 4
¥1

¥2

¥3

¥4

Figure 2.14: A 4–RGDD(54)

For each of the first four parallel classes, Pi, we place a properly colored BIBD(5, 4, 9)
on each block plus ∞i just as in Figure 2.15. This ensures that each pair including exactly
one of the ∞i points is covered exactly once.

Group 1 Group 2 Group 3 Group 4

¥i

Figure 2.15: Pi ∪∞i on a 4–RGDD(54)

Since there are only five parallel classes, color each block {A, B, C,D} from parallel
class P5 as follows. We form a 6× 9 matrix. The rows of the matrix will be indexed by the
6 edges of K4, and the columns will be indexed by the 9 copies of our block. The entries
will represent the color of each edge. We must see every color c1, . . . , c9 exactly once in
each row, and we must see each color at most once in any column. Coloring P5 is the same
as coloring the blocks of a 5–GDD as in Example 2.5

Notice this matrix is simply the first 6 rows of an LS(9). Because an LS(9) is a 9 × 9
matrix and we only need 6 rows, we can always properly color the blocks of the RGDD.
We do this for each block of P5 in the RGDD. The only pairs remaining are those that lie
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within the groups and those that lie within {∞1,∞2,∞3,∞4}. We know we can properly
color a BIBD(5, 4, 9). Therefore, we can properly color a BIBD(24, 4, 9).

Now we shift our focus to constructions for properly colored BIBD(v, 5, λ).

Example 2.7. A properly colored BIBD(25, 5, 20).

The process shown in Example 2.5 can be extended to 5–GDDs using a similar method.
Thus, it does not take much to realize that we could also use (5, 2)–GDDs. The construc-
tion is very similar, as well, to how we construct a properly colored BIBD(v, k, λ) using a
5–GDD. The difference is that each pair of points occurs 2 times within the blocks because
we will use a (5, 2)–GDD and this will force λ to be at least 20. It is known by Theorem 1.7
that a (5, 2)–GDD(55) (V ,B,G) exists where V is the point set, B is the set of blocks, and
G is the set of groups.

Consider two distinct color sets C = {c1, . . . , c10} and D = {d1, . . . , d10} that we will
use to properly color each block. Our goal is to construct a properly colored edge-coloring
incidence matrix made up of the blocks of the (5, 2)–GDD(55) as shown in Figure 2.16.
To construct this matrix we replace the first "1" in each row with a C and the second "1" by
D. Since each block is being repeated 10 times we will use every color in the sets C and
D in the edge-coloring incidence matrix.

B1 B2 . . . B′ . . . Bb−1 Bb

0 C . . . D . . . 0 0
C 0 . . . 0 . . . D 0
0 0 . . . C . . . 0 D
...

... . . . ... . . . ...
...

{x, y} 0 0 . . . C . . . D 0
...

... . . . ... . . . ...
...

C 0 . . . D . . . 0 0

Figure 2.16: Edge-coloring incidence matrix for (5, 2)–GDD

This gives us 20 unique colors in each row of this matrix. Now we must make sure
there are 10 unique colors in each column. We will permute each of the color sets to make
sure that if we were to construct an LS(10) with the non-zero entries of the 10 copies of
the blocks we will have unique entries down each column. This can be seen in Figure 2.18

Consider only the block B′. Let tC represent the number of times we use the color set
C and tD represent the number of times we use the color set D. From Figure 2.17, tC = 8
and tD = 2. Figure 2.18 depicts the nonzero entries within the ten copies of B′.

We do repeat this for every block which gives use a unique color down each column.
Thus we can properly color the blocks of the (5, 2)–GDD(55). The only pairs left are
those that lie within the groups. These pairs need to be covered 20 times. So construct
a properly colored BIBD(5, 5, 20) on each group. This exists by Theorem 2.3. Now we
have colored every block of the GDD and every group. We know through the use of Wil-
son’s Constructions in [51] that our GDD will yield a BIBD(25, 5, 20) which we properly
colored.
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B1 B2 . . . B′ . . . Bb−1 Bb

0 C1 . . . D1 . . . 0 0
C1 0 . . . 0 . . . D1 0
0 0 . . . C1 . . . 0 D1
...

... . . . ... . . . ...
...

{x, y} 0 0 . . . C2 . . . D2 0
...

... . . . ... . . . ...
...

C10 0 . . . D2 . . . 0 0

Figure 2.17: Edge-coloring incidence matrix for (5, 2)–GDD with cyclic
shifting

B′
1 B′

2 B′
3 B′

4 B′
5 B′

6 B′
7 B′

8 B′
9 B′

10

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

c10 c1 c2 c3 c4 c5 c6 c7 c8 c9

c9 c10 c1 c2 c3 c4 c5 c6 c7 c8

c8 c9 c10 c1 c2 c3 c4 c5 c6 c7

c7 c8 c9 c10 c1 c2 c3 c4 c5 c6

c6 c7 c8 c9 c10 c1 c2 c3 c4 c5

c5 c6 c7 c8 c9 c10 c1 c2 c3 c4

c4 c5 c6 c7 c8 c9 c10 c1 c2 c3

c3 c4 c5 c6 c7 c8 c9 c10 c1 c2

d10 d1 d2 d3 d4 d5 d6 d7 d8 d9

Figure 2.18: LS(10) of 10 copies of block B′

Example 2.8. A properly colored BIBD(31, 5, 12)

This very useful construction is used in Chapter 4 where we use RBIBDs. We know
there exists an RBIBD(25, 5, 1) by Theorem 1.9. This also tells us we have 6 parallel
classes which we denote by Pi for i = 1, . . . , 6. Let {∞1,∞2,∞3,∞4,∞5,∞6} be six
new points. Now place a properly colored BIBD(6, 5, 12) on each block of Pi ∪ {∞i}. To
color this we use the same method found in Example 2.6. Normally, we have not covered
the pairs that lie in the parallel classes Pi for i > 6 but we used all the parallel classes
already. Now the only remaining pairs are of the form {{∞i,∞j} : i, j ∈ {1, . . . , 6}},
so we place a properly colored BIBD(6, 5, 12) on the set of points {∞1, . . . ,∞6}. Be-
cause we can properly color every pair and we added six points, we can properly color a
BIBD(31, 5, 12).

Example 2.9. A properly colored BIBD(471, 5, λ) where λ = 2k, k ∈ Z+, k ≥ 5.

Let λ = 2k, k ∈ Z+, k ≥ 5. This construction is very similar to Example 2.6 since we
are going to be using 4–RGDDs as well. Let Pi for i = 1, . . . , t denote the parallel classes
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in the 4–RGDD(3012) which exists by Theorem 1.10. Because this design is resolvable it
has parallel classes. In fact, 110 parallel classes. We need to have 110 new points which
we will denote as {∞1,∞2, . . . ,∞110}. We set up all the point just like as in Figure 2.14.
For each of the 110 we place a properly colored BIBD(5, 5, λ) on each block plus {∞}
just as in Figure 2.15. This ensures that each pair including exactly one of the ∞i points is
covered exactly once.

At this time, we note that we only have 470 points. So we add one last point called
{∞} as in Figure 2.13. The only pairs remaining are those that lie within the groups
with {∞} and those that lie in {∞1, . . . ,∞110} with {∞}. We can properly color a
BIBD(31, 5, λ) by Lemma 4.2. If v = 111 = 10(11) + 1, there exists a 5–GDD(1011)
by Lemma 1.7. There also exists a properly colored BIBD(11, 5, λ). Thus, we can prop-
erly color a BIBD(111, 5, λ) by the same reasoning applied to Example 2.5. This reason-
ing will be stated as Lemma 4.18 later in the paper. Therefore, we can properly color a
BIBD(471, 5, λ). We state this result as a lemma.

Lemma 2.10. There exists a properly colored BIBD(471, 5, λ) where λ = 2k, k ∈ Z+, k ≥
5.

Suppose there exists a BIBD(v, k, λ) where in each row and column of the edge-
coloring incidence matrix there is a unique color from the color set {1, 2, . . . , λ}. We
will examine what conclusions we can make if λ <

(
k
2

)
.

Definition 2.11. We define a semi-properly colored BIBD is a BIBD(v, k, λ) with the
following properties:

1. λ <
(

k
2

)
2. The set of color indices in each row of the edge-coloring incidence matrix forms the

set {0, 1, . . . , λ− 1} (mod λ).

3. The set of colors in each column contain
(

k
2

)
unique colors

Theorem 2.12. If there exists a BIBD(v, k, λ) and it is semi-properly colored, then a
BIBD(v, k,mλ) is properly colored for mλ ≥

(
k
2

)
, m ∈ Z+.

Proof: Suppose we have the edge-colored incidence matrix of a semi-properly colored
BIBD(v, k, λ). To build a properly colored BIBD(v, k,mλ), we first copy each block of
the BIBD(v, k, λ) m times. This is equivalent to concatenating m− 1 copies of the edge-
colored incidence matrix of the semi-properly colored BIBD(v, k, λ). For t = 1, 2, . . . ,m−
1, add tλ (mod mλ) to each color index, in the tth copy of the matrix. Then the resulting
matrix has the property that the mλ entries are unique in each row. It is clear that we still
have

(
k
2

)
unique colors in each column. Therefore, the new matrix is the edge-coloring

incidence matrix of a properly colored BIBD(v, k,mλ). z

From now on, when we prove a direct construction for a properly colored BIBD we
will almost exclusively use Theorem 2.12 to simplify the proof. Examples of the use of this
theorem can be seen in Section 3.1 and 4.1.
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Chapter 3

Proper Edge Colorings With Block Size
4

Understanding how to use the constructions in this chapter is imperative to following the
reasoning in the main theorem. Before we get to the generalized constructions we must
first show there exists properly colored BIBD(v, 4, λ) for small v.

As a standard among people in design theory, the use of ∞ is that of an extra point
rather than a number. In some fields in discrete mathematics, ∞ is used as both a number
and a point as in projective geometry and elliptic curves.

3.1 Direct Constructions With Block Size 4
Lemma 3.1. There exists a properly edge-colored BIBD(9, 4, λ) design where λ = 3k, k ∈
Z+, k ≥ 2.

Proof: As in Lemma 2.4 we form an edge-coloring incidence matrix for a BIBD(9, 4, 3) as
follows. Figure 3.1 represents the edge-coloring incidence matrix for the BIBD(9, 4, 3).

Let A be the 9 × 9 circulant matrix whose first row is [010000000]. Then the edge
coloring incidence matrix of a BIBD(9, 4, 3) using 6 colors is given below.

Mi =

(c2+3i)I + (c1+3i)A
8 (c3+3i)I

(c3+3i)A
8 (c2+3i)A

3 + (c1+3i)A
8

(c4+3i)I + (c5+3i)A
7 (c6+3i)A

5

(c6+3i)I (c4+3i)I + (c5+3i)A
3

Since Mi is semi-properly colored, by applying Theorem 2.12 we can properly color a
BIBD(9, 4, λ).

z
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B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18

{0, 1} c2 0 0 0 0 0 0 0 c1 c3 0 0 0 0 0 0 0 0
{1, 2} c1 c2 0 0 0 0 0 0 0 0 c3 0 0 0 0 0 0 0
{2, 3} 0 c1 c2 0 0 0 0 0 0 0 0 c3 0 0 0 0 0 0
{3, 4} 0 0 c1 c2 0 0 0 0 0 0 0 0 c3 0 0 0 0 0
{4, 5} 0 0 0 c1 c2 0 0 0 0 0 0 0 0 c3 0 0 0 0
{5, 6} 0 0 0 0 c1 c2 0 0 0 0 0 0 0 0 c3 0 0 0
{6, 7} 0 0 0 0 0 c1 c2 0 0 0 0 0 0 0 0 c3 0 0
{7, 8} 0 0 0 0 0 0 c1 c2 0 0 0 0 0 0 0 0 c3 0
{8, 0} 0 0 0 0 0 0 0 c1 c2 0 0 0 0 0 0 0 0 c3

{0, 3} 0 0 0 0 0 0 0 0 c3 0 0 0 c2 0 0 0 0 c1

{1, 4} c3 0 0 0 0 0 0 0 0 c1 0 0 0 c2 0 0 0 0
{2, 5} 0 c3 0 0 0 0 0 0 0 0 c1 0 0 0 c2 0 0 0
{3, 6} 0 0 c3 0 0 0 0 0 0 0 0 c1 0 0 0 c2 0 0
{4, 7} 0 0 0 c3 0 0 0 0 0 0 0 0 c1 0 0 0 c2 0
{5, 8} 0 0 0 0 c3 0 0 0 0 0 0 0 0 c1 0 0 0 c2

{6, 0} 0 0 0 0 0 c3 0 0 0 c2 0 0 0 0 c1 0 0 0
{7, 1} 0 0 0 0 0 0 c3 0 0 0 c2 0 0 0 0 c1 0 0
{8, 2} 0 0 0 0 0 0 0 c3 0 0 0 c2 0 0 0 0 c1 0
{0, 2} c4 0 0 0 0 0 0 c5 0 0 0 0 0 0 c6 0 0 0
{1, 3} 0 c4 0 0 0 0 0 0 c5 0 0 0 0 0 0 c6 0 0
{2, 4} c5 0 c4 0 0 0 0 0 0 0 0 0 0 0 0 0 c6 0
{3, 5} 0 c5 0 c4 0 0 0 0 0 0 0 0 0 0 0 0 0 c6

{4, 6} 0 0 c5 0 c4 0 0 0 0 c6 0 0 0 0 0 0 0 0
{5, 7} 0 0 0 c5 0 c4 0 0 0 0 c6 0 0 0 0 0 0 0
{6, 8} 0 0 0 0 c5 0 c4 0 0 0 0 c6 0 0 0 0 0 0
{7, 0} 0 0 0 0 0 c5 0 c4 0 0 0 0 c6 0 0 0 0 0
{8, 1} 0 0 0 0 0 0 c5 0 c4 0 0 0 0 c6 0 0 0 0
{0, 4} c6 0 0 0 0 0 0 0 0 c4 0 0 c5 0 0 0 0 0
{1, 5} 0 c6 0 0 0 0 0 0 0 0 c4 0 0 c5 0 0 0 0
{2, 6} 0 0 c6 0 0 0 0 0 0 0 0 c4 0 0 c5 0 0 0
{3, 7} 0 0 0 c6 0 0 0 0 0 0 0 0 c4 0 0 c5 0 0
{4, 8} 0 0 0 0 c6 0 0 0 0 0 0 0 0 c4 0 0 c5 0
{5, 0} 0 0 0 0 0 c6 0 0 0 0 0 0 0 0 c4 0 0 c5

{6, 1} 0 0 0 0 0 0 c6 0 0 c5 0 0 0 0 0 c4 0 0
{7, 2} 0 0 0 0 0 0 0 c6 0 0 c5 0 0 0 0 0 c4 0
{8, 3} 0 0 0 0 0 0 0 0 c6 0 0 c5 0 0 0 0 0 c4

Figure 3.1: Edge-Coloring Incidence Matrix of a BIBD(9, 4, 3).
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Lemma 3.2. There exists a properly colored BIBD(8, 4, λ) for λ = 3k, k ∈ Z+, k ≥ 2.

Proof: As in Lemma 2.4 we form an edge-coloring incidence matrix for a BIBD(8, 4, 3) as
follows. Figure 3.2 represents the edge-coloring incidence matrix for the BIBD(8, 4, 3).

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14

{0,1} c1 0 0 0 0 0 0 c2 0 0 0 0 0 c3

{1,2} 0 c1 0 0 0 0 0 c3 c2 0 0 0 0 0
{2,3} 0 0 c1 0 0 0 0 0 c3 c2 0 0 0 0
{3,4} 0 0 0 c1 0 0 0 0 0 c3 c2 0 0 0
{4,5} 0 0 0 0 c1 0 0 0 0 0 c3 c2 0 0
{5,6} 0 0 0 0 0 c1 0 0 0 0 0 c3 c2 0
{6,0} 0 0 0 0 0 0 c1 0 0 0 0 0 c3 c2

{0,2} 0 0 0 0 0 0 c2 c1 0 0 0 0 c4 0
{1,3} c2 0 0 0 0 0 0 0 c1 0 0 0 0 c4

{2,4} 0 c2 0 0 0 0 0 c4 0 c1 0 0 0 0
{3,5} 0 0 c2 0 0 0 0 0 c4 0 c1 0 0 0
{4,6} 0 0 0 c2 0 0 0 0 0 c4 0 c1 0 0
{5,0} 0 0 0 0 c2 0 0 0 0 0 c4 0 c1 0
{6,1} 0 0 0 0 0 c2 0 0 0 0 0 c4 0 c1

{0,3} c3 0 0 0 0 0 0 0 0 0 c6 0 0 c5

{1,4} 0 c3 0 0 0 0 0 c5 0 0 0 c6 0 0
{2,5} 0 0 c3 0 0 0 0 0 c5 0 0 0 c6 0
{3,6} 0 0 0 c3 0 0 0 0 0 c5 0 0 0 c6

{4,0} 0 0 0 0 c3 0 0 c6 0 0 c5 0 0 0
{5,1} 0 0 0 0 0 c3 0 0 c6 0 0 c5 0 0
{6,2} 0 0 0 0 0 0 c3 0 0 c6 0 0 c5 0

{0,∞} c4 0 0 0 c6 0 c5 0 0 0 0 0 0 0
{1,∞} c5 c4 0 0 0 c6 0 0 0 0 0 0 0 0
{2,∞} 0 c5 c4 0 0 0 c6 0 0 0 0 0 0 0
{3,∞} c6 0 c5 c4 0 0 0 0 0 0 0 0 0 0
{4,∞} 0 c6 0 c5 c4 0 0 0 0 0 0 0 0 0
{5,∞} 0 0 c6 0 c5 c4 0 0 0 0 0 0 0 0
{6,∞} 0 0 0 c6 0 c5 c4 0 0 0 0 0 0 0

Figure 3.2: Edge-Coloring Incidence Matrix of a BIBD(8, 4, 3).

Let A be the 8 × 8 circulant matrix whose first row is [01000000]. Then we can rep-
resent an edge-coloring incidence matrix for a BIBD(8, 4, 3) in terms of A on the colors
{c1, c2, c3, c4, c5, c6}. This representation is given in Figure 3.3.

For any i, let M
(6)
i be the edge-coloring incidence matrix of a BIBD(8, 4, 6) on the

colors c1+6i, c2+6i, c3+6i, c4+6i, c5+6i, c6+6i found in Figure 3.4. Denote M
(9)
0 as the edge-

coloring incidence matrix of a BIBD(8, 4, 9) on the colors c1′ , c2′ , . . . , c9′ found in Fig-
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c1I c2I + c3A
6

c2A
6 c1I + c4A

5

c3I c5A
3 + c6A

6

c4I + c6A
4 + c5A

6 0

Figure 3.3: Edge-Coloring Incidence Matrix for a BIBD(8, 4, 3)

M
(6)
i =

(c1+6i)I (c2+6i)I+(c3+6i)A
6 (c5+6i)I (c4+6i)I+(c6+6i)A

6

(c2+6i)A
6 (c1+6i)I+(c4+6i)A

5 (c6+6i)A
6 (c3+6i)I+(c5+6i)A

5

(c3+6i)I (c5+6i)A
3+(c6+6i)A

6 (c4+6i)I (c1+6i)A
3+(c2+6i)A

6

(c4+6i)I (c1+6i)I
+(c6+6i)A

4 0 +(c2+6i)A
4 0

+(c5+6i)A
6 +(c3+6i)A

6

Figure 3.4: Edge-Coloring Incidence Matrix for a BIBD(8, 4, 6)

ure 3.5. The subscripts are computed (mod λ) where we identify c0 with cλ. In the case

M
(9)
0 =

(c1′)I (c2′)I + (c3′)A6 (c5′)I (c4′)I + (c6′)A6 (c7′)I (c8′)I + (c9′)A6

(c2′)A6 (c1′)I + (c4′)A5 (c6′)A6 (c5′)I + (c8′)A5 (c9′)A6 (c3′)I + (c7′)A5

(c3′)I (c5′)A3 + (c6′)A6 (c4′)I (c7′)A3 + (c9′)A6 (c8′)I (c1′)A3 + (c2′)A6

(c4′)I (c7′)I (c1′)I
+(c6′)A4 0 +(c8′)A4 0 +(c2′)A4 0
+(c5′)A6 +(c9′)A6 +(c3′)A6

Figure 3.5: Edge-Coloring Incidence Matrix for a BIBD(8, 4, 9)

where λ = 6k, our matrix is

M = M
(6)
0 M

(6)
1 · · · M

(6)
k−1 .

The set of colors used is C0, C1, . . . , Ck−1 where

Ci = {c1+6i, c2+6i, c3+6i, c4+6i, c5+6i, c6+6i}

for i = 0, 1, . . . , k − 1. Because each M
(6)
i is an edge coloring incidence matrix of a

properly colored BIBD(8, 4, 6) on a different set of 6 colors, it follows that M is an edge-
coloring incidence matrix of a properly colored BIBD(8, 4, 6k).

In the case where λ = 6k + 3, our matrix is

M = M
(9)
0 M

(6)
0 · · · M

(6)
k−2 .

The set of colors used is C, C0, C1, . . . , Ck−2 where C = {c1′ , c2′ , . . . , c9′} and

Ci = {c1+6i, c2+6i, c3+6i, c4+6i, c5+6i, c6+6i}
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for i = 0, 1, . . . , k − 2. Because M
(9)
0 is an edge coloring incidence matrix of a properly

colored BIBD(8, 4, 9) on 9 colors, and each M
(6)
i is an edge coloring incidence matrix of a

properly colored BIBD(8, 4, 6) on a different set of 6 colors which are all disjoint from the
colors in C; it follows that M is an edge-coloring incidence matrix of a properly colored
BIBD(8, 4, 6k + 3).

z

Lemma 3.3. There exists a properly colored BIBD(12, 4, λ) for λ = 3k, k ≥ 2, k ∈ Z+.

Proof: As in Lemma 2.4 we form a colored edge-coloring incidence matrix for a
BIBD(12, 4, 3) as follows. Let A be the 12 × 12 circulant matrix whose first row is
[010000000000]. Then the edge coloring incidence matrix of a BIBD(12, 4, 3) using 6
colors is given below.

Mi =

(c1+3i)I (c2+3i)A
2 (c3+3i)A

5

(c2+3i)A
10 (c3+3i)A

9 (c4+3i)A
4

(c3+3i)I (c4+3i)A (c5+3i)A
5

(c4+3i)A
4 + (c5+3i)A

8 (c6+3i)A
2 0

(c6+3i)A
4 (c1+3i)A + (c5+3i)A

7 0
0 0 (c1+3i)A

2 + (c2+3i)A
4 + (c6+3i)A

5

Since Mi is semi-properly colored, by Theorem 2.12 we can properly color a BIBD(12, 4, λ).
z

Lemma 3.4. There exists a properly colored BIBD(7, 4, λ) for λ = 2k, k ∈ Z+, k ≥ 3.

Proof: As in Lemma 2.4 we form a colored edge-coloring incidence matrix for a
BIBD(7, 4, 2) as follows. Figure 3.6 represents the edge-coloring incidence matrix for the
BIBD(7, 4, 2).

Let A be the 7×7 circulant matrix whose first row is [0100000]. Then the edge coloring
incidence matrix of a BIBD(7, 4, 2) using 6 colors is given below.

Mi =

(c1+2i)I + (c2+2i)A

(c3+2i)I + (c4+2i)A
2

(c5+2i)I + (c6+2i)A
3

Since Mi is semi-properly colored, by Theorem 2.12 we can properly color a BIBD(7, 4, λ).
z

Lemma 3.5. There exists a properly colored BIBD(19, 4, λ) for λ = 2k, k ∈ Z+, k ≥ 3.

Proof: Let A be the 19 × 19 circulant matrix whose first row is [0100000000000000000].
Then the edge coloring incidence matrix of a BIBD(19, 4, 2) using 6 colors is given in
Figure 3.7. Since Mi is semi-properly colored, by Theorem 2.12 we can properly color a
BIBD(19, 4, λ).

z
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B1 B2 B3 B4 B5 B6 B7

{0, 1} c1 c2 0 0 0 0 0
{5, 0} 0 c1 c2 0 0 0 0
{3, 4} 0 0 c1 c2 0 0 0
{3, 6} 0 0 0 c1 c2 0 0
{2, 5} 0 0 0 0 c1 c2 0
{2, 4} 0 0 0 0 0 c1 c2

{0, 2} c2 0 0 0 0 0 c1

{0, 3} c3 0 c4 0 0 0 0
{6, 1} 0 c3 0 c4 0 0 0
{3, 5} 0 0 c3 0 c4 0 0
{1, 4} 0 0 0 c3 0 c4 0
{6, 2} 0 0 0 0 c3 0 c4

{1, 2} c4 0 0 0 0 c3 0
{6, 0} 0 c4 0 0 0 0 c3

{1, 3} c5 0 0 c6 0 0 0
{5, 6} 0 c5 0 0 c6 0 0
{4, 5} 0 0 c5 0 0 c6 0
{4, 6} 0 0 0 c5 0 0 c6

{2, 3} c6 0 0 0 c5 0 0
{5, 1} 0 c6 0 0 0 c5 0
{4, 0} 0 0 c6 0 0 0 c5

Figure 3.6: Edge-Coloring Incidence Matrix of a BIBD(7, 4, 2).

Mi =

(c1+2i)A
16 0 (c2+2i)I

(c2+2i)A
18 0 (c3+2i)A

15

(c3+2i)I 0 (c4+2i)A
13

0 (c4+2i)A
18 (c5+2i)I

0 (c5+2i)I (c6+2i)A
15

0 (c6+2i)A
6 (c1+2i)I

(c4+2i)A
7 (c1+2i)A

5 0
(c5+2i)A

7 (c2+2i)A
14 0

(c6+2i)I (c3+2i)I 0

Figure 3.7: Edge-Coloring Incidence Matrix of a BIBD(19, 4, 2).
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Lemma 3.6. There exists a properly colored BIBD(10, 4, λ) for λ = 2k, k ∈ Z+, k ≥ 4.

Proof: We form an edge-coloring incidence matrix using 8 colors for a BIBD(10, 4, 2) as
follows. Let A

(j)
i be the following 5× 5 matrices for j = 1, 2, 3.

A
(1)
i =

c1+2i 0 c2+2i 0 0
c2+2i 0 0 c1+2i 0

0 c2+2i c1+2i 0 0
0 c1+2i 0 0 c2+2i

0 0 0 c2+2i c1+2i

A
(2)
i =

0 0 0 c2+2i c1+2i

c1+2i 0 c2+2i 0 0
0 c2+2i 0 c1+2i 0

c2+2i c1+2i 0 0 0
0 0 c1+2i 0 c2+2i

A
(3)
i =

c2+2i 0 0 0 c1+2i

0 0 c1+2i c2+2i 0
c1+2i 0 c2+2i 0 0

0 c1+2i 0 0 c2+2i

0 c2+2i 0 c1+2i 0

Let B
(j)
i be the following 8× 5 matrices for j = 1, 2, 3, 4, 5, 6.

B
(1)
i =

c3+2i 0 0 0 0
c4+2i 0 0 0 0

0 0 0 c3+2i 0
0 c3+2i 0 0 0
0 c4+2i 0 0 0
0 0 c4+2i 0 0
0 0 0 c4+2i 0
0 0 0 0 c4+2i

B
(2)
i =

0 c4+2i 0 0 0
0 0 c3+2i 0 0

c4+2i 0 0 0 0
0 0 0 c4+2i 0
0 0 0 0 c3+2i

c3+2i 0 0 0 0
0 c3+2i 0 0 0
0 0 0 c3+2i 0

B
(3)
i =

c5+2i 0 0 0 0
0 c5+2i 0 0 0
0 0 c5+2i 0 0
0 0 0 0 c5+2i

0 0 c6+2i 0 0
0 0 0 c5+2i 0
0 0 0 0 c6+2i

0 0 0 c6+2i 0

B
(4)
i =

c6+2i 0 0 0 0
0 0 0 c6+2i 0
0 c6+2i 0 0 0
0 0 c6+2i 0 0
0 0 c5+2i 0 0
0 0 0 0 c6+2i

c5+2i 0 0 0 0
0 0 0 c5+2i 0

B
(5)
i =

0 0 0 0 c7+2i

c7+2i 0 0 0 0
0 0 c8+2i 0 0
0 0 0 c7+2i 0
0 0 0 0 c8+2i

0 0 c7+2i 0 0
0 c8+2i 0 0 0
0 0 0 c8+2i 0

B
(6)
i =

0 0 c8+2i 0 0
0 c8+2i 0 0 0
0 0 0 0 c7+2i

0 0 0 0 c8+2i

0 0 0 c7+2i 0
c8+2i 0 0 0 0

0 0 c7+2i 0 0
0 c7+2i 0 0 0

Let C
(j)
i be the following 5× 5 matrices for j = 1, 2, 3.
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C
(1)
i =

c7+2i c8+2i 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 c7+2i

0 0 c8+2i 0 0
0 0 0 0 0

C
(2)
i =

0 0 0 0 0
0 0 0 0 0
0 0 c5+2i 0 c6+2i

c6+2i 0 0 0 0
0 0 0 0 0
0 c6+2i 0 0 0

C
(3)
i =

0 0 0 0 0
c3+2i 0 0 c4+2i 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 c3+2i

0 c3+2i 0 0 0

Now the edge-coloring incidence matrix can be represented by the above sub-matrices
along with the all 0 sub-matrix.

Mi =

A
(1)
i 0 0
0 0 A

(2)
i

0 A
(3)
i 0

B
(1)
i B

(2)
i 0

B
(3)
i 0 B

(4)
i

0 B
(5)
i B

(6)
i

C
(1)
i C

(2)
i C

(3)
i

Since Mi is semi-properly colored, by Theorem 2.12 we can properly color a
BIBD(10, 4, λ).

z

Because the process of checking each individual lemma for a correct direct construction
is difficult, a program was built for the specific purpose of checking the small cases. Along
with this is a csv (comma separated variables) and a tsv (tab separated variables) file of
the edge-colored incidence matrix which are semi-properly colored. The program called
bibdchecker.cpp is used to verify the design is a semi-properly colored BIBD. Mathematica
was used to generate the properly colored versions of the BIBDs in csv and tsv form. Go
to

http://www.mathlab.mtu.edu/∼msjukuri/Data.html

for the program and corresponding csv and tsv files.
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3.2 Main Results
Before we can state the main theorem of this chapter, we must prove the general construc-
tions we use. Note that the exponential notation in 4–GDD(ab1

1 ab2
2 · · · abx

x ) means we have
b1 groups of size a1, b2 groups of size a2,. . ., and bx groups of size ax in the GDD. We
can use 4–GDDs and 4–RGDDs to build our BIBD(v, 4, λ)s in a way that will allow us to
properly color the edges. We now give some recursive constructions which are based off
this idea.

Lemma 3.7. If there exists a 4− GDD(ab1
1 ab2

2 · · · abx
x ), and a properly colored

BIBD(ai, 4, λ) for all i = 1, 2, . . . , x, then there exists a properly colored

BIBD

(
x∑

i=1

aibi, 4, λ

)
.

Proof: Repeat each of the blocks in a 4−GDD(ab1
1 ab2

2 · · · abx
x ) λ times. For each block, we

must color each edge a different color using the colors ci ∈ {c1, . . . , cλ}. Each correspond-
ing edge in the λ copies of the blocks must also be a different color. So we color the edges
in the λ copies of each block as follows. Form a 6× λ matrix. The rows of the matrix will
be indexed by the 6 edges of K4, and the columns will be indexed by the λ copies of the
block. The entries of the matrix will be the first 6 rows of an LS(λ). Now the only pairs
that have not been covered are the pairs which lie within the groups. So we place a properly
colored BIBD(ai, 4, λ) on each group for all i = 1, 2, . . . , x. This forms a properly colored

BIBD

(
x∑

i=1

aibi, 4, λ

)
. z

Lemma 3.8. If there exists a 4 − GDD(mu) and a properly colored BIBD(m + 1, 4, λ),
then there exists a properly colored BIBD(mu + 1, 4, λ).

Proof: Let Gi for i = 1, . . . , u be the u groups of size m. Repeat each of the blocks in a
4 − GDD(mu) λ times. For each block, we must color each edge a different color, using
the colors ci ∈ {c1, . . . , cλ}. Each corresponding edge in the λ copies of the block must
also be a different color. So we color the edges in the λ copies of each block as follows.
Form a 6 × λ matrix. The rows of the matrix will be indexed by the 6 edges of K4, and
the columns will be indexed by the λ copies of the block. The entries of the matrix will be
the first 6 rows of an LS(λ). Now the only pairs that have not been covered are the pairs
which lie within the groups and pairs which contain the point {∞}. So we place a properly
colored BIBD(m+1, 4, λ) on each Gi∪{∞} for all i = 1, 2, . . . , u. This forms a properly
colored BIBD (mu + 1, 4, λ). z

Lemma 3.9. If there exists a 4−RGDD(mu), a properly colored BIBD(5, 4, λ), a properly
colored

BIBD(m, 4, λ), and a properly colored BIBD(t, 4, λ) for some t ≤ m(u− 1)

3
, then there

exists a properly colored BIBD(mu + t, 4, λ).
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Proof: Let Pi for i = 1, . . . ,
m(u− 1)

3
denote the parallel classes in the 4− RGDD(mu).

Also let {∞1,∞2, . . . ,

∞t} be t new points where 0 ≤ t ≤ m(u− 1)

3
. Consider the parallel class Pi for i =

1, . . . , t. We take each block of Pi and join it with {∞i}. Now place a properly colored

BIBD(5, 4, λ) on each block of Pi∪{∞i}. For each block in Pi for i = t+1, . . . ,
m(u− 1)

3
we repeat it λ times. We must color each edge of each block a different color, using the
colors ci ∈ {c1, . . . , cλ}. Each corresponding edge in the λ copies of the blocks must also
be a different color. So we color the edges in the λ copies of each block as follows. Form a
6×λ matrix. The rows of the matrix will be indexed by the 6 edges of K4, and the columns
will be indexed by the λ copies of the block. The entries of the matrix will be the first 6
rows of a LS(λ). Now the only pairs that have not been covered are the pairs which lie
within the groups and the pairs of the form {{∞i,∞j} : i, j ∈ {1, . . . , t}}. So we place a
properly colored BIBD(m, 4, λ) on each group, Gi, for all i = 1, 2, . . . , u and we place a
properly colored BIBD(t, 4, λ) on the set of points {∞1, . . . ,∞t}. This forms a properly
colored BIBD(mu + t, 4, λ). z

The following theorem illustrates the use of the above lemmas.

Theorem 3.10. There exists a properly colored BIBD(v, 4, λ) for v ≡ 0 (mod 12) where
λ = 3k, k ≥ 2.

Proof: Let v = 24. By Theorem 1.10 a 4 − RGDD(54) exists with 5 parallel classes,
and Lemma 2.4 allows us to properly color a BIBD(5, 4, λ) for λ = 3k, k ∈ Z+, k ≥ 2.
Therefore, we can apply Lemma 3.9 with m = 5, u = 4, and t = 4 to obtain a properly
colored BIBD(24, 4, λ) for λ = 3k k ≥ 2.

Let v = 36. By Theorem 1.3, there exists a 4 − GDD(94). From Lemma 3.1 we have
a properly colored BIBD(9, 4, λ) for λ = 3k, k ≥ 2. Hence, we apply Lemma 3.7 with
x = 1, a1 = 9, and b1 = 4 to properly color a BIBD(36, 4, λ) for λ = 3k, k ≥ 2.

Now suppose v = 12u where u ≥ 4. There exists a 4 − GDD(12u) for u ≥ 4 by
Theorem 1.3. By Lemma 3.3, we can properly color a BIBD(12, 4, λ) design for λ = 3k,
k ≥ 2. Thus, we can let x = 1, a1 = 12, b1 = u, so it follows by Lemma 3.7 that we can
properly color a BIBD(v, 4, λ) for λ = 3k, k ≥ 2. z

3.2.1 λ ≡ 0 (mod 3)

In this section, we properly color all BIBD(v, 4, λ)s where λ ≡ 0 (mod 3). In this case,
the necessary and sufficient conditions for the existence of a BIBD(v, 4, λ) are v ≡ 0, 1
(mod 4). Note when v ≡ 0, 1 (mod 4) and λ ≡ 0 (mod 6) these are already covered by
Theorem 2.2, but the results in this section satisfy this case as well.

Theorem 3.11. There exists a proper coloring for every BIBD(v, 4, λ) for λ = 3k, k ∈
Z+, k ≥ 2, where v ≡ 0, 1 (mod 4).

36



Proof: Note that in each case we assume λ = 3k, k ∈ Z+, k ≥ 2 unless otherwise stated.
We will break this problem up into two main cases, v ≡ 1 (mod 4), and v ≡ 0 (mod 4).

Case 1: v ≡ 1 (mod 4)

Let v ≡ 1 (mod 4). Figure 3.8 represents the possible v values.

5 9
13 17 21
25 29 33
37 41 45
49 53 57
61 65 69
...

...
...

Figure 3.8: Possible v values for Case 1

Each column of Figure 3.8 represents v ≡ 1 (mod 4) in three different ways; v ≡ 1
(mod 12), v ≡ 5 (mod 12), and v ≡ 9 (mod 12).

Case 1.1: v ≡ 1 (mod 12)

By Theorem 2.3, we can properly color a BIBD(v, 4, λ) where v ≡ 1, 4 (mod 12).

Case 1.2: v ≡ 5 (mod 12)

For v = 5, we can properly color a BIBD(5, 4, λ) by Lemma 2.4
Let v ≡ 5 (mod 12). So v = 5 + 12x = 1 + 4(1 + 3x) where x ≥ 1. We construct a

4 − GDD(4u) where u = 1 + 3x and x ≥ 1. This exists by Theorem 1.3. We also know
that a properly colored BIBD(5, 4, λ) exists by Lemma 2.4. So we apply Lemma 3.8 with
m = 4, u = 1 + 3x, x ≥ 1.

Case 1.3: v ≡ 9 (mod 12)

If v ≡ 9 (mod 12), then we have that either v ≡ 9 (mod 24) or v ≡ 21 (mod 24).

Case 1.3.1: v ≡ 9 (mod 24)

For v = 9, we can properly color a BIBD(9, 4, λ) by Lemma 3.1.
For v > 9, let v = 24x + 9 = 8(3x + 1) + 1, x ≥ 1. Theorem 1.3 says that there

exists a 4− GDD(8u) for u = 3x + 1. Also by Lemma 3.1 there exists a properly colored
BIBD(9, 4, λ). So apply Lemma 3.8 with m = 8, u = 3x + 1, x ≥ 1.

Case 1.3.2: v ≡ 21 (mod 24)
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If v ≡ 21 (mod 24), then we can write v as v ≡ 21 (mod 48) or v ≡ 45 (mod 48).

Case 1.3.2.1: v ≡ 45 (mod 48)

Suppose v = 48x + 45 = 4(12x + 11) + 1. We can construct a 4−GDD(m4) for m =
12x + 11 by Theorem 1.3. By Theorem 3.10, we can properly color a BIBD(m + 1, 4, λ).
So apply Lemma 3.8 to obtain a properly colored BIBD(4m + 1, 4, λ).

Case 1.3.2.2: v ≡ 21 (mod 48)

If v = 21, then we can write v as v = 4(5) + 1. We can construct a 4 − RGDD(54)
by Theorem 1.10. This has 5 parallel classes. Let {∞} be a new point, and let Pi denote
the ith parallel classes. We take each block of P1 and join it with {∞}. Place a properly
colored BIBD(5, 4, λ) design on each block of P1 ∪ {∞}. Now we repeat each block in
Pi λ times for i = 2, 3, 4, 5. We must color each edge of each block a different color, using
the colors ci ∈ {c1, . . . , cλ}. Each corresponding edge in the λ copies of the block must
also be a different color. So we color the edges in the λ copies of each block as follows.
Form a 6× λ matrix. The rows of the matrix will be indexed by the 6 edges of K4, and the
columns will be indexed by the λ copies of the block. The entries of the matrix will be the
first 6 rows of a LS(λ). Now the only pairs that have not been covered are the pairs which
lie within the groups. So we place a properly colored BIBD(5, 4, λ) on each group Gi for
i = 1, 2, 3, 4. This forms a properly colored BIBD(21, 4, λ).

Now suppose v = 21 + 48x for x ≥ 1. Since v = 21 + 48x = 4(12x + 4) + 5, we can
construct a 4−RGDD(mu) with m = 12x+5 and u = 4, by Theorem 1.10. We also have
that a properly colored BIBD(5, 4, λ) design exists by Lemma 2.4, and a properly colored
BIBD(12x+4, 4, λ) exists by Theorem 2.3. Since 5 ≤ 12x+4 for all x > 0, we can apply
Lemma 3.9.

Thus, we can properly color a BIBD(v, 4, λ) for v ≡ 1 (mod 4).

Case 2: v ≡ 0 (mod 4)

Let v ≡ 0 (mod 4). Figure 3.9 represents the possible v values.

8 12
16 20 24
28 32 36
40 44 48
52 56 60
64 68 72
...

...
...

Figure 3.9: Possible v values for Case 2

Each column of the above table represents v ≡ 0 (mod 4) in three different ways;
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v ≡ 0 (mod 12), v ≡ 4 (mod 12), and v ≡ 8 (mod 12). Recall that if v ≡ 0 (mod 12),
these designs were colored in Theorem 3.10.

Case 2.1: v ≡ 4 (mod 12)

By Theorem 2.3, we can properly color a BIBD(v, 4, λ) for v ≡ 4 (mod 12).

Case 2.2: v ≡ 8 (mod 12)

If v ≡ 8 (mod 12), then we can rewrite v as v ≡ 8 (mod 24) or v ≡ 20 (mod 24).

Case 2.2.1: v ≡ 8 (mod 24)

We can properly color a BIBD(8, 4, λ) by Lemma 3.2. There exists a 4−GDD(8u) for
u = 3x + 1 and x ≥ 1 by Theorem 1.3. Therefore, we use Lemma 3.7 with x = 1, a1 = 8,
and b1 = u.

Case 2.2.2: v ≡ 20 (mod 24)

We break this case into two subcases, v ≡ 20 (mod 48) and v ≡ 44 (mod 48).

Case 2.2.2.1: v ≡ 20 (mod 48)

Let v = 48x + 20 = 4(12x + 5) for x ≥ 0. There exists a 4 − GDD(m4) where
m = 12x + 5 by Theorem 1.3. We properly color all BIBD(m, 4, λ)s in Case 1.2 and
Lemma 2.4. Thus we can apply Lemma 3.7 with x = 1, a1 = m, and b1 = 4.

Case 2.2.2.2: v ≡ 44 (mod 48)

Let v = 44 + 48x = 4(12x + 9) + 8 for x ≥ 0. There exists a 4 − RGDD(m4)
for m = 12x + 9 by Theorem 1.10. This has 12x + 9 parallel classes. We can properly
color each BIBD(v, 4, λ) for v ≡ 9 (mod 12) by Case 1.3, and we can properly color a
BIBD(5, 4, λ) using Lemma 2.4. Also, we can properly color a BIBD(8, 4, λ) by Lemma
3.2. So we apply Lemma 3.9 with m = 12x + 9, u = 4, and t = 8.

Therefore, we can properly color a BIBD(v, 4, λ) for v ≡ 0 (mod 4) and λ = 3k,
k ≥ 2. Furthermore, there exists a proper coloring for every BIBD(v, 4, λ) where v ≡ 0, 1
(mod 4). z

3.2.2 λ ≡ 2, 4 (mod 6)

In this section, we properly color all BIBD(v, 4, λ)s where λ ≡ 2 or 4 (mod 6). In this
case, the necessary and sufficient conditions for the existence of a BIBD(v, 4, λ) are that
v ≡ 1 (mod 3). Note that when v ≡ 1 (mod 3) and λ ≡ 0 (mod 6), we could also use
Theorem 2.2.

Theorem 3.12. There exists a proper coloring for every BIBD(v, 4, λ) design for λ =
2k, k ∈ Z+, k ≥ 3, where v ≡ 1 (mod 3).
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Proof: Note that in each case we assume λ = 2k, k ∈ Z+, k ≥ 3 unless otherwise stated.
Figure 3.10 represents the possible v values when v ≡ 1 (mod 3).

4 7 10
13 16 19 22
25 28 31 34
37 40 43 46
49 52 55 58
61 64 67 70
...

...
...

...

Figure 3.10: Possible v values for Theorem 3.12

Each column of the above table represents v ≡ 1 (mod 3) in four different ways; v ≡ 1
(mod 12), v ≡ 4 (mod 12), v ≡ 7 (mod 12), and v ≡ 10 (mod 12).

Case 1: v ≡ 1, 4 (mod 12)

By Theorem 2.3, we can properly color a BIBD(v, 4, λ) for v ≡ 1, 4 (mod 12).

Case 2: v ≡ 7 (mod 12)

We can properly color a BIBD(7, 4, λ) for λ = 2k, k ≥ 3 by Lemma 3.4. We can
also properly color a BIBD(19, 4, λ) for all such λ by Lemma 3.5. Let v = 12x + 7 =
6(2x + 1) + 1 for x ≥ 2. By Theorem 1.3, there exists a 4 − GDD(62x+1) for all x ≥ 2.
So we can apply Lemma 3.8 with m = 6 and u = 2x + 1.

Case 3: v ≡ 10 (mod 12)

If v = 10, we can properly color a BIBD(10, 4, λ) with λ = 6 by Theorem 2.2. Then
for all λ = 2k, k ≥ 4, we apply Lemma 3.6.

If v = 22, we can apply Lemma 3.7 with x = 2, a1 = 1, b1 = 15, a2 = 7, and b2 = 1.
Note that the required 4 − GDD(11571) exists by Theorem 1.6, and a properly colored
BIBD(7, 4, λ) exists by Lemma 3.4.

Now let v = 12x + 10, with x ≥ 2. There exists a 4 − GDD(4um1) where m = 10
and u = 3x for all x ≥ 2 by Theorem 1.4. So we let x = 2, a1 = 4, b1 = u, a2 = m, and
b2 = 1; and we apply Lemma 3.7. The required properly colored BIBD(10, 4, λ) as stated
above. z

3.3 Conclusion
We are now in a position to prove the main theorem.

Theorem 3.13. There is a proper edge coloring for every BIBD(v, 4, λ) where λ ≥ 6.
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Proof: Recall the necessary and sufficient conditions for the existence of a BIBD(v, 4, λ).

If λ ≡ 1, 5 (mod 6), then v ≡ 1, 4 (mod 12);
If λ ≡ 2, 4 (mod 6), then v ≡ 1 (mod 3);
If λ ≡ 3 (mod 6), then v ≡ 0, 1 (mod 4); and
If λ ≡ 0 (mod 6), then v ≥ 4.

If λ ≡ 1, 5 (mod 6), then v ≡ 1, 4 (mod 12) and we apply Theorem 2.3 to prop-
erly color a BIBD(v, 4, λ). If λ ≡ 0 (mod 6), then v ≥ 4 and we can properly color a
BIBD(v, 4, λ) by applying Theorem 2.2. If λ ≡ 3 (mod 6), then v ≡ 0, 1 (mod 4) and
we can apply Theorem 3.11. Finally, if λ ≡ 2, 4 (mod 6), then v ≡ 1 (mod 3) and we
apply Theorem 3.12. z
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Chapter 4

Proper Edge Coloring With Block Size 5

Again, we first need to understand the construction in Chapter 2 before adventuring into
this chapter. Our goal in this chapter is to prove we can properly color all BIBD(v, 5, λ)
except possibly for a few cases. To prove this we must first show there exists properly
colored BIBD(v, 5, λ) for small v. Afterwords, we prove the generalized constructions
hold which are then used on the main theorem.

4.1 Direct Constructions With Block Size 5
Lemma 4.1. There exists a properly colored BIBD(11, 5, λ) for λ = 2k, k ∈ Z+, k ≥ 5.

Proof: We form an edge-coloring incidence matrix using 10 colors for a BIBD(11, 5, 2).
Figure 4.1 represents the edge-coloring incidence matrix for the BIBD(11, 5, 2).

Let A be the 11 × 11 circulant matrix whose first row is [01000000000]. Then the
edge-coloring incidence matrix of a BIBD(11, 5, 2) using 10 colors is given below.

Mi =

(c1+2i)I+(c2+2i)A

(c3+2i)I + (c4+2i)A
2

(c5+2i)I + (c6+2i)A
3

(c7+2i)I + (c8+2i)A
4

(c9+2i)I + (c10+2i)A
5

Since Mi is semi-properly colored, by applying Theorem 2.12 we can properly color a
BIBD(11, 5, λ).

z

Lemma 4.2. There exists a properly colored BIBD(31, 5, λ) for λ = 2k, k ∈ Z+, k ≥ 5.

Proof: Let A be the 31× 31 circulant matrix whose first row is

[0100000000000000000000000000000].

Then the edge coloring incidence matrix of a BIBD(31, 5, 2) using 10 colors in Figure 4.2.
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B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

{0, 1} c1 c2 0 0 0 0 0 0 0 0 0
{0, 5} 0 c1 c2 0 0 0 0 0 0 0 0
{8, 0} 0 0 c1 c2 0 0 0 0 0 0 0
{10, 0} 0 0 0 c1 c2 0 0 0 0 0 0
{10, 4} 0 0 0 0 c1 c2 0 0 0 0 0
{10, 1} 0 0 0 0 0 c1 c2 0 0 0 0
{9, 1} 0 0 0 0 0 0 c1 c2 0 0 0
{6, 9} 0 0 0 0 0 0 0 c1 c2 0 0
{2, 6} 0 0 0 0 0 0 0 0 c1 c2 0
{5, 7} 0 0 0 0 0 0 0 0 0 c1 c2

{3, 7} c2 0 0 0 0 0 0 0 0 0 c1

{0, 2} c3 0 c4 0 0 0 0 0 0 0 0
{6, 0} 0 c3 0 c4 0 0 0 0 0 0 0
{9, 0} 0 0 c3 0 c4 0 0 0 0 0 0
{8, 10} 0 0 0 c3 0 c4 0 0 0 0 0
{9, 10} 0 0 0 0 c3 0 c4 0 0 0 0
{8, 1} 0 0 0 0 0 c3 0 c4 0 0 0
{9, 3} 0 0 0 0 0 0 c3 0 c4 0 0
{6, 7} 0 0 0 0 0 0 0 c3 0 c4 0
{3, 4} 0 0 0 0 0 0 0 0 c3 0 c4

{2, 7} c4 0 0 0 0 0 0 0 0 c3 0
{4, 5} 0 c4 0 0 0 0 0 0 0 0 c3

{0, 3} c5 0 0 c6 0 0 0 0 0 0 0
{0, 4} 0 c5 0 0 c6 0 0 0 0 0 0
{8, 2} 0 0 c5 0 0 c6 0 0 0 0 0
{10, 3} 0 0 0 c5 0 0 c6 0 0 0 0
{7, 9} 0 0 0 0 c5 0 0 c6 0 0 0
{2, 4} 0 0 0 0 0 c5 0 0 c6 0 0
{5, 10} 0 0 0 0 0 0 c5 0 0 c6 0
{7, 8} 0 0 0 0 0 0 0 c5 0 0 c6

{2, 3} c6 0 0 0 0 0 0 0 c5 0 0
{5, 6} 0 c6 0 0 0 0 0 0 0 c5 0
{5, 8} 0 0 c6 0 0 0 0 0 0 0 c5

{7, 0} c7 0 0 0 c8 0 0 0 0 0 0
{1, 4} 0 c7 0 0 0 c8 0 0 0 0 0
{5, 9} 0 0 c7 0 0 0 c8 0 0 0 0
{6, 8} 0 0 0 c7 0 0 0 c8 0 0 0
{4, 9} 0 0 0 0 c7 0 0 0 c8 0 0
{10, 2} 0 0 0 0 0 c7 0 0 0 c8 0
{3, 5} 0 0 0 0 0 0 c7 0 0 0 c8

{7, 1} c8 0 0 0 0 0 0 c7 0 0 0
{4, 6} 0 c8 0 0 0 0 0 0 c7 0 0
{2, 5} 0 0 c8 0 0 0 0 0 0 c7 0
{3, 8} 0 0 0 c8 0 0 0 0 0 0 c7

{1, 2} c9 0 0 0 0 c10 0 0 0 0 0
{1, 5} 0 c9 0 0 0 0 c10 0 0 0 0
{8, 9} 0 0 c9 0 0 0 0 c10 0 0 0
{3, 6} 0 0 0 c9 0 0 0 0 c10 0 0
{7, 10} 0 0 0 0 c9 0 0 0 0 c10 0
{4, 8} 0 0 0 0 0 c9 0 0 0 0 c10

{1, 3} c10 0 0 0 0 0 c9 0 0 0 0
{1, 6} 0 c10 0 0 0 0 0 c9 0 0 0
{9, 2} 0 0 c10 0 0 0 0 0 c9 0 0
{6, 10} 0 0 0 c10 0 0 0 0 0 c9 0
{4, 7} 0 0 0 0 c10 0 0 0 0 0 c9

Figure 4.1: Edge-Coloring Incidence Matrix of a BIBD(11, 5, 2).
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Mi =

(c1+2i)I 0 (c2+2i)A
27

(c2+2i)A
30 0 (c3+2i)A

18

(c3+2i)I (c2+2i)I 0
(c4+2i)A

28 0 (c1+2i)I

0 (c1+2i)A
22 (c4+2i)I

(c5+2i)A
30 (c4+2i)A

28 0
(c6+2i)I (c3+2i)A

17 0
(c7+2i)A

24 0 (c6+2i)A
26

0 (c6+2i)I (c5+2i)A
27

0 (c5+2i)A
10 (c8+2i)A

26

0 (c8+2i)A
28 (c7+2i)A

27

(c8+2i)A
28 (c9+2i)A

22 0
0 (c10+2i)A

10 (c9+2i)I

(c10+2i)A
30 (c7+2i)I 0

(c9+2i)I 0 (c10+2i)I

Figure 4.2: Edge-Coloring Incidence Matrix of a BIBD(31, 5, 2).

Since Mi is semi-properly colored, by applying Theorem 2.12 we can properly color a
BIBD(31, 5, λ).

z

Lemma 4.3. There exists a properly colored BIBD(51, 5, λ) for λ = 2k, k ∈ Z+, k ≥ 5.

Proof: Let A be the 51× 51 circulant matrix whose first row is

[010000000000000000000000000000000000000000000000000].

Then the edge coloring incidence matrix of a BIBD(51, 5, 2) using 10 colors in Figure 4.3.
Since Mi is semi-properly colored, by applying Theorem 2.12 we can properly color a

BIBD(51, 5, λ).
z

Lemma 4.4. There exists a properly colored BIBD(6, 5, λ) for λ = 4k, k ∈ Z+, k ≥ 3.

Proof: The incidence matrix of a BIBD(6, 5, 4) is

B1 B2 B3 B4 B5 B6

0 0 1 1 1 1 1
1 1 0 1 1 1 1
2 1 1 0 1 1 1
3 1 1 1 0 1 1
4 1 1 1 1 0 1
5 1 1 1 1 1 0

Figure 4.4 represents the edge-coloring incidence matrix for the BIBD(6, 5, 4).
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Mi =

(c1+4i)I (c2+4i)I 0 0 0
0 0 (c1+4i)A

35 0 (c2+4i)A
41

0 0 0 (c1+4i)A
15 (c4+4i)A

39

(c2+4i)A
20 0 0 0 (c3+4i)I

0 0 (c2+4i)A
40 0 (c1+4i)A

41

0 0 0 (c2+4i)A
44 (c5+4i)A

47

0 0 (c3+4i)A
40 (c4+4i)I 0

0 (c1+4i)A
50 0 0 (c6+4i)A

47

0 (c3+4i)I (c4+4i)A
9 0 0

0 (c4+4i)A
28 0 0 (c7+4i)I

0 0 (c5+4i)I 0 (c8+4i)A
47

0 0 0 (c6+4i)A
12 (c9+4i)I

(c4+4i)A
50 0 0 (c3+4i)I 0

(c3+4i)I (c6+4i)A
42 0 0 0

0 0 0 (c7+4i)A
15 (c10+4i)I

(c5+4i)A
16 0 (c6+4i)I 0 0

(c6+4i)A
16 + (c7+4i)A

37 0 0 0 0
0 (c5+4i)A

18 (c8+4i)I 0 0
0 (c7+4i)A

18 0 (c8+4i)A
12 0

(c8+4i)A
20 0 (c7+4i)A

9 0 0
(c9+4i)A

20 + (c10+4i)A
37 0 0 0 0

0 (c8+4i)A
50 0 (c5+4i)A

15 0
0 (c9+4i)I 0 (c10+4i)A

38 0
0 (c10+4i)A

42 (c9+4i)A
33 0 0

0 0 (c10+4i)A
9 (c9+4i)A

12 0

Figure 4.3: Edge-Coloring Incidence Matrix of a BIBD(51, 5, 2).
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B1 B2 B3 B4 B5 B6

{0, 1} 0 0 c1 c2 c3 c4

{1, 2} c4 0 0 c1 c2 c3

{2, 3} c3 c4 0 0 c1 c2

{3, 4} c2 c3 c4 0 0 c1

{4, 5} c1 c2 c3 c4 0 0
{5, 0} 0 c1 c2 c3 c4 0
{0, 2} 0 c5 0 c6 c7 c8

{1, 3} c8 0 c5 0 c6 c7

{2, 4} c7 c8 0 c5 0 c6

{3, 5} c6 c7 c8 0 c5 0
{4, 0} 0 c6 c7 c8 0 c5

{5, 1} c5 0 c6 c7 c8 0
{0, 3} 0 c9 c10 0 c11 c12

{1, 4} c12 0 c9 c10 0 c11

{2, 5} c11 c12 0 c9 c10 0

Figure 4.4: Edge-Coloring Incidence Matrix of a BIBD(6, 5, 4).

Let A be the 6 × 6 circulant matrix whose first row is [010000]. Also let B be the first
3 rows of the 6 × 6 circulant matrix whose first row is [010000]. Then the edge coloring
incidence matrix of a BIBD(6, 5, 4) using 12 colors is given below.

Mi =

(c1+4i)A
2 + (c2+4i)A

3 + (c3+4i)A
4 + (c4+4i)A

5

(c5+4i)A + (c6+4i)A
3 + (c7+4i)A

4 + (c8+4i)A
5

(c9+4i)B + (c10+4i)B
2 + (c11+4i)B

4 + (c12+4i)B
5

Since Mi is semi-properly colored, by applying Theorem 2.12 we can properly color a
BIBD(6, 5, λ).

z

Lemma 4.5. There exists a properly colored BIBD(10, 5, λ) for λ = 4k, k ∈ Z+, k ≥ 3.

Proof: Figure 4.5 represents the edge-coloring incidence matrix for the BIBD(10, 5, 4).
Let A be the 9× 9 circulant matrix whose first row is [010000000]. Then the edge coloring
incidence matrix of a BIBD(10, 5, 4) using 12 colors is given below.

Mi =

(c4+4i)I (c2+4i)I + (c3+4i)A + (c1+4i)A
8

(c5+4i)A
5 (c7+4i)I + (c8+4i)A + (c6+4i)A

7

(c9+4i)A
3 + (c10+4i)A

8 (c11+4i)A + (c12+4i)A
8

(c2+4i)I + (c3+4i)A
3 (c4+4i)I + (c5+4i)A

5

(c1+4i)I + (c8+4i)A
3 + (c6+4i)A

5 + (c7+4i)A
8 0
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B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18

{0, 1} c4 0 0 0 0 0 0 0 0 c2 c3 0 0 0 0 0 0 c1

{1, 2} 0 c4 0 0 0 0 0 0 0 c1 c2 c3 0 0 0 0 0 0
{2, 3} 0 0 c4 0 0 0 0 0 0 0 c1 c2 c3 0 0 0 0 0
{3, 4} 0 0 0 c4 0 0 0 0 0 0 0 c1 c2 c3 0 0 0 0
{4, 5} 0 0 0 0 c4 0 0 0 0 0 0 0 c1 c2 c3 0 0 0
{5, 6} 0 0 0 0 0 c4 0 0 0 0 0 0 0 c1 c2 c3 0 0
{6, 7} 0 0 0 0 0 0 c4 0 0 0 0 0 0 0 c1 c2 c3 0
{7, 8} 0 0 0 0 0 0 0 c4 0 0 0 0 0 0 0 c1 c2 c3

{8, 0} 0 0 0 0 0 0 0 0 c4 c3 0 0 0 0 0 0 c1 c2

{0, 2} 0 0 0 0 0 c5 0 0 0 c7 c8 0 0 0 0 0 c6 0
{1, 3} 0 0 0 0 0 0 c5 0 0 0 c7 c8 0 0 0 0 0 c6

{2, 4} 0 0 0 0 0 0 0 c5 0 c6 0 c7 c8 0 0 0 0 0
{3, 5} 0 0 0 0 0 0 0 0 c5 0 c6 0 c7 c8 0 0 0 0
{4, 6} c5 0 0 0 0 0 0 0 0 0 0 c6 0 c7 c8 0 0 0
{5, 7} 0 c5 0 0 0 0 0 0 0 0 0 0 c6 0 c7 c8 0 0
{6, 8} 0 0 c5 0 0 0 0 0 0 0 0 0 0 c6 0 c7 c8 0
{7, 0} 0 0 0 c5 0 0 0 0 0 0 0 0 0 0 c6 0 c7 c8

{8, 1} 0 0 0 0 c5 0 0 0 0 c8 0 0 0 0 0 c6 0 c7

{0, 3} 0 0 0 c10 0 0 0 0 c9 0 c11 0 0 0 0 0 0 c12

{1, 4} c9 0 0 0 c10 0 0 0 0 c12 0 c11 0 0 0 0 0 0
{2, 5} 0 c9 0 0 0 c10 0 0 0 0 c12 0 c11 0 0 0 0 0
{3, 6} 0 0 c9 0 0 0 c10 0 0 0 0 c12 0 c11 0 0 0 0
{4, 7} 0 0 0 c9 0 0 0 c10 0 0 0 0 c12 0 c11 0 0 0
{5, 8} 0 0 0 0 c9 0 0 0 c10 0 0 0 0 c12 0 c11 0 0
{6, 0} c10 0 0 0 0 c9 0 0 0 0 0 0 0 0 c12 0 c11 0
{7, 1} 0 c10 0 0 0 0 c9 0 0 0 0 0 0 0 0 c12 0 c11

{8, 2} 0 0 c10 0 0 0 0 c9 0 c11 0 0 0 0 0 0 c12 0
{0, 4} c2 0 0 c3 0 0 0 0 0 c4 0 0 0 0 c5 0 0 0
{1, 5} 0 c2 0 0 c3 0 0 0 0 0 c4 0 0 0 0 c5 0 0
{2, 6} 0 0 c2 0 0 c3 0 0 0 0 0 c4 0 0 0 0 c5 0
{3, 7} 0 0 0 c2 0 0 c3 0 0 0 0 0 c4 0 0 0 0 c5

{4, 8} 0 0 0 0 c2 0 0 c3 0 c5 0 0 0 c4 0 0 0 0
{5, 0} 0 0 0 0 0 c2 0 0 c3 0 c5 0 0 0 c4 0 0 0
{6, 1} c3 0 0 0 0 0 c2 0 0 0 0 c5 0 0 0 c4 0 0
{7, 2} 0 c3 0 0 0 0 0 c2 0 0 0 0 c5 0 0 0 c4 0
{8, 3} 0 0 c3 0 0 0 0 0 c2 0 0 0 0 c5 0 0 0 c4

{∞, 0} c1 0 0 c8 0 c6 0 0 c7 0 0 0 0 0 0 0 0 0
{∞, 1} c7 c1 0 0 c8 0 c6 0 0 0 0 0 0 0 0 0 0 0
{∞, 2} 0 c7 c1 0 0 c8 0 c6 0 0 0 0 0 0 0 0 0 0
{∞, 3} 0 0 c7 c1 0 0 c8 0 c6 0 0 0 0 0 0 0 0 0
{∞, 4} c6 0 0 c7 c1 0 0 c8 0 0 0 0 0 0 0 0 0 0
{∞, 5} 0 c6 0 0 c7 c1 0 0 c8 0 0 0 0 0 0 0 0 0
{∞, 6} c8 0 c6 0 0 c7 c1 0 0 0 0 0 0 0 0 0 0 0
{∞, 7} 0 c8 0 c6 0 0 c7 c1 0 0 0 0 0 0 0 0 0 0
{∞, 8} 0 0 c8 0 c6 0 0 c7 c1 0 0 0 0 0 0 0 0 0

Figure 4.5: Edge-Coloring Incidence Matrix of a BIBD(10, 5, 4).
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Since Mi is semi-properly colored, by applying Theorem 2.12 we can properly color a
BIBD(10, 5, λ).

z

Lemma 4.6. There exists a properly colored BIBD(20, 5, λ) for λ = 4k, k ∈ Z+, k ≥ 3.

Proof: Let A be the 19 × 19 circulant matrix whose first row is [0100000000000000000].
Then the edge-coloring incidence matrix of a BIBD(20, 5, 4) using 12 colors in Figure 4.6.

Mi =

(c4+4i)A
17 (c3+4i)A

14 (c2+4i)A
12 (c1+4i)A

2

(c1+4i)I (c2+4i)A
9 0 (c3+4i)A

4 + (c4+4i)A
10

(c3+4i)I 0 (c1+4i)A
6 + (c4+4i)A

15 (c2+4i)A
4

0 (c1+4i)A
13 + (c4+4i)A

18 (c3+4i)A
15 (c6+4i)A

8

(c2+4i)A
5 (c5+4i)A

14 + (c8+4i)A
18 (c7+4i)A

11 0
0 (c6+4i)A

13 (c8+4i)A
11 (c5+2i)A

8 + (c7+4i)A
10

(c6+4i)A
5 (c7+4i)A

14 (c5+4i)A
3 (c8+4i)A

8

(c5+4i)A
5 (c10+4i)A

7 (c11+4i)A
11 (c12+4i)A

10

0 (c9+4i)A
18 (c10+4i)A

12 + (c12+4i)A
15 (c11+4i)A

10

(c7+4i)I + (c8+4i)A
5+

0 0 0
(c9+4i)A

16 + (c10+4i)A
17

Figure 4.6: Edge-Coloring Incidence Matrix of a BIBD(20, 5, 4).

Since Mi is semi-properly colored, by applying Theorem 2.12 we can properly color a
BIBD(20, 5, λ).

z

Lemma 4.7. There exists a properly colored BIBD(36, 5, λ) for λ = 4k, k ∈ Z+, k ≥ 3.

Proof: Let A be the 36× 36 circulant matrix whose first row is

[01000000000000000000000000000000000].

Let B be the first 18 rows of a 36× 36 circulant matrix whose first row is

[01000000000000000000000000000000000].

Then the edge-coloring incidence matrix of a BIBD(36, 5, 4) using 12 colors in Figure 4.7.
Since Mi is semi-properly colored, by applying Theorem 2.12 we can properly color a

BIBD(36, 5, λ).
z

Lemma 4.8. There exists a properly colored BIBD(40, 5, λ) for λ = 4k, k ∈ Z+, k ≥ 3.

Proof: Let A be the 39× 39 circulant matrix whose first row is

[010000000000000000000000000000000000000].

Then the edge coloring incidence matrix of a BIBD(40, 5, 4) using 12 colors in Figure 4.8.
Since Mi is semi-properly colored, by applying Theorem 2.12 we can properly color a

BIBD(40, 5, λ).
z
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Lemma 4.9. There exists a properly colored BIBD(56, 5, λ) for λ = 4k, k ∈ Z+, k ≥ 3.

Proof: Let A be the 56× 56 circulant matrix whose first row is

[0100000000000000000000000000000000000000000000000000000].

Let B be the first 28 rows of a 56× 56 circulant matrix whose first row is

[0100000000000000000000000000000000000000000000000000000].

Then the edge coloring incidence matrix of a BIBD(56, 5, 4) using 12 colors in Figures 4.9
and 4.10.

Since the concatenation of Mi and Ni is semi-properly colored, by Theorem 2.12 we
can properly color a BIBD(56, 5, λ).

z

Lemma 4.10. There exists a properly colored BIBD(15, 5, λ) for λ = 2k, k ∈ Z+, k ≥ 5.

Proof: Note that the colors ci and di are distinct for all i. We form an edge-coloring
incidence matrix for a BIBD(15, 5, λ) using a BIBD(15, 5, 4) and a BIBD(15, 5, 6) as
follows. Let A be the 14× 14 circulant matrix whose first row is [01000000000000]. Let B
be the first 7 rows of a 14× 14 circulant matrix whose first row is [01000000000000]

Then the edge coloring incidence matrix of a BIBD(15, 5, 4) using 12 colors is given
below.

Mi =

(c1+4i)I (c2+4i)I + (c3+4i)A
9 + (c4+4i)A

13 0
(c2+4i)A

13 (c1+4i)I (c3+4i)I + (c4+4i)A
12

(c3+4i)I (c8+4i)A
12 (c1+4i)A

7 + (c2+4i)A
10

0 (c5+4i)A
12 + (c6+4i)A

13 (c7+4i)I + (c8+4i)A
4

(c4+4i)A
11 (c7+4i)I + (c9+4i)A

13 (c6+4i)A
12

(c5+4i)A
6 (c10+4i)I (c11+4i)A

4 + (c12+4i)A
10

(c11+4i)B
6 + (c12+4i)B

13 0 (c9+4i)I + (c10+4i)B
7

(c7+4i)I + (c8+4i)A
6 + (c9+4i)A

11 + (c10+4i)A
13 0 0

Let C be the 15 × 15 circulant matrix whose first row is [010000000000000]. Let E
(j)
i

be the following 15× 3 matrix.

E
(1)
i =

d7+6i 0 0
0 d7+6i 0
0 0 d7+6i

d8+6i 0 0
0 d8+6i 0
0 0 d8+6i

d9+6i 0 0
0 d9+6i 0
0 0 d9+6i

d10+6i 0 0
0 d10+6i 0
0 0 d10+6i

d11+6i 0 0
0 d11+6i 0
0 0 d11+6i

E
(2)
i =

d4+6i 0 0
0 d4+6i 0
0 0 d4+6i

d12+6i 0 0
0 d12+6i 0
0 0 d12+6i

d5+6i 0 0
0 d5+6i 0
0 0 d5+6i

d6+6i 0 0
0 d6+6i 0
0 0 d6+6i

d3+6i 0 0
0 d3+6i 0
0 0 d3+6i
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Let F
(j)
i for j = 1, 2, 3, 4, 5, 6 be the following 15× 15 matrix.

F
(1)
i =

d7+6i 0 0 0 0 0 0 0 0 0 0 0 d12+6i 0 0
0 d7+6i 0 0 0 0 0 0 0 0 0 0 0 d12+6i 0
0 0 d7+6i 0 0 0 0 0 0 0 0 0 0 0 d12+6i

d8+6i 0 0 d12+6i 0 0 0 0 0 0 0 0 0 0 0
0 d8+6i 0 0 d12+6i 0 0 0 0 0 0 0 0 0 0
0 0 d8+6i 0 0 d12+6i 0 0 0 0 0 0 0 0 0
0 0 0 d8+6i 0 0 d7+6i 0 0 0 0 0 0 0 0
0 0 0 0 d8+6i 0 0 d7+6i 0 0 0 0 0 0 0
0 0 0 0 0 d8+6i 0 0 d7+6i 0 0 0 0 0 0
0 0 0 0 0 0 d8+6i 0 0 d7+6i 0 0 0 0 0
0 0 0 0 0 0 0 d8+6i 0 0 d7+6i 0 0 0 0
0 0 0 0 0 0 0 0 d8+6i 0 0 d7+6i 0 0 0
0 0 0 0 0 0 0 0 0 d8+6i 0 0 d7+6i 0 0
0 0 0 0 0 0 0 0 0 0 d8+6i 0 0 d7+6i 0
0 0 0 0 0 0 0 0 0 0 0 d8+6i 0 0 d7+6i

F
(2)
i =

0 0 0 0 0 0 0 0 0 0 0 d9+6i 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 d9+6i 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 d9+6i 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 d9+6i

d9+6i 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 d9+6i 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 d9+6i 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 d9+6i 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 d9+6i 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 d9+6i 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 d9+6i 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 d9+6i 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 d12+6i 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 d12+6i 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 d12+6i 0 0 0 0

F
(3)
i =

d10+6i 0 0 0 0 0 0 0 0 0 0 0 d11+6i 0 0
0 d10+6i 0 0 0 0 0 0 0 0 0 0 0 d11+6i 0
0 0 d10+6i 0 0 0 0 0 0 0 0 0 0 0 d11+6i

d11+6i 0 0 d10+6i 0 0 0 0 0 0 0 0 0 0 0
0 d11+6i 0 0 d10+6i 0 0 0 0 0 0 0 0 0 0
0 0 d11+6i 0 0 d10+6i 0 0 0 0 0 0 0 0 0
0 0 0 d12+6i 0 0 d10+6i 0 0 0 0 0 0 0 0
0 0 0 0 d12+6i 0 0 d10+6i 0 0 0 0 0 0 0
0 0 0 0 0 d12+6i 0 0 d10+6i 0 0 0 0 0 0
0 0 0 0 0 0 d11+6i 0 0 d12+6i 0 0 0 0 0
0 0 0 0 0 0 0 d11+6i 0 0 d12+6i 0 0 0 0
0 0 0 0 0 0 0 0 d11+6i 0 0 d12+6i 0 0 0
0 0 0 0 0 0 0 0 0 d11+6i 0 0 d10+6i 0 0
0 0 0 0 0 0 0 0 0 0 d11+6i 0 0 d10+6i 0
0 0 0 0 0 0 0 0 0 0 0 d11+6i 0 0 d10+6i

F
(4)
i =

d12+6i 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 d12+6i 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 d12+6i 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 d4+6i 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 d4+6i 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 d4+6i 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 d4+6i 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 d4+6i 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 d4+6i 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 d4+6i 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 d4+6i 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 d4+6i 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 d4+6i 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 d4+6i 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 d4+6i
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F
(5)
i =

0 0 0 0 0 0 0 0 0 0 0 0 0 d5+6i 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 d5+6i

d5+6i 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 d5+6i 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 d5+6i 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 d5+6i 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 d12+6i 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 d12+6i 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 d12+6i 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 d5+6i 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 d5+6i 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 d5+6i 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 d5+6i 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 d5+6i 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 d5+6i 0 0

F
(6)
i =

d3+6i 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 d3+6i 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 d3+6i 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 d3+6i 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 d3+6i 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 d3+6i 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 d3+6i 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 d3+6i 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 d3+6i 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 d3+6i 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 d3+6i 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 d3+6i 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 d12+6i 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 d12+6i 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 d12+6i

Thus, the edge-coloring incidence matrix of a BIBD(15, 5, 6) using 12 colors is given
Figure 4.11.

Suppose k ≡ 0 (mod 2). To form a properly colored BIBD(15, 5, λ) with λ = 2k, k ∈
Z+, k ≥ 5, we simply repeat the blocks of the BIBD(15, 5, 4) k

2
times and follow the

same coloring scheme with different colors. The subscripts of the colors are all computed
(mod λ) where we identify c0 with cλ. Thus the edge-coloring incidence matrix of a prop-
erly colored BIBD(15, 5, λ) for k ≡ 0 (mod 2) can be given in terms of the Mi as

M = M0 M1 · · · M k
2
−1 .

Suppose k ≡ 1 (mod 2). To form a properly colored BIBD(15, 5, λ) with λ = 2k, k ∈
Z+, k ≥ 13, we simply repeat the blocks of the BIBD(15, 5, 4) λ−6

4
times joined with

the blocks of a BIBD(15, 5, 6). We know we can properly color a BIBD(15, 5, 10) by
Theorem 2.2. The colors used on the BIBD(15, 5, 4) and BIBD(15, 5, 6) will be distinct
from each other requiring λ ≥ 26. The subscripts of the colors are all computed (mod λ)
where we identify c0 with cλ. Thus the edge coloring incidence matrix of a properly colored
BIBD(15, 5, λ) for 13 ≤ k ≡ 1 (mod 2) can be given in terms of the Mi as

M = Mα0 M0 M1 · · · M((λ−6)/4)−1 .

This leaves three cases where λ = 14, 18, 22. Suppose λ = 14. We form an edge-
coloring incidence matrix using 14 colors for a BIBD(15, 5, 14). Let H be a 15 × 15 cir-
culant matrix whose first row is [010000000000000]. Let G(j) for j = 1, 2 be the following
15× 3 matrices.
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G(1) =

c1 0 0
0 c1 0
0 0 c1

c3 0 0
0 c3 0
0 0 c3

c12 0 0
0 c12 0
0 0 c12

c13 0 0
0 c13 0
0 0 c13

c14 0 0
0 c14 0
0 0 c14

G(2) =

c4 0 0
0 c4 0
0 0 c4

c5 0 0
0 c5 0
0 0 c5

c6 0 0
0 c6 0
0 0 c6

c8 0 0
0 c8 0
0 0 c8

c9 0 0
0 c9 0
0 0 c9

Let G(j) for j = 3, 4 be the following 15× 15 matrices.

G(3) =

0 0 0 0 0 0 0 0 0 0 0 0 0 c3 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 c3

c3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 c12 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 c12 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 c12 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 c13 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 c13 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 c13 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 c14 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 c14 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 c14 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 c1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 c1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 c1 0 0

58



G(4) =

0 0 0 0 0 0 0 0 0 0 0 0 0 0 c9

c9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 c9 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 c4 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 c4 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 c4 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 c5 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 c5 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 c5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 c6 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 c6 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 c6 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 c8 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 c8 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 c8 0

Let G(j) for j = 5, 6 be the following 15× 9 matrices.

G(5) =

c14 0 0 c13 0 0 c12 0 0
0 c14 0 0 c13 0 0 c12 0
0 0 c14 0 0 c13 0 0 c12

c1 0 0 c14 0 0 c13 0 0
0 c1 0 0 c14 0 0 c13 0
0 0 c1 0 0 c14 0 0 c13

c3 0 0 c1 0 0 c14 0 0
0 c3 0 0 c1 0 0 c14 0
0 0 c3 0 0 c1 0 0 c14

c12 0 0 c3 0 0 c1 0 0
0 c12 0 0 c3 0 0 c1 0
0 0 c12 0 0 c3 0 0 c1

c13 0 0 c12 0 0 c3 0 0
0 c13 0 0 c12 0 0 c3 0
0 0 c13 0 0 c12 0 0 c3
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G(6) =

c8 0 0 c6 0 0 c5 0 0
0 c8 0 0 c6 0 0 c5 0
0 0 c8 0 0 c6 0 0 c5

c9 0 0 c8 0 0 c6 0 0
0 c9 0 0 c8 0 0 c6 0
0 0 c9 0 0 c8 0 0 c6

c4 0 0 c9 0 0 c8 0 0
0 c4 0 0 c9 0 0 c8 0
0 0 c4 0 0 c9 0 0 c8

c5 0 0 c4 0 0 c9 0 0
0 c5 0 0 c4 0 0 c9 0
0 0 c5 0 0 c4 0 0 c9

c6 0 0 c5 0 0 c4 0 0
0 c6 0 0 c5 0 0 c4 0
0 0 c6 0 0 c5 0 0 c4

Thus the edge-coloring incidence matrix of a properly colored BIBD(15, 5, 14) is given
by concatenating N (0) and N (1) from Figure 4.12.

Now suppose λ = 18. All subscripts are computed (mod 18). We form the properly
colored BIBD(15, 5, 18) given in terms of the Mαi

as

M = Mα0 Mα1 Mα2 .

Now suppose λ = 22. Let M0′ be the properly colored BIBD(15, 5, 10) on 10 colors.
Then

M = M0′ M0 M1 M2 .

z

Lemma 4.11. There exists a properly colored BIBD(35, 5, λ) for λ = 2k, k ∈ Z+, k ≥ 5.

Proof: Let A be the 35× 35 circulant matrix whose first row is

[01000000000000000000000000000000000].

Let A
(j)
i be the following 35× 28 matrices for j = 1, 2 in Figures 4.13 and 4.14.
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A
(1)
i =

c1+2i 0 0 0 0 0 0 c2+2i 0 0 0 0 0 0
0 c1+2i 0 0 0 0 0 0 c2+2i 0 0 0 0 0
0 0 c1+2i 0 0 0 0 0 0 c2+2i 0 0 0 0
0 0 0 c1+2i 0 0 0 0 0 0 c2+2i 0 0 0
0 0 0 0 c1+2i 0 0 0 0 0 0 c2+2i 0 0
0 0 0 0 0 c1+2i 0 0 0 0 0 0 c2+2i 0
0 0 0 0 0 0 c1+2i 0 0 0 0 0 0 c2+2i

c2+2i 0 0 0 0 0 0 c3+2i 0 0 0 0 0 0
0 c2+2i 0 0 0 0 0 0 c3+2i 0 0 0 0 0
0 0 c2+2i 0 0 0 0 0 0 c3+2i 0 0 0 0
0 0 0 c2+2i 0 0 0 0 0 0 c3+2i 0 0 0
0 0 0 0 c2+2i 0 0 0 0 0 0 c3+2i 0 0
0 0 0 0 0 c2+2i 0 0 0 0 0 0 c3+2i 0
0 0 0 0 0 0 c2+2i 0 0 0 0 0 0 c3+2i

c3+2i 0 0 0 0 0 0 c4+2i 0 0 0 0 0 0
0 c3+2i 0 0 0 0 0 0 c4+2i 0 0 0 0 0
0 0 c3+2i 0 0 0 0 0 0 c4+2i 0 0 0 0
0 0 0 c3+2i 0 0 0 0 0 0 c4+2i 0 0 0
0 0 0 0 c3+2i 0 0 0 0 0 0 c4+2i 0 0
0 0 0 0 0 c3+2i 0 0 0 0 0 0 c4+2i 0
0 0 0 0 0 0 c3+2i 0 0 0 0 0 0 c4+2i

c4+2i 0 0 0 0 0 0 c5+2i 0 0 0 0 0 0
0 c4+2i 0 0 0 0 0 0 c5+2i 0 0 0 0 0
0 0 c4+2i 0 0 0 0 0 0 c5+2i 0 0 0 0
0 0 0 c4+2i 0 0 0 0 0 0 c5+2i 0 0 0
0 0 0 0 c4+2i 0 0 0 0 0 0 c5+2i 0 0
0 0 0 0 0 c4+2i 0 0 0 0 0 0 c5+2i 0
0 0 0 0 0 0 c4+2i 0 0 0 0 0 0 c5+2i

c5+2i 0 0 0 0 0 0 c1+2i 0 0 0 0 0 0
0 c5+2i 0 0 0 0 0 0 c1+2i 0 0 0 0 0
0 0 c5+2i 0 0 0 0 0 0 c1+2i 0 0 0 0
0 0 0 c5+2i 0 0 0 0 0 0 c1+2i 0 0 0
0 0 0 0 c5+2i 0 0 0 0 0 0 c1+2i 0 0
0 0 0 0 0 c5+2i 0 0 0 0 0 0 c1+2i 0
0 0 0 0 0 0 c5+2i 0 0 0 0 0 0 c1+2i

Figure 4.13: 35× 28 colored matrix
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A
(2)
i =

c6+2i 0 0 0 0 0 0 c7+2i 0 0 0 0 0 0
0 c6+2i 0 0 0 0 0 0 c7+2i 0 0 0 0 0
0 0 c6+2i 0 0 0 0 0 0 c7+2i 0 0 0 0
0 0 0 c6+2i 0 0 0 0 0 0 c7+2i 0 0 0
0 0 0 0 c6+2i 0 0 0 0 0 0 c7+2i 0 0
0 0 0 0 0 c6+2i 0 0 0 0 0 0 c7+2i 0
0 0 0 0 0 0 c6+2i 0 0 0 0 0 0 c7+2i

c7+2i 0 0 0 0 0 0 c8+2i 0 0 0 0 0 0
0 c7+2i 0 0 0 0 0 0 c8+2i 0 0 0 0 0
0 0 c7+2i 0 0 0 0 0 0 c8+2i 0 0 0 0
0 0 0 c7+2i 0 0 0 0 0 0 c8+2i 0 0 0
0 0 0 0 c7+2i 0 0 0 0 0 0 c8+2i 0 0
0 0 0 0 0 c7+2i 0 0 0 0 0 0 c8+2i 0
0 0 0 0 0 0 c7+2i 0 0 0 0 0 0 c8+2i

c8+2i 0 0 0 0 0 0 c9+2i 0 0 0 0 0 0
0 c8+2i 0 0 0 0 0 0 c9+2i 0 0 0 0 0
0 0 c8+2i 0 0 0 0 0 0 c9+2i 0 0 0 0
0 0 0 c8+2i 0 0 0 0 0 0 c9+2i 0 0 0
0 0 0 0 c8+2i 0 0 0 0 0 0 c9+2i 0 0
0 0 0 0 0 c8+2i 0 0 0 0 0 0 c9+2i 0
0 0 0 0 0 0 c8+2i 0 0 0 0 0 0 c9+2i

c9+2i 0 0 0 0 0 0 c10+2i 0 0 0 0 0 0
0 c9+2i 0 0 0 0 0 0 c10+2i 0 0 0 0 0
0 0 c9+2i 0 0 0 0 0 0 c10+2i 0 0 0 0
0 0 0 c9+2i 0 0 0 0 0 0 c10+2i 0 0 0
0 0 0 0 c9+2i 0 0 0 0 0 0 c10+2i 0 0
0 0 0 0 0 c9+2i 0 0 0 0 0 0 c10+2i 0
0 0 0 0 0 0 c9+2i 0 0 0 0 0 0 c10+2i

c10+2i 0 0 0 0 0 0 c6+2i 0 0 0 0 0 0
0 c10+2i 0 0 0 0 0 0 c6+2i 0 0 0 0 0
0 0 c10+2i 0 0 0 0 0 0 c6+2i 0 0 0 0
0 0 0 c10+2i 0 0 0 0 0 0 c6+2i 0 0 0
0 0 0 0 c10+2i 0 0 0 0 0 0 c6+2i 0 0
0 0 0 0 0 c10+2i 0 0 0 0 0 0 c6+2i 0
0 0 0 0 0 0 c10+2i 0 0 0 0 0 0 c6+2i

Figure 4.14: 35× 28 colored matrix

Then the edge coloring incidence matrix of a BIBD(35, 5, 2) using 10 colors is given
in Figure 4.15.

Since Mi is semi-properly colored, by Theorem 2.12 we can properly color a
BIBD(35, 5, λ).

z

Lemma 4.12. There exists a properly colored BIBD(16, 5, λ) for λ = 4k, k ∈ Z+, k ≥ 3.

Proof: Let A be a 16 × 16 circulant matrix whose first row is [0100000000000000]. Then
the edge coloring incidence matrix of a BIBD(16, 5, 4) using 12 colors is given below. Let
B be the first 8 rows of a 16× 16 circulant matrix whose first row is [0100000000000000].
Then the edge-coloring incidence matrix of a BIBD(16, 5, 4) using 12 colors is given in
Figure 4.16

Since Mi is semi-properly colored, by Theorem 2.12 we can properly color a
BIBD(16, 5, λ).

z
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Mi =

(c1+2i)A
23 0 (c2+2i)A

3 0
(c2+2i)I 0 (c1+2i)A

2 0
0 (c3+2i)I (c4+2i)A

3 0
(c3+2i)A

27 (c4+2i)A
17 0 0

(c4+2i)A
27 (c5+2i)A

13 0 0
(c5+2i)A

33 0 (c8+2i)A
18 0

0 0 0 A(1)

(c7+2i)I (c8+2i)A
8 0 0

0 (c2+2i)A
17 (c3+2i)A

12 0
(c10+2i)A

33 0 (c7+2i)A
12 0

(c9+2i)A
33 (c6+2i)A

8 0 0
(c6+2i)I 0 (c5+2i)A

12 0
(c8+2i)I (c1+2i)A

13 0 0
0 0 0 A(2)

0 (c9+2i)A
32 (c10+2i)A

18 0
0 (c7+2i)A

13 (c6+2i)A
18 0

0 (c10+2i)A
17 (c9+2i)I 0

Figure 4.15: Edge-Coloring Incidence Matrix of a BIBD(35, 5, 2).

Mi =

0 (c1+4i)I (c2+4i)I + (c3+4i)A
14 + (c4+4i)A

15

(c1+4i)I (c2+4i)A
8 (c7+4i)I + (c8+4i)A

15

(c2+4i)A
11 + (c3+4i)A

14 (c4+4i)A
11 (c1+4i)I

(c4+4i)A
4 + (c5+4i)A

8 (c7+4i)A
15 (c6+4i)H

13

(c7+4i)I (c6+4i)I + (c8+4i)A
11 (c5+4i)A

14

(c6+4i)A
4 + (c8+4i)A

14 (c5+4i)A
6 (c11+4i)A

15

(c9+4i)A
11 (c10+4i)A

6 + (c11+4i)A
15 (c12+4i)I

(c10+4i)I + (c11+4i)B
8 (c9+4i)I + (c12+4i)B

8 0

Figure 4.16: Edge-Coloring Incidence Matrix of a BIBD(16, 5, 4)

Definition 4.13. A g−circulant matrix is an n × n square matrix of complex numbers,
in which each row (except the first) is obtained from the preceding row by shifting the
elements cyclically g columns to the right.

Example 4.14. A 3−circulant matrix of order 7 whose first row is [1000000].

1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0
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Lemma 4.15. There exists a properly colored BIBD(50, 5, λ) for λ = 4k, k ∈ Z+, k ≥ 3.

Proof: Let A be the 49× 49 circulant matrix whose first row is

[0100000000000000000000000000000000000000000000000].

Let B1 be the 49× 49 25−circulant matrix whose first row is

[1000000000000000000000000000000000000000000000000].

Let B2 be the 49× 49 37−circulant matrix whose first row is

[1000000000000000000000000000000000000000000000000].

Then the edge-coloring incidence matrix of a BIBD(50, 5, 4) using 12 colors is given in
Figures 4.17 and 4.18.

Since Mi concatenated with Ni is semi-properly colored, by Theorem 2.12 we can
properly color a BIBD(50, 5, λ).

z

Lemma 4.16. There exists a properly colored BIBD(60, 5, λ) for λ = 4k, k ∈ Z+, k ≥ 3.

Proof: Let A be the 59× 59 circulant matrix whose first row is

[01000000000000000000000000000000000000000000000000000000000].

Let B1 be the 59× 59 6−circulant matrix whose first row is

[10000000000000000000000000000000000000000000000000000000000].

Let B2 be the 59× 59 12−circulant matrix whose first row is

[10000000000000000000000000000000000000000000000000000000000].

Let B3 be the 59× 59 15−circulant matrix whose first row is

[10000000000000000000000000000000000000000000000000000000000].

Let B4 be the 59× 59 24−circulant matrix whose first row is

[10000000000000000000000000000000000000000000000000000000000].

Let B5 be the 59× 59 30−circulant matrix whose first row is

[10000000000000000000000000000000000000000000000000000000000].

Let B6 be the 59× 59 37−circulant matrix whose first row is

[10000000000000000000000000000000000000000000000000000000000].
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Let B7 be the 59× 59 48−circulant matrix whose first row is

[10000000000000000000000000000000000000000000000000000000000].

Then the edge coloring incidence matrix of a BIBD(60, 5, 4) using 12 colors is given in
Figures 4.19 and 4.20.

Since Mi concatenated with Ni is semi-properly colored, by Theorem 2.12 we can
properly color a BIBD(60, 5, λ).

z
Because the process of checking each individual lemma for a correct direct construction

is difficult, a program was built for the specific purpose of checking the small cases. Along
with this is a csv (comma separated variables) and a tsv (tab separated variables) file of
the edge-colored incidence matrix which are semi-properly colored. The program called
bibdchecker.cpp is used to verify the design is a semi-properly colored BIBD. Mathematica
was used to generate the properly colored versions of the BIBDs in csv and tsv form. Go
to

http://www.mathlab.mtu.edu/∼msjukuri/Data.html

for the program and corresponding csv and tsv files.

4.2 Main Results
Lemma 4.17. If there exists a 5− GDD(ab1

1 ab2
2 · · · abx

x ), and a properly colored
BIBD(ai, 5, λ) for all i = 1, 2, . . . , x, then there exists a properly colored

BIBD

(
x∑

i=1

aibi, 5, λ

)
.

Proof: Repeat each of the blocks in a 5 − GDD(ab1
1 ab2

2 · · · abx
x ) λ times. For each block,

we must color each edge a different color using the colors ci ∈ {c1, . . . , cλ}. Each corre-
sponding edge in the λ copies of the blocks must also be a different color. So we color the
edges in the λ copies of each block as follows. Form a 10 × λ matrix. The rows of the
matrix will be indexed by the 10 edges of K5, and the columns will be indexed by the λ
copies of the block. The entries of the matrix will be the first 10 rows of an LS(λ). Now
the only pairs that have not been covered are the pairs which lie within the groups. So we
place a properly colored BIBD(ai, 5, λ) on each group for all i = 1, 2, . . . , x. This forms a

properly colored BIBD

(
x∑

i=1

aibi, 5, λ

)
. z
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Lemma 4.18. If there exists a 5− GDD(mu) and a properly colored BIBD(m + 1, 5, λ),
then there exists a properly colored BIBD(mu + 1, 5, λ).

Proof: Let Gi for i = 1, . . . , u be the u groups of size m. Repeat each of the blocks in a
5 − GDD(mu) λ times. For each block, we must color each edge a different color, using
the colors ci ∈ {c1, . . . , cλ}. Each corresponding edge in the λ copies of the block must
also be a different color. So we color the edges in the λ copies of each blocks as follows.
Form a 10× λ matrix. The rows of the matrix will be indexed by the 10 edges of K5, and
the columns will be indexed by the λ copies of the block. The entries of the matrix will be
the first 10 rows of an LS(λ). Now the only pairs that have not been covered are the pairs
which lie within the groups and pairs which contain the point {∞}. So we place a properly
colored BIBD(m+1, 5, λ) on each Gi∪{∞} for all i = 1, 2, . . . , u. This forms a properly
colored BIBD (mu + 1, 5, λ). z

Lemma 4.19. If there exists a (5, 2)− GDD(mu) and a properly colored BIBD(m, 5, λ),
then there exists a properly colored BIBD(mu, 5, λ) where λ = 2k, k ∈ Z+, k ≥ 10.

Proof: Repeat each of the blocks in a (5, 2)− GDD(mu) k times. For each block, we will
color each edge a different color and each corresponding edge in the k copies of the blocks
must also be a different color. Form a 10×k matrix whose rows are indexed by the 10 edges
of the K5 and whose columns are indexed by the k copies of the block. Because each edge
is seen twice among all 10× k matrices which represent the blocks of the GDD, we assign
color sets to each edge as follows. Let C = {c1, c2, . . . , ck} and D = {d1, d2, . . . , dk} be
two distinct sets of k colors each. For each edge in the block, if it is the first time it has
occurred in a block of the GDD, we assign the color set C to it, and if it is the second time
it has occurred, we assign the color set D to it. Let tC denote the number of edges which
have color set C assigned to it, and tD denote the number of edges which have color set D
assigned to it. The entries of our 10 × k matrix will be the first tC rows of an LS(k) on
the rows corresponding to the edges assigned with color set C and the first tD rows of an
LS(k) on the rows corresponding to the edges assigned with color set D. Consider some
edge e. This edge, e, is colored with every color from C exactly once in the k copies of
the first block of the GDD containing e, and it is colored with every color from D exactly
once in the k copies of the second block in the GDD containing e. Furthermore, we can be
sure that every edge in any block is colored with different colors because of the properties
of Latin squares and because C and D are distinct.

The only pairs that have not been covered by the blocks of the GDD are pairs which
lie within the groups. So we place a properly colored BIBD(m, 5, λ) on each group of the
GDD. This forms a properly colored BIBD(mu, 5, λ).

z

Lemma 4.20. If there exists a (5, 2) − GDD(mu) and a properly colored BIBD(m +
1, 5, λ), then there exists a properly colored BIBD(mu + 1, 5, λ) where λ = 2k, k ∈
Z+, k ≥ 10.

Proof: For i = 1, 2, . . . , u let Gi denote the ith group of size m in the GDD and let {∞} be
a new point. Follow the same argument as in the first paragraph of the proof of Lemma 4.19.
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Then the only pairs that have not been covered by the blocks of the GDD are pairs which
lie within the groups, and pairs which contain the point {∞}. So place a properly colored
BIBD(m + 1, 5, λ) on each Gi ∪ {∞}. This forms a properly colored BIBD(mu, 5, λ).

z

Lemma 4.21. Suppose there exists an RBIBD(v−m, 5, 1) with t parallel classes. If there
exists a properly colored BIBD(6, 5, λ), and a properly colored BIBD(m, 5, λ) for m ≤ t,
then there exits a properly colored BIBD(v, 5, λ).

Proof: Let {∞1,∞2, . . . ,∞m} be m new points. Consider the parallel class Pi for i =
1, . . . ,m. We take each block of the Pi and join it with {∞i}. Now place a properly
colored BIBD(6, 5, λ) on each block of Pi ∪ {∞i}. Now the only pairs that have not
been covered are in the parallel classes Pi for i = m + 1, . . . , t and the pairs of the form
{{∞i,∞j} : i, j ∈ {1, . . . ,m}}. So we place a properly colored BIBD(5, 5, λ) on each
block of the remaining parallel classes and we place a properly colored BIBD(m, 5, λ)
on the set of points {∞1, . . . ,∞m}. This forms a properly colored BIBD(v, 5, λ) where
λ = 4k, λ ≥ 3. z

Corollary 4.22. Let m ≤ 5n + 1. If there exists properly colored BIBD(m, 5, λ), then
there exists a properly colored BIBD(20n + 5 + m, 5, λ) for each λ = 4k, k ≥ 3, and
n 6= 2, 11, 17, 23, 32.

Proof: There exists an RBIBD(20n+5, 5, 1) for each n 6= 2, 11, 17, 23, 32 by Theorem 1.9.
This design has 5n + 1 parallel classes. There exists a properly colored BIBD(6, 5, λ) for
λ = 4k and k ≥ 3. So apply Lemma 4.21 with v = 20n + 5. z

If the block size is five, then the possible v values for all possible λ values are as follows
from (Hanani, [28]).

k λ Conditions for v Exceptions
5 1 1,5 (mod 20) none
5 2 1,5 (mod 10) 15
5 4 0,1 (mod 5) none
5 10 1 (mod 2) none
5 20 all none

Because we can properly color any λ = 10k, k ∈ Z+, k ≥ 1 with Theorem 2.2 and any
λ when v ≡ 1, 5 (mod 20) by Theorem 2.3, we will focus on λ ≡ 0 (mod 2) and λ ≡ 0
(mod 4) in the following sections.

4.2.1 λ ≡ 0 (mod 2)

In this section, we properly color all BIBD(v, 5, λ)s where λ ≡ 0 (mod 2) except possibly
when v ≡ 15, 35, 75, 95 (mod 100) and λ = 14, 18.

In this case, the necessary and sufficient conditions for the existence of a BIBD(v, 5, λ)
are that v ≡ 1, 5 (mod 10) except v = 15 and λ = 2. Note that when v ≡ 1, 5 (mod 10)
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and λ ≡ 0 (mod 10) these are already covered by Theorem 2.2, but the results in this
section will also cover this case.

Theorem 4.23. There exists a proper coloring for every BIBD(v, 5, λ) for λ = 2k, k ∈
Z+, k ≥ 5, where v ≡ 1, 5 (mod 10) except possibly when λ = 2k, v ≡ 15, 35, 75, 95
(mod 100) and λ = 14, 18.

Proof: Note that in each case we assume λ = 2k, k ∈ Z+, k ≥ 5 unless otherwise stated.
We first consider v ≡ 5 (mod 10). In other words v ≡ 5 or 15 (mod 20).

Now suppose v ≡ 1 (mod 10). If v ≡ 1 (mod 20) then we can properly color a
BIBD(v, 5, λ) by Theorem 2.3. We deal with each subcase, v ≡ 1 (mod 20) and v ≡ 11
(mod 20), separately.

Case 1: v ≡ 1 (mod 20)

By Theorem 2.3, we can properly color a BIBD(v, 5, λ) where v ≡ 1, 5 (mod 20).

Case 2: v ≡ 11 (mod 20)

If v ≡ 11 (mod 20), then we have that either v ≡ 11 (mod 40) or v ≡ 31 (mod 40).

Case 2.1: v ≡ 11 (mod 40)

Let v = 11 + 40x = 1 + 10(1 + 4x) for x ≥ 1. There exists a 5–GDD(10u) where
u = 1 + 4x except possibly when x = 1, 8 by Theorem 1.7. We can properly color a
BIBD(11, 5, λ) by Lemma 4.1. So we can apply Lemma 4.18 with m = 10, u = 1 + 4x
and v 6= 51, 331.

If v = 51, then by Lemma 4.3 we can properly color a BIBD(51, 5, λ). If v = 331 =
1+30(11), then there exists a 5−GDD(3011) by Theorem 1.7. There also exists a properly
colored BIBD(31, 5, λ) by Lemma 4.2. Thus we can apply Lemma 4.18 to properly color
a BIBD(331, 5, λ).

Case 2.2: v ≡ 31 (mod 40)

If v = 31, then we can properly colored a BIBD(31, 5, λ) by Lemma 4.2.
Let v = 31 + 40x = 1 + 10(3 + 4x) for x ≥ 1. There exists a 5 − GDD(10u) where

u = 3 + 4x except possible when x = 1, 3, 5, 6, 8, 9, 11 by Theorem 1.7. We can prop-
erly color a BIBD(11, 5, λ) by Lemma 4.1. We can also properly color a BIBD(31, 5, λ)
by Lemma 4.2. So we can apply Lemma 4.18 with m = 10, u = 3 + 4x and v 6=
71, 151, 231, 271, 351, 391, 471.

If v = 71 = 5(14) + 1, then there exists a 5–GDD(145) by Theorem 1.7. There
also exists a properly colored BIBD(15, 5, λ) by Lemma 4.10. Then by Lemma 4.18,
we can properly color a BIBD(71, 5, λ). If v = 151 = 1 + 30(5), then there exists
a 5 − GDD(305) by Theorem 1.7. There also exists a properly colored BIBD(31, 5, λ)
by Lemma 4.2. So we can apply Lemma 4.18 to properly color a BIBD(151, 5, λ). If
v = 231 = 11(21), then there exists a 5−GDD(1121) by Theorem 1.7. There also exists a
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properly colored BIBD(11, 5, λ) by Lemma 4.1. So we can apply Lemma 4.17 to properly
color a BIBD(231, 5, λ). If v = 271 = 1 + 54(5), then there exists a 5 − GDD(545) by
Theorem 1.7. If v = 55, then there exists a 5− GDD(115) by Theorem 1.7. Since we can
properly color a BIBD(11, 5, λ) by Lemma 4.1, we can properly color a BIBD(55, 5, λ)
with Lemma 1.5. So we can apply Lemma 4.18 to properly color a BIBD(271, 5, λ). If
v = 351 = 70(5)+1, then there exists a 5−GDD(705) by Theorem 1.7. There also exists a
properly colored BIBD(71, 5, λ) as stated above. So we can apply Lemma 4.18 to properly
color a BIBD(351, 5, λ). If v = 391 = 30(13) + 1 then there exists a (5)−GDD(3013) by
Theorem 1.7. There also exists a properly colored BIBD(31, 5, λ) by Lemma 4.2. So we
apply Lemma 4.18 to properly color a BIBD(391, 5, λ). If v = 471, then we can properly
colored a BIBD(471, 5, λ) by Lemma 2.10.

Case 3: v ≡ 15 (mod 20)

If v ≡ 5 (mod 20), then we properly color each BIBD(v, 5, λ) by Theorem 2.3. If
λ = 10, then by Theorem 2.2 we can properly color all BIBD(v, 5, 10) where v ≡ 15
(mod 20).

If v = 15, then by Lemma 4.10 we can properly color all BIBD(15, 5, λ). Let v =
15 + 20x = 5(3 + 4x) for x ≥ 1. There exists a (5, 2) − GDD(5u) for u = 3 + 4x by
Theorem 1.8. It is trivial to properly color a BIBD(5, 5, λ). So we can apply Lemma 4.19
with m = 5, u = 3 + 4x.

Now let v = 20n + 15. If n ≥ 3, then apply Corollary 4.22 with m = 10 to properly
color a BIBD(v, 5, λ) where v ≡ 15 (mod 20) and λ = 12, 16. This leaves the open cases
of v = 15, 35, 55, 235, 355, 475, 655 (corresponding to n = 0, 1, 2, 11, 17, 23, 32). We
construct the properly colored BIBD(15, 5, λ) directly in Lemma 4.10. Also, we construct
the properly colored BIBD(35, 5, λ) directly in Lemma 4.11. For the other v, note that
there exists an RBIBD(20(n − 1) + 5, 5, 1) with 5(n − 1) + 1 = 5n + 4 parallel classes.
In each case, n ≥ 10, meaning we have at least 51 parallel classes. However, in each case
we must only use 20n + 15− (20(n− 1) + 5) = 30 parallel classes. Thus we again apply
Corollary 4.22 with m = 25 and n = n− 1.

To further break down the cases of v ≡ 15 (mod 20) we consider v ≡ 55 (mod 100).
Let v = 55 + 100x = (11 + 20x)5 for x ≥ 0. There exists a 5–GDD((11 + 20x)5) by
Theorem 1.7. There also exists a properly colored BIBD(11+20x, 5, λ) by Case 2. Again,
we can properly color a BIBD(5, 5, λ). Thus, we can properly color a BIBD(v, 5, λ) for
v ≡ 55 (mod 100).

Note that the remaining cases for a BIBD(v, 5, λ) where v ≡ 15, 35, 75, 95 (mod 100)
are λ = 14, 18.

Henceforth, there exists a proper coloring for every BIBD(v, 5, λ), where v ≡ 1, 5
(mod 10). z

4.2.2 λ ≡ 0 (mod 4)

In this section, we properly color all BIBD(v, 5, λ)s where λ ≡ 0 (mod 4). Note the
necessary and sufficient conditions for the existence of a BIBD(v, 5, λ) are that v ≡ 0, 1
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(mod 5). Note that when v ≡ 0, 1 (mod 5) and λ ≡ 0 (mod 20) these are already covered
by Theorem 2.2, but the results in this section satisfy this case as well.

Theorem 4.24. There exists a proper coloring for every BIBD(v, 5, λ) for λ = 4k, k ≥ 3,
where v ≡ 0, 1 (mod 5).

Proof: Note that in each case we assume λ = 4k, k ≥ 3 unless otherwise stated. We will
break this problem up into two main cases, v ≡ 0 (mod 5) and v ≡ 1 (mod 5).

Case 1: v ≡ 0 (mod 5)

We consider four subcases: v ≡ 0, 5, 10, or 15 (mod 20). If v ≡ 0 (mod 20), then
we have that either v ≡ 0 (mod 40) or v ≡ 20 (mod 40).

Case 1.1: v ≡ 0 (mod 40)

If v = 40, then by Lemma 4.8, we can properly color a BIBD(40, 5, λ). If v =
80 = 16(5), then there exists a 5 − GDD(165) by Theorem 1.7. We can properly color a
BIBD(16, 5, λ) by Lemma 4.12. So we can properly color a BIBD(80, 5, λ) by Lemma 4.17.

Let v = 40x = 20(2x) for x ≥ 3. There exists a 5− GDD(202x) by Theorem 1.7. We
can properly color a BIBD(20, 5, λ) by Lemma 4.6. So we can apply Lemma 4.17.

Case 1.2: v ≡ 20 (mod 40)

If v = 20, then by Lemma 4.6 we can properly color a BIBD(20, 5, λ). If v = 60, then
by Lemma 4.16, we can properly color a BIBD(60, 5, λ).

Let v = 20+40x = 20(1+2x) for x ≥ 2. There exists a 5–GDD(20u) for u = 1+2x by
Theorem 1.7. Because we can properly color a BIBD(20, 5, λ), we can apply Lemma 4.17.

Case 1.3: v ≡ 5 (mod 20)

By Theorem 2.3, we can properly color a BIBD(v, 5, λ) where v ≡ 1, 5 (mod 20).

Case 1.4: v ≡ 10 (mod 20)

Let v = 20n + 10. If n ≥ 1, then apply Corollary 4.22 with m = 5. This leaves the
open cases of v = 50, 230, 350, 470, 650 (corresponding to n = 0, 2, 11, 17, 23, 32). We
construct the properly colored BIBD(10, 5, λ) directly in Lemma 4.5. We also construct
the properly colored BIBD(50, 5, λ) directly in Lemma 4.15. For the other v, note that
these exists an RBIBD(20(n − 1) + 5, 5, 1) with 5(n − 1) + 1 = 5n − 4 parallel classes.
In each case, n ≥ 10, meaning we have at least 51 parallel classes. However, in each case
we must only use 20n + 10− (20(n− 1) + 5) = 25 parallel classes. Thus we again apply
Corollary 4.22 with m = 25 and n = n− 1.

Case 1.5: v ≡ 15 (mod 20)
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Let v = 20n + 15. If n ≥ 3, then apply Corollary 4.22 with m = 10. The open cases
left are v = 15, 35, 55, 235, 355, 475, 655 (corresponding to n = 0, 1, 2, 11, 17, 23, 32). We
construct the properly colored BIBD(15, 5, λ) directly in Lemma 4.10. We also construct
the properly colored BIBD(35, 5, λ) directly in Lemma 4.11. If v = 55, there exists a
5–GDD(115) by Theorem 1.7. There also exists a properly colored BIBD(11, 5, λ) by
Theorem 4.23. So we apply Lemma 4.17 to properly color a BIBD(55, 5, λ). For the other
v, note that there exists an RBIBD(20(n−1)+5, 5, 1) with 5(n−1)+1 = 5n−4 parallel
classes. In each case, n ≥ 10, meaning we have at least 51 parallel classes. However, in
each case we must only use 20n + 15 − (20(n − 1) + 5) = 30 parallel classes. Thus we
again apply Corollary 4.22 with m = 30 and n = n− 1.

Case 2: v ≡ 1 (mod 5)

If v ≡ 1 (mod 5), then v ≡ 1, 6, 11, or 16 (mod 20). If v ≡ 1 (mod 20), we can
properly color a BIBD(v, 5, λ) by Theorem 2.3. If v ≡ 11 (mod 20), then apply The-
orem 4.23 to obtain a properly colored BIBD(v, 5, λ). This leaves two cases; v ≡ 6, 16
(mod 20).

Case 2.1: v ≡ 6 (mod 20)

Let v = 6+20x = 1+5(1+4x) for x ≥ 1. There exists a 5−GDD(5u) for u = 1+4x
by Theorem 1.7. We can properly color a BIBD(6, 5, λ) by Lemma 4.4. So we can apply
Lemma 4.18 with m = 5 and u = 1 + 4x.

Case 2.2: v ≡ 16 (mod 20)

Let v = 20n+16. If v = 16, then by Lemma 4.12 we can properly color a BIBD(v, 5, λ).
If n ≥ 3, then apply Corollary 4.22 with m = 11. This leaves the open cases of v =
16, 36, 56, 231, 351, 471, 651 (corresponding to n = 0, 1, 2, 11, 17, 23, 32). We construct
the properly colored BIBD(16, 5, λ) directly in Lemma 4.12. If v = 36, there exists
a properly colored BIBD(36, 5, λ) by Lemma 4.7. There also exists a properly colored
BIBD(56, 5, λ) by Lemma 4.9. For the other v, note that there exists an RBIBD(20(n −
1) + 5, 5, 1) either (5, n − 1) + 1 = 5n − 4 parallel classes. In each case, n ≥ 10,
meaning we have at least 51 parallel classes. However, in each case we must only use
20n+16− (20(n−1)+5) = 31 parallel classes. Thus we again apply Corollary 4.22 with
m = 31 and n = n− 1.

z

4.3 Conclusion
We are now in a position to prove the main theorem.

Theorem 4.25. There is a proper edge coloring for every BIBD(v, 5, λ) where λ ≥ 10,
except possibly when λ = 2k, v ≡ 15, 35, 75, 95 (mod 100) and λ = 14, 18.
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Proof: Recall the necessary and sufficient conditions for the existence of a BIBD(v, 5, λ).

If λ ≡ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 (mod 20), then v ≡ 1, 5 (mod 20);
If λ ≡ 2, 6, 14, 18 (mod 20), then v ≡ 1, 5 (mod 10);
If λ ≡ 4, 8, 12, 16 (mod 20), then v ≡ 0, 1 (mod 5);
If λ ≡ 10 (mod 20), then v ≡ 1 (mod 2); and
If λ ≡ 0 (mod 20), then v ≥ 5.

If λ ≡ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 (mod 20), then v ≡ 1, 5 (mod 20) and we can
properly color a BIBD(v, 5, λ) by applying Theorem 2.3. If λ ≡ 10 (mod 20) or λ ≡ 0
(mod 20), then v ≡ 1 (mod 2) or v may be anything, respectfully, and we can properly
color a BIBD(v, 5, λ) by applying Theorem 2.2. If λ ≡ 2, 6, 14, 18 (mod 20), then v ≡
1, 5 (mod 10) and we apply Theorem 4.23. Finally, if λ ≡ 4, 8, 12, 16 (mod 20), then
v ≡ 0, 1, (mod 5) and we apply Theorem 4.24. z
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Chapter 5

Alternate Method to Properly Color

In this chapter, we take a graph theoretic approach to the proper coloring question in Chap-
ters 3 and 4. We also explain the strengths and weaknesses in application of the method
in this chapter against the methods from Chapters 3 and 4. The books by West [50] and
Diestel [20] were used often as references in this chapter.

5.1 Background in Graph Theory

An X, Y -bigraph is a bipartite graph where the two partitions are called X and Y . For the
remainder of this chapter we adopt the notation X and Y as the partitioned sets of vertices
from some arbitrary bipartite graph.

A saturation of X is defined as a matching containing all points in X . We define a
maximal matching as the largest possible matching set for a given graph G. If a matching
M saturates X , then for every S ⊆ X there must be at least |S| vertices in Y that have
neighbors (adjacent vertices) in S. Let NG(S) or N(S) denote the set of neighboring or
adjacent vertices to vertices in S. Clearly, |N(S)| ≥ |S| is a necessary condition. Phillip
Hall proved that for all S ⊆ X , |N(S)| ≥ |S| is also a sufficient condition, hence why this
condition is called Hall’s Condition (Marriage Condition).

Theorem 5.1. (Marriage Theorem, [27]) An X, Y -bigraph G has a matching that saturates
X if and only if |N(S)| ≥ |S| for all S ⊆ X .

Proof: We begin by showing if an X, Y -bigraph G has a matching that saturates X , then
|N(S)| ≥ |S| for all S ⊆ X . Consequently, if a matching saturates X , then for every
S ⊆ X there must be at least |S| vertices in Y , and out of necessity |N(S)| ≥ |S|.

Now we prove that Hall’s Condition is sufficient using the contrapositive of the state-
ment. We want to show if M is a maximal matching in G and M does not saturate X , then
we achieve a set S ⊆ X such that |N(S)| < |S|. Let u ∈ X be a vertex not in the matching
M . Also let S0 be the set of all vertices in X reachable from u by M -alternating paths in G
and T0 be the set of all vertices in Y reachable from u by M -alternating paths in G. Note
that u ∈ S0 in Figure 5.1.
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uX

Y

S

T = N(S)

Figure 5.1: Proving the Marriage Theorem with alternating paths.

Our claim is that we must prove M matches T0 with S0−{u}. Since the M -alternating
paths from u reach Y through edges not in M and return to X along edges in M , to get to
every vertex of S0 − {u}, one must pass through an edge in M from a vertex in T0. This
shows there are no augmenting paths through M . Because there is no M -augmenting path,
every vertex in T0 is saturated. It follows that an M -alternating path reaching y ∈ T0 may
be extended via M to a vertex of S0. This means the edges in the matching M yield a
bijection from T0 to S0 − {u}. Therefore we have |T0| = |S0 − {u}|.

Because a matching between T0 and S0 − {u} exists, it tells us T0 ⊆ N(S0). Fur-
thermore, because of the way we constructed S0 and T0, T0 = N(S0). Now suppose that
y ∈ Y \T0 has an adjacent vertex v ∈ S0. Since y /∈ T0, the edge vy cannot be in M since
u is unsaturated and the rest of S0 is matched to T0 by M . If we were to add vy to an M -
alternating path reaching v, then the M -alternating path would reach Y . This contradicts
y /∈ T0. Therefore vy cannot exist.

This shows T0 = N(S0), and thus |N(S0)| = |T | = |S0| − 1 < |S0| for our S0. But
since our S0 is arbitrary, this is true for all S and thus completes our proof. z

Corollary 5.2. [50] For k > 0, every k-regular bipartite graph has a perfect matching.

Proof: A perfect matching is a matching consisting of every vertex in the graph. Let G
be a k-regular X, Y -bigraph. Since each edge has two endpoints, we count the number of
endpoints in X and the number of endpoints in Y . Because for each edge one endpoint that
lies in X and there is an endpoint that in Y , the total number of endpoints are equivalent
on both sides. It follows from the graph being k-regular that the number of endpoints in X
is k|X| and the number of endpoints in Y is k|Y |, so k|X| = k|Y |. Thus, |X| = |Y |. Thus
a matching that saturates X will also saturate Y and this is matching is perfect. So we only
need to prove there is a matching that saturates X . This is equivalent to verifying Hall’s
Condition.

Now we consider S ⊆ X . Let m represent the number of edges from S to N(S).
Because G is a k-regular X, Y -bigraph, m = k|S|. The number of edges in N(S) is
k|N(S)| and because there may be more edges coming into N(S), k|S| = m ≤ k|N(S)|,
and so |N(S)| ≥ |S|. Finally, we note that we choose S arbitrarily and thus we have
established Hall’s Condition. z

To establish the understanding of the following theorem we need a little more terminol-
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ogy. A k-edge-coloring of G is a labeling of the edges defined by the mapping f : E → S,
where |S| = k and E is the set of edges. These labels used will be colors. We call a
k-edge-coloring proper if incident edges have different labels. This is equivalent to saying
that each unique color generates a matching. An edge is incident to another edge if they
share a common vertex. It is straightforward to call a graph k-edge-colorable if it has a
proper k-edge-coloring. The edge-chromatic number, χ′(G), of a simple graph1 G is given
as a number k such that k is the minimum number where G is k-edge-colorable. It follows
that since edges sharing a vertex need different colors, χ′(G) ≥ ∆(G) where ∆(G) is the
maximum degree of all the vertices. It was proved independently by Vizing [48] and Gupta
[26] that if G is a simple graph, then ∆(G) + 1 colors suffice to color G.

Theorem 5.3. [50] If H is bipartite, then χ′(H) = ∆(H).

Proof: The idea behind this proof is to establish the following. Given a k-regular bipartite
graph G and a subgraph H of G, since G has a perfect matching and yields a proper ∆(G)-
edge-coloring, we can achieve a proper ∆(G)-edge-coloring on H by removing edges. To
prove this, though, we will start with a graph H and show it generates G. First, Corol-
lary 5.2 states every k-regular bipartite graph G has a perfect matching. Hence, we can
use induction on G to show ∆(G) = k is the edge-chromatic number of G and thus yields
a proper ∆(G)-edge-coloring. As a result, it suffices to show for every bipartite graph H
with maximum degree k, H is a subgraph of a k-regular graph G, i.e. there is a k-regular
bipartite graph G containing H .

To construct G from H , first consider the two partite sets of H as X and Y . We add
vertices to the smaller set of X and Y , if necessary, until the two sets are equal. If this new
graph H ′ is not regular, then both X and Y have a vertex with degree less than ∆(G). Add
an edge between these two vertices. Continue adding edges until H ′ becomes k-regular.
Since H ′ is now k-regular, it has the same properties as G and thus H can yield a proper
k-edge-coloring. z

5.2 Restating our Problem

Consider the structure of an edge-incidence matrix of a BIBD(v, k, λ). We construct an
X, Y -bigraph where X is the set of all possible pairs of vertices (set of edges) and Y is the
set of blocks. There is an edge in this bipartite graph between x ∈ X and y ∈ Y if the
pair represented by x is in the block y. This will give us a bipartite graph with degree λ
on each x and degree

(
k
2

)
on each y. Since λ ≥

(
k
2

)
, ∆(G) = λ. Thus, by Theorem 5.3

λ = ∆(G) = χ′(G). Suppose that where there is an edge between a pair and a block, it
means that edge in the block represents the Kk of that block. Then we only need to properly
color this bipartite graph in order to properly color the decompositions of λ copies of Kv

into copies of Kk. Since we have constructed this bipartite graph from a BIBD(v, k, λ)

1We say simple graph instead of loopless because the only types of graphs that we deal with are simple
graphs.
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and we can properly color this graph, we can properly color any BIBD(v, k, λ). The result
of this is given in the theorem below.

Theorem 5.4. There exists a properly colored decomposition of λ copies of monochromatic
Kv into panchromatic Kk if there exists a BIBD(v, k, λ).

5.3 BIBD vs. PD

Though this method solves our problem completely, the method also loses any structure that
was given when using proper colorings of BIBDs. One such example is the correlation be-
tween BIBDs and another type of coloring problem associated with graph decompositions.
A k-path decomposition (k–PD) of a graph H is an edge-partition of H into subgraphs iso-
morphic to Pk+1, paths of length k. In [29], a question first posed by M. L. Yu is addressed.
If H consists of λ copies of Kv, and the edges of each copy of Kv are monochromatically
colored using λ distinct colors, can one find a properly colored k–PD? Again in [29], it was
shown that if v ≥ 3 is odd, then the necessary conditions are sufficient for the existence of
a properly colored 2–PD with λ = 2.

This idea does not extend directly to BIBDs with block size 4 because it is impossible
to obtain panchromatic blocks when λ <

(
k
2

)
. So we must construct equitably colored

blocks. Let |E| = e where E is the set of edges in Kk and d = b e
λ
c. An equitably colored

block is such that each color is used either d or d + 1 times to color the edges of the block.
An equitable edge-coloring of a BIBD(v, k, λ) is then a decomposition ofH into equitable
blocks.

Before we revisit the idea of path decomposition, we define and remark upon equitable
rectangles. Suppose r, c, and v are positive integers. An equitable (r, c; v)-rectangle is an
r × c array L where every entry is chosen from a v-set X , such that the following two
properties are satisfied:

1. every symbol x ∈ X occurs b c
v
c or d c

v
e times in each row of L.

2. every symbol x ∈ X occurs b r
v
c or d r

v
e times in each column of L.

We will make use of the equitable rectangles studied in [14] and [45] as follows. If there ex-
ists a BIBD(v, k, 1), then we can equitably color the blocks of a BIBD(v, k, λ) in much the
same way that we would color the design. Take λ copies of each block in the BIBD(v, k, 1).
For each block in the BIBD(v, k, 1) form a

(
k
2

)
× λ matrix. The rows of the matrix will

be indexed by the
(

k
2

)
pairs of points, and the columns will be indexed by the λ copies of

the block. The entries will be that of an equitable (
(

k
2

)
, λ; λ)-rectangle. We suspect that

one may be able to equitably color BIBD(v, k, λ)s with 2 ≤ λ ≤
(

k
2

)
with k = 3, 4, or 5

by coloring some small designs directly, and then applying recursive techniques involving
GDDs and equitable (r, c; v)-rectangles but this is still open.

This leads us to believe it may be possible to extend this idea to properly color k–PDs by
using equitably colored BIBD(v, k+1, λ)s. For example, consider the following equitably
colored BIBD(5, 4, 3).
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B1 B2 B3 B4 B5

{1, 2} 0 0 c1 c2 c3

{2, 3} c3 0 0 c1 c2

{3, 4} c2 c3 0 0 c1

{4, 5} c1 c2 c3 0 0
{5, 1} 0 c1 c2 c3 0
{1, 3} 0 c1 0 c3 c2

{2, 4} c2 0 c1 0 c3

{3, 5} c3 c2 0 c1 0
{4, 1} 0 c3 c2 0 c1

{5, 2} c1 0 c3 c2 0

Each block of the design consists of 2 edges that are colored by ci, for i = 1, 2, 3.
Furthermore, the edges in each block can easily be decomposed into properly colored paths
of length 3.

If we consider the case where k = 5 we cannot create k-path decompositions be-
cause the length of the longest path without a cycle is four. Thus, we have to construct
other path lengths to get any results. If we look at the edge-colored incidence matrix of
a BIBD(11, 5, 2) in Figure 4.1, we see that we can construct a 2–PD if the index on the
colors is evaluated (mod 2). It is not necessary that our path decompositions be uniform
but for a more rigid and useful structure we assume it is so. If we let path decompositions
be non-uniform, it may be possible to construct two 4–PDs and one 2–PD. But again, this
is not possible given the structure of the alternate method.

Finally, because we don’t have any structure to the bipartite graph consisting of the
pairs and blocks, we do not know the general construction of the coloring and therefore, do
not generate a properly colored path decomposition.
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Chapter 6

Mutually Orthogonal Equitable Latin
Rectangles

At this time we will abandon all conventions of notation developed in Chapters 2, 3, 4, and 5
to switch over to a completely new topic about Latin squares. In this chapter we investigate
the maximum number of possible mutually orthogonal equitable Latin rectangles for all
possible parameters. In essence, we will show that there are at least 3–MOELR(a, b; n)
for all a, b, and n except possibly when

a = 9 and n = 3s, where s ≡ 2, 4, 5, 7 (mod 9), s > 9;
a = 18 and n = 3s, where s ≡ 8, 10, (mod 18), s > 18;
a = 36 and n = 6s, where s ≡ 5, 7, 11, 13, 17, 19, 23, 25, 29, 31 (mod 36), s > 36.

and a finite number of cases. To do this we use a plethora of examples to establish a solid
understanding of each construction used in the main theorem.

6.1 Mutually Orthogonal Latin Squares
A Latin square of side n (or order n) is an n× n array in which each cell contains a single
symbol from an n–set S, such that each symbol occurs exactly once in each row and exactly
once in each column. We denote a Latin square of order n as LS(n). As an example, here
is a Latin square of side 8 on the symbols 0, 1, . . . , 7.

0 1 2 3 4 5 6 7
1 0 3 4 5 6 7 2
2 3 5 0 6 7 4 1
3 4 0 7 1 2 5 6
4 5 6 1 7 0 2 3
5 6 7 2 0 3 1 4
6 7 4 5 2 1 3 0
7 2 1 6 3 4 0 5

Figure 6.1: Latin square of side 8
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In 1779 Euler introduced the famous 36 officers problem. Say there are 36 officers,
each having a rank and regiment.

There are 6 different ranks and 6 different
regiments. The officers are to be arranged in
a square in such a way that each horizontal and
vertical line has an officer of each rank and each
regiment. If we look only at the ranks the square
created by the officers is a Latin square. The
same is true for if we consider only the regiments.
Considering both the ranks and regiments if we
superimpose the two Latin squares does every ordered
pair occur exactly once?

If two Latin squares have this property, then the squares are orthogonal. A set of k Latin
squares of order n, say L1, . . . , Lk, are said to be mutually orthogonal Latin squares if Li

and Lj are orthogonal for all 1 ≤ i < j ≤ k. The maximum number of MOLS of order n
is denoted as NMOLS(n). Euler made a conjecture based on the knowledge that he knew
NMOLS(2) = 1 and he strongly suspected NMOLS(6) = 1.

Conjecture 6.1. If n ≡ 2 (mod 4), then NMOLS(n) = 1.

Later, using BIBDs, Parker [41, 42] established a construction showing NMOLS(21) ≥
4. It was not until 1960 that Bose and Shrikhande [12] saw the work of Parker and made a
shocking generalization using pairwise balanced designs rather than balanced incomplete
block designs. A pairwise balanced design or a PBD(v, K, λ) is a BIBD with the size of
the blocks being from the set K. As an example, Figure 6.2 is a PBD(10, {3, 4}) where
the blocks are listed column-wise.

1 1 1 2 2 2 3 3 3 4 4 4
2 5 8 5 6 7 5 6 7 5 6 7
3 6 9 8 9 10 10 8 9 9 10 8
4 7 10

Figure 6.2: A PBD(10, {3, 4})

Bose and Shrikhande proved NMOLS(22) ≥ 2 and NMOLS(66) ≥ 5. Later in [13],
Parker joined with Bose and Shrikhande to show NMOLS(n) ≥ 2 for all n ≥ 10.

In [52] Wilson developed a new class of constructions. And since then, the number
of extensions and refinements of the techniques made by Bose-Shrikhande-Parker and the
Wilson constructions are so plentiful that we can only mention where to refer for more
literature on the subject. Colbourn and Dinitz in [18] give a more detailed description of
constructions for small n. For a massive collection of results on the topics of combinatorial
designs including this section and section 1.2, see [19].
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Let us consider an example of three mutually orthogonal Latin squares of order 4, also
denoted as 3–MOLS(4). The matrices M1, M2, M3 below represent the three Latin squares
of a 3–MOLS(4) that are orthogonal.

M1 =

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 2

M2 =

1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3

M3 =

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

The idea of Latin squares can be rewritten in such a way that we create a (k + 2)× n2

array from k–MOLS(n). An orthogonal array OA(k + 2, n) is a (k + 2)× n2 array with
entries from an n-set S having the property that in any two rows, each pair of symbols from
S occurs exactly once. Figure 6.3 is an OA(5, 4) created from 3–MOLS(4). The first row
indicates the row of the Latin square. The second row indicates the column of the Latin
square. The third, forth, and fifth rows are the elements in the first, second, and third Latin
square respectively. So column five of Figure 6.3 would tell us in row two column one of
the first, second, and third Latin squares the entries 4, 3, and 2 appear respectively.

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4 4 3 2 1 2 1 4 3 3 4 1 2
1 2 3 4 3 4 1 2 4 3 2 1 2 1 4 3
1 2 3 4 2 1 4 3 3 4 1 2 4 3 2 1

Figure 6.3: An OA(5, 4)

In a similar way as we went from 3–MOLS(4) to an OA(5, 4) we may create a transver-
sal design from an orthogonal array. A transversal design of order or group size n, block
size k, and index λ, denoted TDλ(k, n), is a triple (V,G,B), where

1. V is a set of kn elements;

2. G is a partition of V into k classes (the groups), each of size n;

3. B is a collection of k-subsets of V (the blocks);

4. every unordered pair of elements from V is contained either in exactly one group or
in exactly λ blocks, but not both.

When λ = 1, one simply writes TD(k, n).
On the element set {1, 2, 3, 4}×{1, 2, 3, 4, 5}, the blocks of a TD(5, 4) derived from an

OA(5, 4) are shown below. To go from the OA(5, 4) to a TD(5, 4) we let each column of
the OA(5, 4) be a block and list elements in the block as the element from the OA joined
with the number denoting the row.
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{11, 12, 13, 14, 15}
{21, 12, 43, 34, 25}
{31, 12, 23, 44, 35}
{41, 12, 33, 24, 45}

{11, 22, 23, 24, 25}
{21, 22, 33, 44, 15}
{31, 22, 13, 34, 45}
{41, 22, 43, 14, 35}

{11, 32, 33, 34, 35}
{21, 32, 23, 14, 45}
{31, 32, 43, 24, 15}
{41, 32, 13, 44, 25}

{11, 42, 43, 44, 45}
{21, 42, 13, 24, 35}
{31, 42, 33, 14, 25}
{41, 42, 23, 34, 15}

6.2 Background and Terms
A k×n Latin rectangle is a k×n array (where k ≤ n) in which each cell contains a single
symbol from an n-set S, such that each symbol occurs exactly once in each row and at
most once in each column. Two Latin rectangles are orthogonal if when superimposed no
ordered pair of symbols appears more than once. A set of m×n Latin rectangles is mutually
orthogonal, or a MOLR(m, n), if every two Latin rectangles in the set are orthogonal. The
maximum number of MOLR(m, n) is denoted NMOLR(m, n).

Given positive integers a, b and n, an equitable (a, b; n)–rectangle is an a× b array, L,
with entries from a n–set S, such that the following two properties are satisfied:

1. every symbol s ∈ S occurs either d b
n
e or b b

n
c; and times in each row of L.

2. every symbol s ∈ S occurs either d a
n
e or b a

n
c times in each column of L.

An equitable (a, b; n)–rectangle is row–regular if n|b, and it is column–regular if n|a.
It is regular if it is both row– and column–regular. In a row–regular (a, b; n)–rectangle,
every symbol occurs exactly b

n
times in each row; in a column–regular (a, b; n)–rectangle,

every symbol occurs exactly a
n

times in each column.
Notice that an equitable (a, b; b)–rectangle with a ≤ b is a Latin rectangle, and a Latin

rectangle with a = b is the same thing as a Latin square of side a.
Suppose that L is an equitable (a, b; n)–rectangle on symbol set S and R is an equitable

(a, b; n′)–rectangle on symbol set S ′, where ab = nn′. We say that L and R are orthogonal
provided that, for every ordered pair (s, s′) ∈ S × S ′, there is a unique cell C such that
L(C) = s and R(C) = s′. (Equivalently, the superposition of L and R yields every
ordered pair of symbols in S × S ′.) It is easy to see that orthogonal equitable (a, a; a)–
rectangles are identical to orthogonal Latin squares of order a. Pairs of orthogonal equitable
Latin rectangles were introduced in [45]. A complete solution for the existence of these
rectangles was given in [14].

Now suppose that L1 is an equitable (a, b; n)–rectangle on symbol set S, L2 is an eq-
uitable (a, b; n′)–rectangle on symbol set S ′, and L3 is an equitable (a, b; n′′)–rectangle on
symbol set S ′′ where ab = nn′ = n′n′′ = nn′′. Then it follows that n = n′ = n′′. There-
fore, a set of k mutually orthogonal equitable Latin rectangles, or a k–MOELR(a, b; n) is
a set of k pairwise equitable (a, b; n)–rectangles on a symbol set S where ab = n2. We
will denote the maximum number of MOELR(a, b; n) by NMOELR(a, b; n). For the re-
mainder of the chapter we will say Latin rectangles instead of equitable Latin rectangles
for simplicity.

To enhance the importance of mutually orthogonal equitable Latin rectangles, we will
talk about mix functions and their applications. To start, we defined mix functions as
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Ristenpart and Rogaway did in [43] as follows. Let |S| = r. Suppose the mapping
f : S × S → S × S, and denote f(s1, s2) = (fL(s1, s2), fR(s1, s2)) for all s1, s2 ∈ S.
A permutation is a rearrangement of the elements in an ordered set. Suppose that the fol-
lowing properties are satisfied:

1. f(·, ·) is a permutation of S × S

2. if s1 ∈ S is fixed, then fL(s1, ·) is a permutation of S

3. if s1 ∈ S is fixed, then fR(s1, ·) is a permutation of S

4. if s2 ∈ S is fixed, then fL(·, s2) is a permutation of S

5. if s2 ∈ S is fixed, then fR(·, s2) is a permutation of S.

Then we say that f is a MIX(r) function.
In [43] it was observed that by using orthogonal Latin squares of order r we can con-

struct MIX(r) functions. Not only this, but the converse is also true.

Theorem 6.2. [45] Suppose that |S| = r, f : S×S → S×S, and let L and R be the S×S
arrays defined by L[s1, s2] = fL(s1, s2) and R[s1, s2] = fR(s1, s2). Define two r×r arrays
L = (λs1,s2) and R = (ρs1,s2) by the rules λs1,s2 = fL(s1, s2) and ρs1,s2 = fR(s1, s2) for
all s1, s2. Then f is a MIX(r) function if and only if L and R are orthogonal Latin squares
of order r.

We now extend this definition of mix functions to generalized mix functions. Because
mix functions have cryptographic applications from [43], generalized mix functions have
potential applications in this field too. Which in turn may provide very useful information
to allow mutually orthogonal equitable Latin rectangles to have cryptographic applications
in the same manner.

In [14] a type of orthogonal equitable rectangle was studied called orthogonal gener-
alized equitable rectangles (OGER). An OGER is defined as follows. Suppose r, t, s1, s2

are positive integers such that rt = s1s2. An OGER is a pair (A, B) of two r× t rectangles
satisfying the following properties:

1. A = (ai,j) is defined on a set S1 of s1 symbols and B = (bi,j) is defined on a set of
S2 of s2 symbols, where s1s2 = rt.

2. A and B are equitable on rows and equitable on columns.

3. A and B are orthogonal.

We denote A and B as (r, t; s1, s2)–OGER as in [14].

Example 6.3. A (2, 6; 3, 4)–OGER.
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1 1 2 2 3 3
2 2 3 3 1 1

1 2 1 2 3 4
3 4 2 1 4 3

A striking difference between OGERs and MOELRs is that OGERs have symbol sets
of different sizes defined on different arrays while MOELRs require a fixed symbol set
among all of the arrays.

6.3 Small Cases
Example 6.4. A 3–MOELR(9, 16; 12).

M1 =

1 3 4 2 1 3 4 2 7 9 10 8 7 9 10 8
2 5 6 1 2 5 6 1 8 11 12 7 8 11 12 7
3 6 1 4 3 6 1 4 9 12 7 10 9 12 7 10
4 2 5 1 4 2 5 1 10 8 11 7 10 8 11 7
5 1 3 6 5 1 3 6 11 7 9 12 11 7 9 12
6 2 1 5 6 2 1 5 12 8 7 11 12 8 7 11
3 4 2 6 3 4 2 6 9 10 8 12 9 10 8 12
5 6 4 3 5 6 4 3 11 12 10 9 11 12 10 9
2 4 3 5 2 4 3 5 8 10 9 11 8 10 9 11

M2 =

1 2 5 3 7 8 11 9 1 2 5 3 7 8 11 9
2 6 3 5 8 12 9 11 2 6 3 5 8 12 9 11
3 1 4 6 9 7 10 12 3 1 4 6 9 7 10 12
4 5 1 6 10 11 7 12 4 5 1 6 10 11 7 12
5 3 6 4 11 9 12 10 5 3 6 4 11 9 12 10
6 4 2 3 12 10 8 9 6 4 2 3 12 10 8 9
4 1 6 2 10 7 12 8 4 1 6 2 10 7 12 8
2 5 3 1 8 11 9 7 2 5 3 1 8 11 9 7
1 2 5 4 7 8 11 10 1 2 5 4 7 8 11 10

M3 =

1 4 3 6 7 10 9 12 7 10 9 12 1 4 3 6
2 3 5 4 8 9 11 10 8 9 11 10 2 3 5 4
3 4 6 2 9 10 12 8 9 10 12 8 3 4 6 2
4 1 2 5 10 7 8 11 10 7 8 11 4 1 2 5
5 2 1 3 11 8 7 9 11 8 7 9 5 2 1 3
6 5 3 4 12 11 9 10 12 11 9 10 6 5 3 4
2 6 4 1 8 12 10 7 8 12 10 7 2 6 4 1
6 2 1 5 12 8 7 11 12 8 7 11 6 2 1 5
3 5 6 1 9 11 12 7 9 11 12 7 3 5 6 1
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It was known to Euler that a pair of orthogonal Latin squares of order 6 do not exist.
However, Examples 6.5 and 6.6 show that there exists a 3–MOELR(a, b; 6) for a = 4, b =
9 and a = 3, b = 12. When a = 2 and b = 18, the existence of a 3–MOELR(2, 18; 6) is
unresolved. See Lemma 6.27 for more on this.

Example 6.5. A 3–MOELR(4, 9; 6).

M1 =

1 2 3 4 5 6 3 5 2
3 5 6 2 1 2 4 6 4
4 6 1 5 3 1 2 4 3
2 1 4 1 6 5 6 3 5

M2 =

1 2 3 4 5 6 4 2 1
2 6 1 5 3 4 1 5 2
5 3 4 1 6 2 6 3 5
3 5 6 6 4 3 2 1 4

M3 =

1 2 3 4 5 6 2 6 3
4 3 4 1 2 5 6 2 5
3 5 6 2 1 3 4 1 6
6 4 2 5 3 4 1 5 1

Example 6.6. A 3–MOELR(3, 12; 6)

M1 =
1 1 2 2 3 3 4 4 5 5 6 6
2 2 1 1 4 4 3 3 6 6 5 5
3 4 3 6 5 6 5 2 4 1 2 1

M2 =
1 2 1 2 4 6 2 4 3 5 5 6
2 6 3 6 3 5 5 1 4 1 2 4
3 1 2 2 6 3 1 5 6 4 4 5

M3 =
1 3 3 6 2 1 5 4 4 5 2 6
2 4 2 5 1 3 6 5 3 4 6 1
3 6 4 1 3 5 2 1 2 6 5 4

Let Fn be a finite field of order n. For each f ∈ Fn, f 6= 0, define the Fn × Fn matrix
Af by Af [x, y] = fx + y for all x, y ∈ Fn. Then ∪fAf forms a set of |Fn|–MOLS(n).
This construction is referred to as the finite field construction for MOLS (see [38]).

If M is a Latin rectangle, we denote M\Row i as the Latin rectangle obtained by re-
moving Row i from M .
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Example 6.7. A 3–MOELR(4, 25; 10).

Let A1, A2, A3 be 3–MOLS(5) constructed using the finite field construction of sets of
MOLS on the set of symbols A = {a1, · · · , a5}. Let B1, B2, B3 be a copy of this set of
3–MOLS(5) on the set of symbols B = {b1, · · · , b5}. Let

M1 = [A1\Row 5, A2\Row 5, B1\Row 5, B2\Row 5, C1]

M2 = [A2\Row 5, B1\Row 5, A3\Row 5, B3\Row 5, C2]

M3 = [B3\Row 5, A3\Row 5, A2\Row 5, B1\Row 5, C3]

where

C1 =


Row 5 of A1

Row 5 of A2

Row 5 of B1

Row 5 of B2

, C2 =


Row 5 of A2

Row 5 of B1

Row 5 of A3

Row 5 of B3

,

C3 =


Row 5 of B3

Row 5 of A3

Row 5 of A2

Row 5 of B1

.

Then M1, M2, M3 form a 3–MOELR(4, 25; 10). For each pair of rectangles Mi, Mj for
i, j,∈ {1, 2, 3}, we have the property that every ordered pair of each of the following types
occurs exactly once: (ai, aj), (ai, bj), (bi, bj), (bi, aj) for all i, j ∈ {1, · · · , 5}. Therefore,
orthogonality holds. Consider any rectangle Mi for i ∈ {1, 2, 3}. In any row of this
rectangle, either the symbols from set A each occur 2 times and the symbols from the set B
occur 3 times, or vice versa. Furthermore, because we used the finite field construction to
construct our set of MOLS(5), we have that the pair (k, k) for k = 0, 1, 2, 3, 4 has appeared
in row 1 for each pair of squares. Therefore, no symbol will be repeated in any column of
any of the Ci for i ∈ {1, 2, 3}.

We give a 3–MOELR(4, 25; 10) in Figure 6.4.

Example 6.8. A 3–MOELR(4, 49; 14).

Let A1, A2, A3 be 3–MOLS(7) constructed using the finite field construction of sets of
MOLS on the set of symbols A = {a1, · · · , a7}. Let B1, B2, B3 be a copy of this set of 3
MOLS(7) on the set of symbols B = {b1, · · · , b7}. Let

M1 = [A1\Rows 5,6,7, A2\Rows 5,6,7, B1\Row 5,6,7, B2\Rows 5,6,7, C1]

M2 = [A2\Rows 5,6,7, B1\Rows 5,6,7, A3\Rows 5,6,7, B3\Rows 5,6,7, C2]

M3 = [B3\Rows 5,6,7, A3\Rows 5,6,7, A2\Rows 5,6,7, B1\Rows 5,6,7, C3]

where
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C1 =

Row 5 of A1 Row 6 of A2 Row 5 of B1

Row 6 of A1 Row 7 of A2 Row 5 of B2

Row 7 of A1 Row 6 of B1 Row 6 of B2

Row 5 of A2 Row 7 of B1 Row 7 of B2

C2 =

Row 5 of A2 Row 6 of B1 Row 5 of A3

Row 6 of A2 Row 7 of B1 Row 5 of B3

Row 7 of A2 Row 6 of A3 Row 6 of B3

Row 5 of B1 Row 7 of A3 Row 7 of B3

C3 =

Row 5 of B3 Row 6 of A3 Row 5 of A2

Row 6 of B3 Row 7 of A3 Row 5 of B1

Row 7 of B3 Row 6 of A2 Row 6 of B1

Row 5 of A3 Row 7 of A2 Row 7 of B1

.

Then M1, M2, M3 form a 3–MOELR(4, 49; 14). For each pair of rectangles Mi, Mj for
i, j,∈ {1, 2, 3}, we have the property that every ordered pair of each of the following types
occurs exactly once: (ai, aj), (ai, bj), (bi, bj), (bi, aj) for all i, j ∈ {1, · · · , 7}. Therefore,
orthogonality holds. Consider any rectangle Mi for i ∈ {1, 2, 3}. In any row of this
rectangle, either the symbols from set A each occur 4 times and the symbols from the set B
occur 3 times, or vice versa. Furthermore, because we used the finite field construction to
construct our set of 3–MOLS(7), we can be sure that no symbol is repeated in any column
of any of the Ci for i ∈ {1, 2, 3}. This is because 2 · 4 6= 4, 5 or 6 (mod 7), so columns 1-7
of C1 contain no repeated symbols. For columns 8-14 of C2 there are no repeated symbols
because 2 · 5 6≡ 3 · 5 or 3 · 6 (mod 7) and 2· 6≡ 3 · 5 or 3 · 6 (mod 7). Similarly, 4 6≡ 2 · 4
or 2 · 5 or 2 · 6 (mod 7), so columns 15-21 of C1 contain no repeated symbols. It is easy to
see that no symbol is repeated in any of the other columns of Mi.

We give a 3–MOELR(4, 49; 14) in Figure 6.5.

M1 =

0 1 2 3 4 0 1 2 3 4 5 6 7 8 9 5 6 7 8 9 4 0 1 2 3
1 2 3 4 0 2 3 4 0 1 6 7 8 9 5 7 8 9 5 6 3 4 0 1 2
2 3 4 0 1 4 0 1 2 3 7 8 9 5 6 9 5 6 7 8 9 5 6 7 8
3 4 0 1 2 1 2 3 4 0 8 9 5 6 7 6 7 8 9 5 8 9 5 6 7

M2 =

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 3 4 5 6 7
2 3 4 0 1 6 7 8 9 5 3 4 0 1 2 8 9 5 6 7 9 5 6 7 8
4 0 1 2 3 7 8 9 5 6 1 2 3 4 0 6 7 8 9 5 2 3 4 0 1
1 2 3 4 0 8 9 5 6 7 4 0 1 2 3 9 5 6 7 8 7 8 9 5 6

M3 =

5 6 7 8 9 0 1 2 3 4 0 1 2 3 4 5 6 7 8 9 7 8 9 6 7
8 9 5 6 7 3 4 0 1 2 2 3 4 0 1 6 7 8 9 5 2 3 4 0 1
6 7 8 9 5 1 2 3 4 0 4 0 1 2 3 7 8 9 5 6 3 4 0 1 2
9 5 6 7 8 4 0 1 2 3 1 2 3 4 0 8 9 5 6 7 9 5 6 7 8

Figure 6.4: A 3–MOELR(4, 25; 10)
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6.4 Computer Construction of MOELR

The construction of MOELRs given in Examples 6.5 and 6.6 was accomplished by a pro-
gram coded in C++. The following is the description of the different parts of the programs
created.

Note that the programs were designed only to find 3–MOELR(a, b; n). The program
was separated into 2 stages: a first stage program that generated the triples used in the 3
corresponding matrices and a second stage program to place the triples in matrices, check
which are unique, and record unique up to isomorphism 3–MOELR in a list.

The second program used recursion to exhaustively generate all possible combinations
of entries in the matrix. Once a single solution was found, it was printed and placed in
a set that could be called later to check whether any new solution was isomorphic to a
previous solution. To check for isomorphisms, the new solution and all old solutions were
permuted in a way that set the first column and first row in lexicographical order. Once
in lexicographical order, the two solutions were compared to see if a one to one mapping
exists. Note that only a single set of triples from the first program was used to generate all
the solutions. That means, even if the program found all possible solutions for this triple
set, there are more triple sets that could be used.

These programs were used to find a 3–MOELR(3, 12; 6) and a 3–MOELR(4, 9; 6).

6.5 Supporting Lemmas
Notice that if we take the transpose of each rectangle in a k-MOELR(a, b; n), then the
equitability and orthogonality properties still hold. Thus we have the following result.

Lemma 6.9. If there exists a k–MOELR(a, b; n), then there exists a k–MOELR(b, a; n).

The next result is very similar to the result for MOLS that says that if there exists
k–MOLS(n), then k ≤ n− 1 (see [19]).

Lemma 6.10. If there exists a k–MOELR(a, b; n), then k ≤ n− 1.

Proof: Without loss, we can assume that the first n entries in the first row of each rectangle
is 1, 2, · · · , n (i.e. Lj(1, i) = i is the first row and ith column in the jth rectangle for
i = 1, 2, · · · , n and j = 1, 2, · · · , k). Then Lj(2, 1) 6= 1 for all j = 1, 2, · · · , k, because
1 has already appeared in the first column of every rectangle. Let L1(2, 1) = x1. Then
Lj(2, 1) 6= x1 for all j = 2, 3, · · · , k because the ordered pair (x1, x1) has already appeared
for each pair of rectangles in row 1 (i.e. Lj(1, i) = Lh(1, i) = i for all j, h ∈ {1, 2, · · · , k}
and i = 1, 2, · · · , n). Furthermore, Lj(2, 1) 6= Lh(2, 1) for all j, h ∈ {2, 3, · · · , k} for the
same reason. Thus we have that each entry Lj(2, 1) is unique and also Lj(2, 1) 6= 1 for all
j = 1, 2, · · · , k. Because there are only n − 1 ways to fill this entry in each rectangle, it
follows that we can have at most n− 1 rectangles. Thus k ≤ n− 1. z

Lemma 6.11. If there exists k–MOLS(n) and a|n, then there exists a k–MOELR(a, b; n).
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Proof: Suppose a ≤ b and a|n. Write n = ax so ab = n2 = a2x2; and therefore,
b = ax2 = xn. Let A1, A2, · · · , Ak be k–MOLS(n). We form the jth rectangle Mj as
follows.

Mj(i, tn + l) = Aj(ta + i, l)

for j = 1, 2, · · · , k; i = 1, 2, · · · , a; t = 0, 1, · · · , x− 1; l = 1, 2, · · · , n

This rectangle has a rows and b = xn columns. Every symbol appears in each row x
times and each column 0 or 1 times. Furthermore, every ordered pair occurs exactly once.
Therefore, the Mj for j = 1, 2, · · · , k form a k–MOELR(a, b; n). z

Example 6.12. A 2–MOELR(6, 24; 12) using Lemma 6.11

We will construct a 2–MOELR(6, 24; 12) instead of the 5–MOELR(6, 24; 12) to make
the example easier to understand. Following are the 2–MOLS(12).

A1 =

0123456789ab
123450789ab6
23450189ab67
3450129ab678
450123ab6789
501234b6789a
6789ab012345
789ab6123450
89ab67234501
9ab678345012
ab6789450123
b6789a501234

A2 =

03619b28547a
1472a639058b
2583b74a1096
3094685b21a7
41a5790632b8
52b08a174369
69073582ba14
7a1840936b25
8b2951a47630
963a02b58741
a74b13609852
b8562471a903

By performing Lemma 6.11 we adjoin the last six rows to the right of the first six rows
to get a total of 6 rows and 24 columns. In Figure 6.6, we have 2–MOELR(6, 24; 12).

M1 =

0123456789ab 6789ab012345
123450789ab6 789ab6123450
23450189ab67 89ab67234501
3450129ab678 9ab678345012
450123ab6789 ab6789450123
501234b6789a b6789a501234

M2 =

03619b28547a 69073582ba14
1472a639058b 7a1840936b25
2583b74a1096 8b2951a47630
3094685b21a7 963a02b58741
41a5790632b8 a74b13609852
52b08a174369 b8562471a903

Figure 6.6: A 2–MOELR(6, 24; 12)

MacNeish [33] and Mann [34] showed that the maximum number of MOLS(p(i+j)/2)
is p(i+j)/2 − 1. Therefore, by applying Lemma 6.11, we have the following result.

Corollary 6.13. There exists a complete set of mutually orthogonal equitable rectangles,
or a (p(i+j)/2 − 1)–MOELR(pi, pj; pi+j) for all i, j ≥ 0 and p a prime.
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The next two results rely on the existence of orthogonal arrays. An orthogonal array,
OA(k, n), is equivalent to (k − 2)–MOLS(n) (see [19]).

Lemma 6.14. If there exists an OA(k, n1) and there exists a set of k–MOLS(n2), then
there exists a k-MOELR(n2, n

2
1n2; n1n2).

Proof: Let Mi,j represent the ith square of the set of k-MOLS(n2) on the jth set of n2

symbols, where j = 1, 2, · · · , n1 and i = 1, 2, . . . , k. Form the array X as follows. On
each entry of the OA(k, n1), Oi,s, replace Oi,s with Mi,Oi,s

for i = 1, 2, . . . , k and s =
1, 2, · · · , n2

1. Now each row of X corresponds to an n2 × n2
1n2 rectangle on n1n2 symbols.

For any two rows of X , i1, i2 = 1, . . . , k, we have every ordered pair (Mi1,j1Mi2,j2)
for j1, j2 ∈ {1, 2, . . . , n1} exactly once because X is an OA(k, n1). Furthermore, because
Mi1,j1 and Mi2,j2 are orthogonal, we see every ordered pair among their n2 symbols exactly
once. Therefore, we see every ordered pair on n1n2 symbols exactly once among the two
rows of X . Consider some row i of X . This row corresponds to one of the n2 × n2

1n2

rectangles. Each Mi,j has n2 rows and it was part of the set of k-MOLS(n2), so each
symbol occurs exactly once in each column. Furthermore, each Mi,j is repeated n1 times
for j = 1, 2, . . . , n1. Therefore, each symbol occurs exactly n1 times in each row. Thus,
the k rows of X form a k–MOELR(n2, n

2
1n2; n1n2). z

Example 6.15. A 3–MOELR(5, 20; 10) using Lemma 6.14

Because there exists 2–MOLS(10), we could use Theorem 6.11 to obtain a
2–MOELR(5, 20; 10). However, there exists an OA(3, 2) and there exists 3–MOLS(5).
Therefore, we can apply Theorem 6.14 to obtain a 3–MOELR(5, 20; 10). We construct
the 3–MOELR(5, 20; 10) as follows. Suppose that the 3 squares of the 3–MOLS(5) are
labeled M1,1, M2,1, M3,1 and are defined on symbol set S1 = {1, 2, 3, 4, 5}. Consider an-
other copy of this set of MOLS on the symbol set S2 = {1′, 2′, 3′, 4′, 5′}. So we have the
copies M1,2, M2,2, M3,2.

Let O be the given OA(3, 2).

O = OA(3, 2) =

 1 1 2 2
1 2 1 2
1 2 2 1


Following the proof of Theorem 6.14, we replace each entry of Oi,s with Mi,Oi,s

for i =
1, 2, 3 and s = 1, 2, 3, 4. So,

O = OA(3, 2) =

 1 1 2 2
1 2 1 2
1 2 2 1

⇒ X =

 M1,1 M1,1 M1,2 M1,2

M2,1 M2,2 M2,1 M2,2

M3,1 M3,2 M3,2 M3,1


Lemma 6.16. Suppose there exists a set of 3–MOLS(s). Write s = ay + r for some y ∈ Z
and 0 ≤ r < a. Then if n = 2s and r = a

4
or r = 3a

4
, then there exists a 3–MOELR(a, b; n)

for all a < s and s|b.
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Proof: We have that ab = n2 = 4s2. Therefore b = 4s2

a
= 4s·s

a
. Because s|b, we have

b
s

= 4s
a
∈ Z. Now, because 4s

a
∈ Z, it follows that

4(ay + r)

a
∈ Z ⇒ 4ay

a
+

4r

a
∈ Z

⇒ 4r

a
∈ Z

⇒ r · 4

a
=

r

a/4

Because 4|a, we have that a
4
|r. In our case, r = a

4
or r = 3a

4
.

Given a set of 3–MOLS(s), we do the following. Let S1 and S2 be a partition of a set
of n symbols, where |Sj| = s for j = 1, 2. Define Mi,j to be the ith Latin square of the set
of 3–MOLS(s) on symbol set Sj . Let R1,R2,R3 be a 3–MOELR(s, 4s; 2s) constructed
by applying Lemma 6.14 with k = 3, n1 = 2, and n2 = s.

Let X = [R1 R2 R3]
T be an array where the rows form this 3–MOELR(s, 4s; 2s).

Thus

X =
R1

R2

R3

=
M1,1 M1,1 M1,2 M1,2

M2,1 M2,2 M2,1 M2,2

M3,1 M3,2 M3,2 M3,1

Consider row Ri of X . For t = 1, 2, . . . , s, let rt,j denote the tth row of Mi,j .
For example, we write R1 as in Figure 6.7.

We have that Ri is an s × 4 array where each column represents a LS(s). Because
s = ay + r, it follows that we can rearrange each column of Ri into a new structure which
is an a× y array followed by an r × 1 array.

Let R′
i be this arrangement of columns of Ri. We give R′

1 in Figure 6.8.

R′
1 =

1
r1,1

· · ·

r(y−1)a+1,1 rya+1,1
...

...
...

...
... rs,1

ra,1 rya,1

2
r1,1

· · ·

r(y−1)a+1,1 rya+1,1
...

...
...

...
... rs,1

ra,1 rya,1

3
r1,2

· · ·

r(y−1)a+1,2 rya+1,2
...

...
...

...
... rs,2

ra,2 rya,2

4
r1,2

· · ·

r(y−1)a+1,2 rya+1,2
...

...
...

...
... rs,2

ra,2 rya,2

Figure 6.8: R1 of matrix X .
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LetR′
i,j be the a×y array from column j ofRi. Let zi,j be the r×1 array from column

j of Ri.
Let v be the 4s-tuple obtained by taking each entry from R′

i going down the columns.
Thus, from R′

i we get

v = (r1,1, r2,1, . . . , rs,1, r1,1, . . . , rs,1, r1,2, . . . , rs,2, r1,2, . . . , rs,2) .

Now write v as v =
(
v0, v1, . . . , v 4s

a
−1

)
where each vi has a entries.

Let R′′
i =

(
vT

0 , vT
1 , . . . , vT

4s
a
−1

)
. We now show that R′′

1,R′′
2,R′′

3 form a

3–MOELR(a, b; n). First note that R′′
i is an a × 4s

a
array. However, each entry represents

a row of an LS(s). Thus, R′′
i contains

(
4s
a

)
s = 4s2

a
= b columns. Because we apply the

same structuring to each Ri, it follows that orthogonality holds.

Case 1: r = a
4

We have that R′′
i has the following form.

R′′
i = R′

i,1

zi,1

R′
i,2 R′

i,3 R′
i,4

zi,2

zi,3

zi,4︸ ︷︷ ︸
y

︸ ︷︷ ︸
y

︸ ︷︷ ︸
y

︸ ︷︷ ︸
y

︸ ︷︷ ︸
1

Thus the number of columns in R′′
i is

s(4y + 1) = s

(
4

(
s− r

a

)
+ 1

)
= s

(
4s

a
− 4r

a
+ 1

)
=

4s2

a
= b

It is easy to see that equitability holds in each column because each zi,j lies in a different
column. Because a < s, it follows that each symbol appears exactly 0 or 1 time in each
column.

Consider any row ofR′′
i . In this row, each symbol appears 2y+1 or 2y times. We have:

2y = 2

(
s− r

a

)
=

2s

a
− 2r

a
=

2s

a
− 2

a
· a

4
=

2s

a
− 1

2
=

⌊
2s

a

⌋
=

⌊
b

n

⌋
and

2y + 1 = 2

(
s− r

a

)
+ 1 =

2s

a
− 2r

a
+ 1 =

2s

a
− 1

2
+ 1 =

2s

a
+

1

2
=

⌈
2s

a

⌉
=

⌈
b

n

⌉
,

thus equitability holds.

Case 2: r = 3a
4

In this case, R′′
i has the following form.
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R′′
i = R′

i,1 R′
i,2

zi,2

R′
i,3

zi,3

R′
i,4

zi,1

zi,4zi,3zi,2︸ ︷︷ ︸
y

︸ ︷︷ ︸
y

︸ ︷︷ ︸
1
︸ ︷︷ ︸

y
︸ ︷︷ ︸

1
︸ ︷︷ ︸

y
︸ ︷︷ ︸

1

Thus the number of columns in R′′
i is

s(4y + 3) = s

(
4

(
s− r

a

)
+ 3

)
= s

(
4s

a
− 4r

a
+ 3

)
=

4s2

a
= b.

Again, it is easy to see that equitability holds in each column. As in Case 1, each symbol
appears 2y or 2y + 1 times in each row. z

Lemma 6.17. Suppose there exists a set of 3–MOLS(s). Write s = ay + r for some y ∈ Z
and 0 ≤ r < a. Then if n = 3s and r = a

9
or r = 8a

9
, then there exists a 3–MOELR(a, b; n)

for all a < s and s|b.

Proof: We have that ab = n2 = 9s2. Therefore b = 9s2

a
= 9s·s

a
Because s|b, we have

b
s

= 9s
a
∈ Z. Now, because 9s

a
∈ Z, it follows that

9(ay + r)

a
∈ Z ⇒ 9ay

a
+

9r

a
∈ Z

⇒ 9r

a
∈ Z

⇒ r · 9

a
=

r

a/9

Because 9|a, we have that a
9
|r. In our case, r = a

9
or r = 8a

9
. Given a set of 3–MOLS(s),

we do the following. Let S1, S2 and S3 be a partition of n symbols, where |Si| = s for
i = 1, 2, 3.

Define Mi,j to be the ith Latin square of the set of 3–MOLS(s) on the symbol set
Sj . Let R1,R2,R3 be a 3–MOELR(s, 9s; 3s) constructed by applying Lemma 6.14 with
k = 3, n1 = 3, and n2 = s.

Let X = [R1 R2 R3]
T be an array where the rows form a 3–MOELR(s, 9s; 3s). Thus

X =
R1

R2

R3

=
M1,1 M1,1 M1,1 M1,2 M1,2 M1,2 M1,3 M1,3 M1,3

M2,1 M2,2 M2,3 M2,1 M2,2 M2,3 M2,1 M2,2 M2,3

M3,1 M3,2 M3,3 M3,2 M3,3 M3,1 M3,3 M3,1 M3,2

Consider row Ri of X . For t = 1, 2, . . . , s, let rt,j denote the tth row of Mi,j .
For example, we write R1 as in Figure 6.9.
We have that Ri is an s × 9 array where each column represents an LS(s). Because

s = ay + r, it follows that we can rearrange each column of Ri into a new structure which
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. . .
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−

1
)a

+
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,1
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)a

+
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r (
y
−

1
)a

+
1
,2

r (
y
−

1
)a

+
1
,2

r (
y
−

1
)a

+
1
,2

r (
y
−

1
)a

+
1
,3

r (
y
−

1
)a

+
1
,3

r (
y
−

1
)a

+
1
,3

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
r y

a
,1

r y
a
,1

r y
a
,1

r y
a
,2

r y
a
,2

r y
a
,2

r y
a
,3

r y
a
,3

r y
a
,3

r y
a
+

1
,1

r y
a
+

1
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r y
a
+

1
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r y
a
+

1
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r y
a
+

1
,2

r y
a
+

1
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r y
a
+

1
,3

r y
a
+

1
,3
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a
+

1
,3
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a
+

2
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r y
a
+
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r y
a
+
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r y
a
+

2
,2

r y
a
+

2
,2
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a
+

2
,2

r y
a
+

2
,3

r y
a
+
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+
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. . .
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. . .

. . .
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is an a× y array followed by an r× 1 array. Let R′
i be this arrangement of columns of Ri.

We give R′
1 in Figure 6.10

R′
1 =

1
r1,1

· · ·

r(y−1)a+1,1 rya+1,1
...

...
...

...
... rs,1

ra,1 rya,1

2
r1,1

· · ·

r(y−1)a+1,1 rya+1,1
...

...
...

...
... rs,1

ra,1 rya,1

3
r1,1

· · ·

r(y−1)a+1,1 rya+1,1
...

...
...

...
... rs,1

ra,1 rya,1

4
r1,2

· · ·

r(y−1)a+1,2 rya+1,2
...

...
...

...
... rs,2

ra,2 rya,2

5
r1,2

· · ·

r(y−1)a+1,2 rya+1,2
...

...
...

...
... rs,2

ra,2 rya,2

6
r1,2

· · ·

r(y−1)a+1,2 rya+1,2
...

...
...

...
... rs,2

ra,2 rya,2

7
r1,3

· · ·

r(y−1)a+1,3 rya+1,3
...

...
...

...
... rs,3

ra,3 rya,3

8
r1,3

· · ·

r(y−1)a+1,3 rya+1,3
...

...
...

...
... rs,3

ra,3 rya,3

9
r1,3

· · ·

r(y−1)a+1,3 rya+1,3
...

...
...

...
... rs,3

ra,3 rya,3

Figure 6.10: R1 of matrix X .

LetR′
i,j be the a×y array from column j ofRi. Let zi,j be the r×1 array from column j of

Ri. Let v be the 9s-tuple obtained by taking each entry from R′
i going down the columns.

Thus, from R′
1 we get

v = (r1,1, r2,1 . . . , rs,1, . . . , r1,3, . . . , rs,3) .

Now write v as v =
(
v0, v1, . . . , v 9s

a
−1

)
where each vi has a entries.

LetR′′
i =

(
vT

0 , . . . , vT
9s
a
−1

)
. Now we show thatR′′

1,R′′
2,R′′

3 form a 3–MOELR(a, b; n).

First note that R′′
1 is an a × 9s

a
array. However, each entry represents a row of an LS(s).

Thus, R′′
i contains

(
9s
a

)
s = 9s2

a
= b columns. Because we apply the same structuring to

each Ri, it follows that orthogonality holds.

Case 1: r = a
9

We have that R′′
i has the form in Figure 6.11. Thus the number of columns in R′′

i is

s(9y + 1) = s

(
9

(
s− r

a

)
+ 1

)
= s

(
9s

a
− 9r

a
+ 1

)
=

9s2

a
= b.

It is easy to see that equitability holds in each column because each zi,j lies in a different
column. Because a < s, it follows that each symbol appears exactly 0 or 1 time in each
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R
′′ i

=
R

′ i,
1

z i
,1

R
′ i,
2

R
′ i,
3

R
′ i,
4

R
′ i,
5

R
′ i,
6

R
′ i,
7

R
′ i,
8

R
′ i,
9

z i
,2

z i
,3

z i
,4

z i
,5

z i
,6

z i
,7

z i
,8

z i
,9

︸︷︷
︸

y
︸

︷︷
︸

y
︸

︷︷
︸

y
︸

︷︷
︸

y
︸

︷︷
︸

y
︸

︷︷
︸

y
︸

︷︷
︸

y
︸

︷︷
︸

y
︸

︷︷
︸

y
︸︷︷︸ 1
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column. Consider any row of R′′
i . In this row, each symbol appears 3y + 1 or 3y times. We

have:

3y = 3

(
s− r

a

)
=

3s

a
− 3r

a

=
3s

a
− 3

a
· a

9

=
3s

a
− 1

9

=

⌊
3s

a

⌋
=

⌊
b

n

⌋

and

3y + 1 = 3

(
s− r

a

)
+ 1

=
3s

a
− 3r

a
+ 1

=
3s

a
− 1

9
+ 1

=
3s

a
+

8

9

=

⌈
3s

a

⌉
=

⌈
b

n

⌉
,

thus equitability holds.

Case 2: r = 8a
9

In this case, R′′
i has the form in Figure 6.12. This is because the number of columns in

R′′
i is

s(9y + 8) = s

(
9

(
s− r

a

)
+ 8

)
= s

(
9s

a
− 9r

a
+ 8

)
=

9s2

a
= b.

Again, it is easy to see that equitability holds in each column. As in Case 1, each symbol
appears 3y or 3y + 1 times in each row.

z

Lemma 6.18. Suppose there exists a set of 3–MOLS(s). Write s = ay + r for some
y ∈ Z and 0 ≤ r < a. Then if n = 6s and r = a

36
or r = 35a

36
, then there exists a

3–MOELR(a, b; n) for all a < s and s|b.
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R
′′ i

=
R

′ i,
1

z i
,1

R
′ i,
2

z i
,2

R
′ i,
3

z i
,3

R
′ i,
4

z i
,4

R
′ i,
5

z i
,5

R
′ i,
6

z i
,6

R
′ i,
7

z i
,7

R
′ i,
8

z i
,8

R
′ i,
9

z i
,9

z i
,8

z i
,7

z i
,6

z i
,5

z i
,4

z i
,3

z i
,2

︸︷︷︸ y
︸︷

︷︸ y
︸︷︷︸ 1

︸︷︷
︸

y
︸︷︷︸ 1

︸︷︷
︸

y
︸︷︷︸ 1

︸︷︷
︸

y
︸︷︷︸ 1

︸︷︷
︸

y
︸︷︷︸ 1

︸︷︷
︸

y
︸︷︷︸ 1

︸︷︷
︸

y
︸︷︷︸ 1

︸︷︷
︸

y
︸︷︷︸ 1
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Proof: We have that ab = n2 = 36s2. Therefore b = 36s2

a
= 36s·s

a
Because s|b, we have

b
s

= 36s
a
∈ Z. Now, because 36s

a
∈ Z, it follows that

36(ay + r)

a
∈ Z ⇒ 36ay

a
+

36r

a
∈ Z

⇒ 36r

a
∈ Z

⇒ r · 36

a
=

r

a/36

Because 36|a, we have that a
36
|r. In our case, r = a

36
or r = 35a

36
. Given a set of

3–MOLS(s), we do the following. Let S1, S2 and S3 be a partition of n symbols, where
|Sj| = s for j = 1, 2, 3.

Define Mi,j to be the ith Latin square of the set of 3–MOLS(s) on the symbol set
Sj . Let R1,R2,R3 be a 3–MOELR(s, 36s; 6s) constructed by applying Lemma 6.14 with
k = 3, n1 = 6, and n2 = s.

Let X = [R1 R2 R3]
T be an array where the rows form a 3–MOELR(s, 36s; 6s).

Thus

X =
R1

R2

R3

=
M1,1 M1,1 M1,1 · · · M1,6 M1,6 M1,6 M1,6 M1,6 M1,6

M2,1 M2,2 M2,3 · · · M2,1 M2,2 M2,3 M2,4 M2,5 M2,6

M3,1 M3,2 M3,3 · · · M3,2 M3,3 M3,4 M3,5 M3,6 M3,1

Consider row Ri of X . For t = 1, 2, . . . , s, let rt,j denote the tth row of Mi,j .
For example, we write R1 as in Figure 6.13.
We have the Ri is an s × 4 array where each column represents an LS(s). Because

s = ay + r, it follows that we can rearrange each column of Ri into a new structure which
is an a× y array followed by an r× 1 array. Let R′

i be this arrangement of columns of Ri.
We give R′

1 in Figure 6.14

R′
1 =

1
r1,1

· · ·

r(y−1)a+1,1 rya+1,1
...

...
...

...
... rs,1

ra,1 rya,1

2
r1,1

· · ·

r(y−1)a+1,1 rya+1,1
...

...
...

...
... rs,1

ra,1 rya,1

3
r1,1

· · ·

r(y−1)a+1,1 rya+1,1
...

...
...

...
... rs,1

ra,1 rya,1...
34

r1,6

· · ·

r(y−1)a+1,6 rya+1,6
...

...
...

...
... rs,6

ra,6 rya,6

35
r1,6

· · ·

r(y−1)a+1,6 rya+1,6
...

...
...

...
... rs,6

ra,6 rya,6

36
r1,6

· · ·

r(y−1)a+1,6 rya+1,6
...

...
...

...
... rs,6

ra,6 rya,6

Figure 6.14: R1 of matrix X .
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R
1

=

y

                                        a

        
a

    

a

    
r

        

r 1
,1

r 1
,1

r 1
,1

··
·

r 1
,6

r 1
,6

r 1
,6

r 2
,1

r 2
,1

r 2
,1

··
·

r 2
,6

r 2
,6

r 2
,6

. . .
. . .

. . .
. . .

. . .
. . .

. . .
r a

,1
r a

,1
r a

,1
··
·

r a
,6

r a
,6

r a
,6

r a
+

1
,1

r a
+

1
,1

r a
+

1
,1

··
·

r a
+

1
,6

r a
+

1
,6

r a
+

1
,6

. . .
. . .

. . .
. . .

. . .
. . .

. . .
r 2

a
,1

r 2
a
,1

r 2
a
,1

··
·

r 2
a
,6

r 2
a
,6

r 2
a
,6

. . .
. . .

. . .
. . .

. . .
. . .

. . .
r (

y
−

1
)a

+
1
,1

r (
y
−

1
)a

+
1
,1

r (
y
−

1
)a

+
1
,1

··
·

r (
y
−

1
)a

+
1
,6

r (
y
−

1
)a

+
1
,6

r (
y
−

1
)a

+
1
,6

. . .
. . .

. . .
. . .

. . .
. . .

. . .
r y

a
,1

r y
a
,1

r y
a
,1

··
·

r y
a
,6

r y
a
,6

r y
a
,6

r y
a
+

1
,1

r y
a
+

1
,1

r y
a
+

1
,1

··
·

r y
a
+

1
,6

r y
a
+

1
,6

r y
a
+

1
,6

r y
a
+

2
,1

r y
a
+

2
,1

r y
a
+

2
,1

··
·

r y
a
+

2
,6

r y
a
+

2
,6

r y
a
+

2
,6

. . .
. . .

. . .
. . .

. . .
. . .

. . .
r s

,1
r s

,1
r s

,1
··
·

r s
,6

r s
,6

r s
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LetR′
i,j be the a×y array from column j ofRi. Let zi,j be the r×1 array from column j of

Ri. Let v be the 9s-tuple obtained by taking each entry from R′
i going down the columns.

Thus, from R′
1 we get

v = (r1,1, r2,1 . . . , rs,1, . . . , r1,6, . . . , rs,6) .

Now write v as v =
(
v0, v1, . . . , v 36s

a
−1

)
where each vi has a entries.

LetR′′
i =

(
vT

0 , vT
1 , . . . , vT

36s
a

−1

)
. We now show thatR′′

1,R′′
2,R′′

3 form a 3–MOELR(a, b; n).

First note that R′′
1 is an a × 36s

a
array. However, each entry represents a row of an LS(s).

Thus, R′′
i contains

(
36s
a

)
s = 36s2

a
= b columns. Because we apply the same structuring to

each Ri, it follows that orthogonality holds.

Case 1: r = a
36

We have that R′′
i has the form similar to that of Figure 6.11. Thus the number of

columns in R′′
i is

s(36y + 1) = s

(
36

(
s− r

a

)
+ 1

)
= s

(
36s

a
− 36r

a
+ 1

)
=

36s2

a
= b.

It is easy to see that equitability holds in each column because each zi,j lies in a different
column. Because a < s, it follows that each symbol appears exactly 0 or 1 time in each
column. Consider any row of R′′

i . In this row, each symbol appears 6y + 1 or 6y times. We
have:

6y = 6

(
s− r

a

)
=

6s

a
− 6r

a

=
6s

a
− 6

a
· a

36

=
6s

a
− 1

36

=

⌊
6s

a

⌋
=

⌊
b

n

⌋
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and

6y + 1 = 6

(
s− r

a

)
+ 1

=
6s

a
− 6r

a
+ 1

=
6s

a
− 1

36
+ 1

=
6s

a
+

35

36

=

⌈
6s

a

⌉
=

⌈
b

n

⌉
,

thus equitability holds.

Case 2: r = 35a
36

In this case, R′′
i has a form similar to that of Figure 6.12.

Thus the number of columns in R′′
i is

s(36y + 35) = s

(
36

(
s− r

a

)
+ 35

)
= s

(
36s

a
− 36r

a
+ 35

)
=

36s2

a
= b.

Again, it is easy to see that equitability holds in each column. As in Case 1, each symbol
appears 6y or 6y + 1 times in each row. z

Example 6.19. 2–MOELR(4, 81; 18) using Lemma 6.16

Let A = {a0, . . . , a8} and B = {b0, . . . , b8} where A and B are two unique symbol
sets. We also will only use 2–MOLS(9) to demonstrate the idea. Let ri,j be the ith row of
the 9 × 9 Latin square based on the jth symbol set. Figure 6.15 is the 2–MOLS(9) based
on the first symbol set.

M1,1=

a0a1a2a3a4a5a6a7a8

a1a2a0a4a5a3a7a8a6

a2a0a1a5a3a4a8a6a7

a3a4a5a6a7a8a0a1a2

a4a5a3a7a8a6a1a2a0

a5a3a4a8a6a7a2a0a1

a6a7a8a0a1a2a3a4a5

a7a8a6a1a2a0a4a5a3

a8a6a7a2a0a1a5a3a4

=

r1,1

r2,1

r3,1

r4,1

r5,1

r6,1

r7,1

r8,1

r9,1

M2,1=

a0a1a2a3a4a5a6a7a8

a2a0a1a5a3a4a8a6a7

a1a2a0a4a5a3a7a8a6

a6a7a8a0a1a2a3a4a5

a8a6a7a2a0a1a5a3a4

a7a8a6a1a2a0a4a5a3

a3a4a5a6a7a8a0a1a2

a5a3a4a8a6a7a2a0a1

a4a5a3a7a8a6a1a2a0

=

r1,1

r2,1

r3,1

r4,1

r5,1

r6,1

r7,1

r8,1

r9,1

Figure 6.15: Converted 9× 9 Latin square

110



Now we create a 2–MOELR(9, 36; 18) using Lemma 6.14 with 2–MOLS(9) and the
first two rows of an OA(3, 2). Here k = 2, n1 = 2, n2 = 9.

R1 = M1,1 M1,1 M1,2 M1,2 =

r1,1 r1,1 r1,2 r1,2

r2,1 r2,1 r2,2 r2,2

r3,1 r3,1 r3,2 r3,2

r4,1 r4,1 r4,2 r4,2

r5,1 r5,1 r5,2 r5,2

r6,1 r6,1 r6,2 r6,2

r7,1 r7,1 r7,2 r7,2

r8,1 r8,1 r8,2 r8,2

r9,1 r9,1 r9,2 r9,2

R2 = M2,1 M2,2 M2,1 M2,2 =

r1,1 r1,2 r1,1 r1,2

r2,1 r2,2 r2,1 r2,2

r3,1 r3,2 r3,1 r3,2

r4,1 r4,2 r4,1 r4,2

r5,1 r5,2 r5,1 r5,2

r6,1 r6,2 r6,1 r6,2

r7,1 r7,2 r7,1 r7,2

r8,1 r8,2 r8,1 r8,2

r9,1 r9,2 r9,1 r9,2

We now apply Lemma 6.16 with m = 2, s = 9, a = 4, and b = 81. It follows that from
R1, we get

~v = (r1,1, r2,1, r3,1, . . . , r9,1, r1,1, . . . , r9,1, r1,2, . . . , r9,2, r1,2, . . . , r9,2),

and

~vT
0 = ~v[1, 2, 3, 4]T = (r1,1, r2,1, r3,1, r4,1)

T

~vT
1 = ~v[5, 6, 7, 8]T = (r5,1, r6,1, r7,1, r8,1)

T

~vT
2 = ~v[9, 10, 11, 12]T = (r9,1, r1,1, r2,1, r3,1)

T

~vT
3 = ~v[13, 14, 15, 16]T = (r4,1, r5,1, r6,1, r7,1)

T

~vT
4 = ~v[17, 18, 19, 20]T = (r8,1, r9,1, r1,2, r2,2)

T

~vT
5 = ~v[21, 22, 23, 24]T = (r3,2, r4,2, r5,2, r6,2)

T

~vT
6 = ~v[25, 26, 27, 28]T = (r7,2, r8,2, r9,2, r1,2)

T

~vT
7 = ~v[29, 30, 31, 32]T = (r2,2, r3,2, r4,2, r5,2)

T

~vT
8 = ~v[33, 34, 35, 36]T = (r6,2, r7,2, r8,2, r9,2)

T

So we get R′′
1 = (~vT

0 , ~vT
1 , ~vT

2 , ~vT
3 , ~vT

4 ). Thus the 2–MOELR(4, 81; 18) is given below.
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R′′
1 = ~v0

T ~vT
1 · · · ~vT

8 =

r1,1 r5,1 r9,1 r4,1 r8,1 r3,2 r7,2 r2,2 r6,2

r2,1 r6,1 r1,1 r5,1 r9,1 r4,2 r8,2 r3,2 r7,2

r3,1 r7,1 r2,1 r6,1 r1,2 r5,2 r9,2 r4,2 r8,2

r4,1 r8,1 r3,1 r7,1 r2,2 r6,2 r1,2 r5,2 r9,2

and

R′′
2 = ~v0

T ~vT
1 · · · ~vT

8 =

r1,1 r5,2 r9,1 r4,2 r8,2 r3,1 r7,1 r2,2 r6,2

r2,1 r6,2 r1,2 r5,2 r9,2 r4,1 r8,1 r3,2 r7,2

r3,1 r7,2 r2,2 r6,2 r1,1 r5,1 r9,1 r4,2 r8,2

r4,1 r8,2 r3,2 r7,2 r2,1 r6,1 r1,2 r5,2 r9,2

Lemma 6.20. If t > 2, and there exists y1–MOLS(t) and a y2–MOELR(a
t
, b

t
; n

t
), then

there exists a
(min{y1, y2})–MOELR(a, b; n).

Proof: Let m = min{y1, y2} and let A1, A2, . . . , Am be m–MOLS(t). For j = 1, 2, . . . , t,
define Sj to be a set of n

t
symbols, so that

⋃
j Sj is a partition of a set of n distinct symbols.

Define Bi,j to be the ith rectangle of an m–MOELR(a
t
, b

t
; n

t
) on symbol set Sj . Now replace

each entry j ∈ Ai with Bi,j . This forms a set of m (a × b)–rectangles, M1, M2, . . . ,Mm,
which we now prove is an m–MOELR(a, b; n).

For any pair of rectangles Mr and Ms, we had that Ar and As were orthogonal, so every
pair of symbol sets (Sj1 , Sj2) has occurred exactly once among the t2 pairs, 1 ≤ j1, j2 ≤ t.
Furthermore, Br,j1 and Bs,j2 are also orthogonal, so every ordered pair of symbols among
the
(

n
t

)2 pairs has occurred exactly once. Thus, Mr and Ms are orthogonal.
Now consider any rectangle Ms. In each row, every symbol set Sj for j = 1, 2, . . . , t

occurs exactly once because As is a Latin square. Also, every entry in symbol set Sj occurs
an equitable number of times in Bs,j , so each row of Ms is equitable. The same argument
holds for each column of Ms. So M1, M2, . . . ,Mm forms an m–MOELR(a, b; n). z

Example 6.21. 2–MOELR(12, 27; 18) using Lemma 6.20

Note that 3|12 and 3|27 and there exists 3–MOELR(4, 9; 6). Let Bi,j be the ith rectan-
gle based on the jth symbol set where i = 1, 2, 3 and j = 1, 2, 3. For example,

B1,1 =

1 2 3 4 5 6 3 5 2
3 5 6 2 1 2 4 6 4
4 6 1 5 3 1 2 4 3
2 1 4 1 6 5 6 3 5

B2,1 =

1 2 3 4 5 6 4 2 1
2 6 1 5 3 4 1 5 2
5 3 4 1 6 2 6 3 5
3 5 6 6 4 3 2 1 4
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B3,1 =

1 2 3 4 5 6 2 6 3
4 3 4 1 2 5 6 2 5
3 5 6 2 1 3 4 1 6
6 4 2 5 3 4 1 5 1

.

Now using the structure of 2–MOLS(3) we get the following two matrices.

M1 =
B1,1 B1,2 B1,3

B1,2 B1,3 B1,1

B1,3 B1,1 B1,2

M2 =
B2,1 B2,2 B2,3

B2,3 B2,1 B2,2

B2,2 B2,3 B2,1

Thus, since orthogonality and equitability hold for Bi,j , and there exists 2–MOLS(3),
we have a 2–MOELR(12, 27; 18).

Lemma 6.22. Suppose a ≤ b, n = hk, and ab = n2. Let

x = min{NMOLS(h), NMOLS(k)}.

If h|a, then there exists an x–MOELR(a, b; n).

Proof: Let A1, A2, . . . , Ax be x–MOLS(k). For j = 1, 2, . . . , k, define Sj to be a set of h

symbols, so that
k⋃

j=1

Sj is a partition of a set of n distinct symbols. Define Bi,j to be the

ith Latin square of a set of x–MOLS(h) on symbol set Sj . Now replace each entry j ∈ Ai

with Bi,j . This forms a set of x–MOLS(n).

Ai =
1 2 · · · k
...

...
...

...
→

Bi,1 Bi,2 · · · Bi,k

...
...

...
...

Permute the columns of each of these Latin squares according to the following permu-
tation. For m = 0, 1, . . . , k − 1, let mh + u 7→ (u− 1)k + (m + 1) for u = 1, . . . , h. This
permutation creates h× k sub-squares which has each of the first columns of the Bi,j sub-
squares, followed by each second column and so on. Because there were k sub-squares in
each row, we can now consider each Latin square being composed of h×k sub-squares Hj ,
j = 1, . . . , h, in which each column contains entries from a different symbol set. Because
there are k symbol sets, every row of the Hj contains exactly one entry from each symbol
set as in Figure 6.16.

1st columns 2nd columns · · · cth columns
H1 H2 · · · Hh

Hh+1 Hh+2 · · · H2h
...

... . . . ...
H(k−1)h+1 H(k−1)h+2 · · · Hkh

Figure 6.16: Representation of the first mutually orthogonal Latin square of
the n× n matrix.
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This matrix has n = hk sub-squares. Because h|a, we can write a = hr for some
positive integer r. Arrange the sub-squares into an r × c matrix Li as follows.

Li =

H1 H2 · · · Hc

Hc+1 Hc+2 · · · H2c

...
... . . . ...

H(r−1)c+1 H(r−1)c+2 · · · Hrc

for i = 1, 2, . . . , x.

Notice that Li has c = hk
r

sub-squares in each row, and it has r sub-squares in each
column. Therefore, Li has hr = a rows and ck columns. Because n2 = h2k2 = ab, it
follows that

b =
h2k2

a
=

khk

r
= k

(
hk

r

)
= kc.

Thus Li has b columns.
We now show that {Li : i = 1, 2, . . . , x} forms a x–MOELR(a, b; n). Because we

construct Li in the same way for each Li orthogonality holds. Because every row of Hj

contains exactly 1 entry from each of the k symbol sets, it follows that every symbol occurs
exactly

⌊
c
h

⌋
or
⌈

c
h

⌉
times in every row of Li. Because ck = b, it follows that c

h
= b

hk
= b

n
.

Therefore each symbol occurs
⌊

b
n

⌋
times or

⌈
b
n

⌉
times in each row of Li.

Now suppose there is a column in Li that is not equitable. Then there would have to
be a repeated entry in this column. This would mean we had some column in Ai with a
repeated entry. But Ai was an LS(k), so that could not have happened. Therefore, each
column is equitable. This shows that we have x–MOELR(a, b; n).

z

Example 6.23. A 2–MOELR(16, 25; 20) using Lemma 6.22

Let h = 4 and k = 5. In Figure 6.17, we give 2–MOLS(20) by using 2–MOLS(4) and
2–MOLS(5).

Permute the columns according to the given permutation. Note that the first 5 columns
were the 1st columns of each 4× 4 subsquare; the next 5 columns were the 2nd column of
each 4× 4 subsquare, and so on. The permuted matrices are given in Figure 6.18

The 2–MOELR(16, 25; 20) is given in Figure 6.19.

6.6 Main Theorem
Combining the results given in (Chowla, Erdös, and Straus [15]) and (Colbourn, Dinitz,
[18]), we have that NMOLS(n) ≥ 3 for n ≥ 11.

Lemma 6.24. If n2 = ab and gcd(n, 6) = 1, then NMOELR(a, b; n) ≥ 3.

Proof: Without loss, assume a ≤ b. If n is a prime power, then apply Corollary 6.13.
Otherwise n is a product of prime powers not involving 2 or 3. Let h = p be a prime such
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19
3 4 1 2 7 8 5 6 11 12 9 10 15 16 13 14 19 20 17 18
4 3 2 1 8 7 6 5 12 11 10 9 16 15 14 13 20 19 18 17
17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
18 17 20 19 2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15
19 20 17 18 3 4 1 2 7 8 5 6 11 12 9 10 15 16 13 14
20 19 18 17 4 3 2 1 8 7 6 5 12 11 10 9 16 15 14 13
13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12
14 13 16 15 18 17 20 19 2 1 4 3 6 5 8 7 10 9 12 11
15 16 13 14 19 20 17 18 3 4 1 2 7 8 5 6 11 12 9 10
16 15 14 13 20 19 18 17 4 3 2 1 8 7 6 5 12 11 10 9
9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8
10 9 12 11 14 13 16 15 18 17 20 19 2 1 4 3 6 5 8 7
11 12 9 10 15 16 13 14 19 20 17 18 3 4 1 2 7 8 5 6
12 11 10 9 16 15 14 13 20 19 18 17 4 3 2 1 8 7 6 5
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4
6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 2 1 4 3
7 8 5 6 11 12 9 10 15 16 13 14 19 20 17 18 3 4 1 2
8 7 6 5 12 11 10 9 16 15 14 13 20 19 18 17 4 3 2 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
3 4 1 2 7 8 5 6 11 12 9 10 15 16 13 14 19 20 17 18
4 3 2 1 8 7 6 5 12 11 10 9 16 15 14 13 20 19 18 17
2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19
9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8
11 12 9 10 15 16 13 14 19 20 17 18 3 4 1 2 7 8 5 6
12 11 10 9 16 15 14 13 20 19 18 17 4 3 2 1 8 7 6 5
10 9 12 11 14 13 16 15 18 17 20 19 2 1 4 3 6 5 8 7
17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
19 20 17 18 3 4 1 2 7 8 5 6 11 12 9 10 15 16 13 14
20 19 18 17 4 3 2 1 8 7 6 5 12 11 10 9 16 15 14 13
18 17 20 19 2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4
7 8 5 6 11 12 9 10 15 16 13 14 19 20 17 18 3 4 1 2
8 7 6 5 12 11 10 9 16 15 14 13 20 19 18 17 4 3 2 1
6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 2 1 4 3
13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12
15 16 13 14 19 20 17 18 3 4 1 2 7 8 5 6 11 12 9 10
16 15 14 13 20 19 18 17 4 3 2 1 8 7 6 5 12 11 10 9
14 13 16 15 18 17 20 19 2 1 4 3 6 5 8 7 10 9 12 11

Figure 6.17: A 2–MOLS(20)

that p|a and k = n
p
. Because h > 3 is prime, it follows that NMOLS(h) > 4. We also have

that k ≥ 35 or k is prime, so NMOLS(k) ≥ 3. Now apply Lemma 6.22.
z

Lemma 6.25. If n2 = ab and gcd(n, 3) = 1, then NMOELR(a, b; n) ≥ 3, except possibly
when (a, b; n) ∈ {(2, 50; 10), (49, 100; 70)}.

Proof: If n is odd then we apply Lemma 6.24. Otherwise let n be even and without loss
assume that a ≤ b.

If a has an odd prime divisor h, then h > 3 and NMOLS(h) ≥ 3. Also, h is a divisor
of n and k = n

h
is such that NMOLS(k) ≥ 3 unless k = 2 or 10. Thus if k 6= 2, 10 we

may apply Lemma 6.22 to obtain a 3–MOELR(n). If k = 2, then n = 2p for an odd
prime p > 3. Then there are 2 possibilities for a; a = p or 2p. In each case a|n and we
can apply Lemma 6.11. If k = 10, then n = 10p for an odd prime p > 3. Then there are
5 possibilities for a. If a = p, 2p, 5p, or 2p, then a|n and we can apply Lemma 6.11. If
a = p2, then b = 100 and thus because a < b, p = 5 or p = 7. When p = 5 we may use
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1 5 9 13 17 2 6 10 14 18 3 7 11 15 19 4 8 12 16 20
2 6 10 14 18 1 5 9 13 17 4 8 12 16 20 3 7 11 15 19
3 7 11 15 19 4 8 12 16 20 1 5 9 13 17 2 6 10 14 18
4 8 12 16 20 3 7 11 15 19 2 6 10 14 18 1 5 9 13 17
17 1 5 9 13 18 2 6 10 14 19 3 7 11 15 20 4 8 12 16
18 2 6 10 14 17 1 5 9 13 20 4 8 12 16 19 3 7 11 15
19 3 7 11 15 20 4 8 12 16 17 1 5 9 13 18 2 6 10 14
20 4 8 12 16 19 3 7 11 15 18 2 6 10 14 17 1 5 9 13
13 17 1 5 9 14 18 2 6 10 15 19 3 7 11 16 20 4 8 12
14 18 2 6 10 13 17 1 5 9 16 20 4 8 12 15 19 3 7 11
15 19 3 7 11 16 20 4 8 12 13 17 1 5 9 14 18 2 6 10
16 20 4 8 12 15 19 3 7 11 14 18 2 6 10 13 17 1 5 9
9 13 17 1 5 10 14 18 2 6 11 15 19 3 7 12 16 20 4 8
10 14 18 2 6 9 13 17 1 5 12 16 20 4 8 11 15 19 3 7
11 15 19 3 7 12 16 20 4 8 9 13 17 1 5 10 14 18 2 6
12 16 20 4 8 11 15 19 3 7 10 14 18 2 6 9 13 17 1 5
5 9 13 17 1 6 10 14 18 2 7 11 15 19 3 8 12 16 20 4
6 10 14 18 2 5 9 13 17 1 8 12 16 20 4 7 11 15 19 3
7 11 15 19 3 8 12 16 20 4 5 9 13 17 1 6 10 14 18 2
8 12 16 20 4 7 11 15 19 3 6 10 14 18 2 5 9 13 17 1

1 5 9 13 17 2 6 10 14 18 3 7 11 15 19 4 8 12 16 20
3 7 11 15 19 4 8 12 16 20 1 5 9 13 17 2 6 10 14 18
4 8 12 16 20 3 7 11 15 19 2 6 10 14 18 1 5 9 13 17
2 6 10 14 18 1 5 9 13 17 4 8 12 16 20 3 7 11 15 19
9 13 17 1 5 10 14 18 2 6 11 15 19 3 7 12 16 20 4 8
11 15 19 3 7 12 16 20 4 8 9 13 17 1 5 10 14 18 2 6
12 16 20 4 8 11 15 19 3 7 10 14 18 2 6 9 13 17 1 5
10 14 18 2 6 9 13 17 1 5 12 16 20 4 8 11 15 19 3 7
17 1 5 9 13 18 2 6 10 14 19 3 7 11 15 20 4 8 12 16
19 3 7 11 15 20 4 8 12 16 17 1 5 9 13 18 2 6 10 14
20 4 8 12 16 19 3 7 11 15 18 2 6 10 14 17 1 5 9 13
18 2 6 10 14 17 1 5 9 13 20 4 8 12 16 19 3 7 11 15
5 9 13 17 1 6 10 14 18 2 7 11 15 19 3 8 12 16 20 4
7 11 15 19 3 8 12 16 20 4 5 9 13 17 1 6 10 14 18 2
8 12 16 20 4 7 11 15 19 3 6 10 14 18 2 5 9 13 17 1
6 10 14 18 2 5 9 13 17 1 8 12 16 20 4 7 11 15 19 3
13 17 1 5 9 14 18 2 6 10 15 19 3 7 11 16 20 4 8 12
15 19 3 7 11 16 20 4 8 12 13 17 1 5 9 14 18 2 6 10
16 20 4 8 12 15 19 3 7 11 14 18 2 6 10 13 17 1 5 9
14 18 2 6 10 13 17 1 5 9 16 20 4 8 12 15 19 3 7 11

Figure 6.18: Permuted matrices of a 2–MOLS(20).

Lemma 6.11, however when p = 7 we have the exception (a, b; n) = (49, 100; 70) to the
theorem.

Now suppose a = 2` for some ` ≥ 1.
If ` = 1, then a = 2 and divides n so we may apply Lemma 6.11, unless n = 10 where

it is not known if 3–MOLS of order 10 exist. This is the exception (a, b; n) = (2, 50; 10)
to the theorem.

If ` > 2, then we are guaranteed that 4|n. However, if ` = 2, then it is possible that
4 - n. In this case, n = 2s where s is a product of prime powers not involving 2 or 3.
There exists an OA(3, 2) and 3–MOLS(s). So let m = 2 and apply Lemma 6.16 to obtain
a 3–MOELR(a, b; n) for all s > 8. If s = 5, then n = 10 and a 3–MOELR(4, 25; 10) was
constructed in Example 6.7. If s = 7, then n = 14 and there exists a 3–MOELR(4, 49; 14)
by Example 6.8. If s = 8, then n = 16 and is a prime power, so apply Corollary 6.11.

z

Lemma 6.26. If n2 = ab and n is odd, then NMOELR(a, b; n) ≥ 3, except possibly when
(a, b; n) ∈ {(9, 25; 15), (9, 49; 21)} or a = 9 and n = 3s where s ≡ 5, 7, 11, or 13
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M1=

1 5 9 13 17 2 6 10 14 18 3 7 11 15 19 4 8 12 16 20 17 1 5 9 13
2 6 10 14 18 1 5 9 13 17 4 8 12 16 20 3 7 11 15 19 18 2 6 10 14
3 7 11 15 19 4 8 12 16 20 1 5 9 13 17 2 6 10 14 18 19 3 7 11 15
4 8 12 16 20 3 7 11 15 19 2 6 10 14 18 1 5 9 13 17 20 4 8 12 16
18 2 6 10 14 19 3 7 11 15 20 4 8 12 16 13 17 1 5 9 14 18 2 6 10
17 1 5 9 13 20 4 8 12 16 19 3 7 11 15 14 18 2 6 10 13 17 1 5 9
20 4 8 12 16 17 1 5 9 13 18 2 6 10 14 15 19 3 7 11 16 20 4 8 12
19 3 7 11 15 18 2 6 10 14 17 1 5 9 13 16 20 4 8 12 15 19 3 7 11
15 19 3 7 11 16 20 4 8 12 9 13 17 1 5 10 14 18 2 6 11 15 19 3 7
16 20 4 8 12 15 19 3 7 11 10 14 18 2 6 9 13 17 1 5 12 16 20 4 8
13 17 1 5 9 14 18 2 6 10 11 15 19 3 7 12 16 20 4 8 9 13 17 1 5
14 18 2 6 10 13 17 1 5 9 12 16 20 4 8 11 15 19 3 7 10 14 18 2 6
12 16 20 4 8 5 9 13 17 1 6 10 14 18 2 7 11 15 19 3 8 12 16 20 4
11 15 19 3 7 6 10 14 18 2 5 9 13 17 1 8 12 16 20 4 7 11 15 19 3
10 14 18 2 6 7 11 15 19 3 8 12 16 20 4 5 9 13 17 1 6 10 14 18 2
9 13 17 1 5 8 12 16 20 4 7 11 15 19 3 6 10 14 18 2 5 9 13 17 1

M2 =

1 5 9 13 17 3 7 11 15 19 4 8 12 16 20 2 6 10 14 18 9 13 17 1 5
2 6 10 14 18 4 8 12 16 20 3 7 11 15 19 1 5 9 13 17 10 14 18 2 6
3 7 11 15 19 1 5 9 13 17 2 6 10 14 18 4 8 12 16 20 11 15 19 3 7
4 8 12 16 20 2 6 10 14 18 1 5 9 13 17 3 7 11 15 19 12 16 20 4 8
11 15 19 3 7 12 16 20 4 8 10 14 18 2 6 17 1 5 9 13 19 3 7 11 15
12 16 20 4 8 11 15 19 3 7 9 13 17 1 5 18 2 6 10 14 20 4 8 12 16
9 13 17 1 5 10 14 18 2 6 12 16 20 4 8 19 3 7 11 15 17 1 5 9 13
10 14 18 2 6 9 13 17 1 5 11 15 19 3 7 20 4 8 12 16 18 2 6 10 14
20 4 8 12 16 18 2 6 10 14 5 9 13 17 1 7 11 15 19 3 8 12 16 20 4
19 3 7 11 15 17 1 5 9 13 6 10 14 18 2 8 12 16 20 4 7 11 15 19 3
18 2 6 10 14 20 4 8 12 16 7 11 15 19 3 5 9 13 17 1 6 10 14 18 2
17 1 5 9 13 19 3 7 11 15 8 12 16 20 4 6 10 14 18 2 5 9 13 17 1
6 10 14 18 2 13 17 1 5 9 15 19 3 7 11 16 20 4 8 12 14 18 2 6 10
5 9 13 17 1 14 18 2 6 10 16 20 4 8 12 15 19 3 7 11 13 17 1 5 9
8 12 16 20 4 15 19 3 7 11 13 17 1 5 9 14 18 2 6 10 16 20 4 8 12
7 11 15 19 3 16 20 4 8 12 14 18 2 6 10 13 17 1 5 9 15 19 3 7 11

Figure 6.19: A 2–MOELR(16, 25; 20)

(mod 18), s > 9.

Proof: If gcd(n, 3) = 1, then apply Lemma 6.25. Otherwise 3|n and without loss assume
that a ≤ b. If a has a prime divisor h > 3, then h is also a divisor of n so write n = hk.
Then NMOLS(h) ≥ 3 and NMOLS(k) ≥ 3 unless k = 3. Thus, if k 6= 3, we may apply
Lemma 6.22 to obtain a 3–MOELR(a, b; n). If k = 3, then n = 3p for a prime p > 3.
There are 2 possibilities for a; a = p or 3p. In each case a|n, so we can apply Lemma 6.11.

Now suppose a = 3` for some ` ≥ 1.
If ` = 1, then a = 3 and divides n, so we may apply Lemma 6.11.
If ` ≥ 2 and 9|n, we set h = 9 and k = n

9
. Then min{NMOLS(h), NMOLS(k)} ≥ 3,

unless k = 3. So when k 6= 3 we may apply Lemma 6.22 to obtain NMOELR(a, b; n) ≥ 3.
If k = 3, then n = 27 and a ∈ {9, 27}. In each case a|n, so apply Lemma 6.11.

If ` > 2, then we are guaranteed that 9|n. However, if ` = 2, then it is possible that
9 - n. In this case, n = 3s where s is a product of prime powers not involving 2 or 3.
There exists an OA(3, 3) and 3–MOLS(s). Let m = 3 and apply Lemma 6.17 to obtain a
3–MOELR(a, b; n) for all s > 9 and s ≡ 1, 8 (mod 9). If s = 5 or 7, then n = 15 or 21
and we have open cases (a, b; n) ∈ {(9, 25; 15), (9, 49; 21)}. If s > 9 and s ≡ 2, 4, 5, or
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7 (mod 9), then because s ≡ 1 or 5 (mod 6), we have open cases when s ≡ 5, 7, 11, 13
(mod 18).

z

Lemma 6.27. If n2 = ab, then NMOELR(a, b; n) ≥ 3 except possibly when (a, b; n) ∈
{(2, 18; 6), (2, 50; 10), (8, 18; 12), (9, 64; 24), (9, 100; 30), (9, 256; 48), (12, 27; 18),
(18, 32; 24), (18, 50; 30), (18, 98; 42), (18, 128; 48), (27, 300; 90), (36, 49; 42), (36, 121; 66),
(36, 169; 78), (36, 289; 102), (36, 361; 114), (36, 529; 138), (36, 625; 150), (36, 841; 174),
(36, 961; 186), (36, 1225; 210), (81, 100; 90)} or

a = 9 and n = 3s, where s ≡ 2, 4, 14, 16 (mod 18), s > 9;
a = 18 and n = 3s, where s ≡ 4, 8, 10, 14 (mod 18), s > 18,
a = 36 and n = 6s, where s ≡ 5, 7, 11, 13, 17, 19, 23, 25, 29, 31 (mod 36), s > 36.

Proof: If gcd(n, 6) = 1, then apply Lemma 6.24. If n is odd, then apply Lemma 6.26.
If n is even and gcd(n, 3) = 1, then apply Lemma 6.25. Otherwise 6|n, and without loss
assume a ≤ b.

If a has a prime divisor h > 3, then h is also a divisor of n, so write n = hk. Then
NMOLS(h) ≥ 3 and NMOLS(k) ≥ 3 unless k = 2, 3, 6, 10. Because 6|n, we cannot
have k = 2, 3, or 10. Thus, if k 6= 6, then we may apply Lemma 6.22 to obtain a
3–MOELR(a, b; n) ≥ 3.

If k = 6, then n = 6p for a prime p > 3. There are 5 possibilities for a. If a = p, 2p, 3p,
or 6p, then a|n so apply Lemma 6.11. If a = p2, then b = 36, and thus because a < b,
p = 5, and we have the open case (a, b; n) = (25, 36; 30).

Suppose a = 2` for some ` ≥ 1.
If ` = 1, then a = 2 and divides n, so we may apply Lemma 6.11 unless n = 6 where

3–MOLS(6) does not exist. This is the possible exception (a, b; n) = (2, 18; 6) to the
theorem.

If ` ≥ 2 and 4|n, then set h = 4 and k = n
4
. Hence min{NMOLS(h), NMOLS(k)} ≥ 3

unless k = 2, 3, 6, or 10. Thus when k 6= 2, 3, 6, or 10 we can apply Lemma 6.22 to obtain
NMOELR(a, b; n) ≥ 3. If k = 2, then n = 8 and a = 4, so apply Lemma 6.11. If k = 3,
then n = 12 and a = 4 or 8. If a = 4, then apply Lemma 6.11. Otherwise, a = 8 and
we have the open case (a, b; n) = (8, 18; 12). If k = 6, then n = 24 and a ∈ {4, 8, 16}.
If a = 4 or 8 then it divides n so apply Lemma 6.11. If a = 16, then b = 36. Here we
can apply Lemma 6.20 with t = 4 because there exists a 3–MOELR(4, 9; 6). If k = 10,
then n = 40 and a ∈ {4, 8, 16, 32}. If a = 4 or 8, then it divides n so apply Lemma 6.11.
If a = 16 or 32, then 8|a so we may apply Lemma 6.22 with h = 8 and k = 5 to obtain
NMOELR(a, b; n) ≥ 3.

If ` > 2, then we are guaranteed that 4|n. However if ` = 2, then it is possible that 4 - n.
In this case, n = 2s where s is an odd product of prime powers involving 3. There exists
an OA(3, 2) and 3–MOLS(s) if s 6= 3. So if s 6= 3, we can apply Lemma 6.16 with m = 2
to obtain a 3–MOELR(a, b; n) for all s > 4. If s = 3, then n = 6 and 3–MOELR(4, 9; 6)
is given in Example 6.5.

Suppose a = 3` for some ` ≥ 1.
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If ` = 1, then a = 3 and divides n, so apply Lemma 6.11 unless n = 6 where
3–MOLS(6) does not exist. In this case, a 3–MOELR(3, 12; 6) is given in Example 6.6.

If ` ≥ 2 and 9|n, then set h = 9 and k = n
9
. Then min{NMOLS(h), NMOLS(k)} ≥ 3

unless k = 2, 3, 6, or 10. Thus when k 6= 2, 3, 6, 10, we may apply Lemma 6.22 to obtain
NMOELR(a, b; n) ≥ 3. If k = 2, then n = 18 and a = 9 in which case a|n, so apply
Lemma 6.11. If k = 3, then n = 27 and a = 9 or 27, so a|n and we may apply Lemma 6.11.
If k = 6, then n = 54 and a = 9 or 27, so a|n and we may again apply Lemma 6.11. If
k = 10, then n = 90 and a = 9, 27, or 81. If a = 9, then a|n so apply Lemma 6.11.
Otherwise, we have two open cases: (a, b; n) ∈ {(27, 300; 90), (81, 100; 90)}.

If ` > 2, then we are guaranteed that 9|n. However, if ` = 2, then it is possible that
9 - n. In this case, n = 3s where s is a product of even prime powers not involving
3. There exists an OA(3, 3) and 3–MOLS(s) if s 6= 2 or 10 and s ≡ 1, 8 (mod 9).
So if s 6= 2 or 10 and s ≡ 1, 8 (mod 9), we may apply Lemma 6.17 with m = 3 to
obtain a 3–MOELR(a, b; n) for all s > 9. If (s, n) = (4, 12), then we get the open case
(a, b; n) = (9, 16; 12). If (s, n) = (2, 6) then a = 9 and b = 4 so we need not consider
this case. If (s, n) = (6, 18), then (a, b; n) = (9, 36; 18). We may apply Lemma 6.20 with
t = 3 because a 3–MOELR(3, 12; 6) was given in Example 6.6. If (s, n) = (8, 24) we
get the open case (a, b; n) = (9, 64; 24), and if (s, n) = (10, 30), then we have the open
case (a, b; n) = (9, 100; 30). If s > 9 and s ≡ 2, 4, 5, 7 (mod 9), then because s ≡ 2 or 4
(mod 6), we also have open cases when s ≡ 2, 4, 14, 16 (mod 18).

Suppose a = 2`13`2 for some `1, `2 ≥ 1.
If `1 = `2 = 1, then a = 6 and divides n so we may apply Lemma 6.11.
If `1 = 1 and `2 ≥ 2 and 18|n, we set h = 18 and k = n

18
. Then

min{NMOLS(h), NMOLS(k)} ≥ 3

unless k = 2, 3, 6, or 10. Thus if k 6= 2, 3, 6, or 10 we may apply Lemma 6.22 to obtain
a 3–MOELR(a, b; n). If k = 2, then n = 36 and a = 18. If k = 3, then n = 54
and a ∈ {18, 54}. If k = 6, then n = 108 and a ∈ {18, 54}. In each of these cases
a|n, so apply Lemma 6.11. If k = 10, then n = 180 and a ∈ {18, 54, 162}. If a =
18, then a|n, so apply Lemma 6.11. If a = 54 or 162 let h = 9 and k = 20. Then
min(NMOLS(h), NMOLS(k)} ≥ 3, so apply Lemma 6.22.

If `1 = 1 and `2 > 2, then we are guaranteed that 18|n. However, if `1 = 1 and
`2 = 2, then it is possible that 18 - n. In this case n = 3s where s is an even product
of prime powers not involving the prime 3. There exists an OA(3, 3) and 3–MOLS(s) if
s 6= 2 or 10 and s ≡ 2, 16 (mod 18). Let m = 3 and apply Lemma 6.17 to obtain a
3–MOELR(a, b; n) for all s > 18. If (s, n) ∈ {(2, 6), (4, 12)}, then a > b, so we need
not consider these cases. If (s, n) ∈ {(8, 24), (10, 30), (14, 42), (16, 48)}, then we have the
open cases (a, b; n) ∈ {(18, 32; 24), (18, 50; 30), (18, 98; 42), (18, 128; 48)}. If s > 18 and
s ≡ 4, 8, 10, 14 (mod 18), then we have open cases.

If `2 = 1 and `1 ≥ 2 and 12|n, we set h = 12 and k = n
12

. Then

min{NMOLS(h), NMOLS(k)} ≥ 3
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unless k = 2, 3, 6, or 10. Thus if k 6= 2, 3, 6, or 10, we may apply Lemma 6.22 to obtain a
3–MOELR(a, b; n). If k = 2, then n = 24 and a = 12. Here a|n, so apply Lemma 6.11.
If k = 3, then n = 36 and a ∈ {12, 24}. If a = 12, then it divides n, so apply Lemma 6.11.
If a = 24, then let h = 4 and k = 9 and apply Lemma 6.22. If k = 6, then n = 72 and
a ∈ {12, 24, 48}. If a = 12 or 24, then it divides n, so apply Lemma 6.11. If a = 48,
then let h = 4 and k = 18 and apply Lemma 6.22. If k = 10, then n = 120 and
a ∈ {12, 24, 48, 96}. If a = 12 or 24, then it divides n so apply Lemma 6.11. If a = 48 or
96, then let h = 4 and k = 30 and apply Lemma 6.22.

If `2 = 1 and `1 > 2, then we are guaranteed that 12|n. However, if `2 = 1 and
`1 = 2, then it is possible that 12 - n. In this case, n = 2s where s is an odd product of
prime powers involving the prime 3. There exists an OA(3, 2) and a set of 3–MOLS(s) if
s 6= 3. Let m = 2 and apply Lemma 6.16 to obtain a 3–MOELR(a, b; n) for all s > 12.
If (s, n) = (9, 18), then we get the open case (a, b; n) = (12, 27; 18). If (s, n) = 36, then
a > b and we need not consider it.

If `1 ≥ 2 and `2 ≥ 2 and 36|n, then set h = 36 and k = n
36

. Then

min{NMOLS(h), NMOLS(k)} ≥ 3

unless k = 2, 3, 6, or 10. Thus, when k 6= 2, 3, 6, or 10 we can apply Lemma 6.22 to
obtain NMOELR(a, b; n) ≥ 3. If k = 2, then n = 72 and a = 36 or 72. Here a|n so
apply Lemma 6.11. If k = 3, then n = 108 and a = 36, 72, or 108. If a = 36 or
108, then a|n so apply Lemma 6.11. If a = 72, then 9|a so we may apply Lemma 6.22
with h = 9 and k = 12 to obtain NMOELR(a, b; n) ≥ 3. If k = 6, then n = 216 and
a ∈ {36, 72, 108, 144, 216}. If a ∈ {36, 72, 108, 216}, then a|n and so apply Lemma 6.11.
If a = 144, then 12|a so we may apply Lemma 6.22 with h = 12 and k = 18 to obtain
NMOELR(a, b; n) ≥ 3. If k = 10, then n = 360 and a = {36, 72, 108, 144, 216, 288, 324}.
If a = 36 or 72, then a|n so apply Lemma 6.11. Otherwise, we set h = 4 and k = 90 and
apply Lemma 6.22 and apply Lemma 6.22 to obtain a 3–MOELR(a, b; n).

If `1 > 2 and `2 > 2, then we are guaranteed that 36|n. However, if `1 = 2 or `2 = 2,
then it is possible that 36 - n.

Suppose `1 = `2 = 2 and n = 6s where s is a product of primes powers not involving 2
or 3, then 36 - n. There exists an OA(3, 6) and 3–MOLS(s). Apply Lemma 6.18 with m =
6 for all s > 36 and s ≡ 1 or 35 (mod 36). If (s, n) ∈ {(7, 42), (11, 66), (13, 78), (17, 102),
(19, 114), (23, 138), (25, 150), (29, 174), (31, 186), (35, 210)}, then we get the following
open cases: (a, b; n) ∈ {(36, 49; 42), (36, 121; 66), (36, 169; 78), (36, 289; 102),
(36, 361; 114), (36, 529; 138), (36, 625; 150), (36, 841; 174), (36, 961; 186), (36, 1225; 210)}.
If (s, n) = (5, 30), then a > b and we need not consider this case. If s > 36 and
s ≡ 5, 7, 11, 13, 17, 19, 23, 25, 29, 31 (mod 36), then we have open cases.

Suppose `1 > 2 but `2 = 2. Then a = 2`1 · 9. If n = 3s where s is a product of prime
powers not involving 3 but involving 4, then 36 - n. However, in this case we may write
n = 12s1 where s1 is a product of prime powers not involving 3. Hence, if s1 6= 2, then
we may let h = 4 and k = 3s1 and apply Lemma 6.22 to obtain NMOELR(a, b; n) ≥ 3. If
s1 = 2, then n = a = 72, and because a|n, we may apply Lemma 6.11.
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Suppose `2 > 2 but `1 = 2. Then a = 4 · 3`2 . If n = 2s where s is an odd product
of prime powers involving 9, then 36 - n. However, in this case we may write n = 18s1

where s1 is an odd product of prime powers. Then, if s1 6= 3, 5, we set h = 9 and k = 2s1

and apply Lemma 6.22 to obtain NMOELR(a, b; n) ≥ 3. If s1 = 3 or 5, then n = 54 or 90
respectively and a > b, so we need not consider these cases.

z

Suppose n = pa1
0 pa1

1 · · · pat
t where p0 < p1 < · · · < pt are all prime. Without loss of

generality, we can assume a ≤ b, for if a > b, then we could apply Lemma 6.9. So because
we assume a ≤ b and n2 = ab, we need only consider a such that a ≤ n. If n = pai

i , then
apply Corollary 6.13. If pi 6= 2 or 3 for any i, then apply Lemma 6.24. If p0 = 2 and pi 6= 3
for any i, then apply Lemma 6.25. If p0 = 3 and pi 6= 2, then apply Lemma 6.26. Finally
if p0 = 2 and p1 = 3, then apply Lemma 6.27.

By combining the results from the above lemmas, if n ≥ 216 we can construct a
3–MOELR(a, b; n) for all a and b such that n2 = ab with some exceptions. Notice that we
can often get more than 3, but we are always guaranteed to get 3. Thus we have the main
theorem.

Theorem 6.28. If n2 = ab and n ≥ 216, then NMOELR(a, b; n) ≥ 3 except possibly when

a = 9 and n = 3s, where s ≡ 2, 4, 5, 7 (mod 9), s > 9;
a = 18 and n = 3s, where s ≡ 4, 8, 10, 14 (mod 18), s > 18;
a = 36 and n = 6s, where s ≡ 5, 7, 11, 13, 17, 19, 23, 25, 29, 31 (mod 36), s > 36;

Furthermore, if n < 216, then NMOELR(a, b; n) ≥ 3 except possibly when (a, b; n) is one
of the following.

(2, 18; 6)
(2, 50; 10)
(8, 18; 12)
(9, 16; 12)
(9, 25; 15)
(9, 49; 21)
(12, 27; 18)

(18, 32; 24)
(18, 50; 30)
(18, 98; 42)
(18, 128; 48)
(25, 36; 30)
(27, 300; 90)
(36, 49; 42)

(36, 121; 66)
(36, 169; 78)
(36, 289; 102)
(36, 361; 114)
(36, 529; 138)
(36, 625; 150)
(36, 841; 174)

(36, 961; 186)
(36, 1225; 210)
(49, 100; 70)
(81, 100; 90)

Also, NMOELR(2, 2; 2) = 1, NMOELR(3, 3; 3) = 2, NMOELR(6, 6; 6) = 1,
and NMOELR(10, 10; 10) = 2.
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Appendix A

Table of MOELR(a, b; n) where n ≤ 216

The following is a list of the MOELRs that have been solved. Make note that X implies
that every dimension of A with the given n symbols has a solution. The notation 3–(a, b; n)
represents a 3–MOELR(a, b; n) and was used to conserve space. The list of n ≤ 216
moves incrementally from 2 to 144 and then skips to n values where a = 36. The column
headings named N indicate NMOELR.
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n a× b N Construction
2 2× 2 X Corollary 6.13
3 3× 3 X Corollary 6.13
4 All possible X Corollary 6.13
5 5× 5 X Corollary 6.13
6 2× 18

3× 12 3 C
4× 9 3 C
6× 6 1 [21]

7 7× 7 X Corollary 6.13
8 All possible X Corollary 6.13
9 All possible X Corollary 6.13

10 2× 50
4× 25 3 Example 6.7
5× 20 3 Lemma 6.14
10× 10 2 [10]

11 11× 11 X Corollary 6.13
12 2× 72 5 Lemma 6.11

3× 48 5 Lemma 6.11
4× 36 5 Lemma 6.11
6× 24 5 Lemma 6.11
8× 18
9× 16 3 Lemma 6.14
12× 12 5 [30]

13 13× 13 X Corollary 6.13
14 2× 98 3 Lemma 6.11

4× 49
7× 28 3 Lemma 6.11
14× 14 3 [46]

15 3× 75 4 Lemma 6.11
5× 45 4 Lemma 6.11
9× 25
15× 15 4 [1, 44]

16 All possible X Corollary 6.13
17 17× 17 X Corollary 6.13
18 2× 162 3 Theorem 6.11

3× 108 3 Lemma 6.11
4× 81 3 Lemma 6.16
6× 54 3 Lemma 6.11
9× 36 3 Lemma 6.11
12× 27
18× 18 3 [49]

19 19× 19 X Corollary 6.13

n a× b N Construction
20 2× 200 4 Lemma 6.11

4× 100 4 Lemma 6.11
5× 80 4 Lemma 6.11
8× 50 3 Lemma 6.22
10× 40 4 Lemma 6.11
16× 25 3 Lemma 6.22
20× 20 4 [8, 47]

21 3× 147 5 Lemma 6.11
7× 63 5 Lemma 6.11
9× 49
21× 21 5 [40]

22 2× 242 3 Lemma 6.11

4× 121 3
Lemma 6.16;
m = 2, s = 11

11× 44 3 Lemma 6.11
22× 22 3 [2, 9]

23 23× 23 X Corollary 6.13
24 2× 288 6 Lemma 6.11

3× 192 6 Lemma 6.11
4× 144 6 Lemma 6.11
6× 96 6 Lemma 6.11
8× 72 6 Lemma 6.11

9× 64 3
Lemma 6.14;
k = 3, a = 9

b = 16, n = 12
12× 48 6 Lemma 6.11

16× 36 3
Lemma 6.20;

t = 4, 3–(4, 9; 6)
18× 32
24× 24 6 [6]

25 All possible X Corollary 6.13
26 2× 338 4 Lemma 6.11

4× 169 3
Lemma 6.16;
m = 2, s = 13

13× 52 4 Lemma 6.11
26× 26 4 [17]

27 All possible X Corollary 6.13
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n a× b N Construction
28 2× 392 5 Lemma 6.11

4× 196 5 Lemma 6.11
7× 112 5 Lemma 6.11

8× 98 3
Lemma 6.22;
h = 4, k = 7

14× 56 5 Lemma 6.11

16× 49 3
Lemma 6.22;
h = 4, k = 7

28× 28 5 [1]
29 29× 29 X Corollary 6.13
30 2× 450 4 Lemma 6.11

3× 300 4 Lemma 6.11

4× 225 3
Lemma 6.16;
m = 2, s = 15

5× 180 4 Lemma 6.11
6× 150 4 Lemma 6.11

9× 100
If 3–(9, 25; 15)

exists, then
Lemma 6.14

10× 90 4 Lemma 6.11

12× 75 3
Lemma 6.16;
m = 2, s = 15

15× 60 4 Lemma 6.11
18× 50

20× 45 3
Lemma 6.20;

t = 5

25× 36
If ∃ 3–(25, 9; 15)

then use
Lemma 6.14.

30× 30 4 [8]
31 31× 31 X Corollary 6.13
32 All possible X Corollary 6.13
33 3× 363 5 Lemma 6.11

9× 121
11× 99 5 Lemma 6.11
33× 33 5 [7]

34 2× 578 4 Lemma 6.11

4× 289 3
Lemma 6.16;
m = 2, s = 17

17× 68 4 Lemma 6.11
34× 34 4 [1]

n a× b N Construction
35 5× 245 5 Lemma 6.11

7× 175 5 Lemma 6.11

25× 49 4
Lemma 6.22;
h = 5, k = 7

34× 34 5 [53]
36 2× 648 8 Lemma 6.11

3× 432 8 Lemma 6.11
4× 324 8 Lemma 6.11

8× 162 3
Lemma 6.22;
h = 4, k = 9

9× 144 8 Lemma 6.11
12× 108 8 Lemma 6.11

16× 81 3
Lemma 6.22;
h = 4, k = 9

18× 72 8 Lemma 6.11

24× 54 3
Lemma 6.22;
h = 4, k = 9

27× 48 3
Lemma 6.22;
h = 9, k = 4

36× 36 8 [6]
37 37× 37 X Corollary 6.13
38 2× 722 4 Lemma 6.11

4× 361 3
Lemma 6.16;
m = 2, s = 19

19× 76 4 Lemma 6.11
38× 38 4 [8]

39 3× 507 5 Lemma 6.11
9× 169
13× 117 5 Lemma 6.11
39× 39 5 [7]

40 2× 800 7 Lemma 6.11
4× 400 7 Lemma 6.11
5× 320 7 Lemma 6.11
8× 200 7 Lemma 6.11
10× 160 7 Lemma 6.11

16× 100 3
Lemma 6.22;
h = 8, k = 5

20× 80 7 Lemma 6.11

25× 64 4
Lemma 6.22;
h = 5, k = 8

32× 50 4
Lemma 6.22;
h = 8, k = 5

28× 28 7 [5]
41 41× 41 X Corollary 6.13
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n a× b N Construction
42 2× 882 5 Lemma 6.11

3× 588 5 Lemma 6.11

4× 441 3
Lemma 6.16;
m = 2, s = 21

7× 252 5 Lemma 6.11

9× 196
If ∃ 3–(9, 49; 21)

then use 6.14

12× 147 3
Lemma 6.16;
m = 2, s = 21

14× 126 5 Lemma 6.11
18× 98
21× 84 5 Lemma 6.11

28× 63 3
Lemma 6.20;

t = 7, 3–(4, 9; 6)
36× 49
42× 42 5 [1]

43 43× 43 X Corollary 6.13
44 2× 968 5 Lemma 6.11

4× 484 5 Lemma 6.11

8× 242 3
Lemma 6.16;
m = 2, s = 22

11× 176 5 Lemma 6.11

16× 121 3
Lemma 6.22;
h = 4, k = 11

22× 88 5 Lemma 6.11
44× 44 5 [1]

45 3× 675 6 Lemma 6.11
5× 289 6 Lemma 6.11
9× 68 6 Lemma 6.11

15× 135 6 Lemma 6.11

25× 81 4
Lemma 6.22;
h = 5, k = 9

27× 75 4
Lemma 6.22;
h = 9, k = 5

45× 45 6 [3]
46 2× 1058 4 Lemma 6.11

4× 529 3
Lemma 6.16;
m = 2, s = 23

23× 92 4 Lemma 6.11
46× 46 4 [18]

47 47× 47 X Corollary 6.13

n a× b N Construction
48 2× 1152 8 Lemma 6.11

3× 768 8 Lemma 6.11
4× 576 8 Lemma 6.11
8× 288 8 Lemma 6.11
9× 256

16× 144 3
Lemma 6.22;
h = 4, k = 12

18× 128
24× 96 8 Lemma 6.11

32× 72 3
Lemma 6.22;
h = 4, k = 12

36× 64 3
Lemma 6.22;
h = 4, k = 12

48× 48 8 [4]
49 All possible X Corollary 6.13
50 2× 800 6 Lemma 6.11

4× 625 3
Lemma 6.16;
m = 2, s = 25

5× 500 6 Lemma 6.11
10× 250 6 Lemma 6.11

20× 125 3
Lemma 6.20;

t = 5, 3–(4, 25; 10)
25× 100 6 Lemma 6.11
50× 50 6 [18]

51 3× 867 5 Lemma 6.11

9× 289 3
Lemma 6.17;
m = 3, s = 17

17× 153 5 Lemma 6.11
51× 51 5 [7]

52 2× 1352 5 Lemma 6.11
4× 676 5 Lemma 6.11

8× 338 3
Lemma 6.22;
h = 4, k = 13

13× 208 5 Lemma 6.11

16× 169 3
Lemma 6.22;
h = 4, k = 13

26× 104 5 Lemma 6.11
52× 52 5 [1]

53 53× 53 X Corollary 6.13
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n a× b N Construction
54 2× 1458 5 Lemma 6.11

3× 972 5 Lemma 6.11

4× 729 3
Lemma 6.16;
m = 2, s = 27

6× 486 5 Lemma 6.11
9× 324 3 Lemma 6.11

12× 243 3
Lemma 6.16;
m = 2, s = 27

18× 162 3 Lemma 6.11;
27× 108 5 Lemma 6.11

36× 81 3
Lemma 6.20;

t = 9, 3–(4, 9; 6)
54× 54 5 [1]

55 5× 605 6 Lemma 6.11
11× 275 6 Lemma 6.11

25× 121 4
Lemma 6.22;
h = 5, k = 11

55× 55 6 [54]
56 2× 1568 7 Lemma 6.11

4× 784 7 Lemma 6.11
7× 448 7 Lemma 6.11
8× 392 7 Lemma 6.11
14× 224 7 Lemma 6.11

16× 196 6
Lemma 6.22;
h = 8, k = 7

28× 112 7 Lemma 6.11

32× 98 6
Lemma 6.22;
h = 8, k = 7

49× 64 6
Lemma 6.22;
h = 7, k = 8

56× 56 7 [2, 37]
57 3× 1083 7 Lemma 6.11

9× 361 4
Lemma 6.16;
m = 3, s = 19

19× 171 7 Lemma 6.11
57× 57 7 [18]

58 2× 1682 5 Lemma 6.11

4× 841 3
Lemma 6.16;
m = 2, s = 29

29× 116 5 Lemma 6.11
58× 58 5 [18]

59 59× 59 X Corollary 6.13

n a× b N Construction
60 2× 1800 4 Lemma 6.11

3× 1200 4 Lemma 6.11
4× 900 4 Lemma 6.11
5× 720 4 Lemma 6.11
6× 600 4 Lemma 6.11

8× 450 3
Lemma 6.22;
h = 4, k = 15

9× 400 4
Lemma 6.16;
m = 3, s = 20

10× 360 4 Lemma 6.11
12× 300 4 Lemma 6.11
15× 240 4 Lemma 6.11

16× 225 3
Lemma 6.22;
h = 4, k = 15

18× 200 3
Lemma 6.17;
m = 3, s = 20

20× 180 4 Lemma 6.11

24× 150 4
Lemma 6.22;
h = 12, k = 5

25× 144 4
Lemma 6.22;
h = 5, k = 12

30× 120 4 Lemma 6.11

36× 100 4
Lemma 6.22;
h = 12, k = 5

45× 80 4
Lemma 6.22;
h = 5, k = 12

48× 75 4
Lemma 6.22;
h = 12, k = 5

50× 72 4
Lemma 6.22;
h = 5, k = 12

60× 60 4 [18]
61 61× 61 X Corollary 6.13
62 2× 1922 5 Lemma 6.11

4× 961 3
Lemma 6.16;
m = 2, s = 31

31× 124 5 Lemma 6.11
62× 62 5 [1]

63 3× 1323 6 Lemma 6.11
7× 567 6 Lemma 6.11
9× 441 6 Lemma 6.11;
21× 189 6 Lemma 6.11

27× 147 6
Lemma 6.22;
h = 9, k = 7

63× 63 6 [18]
64 All possible X Corollary 6.13
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n a× b N Construction
65 5× 845 6 Lemma 6.11

13× 325 6 Lemma 6.11

25× 169 4
Lemma 6.22;
h = 5, k = 13

65× 65 6 [18]
66 2× 2178 5 Lemma 6.11

3× 1452 5 Lemma 6.11

4× 1089 3
Lemma 6.16;
m = 2, s = 33

6× 726 5 Lemma 6.11
9× 484
11× 396 5 Lemma 6.11

12× 363 3
Lemma 6.16;
m = 2, s = 33

18× 242
22× 198 5 Lemma 6.11
33× 132 5 Lemma 6.11
36× 121

44× 99 3
Lemma 6.20;

t = 11, 3–(4, 9; 6)
66× 66 5 [18]

67 67× 67 X Corollary 6.13
68 2× 2312 5 Lemma 6.11

4× 1156 5 Lemma 6.11

8× 578 3
Lemma 6.22;
h = 4, k = 17

16× 289 3
Lemma 6.22;
h = 4, k = 17

17× 272 5 Lemma 6.11
34× 136 5 Lemma 6.11
68× 68 5 [18]

69 3× 1587 6 Lemma 6.11
9× 529
23× 207 6 Lemma 6.11
69× 69 6 [18]

n a× b N Construction
70 2× 2450 6 Lemma 6.11

4× 1225 3
Lemma 6.16;
m = 2, s = 35

5× 980 6 Lemma 6.11
7× 700 6 Lemma 6.11
10× 490 6 Lemma 6.11
14× 350 6 Lemma 6.11

20× 245 3
Lemma 6.22;
h = 5, k = 14

25× 196 3
Lemma 6.22;
h = 5, k = 14

28× 175 3
Lemma 6.22;
h = 14, h = 5

35× 140 6 Lemma 6.11
49× 100

50× 98 3
Lemma 6.22;
h = 5, k = 14

70× 70 6 [18]
71 71× 71 X Corollary 6.13
72 2× 2592 7 Lemma 6.11

3× 1728 7 Lemma 6.11
4× 1296 7 Lemma 6.11;
6× 864 7 Lemma 6.11
8× 648 7 Lemma 6.11
9× 576 7 Lemma 6.11
12× 432 7 Lemma 6.11

16× 324 7
Lemma 6.22;
h = 8, k = 9

18× 288 7 Lemma 6.11
24× 216 7 Lemma 6.11

27× 192 7
Lemma 6.22;
h = 9, k = 8

32× 162 7
Lemma 6.22;
h = 8, k = 9

36× 144 7 Lemma 6.11

48× 108 7
Lemma 6.22;
h = 8, k = 9

54× 96 7
Lemma 6.22;
h = 9, k = 8

64× 81 7
Lemma 6.22;
h = 8, k = 9

72× 72 7 [18]
73 73× 73 X Corollary 6.13
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n a× b N Construction
74 2× 2738 5 Lemma 6.11

4× 1369 3
Lemma 6.16;
m = 2, s = 37

37× 148 5 Lemma 6.11
74× 74 5 [18]

75 3× 1875 7 Lemma 6.11
5× 1125 7 Lemma 6.11
9× 625
15× 375 7 Lemma 6.11
25× 225 4 Lemma 6.11

45× 125 4
Lemma 6.22;
h = 15, k = 5

75× 75 7 [6]
76 2× 2888 6 Lemma 6.11

4× 1444 6 Lemma 6.11

8× 722 3
Lemma 6.22;
h = 4, k = 19

16× 361 3
Lemma 6.22;
h = 4, k = 19

19× 304 6 Lemma 6.11
38× 152 6 Lemma 6.11
76× 76 6 [18]

77 7× 847 6 Lemma 6.11
11× 539 6 Lemma 6.11

49× 121 6
Lemma 6.22;
h = 7, k = 11

77× 77 6 [18]
78 2× 3042 6 Lemma 6.11

3× 2028 6 Lemma 6.11

4× 1521 3
Lemma 6.16;
m = 2, s = 39

6× 1014 6 Lemma 6.11

9× 676 4
Lemma 6.16;
m = 3, s = 26

12× 507 3
Lemma 6.16;
m = 2, s = 39

13× 468 6 Lemma 6.11
18× 338
26× 234 6 Lemma 6.11
36× 169
39× 156 6 Lemma 6.11

52× 117 3
Lemma 6.20;

t = 13, 3–(4, 9; 6)
78× 78 6 [18]

n a× b N Construction
79 79× 79 X Corollary 6.13
80 2× 3200 9 Lemma 6.11

4× 1600 9 Lemma 6.11
5× 1280 9 Lemma 6.11
8× 800 9 Lemma 6.11
10× 640 9 Lemma 6.11
16× 400 9 Lemma 6.11
20× 320 9 Lemma 6.11

25× 256 4
Lemma 6.22;
h = 5, k = 16

32× 200 3
Lemma 6.22;
h = 4, k = 20

40× 160 9 Lemma 6.11

50× 128 4
Lemma 6.22;
h = 5, k = 16

64× 100 3
Lemma 6.22;
h = 4, k = 20

80× 80 9 [2, 5]
81 All possible X Corollary 6.13
82 2× 3362 8 Lemma 6.11

4× 1681 3
Lemma 6.16;
m = 2, s = 41

41× 164 8 Lemma 6.11
82× 82 8 [18]

83 83× 83 X Corollary 6.13
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n a× b N Construction
84 2× 3528 6 Lemma 6.11

3× 2352 6 Lemma 6.11
4× 1764 6 Lemma 6.11
6× 1176 6 Lemma 6.11
7× 1008 6 Lemma 6.11

8× 882 3
Lemma 6.22;
h = 4, k = 21

9× 784 4
Lemma 6.16;
m = 3, s = 28

12× 588 6 Lemma 6.11
14× 504 6 Lemma 6.11

16× 441 3
Lemma 6.22;
h = 4, k = 21

18× 392
21× 336 6 Lemma 6.11

24× 294 3
Lemma 6.22;
h = 4, k = 21

28× 252 6 Lemma 6.11

36× 196 3
Lemma 6.22;
h = 4, k = 21

42× 168 6 Lemma 6.11

49× 144 5
Lemma 6.22;
h = 7, k = 12

56× 126 5
Lemma 6.22;
h = 7, k = 12

63× 112 5
Lemma 6.22;
h = 7, k = 12

72× 98 3
Lemma 6.22;
h = 4, k = 21

84× 84 6 [18]
85 5× 1445 6 Lemma 6.11

17× 425 6 Lemma 6.11

25× 289 4
Lemma 6.22;
h = 5, k = 17

85× 85 6 [18]
86 2× 3698 6 Lemma 6.11

4× 1849 3
Lemma 6.16;
m = 2, s = 43

43× 172 6 Lemma 6.11
86× 86 6 [18]

n a× b N Construction
87 3× 2523 6 Lemma 6.11

9× 841
29× 261 6 Lemma 6.11
87× 87 6 [18]

88 2× 3872 7 Lemma 6.11
4× 1936 7 Lemma 6.11
8× 968 7 Lemma 6.11
11× 704 7 Lemma 6.11

16× 484 7
Lemma 6.22;
h = 8, k = 11

22× 352 7 Lemma 6.11

32× 242 7
Lemma 6.22;
h = 8, k = 11

44× 176 7 Lemma 6.11

64× 121 7
Lemma 6.22;
h = 8, k = 11

88× 88 7 [18]
89 89× 89 X Corollary 6.13
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n a× b N Construction
90 2× 4050 6 Lemma 6.11

3× 2700 6 Lemma 6.11

4× 2025 3
Lemma 6.16;
m = 2, s = 45

5× 1620 6 Lemma 6.11
6× 1350 6 Lemma 6.11
9× 900 6 Lemma 6.11
10× 810 6 Lemma 6.11

12× 675 3
Lemma 6.16;
m = 2, s = 45

15× 540 6 Lemma 6.11
18× 450 6 Lemma 6.11

20× 405 3
Lemma 6.22;
h = 5, k = 18

25× 324 3
Lemma 6.22;
h = 5, k = 18

27× 300
30× 270 6 Lemma 6.11

36× 225 3
Lemma 6.22;
h = 18, k = 5

45× 180 6 Lemma 6.11

50× 162 3
Lemma 6.22;
h = 5, k = 18

54× 150 3
Lemma 6.22;
h = 18, k = 5

60× 135 3
Lemma 6.22;
h = 5, k = 18

81× 100
90× 90 6 [18]

91 7× 1183 7 Lemma 6.11
13× 637 7 Lemma 6.11

49× 169 6
Lemma 6.22;
h = 7, k = 13

91× 91 7 [18]
92 2× 4232 6 Lemma 6.11

4× 2116 6 Lemma 6.11

8× 1058 3
Lemma 6.22;
h = 4, k = 23

16× 529 3
Lemma 6.22;
h = 4, k = 23

23× 368 6 Lemma 6.11
46× 184 6 Lemma 6.11
92× 92 6 [18]

n a× b N Construction
93 3× 2883 6 Lemma 6.11

9× 961
31× 279 6 Lemma 6.11
93× 93 6 [18]

94 2× 4418 6 Lemma 6.11

4× 2209 3
Lemma 6.16;
m = 2, s = 47

47× 188 6 Lemma 6.11
94× 94 6 [18]

95 5× 1805 6 Lemma 6.11
19× 475 6 Lemma 6.11

25× 361 4
Lemma 6.22;
h = 5, k = 19

95× 95 6 [18]
96 2× 4608 7 Lemma 6.11

3× 3072 7 Lemma 6.11
4× 2304 7 Lemma 6.11
6× 1536 7 Lemma 6.11
8× 1152 7 Lemma 6.11
9× 1024
12× 768 7 Lemma 6.11
16× 576 7 Lemma 6.11
18× 512
24× 384 7 Lemma 6.11
32× 288 7 Lemma 6.11

36× 256 5
Lemma 6.22;
h = 4, k = 24

48× 192 7 Lemma 6.11

64× 144 5
Lemma 6.22;
h = 4, k = 24

72× 128 5
Lemma 6.22;
h = 4, k = 24

96× 96 7 [18]
97 97× 97 X Corollary 6.13
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n a× b N Construction
98 2× 4802 6 Lemma 6.11

4× 2401 3
Lemma 6.16;
m = 2, s = 49

7× 1372 6 Lemma 6.11
14× 686 6 Lemma 6.11

28× 343 3
Lemma 6.22;
h = 7, k = 14

49× 196 6 Lemma 6.11
98× 98 6 [18]

99 3× 3267 8 Lemma 6.11
9× 1089 8 Lemma 6.11
11× 891 8 Lemma 6.11

27× 363 8
Lemma 6.22;
h = 9, k = 11

33× 297 8 Lemma 6.11

81× 121 8
Lemma 6.22;
h = 9, k = 11

99× 99 8 [18]
100 2× 5000 8 Lemma 6.11

4× 2500 8 Lemma 6.11
5× 2000 8 Lemma 6.11

8× 1250 3
Lemma 6.22;
h = 4, k = 25

10× 1000 8 Lemma 6.11

16× 625 3
Lemma 6.22;
h = 4, k = 25

20× 500 8 Lemma 6.11
25× 400 8 Lemma 6.11
50× 200 8 Lemma 6.11

80× 125 4
Lemma 6.22;
h = 5, k = 20

100× 100 8 [18]
101 101× 101 X Corollary 6.13

n a× b N Construction
102 2× 5202 6 Lemma 6.11

3× 3468 6 Lemma 6.11

4× 2601 3
Lemma 6.16;
m = 2, s = 51

6× 1734 6 Lemma 6.11
9× 1156

12× 867 3
Lemma 6.16;
m = 2, s = 51

17× 612 6 Lemma 6.11

18× 578
3 Lemma 6.17;

m = 3, s = 34
34× 306 6 Lemma 6.11
36× 289
51× 204 6 Lemma 6.11

68× 153 3
Lemma 6.20;

t = 17, 3–(4, 9; 6)
102× 102 6 [18]

103 103× 103 X Corollary 6.13
104 2× 5408 7 Lemma 6.11

4× 2704 7 Lemma 6.11
8× 1352 7 Lemma 6.11
13× 832 7 Lemma 6.11

16× 676 7
Lemma 6.22;
h = 8, k = 13

26× 416 7 Lemma 6.11

32× 338 7
Lemma 6.22;
h = 8, k = 13

52× 208 7 Lemma 6.11
104× 104 7 [18]
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n a× b N Construction
105 3× 3675 7 Lemma 6.11

5× 2205 7 Lemma 6.11
7× 1575 7 Lemma 6.11

9× 1225 4
Lemma 6.16;
m = 3, s = 35

15× 735 7 Lemma 6.11
21× 525 7 Lemma 6.11

25× 441 4
Lemma 6.22;
h = 5, k = 21

35× 315 7 Lemma 6.11

45× 245 4
Lemma 6.22;
h = 5, k = 21

49× 225 4
Lemma 6.22;
h = 7, k = 15

63× 175 4
Lemma 6.22;
h = 7, k = 15

75× 147 4
Lemma 6.22;
h = 5, k = 21

105× 105 7 [18]
106 2× 5618 6 Lemma 6.11

4× 2809 3
Lemma 6.16;
m = 2, s = 53

53× 212 6 Lemma 6.11
106× 106 6 [18]

107 107× 107 X Corollary 6.13

n a× b N Construction
108 2× 5832 6 Lemma 6.11

3× 3888 6 Lemma 6.11
4× 2916 6 Lemma 6.11
6× 1944 6 Lemma 6.11
9× 1296 6 Lemma 6.11
12× 972 6 Lemma 6.11

16× 729 3
Lemma 6.22;
h = 4, k = 27

18× 648 6 Lemma 6.11

24× 486 3
Lemma 6.22;
h = 4, k = 27

27× 432 6 Lemma 6.11
36× 324 6 Lemma 6.11

48× 243 3
Lemma 6.22;
h = 4, k = 27

54× 216 6 Lemma 6.11

72× 162 5
Lemma 6.22;
h = 9, k = 12

81× 144 5
Lemma 6.22;
h = 9, k = 12

108× 108 6 [18]
109 109× 109 X Corollary 6.13
110 2× 6050 6 Lemma 6.11

4× 3025 3
Lemma 6.16;
m = 2, s = 55

5× 2420 6 Lemma 6.11
10× 1210 6 Lemma 6.11
11× 1100 6 Lemma 6.11

20× 605 3
Lemma 6.22;
h = 5, k = 22

22× 550 6 Lemma 6.11

25× 484 3
Lemma 6.22;
h = 5, k = 22

44× 275

50× 242 3
Lemma 6.22;
h = 5, k = 22

55× 220 6 Lemma 6.11

100× 121 3
Lemma 6.22;
h = 5, k = 22

110× 110 6 [18]
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n a× b N Construction
111 3× 4107 6 Lemma 6.11

9× 1369 4
Lemma 6.16;
m = 3, s = 37

37× 333 6 Lemma 6.11
111× 111 6 [18]

112 2× 6272 13 Lemma 6.11
4× 3136 13 Lemma 6.11
7× 1792 13 Lemma 6.11
8× 1568 13 Lemma 6.11
14× 896 13 Lemma 6.11
16× 784 13 Lemma 6.11
28× 448 13 Lemma 6.11

32× 392 6
Lemma 6.22;
h = 16, k = 7

49× 256 6
Lemma 6.22;
h = 7, k = 16

56× 224 13 Lemma 6.11

64× 196 6
Lemma 6.22;
h = 16, k = 7

98× 128 6
Lemma 6.22;
h = 7, k = 16

112× 112 13 [18]
113 113× 113 X Corollary 6.13
114 2× 6498 6 Lemma 6.11

3× 4332 6 Lemma 6.11

4× 3249 3
Lemma 6.16;
m = 2, s = 57

6× 2166 6 Lemma 6.11
9× 1444

12× 1083 3
Lemma 6.16;
m = 2, s = 57

18× 722 4
Lemma 6.16;
m = 3, s = 38

19× 684 6 Lemma 6.11
36× 361
38× 342 6 Lemma 6.11
57× 228 6 Lemma 6.11

76× 171 3
Lemma 6.20;

t = 19, 3–(4, 9; 6)
114× 114 6 [18]

n a× b N Construction
115 5× 2645 7 Lemma 6.11

23× 575 7 Lemma 6.11

25× 529 4
Lemma 6.22;
h = 5, k = 23

115× 115 7 [18]
116 2× 6728 6 Lemma 6.11

4× 3364 6 Lemma 6.11

8× 1682 3
Lemma 6.22;
h = 4, k = 29

16× 841 3
Lemma 6.22;
h = 4, k = 29

29× 464 6 Lemma 6.11
58× 232 6 Lemma 6.11
116× 116 6 [18]

117 3× 4563 8 Lemma 6.11
9× 1521 8 Lemma 6.11
13× 1053 8 Lemma 6.11

27× 507 8
Lemma 6.22;
h = 9, k = 13

39× 351 8 Lemma 6.11

81× 169 8
Lemma 6.22;
h = 9, k = 13

117× 117 8 [18]
118 2× 6962 6 Lemma 6.11

4× 3481 3
Lemma 6.16;
m = 2, s = 59

59× 236 6 Lemma 6.11
118× 118 6 [18]

119 7× 2023 6 Lemma 6.11
17× 833 6 Lemma 6.11

49× 289 6
Lemma 6.22;
h = 7, k = 17

119× 119 6 [18]

134



n a× b N Construction
120 2× 7200 7 Lemma 6.11

3× 4800 7 Lemma 6.11
4× 3600 7 Lemma 6.11
5× 2880 7 Lemma 6.11
6× 2400 7 Lemma 6.11
8× 1800 7 Lemma 6.11
9× 1600
10× 1440 7 Lemma 6.11
12× 1200 7 Lemma 6.11
15× 960 7 Lemma 6.11

16× 900 4 Lemma 6.22;
h = 8, k = 15

18× 800
20× 720 7 Lemma 6.11
24× 600 7 Lemma 6.11

25× 576 4 Lemma 6.22;
h = 5, k = 24

30× 480 7 Lemma 6.11

32× 450 4 Lemma 6.22;
h = 8, k = 15

36× 400 4 Lemma 6.22;
h = 4, k = 30

40× 360 7 Lemma 6.11

45× 320 4 Lemma 6.22;
h = 5, k = 24

48× 300 4 Lemma 6.22;
h = 8, k = 15

50× 288 4 Lemma 6.22;
h = 5, k = 24

60× 240 7 Lemma 6.11

64× 225 4 Lemma 6.22;
h = 8, k = 15

72× 200 4 Lemma 6.22;
h = 8, k = 15

75× 192 4 Lemma 6.22;
h = 5, k = 24

80× 180 4 Lemma 6.22;
h = 8, k = 15

90× 160 4 Lemma 6.22;
h = 5, k = 24

96× 150 4 Lemma 6.22;
h = 8, k = 15

100× 144 4 Lemma 6.22;
h = 5, k = 24

120× 120 7 [18]

n a× b N Construction
121 121× 121 X Corollary 6.13
122 2× 7442 6 Lemma 6.11

4× 3721 3
Lemma 6.16;
m = 2, s = 61

61× 244 6 Lemma 6.11
122× 122 6 [18]

123 3× 5043 6 Lemma 6.11
9× 1681
41× 369 6 Lemma 6.11
123× 123 6 [18]

124 2× 4688 6 Lemma 6.11
4× 3844 6 Lemma 6.11

8× 1922 3
Lemma 6.22;
h = 4, k = 31

16× 961 3
Lemma 6.22;
h = 4, k = 31

31× 496 6 Lemma 6.11
62× 248 6 Lemma 6.11
124× 124 6 [18]

125 All possible X Corollary 6.13
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n a× b N Construction
126 2× 7638 6 Lemma 6.11

3× 5292 6 Lemma 6.11

4× 3969 3
Lemma 6.16;
m = 2, s = 63

6× 2646 6 Lemma 6.11
7× 2268 6 Lemma 6.11
9× 1764 6 Lemma 6.11

12× 1323 3
Lemma 6.16;
m = 2, s = 63

14× 1134 6 Lemma 6.11
18× 882 6 Lemma 6.11
21× 756 6 Lemma 6.11

27× 588 3
Lemma 6.22;
h = 9, k = 14

28× 567 3
Lemma 6.22;
h = 7, k = 18

36× 441 3
Lemma 6.22;
h = 9, k = 14

42× 378 6 Lemma 6.11

49× 324 3
Lemma 6.22;
h = 7, k = 18

54× 294 3
Lemma 6.22;
h = 9, k = 14

63× 252 6 Lemma 6.11

81× 196 3
Lemma 6.22;
h = 9, k = 14

84× 189 3
Lemma 6.22;
h = 7, k = 18

98× 162 3
Lemma 6.22;
h = 7, k = 18

126× 126 6 [18]
127 127× 127 X Corollary 6.13
128 All possible X Corollary 6.13
129 3× 5547 7 Lemma 6.11

9× 1849
43× 387 7 Lemma 6.11
129× 129 7 [18]

n a× b N Construction
130 2× 8450 6 Lemma 6.11

4× 4225 3
Lemma 6.16;
m = 2, s = 65

5× 3380 6 Lemma 6.11
10× 1690 6 Lemma 6.11
13× 1300 6 Lemma 6.11

20× 845 4
Lemma 6.22;
h = 5, k = 26

25× 676 4
Lemma 6.22;
h = 5, k = 26

26× 650 6 Lemma 6.11

50× 338 4
Lemma 6.22;
h = 5, k = 26

52× 325 3
Lemma 6.20;

t = 13,
3–(4, 25; 10)

65× 260 6 Lemma 6.11

100× 169 4
Lemma 6.22;
h = 5, k = 26

130× 130 6 [18]
131 131× 131 X Corollary 6.13
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n a× b N Construction
132 2× 8712 6 Lemma 6.11

3× 5808 6 Lemma 6.11
4× 4356 6 Lemma 6.11
6× 2904 6 Lemma 6.11

8× 2178 3
Lemma 6.22;
h = 4, k = 33

9× 1936 4
Lemma 6.16;
m = 3, s = 44

11× 1584 6 Lemma 6.11
12× 1452 6 Lemma 6.11

16× 1089 3
Lemma 6.22;
h = 4, k = 33

18× 968
22× 792 6 Lemma 6.11

24× 726 5
Lemma 6.22;

h = 12, k = 11
33× 528 6 Lemma 6.11

36× 484 5
Lemma 6.22;

h = 12, k = 11
44× 396 6 Lemma 6.11

48× 363 5
Lemma 6.22;

h = 12, k = 11
66× 264 6 Lemma 6.11

88× 198 5
Lemma 6.22;

h = 11, k = 12

99× 176 5
Lemma 6.22;

h = 11, k = 12

121× 144 5
Lemma 6.22;

h = 11, k = 12
132× 132 6 [18]

133 7× 2527 7 Lemma 6.11
19× 937 7 Lemma 6.11

49× 361 6
Lemma 6.22;
h = 7, k = 19

133× 133 7 [18]
134 2× 8978 6 Lemma 6.11

4× 4489 3
Lemma 6.16;
m = 2, s = 67

67× 268 6 Lemma 6.11
134× 134 6 [18]

n a× b N Construction
135 3× 6075 7 Lemma 6.11

5× 3645 7 Lemma 6.11
9× 2025 7 Lemma 6.11
15× 1215 7 Lemma 6.11

25× 729 4
Lemma 6.22;
h = 5, k = 27

27× 675 7 Lemma 6.11
45× 405 7 Lemma 6.11

75× 243 4
Lemma 6.22;
h = 5, k = 27

81× 225 4
Lemma 6.22;
h = 27, k = 5

135× 135 7 [18]
136 2× 9248 7 Lemma 6.11

4× 4624 7 Lemma 6.11
8× 2312 7 Lemma 6.11

16× 1156 7
Lemma 6.22;
h = 8, k = 17

17× 1088 7 Lemma 6.11

32× 578 7
Lemma 6.22;
h = 8, k = 17

34× 544 7 Lemma 6.11

64× 289 7
Lemma 6.22;
h = 8, k = 17

68× 272 7 Lemma 6.11
136× 136 7 [18]

137 137× 137 X Corollary 6.13
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n a× b N Construction
138 2× 9522 6 Lemma 6.11

3× 6348 6 Lemma 6.11

4× 4761 3
Lemma 6.16;
m = 2, s = 69

6× 3174 6 Lemma 6.11

9× 2116 4
Lemma 6.16;
m = 3, s = 46

12× 1587 3
Lemma 6.16;
m = 2, s = 69

18× 1058
23× 828 6 Lemma 6.11
36× 529
46× 414 6 Lemma 6.11
69× 276 6 Lemma 6.11

92× 207 3
Lemma 6.20;

t = 23, 3–(4, 9; 6)
138× 138 6 [18]

139 139× 139 X Corollary 6.13

n a× b N Construction
140 2× 9800 6 Lemma 6.11

4× 4900 6 Lemma 6.11
5× 3920 6 Lemma 6.11
7× 2800 6 Lemma 6.11

8× 2450 3
Lemma 6.22;
h = 4, k = 35

10× 1960 6 Lemma 6.11
14× 1400 6 Lemma 6.11

16× 1225 3
Lemma 6.22;
h = 4, k = 35

20× 980 6 Lemma 6.11

25× 784 4
Lemma 6.22;
h = 5, k = 28

28× 700 6 Lemma 6.11
35× 560 6 Lemma 6.11

40× 490 4
Lemma 6.22;
h = 5, k = 28

49× 400 4
Lemma 6.22;
h = 7, k = 20

50× 392 4
Lemma 6.22;
h = 5, k = 28

56× 350 4
Lemma 6.22;
h = 7, k = 20

70× 280 6 Lemma 6.11

80× 245 4
Lemma 6.22;
h = 5, k = 28

98× 200 4
Lemma 6.22;
h = 7, k = 20

100× 196 4
Lemma 6.22;
h = 5, k = 28

112× 175 4
Lemma 6.22;
h = 7, k = 20

140× 140 6 [18]
141 3× 6627 7 Lemma 6.11

9× 2209
47× 423 7 Lemma 6.11
141× 141 7 [18]

142 2× 10082 6 Lemma 6.11

4× 5041 3
Lemma 6.16;
m = 2, s = 71

71× 284 6 Lemma 6.11
142× 142 6 [18]
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n a× b N Construction
143 11× 1859 10 Lemma 6.11

13× 1573 10 Lemma 6.11

121× 169 10
Lemma 6.22;

h = 11, k = 13
143× 143 10 [18]

144 2× 10368 10 Lemma 6.11
3× 6912 10 Lemma 6.11
4× 5184 10 Lemma 6.11
6× 3456 10 Lemma 6.11
8× 2592 10 Lemma 6.11
9× 2304 10 Lemma 6.11
12× 1728 10 Lemma 6.11
16× 1296 10 Lemma 6.11
18× 1152 10 Lemma 6.11
24× 864 10 Lemma 6.11

27× 768 8
Lemma 6.22;
h = 9, k = 16

32× 648 8
Lemma 6.22;
h = 16, k = 9

36× 576 10 Lemma 6.11
48× 432 10 Lemma 6.11

54× 384 8
Lemma 6.22;
h = 9, k = 16

64× 324 8
Lemma 6.22;
h = 16, k = 9

72× 288 10 Lemma 6.11

81× 256 8
Lemma 6.22;
h = 9, k = 16

96× 216 8
Lemma 6.22;
h = 16, k = 9

108× 192 8
Lemma 6.22;
h = 9, k = 16

128× 162 8
Lemma 6.22;
h = 16, k = 9

144× 144 10 [18]
150 36× 625
174 36× 841
186 36× 961
210 36× 1225

C = Computational construction
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equitable rectangle, 82
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uniform, 7
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Latin rectangle, 88
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marriage condition, 79
matching, 2

maximal matching, 79
perfect matching, 80

144



monochromatic, 11
multiple edges, 1
mutually orthogonal, 88
mutually orthogonal equitable Latin rectangles,

88
mutually orthogonal Latin squares, 86
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pairwise balanced design, 86
panchromatic, 2
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path decomposition, 82
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resolvable balanced incomplete block design, 9
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