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Abstract

This dissertation concerns the intersection of three areas of discrete mathematics: finite

geometries, design theory, and coding theory. The central theme is the power of finite

geometry designs, which are constructed from the points and t-dimensional subspaces of a

projective or affine geometry. We use these designs to construct and analyze combinatorial

objects which inherit their best properties from these geometric structures.

A central question in the study of finite geometry designs is Hamada’s conjecture, which

proposes that finite geometry designs are the unique designs with minimum p-rank among

all designs with the same parameters. In this dissertation, we will examine several questions

related to Hamada’s conjecture, including the existence of counterexamples. We will also

study the applicability of certain decoding methods to known counterexamples.

We begin by constructing an infinite family of counterexamples to Hamada’s conjecture.

These designs are the first infinite class of counterexamples for the affine case of Hamada’s

conjecture. We further demonstrate how these designs, along with the projective polarity

designs of Jungnickel and Tonchev, admit majority-logic decoding schemes. The codes

obtained from these polarity designs attain error-correcting performance which is, in certain

cases, equal to that of the finite geometry designs from which they are derived. This further

demonstrates the highly geometric structure maintained by these designs.

Finite geometries also help us construct several types of quantum error-correcting codes.

We use relatives of finite geometry designs to construct infinite families of q-ary quantum

stabilizer codes. We also construct entanglement-assisted quantum error-correcting codes

(EAQECCs) which admit a particularly efficient and effective error-correcting scheme,

while also providing the first general method for constructing these quantum codes with

known parameters and desirable properties. Finite geometry designs are used to give ex-

ceptional examples of these codes.

xvii
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Chapter 1

Designs, codes, and finite geometries

1.1 Introduction

This dissertation will focus on the intersection of three areas of discrete mathematics: finite

geometries, design theory, and coding theory. We will use these tools to find counterex-

amples to a famous conjecture, develop constructions for new designs, and create quantum

codes with desirable properties.

The main portion of this work consists of several papers previously published by the author,

as well as several chapters containing unpublished work. The central theme will be the

power of finite geometry designs. In each chapter, we will use finite geometry designs

to construct and analyze new combinatorial objects, including new classes of designs and

quantum codes. We will show how the structure of the finite geometries carries through to

the new combinatorial objects and provides them with some of their best properties.

In this first chapter, we will give detailed definitions of the fundamental objects of our study,

and examine the links between these objects. We will also describe the major contributions

of this dissertation. Each other chapter will begin with an introductory section, which

describes the history and background of that chapter’s particular topic.

1



1.1.1 Designs

We begin by examining block designs, which are one of the central objects in our study. A

t-(v,k,λ ) block design (usually just a t-design) is a pair D = (P,B), where P is a set of

v points, and B is a collection of k-subsets of P called blocks. These blocks are subject to

the condition that every t-subset of P must be contained in exactly λ blocks. The value λ
is sometimes called the index of a design. We make the natural assumption that 0 < k < v
and t ≥ 2 to avoid trivial designs.

Several invariants of a design can be determined directly from the parameters. The num-

ber of blocks in a design is b = |B| = λ
(v

t

)
/
(k

t

)
. Each point appears in exactly r =

λ
(v−1

t−1

)
/
(k−1

t−1

)
blocks. A t-(v,k,λ ) design with t ≥ 2 is also a (t − 1)-(v,k,λt−1) design,

where λt−1 = λ v−t+1
k−t+1 .

Figure 1.1: The Fano plane, an example of a 2-(7,3,1) design obtained

from a finite geometry. It has b = 7 blocks, and each point appears in r = 3

blocks.

For a design D, a set of blocks which partition the points of D is called a parallel class. A

partition of the blocks of D into parallel classes is called a resolution. If a resolution exists,

then D is resolvable. Note that a design may possess several different resolutions. A design

may also possess individual parallel classes without being resolvable.

The designs studied in this work will be simple: no block will appear more than once. For

simple designs, if 0 < k < v and t ≥ 2, then b ≥ v (a result known as Fisher’s inequal-

ity, which also holds in a variety of other circumstances). A design with v = b is called

2



symmetric, in which case any pair of distinct blocks intersect in exactly λ points. A quasi-
symmetric design is a design in which pairs of distinct blocks intersect in either x or y
points, where x and y are distinct integers dependent on the design.

There are special names given to certain classes of designs. A design with t = 2 is called

a balanced incomplete block design, also BIBD or BIB design. A design with index 1 is

called a Steiner design. The parameters of a Steiner design are sometimes written S(t,k,v).
A Steiner design with v points and k = 3 is a Steiner triple system or STS(v), and a design

with k = 4 is a Steiner quadruple system or SQS(v). These named designs will appear often

in our study of geometric designs.

An incidence matrix of a design D is a binary b× v matrix M = (mi j) whose rows are

indexed by the blocks of D, and columns are indexed by the points. Suppose we label the

points of D by {1,2, . . . ,v}, and arbitrarily label its blocks as {B1,B2, . . . ,Bb}. The entries

of the incidence matrix are defined by:

mi j =

{
1 if block Bi contains point j,
0 otherwise

There are many possible incidence matrices for a design, depending on the ordering chosen

for points and blocks. However, these matrices are all equivalent up to a permutation of

the rows and columns. Thus, we will speak of the incidence matrix of a design unless a

particular ordering of the rows and columns is essential. The orientation of incidence ma-

trices varies depending on the application: many texts label rows with points and columns

with blocks instead. We have chosen to use the block-by-point orientation because we will

usually wish for the rows of the incidence matrix to be the incidence vectors of blocks.

Note that in Chapter 5, we will make extensive use of both orientations of incidence ma-

trices, with important differences. We will specify the orientation of an incidence matrix

whenever it may be unclear.

Two designs D = (P,B) and D′ = (P ′,B′) are said to be isomorphic if there exists a

bijection ϕ : P → P ′ which takes B to B′, that is, for each B ∈ B, ϕ(B) ∈ B′. The

mapping ϕ is an isomorphism of the designs. An isomorphism of a design onto itself is

called an automorphism. The group of all automorphisms of a design is called its auto-
morphism group. A design is cyclic if has an automorphism of order v acting regularly on

its v points. Each isomorphism from D to D′ corresponds to a point permutation on the

incidence matrix of D which produces an incidence matrix for D′. Each automorphism of

a design corresponds to a permutation of the columns of an incidence matrix of the design,

which preserves the collection of rows.

Other fundamental terms related to designs may be found in [BJL99, Sti04]. The terms

defined here emphasize the aspects of designs which will be most useful in this work.

3



1.1.2 Error-correcting codes

Our second major area of study is error-correcting codes. Before giving a formal definition,

we require some preliminary terminology. Suppose x,y ∈ Fn
q. The Hamming distance

d(x,y) is defined as the number of coordinates in which x and y differ. The Hamming weight
wt(x) is defined as the number of nonzero coordinates of x. Note that d(x,y) = wt(y− x).

An [n,k,d]q linear error-correcting code C is a k-dimensional linear subspace of Fn
q such

that for any x,y ∈ C, d(x,y) ≥ d. The value d is called the minimum distance of C. It is

equivalent to specify that wt(c)≥ d for every nonzero c ∈C. If the minimum distance d is

not known, or if we do not wish to emphasize it, we may use the notation [n,k]q.

We are often interested in more than just the minimum distance of a code. The weight
distribution of a code is an ordered list {A0,A1, . . . ,An} in which Ai is the number of words

of weight i. Note that A0 = 1, and Ai = 0 for all 0 < i < d.

Every linear code C may be represented by a generator matrix whose rows span C. Any
matrix whose rows span the code (whether the rows are linearly independent or not) may

be called a generator matrix. Thus, there are typically many generator matrices for a given

code.

For a code C, the dual code C⊥ is defined as the set of vectors orthogonal to every vector

in C. In this work, orthogonality is always with respect to the Euclidean dot product. The

code C⊥ is a linear [n,n− k]q code. Any generator matrix for C⊥ is called a parity check
matrix for C. The minimum distance of d⊥ of C⊥ is not necessarily related to the minimum

distance d of C in any simple way. However, the minimum distance d of C is equal to the

size of the smallest set of linearly dependent columns in a generator matrix for C⊥. This

follows from the fact that any nonzero word c ∈ C must be orthogonal to each row of a

generator matrix of C⊥.

If C ⊆C⊥, then the code C is said to be self orthogonal. If C =C⊥, then C is self-dual. Self-

orthogonality is a frequently studied property of codes. It is especially useful in construct-

ing certain types of quantum error-correcting codes, such as those described in Chapter

4.

For additional terms related to coding theory, the reader is referred to [HP03]. The defini-

tions given here have been chosen to emphasize the aspects of codes which will be most

useful in this dissertation.

4



1.1.3 The codes of a design and p-ranks

Designs and codes are closely related. Here, we will examine the links between these two

fundamental structures.

Let D be a design, and M be its incidence matrix. The rows of M are the incidence vectors

of the blocks of the design. For a prime power q, the span of these vectors over Fq forms a

subspace of Fn
q called the q-ary block code of D, denoted Cq(D). This is the most commonly

studied code associated with a design, and so we will often call it the code of a design.

The rows of a transposed incidence matrix (that is, one which has v rows and b columns)

also span a code, usually called the point code (see for example [BLT96] and [TW97]).

However, other than in Chapter 5, our work will generally focus on the block codes of

designs.

Because the incidence matrix of a design D is a (0,1) matrix, the block code of D may be

constructed over any finite field Fq. The parameters of Cq(D) depend on the parameters

and structure of the design D, as well as the prime power q. In particular, the dimension

of Cq(D) is given by the rank of M over Fq, denoted rankq M and called the “q-rank”

of the matrix. Because all incidence matrices of D have the same q-rank, we will use

the shorthand notation rankq D to indicate this dimension. Because M is a (0,1) matrix,

rankp D = rankpn D for each prime p and integer n ≥ 1. Thus it is customary to study only

the p-rank of D, denoted rankp D for a specified prime p.

The structure and parameters of a design dictates many of the properties of its block code.

As we have seen, the p-rank of a design gives the dimension of the associated block code,

and the length of the Cp(D) is exactly the number of points of the design. However, the

minimum distance of Cp(D) may be much more difficult to determine. In the best cases,

the minimum weight vectors of Cp(D) are exactly scalar multiples of the incidence vectors

of the blocks of D. Although this is not always the case, it is true for many codes which we

will study in this work. In the following section, we will describe the codes obtained from

finite geometry designs, which give rise to particularly interesting codes.

Designs may also be found within codes. A code is said to support a design if there exists

a collection of words in the code whose nonzero positions correspond to the points in

blocks of a design. Note that such vectors need not be binary. A code obtained from the

incidence matrix of a design necessarily supports the original design, but other designs

may be found within the same code. The major result in this area is the Assmus-Mattson
Theorem [AM69], which guarantees the existence of designs in many codes.
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1.2 Finite geometry designs and codes

We have now developed the tools which will allow us to introduce the central combinatorial

objects in this dissertation. Finite geometry designs are a class of designs obtained from

affine and projective geometries. These designs and their block codes have a great deal of

structure and important combinatorial properties, which has lead to their use in many fields

of study. In this section, we will give constructions and parameters for these designs, and

also identify the codes spanned by their incidence matrices.

We will approach the construction of finite geometries and designs from the point of view

of vector spaces. Throughout, let q = pe be a prime power with e ≥ 1. As a result of

our focus on vector spaces, we will frequently make use of the Gaussian coefficient
[m

i

]
q,

which counts the number of i-dimensional subspaces of an m-dimensional vector space

over Fq: [m
i

]
q
=

(qm −1)(qm−1 −1) · · ·(qm−i+1 −1)

(qi −1)(qi−1 −1) · · ·(q−1)
.

Here 0 ≤ i ≤ m. Note that by convention,
[m

0

]
q = 1.

We will examine finite geometry designs obtained from projective and affine geometries.

While we will introduce each separately, they share fundamental links which will be de-

scribed below. We will also be interested in designs which have the same parameters as

a finite geometry design, but which are not isomorphic to that design. These designs are

called pseudo-geometric designs.

1.2.1 Projective Geometry Designs

We begin by defining the projective geometry of dimension m over Fq, denoted PG(m,q).
The points of PG(m,q) are the 1-dimensional subspaces of Fm+1

q , excluding the zero vector.

The t-dimensional subspaces of PG(m,q) (1≤ t ≤m−1) are the (t+1)-dimensional vector

subspaces of Fm+1
q , excluding the zero vector. Note that, when speaking of projective

geometries or designs, the projective dimension t of a subspace is always one lower than the

vector dimension t +1 of the same subspace. We will always use the projective dimension

unless otherwise specified. For consistency, we will frequently speak of PG(m − 1,q),
because its underlying vector space has dimension m.

The designs derived from this space are defined as follows.
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Definition 1. The projective geometry design PGt(m,q) is the design whose points are
the points of PG(m,q), and whose blocks are the t-dimensional projective subspaces of
PG(m,q).

The design PGt(m,q) has parameters

2−
(

qm+1 −1

q−1
,
qt+1 −1

q−1
,

[
m−1

t −1

]
q

)
.

This design has b =
[

m+1
t+1

]
q

blocks, and each point appears in r =
[m

t

]
q blocks.

Some authors refer to the projective designs with the notation PG(m,q) : t or PGm,t(q).

Projective geometries and projective geometry designs have been extensively studied. The

designs which have received the most attention are those at the extreme limits of the block

sizes: t = 1 and t = m− 1. A design with the same parameters as PG1(2,q) is called a

projective plane of order q. Note that the finite geometry design is typically not the only

projective plane of a given order. This is related to the question of the existence of designs

with the same parameters as a geometric design. All projective planes of order q are Steiner

designs with parameters 2− (q2 +q+1,q+1,1).

Projective planes are a special case of hyperplane designs, which are designs with the

same parameters as PGm−1(m,q). These well-studied designs are symmetric designs with

parameters 2− (qm+1−1
q−1 , qm−1

q−1 , qm−1−1
q−1 ). Again, there are typically many pseudo-geometric

designs with these parameters.

1.2.2 Affine Geometry Designs

Our second class of finite geometry designs are constructed from the affine geometry of
dimension m over Fq, denoted by AG(m,q). The points of AG(m,q) are the vectors of Fm

q .

The t-dimensional affine subspaces of the geometry are the t-dimensional vector subspaces

of Fm
q and their cosets. These subspaces are sometimes referred to as t-flats.

Definition 2. The affine geometry design of AGt(m,q) is the design whose points are the
points of AG(m,q), and whose blocks are the t-dimensional affine subspaces of AG(m,q).
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The parameters of AGt(m,q) are

2−
(

qm,qt ,

[
m−1

t −1

]
q

)
.

This design has b = qm−t [m
t

]
q blocks, and each point appears in r =

[m
t

]
q points. In the

binary case, AGt(m,2) is also a 3-design, with parameters:

3−
(

2m,2t ,

[
m−2

t −2

]
2

)
.

The set of cosets of a fixed vector subspace of dimension t in AG(m,q) form a natural

parallel class of blocks in AGt(m,q). Each parallel class in AGt(m,q) contains qm−t blocks.

The design AGt(m,q) is resolvable, with the sets of natural parallel classes forming the

resolution.

Some authors refer to the affine geometry designs with the notation AG(m,q) : t, AGm,t(q),
or EG(m,q) : t, where EG stands for “Euclidean Geometry”. In some works, EGt(m,q)
denotes the design derived from AGt(m,q) by taking all points except the origin and all

blocks not containing the origin. These structures may assist in proving results for the full

affine geometry design, and are sometimes interesting in their own right. We will study

Euclidean Geometry designs in Chapter 5.

A design with the same parameters as AG1(2,q) (that is, a 2-(q2,q,1) design) is referred

to as an affine plane of order q. The designs created from points and hyperplanes, that

is, AGm−1(m,q), are referred to as hyperplane designs. As in the projective case, affine

hyperplane designs have been extensively studied – much more so than designs created

from subspaces of other dimensions.

Affine geometry designs are closely related to projective geometry designs by the following

well-known construction:

Construction 1. Let H be any hyperplane of PG(m,q). Let B be the blocks of PGt(m,q).
Then the structure with point set P \H and block set {B \H : B ∈ B and B 
⊆ H} is iso-
morphic to AGt(m,q).

Thus each projective geometry design comes with a “built in” affine geometry design. This

result is very helpful in proving results for both projective and affine designs.
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1.2.3 The finite geometry codes and their duals

The block codes of finite geometry designs – usually termed the finite geometry codes –

have many desirable qualities. They are very closely related to generalized Reed-Muller

codes. For a more detailed discussion of the links between generalized Reed-Muller codes

and the finite geometry codes, see Assmus and Key’s seminal book, “Designs and their

Codes” [AK92, Chapter 5]. In particular Theorem 5.3.3 (p. 151) and Theorem 5.7.9

(p. 192) give the exact links between generalized Reed-Muller codes and finite geome-

try codes. A different method of construction is given in [HP03]. In this section, we will

only present results which apply directly to the finite geometry codes.

The block codes of PGt(m,q) and AGt(m,q) are traditionally taken over Fp, the prime sub-

field of Fq. The duals of these finite geometry codes are also frequently studied, although

their parameters are not as well-known.

We first consider the block codes of projective geometry designs. Let D = PGt(m,q). Then

Cp(D) is a linear code with parameters[
qm+1 −1

q−1
, rankp D,

qt+1 −1

q−1

]
p

where rankp D denotes the p-rank of the projective geometry design. This rank can be

calculated by using an extensive summation formula of Hamada [Ham68] or one of its

many simplifications (which will be presented in Chapter 2), but in general there is not a

simple formula for rankp D. The minimum weight words are exactly scalar multiples of the

incidence vectors of blocks of D.

The dual projective geometry code Cp(D)⊥ has a minimum distance d⊥ which is bounded

as follows [AK92]:

(q+ p)qm−t−1 ≤ d⊥ ≤ 2qm−t (1.1)

The bounds are equal (and thus tight) when q = p. This bound has been improved by K. L.

Clark and J. D. Key [CK99], for fields of odd characteristic and prime-power order:

4(qm −1)

3(qt −1)
+

2

3
≤ d⊥ ≤ 2qm−t . (1.2)

If additionally p 
= 3, then

3(qm −1)

2(qt −1)
+

1

2
≤ d⊥ ≤ 2qm−t . (1.3)
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When q = 2e is a power of 2, Calkin, Key, and de Resmini give an exact value [CKdR99]:

d⊥ = (q+2)qm−t−1. (1.4)

A great deal of work has also been done on finding gaps in the weight distribution of

Cp(D)⊥.

The block codes of affine geometry designs are very similar. Let D = AGt(m,q). Then

Cp(D) is a linear code with parameters[
qm, rankp D,qt]

p

As before, rankp D can be calculated using Hamada’s formula [Ham68]. The minimum

weight words are exactly scalar multiples of the incidence vectors of blocks of D.

The dual affine geometry code Cp(D)⊥ has minimum distance d⊥ which is bounded by

exactly the same bounds in Equations (1.1) through (1.4). The exact formula for the p-

ranks of finite geometry designs will be given in Chapter 2, along with several simplified

rank formulas which apply in special cases.

1.2.4 Decoding schemes

Among the reasons for studying the finite geometry codes and their duals are the encod-

ing and decoding schemes associated with them. Suppose that a codeword c has been

transmitted over a noisy channel, such that the value of each coordinate in c is changed

independently with probability p. When words are transmitted over this binary symmet-
ric channel, it is highly likely that errors introduced by the channel could transform the

codeword into a vector which is not a codeword. The challenge is then to determine the

codeword which was most likely transmitted, given the received word.

Finite geometry codes and their duals admit two particularly good decoding algorithms.

Finite geometry codes are particularly amenable to an easy-to-implement decoding method

known as majority logic decoding. These codes also provide some of the best examples of

low-density parity-check (or LDPC) codes, which can be decoded by a fast and efficient

decoding scheme known as the sum-product algorithm. These algorithms both rely on the

structure of a code’s dual. Thus, to take advantage of the geometric structure of finite

geometry codes, we must interpret each finite geometry code as the dual of the code to be

decoded. For this reason, the dual of a finite geometry code is often known as a geometric
code. (See, for example, [AK92].)
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The details of majority-logic and sum-product decoding will be described in detail in Chap-

ters 3 and 5, respectively. Here, we briefly describe the history and importance of these al-

gorithms. We first describe a decoding method which defines a baseline of comparison for

other decoding algorithms. The traditional decoding method known as nearest-neighbor
decoding depends on the minimum distance d of a code. If at most �(d −1)/2� errors have

occurred in a received vector z, then there is a unique codeword which is “nearest” (in Ham-

ming distance) to z. This guarantees correction of at most �(d −1)/2� errors, and detection

of up to d − 1 errors. Unfortunately, this decoding method can require large amounts of

computational resources. As a result, a great deal of effort has been expended to identify

faster and simpler decoding schemes which give similar results.

Majority-logic decoding was one of the first efficient decoding schemes to be discovered.

The decoding method is easy to implement in hardware, allowing for excellent decoding

speed. The idea of majority-logic decoding was first described by Reed [Ree53], in terms

of the binary Reed-Muller codes. This was extended by Massey [Mas62], who described

a multiple-step decoding procedure which applied to all geometric codes. Smith [Smi67]

studied the properties of finite geometry codes and the use of majority-logic decoding with

them in great detail, as well as developing a generalized decoding algorithm. This decoding

method often guarantees the same level of error-correction as nearest-neighbor decoding,

and in some cases, it can correct even more errors than is guaranteed by the minimum

distance [Mas62]. The geometric codes are among the best majority-logic decodable codes,

and have been used in deep-space communication and telecommunications.

Similarly, the sum-product algorithm is a fast and efficient algorithm which may be im-

plemented in a simple manner. The algorithm makes use of a sparse parity-check matrix

– hence codes which satisfy this are given the name low-density parity-check codes, or

LDPC codes. LDPC codes and the sum-product decoding algorithm were first described in

1963 by Gallager [Gal63], and rediscovered by MacKay and Neal [MN95] in 1995. Since

that time, the study of these codes has expanded rapidly. The sum-product algorithm is

probabilistic and does not guarantee perfect decoding. However, it does produce excellent

practical decoding performance: Many of the codes with the best-known real-world per-

formance are LDPC codes. The geometric codes are classical examples of LDPC codes

which admit sum-product decoding, giving excellent results.

The fact that the geometric codes are closely linked to finite geometry designs provides

many of their best decoding properties. We will examine the relation between majority-

logic decoding and the modified finite geometry designs in Chapter 3, by showing that

the block codes of these designs have strong performance under multi-step majority logic

decoding. We will demonstrate that the strength of the geometric codes under sum-product

decoding extends to a quantum setting in Chapter 5.
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1.3 Summary and contributions

Designs and error-correcting codes are two fundamental structures in the study of combina-

torics. Finite geometry designs provide some of the most interesting and highly structured

examples in both of these fields. This dissertation uses finite geometry designs as a basis

for studying a variety of combinatorial objects.

In Chapter 2, we will use affine geometry designs to construct an infinite family of coun-

terexamples to Hamada’s conjecture. This provides the first known infinite family of coun-

terexamples in the affine case, and also provides tools which will be used in several other

chapters.

Chapter 3 examines the performance of the block codes of these modified geometric de-

signs under majority-logic decoding. The error-correcting performance of these codes is

close or equal to the performance of the finite geometry codes on which they are based.

The finite geometry codes are some of the best-known codes in this regard, demonstrating

a close link between the modified codes and the finite geometry codes.

In Chapter 4, we use relatives of finite geometry designs to construct infinite families of

quantum stabilizer error-correcting codes. These codes provide new examples of quantum

codes for a wide variety of parameters.

Chapter 5 develops a general theory for constructing a different, more flexible category of

quantum error-correcting codes. This chapter demonstrates how Steiner designs – and in

particular, certain finite geometry designs – can solve a difficult quantum problem. This

gives the first general construction in which the parameters of the resulting codes are fully

understood, rather than being partly determined by random choices.

Finally, Chapter 6 summarizes the work in this dissertation, and gives directions for future

research.

In each chapter, the structure of finite geometry designs is the basis upon which our results

are built.
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Chapter 2

Affine geometry designs, polarities, and
Hamada’s conjecture

In this chapter∗ we examine the history surrounding Hamada’s conjecture. We then use

affine geometry designs to construct an infinite family of counterexamples to Hamada’s

conjecture. This provides the first known infinite family of counterexamples in the affine

case. The constructions and designs developed here will be used in several other chapters.

2.1 Ranks of incidence matrices and Hamada’s conjecture

One of the earliest and most fundamental results in design theory is known as Fisher’s

inequality: a 2-design with v points and b blocks of size k (where 0 < k < v) must have

v ≤ b. As a result, the b× v incidence matrix of any 2-design has at least as many rows as

columns. Thus, this simple statement immediately implies that the rank of the incidence

matrix is at most v, no matter what field the rank is taken over.

From this point, the study of the ranks of incidence matrices becomes much more com-

plicated. Motivated by the study of the geometric codes and their majority-logic decoding

algorithms, a great deal of effort has gone into determining the p-ranks of incidence matri-

ces of geometric designs over various fields.

∗Sections 2.2 and beyond are reprinted from Journal of Combinatorial Theory, Series A, Volume 18, D. Clark,

D. Jungnickel, and V. D. Tonchev: Affine geometry designs, polarities, and Hamada’s conjecture, 231–239

[CJT11], Copyright 2011, with permission from Elsevier. See permission letter in Appendix C. The article is

presented here with an expanded historical review, along with minor editorial changes.
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In this section, we will examine historical results concerning the p-ranks of finite geometry

designs. This leads naturally to Hamada’s conjecture, a key conjecture which motivates the

major results of this chapter.

2.1.1 Ranks of Finite Geometry Designs

By Fisher’s inequality, any 2-design D satisfies rank D ≤ v over any field. In particular,

over any field of characteristic 0 (most commonly, C), rankD = v. It is natural to ask

about the ranks of incidence matrices when taken over fields of finite characteristic.

Historically, it is most common to study the p-rank of finite geometry designs, where p is

the characteristic of the field over which the design was constructed. In the case of pseudo-

geometric designs which have the same parameters as a finite geometry design, the rank is

taken over the same field Fp as the geometric design.

To justify this focus on the p-rank, we will examine a result of Hamada. The following

result shows that, effectively, the only numbers p over which the p-rank of a design is

interesting are those such that p | r−λ . More specifically, we have this result:

Theorem 1 (Hamada [Ham68]). Let D be a 2-(v,k,λ ) design with replication number r.
Let p be a prime. Then:

1. If p � r(r−λ ), then rankp D = v.

2. If p | r but p � r−λ , then rankp D ∈ {v,v−1}.

Only when p | r−λ may the p-rank be less than v−1.

In particular, for a finite geometry design constructed over Fq where q = pe, we have

p | r−λ . It is possible that other primes may divide r−λ . However, the work of Mortimer

[Mor80] and Frumkin and Yakir [FY90] shows that such primes will not produce interesting

codes. In fact, such codes are typically trivial, consisting of the entire vector space, or else

consist of all of the even-weight words in the vector space. Thus, we will focus on the

p-rank of PGt(m, pe) and AGt(m, pe).

The ranks of the finite geometry designs have been studied since the 1950’s, due to interest

in the dimensions of these majority-logic decodable codes. The p-rank of a geometric
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projective plane of order q was first given by Graham and MacWilliams [GM66] (1966)

and independently by Weldon [Wel67] (1967):

Theorem 2 (Graham and MacWilliams [GM66], Weldon [Wel67]). For the geometric pro-
jective plane,

rankp PG1(2, pe) =

(
p+1

2

)e

+1.

Note that projective planes can be viewed as hyperplane designs: lines are hyperplanes in

a 2-dimensional projective geometry. This result was generalized by Smith [Smi67] in his

1967 dissertation, and later in a 1969 paper [Smi69] which thoroughly introduced the codes

and dimensions obtained from finite geometries:

Theorem 3 (Smith [Smi67], [Smi69]). For the classical projective geometry design of
points and hyperplanes,

rankp PGm−1(m, pe) =

(
p+m−1

m

)e

+1.

This result was found independently, using different methods, by Goethals and Delsarte

[GD68] in 1968, and MacWilliams and Mann [MM68] (also in 1968, with extensive use of

character theory) and conjectured by Rudolph [Rud67] in 1967.

MacWilliams and Mann also provided this result for a design closely related to affine ge-

ometries:

Theorem 4 (MacWilliams and Mann [MM68]). For the incidence structure D of points
other than the origin and hyperplanes not containing the origin in an affine geometry,

rankp D =

(
m+ p−1

m

)e

−1.

The grandfather of rank formulas was found by Hamada in 1968 [Ham68] using an exten-

sion of the methods of Smith [Smi67]. Hamada also found a slightly simplified version of

this formula in 1973 [Ham73], which we present below.

Theorem 5 (Hamada [Ham68, Ham73]). The p-rank of PGt(m, pe) is exactly:

∑
(s0,s1,...,se)

e−1

∏
j=0

L(s j+1,s j)

∑
i=0

(−1)i
(

m+1

i

)(
m+ s j+1 p− s j − ip

m

)
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where the sum is taken over all ordered sets (s0,s1, . . . ,se) such that s0 = se, s j ∈ Z such
that t +1 ≤ s j ≤ m+1 and 0 ≤ s j+1 p− s j ≤ (m+1)(p−1), and where

L(s j+1,s j) =

⌊
s j+1 p− s j

p

⌋
.

Hamada also provided several formulas for variations on AGt(m,q) (such as the incidence

matrix of points and t-flats not through the origin), as well as the following useful relation

for the full affine case:

Theorem 6 (Hamada [Ham68]). The affine geometry design AGt(m,q) satisfies:

rankp AGt(m,q) = rankp PGt(m,q)− rankp PGt(m−1,q)

These summation formulas give the ranks of all projective and affine geometry designs.

However, these formulas require the calculation of many parameters, and are difficult to

work with. Thus, much effort has been expended in finding simpler formulas for specific

cases.

Hamada provided several simplifications, including a result identical to Smith (Theorem

3). Hamada also proved these results (which also follow from Theorem 3):

Corollary 1 (Hamada [Ham68]).

rankp AGm−1(m, pe) =

(
m+ p−1

m

)e

.

Corollary 2 (Hamada [Ham68]).

rankp AGt(m,2) =
m−t

∑
s=0

(
m
s

)
.

In 1979, Sachar found a formula for the p-rank of all projective planes of prime order,

which includes the geometric plane PG1(2, p):

Theorem 7 (Sachar [Sac79]). Let P be a 2-(p2 + p+1, p+1,1) design over Fp, where p
is a prime. Then rankp P = (p2 + p+2)/2.

Notice also that this result is an equality, not an inequality: all projective planes (geometric

or not) have the same rank. This relates to the “Hamada-Sachar conjecture,” (Conjecture

16



4, to be discussed in Subsection 2.1.2) which conjectures that geometric projective planes

are the unique designs with minimum rank, among all projective planes of the same order.

The truth of the Hamada-Sachar conjecture together with this theorem would therefore

show that the only projective planes of prime order are geometric. This result extends an

earlier result of Assmus, Mattson, and Guza [AMG74] (1974), who produced the same

rank formula for projective planes of order n, where n ≡ 2 (mod 4) (including, at the time,

a putative plane of order 10).

In some cases, the ranks of designs over a prime order field prove easier to find than those

over a prime-power field. We present several results in this vein:

Theorem 8 (Key and Mackenzie [KM91], 1991). For an affine geometry design whose
blocks have half the dimension of the vector space, over a prime field,

rankp AGt(2t, p) =
t−1

∑
i=0

(−1)i
(

2t
i

)(
t +(t − i)p

2t

)
.

Theorem 9 (Hirschfeld and Shaw [HS94], 1994). For a projective geometry design over a
prime field,

rankp PGt(m, p) =
pm +1

p−1
−

t−1

∑
i=0

(−1)i
(
(t − i)(p−1)−1

i

)(
t +(t − i)p

m− i

)
.

The special case of this formula for t = 1 was also found by Ceccherini and Hirschfeld

[CH92] in 1992. All of these are summarized in a survey by Assmus and Key [AK99].

Finally, a simplified formula has also been extracted for lines in affine geometry designs

over a prime field:

Theorem 10 (Assmus and Key [AK99]). For the affine geometry design of points and lines
over a prime field,

rankp AG1(m, p) = pm −
(

m+ p−2

m

)
.

In the case that p = 3, AG1(m,3) is a Steiner triple system. Thus, a simplified version of

this result was used in [DHV78].

Finally, in 1999, Calkin, Key, and de Resmini [CKdR99] proved that the p-rank of any

projective geometry design (and hence affine geometry designs as well) is a polynomial

function in the dimension of the geometry:
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Theorem 11 (Calkin, Key, and de Resmini [CKdR99]). The p-rank of PGt(m,q) is given
by

rankp PGt(m,q) =
qm+1 −1

q−1
−h(m)

where, for any fixed value of t, h(m) is a polynomial in m of degree (q−1)t.

A number of additional results on p-ranks are given in various proofs of special cases of

Hamada’s conjecture, which will be covered in the next subsection.

2.1.2 Hamada’s conjecture

Hamada’s extensive work on the ranks of projective and affine geometric designs resulted

in several papers [Ham68, Ham73] which brought together several special results and es-

tablished the basic formulas for ranks of these designs. Near the end of Part 1 of [Ham73],

Hamada presents several tables of pseudo-geometric designs, together with their p-ranks,

where p is the characteristic of the field used in constructing the corresponding finite geom-

etry design. The only designs of minimum rank in these tables are the geometric designs.

Hamada made the following comment: “This suggests that the p-rank of the BIB design

PG(t,q): μ or EG(t,q): μ might be, in general, minimum in BIB designs with the same

parameters.” This conjecture is usually restated in the following manner:

Conjecture 1 (Hamada [Ham68, Ham73], strong version). Let G be a geometric design
over Fq (q = pe a prime power), and let D be any design with the same parameters as G.
Then rankp D ≥ rankp G with equality if and only if D is isomorphic to G.

Hamada’s conjecture is important for several reasons. First, Hamada’s conjecture suggests

that the codes whose parity check matrices are given by the incidence matrices of finite ge-

ometry designs have maximum dimension among all codes obtained from designs with the

same parameters. This indicates that these duals are the best possible choices for majority-

logic decoding, among all codes with the same parameters. In addition, Hamada’s con-

jecture indicates that the p-rank may be a simple and useful invariant which distinguishes

the finite geometry designs from pseudo-geometric designs. The p-rank of an incidence

matrix may be calculated in polynomial time, and is considerably easier than the question

of design isomorphism, which is known to be as hard as the notoriously difficult question

of graph isomorphism. Finally, the truth of Hamada’s conjecture would immediately solve

the famous and long-open question of whether there exist non-geometric projective planes

of prime order.
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We will separate Hamada’s conjecture into a “strong” and a “weak” version. The strong

version is as stated above. The weak version drops the requirement of uniqueness:

Conjecture 2 (Hamada [Ham68, Ham73], weak version). The p-rank of a finite geometry
design is the minimum p-rank among all designs with the same parameters.

The strong version of Hamada’s conjecture is known to be false in general, as there exist

pseudo-designs with the same parameters and p-ranks as finite geometry designs, but which

are not themselves geometric. However, no counterexamples have been found to the weak

version. That is, there are no known pseudo-geometric designs with a lower p-rank than the

corresponding finite geometry designs. In fact, the truth of the weak version is completely

unknown, except in a few cases in which the strong version has also been proved. In

this review, references to Hamada’s conjecture will always mean the strong version unless

otherwise specified.

Because of the properties of the relatively small number of known counterexamples, a

restricted version of Hamada’s conjecture was made by Assmus:

Conjecture 3 (Assmus, cf [Ton99]). The strong form of Hamada’s conjecture is true for
the designs of points and hyperplanes in a projective or affine geometry.

However this too has been shown to be false in general, as will be shown later. Finally,

another version of the conjecture was made independently by Sachar [Sac79]:

Conjecture 4 (Hamada-Sachar [Sac79]). The strong form of Hamada’s conjecture is true
for PG1(2,q).

Note that PG1(2,q) is a projective plane, and so this conjecture may be restated as: the p-

rank of any projective plane of order q is at least rankp PG1(2,q), with equality if and only

if the plane is desarguesian. This is considered to be a particularly important conjecture

(see, for example, [AK66]). Together with Sachar’s result on the p-rank of projective plans

of prime order (Theorem 7), the conjecture’s truth would imply that the only projective

planes of prime order are the classical geometric planes.

2.1.3 Proved cases

This section will survey the cases in which Hamada’s conjecture is known to be true.

Hamada’s extensive original papers [Ham68, Ham73] on the topic of the ranks of incidence
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matrices of designs did not prove the conjecture in any cases. However, they did provide

a large amount of computational evidence supporting the conjecture. The first proof of a

particular case came from Hamada and Ohmori [HO75] in 1975, who proved the strong

version of the conjecture for the binary hyperplane designs:

Theorem 12 (Hamada, Ohmori [HO75]). The strong form of Hamada’s conjecture is true
for PGm−1(m,2) and AGm−1(m,2). In particular:

1. For any design D with the same parameters as PGm−1(m,2), rank2 (D)≥ m+2 with
equality if and only if D is isomorphic to PGm−1(m,2).

2. For any design D with the same parameters as AGm−1(m,2), rank2 (D)≥ m+1 with
equality if and only if D is isomorphic to AGm−1(m,2).

The approach used by Hamada and Ohmori was, partly, to identify a unique subcode con-

tained within the block code of the complement of any pseudo-geometric design of mini-

mum rank. This approach was extended by Tonchev [Ton99], a result which will be dis-

cussed later in this section.

The next progress appeared in 1978, when Doyen, Hubaut, and Vandensavel [DHV78]

proved the conjecture for certain Steiner designs which are equivalent to geometric designs:

Theorem 13 (Doyen, Hubaut, Vandensavel [DHV78]). The strong form of Hamada’s con-
jecture is true for PG1(m−1,2) and AG1(m,3). In particular:

1. For any design D with the same parameters as PG1(m−1,2), rank2 (D)≥ 2m−m−1

with equality if and only if D is isomorphic to PG1(m−1,2).

2. For any design D with the same parameters as AG1(m,3), rank3 (D) ≥ 3m − 1−m
with equality if and only if D is isomorphic to AG1(m,3).

The authors phrase these results in terms of Steiner triple systems. In particular, the pa-

per gives results for ST S(2m − 1) and ST S(3m), which have parameters of PG1(m,2) and

AG1(m,3), respectively.

The authors obtain their results by identifying substructures (called projective or affine

“hyperplanes”) in pseudo-geometric designs, which are isomorphic to smaller projective

spaces. By showing that only the finite geometry designs contain the largest possible struc-

ture of projective hyperplanes, the uniqueness is established.
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Two years later, in 1980, Teirlinck proved Hamada’s conjecture for the case of planes in

a binary affine design. This theorem summarizes his result, based on the presentation of

Dehon [Deh80] in terms of finite geometries:

Theorem 14 (Teirlinck [Tei80]). The strong form of Hamada’s conjecture is true for the
design AG2(m,2). In particular, for any design D with the same parameters as AG2(m,2),
rank2 (D)≥ 2m −1−m with equality if and only if D is isomorphic to AG2(m,2).

Teirlinck’s results extend the method used in [DHV78] (see also [Deh80]), by finding the

“projective dimension” of a substructure contained in each quadruple system. However,

Teirlinck’s results are not stated in the language of geometric designs and ranks, nor does

he mention Hamada’s conjecture. Note that AG2(m,2) is a 3-(2m,4,1) design, also known

as a Steiner quadruple system and denoted SQS(2m).

There have also been several partial proofs of Hamada’s conjecture. That is, there are

proofs that certain geometric designs are the unique designs with minimum p-rank among

a more restricted set of designs.

A paper of Tonchev and Lam [LT96], [LT00] (1996) provides support for Hamada’s con-

jecture. The authors completely classify affine resolvable 2-(27,9,4) designs, these being

the parameters of AG2(3,3), and find that only the classical design has minimum rank.

An affine resolvable design is a resolvable design which possesses a unique resolution, in

which each pair of non-parallel blocks intersect in a constant number of points. This does

not completely finish this case, however, as a design with such parameters need not be

affine resolvable.

A paper of Sarami and Tonchev [ST08] (2008) also provides support, by showing that

the only cyclic quasi-symmetric design with the same parameters and block intersection

numbers as PG3(5,2) is the finite geometry design. Again, although these are the properties

of the geometric design, they need not be the properties of other designs with the same

parameters.

Azzam, Clark, and Tonchev [ACT09] (2008) searched for cyclic codes and extensions with

the same parameters and weight distributions as the codes of certain finite geometry de-

signs, whose extended codes are self-orthogonal (as are the Reed-Muller codes in these

cases). The results of their search did not produce any new codes besides the known Reed-

Muller codes. Thus the authors provide evidence supporting Hamada’s conjecture in the

following cases: PG4(6,2), PG3(6,2), PG5(7,2), AG5(7,2), AG4(7,2), and AG6(8,2).

More recently, a new category of Hamada-type results has appeared under modified con-

ditions. These results are based on a generalization of the concept of the “dimension” of a
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design, first proposed by Tonchev in 1999 [Ton99]. In fact, the results cited below are the

first characterizations of the geometric designs which are fully based in coding theory. The

first generalized definition of “dimension” is given below:

Definition 3 (Tonchev [Ton99]). The dimension of a t-(v,k,λ ) design D over Fq, denoted
dim(D), is the minimum dimension among all linear codes of length v over Fq whose code
words of weight k support the blocks of D.

This definition is based on the idea that words in a code may support the blocks of a design

without being equal to the incidence vectors of those blocks. Instead, the words which

support the design may have any nonzero elements from Fq in their nonzero positions.

Hamada’s conjecture extends naturally to this definition. Using this definition, Tonchev

proved that the following Hamada-type results:

Theorem 15 (Tonchev [Ton99]). The strong form of Hamada’s conjecture (with dimen-
sion as in Definition 3) is true for the complementary design of PGm−1(m,q) and for the
complementary design of AGm−1(m,q). In particular:

1. For any design D with the same parameters as the complement of PGm−1(m,q),
dim(D) ≥ m+ 1 with equality if and only if D is isomorphic to the complementary
design of PGm−1(m,q).

2. For any design D with the same parameters as the complement of AGm−1(m,q),
dim(D) ≥ m+ 1 with equality if and only if D is isomorphic to the complementary
design of AGm−1(m,q).

Here the complementary design is the design whose blocks are the complements of the

blocks in the original design.

A similar result in the spirit of Hamada’s conjecture was also proved by Tonchev in 2003

[Ton03] using the generalied dimension as in Definition 3. This result covers “complete”

designs, that is, designs whose blocks consist of all k-subsets of their points. These designs

have parameters k-(n,k,1).

Theorem 16 (Tonchev [Ton03]). The dimension (as in Definition 3) over Fq of a complete
design is at least n− k+1, with equality if and only if a [n,n− k+1,k]q code exists.

Such a code is called a Maximum Distance Separable (or MDS) code, and its existence is

closely related to the existence of certain substructures in projective geometries.
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The concept of generalized dimension was further generalized and extended by Jungnickel

and Tonchev in a series of two papers [JTa, JTb]. We will require a few preliminary con-

cepts. The trace code of a code C over Fqt is a code over Fq obtained from C by applying

the trace map from Fqt to Fq coordinate-wise: Tr(x) = x+ x2 + · · ·+ xqt−1
. Similarly, an

Fqt -incidence matrix is an incidence matrix in which the nonzero coordinates have been

replaced by nonzero elements of Fqt . Note that there are many possible Fqt -incidence ma-

trices for the same design.

Definition 4 (Jungnickel and Tonchev [JTa, JTb]). Let D be the complement of a finite sim-
ple incidence structure, and let E = Fqt be an extension field of Fq. Let M be an incidence
matrix for D. Then the q-dimension of D is the smallest dimension of any Fq-linear code
which arises as the trace code of M, where E runs over all finite extensions of Fq, and M
runs over all E-incidence matrices of D.

As with the original definition, the code spanned by an E-incidence matrix may contain

words which support the blocks of a design without being equal to the incidence vectors of

the blocks. Jungnickel and Tonchev used this concept of q-dimension to produce Hamada-

type results for the complements of projective geometry designs:

Theorem 17 (Jungnickel, Tonchev [JTa]). Let D be a design with the parameters of the
complement of PGt(m,q) or AGt(m,q). Then the q-dimension of D is at least m+ 1, with
equality if D is the complement of a geometric design.

The authors also give a result which proves the equivalent of the strong version of Hamada’s

conjecture for certain designs, under the q-dimension:

Theorem 18 (Jungnickel, Tonchev [JTa]). Let D be a design with the parameters of the
complement of PGt(m,q) (for 1 ≤ t ≤ m− 1) or AGt(m,q) (for t = 1 or (m− 2)/2 ≤ t ≤
m− 1). If the q-dimension of D is m+ 1, then D is the complement of the corresponding
geometric design.

These results generalize the work of Tonchev [Ton99], which applied specifically to com-

plements of hyperplane designs, and which in turn generalized the results of Hamada and

Ohmori [HO75]. However, these results are special cases of a much more general result

which applies to more general structures [JTb]. Thus, it seems that the idea of q-dimension

is a very promising development, and will hopefully produce further Hamada-type charac-

terizations in the future.

To summarize, the strong form of Hamada’s conjecture is known to be true for the following

geometric designs: PGm−1(m,2) and AGm−1(m,2), PG1(m,2) and AG1(m,3), AG2(m,2),
and finally, a modified form of the conjecture is true for the complementary designs of
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PGt(m,q) (for 1 ≤ t ≤ m−1) and AGt(m,q) (for t = 1 or (m−2)/2 ≤ t ≤ m−1), using the

modified definition of “dimension” as in [JTb]. As a special case, we note that Hamada’s

conjecture is true for all designs obtained from PG(m−1,2) or AG(m,2) for m ≤ 4.

2.1.4 Counterexamples

The strong form of Hamada’s conjecture has been shown to be false in general. As of

this writing, all known counterexamples provide examples of pseudo-geometric designs

with the same p-rank as geometric designs, but which are not isomorphic to the geometric

designs. However, there are no known pseudo-geometric designs which have a lower rank

than the geometric designs. Thus the strong version of Hamada’s conjecture is false, but

the weak version remains unknown.

The first counterexample to Hamada’s conjecture appeared in a paper of Goethals and Del-

sarte [GD68] from 1968, and was published before Hamada made his conjecture. The paper

describes a class of majority-logic decodable codes. The dual of one such code is a [31,16]
binary code which supports a design with the same parameters and 2-rank as PG2(4,2), but

which is not isomorphic. This result was generalized by Tonchev [Ton86] in 1986:

Theorem 19 (Tonchev [Ton86]). There exist exactly five nonisomorphic quasi-symmetric
designs with the parameters of PG2(4,2). The extensions of these designs are nonisomor-
phic and have the parameters of AG3(5,2). All of these designs have 2-rank 16, the same
as the respective finite geometric designs.

This result is a consequence of the classification of extremal doubly-even [32,16] binary

codes. Extremal codes are those with the largest possible minimum distance, and doubly-
even codes contain only codewords whose weights are multiples of 4. The minimum weight

words of these codes may support a pseudo-geometric design. The 2-ranks of all such de-

signs obtained from these extremal doubly-even codes are equal (because the codes have

the same dimension), but designs obtained from nonisomorphic codes are themselves non-

isomorphic. This classification also implies a classification of self-orthogonal 3-(32,8,7)
designs, where self-orthogonal indicates that the intersection of any two blocks is even.

For many years, the designs from [Ton86] were the only known counterexamples. The next

examples were produced by Harada, Lam, and Tonchev [HLT05] in 2005:

Theorem 20 (Harada, Lam, Tonchev [HLT05]). There exist at least two designs with the
same parameters and 2-rank as AG2(3,4), which are not geometric.
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This result follows from a computer search enumerating all symmetric (4,4)-nets. A sym-
metric net is a symmetric 1-design with additional structural properties. The words of

weight 16 in the block code of some symmetric (4,4)-nets support 2-(64,16,5) designs.

These are the parameters of AG2(3,4). Among the nets which the authors discovered were

three nets with 2-rank 16. The codes generated by these nets support three non-isomorphic

2-(64,16,5) designs with 2-rank 16, only one of which is isomorphic to AG2(3,4).

These designs are also the first and (currently) only counterexamples to the Assmus conjec-

ture. In addition, these were, at the time, the only known counterexamples not constructed

over the binary field, and remain the only counterexamples over a field of non-prime order.

The counterexamples found by Harada, Lam, and Tonchev have been found in other con-

texts. In 2008, Mavron, McDonough, and Tonchev [MMT08] found one of the counterex-

amples using line spreads in PG(5,2). A line in a design is the intersection of all blocks

containing a given pair of points. A line spread is a set of lines which partition the points

of the design. A construction due to Rahilly [Rah91] produces affine resolvable 2-designs

from certain symmetric 2-designs whose duals contain a line spread. Using this technique

on spreads in the dual of PG(5,2), one of the counterexamples of [HLT05] was found. In

2009, Mateva and Topalova [MT09b] completely enumerated the spreads in PG(5,2), con-

firming that the single counterexample found by Mavron, McDonough, and Tonchev is the

only counterexample to be found by this construction in PG(5,2). Also in 2009, Mateva

and Topalova [MT09a] constructed 2-(63,31,15) designs invariant under the group D10

and created designs with the parameters of AG2(3,4) using Rahilly’s construction. They

found all three known designs of minimum rank (the geometric design and two special

designs), but no others.

In 2008, Clark and Tonchev [CT09] identified the two counterexamples from [HLT05] as

designs supported by the minimum-weight codewords of the Reed-Muller code R(2,6).
The paper also proves that this technique may be extendable to larger Reed-Muller codes.

The most important recent results concerning Hamada’s conjecture come from two pa-

pers, in which Jungnickel and Tonchev [JT09], and later Clark, Jungnickel, and Tonchev

[CJT11], discovered two infinite classes of counterexamples to the conjecture.

Theorem 21 (Jungnickel, Tonchev [JT09]). For any prime p and t ≥ 2, there exists a design
with the same p-rank and parameters as PGt(2t, p) which is not isomorphic to PGt(2t, p).

Theorem 22 (Clark, Jungnickel, Tonchev [CJT11]). For any t ≥ 1, there exists a de-
sign with the same 2-rank and parameters as AGt+1(2t + 1,2) which is not isomorphic
to AGt+1(2t +1,2).

The paper of Jungnickel and Tonchev [JT09] constructs counterexamples by modifying the
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blocks of PGt(2t, p), where p is a prime. All blocks which intersect a fixed hyperplane

of the geometry, but which are not contained in it, are modified by permuting the parts

contained in the hyperplane. By using a polarity of the projective geometry induced on

the hyperplane for this permutation, the modified design retains the same p-rank. This

construction produces exactly one of the nongeometric 2-(31,7,7) designs from [Ton86].

Munemasa and Tonchev [MT] recently showed that the block graph of these polarity de-
signs is a distance-regular graph which is isomorphic to the twisted Grassmann graph of

van Dam and Koolen [vDK05].

The results of Clark, Jungnickel, and Tonchev [CJT11] extend these methods to the affine

setting in the binary case. These results are contained in the remainder of this chapter.

In summary, counterexamples exist only for the strong form of Hamada’s conjecture. Sev-

eral sporadic counterexamples are known, some of which have been generalized into in-

finite classes. The parameters of counterexamples are those of the designs PG2(4,2),
AG3(5,2), AG2(3,4), plus infinite classes with the parameters of PGt(2t, p) for p prime,

and AGt+1(2t +1,2).

The remainder of this chapter consists of the original paper by Clark, Jungnickel, and

Tonchev [CJT11] which provides the first infinite class of counterexamples to the affine

case of Hamada’s conjecture.

2.2 Introduction

Let X be a set of v points, and B be a collection of k-subsets of X called blocks. Then

D = (X ,B) is a t-(v,k,λ ) design or block design if every t-subset of X is contained in

exactly λ blocks. Two designs D1 = (X1,B1) and D2 = (X2,B2) are isomorphic if there

is a bijection from X1 to X2 which maps B1 to B2. The automorphism group of D is the

subgroup of Sym(X) whose action on X preserves B.

If v is divisible by k, a parallel class of D is a set of v/k blocks which partition X . If B
can be partitioned into disjoint parallel classes, then D is said to be resolvable, and any

particular partition is called a resolution.

The incidence matrix of D is a v× b matrix A = (ai j) where ai j = 1 if point i of X is

contained in block j of B, and 0 otherwise. The rows of AT are the incidence vectors of the

blocks of D. The span of the rows of this matrix is a linear error-correcting code called the

block code of D.
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Classical examples of designs are obtained from finite geometries. We construct these

geometries using the n-dimensional vector space V over a finite field GF(q). The (n−1)-
dimensional projective geometry PG(n−1,q) over GF(q) has as points the 1-dimensional

subspaces of V . Its lines are the 2-dimensional subspaces of V , and in general the d-

dimensional projective subspaces are the (d + 1)-dimensional subspaces of V . Taking the

d-dimensional projective subspaces of PG(n−1,q) as blocks, we obtain a design denoted

by PGd(n−1,q) with parameters

v =
qn −1

q−1
, k =

qd+1 −1

q−1
, λ =

[
n−2

d −1

]
q
,

where
[

n−2
d−1

]
q

is the Gaussian coefficient given by

[
n−2

d −1

]
q
=

(qn−2 −1)(qn−3 −1) · · ·(qn−d −1)

(qd−1 −1)(qd−2 −1) · · ·(q−1)
.

Similarly, the n-dimensional affine geometry AG(n,q) over GF(q) has as points the vectors

of V . Its lines are the 1-dimensional subspaces of V and their cosets, and in general the d-

dimensional affine subspaces are the d-dimensional subspaces of V and their cosets. Taking

the d-dimensional affine subspaces of AG(n,q) as blocks, one obtains a design denoted by

AGd(n,q) with parameters

v = qn, k = qd, λ =

[
n−1

d −1

]
q
.

This design is resolvable: the set of all cosets of a vector subspace forms a natural parallel

class.

For further terminology and results on designs, see [BJL99].

Let q be a prime power and Π = PGd(2d,q), d ≥ 2. Let H � PG(2d−1,q) be a hyperplane

in PG(2d,q), and let α be a polarity [Hir98] of H. A block B of Π is either contained in H
or intersects H in a (d −1)-subspace. It was proved by Jungnickel and Tonchev in [JT09]

that replacing each (d − 1)-subspace B∩H by α(B∩H) yields a design α(Π) having the

same parameters and block intersection numbers as PGd(2d,q). In addition, if q is prime,

α(Π) has the same q-rank as PGd(2d,q), thus providing a counterexample to the “only

if” part of Hamada’s conjecture [Ham68], which states that a design with the parameters of

PGd(n,q) or AGd(n,q) is geometric if and only if it has minimum q-rank among all designs

with the given parameters.

It was proved recently by Munemasa and Tonchev [MT] that the block graph of the design
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obtained from PGd(2d,q) via the construction of Jungnickel and Tonchev [JT09], where

two blocks are adjacent if they share (qd − 1)/(q− 1) points, is a distance-regular graph

isomorphic to the twisted Grassmann graph discovered by van Dam and Koolen [vDK05].

In this paper, we show that the construction from [JT09] can be extended to yield an infi-

nite family of non-geometric designs with the same parameters, intersection numbers, and

2-rank as the affine geometry design A =AGd+1(2d + 1,2) having as blocks the (d + 1)-
dimensional subspaces of the binary affine space AG(2d + 1,2), for any d ≥ 2. This pro-

vides the first known infinite family of counterexamples to the “only-if”-part of Hamada’s

conjecture in the affine case. This work was motivated by the smallest example (d = 2),

which corresponds to one of the four non-geometric self-orthogonal 3-(32,8,7) designs

[Ton86] of 2-rank 16.

Let A = AGd+1(2d +1,2). Then A is a 3-(v,k,λ3) design with parameters

v = 22d+1, k = 2d+1, λ3 =
(22d−1 −1) . . .(2d+1 −1)

(2d−1 −1) · · ·(2−1)
=

[
2d −1

d −1

]
2

. (2.1)

The number of blocks containing a pair of points of A is given by

λ2 =
22d+1 −2

2d+1 −2
λ3 =

[
2d
d

]
2

,

while the number of blocks containing a single point of A is equal to

λ1 =
22d+1 −1

2d+1 −1
λ2 =

[
2d +1

d +1

]
2

.

Let X denote the point set of A , and let 0̄∈X be the point of AG(2d+1,2) that corresponds

to the zero vector in GF(2)2d+1. The collection of blocks of A which contain 0̄ induces

on X \{0̄} a 2-(22d+1 −1,2d+1 −1, [2d−1
d−1 ]2) design D0 isomorphic to PGd(2d,2).

Let H ⊂ X be a set of 22d points such that 0̄ ∈ H, and H is a 2d-subspace of AG(2d+1,2).
Then H is a hyperplane of A . Note that H is a linear subspace of A . A block B which

intersects H in a d-dimensional affine subspace will be called a cross block. Note that

|B∩H|= |B\H|= 2d . We will write B = Bout ∪Bin, where Bout = B\H and Bin = B∩H.

We refer to Bout as the outer part of B, and Bin as the inner part. Note that Bout ∩Bin = /0.

All blocks of A have 2d translates (or cosets) in the group of translations of A . For a

cross block B, these translates may be written as {B+ hi|hi ∈ H}. That is, the group of

translations of H is enough to produce all translates of B within A . Note that for any cross
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block B, any translate also intersects H in exactly 2d points.

In addition, for any cross block B = Bout ∪Bin of A , Bout is a translate of Bin by an element

of X \H. As a result, the set {B′ \H|B′ ∩H = Bin} consists of a partition of X \H into

translates. Similarly, {B′ ∩H|B′ \H = Bout} partitions H into translates.

With this in mind, we present the following construction, which extends the construction

of [JT09] to certain binary affine geometries.

Construction 2. With H as above, let α be a permutation of the affine d-subspaces through

0̄, of the affine space AG(2d,2) induced on H.

Using α , we make the following alterations to the blocks of A :

• If B is a block such that B ⊂ H or B∩H = /0, we leave B unchanged.

• If |B∩H|= 2d and 0̄ ∈ B, we replace the inner part Bin of B by α(Bin) = α(B∩H).

• If |B ∩ H| = 2d and 0̄ /∈ B, there is a block B1 such that 0̄ ∈ B1, |B1 ∩ H| = 2d ,

and B∩H is a translate (or coset) of B1 ∩H in the group of translations of H, by

considering H as a 2d-dimensional vector space. Let {h1 = 0̄,h2, . . . ,h2d} be 2d

distinct elements of H such that:

– Each coset of B1 is represented exactly once in the set {B1 + hi|i = 1, . . . ,2d},

and

– Each coset of α(B1 ∩H) is represented exactly once in the set {α(B1 ∩H)+
hi|i = 1, . . . ,2d}.

Such a set of hi exists by Hall’s matching theorem [Die05], see Lemma 1 below.

Let B2,B3, . . . ,B2d be all other blocks such that Bi ∩H = B1 ∩H. Note that the outer

part of Bi is a translate of the outer part of B1 by an element h ∈ H, and that 0̄ ∈ Bi for

each 1≤ i≤ 2d . In particular, each coset of Bi may be represented as Bi+h j for some

1 ≤ j ≤ 2d . We replace the part of Bi equal to Bi ∩H with α(Bi ∩H), for 1 ≤ i ≤ 2d .

For the coset of Bi equal to Bi + hi, we replace the part equal to (Bi + hi)∩H with

α(Bi ∩H)+hi.

Notice that this construction effectively permutes the inner parts of all cross blocks, in-

cluding those which are translates. The construction guarantees that the multiset of inner

portions of cross blocks is preserved.
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For a cross block B = Bout ∪Bin, we will write α(B) = Bout ∪α(Bin) to represent the “dis-

torted” block produced by the construction. Note that writing the block this way makes

sense, because the construction does not touch the outer parts of cross blocks.

The following technical lemma is necessary to show the correctness of the construction.

It will also provide the basis for a related construction over any finite field. Note that our

original definition of a cross block extends naturally to q-ary affine geometries: any block

which intersects a hyperplane H in a d-dimensional affine space is still a cross block.

Lemma 1. Let A = AGd+1(2d + 1,q) and H be a hyperplane of A through 0̄, and let α
be a permutation of the affine d-subspaces of H which contain 0̄.

Let B1 be a cross block of A through 0̄. Then there exists a set {h1 = 0̄,h2, . . . ,hqd} of
distinct elements of H such that:

• Each coset of B1 is represented exactly once in the set

{B1 +hi | i = 1, . . . ,qd},

and

• Each coset of α(B1 ∩H) is represented exactly once in the set

{α(B1 ∩H)+hi | i = 1, . . . ,qd}.

Proof. First, as mentioned above, it is possible to find all translates of B1, and all translates

of α(B1∩H) respectively using only elements of H. This holds for affine geometry designs

over any finite field.

Let G = (V1 ∪V2,E) be a bipartite multigraph with V1 being the qd translates of B1 shifted

by elements of H, and V2 being the qd translates of α(B1 ∩H) by elements in H. We place

an edge {x,y} if there exists an h ∈ H such that x = B1+h and y = α(B1∩H)+h. Finding

a set of hi as described is equivalent to finding a perfect matching in G.

For each coset of B1 or of α(B1∩H), there are qd values of h which produce the same coset.

For any X ⊆ V1, there are qd · |X | vectors h which produce some coset in X . Similarly, for

the cosets in N(X), there are qd · |N(X)| vectors which produce some coset in N(X), where

N(X) represents the set of neighbors of X in V2. As each vector corresponds to a distinct

edge, we have qd|X | = qd|N(X)|, and so |X | = |N(X)|. Thus by Hall’s matching theorem

[Die05], a perfect matching exists in G.
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Specializing with q = 2, we obtain the result necessary for Construction 2.

Theorem 23. The collection of blocks α(A ) obtained from A via Construction 2 is a
resolvable 3-design with the same parameters as A =AGd+1(2d +1,2).

Proof. All blocks in α(A ) have size 2d+1, because α only permutes d-subspaces within

H.

The resulting structure is resolvable by construction. Consider a parallel class P of blocks in

A . If any block of P is contained entirely in H, then 2d−1 blocks of P are entirely contained

in H, and the rest are disjoint from H. These blocks are untouched by the construction, and

so remain a parallel class. On the other hand, if any block of P intersects H in 2d points,

then all blocks of P do so. In this case, recall that P consists of all cosets of the block B ∈ P
containing 0̄. The construction distorts B and its cosets in such a way that the distorted

versions of the blocks of P remain pairwise disjoint, and thus form a parallel class. Thus

α(A ) is resolvable.

We must check that Construction 2 does not change distinct blocks into the same block.

Suppose B, B′ are blocks of A both containing 0̄. It is clear from the construction that

if B 
= B′, then α(B) 
= α(B′). Now we must consider cosets. Suppose B, B′ are cross

blocks containing 0̄. Write B = Bout ∪Bin and B′ = B′
out ∪B′

in. Then α(B) = Bout ∪α(Bin)
and α(B′) = B′

out ∪α(B′
in). Suppose α(B) + h = α(B′) + h′ for some h,h′ ∈ H. Then

Bout ∪α(Bin) = (B′
out ∪α(B′

in))+ (h+h′), and in particular α(Bin) = α(B′
in)+ (h+h′).

But both α(Bin) and α(B′
in) are vector subspaces, so h+ h′ ∈ α(B′

in), and thus α(Bin) =
α(B′

in). Thus B and B′ have the same inner parts, and so h and h′ were chosen as specified

in the construction. If h = h′, then Bout = B′
out and so B = B′. If h 
= h′, then α(Bin)+

h 
= α(B′
in) + h′ by construction, and so α(Bin) 
= α(B′

in) + (h+ h′), contradicting our

previous argument. Thus B + h 
= B + h′. In either case, we see that this construction

produces distinct blocks from the blocks of A . Note that if h,h′ were not chosen as in the

construction, it would be possible to transform two distinct blocks into the same block.

Finally, we show that α(A ) is a 3-design with the same value of λ3. Consider a triple

T = {x,y,z} of distinct points of AG(2d +1,2). We consider several cases:

• The number of blocks which contain T and which are unchanged by the construction

does not change.

• If T ⊂ H, then any block B = Bout ∪ Bin containing T has T ⊂ Bin. Because α
permutes the inner parts of cross blocks, the number of cross blocks containing T is

unchanged.
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• Similarly, if T ⊂ X \H, then the number of cross blocks containing T is unchanged.

• Suppose {x,y} ⊆ H and z ∈ X \H. Consider any d-dimensional vector subspace S
of H containing {x,y} and 0̄. Then among all cross blocks meeting H in S, exactly

one contains z (because the outer parts of these blocks are translates which partition

X \H). There is a one-to-one correspondence between cross blocks of A containing

S, and cross blocks of α(A ) containing S. In α(A ), the outer parts of each such

block still partition X \H. Thus the number of cross blocks containing both 0̄ and T
is fixed.

To account for cosets, suppose R is a d-dimensional vector subspace of H containing

0̄. Then {x,y} is contained in a coset R+h for some h∈H if and only if {x+h,y+h}
is contained in R, so the argument remains the same for cosets.

• Similarly, suppose that x∈H but {y,z}⊆X \H. Let B=Bout ∪Bin be a cross block of

A containing 0̄ such that {y,z} ⊂ Bout . Let C be the set of cross blocks of A whose

outer parts are equal to Bout . Then the inner parts of the blocks in C are translates of

Bin which partition H. Thus exactly one such inner part contains x. The construction

replaces the inner part of each block of C with a distinct coset of α(Bin), and these

cosets partition H. Thus exactly one of these distorted blocks contains {x,y,z}.

To account for cosets, note that a cross block’s outer part contains {y,z} if and only

if there is a translate of the block, through 0̄, whose outer part contains {y+h,z+h}.

Thus the number of blocks containing T is unchanged, and so α(A ) is a 3-design with

index λ3.

We defined α to be a permutation of affine d-spaces through 0̄. Because we are working

with binary geometries, each point of A may be identified with a unique point of the

projective geometry PG(2d,q) induced on X . Each projective (d − 1)-space in the copy

of PG(2d,2) induced on H may be uniquely extended to an affine d-space through 0̄ by

simply adding 0̄ to the space. Note that if α is a polarity of the projective space PG(2d −
1,2) induced on H, then it permutes projective (d − 1)-spaces. Thus we may view α as a

permutation of the affine d-spaces through 0̄ of H. In this case, we can obtain more detailed

information about the properties of α(A ).

Theorem 24. If α is a polarity of the projective space PG(2d − 1,2) induced on H, then
the design α(A ) has the same intersection numbers as A .

Proof. Any two blocks of A are either disjoint or share 2i points for some integer 1≤ i≤ d.

Let B=Bout ∪Bin and B′ =B′
out ∪B′

in be cross blocks of A , both containing 0̄. Construction

2 as applied to any block through 0̄ is equivalent to the construction of [JT09], and thus
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the intersection numbers of these blocks are unchanged. In particular, |α(B)∩α(B′)| =
|B∩B′|, and if B∩B′ 
= /0, then |α(Bin)∩α(B′

in)|= |Bin ∩B′
in|= 2i for some 0 ≤ i ≤ d.

Now we consider cosets. For h ∈ H, |α(Bin)∩(α(B′
in)+h)| is either 0, or exactly |α(Bin)∩

α(B′
in)|. The cosets of α(Bin)∩α(B′

in) shifted by elements of α(Bin) partition α(Bin),
whereas the cosets of α(Bin)∩α(B′

in) by any other elements of H are disjoint from α(Bin).

For the outer parts, note that X \H is (the only) coset of H in X . Thus all of our previous

arguments for inner parts apply to the outer parts as well. In particular, Bout and B′
out may

be written as S + k and S′ + k for some d-dimensional vector subspaces S,S′ of H, and

k ∈ X \H. Thus,

|Bout ∩ (B′
out + k)|= |(S+ k)∩ (S′+ k+h)|= |S∩ (S′+h)|,

and by the previous argument, these intersections have the same sizes as the intersections of

inner parts. Consequently, |Bout ∩(B′
out +h)| is either 0 or |Bout ∩B′

out |, where |Bout ∩B′
out |=

2i for some 0 ≤ i ≤ d.

Thus, |B∩ (B′+ h)| is either 0, |Bin ∩B′
in|, |Bout ∩B′

out |, or |B∩B′|. In any case, B and

B′+h are either disjoint, or intersect in 2i points for some 0 ≤ i ≤ d. We can actually make

a stronger statement: Bout is a coset of Bin for any cross block of A , and so |Bin ∩B′
in| =

|Bout ∩B′
out |. Thus |B∩ (B′+h)| has only three possible values: 0, |B∩B′|, or |B∩B′|/2.

Assume that |Bout ∩B′
out | = 1 or |α(Bin)∩α(B′

in)| = 1. In the design A , we have |Bout ∩
B′

out |= 1 if and only if |Bin ∩B′
in|= 1, because intersection numbers in A are even. Then

Bin ∩B′
in = {0̄}, and so (Bin \{0̄})∩ (B′

in \{0̄}) = /0. Since α is incidence-preserving, we

have |α(Bin)∩α(B′
in)| = 1 as well. In addition, note that if |Bout ∩B′

out | = 1, then |Bout ∩
(B′

out +h)|= 1 for all h ∈ H, and similarly for |Bin∩ (B′
in+h)|. Thus |Bout ∩ (B′

out +h)|= 1

if and only if |α(Bin)∩ (α(B′
in)+h)|= 1, and so |B∩ (B′+h)|= 2.

Therefore, the set of intersection numbers of cross blocks and their cosets is the same as

the set of intersection numbers of A .

Finally, we consider a non-cross block B. The intersection of B with other non-cross blocks

is obviously unchanged. The intersection of B with a cross block B′ occurs entirely in

either H or X \H, thus it is either 0 or 2i, for some 0 ≤ i ≤ d. Note however that by their

dimensions, no block of size 2d+1 contained entirely in H or entirely in X \H can intersect

a space of size 2d in only 1 point.

Thus, the block intersection numbers of α(A ) are a subset of the block intersection num-

bers of A . Blocks contained entirely in H do have all intersection numbers including 0 and
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2i for each 1 ≤ i ≤ d. Consequently, the set of intersection numbers of blocks in A and

α(A ) are identical.

Theorem 25. If α is a polarity of the projective space PG(2d −1,2) induced on H \{0̄},
then the design α(A ) has the same 2-rank as A , but is not isomorphic to A .

Proof. Note that the block code of A is the Reed-Muller code R(d,2d + 1) which has

dimension 22d and is self-dual [AK92]. Thus the 2-rank of A is 22d .

From the intersection numbers, the block code C of α(A ) is self-orthogonal. Thus we have

dimC ≤ 22d , and so the 2-rank of α(A ) is at most 22d . On the other hand, Construction

2 transforms the design D0 of A into a design α(D0) with the same parameters, but not

isomorphic to PGd(2d,2), and having 2-rank equal to 22d [JT09]. Hence, the 2-rank of

α(A ) is equal to 22d , and the design α(A ) is not isomorphic to A .

The designs produced by Construction 2 provide an infinite family of examples of geomet-

ric designs, AGd+1(2d + 1,2), d ≥ 2, which are not characterized as the unique designs

with the given parameters and 2-rank. Thus, if Hamada’s conjecture about the minimum

2-rank of AGd+1(2d +1,2) is true, it follows that for each d ≥ 2 there is at least one other

design, namely α(A ), having the same parameters and the same (minimum) 2-rank. This

is the first known infinite family in the affine case.

Example 1. The smallest example of this construction corresponds to the design A =
AG3(5,2) whose blocks are the 3-dimensional vector subspaces of a 5-dimensional binary

vector space, and their cosets. The design A is a 3-(32,8,7) design with 620 blocks.

We apply Construction 2 using the hyperplane H = 〈00001,00010,00100,01000〉 and the

orthogonal polarity α of PG(4,2). The 2-rank of both A and α(A ) is 16.

The automorphism group of A is AΓL(5,2) of order 215 ·32 ·5 ·7 ·31. It is 3-transitive on

points and transitive on blocks (See for example [BJL99].) The automorphism group of

α(A ) has order 215 ·32 ·5 ·7. It is point-transitive but not block-transitive.

To examine the block orbits of α(A ), we view the points of A as elements of F =GF(25).
Thus 01000 represents w2, where w is a primitive element of F . We identify each point with

the exponent i of its representation wi, thus 3 = 00100, 4 = 00010, . . . , 31 = 10000, and

0= 00000. In this notation, the automorphism group of α(A ) is generated by the following

eleven permutations found by computer with Magma:
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(0,16,28,25,13,23,24,29,30,17,19,26)(1,14,9,18,3,27,21,5,2,10,20,31)(4,22,6,8,7,15)(11,12)
(5,25)(8,10)(11,16)(14,31)(15,18)(17,23)(22,29)(26,27)
(1,21,2,24)(3,28,7,20)(4,30,6,12)(5,27,14,17)(8,22)(9,13)(10,26,15,31)(11,25,29,23)
(2,12,7)(3,21,30)(4,6,9)(5,18,14,23,29,26)(8,17,31,11,25,27)(10,16)(15,22)(19,20,28)
(5,27)(8,18)(10,15)(11,29)(14,17)(16,22)(23,31)(25,26)
(4,9)(7,24)(8,14)(11,26)(13,28)(17,18)(21,30)(25,29)
(4,28)(5,15,22,23)(7,30)(8,26,14,11)(9,13)(10,16,31,27)(17,29,18,25)(21,24)
(4,21)(5,25,22,29)(7,13)(8,31,14,10)(9,30)(11,16,26,27)(15,17,23,18)(24,28)
(5,8)(10,25)(11,23)(14,22)(15,26)(16,17)(18,27)(29,31)
(3,30)(4,6)(5,17)(7,12)(8,18)(10,15)(11,29)(14,27)(16,22)(20,28)(23,25)(26,31)
(5,23)(8,11)(10,16)(14,26)(15,22)(17,25)(18,29)(27,31)

The blocks of α(A ) have two orbits under the action of this group, with orbit representa-

tives:
{0,1,2,3,6,12,19,20} (orbit of size 60)

{0,1,2,5,8,14,19,22} (orbit of size 560)

2.3 Polarity designs from AGd+1(2d +1,q) for q > 2

We can modify Construction 2 for the case when q> 2. However, these modified designs do

not typically have the same p-rank, nor the same intersection numbers, as the corresponding

geometric design.

Let A =AGd+1(2d+1,q) for a prime power q= ps. As before, let H be a hyperplane of A
containing 0̄. For q > 2, |H|< |X \H|, and so the outer and inner parts of any cross block

will have different sizes. Thus, many of the special considerations in Construction 2 are

unnecessary. The terminology from the binary case extends in natural ways. In particular,

a block B is still either contained in H, or intersects H in qd points. In the latter case, we

still refer to B as a cross block.

The construction simplifies as follows:

Construction 3. Let α be a permutation of the affine d-spaces through 0̄ of the affine

2d-space induced on H. Using α , we make the following alterations to the blocks of A :

• If B is a block such that B ⊂ H or B∩H = /0, we leave B unchanged.

• If |B∩H|= qd and 0̄ ∈ B, we replace the part of B equal to B∩H by α(B∩H).

• If |B ∩ H| = qd and 0̄ /∈ B, there is a block B1 such that 0̄ ∈ B1, |B1 ∩ H| = qd ,

and B∩H is a translate (or coset) of B1 ∩H in the group of translations of H, by
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considering H as a 2d-dimensional vector space. Let {h1 = 0̄,h2, . . . ,hqd} be qd

distinct elements of H such that:

– Each coset of B1 is represented exactly once in the set {B1 + hi|i = 1, . . . ,qd},

and

– Each coset of α(B1 ∩H) is represented exactly once in the set {α(B1 ∩H)+
hi|i = 1, . . . ,qd}.

By Lemma 1, such a set of hi exists. We replace the part of B1 equal to B1 ∩H
with α(B1 ∩H). For the coset of B1 equal to B1 + hi, we replace the part equal to

(B1 +hi)∩H with α(B1 ∩H)+hi.

In particular, note that we no longer treat all blocks with the same inner part together. The

outer parts of these blocks are not necessarily affine translates for q > 2.

Theorem 26. The collection of blocks α(A ) obtained from A via Construction 3 is a
resolvable 2-design with the same parameters as A =AGd+1(2d +1,q).

Proof. First note that, as in Construction 2, this construction preserves parallel classes, and

so α(A ) is resolvable.

We need to check that λ is unchanged. Let P = {x,y} be a distinct pair of points in X .

• The number of blocks which contain P and are unchanged by the construction does

not change.

• If P ⊂ H, then any block B = Bout ∪Bin containing P has P ⊂ Bin. Because α per-

mutes the inner parts of cross blocks, the number of cross blocks containing P is

unchanged.

• Similarly, if P ⊂ X \H, then the number of cross blocks containing P is unchanged.

• Suppose x ∈ H, y ∈ X \H. Let B be a cross block containing x. Note that {B′ \
H|B′ ∩H = B∩H} partitions X \H, and so exactly one such block contains {x,y}.

Construction 3 preserves this property, and so the number of blocks with inner part

B∩H containing {x,y} is unchanged. Finally, for any block B, {x,y} ⊆ B+h if and

only if {x−h,y−h} ⊆ B, and so the counting does not change for cosets.

Thus we again have a design, although in this case we are only guaranteed a 2-design.
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Note that in this construction, we have specified that α permutes affine spaces. For q > 2,

each point in our affine space is no longer identified with a unique point of a projective

space, so we must make a small change in order to use a polarity of a projective space.

Let α be a polarity of the projective geometry PG(2d − 1,q) induced on H. Then α per-

mutes the projective (d − 1)-spaces in H. By viewing each point of PG(2d − 1,q) as a

1-dimensional vector subspace, we can interpret each projective (d − 1)-space in H as an

affine d-subspace containing 0̄. Thus α permutes the affine d-spaces of H containing 0̄, as

required. Thus, it makes sense to speak of α(A ). In this case, we can obtain more specific

information about α(A ).

Theorem 27. If α is a polarity of the projective geometry PG(2d − 1,q) induced on H,
then the intersection numbers of the blocks of α(A ) are congruent to 0 (modulo q).

Proof. Any two blocks of A are either disjoint or share qi points for some integer 1≤ i≤ d.

Let B=Bout ∪Bin and B′ =B′
out ∪B′

in be cross blocks of A , both containing 0̄. Construction

3 as applied to any block through 0̄ is equivalent to the construction of [JT09], and thus

the intersection numbers of these blocks are unchanged. In particular, |α(B)∩α(B′)| =
|B∩B′|, and |α(Bin)∩α(B′

in)|= |Bin ∩B′
in|.

However, it is possible for the intersection numbers of cosets of cross blocks to change. In

particular, it is not necessarily true (as it was for the case q = 2) that if two blocks share

the same inner portion, then their outer portions are affine translates. They may be simply

disjoint.

As before, |α(Bin)∩α(B′
in)+ h| ∈ {0, |Bin ∩B′

in|}, because the inner parts are affine sub-

spaces. Note that |Bin ∩ B′
in| = q j for some 0 ≤ j ≤ d. If |B ∩ B′ + h| = qi for some

1 ≤ i ≤ d, then |Bout ∩B′
out + h| = qi − |Bin ∩B′

in|. Thus either |Bout ∩B′
out + h| = qi, or

else |Bout ∩B′
out + h| = qi − q j = q j(qi− j − 1). It is clear that if j 
= 0, |α(B)∩α(B′)+ h|

is a multiple of q. If j = 0, then as in the binary case, |Bin ∩B′
in + h| = 1 for all h ∈ H.

Thus, |Bout ∩B′
out +h|= qk −1 for some 1 ≤ k ≤ d, and so these blocks still intersect in a

multiple of q points.

Finally, we consider the intersection of a cross block B and a non-cross block B′. Then

B∩B′ is entirely contained in either H or X \H. If it is contained in H, then B∩B′ is an

affine subspace. By their dimensions, B and B′ cannot intersect in only 1 point, so the size

is a power of q. If the intersection is contained entirely in X \H, then the intersection is

unchanged by the construction.

Example 2. The smallest example of a non-binary design is based on A = AG3(5,3),
whose blocks may be viewed as the 3-dimensional vector subspaces of a 5-dimensional
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ternary vector space, and their cosets. The design A is a 2-(243,27,130) design with

10890 blocks. It is point- and block-transitive, with automorphism group AΓL(5,3) of order

210 ·315 ·5 ·112 ·13 (see for example [BJL99]). Its 3-rank is 96, and the block intersection

numbers are {0,3,9}.

The distorted design α(A ), constructed with the orthogonal polarity of AG(4,3), has 82

point orbits, 1330 block orbits, and an automorphism group of order 2 · 34. There are 128

block orbits of size 1, 40 block orbits of size 6, and all remaining 1170 block orbits have

size 9. Its 3-rank is 112, and the block intersection numbers are {0,3,6,9}.
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Chapter 3

Multi-step majority logic decoding and
the modified finite geometry designs

This chapter examines majority-logic decoding as applied to the codes whose parity check

matrices are the incidence matrices of the polarity designs constructed in Chapter 2, and by

Jungnickel and Tonchev [JT09]. The error-correcting performance of these codes is close

or equal to the performance of the finite geometry codes on which they are based. The

finite geometry codes are some of the best-known codes in this regard, demonstrating the

highly geometric structure of the polarity designs.

3.1 Introduction

Majority logic decoding was one of the first efficient decoding algorithms discovered for

linear error-correcting codes, and can be easily implemented in hardware. It was initially

described by Reed [Ree53] for what are now called Reed-Muller codes. Massey [Mas62]

gave a general description of the decoding scheme, and Goethals and Delsarte [GD68]

generalized Reed’s algorithm to make use of the structure of finite geometries. Detailed

information about majority logic decoding algorithms and decoding circuits may be found

in [PW72, Chapter 10].

The strength of majority logic decoding depends on the structure of the parity checks of

a given code. We will focus on codes whose parity check matrices contain the incidence

vectors of a design. A t-(v,k,λ ) design (also t-design or block design) is a pair (P,B)
where P is a set of v points, and B is a set of k-subsets of P called blocks such that

39



every t-subset of P appears in exactly λ blocks. We denote the number of blocks |B| by

b, and the number of blocks containing a given point is a constant r depending only on the

parameters. The incidence matrix of a design D is a b× v matrix whose (i, j) entry is 1 if

the ith block contains point j, and 0 otherwise.

When used as a parity check matrix, the block-by-point incidence matrix of a design defines

a code which supports majority logic decoding. Rudolph [Rud67] showed that if the dual of

a linear code of length v contains words of weight k which support the blocks of a 2-(v,k,λ )
design, then the code can be decoded using a “one-step” majority logic decoding scheme.

Rudolph’s decoding scheme is able to correct up to �r/(2λ )� errors, where r is the number

of blocks of the design containing a point. This may be improved to �(r+λ −1)/(2λ )� in

general. Rahman and Blake [RB75] showed that if the design is a t-design for t > 2, then a

stronger result holds.

It is well known that the codes whose parity check matrices are the block-by-point inci-

dence matrices of projective and affine geometry designs are especially amenable to ma-

jority logic decoding. Goethals and Delsarte [GD68] described a multi-step majority logic

decoding algorithm based on Reed’s algorithm which takes advantage of the nested struc-

ture of the subspaces in finite geometries. Smith [Smi67] gave further modifications of this

algorithm. In this paper, we will examine the codes whose parity check matrices are the

incidence matrices of the modified designs constructed from PGd(m,q) and AGd(m,q) (see

Chapter 2 and [JT09]). We will show that these parity check matrices retain a great deal

of geometric structure, and that their corresponding codes admit multi-step majority logic

decoding based on this structure. In particular, we will demonstrate that the polarity de-

signs produce codes which compare favorably to their geometric counterparts. For polarity

designs constructed over binary fields, these maintain the same error-correcting strength as

the finite geometry codes on which they are based.

3.2 Majority logic decoding

Let C be a q-ary linear code of length n with dual C⊥. Suppose that vector c ∈C is trans-

mitted over a noisy channel. The received vector y may be written y = c+ e for some error

vector e ∈ Fn
q. Then for any h ∈C⊥, y ·h = (c+e) ·h = e ·h. Throughout, we will write the

components of a vector (say, h) as h = (h1,h2, . . . ,ht , . . .hn).

Definition 5. Let h ∈C⊥. Then Sh = y ·h = ∑n
j=1 e jh j is called a parity check equation (or

simply a check), and in particular Sh is called a parity check sum (or simply check sum).

Definition 6. Let h ∈ C⊥. If ht = 1, then the parity check sum Sh is said to check error
component et .
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Definition 7. Let S = {S1,S2, . . . ,SJ} be a set of parity check sums. Suppose that every Si
checks the error component et , and each other error component e j is checked by at most
one of the Si. Then S is said to be orthogonal on et .

A set of J parity check sums which are orthogonal on an error component et have the

property that each error component other than et can affect at most one of the parity check

sums. Thus, if at most �J/2� errors have occurred, then at most �J/2� of the parity check

sums will not give the correct value of et . Then the value which the majority of the check

sums takes will be the correct value of et . With this idea in hand, we can now describe the

fundamental idea of majority logic decoding:

Proposition 1 (Single-step majority logic decoding, [Ree53, Mas62]). Let y = c+ e be a
received message vector. Suppose that, for each error component et , a set of at least J check
sums can be found which are orthogonal on et . Then the correct value of e (and hence c)
can be decoded if at most �J/2� errors have occurred.

The results of Rudolph [Rud67] and Goethals and Delsarte [GD68] extend this “single step”

majority logic decoding to situations in which the checks are not necessarily orthogonal. If

each error component is checked by at most λ of the checks in a set of parity checks, then up

to �J/(2λ )� errors may be corrected. This result may be improved to �(r+λ −1)/(2λ )�.

The single-step algorithm can be extended to “multi-step majority logic decoding”, by

decoding the value of a sum of error components, instead of single error components.

Definition 8. Let E = {ei1 ,ei2 . . . ,eik} be a set of k error components for a received mes-
sage, and let S = {S1,S2, . . . ,SJ} be a set of parity checks. Suppose that each Si checks
every et ∈ E, and each other error component e j 
∈ E is checked by at most one of the Si.
Then S is said to be orthogonal on E.

Following this definition, suppose that E is a subset of error components. We use the

notation SE to denote the sum of the error components in E, that is,

SE = ∑
ei∈E

ei.

Using the majority logic decoding procedure described above, it is possible to correctly

decode the value SE . As before, if there are J checks orthogonal on E, then the value of SE
can be correctly decoded as long as at most �J/2� errors have occurred.

Once we have obtained an estimate for SE , then SE can act as a parity check sum which

is orthogonal on any subset E ′ ⊂ E. If we can obtain J check sums orthogonal on E ′,
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then we can decode the value of the sum of the error components in E ′ using majority

logic decoding. This process may be iterated until we eventually decode the values of each

individual error component. This process is stated formally in the following proposition:

Proposition 2 (Multi-step majority logic decoding, [Rud67, GD68]). Let y be a received
message vector which was transmitted using a code C, with (unknown) error vector e.
Let E0 = {h1, . . . ,hm} be the set of all parity checks in C⊥. Let E1, . . . ,SL be nonempty
sets containing nonempty subsets of error components, and let EL = {e1, . . . ,en} consist of
every individual error component. Suppose that for each set of error components E ∈ E j,
1 ≤ j ≤ L, there are at least J check sums in E0 ∪E1 ∪ ·· ·∪E j−1 which are orthogonal on
E. Then the correct value of y can be decoded if at most �J/2� errors have occurred.

This proposition encodes the concept of decoding subsets of error components one step at

a time. This idea is also called L-step majority logic decoding, indicating that L individual

steps of decoding are necessary before decoding the individual error components. The

major problem in using multi-step majority logic decoding is to find the sets E1, . . . ,EL−1

of parity check sums which possess the appropriate structure.

For example, suppose that E ∈ E1 is a set of error components. Then it must be possible

to decode the value of SE using only parity check sums in E0. That is, there must be a

collection of parity check sums in E0 which are orthogonal on E. After decoding each sum

of error components in E1, these values, together with the check sums obtained from E0,

are available to act as check sums for the sets in E2. Because all individual error compo-

nents are included in EL, the correct value of each error component ei will be eventually

decoded if at most �J/2� errors have occurred. Note that this description encodes single-

step majority logic decoding as well: we need only the checks in E0, and the individual

error coordinates in EL = E1.

The natural question for both single-step and multi-step majority logic decoding is: how

large can J be made? In the following section, we will answer this question for a particular

class of codes.

3.3 Decoding finite geometry codes

We will now review the application of multi-step majority logic decoding to certain codes

derived from finite geometry designs. This approach was developed from Reed’s original

algorithm [Ree53] by Goethals and Delsarte [GD68]. Specifically, we will focus on codes

whose duals are the p-ary block codes of PGd(m,q) and AGd(m,q), where q = pe. Thus,

the checks for these codes will have a geometric structure.
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More specifically, let D denote either AGd(m,q) or PGd(m,q), where q = pe. Let M be the

block-by-point incidence matrix of D. Let C be the p-ary code with parity check matrix M.

Then C⊥ is the subfield subcode of a generalized Reed-Muller code or punctured general-

ized Reed-Muller code, respectively. See [AK92, Chapter 5] for a complete description.

Note that we take these codes to be p-ary codes, even if q itself is not prime.

Let B be a subspace of a finite geometry. Then we will use cB to denote the incidence

vector of B. That is, cB is a (0,1) vector whose coordinates correspond to points of the

finite geometry, with a 1 only in the coordinates corresponding to points contained in that

block. Similarly, we use Cp(D) to denote the p-ary block code of a design D. Note then

that the block code of a design D is spanned by {cB : B is a block of D}.

Let C⊥ be the block code of one of these geometric designs. The incidence vector of any

d-space in the geometric design is contained in C⊥, and so it is a parity check. Consider

the set of all d-spaces of D which contain a given (d − 1)-space K. All such d-spaces are

disjoint, except for the points of K. Thus

{cB : B is a block of D and K ⊆ B}

is a set of checks orthogonal on K, allowing us to decode the value of the sum SK . If we

find check sums SK′ for every (d −1)-space K′, then we can use these to form a set of new

sums which are orthogonal on any (d − 2)-space contained in K′. Repeating this, we can

eventually decode each individual error component.

Lemma 2. In both PGd(m,q) and AGd(m,q), the number of d-spaces containing a given
(d −1)-space is

qm−d+1 −1

q−1
.

If d′ < d, the number of d′-spaces containing a given (d′ − 1)-space is greater than or
equal to qm−d+1−1

q−1 .

Lemma 2 guarantees that multi-step majority logic decoding may be applied to the block

codes of finite geometry designs. Using the terminology of Proposition 2, we may choose

Ei to contain each (d − i+ 1)-subspace of the finite geometry, for i = 1, . . . ,d. Lemma 2

states that there will always be at least qm−d+1−1
q−1 parity check sums obtained from larger

subspaces which are available to check the incidence vector of each subspace. Thus multi-

step majority-logic decoding can decode up to

�J/2�=
⌊

qm−d+1 −1

2(q−1)

⌋
errors. In the binary case q = 2, this method can correct exactly 2m−d −1 errors.

43



3.4 Decoding the modified finite geometry codes

3.4.1 Modified projective geometry designs

The modified projective geometry designs are pseudo-geometric designs constructed by

Jungnickel and Tonchev [JT09]. They are constructed from D = PGd(m,q) by permuting

certain projective subspaces relative to a fixed hyperplane H of D. These designs share

many properties with their parent designs. If q is prime and the permutation is a polarity

of the projective geometry induced on H, then the modified designs are named polarity de-
signs, and form the first infinite class of counterexamples to Hamada’s conjecture [Ham68].

In this section, we will give a very detailed description of an implementation of multi-step

majority logic decoding, which gives good results on the modified and polarity designs.

We first note that the work of Rudolph [Rud67] and Rahman and Black [RB75] allows

single-step majority logic decoding to be applied to any code which contains the supports

of designs among its words. The strength of this decoding depends only on the parameters

of the design in question. Thus, using these single-step decoding methods, the block codes

of the regular and modified geometric designs give equal decoding strength. Below, we will

demonstrate how the structure of the modified designs allows us to produce similar results

for multi-step majority logic decoding. The following results will apply to all modified

designs. We will later specialize these results to the polarity designs.

Definition 9. Let D = PGd(m,q), and let H be a hyperplane on the points of D. A block
B of D which intersects H in a projective (d − 1)-space is called a cross block. We write
B = Bin ∪Bout , where Bin = B∩H and Bout = B \H. We also refer to Bin and Bout as the
inner and outer parts of the block, respectively.

Let H a hyperplane of D, and let H be the complement of H. Let α be a permutation of

the (d − 1)-spaces in the copy of PG(m− 1,q) induced on H. The modified design D̃ is

constructed by replacing each cross block Bin ∪Bout with α(Bin)∪Bout . We leave all other

blocks intact.

For the following results, we extend the notation cB to denote the incidence vector of B,

where B is any block or geometric subspace in D̃. Similarly, Cp(D) will still denote the

p-ary block code of the design D. Let C⊥ =Cp(D), that is, the p-ary block code of D, and

let C̃⊥ = Cp(D̃). Recall that the incidence matrix of the design is used as a parity check

matrix, and so Cp(D) and Cp(D̃) are the dual codes of the codes being decoded.

Lemma 3. The restriction of both D and D̃ to H is a design isomorphic to PGd−1(m−1,q).
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The restriction of both D and D̃ to H is a design isomorphic to AGd(m,q).

Proof. For the geometric designs, this is well known. For the modified designs, we note

that H is unchanged, and subspaces contained in H are simply permuted. Thus the same

result applies.

Lemma 4. Let K be a projective (d − 1)-space whose points are contained entirely in H.
Then there exists a complete set of qm−d+1−1

q−1 words of C̃⊥ which are orthogonal on K.

Proof. By Lemma 2, there exist qm−d+1−1
q−1 blocks of D which contain K. Each of these

blocks is either contained in H (in which case it is also a block of D̃), or it is a cross block

whose inner part is equal to K. If it is a cross block, then there exist qm−d blocks of D
with inner part equal to K. The outer parts of these blocks are disjoint and form a parallel

class in the affine design AGd(m,q) induced on H. There are qm−d corresponding blocks

in D̃ whose inner part are K, and whose outer parts are also a parallel class in H (possibly

different from the parallel class in D). Thus each block of D containing K corresponds

uniquely to a block in D̃ containing K, and these blocks are disjoint outside of K. So, the

incidence vectors of these qm−d+1−1
q−1 blocks are orthogonal on K. Note that every point of D̃

is contained in one such block, and so this is a maximal set.

Lemma 5. Let K′ be a projective (d− i)-space (i ≥ 1) whose points are contained entirely
in H. Then there exist at least qm−d+1−1

q−1 checks orthogonal on K′.

Proof. If i = 1, we are in the case of Lemma 4, using incidence vectors of blocks of D̃ as

checks. So, suppose i ≥ 2. In this case, the checks orthogonal on the points of a (d − i)-
space correspond to projective (d − i+ 1)-spaces contained entirely in H, found during a

previous step of the decoding. Note that we no longer have any checks which “cross” H –

all of our checks contain points only in H. Applying Lemma 2 to H, we have the result.

The support of a word c in a linear code C is the set of positions in which c is nonzero. Note

that it is possible for a codeword to support a subspace without being equal to its incidence

vector.

Lemma 6. The code C̃⊥ contains a set of words which support the design AGd+1(m,q).

Proof. First note that any block K of AGd+1(m,q) is a union of q cosets of an affine d-

space. Next, recall that the outer parts of any set of blocks of D̃ which share identical inner
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parts are cosets of an affine d-space. Fix any block K of AGd+1(m,q) and let {B1, . . . ,Bq}
be q blocks of D̃ whose inner parts are identical, and whose outer parts are the appropriate

cosets of an affine d-space necessary to form K. Then cB1
+ · · ·+ cBq contains 1’s exactly

in the coordinates of C̃⊥ corresponding to the points of K. Because their inner parts are

identical, the sum of these q blocks will be zero on all points corresponding to H. Thus, the

incidence vector of each block of AGd+1(m,q) is embedded in C̃⊥, with nonzero positions

only in the qm positions corresponding to H.

Note that although the restriction of D̃ to H gives an affine geometry design isomorphic to

AGd(m,q), the incidence vectors of these affine d-spaces are not contained in C̃⊥.

Lemma 7. Let K be an affine d-space contained entirely in H. Then there exists a set of
2qm−d−1

q−1 +1 parity checks in C̃⊥ which are orthogonal on K.

Proof. We will construct this set in several parts. First, we use the affine (d + 1)-spaces

found in Lemma 6. There are qm−d−1
q−1 affine (d +1)-spaces which contain K, and the inci-

dence vector of each is contained in C̃⊥. These give qm−d−1
q−1 checks containing K, which

partition H \K.

In addition, K is the outer part of a unique cross block B of D̃. Thus we may use cB as a

check.

Finally, let K′ denote the inner part of B, that is, K′ = B∩H. Note that K′ is a projective

(d − 1)-space and B = K′ ∪K. By construction C̃⊥ contains the incidence vectors of all

projective d-spaces contained in H. Let B′ be any projective d-space contained in H for

which K′ ⊆ B′. Then cB − cB′ is a vector contained in C̃⊥ which has several important

features. First, cB − cB′ has a 1 at each point corresponding to K, and thus checks K.

Second, cB′ has a −1 at each point corresponding to B′, except for the points of K′ (which

are all zeroes). Thus the vectors in

S = {cB − cB′ : B′ is a projective d-space contained in H, and K′ ⊆ B′}

all check K, and check each point in H \K′ exactly once. Thus S is a set of qm−qd

qd+1−qd =
qm−d−1

q−1

checks orthogonal on K.

In total, we have
qm−d −1

q−1
+

qm−d −1

q−1
+1 = 2

qm−d −1

q−1
+1

checks orthogonal on K, and these checks cover every point of the design.
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Lemma 8. Let K be an affine (d− i)-space (i ≥ 0) whose points are contained in H. Then
there exist at least 2qm−d−1

q−1 +1 checks orthogonal on K.

Proof. If i = 0, we are in the case of Lemma 7. So, suppose i ≥ 1. In this case, the checks

orthogonal on an affine (d− i)-space contained in H correspond to affine (d− i+1)-spaces

contained entirely in H, found during a previous step of the decoding. In the copy of

AGd(m,q) induced on H, each (d− i)-space (i≥ 1) is checked by qm−d+i−1
q−1 of the (d− i+1)-

spaces, and qm−d+i−1
q−1 ≥ 2qm−d−1

q−1 +1 for all q, d, and i ≥ 1.

The preceding lemmas demonstrate how we can find parity checks orthogonal on any pro-

jective d-space in H, or any affine d-space in H. Together, these allow us to find checks

which are orthogonal on every error bit in a transmitted word. We will separately decode

errors which occur in the coordinates corresponding to H, and those corresponding to H.

Theorem 28. The code C̃ admits multi-step majority logic decoding. The code may be
correctly decoded with this method if at most

⌊
qm−d−1

q−1 + 1
2

⌋
errors occur.

Proof. Let y be a received word. The following rules will correctly decode y:

1. For each projective (d − 1)-space K in H, use the qm−d+1−1
q−1 words in C̃⊥ identified

in Lemma 4 to decode the sum of the error components corresponding to K. Repeat

this for (d − 2)-spaces, using the parity check sums previously identified for (d −
1)-spaces. There are at least qm−d+1−1

q−1 such parity check sums orthogonal on each

(d −2)-space, as guaranteed by Lemma 5. Repeat for (d − i)-spaces, i = 1,2, . . . ,d,

until 0-spaces (points) are decoded. Lemma 5 guarantees that at each step, at least
qm−d+1−1

q−1 parity check sums can be found which are orthogonal on each space. Thus

multi-step majority logic decoding allows us to determine the value of each error

coordinate e j contained in H. This will succeed if at most
⌊

qm−d+1−1
2(q−1)

⌋
errors occurred

among all points.

2. For each affine d-space K′ contained in H, use the 2qm−d−1
q−1 + 1 words identified in

Lemma 7 to decode the sum of the error components corresponding to K′. Repeat

this for affine (d − 1)-spaces, using the parity check sums previously identified for

d-spaces. There are at least 2qm−d−1
q−1 +1 such parity check sums orthogonal on each

affine (d − 1)-space, as guaranteed by Lemma 8. Repeat for affine (d − i)-spaces,

i = 1,2, . . . ,d in order until points are decoded. Lemma 8 guarantees that at each

step, at least 2qm−d−1
q−1 + 1 parity check sums can be found which are orthogonal on
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each space. Thus multi-step majority logic decoding allows us to determine the value

of each error component e j in H. This will succeed if at most
⌊

qm−d−1
q−1 + 1

2

⌋
errors

occurred among all points.

Thus all errors will be corrected if at most

min

{⌊
qm−d+1 −1

2(q−1)

⌋
,

⌊
qm−d −1

q−1
+

1

2

⌋}
=

⌊
qm−d −1

q−1
+

1

2

⌋
errors occur among all components.

Recall that the design PGd(m,q) can correct up to
⌊

qm−d+1−1
2(q−1)

⌋
errors using multi-step ma-

jority logic decoding. Thus, in general, the modified designs give codes which admit

slightly weaker decoding than their geometric counterparts.

We also note that in general, the block codes of modified projective geometry designs have

larger dimension than the block codes of the corresponding projective geometry designs.

For the design obtained from PGd(2d, p) where p is a prime and α is a polarity, we know

that the modified design (called the polarity design) has the same p-rank as the correspond-

ing projective design. If q= 2, then Theorem 28 guarantees that we may correct up to 2d−1

errors, which is exactly the same as the standard projective geometry design.

Theorem 29. Let D = PGd(2d,2), and let D̃ be the polarity design constructed from D.
Then the codes whose parity check matrices are the incidence matrices of D and D̃ have
equal error-correcting strength under multi-step majority logic decoding.

3.4.2 Modified affine geometry designs

The modified affine geometry designs were discovered by Clark, Jungnickel, and Tonchev

[CJT11] as an extension of the methods used for projective geometry designs. Majority

logic decoding may be applied to the modified designs constructed from D = AGd(m,q)
with excellent results.

As before, let H be a hyperplane of D, and let H be the complement of H. We extend the

terminology cross block naturally to D: any block which intersects H in a d-dimensional

affine subspace is called a cross block. Let α be a permutation of the d-dimensional sub-

spaces in the copy of AGd(m,q) induced on H. We create the modified design D̃ from D
in a manner similar to the modified projective designs. There are some subtleties of the
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application of this construction to cosets of subspaces; see [CJT11] for a full discussion.

If we begin with AGd+1(2d + 1,2) and α is a polarity of PG(2d,2) extended naturally

to the copy of AGd(2d,2) induced on H, then this design is called an affine polarity de-
sign. The affine polarity design constructed from AGd+1(2d +1,2) has the same 2-rank as

AGd+1(2d +1,2), but is not isomorphic.

Let C̃ be the code whose parity check matrix is the incidence matrix of D̃. Thus C̃⊥ is

the block code Cp(D̃). This initial result shows that the block codes of the modified affine

geometry designs possess as many words orthogonal on each block of the design as the

unmodified affine geometry codes.

Lemma 9. Let K be an affine (d − 1)-space contained entirely in a coset of H (possibly
equal to H itself). Then there exist a complete set of qm−d+1−1

q−1 words of C̃⊥ which are
orthogonal on K.

Proof. Suppose that H ′ is a coset of H. Then there are (qm−1−qd−1)/(qd−qd−1)= qm−d−1
q−1

blocks of D̃ contained in H ′ whose incidence vectors are orthogonal on K. Note that all

blocks contained entirely in a coset of H are unchanged by the permutation construction. In

addition, there are qm−1

qd−1 = qm−d cross blocks with respect to H ′ whose inner part is equal to

K, and whose outer parts form a parallel class in H ′. This is true for all cosets of H, as the

permutation construction preserves parallel classes. This gives qm−d−1
q−1 +qm−d = qm−d+1−1

q−1
words orthogonal on K.

Lemma 10. Let K′ be an affine (d − i)-space (i ≥ 0) contained in a coset H ′ of H. Then
there exist at least qm−d+1−1

q−1 checks orthogonal on K′.

Proof. If i = 1, we are in the case of Lemma 9. If i ≥ 2, then use the (d − i+ 1)-spaces

contained entirely in H ′. Lemma 2 applied to H ′ gives a value which is at least qm−d+1−1
q−1 in

this case.

The previous result guarantees that enough parity check sums may be found at each step

of multi-step majority logic decoding to ensure correction of at least �J/2� =
⌊

qm−d+1−1
2(q−1)

⌋
errors.

Theorem 30. The code C̃ admits majority logic decoding. The code may be correctly
decoded if at most

⌊
qm−d+1−1

2(q−1)

⌋
errors occur.
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Proof. Let y be a received word. For each affine (d−1)-space K contained in a coset of H,

use the qm−d+1−1
q−1 words identified in Lemma 10 to decode the sum of the error components

corresponding to K. Repeat this for (d − 2)-spaces, using parity check sums found in

the previous sum. Lemma 10 guarantees that at least qm−d+1−1
q−1 checks may be found on

each such (d − 2)-space. Repeat this to decode (d − i)-spaces for each i = 1,2, . . . ,d in

order, with Lemma 10 guaranteeing at least the same number of checks orthogonal on each

(d − i)-space. Thus multi-step majority logic decoding allows us to determine the value

of each error coordinate e j contained in each coset of H. This will succeed if at most⌊
qm−d+1−1

2(q−1)

⌋
errors occurred among all points.

As with projective geometry designs, recall that the design AGd(m,q) can correct up to⌊
qm−d+1−1

2(q−1)

⌋
errors using multi-step majority logic decoding. Thus, in general, the modi-

fied affine geometry designs give codes which admit slightly weaker decoding than their

geometric counterparts.

In general, the block codes of modified affine geometry designs have larger dimensions

than the block codes of the affine geometry designs from which they are built. For the

design obtained from AGd+1(2d+1,2) with α a polarity, we know that the modified design

(also called the affine polarity design) has the same 2-rank as the corresponding projective

design. In this case, Theorem 30 guarantees that we may correct up to 2d −1 errors, which

is exactly the same as the standard projective geometry design.

Theorem 31. Let D= AGd+1(2d+1,2), and let D̃ be the affine polarity design constructed
from D. Then the codes whose parity check matrices are the incidence matrices of D and
D̃ have equal error-correcting strength under multi-step majority logic decoding.

3.5 Minimum distances

In this section, we will prove that the codes formed from binary projective polarity designs

and binary affine polarity designs have the same minimum distances as the original codes

on which they are based. We will also characterize the minimum weight codewords.

Throughout this section, we let D = PGd(2d,2). Let H a hyperplane of PG(2d,2), and let

α be a polarity of the projective (d − 1)-spaces in the copy of PGd−1(2d − 1,2) which D
induces on H. Let D̃ be the polarity design created from D by using α . From [JT09], we

know that D̃ is a 2-design with the same parameters as D, and the same 2-rank, but which

is not isomorphic to D. We also remark that the notation cB is used to denote the incidence
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vector of any space B in an appropriate code.

Our proofs will make use of short exact sequences. This method is very similar to the

method used in the proofs for the minimum distances of the block codes of AGd(m,2) and

PGd(m,2) given in [AK92, Section 5, p. 148]. Recall that a short exact sequence is a

sequence of mappings:

0
φ1−→ A

φ2−→ B
φ3−→C

φ4−→ 0

in which imφi = kerφi+1 for i = 1,2,3. In each case, “0” denotes the appropriate identity

element. Thus φ2 is necessarily an injection: imφ1 = 0, and so we must have kerφ2 =
imφ1 = 0 as well. Similarly, φ3 must be a surjection. Typically, φ1 and φ4 are omitted,

as they are completely determined. These short exact sequences turn out to be extremely

helpful in identifying the minimum distances of geometric codes.

Lemma 11. The design D̃ gives rise to the following short exact sequence:

0 −→C2(PGd(2d −1,2))
φ−→C2(D̃) = C̃⊥ ϕ−→C2(AGd(2d,2))−→ 0

We define the mappings as follows: For any d-space B in H, φ(cB) is the incidence vector
of B in C2(D̃), and φ is extended linearly. For any block B′ ∈ D̃, ϕ(cB′) is the incidence
vector of B′ \H in C2(AGd(2d,2)), and ϕ is extended linearly.

Proof. First we show that φ is an injection from the copy of C2(PGd(2d − 1,2)) induced

on H, to C2(D̃) = C̃⊥. Each d-space in H is also a d-space of D̃ (because it is untouched

by the polarity construction). Thus any word c ∈C2(H) corresponds to a sum of incidence

vectors of d-spaces, and thus corresponds to a unique sum of incidence vectors of d-spaces

in C̃⊥, and so φ is injective.

Next, we show that ϕ is a surjection. If B′ is a cross block, then ϕ(cB′) = cB′
out

embedded

in H. Note that cB′
out

is the incidence vector of an affine d-space. The incidence vector of

each affine d-space in AGd(2d,2) can be obtained in this way. Note that if B is contained

in H, then ϕ(B) = 0.

Finally, we show that imφ = kerϕ . Clearly the image of φ in C̃⊥ consists of the inci-

dence vectors of all d-spaces contained in H. The kernel of ϕ contains the incidence

vectors of all such d-spaces, and so imφ ⊆ kerϕ . We have dimimφ = rank2 PGd(2d −
1,2) and dimkerϕ = rank2 D̃− rank2 AGd(2d,2). We know from [JT09] that rank2 D̃ =
rank2 PGd(2d,2) (because we used a polarity to modify the design). Hamada [Ham68]

gives the result that rank2 PGd(2d,2)− rank2 AGd(2d,2) = rank2 PGd(2d − 1,2). Thus

dimimφ = dimkerϕ , and so imφ = kerϕ .
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Note that in Lemma 11, the fact that rank2 D̃ = rank2 PGd(2d,2) is essential to the argu-

ment. If rank2 D̃ is larger than rank2 PGd(2d,2), then kerϕ will be larger that imφ . As a

result, the previous lemma can not be directly extended to apply to non-polarity modified

designs.

Lemma 12. The design D̃ gives rise to the following short exact sequence:

0 −→C2(AGd+1(2d,2))
ψ−→C2(D̃) = C̃⊥ ω−→C2(PGd−1(2d −1,2))−→ 0.

The mappings are defined as follows: for B an affine (d+1)-space in AGd+1(2d,2), ψ(cB)

is the incidence vector of B in C̃⊥, and ψ is extended linearly. For c ∈ C̃⊥, ω(c) is the
restriction of c to the points of H, and ω is extended linearly.

Proof. First we show that ψ is an injection. Let B, B′ be two distinct blocks of D̃ such

that Bin = B′
in. Then Bout and B′

out are cosets of the same affine d-space, and so cB + cB′
is the incidence vector of an affine (d + 1)-space (its support is contained entirely in H).

Every (d + 1)-space can be obtained uniquely in this fashion. Thus C2(AGd+1(2d,2)) is

contained in C̃⊥, and φ uniquely maps incidence vectors of affine (d +1)-spaces into C̃⊥.

Next, we show that ω is a surjection onto the binary block code of the copy of PGd−1(2d−
1,2) induced on H. Let c ∈ C̃⊥. If c is the incidence vector of a cross block of D̃, then

ω(c) = cBin . Every projective (d −1)-space may be obtained from some cross block, so ω
is a surjection.

Finally, we show that imψ = kerω . Note that imψ contains all affine (d +1)-spaces, and

that each such space A is in kerω , so imψ ⊆ kerω . From the fact that the block codes

of binary affine and projective geometries are Reed-Muller and punctured Reed-Muller

codes (respectively), we know their dimensions (see, for example, [AK92, Chapter 5]). In

addition, dimC̃⊥ = dimPGd(2d,2) by [CJT11]. The dimensions are equal: dimimψ =
dimkerω , and so imψ = kerω .

We define the support of a codeword c, denoted suppc, as the points of D̃ which correspond

to nonzero coordinates in c.

Theorem 32. The minimum distance of the block code C̃⊥ of D̃ is exactly 2d+1 − 1. Fur-
thermore, the codewords of minimum weight are exactly the incidence vectors of the blocks
of D̃.

Proof. First note that C̃⊥ contains the incidence vectors of all projective d-spaces in D̃, and

so the minimum distance is at most 2d+1 − 1. Also, the minimum distances of the block
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codes of two related designs are already known: for PGd(2d−1,2), the minimum distance

is 2d+1 −1, and for AGd(2d,2), the minimum distance is 2d [AK92].

Let c ∈ C̃⊥ be a minimum weight codeword. If suppc ⊆ H, then c is zero on the points of

H. Thus c ∈ ker(ϕ) as defined in Lemma 11, and so by the short exact sequence in Lemma

11, c is in imφ . Thus c is the incidence vector of a projective d-space contained in H.

Thus wtc ≥ 2d+1 − 1, and we are done. In a similar fashion, suppose suppc ⊆ H. Then

using Lemma 12, wt(c) ≥ 2d+1. However, we know that the minimum distance is at most

2d+1 −1, and so this is irrelevant.

Thus we may assume that suppc has a non-empty intersection with both H and H. In this

case, the restriction of c to points of H, c|H , satisfies c|H ∈C2(H) =C2(PGd−1(2d−1,2)),
and so wtc|H ≥ 2d −1. Similarly, c|H ∈C2(H) =C2(AGd(2d,2)), and so wtc|H ≥ 2d . Thus

wtc ≥ 2d+1 −1, as desired.

Finally, we show that c is the incidence vector of a block of D̃. If suppc ⊆ H, then as

above, c is the incidence vector of a projective d-space which is a block of D̃. So, assume

that suppc has a non-empty intersection with both H and H. Note that c|H must be the

incidence vector of a projective (d−1)-space, because the only minimum-weight words of

PGd−1(2d −1,2) are projective (d −1)-spaces. Thus we can find a block B of D̃ such that

cB agrees with c on all points in H, and at least one point in H. Then wt(cB−c)< 2d+1−1,

and so cB = c.

Corollary 3. The minimum distance of the code C2(ÃGd+1(2d + 1,2)) is exactly 2d+1.
Furthermore, the codewords of minimum weight are exactly the incidence vectors of blocks
of the modified affine geometry design.

Proof. The block code of the affine polarity geometry design is equal to the block code of

the projective polarity design, extended with a parity check bit.
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Chapter 4

Nonbinary quantum codes derived from
finite geometries

In this chapter ∗, we use relatives of finite geometry designs to construct quantum stabilizer

error-correcting codes.

4.1 Introduction

The theory of binary quantum stabilizer codes based on classical additive codes over F4 was

developed in a systematic way by Calderbank, Rains, Shor, and Sloane [CRSS98]. It was

extended to nonbinary fields by Bierbrauer and Edel [BE00]. In [KKKS06], Ketkar, Klap-

penecker, Kumar, and Sarvepalli proposed a construction of nonbinary stabilizer quantum

codes based on classical linear codes over Fq for arbitrary prime power q.

The topic of this paper are some classes of q-ary quantum stabilizer codes obtained from

finite projective or affine geometries. We use classical finite geometry codes [AK92] to

construct several new infinite families of q-ary quantum codes. The properties of the related

finite geometry structures allow us to determine or bound all parameters of the resulting

codes.

A fundamental link between linear codes and binary quantum stabilizer codes is given by

∗Reprinted with minor editorial changes from Finite Fields and their Applications, to appear, D. Clark, D.

Jungnickel, and V. D. Tonchev: Nonbinary quantum codes derived from finite geometries [CT], Copyright

2011, with permission from Elsevier. See permission letter in Appendix C.
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the Calderbank-Shor-Steane (CSS) construction [CS96, Ste96b]. We will make use of the

following results which follow from the q-ary version of the CSS construction:

Theorem 33 (Ketkar, et. al [KKKS06]). Let C be a classical linear [n,k,d]q code. (i) If C
contains its dual, C⊥ ⊆C, then there exists a quantum [[n,2k−n,d]]q stabilizer code.
(ii) If C is self-orthogonal, C ⊆C⊥, and d⊥ is the minimum distance of C⊥, then there exists
a quantum [[n,n−2k,d⊥]]q stabilizer code.

In this paper, we will use Theorem 33 to construct q-ary quantum codes from linear codes

which are spanned by the incidence matrices of combinatorial designs. In particular, we

will focus on designs arise from finite geometries.

We refer to [BJL99] for basic terminology and results concerning combinatorial designs.

The incidence matrix of a design with b blocks and v points is a b× v matrix, with rows

indexed by blocks and columns indexed by points. An entry is 1 if the corresponding point

is contained in the corresponding block, and 0 otherwise. The q-ary block code of a design

with incidence matrix M is the linear span of the rows of M over a finite field Fq. We denote

the q-ary block code of a design D by Cq(D). The p-rank of a design D is defined as the

rank of its incidence matrix M over Fp, and will be denoted by rankp D. The dimension of

the q-ary block code of a design is equal to its p-rank, for q = pc.

Our constructions will make extensive use of complementary designs. The complementary
design D of a given design D has as blocks the complements of the blocks of D.

If M is an incidence matrix of a design D then J −M is the incidence matrix of the com-

plementary design D, where J is the all-one matrix of appropriate size. If D is a 2-(v,w,λ )
design, then D is a 2-(v,v−w,v−2r+λ ) design, where r = λ (v−1)/(w−1).

We will focus on designs derived from finite geometries. The points and t-subspaces of

the m-dimensional projective geometry PG(m,q) form a 2-(v,w,λ ) design, denoted by

PGt(m,q), with parameters

v =
qm+1 −1

q−1
, w =

qt+1 −1

q−1
, λ =

[
m−1

t −1

]
q
,

where
[m

i

]
q is the Gaussian coefficient given by

[m
i

]
q
=

(qm −1)(qm−1 −1) · · ·(qm−i+1 −1)

(qi −1)(qi−1 −1) · · ·(q−1)
.

The design PGt(m,q) has b =
[

m+1
t+1

]
q

blocks, and each point appears in r =
[m

t

]
q blocks.
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Similarly, the points and t-subspaces of the m-dimensional affine geometry AG(m,q) form

a 2-(v,w,λ ) design, denoted by AGt(m,q), with parameters

v = qm, w = qt , λ =

[
m−1

t −1

]
q
.

The design AGt(m,q) has b = qm−t [m
t

]
q blocks, and each point appears in r =

[m
t

]
q blocks.

In the special case q = 2, AGt(m,2) is also a 3-(2m,2t ,
[

m−2
t−2

]
2
) design.

Traditionally, the block code of a design PGt(m,q) or AGt(m,q), q = pc, is considered over

Fp [AK92].

The binary code spanned by the incidence matrix of AGt(m,2) is equivalent to a Reed-

Muller code of order m− t and length 2m. If q = p is a prime, then the p-ary code of

AGt(m, p) is equivalent to a generalized Reed-Muller code, and the p-ary code of PGt(m, p)
is equivalent to a non-primitive generalized Reed-Muller code. The q-ary quantum codes

obtained from generalized Reed-Muller codes have been studied previously in [Ste99,

SK05].

In this paper, we will focus on the case where q is not prime. In this case, the p-ary

block codes of affine and projective geometries are subcodes of certain generalized Reed-

Muller codes. However, the dimensions and minimum distances of these codes are not

related to the generalized Reed-Muller codes in any simple manner. We will focus on p-

ary quantum codes arising from the block codes of projective or affine geometries which

were constructed over a finite field of an arbitrary prime power order q = pc. To the best of

our knowledge, these quantum codes have not been studied systematically before.

4.2 Quantum codes from projective geometry

We begin by studying the parameters of designs and codes obtained from projective geome-

tries. To determine the dimension of a quantum code obtained from a projective geometry

design, it is necessary to know the p-rank of the design. The p-ranks of the incidence

matrices of finite geometry designs were computed by Hamada [Ham68].

Theorem 34 (Hamada [Ham68]). The p-rank of PGt(m, pc) is equal to

RP(m, t, pc) = ∑
(s0,s1,...,sc)

c−1

∏
j=0

L(s j+1,s j)

∑
i=0

(−1)i
(

m+1

i

)(
m+ s j+1 p− s j − ip

m

)
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where the sum is taken over all ordered sets (s0,s1, . . . ,sc) such that s0 = sc, s j ∈ Z such
that t +1 ≤ s j ≤ m+1 and 0 ≤ s j+1 p− s j ≤ (m+1)(p−1), and

L(s j+1,s j) =

⌊
s j+1 p− s j

p

⌋
.

In general, the code spanned by the incidence matrix of PGt(m,q) is not self-orthogonal.

However, a related code is often self-orthogonal. Since the intersection of projective sub-

spaces is a subspace, the size of the intersection of two distinct blocks of PGt(m,q) is of the

form qi−1
q−1 , (0 ≤ i ≤ t), and there are pairs of disjoint blocks (i = 0) only if t ≤ (m−1)/2.

Consequently, if t > (m− 1)/2, the intersection of the complements of any two blocks of

PGt(m,q) is of size divisible by q, and we have the following.

Lemma 13 (Hirschfeld and Shaw [HS94]). If t > (m− 1)/2, the code Cp(PGt(m, pc)) is
self-orthogonal.

The following lemmas establish basic relations between complementary projective geom-

etry codes and the original projective geometry codes. Throughout, let C =Cp(PGt(m,q))
and C =Cp(PGt(m,q)). The symbol 1 denotes the all-ones vector of appropriate length.

Lemma 14. The codes C =Cp(PGt(m,q)) and C =Cp(PGt(m,q)) are related as follows:

1. C =
〈
C∪1

〉
2. C⊥ =C⊥∩〈1〉⊥

3. C =C∩〈1〉⊥

4. C⊥
=
〈
C⊥∪1

〉

Proof. Parts 1 and 2 are due to Hirschfeld and Shaw [HS94]. For part 3, we use part 1, and

the facts that C ⊆ 〈1〉⊥ and 1 
∈ 〈1〉⊥ (because the length of the code is not a multiple of p).

Part 4 follows from taking the dual of the codes in part 3.

Lemma 15. dim(C) = dim(C)−1.

Proof. Follows from Lemma 14.
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According to Theorem 33 (ii), if a q-ary quantum stabilizer code is constructed from a

self-orthogonal classical linear code C, then the minimum distance of the quantum code is

determined by the minimum distance of C⊥. The following theorem gives the exact value

of the minimum distance of the duals of the complementary projective geometry codes, as

well as characterizing their minimum-weight codewords.

Theorem 35. Suppose (m−1)/2 < t < m, and q = pc, where p is an odd prime or q 
= 2.
Let C⊥

= Cp(PGt(m,q))⊥. Then the minimum distance d of C⊥ is exactly d = qm−t+1−1
q−1 .

Furthermore, each word of minimum weight in C⊥ is a scalar multiple of the incidence
vector of a projective (m− t)-space.

Proof. We use the notation cB to denote the incidence vector of a projective subspace B.

Let T be a projective t-space, and let M be a projective (m− t)-space in PG(m,q). Then

|T ∩M|= qm−t+1

q−1 −|T ∩M|, where T ∩M is a projective subspace with projective dimension

at most m− t. Thus |T ∩M| = qm−t+1−qi+1

q−1 = qi+1 qm−t−i−1
q−1 for some i ∈ {0,1, . . . ,m− t}.

Thus |T ∩M| ≡ 0 (mod q), and so cM ∈C⊥
. Therefore the incidence vector of each (m−t)-

space in PG(m,q) is in C⊥
, and so d ≤ qm−t+1−1

q−1 .

Next, note that a vector c is in C⊥
if an only if c ·(1−cT ) = 0 for each block T of PGt(m,q).

Thus (c ·1)− (c · cT ) = 0, and so c · cT is a constant for all T . We consider two cases:

First, suppose that c ·cT = 0. Then c ∈Cp(PGt(m,q))⊥. It is well known that the minimum

distance of Cp(PGt(m,q))⊥ at least (q+ p)qm−t−1 (see, for example, [AK92, Theorem

5.7.9]). We compare the minimum possible weight of c to the desired minimum weight of

C⊥
:

(q+ p)qm−t−1 − qm−t+1 −1

q−1
=

(q−1)(q+ p)qm−t−1 − (qm−t+1 −1)

q−1
.

Then the numerator is:

(q−1)(q+ p)qm−t−1 − (qm−t+1 −1) = (p−1)qm−t − pqm−t−1 −1.

As long as q 
= 2, (p− 1)qm−t − pqm−t−1 − 1 > 0, and so the weight of c is strictly larger

than our desired minimum distance. We note that in the case that p is an odd prime,

the code is a generalized Reed-Muller code, and the bound (q+ p)qm−t−1 is then tight

[AK92, CKdR99].
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Next, suppose that c · cT 
= 0. This implies that the support of c intersects every t-space.

Thus, the support of c is a blocking set for t-spaces in PG(m,q). By [BB66], the smallest

blocking sets for t-spaces are exactly projective (m− t)-spaces, and so c is at least as large

as such a space.

Thus in either case, wt(c) ≥ qm−t+1−1
q−1 , and so the minimum distance of C⊥

is exactly

qm−t+1−1
q−1 .

Finally, let c be a word of minimum weight. By the above argument and [BB66], the

support of c is an (m− t)-space N in PG(m,q). Suppose that the first nonzero coordinate

of c is α ∈ Fp. Then α ·cN −c is in C⊥
and has at most wt(c)−1 nonzero coordinates, and

so it must be exactly the zero vector. Thus c is a scalar multiple of the incidence vector of

N.

Note that in the statement of Theorem 35, we excluded the case q = 2. In this case, the

codes are exactly the classical Reed-Muller codes, which have been thoroughly studied in

both a classical and quantum setting.

We are now ready to give the parameters of the quantum codes based on Cp(PGt(m,q)).

Theorem 36. Suppose that t > (m− 1)/2, and q = pc, where p is prime. Then the code
Cp(PGt(m,q)) gives rise to a p-ary quantum stabilizer code with parameters[[

qm+1 −1

q−1
,
qm+1 −1

q−1
−2(RP(m, t,q)−1),

qm−t+1 −1

q−1

]]
p

where RP(m, t,q) is given by Theorem 34.

Proof. We use Theorem 33. The code length is the number of points in the projective

geometry. The dimension follows from Hamada’s formula (Theorem 34) and the dimension

of complementary codes (Lemma 14). The minimum distance is given by Theorem 35.

Corollary 4. The code Cp(PGm−1(m, pc)) gives rise to a p-ary quantum stabilizer code
with parameters [[

qm+1 −1

q−1
,
qm+1 −1

q−1
−2

(
p+m−1

m

)c

,q+1

]]
p
.

Proof. The dimension is a simplification of Hamada’s formula, due to Smith [Smi69]. The

minimum distance is given by Theorem 35.
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Table 4.1
Sample parameters of p-ary quantum codes obtained from PGt(m, pc).

m t q rank Quantum code

4 3 4 25 [[341,291,5]]2
5 3 4 301 [[1365,763,21]]2
5 4 4 36 [[1365,1293,5]]2
3 2 8 64 [[585,457,9]]2
4 3 8 125 [[4681,4431,9]]2
2 1 9 36 [[91,19,10]]3
3 2 9 100 [[820,620,10]]3
4 2 9 2760 [[7381,1859,91]]3
4 3 9 225 [[7381,6931,10]]3
3 2 25 1225 [[16276,13826,26]]5
4 2 25 132851 [[406901,141199,651]]5

Table 4.1 gives a few sample parameters of the quantum codes obtained from complemen-

tary projective design codes.

4.3 Quantum codes from affine geometry

Affine geometries are closely related to projective geometries. However, their natural par-

allelism changes some of the related codes in important ways. In particular, the comple-

mentary designs will not play an important role in this case.

The p-ranks of affine geometry designs, and hence the dimensions of their codes, are known

in all cases. They can be expressed simply in terms of the ranks of projective geometries,

given in Theorem 34.

Theorem 37 (Hamada [Ham68]). The p-rank of AGt(m,q), q = pc, is given by

RA(m, t,q) = RP(m, t,q)−RP(m−1, t,q).

Lemma 16. The intersection numbers of AGt(m,q) are {0}∪{qi : max{0,2t −m} ≤ i ≤
t −1}.

We note that intersection size 1 occurs if and only if 2t −m ≤ 0, that is, if t ≤ m/2. If

t > m/2, all intersection sizes are multiples of q. This leads to the fundamental result
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necessary for creating quantum codes:

Lemma 17. If t > m/2, then the code Cp(AGt(m,q)) is self-orthogonal.

The minimum distances of the dual affine geometry codes are known only in a few cases,

and bounded in others. The current best known results are summarized in the following

two theorems.

Theorem 38 (Calkin, Key, de Resmini [CKdR99]). The minimum distance of the code
Cp(AGt(m,2c))⊥ is (q+2)qm−t−1.

Theorem 39 (K. L. Clark, Key [CK99]). The minimum distance d⊥ of Cp(AGt(m,q))⊥,
where q = pc and p is odd, is bounded by

4(qm −1)

3(qt −1)
+

2

3
≤ d⊥ ≤ 2qm−t .

If p 
= 3 then
3(qm −1)

2(qt −1)
+

1

2
≤ d⊥ ≤ 2qm−t .

If c = 1 (that is, q is prime), then the minimum distance is exactly

d = 2qm−t .

Using these results, Theorem 33 (ii), and Lemma 17, we obtain the following result con-

cerning quantum codes.

Theorem 40. Suppose that t > m/2, and let q be a power of a prime p. Then the code
Cp(AGt(m,q)) gives rise to a p-ary quantum stabilizer code with parameters[[

qm,qm −2RA(m, t,q),d⊥
]]

p
,

where d⊥ is bounded as in Theorems 38 and 39, and RA(m, t,q) is given by Theorem 37.

Table 2 lists a few sample parameters of quantum codes obtained from affine geometry

designs.

Finally, we note that the code of an affine geometry design and the code of its complemen-

tary design are equivalent.

Lemma 18. Let C =Cp(AGt(m,q)) and C =Cp(AGt(m,q)). Then C =C.
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Table 4.2
Sample parameters of p-ary quantum codes obtained from AGt(m,q).

m t q rank Quantum parameters

4 3 4 25 [[256,206,6]]2
5 3 4 276 [[1024,472,24]]2
5 4 4 36 [[1024,952,6]]2
3 2 8 64 [[512,384,10]]2
4 3 8 125 [[4096,3846,10]]2
3 2 9 100 [[729,529,d⊥ ≥ 13]]3
4 3 9 225 [[6561,6111,d⊥ ≥ 13]]3
3 2 25 1225 [[15625,13175,d⊥ ≥ 39]]5
4 2 25 131625 [[390625,127375,d⊥ ≥ 940]]5

Proof. Because of the natural parallelism, 1 ∈C, and thus C ⊆C. However, the codewords

of C corresponding to a parallel class of blocks in AGt(m,q) sum to form (qn−t −1)1, and

thus 1 ∈C as well. Thus C ⊆C, and C =C.
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Chapter 5

Entanglement-assisted quantum
low-density parity-check codes

In this chapter∗, we give constructions for a new and more flexible category of quantum

error-correcting codes. We demonstrate how Steiner designs – and in particular, certain

finite geometry designs – optimize certain parameters for these designs. This gives the first

general construction in which the parameters of the resulting codes are fully determined,

rather than being partly determined by random choices.

Quantum codes make use of qubits, which are analogous to bits in the classical setting. A

qubit is a unit of quantum information which may be transmitted or stored, and is suscepti-

ble to accumulating errors. We also note that in this chapter, both orientations of incidence

matrices of designs are used extensively. We clearly denote which orientation is in use. The

default orientation (that is, the orientation to be assumed for a matrix M) is point-by-block.

A matrix denoted MT is a block-by-point incidence matrix.

5.1 Introduction

In this chapter, we develop a general combinatorial method for constructing quantum low-

density parity-check (LDPC) codes under the entanglement-assisted stabilizer formalism

established by Brun, Devetak, and Hsieh [BDH06a]. Our results include many new ex-

∗Reprinted with minor editorial changes from Physical Review A, Volume 82, Y. Fujiwara, D. Clark, P. Van-

dendriessche, M. De Boeck, and V. D. Tonchev: Entanglement-assisted quantum low-density parity-check
codes [FCV+10], Copyright 2010 by APS. See permission information in Appendix C.
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plicit constructions for entanglement-assisted quantum error-correcting codes for a wide

range of parameters. We also prove a variety of new results for classical error-correcting

codes, which directly apply to the quantum setting. Most of the quantum codes designed

in this chapter achieve high error correction performance and high rates while requiring

prescribed amounts of entanglement. These codes can be efficiently decoded by message-

passing algorithms such as the sum-product algorithm (for details of iterative probabilistic

decoding, see [Mac03]).

The existence of quantum error-correcting codes was one of the most important discov-

eries in quantum information science [Sho95, Ste96a]. Unfortunately, most of the known

quantum error-correcting codes lack practical decoding algorithms.

In this chapter, we focus on the use of LDPC codes in a quantum setting. Classical LDPC

codes [Gal63] can be efficiently decoded while achieving information rates close to the

classical Shannon limit [LMSS01, RU01, RSU01]. This extends to the quantum setting:

the pioneering works of Hagiwara and Imai [HI07] and MacKay, Mitchison, and McFadden

[MMM04] presented quantum LDPC codes which surpassed, in simulations, all previously

known quantum error-correcting codes. Their quantum codes have nearly as low decoding

complexity as their classical counterparts.

However, most of the previous results concerning quantum LDPC codes and related effi-

ciently decodable codes have relied on the stabilizer formalism, which severely restricts

the classical codes which can be used. The difficulty in developing constructions for non-

stabilizer codes was also a substantial obstacle.

Our results will use the newly developed theory of entanglement-assisted quantum error-

correcting codes (EAQECCs) [Bow02, BDH06a, BDH06b, DBH09]. The entanglement-

assisted stabilizer formalism allows the use of arbitrary classical binary or quaternary linear

codes for quantum data transmission and error correction by using shared entanglement

[HDB07, WB08]. Previous work related to entanglement-assisted quantum LDPC codes is

due to Hsieh, Brun, and Devetak [HBD09] and Hsieh, Yen, and Hsu [HYH11].

The major difficulty in using classical LDPC codes in the entanglement-assisted quan-

tum setting is that very little is known about methods for designing EAQECCs requiring

desirable amounts of entanglement. While entanglement-assisted quantum LDPC codes

can achieve both notable error correction performance and low decoding complexity, the

resulting quantum codes might require too much entanglement to be usable; in general

entanglement is a valuable resource [WB08]. In some situations, one might wish to effec-

tively take advantage of high performance codes requiring a larger amount of entanglement

[BDH06b, BDH06a]. To the best of the authors’ knowledge, no general methods have been

developed which allow the code designer flexibility in choice of parameters and required
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amounts of entanglement.

Our primary focus in this chapter is to show that it is possible to create infinite classes

of EAQECCs which consume prescribed amounts of entanglement and achieve good error

correction performance while allowing efficient decoding. Our methods are flexible and

address various situations, including the extreme case when an EAQECC requires only one

preexisting entanglement bit.

The entanglement-assisted quantum LDPC codes which we construct include quantum ana-

logues of the well-known finite geometry LDPC codes originally proposed by Kou, Lin,

and Fossorier [KLF01] (see also [TXK+04, TXLAG05]), and LDPC codes from balanced

incomplete block designs that achieve the upper bound on the rate for a classical regular

LDPC code with girth six proposed independently by several authors. (see [Joh10] and

references therein). Some classes of our codes outperform previously proposed quantum

LDPC codes having the best known error correction performance [HI07, MMM04, HBD09,

HYH11].

Our primary tools come from combinatorial design theory, which plays an important role in

classical coding theory [Ton98] and also gave several classes of stabilizer codes in quantum

coding theory [Aly08, Djo08, Djo10, Ton08, Ton09]. The use of combinatorial design

theory allows us to exactly determine or give tighter bounds on the parameters of the finite

geometry LDPC codes in both quantum and classical settings. Comprehensive lists of the

parameters of these codes are given in Tables 5.14 and 5.15 in Appendix 5.B.

In Section 5.2, we outline our framework for designing entanglement-assisted quantum

LDPC codes by using combinatorial design theory. Section 5.3 gives explicit constructions

for entanglement-assisted quantum LDPC codes based on finite geometries and related

combinatorial structures. New results concerning the well-known classical finite geometry

LDPC codes are also given in this section. Section 5.4 presents simulation results of our

entanglement-assisted quantum LDPC codes and discusses their performance over the de-

polarizing channel. Section 5.5 contains concluding remarks and discusses some related

problems that can be treated with the techniques developed in this chapter.

5.2 Combinatorial entanglement-assisted quantum LDPC
codes

In this section we give a general construction method for entanglement-assisted quantum

LDPC codes based on combinatorial designs. We do not describe the theory of classi-
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cal LDPC codes in detail here, instead referring the reader to [Mac03, Joh10] and ref-

erences therein. Relations between quantum error-correcting codes and LDPC codes are

concisely yet thoroughly explained in [MMM04, HBD09]. Basic notions related to LDPC

codes and their relations to combinatorial designs can be found in [AHK+04]. For a de-

tailed treatment of the entanglement-assisted stabilizer formalism, we refer the reader to

[BDH06a, BDH06b, DBH09, HDB07].

In Subsection 5.2.1 we introduce necessary notions from coding theory and combinato-

rial design theory. A general method for designing entanglement-assisted quantum LDPC

codes is presented in Subsection 5.2.2.

5.2.1 Preliminaries

An [[n,k;c]] entanglement-assisted quantum error-correcting code (EAQECC) encodes k
logical qubits into n physical qubits with the help of c copies of maximally entangled states.

As in classical coding theory, n is the length of the EAQECC, and k the dimension. We say

that the EAQECC requires c ebits. An [[n,k;c]] EAQECC with distance d will be referred

to as an [[n,k,d;c]] code.

The rate of an [[n,k;c]] EAQECC is defined to be k
n . The ratio k−c

n is called the net rate.

The latter figure describes the rate of an EAQECC when used as a catalytic quantum error-

correcting codes to create c new bits of shared entanglement [BDH06a, BDH06b].

Throughout this chapter, matrix operations are performed over F2, the finite field of order

two. The ranks of matrices are also calculated over F2.

We employ the well-known Calderbank-Shor-Steane (CSS) construction [CS96, Ste96a,

BDH06a, HDB07]. Usually the CSS construction uses a minimal set of independent gen-

erators to construct an EAQECC. Hence, the construction is often described by using a

classical binary linear code with a parity-check matrix of full rank. However, in actual

decoding steps, sparse-graph codes may take advantage of redundant parity-check equa-

tions to improve error correction performance. Because the extended syndrome can be

obtained in polynomial time without additional quantum interactions, we use the following

formulation of the CSS construction for EAQECCs.

Theorem 41 (Hsieh, Brun, and Devetak [HBD09]). If there exists a classical binary [n,k,d]
code with parity-check matrix H, then there exists an [[n,2k−n+c,d;c]] EAQECC, where
c = rankHHT .
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Note that H may contain redundant rows which are related only to classical operations to

infer the noise by a message-passing algorithm.

We apply Theorem 41 to classical sparse-graph codes. An LDPC code is typically defined

as a binary linear code with parity-check matrix H in which every row and column is

sparse. In this chapter we consider LDPC codes with parity-check matrices whose rows and

columns contain only small numbers of ones so that simple message-passing algorithms can

efficiently give good performance in decoding.

Proposition 3. An LDPC code with parity-check matrix H with n columns and mini-
mum distance d defines a classical binary [n,n− rankH,d] code, which yields an [[n,n−
2rankH + rankHHT ,d; rankHHT ]] EAQECC.

The Tanner graph of an m× n parity-check matrix H is the bipartite graph consisting of

n bit vertices and m parity-check vertices, where an edge joins a bit vertex to a parity-

check vertex if that bit is included in the corresponding parity-check equation. A cycle
in a graph is a sequence of connected vertices which starts and ends at the same vertex

in the graph and contains no other vertices more than once. The girth of a parity-check

matrix is the length of a shortest cycle in the corresponding Tanner graph. Short cycles

can severely reduce the performance of an otherwise well-designed LDPC code. In fact,

one of the greatest obstacles to the development of a general theory of LDPC codes in

the quantum setting is the difficulty of avoiding cycles of length four (See, for example,

[MMM04, PC08, COT07, HI07]). In order to improve error correction performance, we

generally only treat LDPC codes with girth at least six.

The weight of a row or column of a binary matrix is its Hamming weight, that is, the

number of ones in it. An LDPC code is regular if its parity-check matrix H has constant

row and column weights, and irregular otherwise. Regular LDPC codes are known to be

able to achieve high error correction performance. Irregular LDPC codes allow the code

designer to optimize characteristics of performance by a careful choice of row weights and

column weights [LMSS01, RU01, RSU01].

We now define several combinatorial structures, which we will need in Subsection 5.2.2 and

the subsequent sections. For additional facts and design theoretical results, the interested

reader is referred to [BJL99].

An incidence structure is an ordered pair (V,B) such that V is a finite set of points, and

B is a family of subsets of V , called blocks. A point-by-block incidence matrix of an

incidence structure (V,B) is a binary v×b matrix H = (hi, j) in which rows are indexed by

points, columns are indexed by blocks, and hi, j = 1 if the ith point is contained in the jth
block, and hi, j = 0 otherwise. A block-by-point incidence matrix of (V,B) is the transposed

point-by-block incidence matrix HT .
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Any LDPC code can be associated with an incidence structure by interpreting its parity-

check matrix as an incidence matrix. The converse also holds as long as the considered

incidence matrix is sparse.

This chapter will focus on incidence structures which have been extensively studied in

combinatorics. This allows us to effectively exploit combinatorial design theory to develop

a framework for designing entanglement-assisted quantum LDPC codes.

A 2-(v,μ,λ ) design is an incidence structure (V,B), where V is a set of cardinality v and

B is a family of μ-subsets of V such that each pair of points is contained in exactly λ
blocks. We will refer to the parameters v, μ , and λ as the order, block size, and index of a

2-design. Note that the block size of a 2-design is usually written as k in the combinatorial

literature. To avoid any confusion with the dimension of a code, we use μ instead.

The number b = |B| of blocks in a 2-(v,μ,λ ) design is determined by the design parame-

ters:

b = |B|= v(v−1)

μ(μ −1)
λ . (5.1)

A 2-design is called symmetric if b = v.

Every point of a 2-(v,μ,λ ) design occurs in exactly r blocks, where

r =
v−1

μ −1
λ . (5.2)

The number r is called the replication number of the design. A point-by-block incidence

matrix H of a 2-(v,μ,λ ) design satisfies the equation

HHT = (r−λ )I +λJ, (5.3)

where I is the identity matrix and J is the v×v all-one matrix. Because r and b are integers,

it follows that the following two conditions

λ (v−1)≡ 0 (mod μ −1),

λv(v−1)≡ 0 (mod μ(μ −1))
(5.4)

are necessary conditions for the existence of a 2-(v,μ,λ ) design.

If the block size μ and index λ are relatively small, an incidence matrix of a 2-(v,μ,λ )
design is sparse. Hence, a point-by-block incidence matrix of a 2-(v,μ,λ ) design can be

viewed as a parity-check matrix H of a regular LDPC code with constant row weight r and

constant column weight μ . Similarly, a block-by-point incidence matrix defines a code with
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constant row weight μ and constant column weight r. In this chapter, incidence matrices

will generally be point-by-block unless it is specifically noted otherwise. In the cases when

block-by-point matrices are desirable, the notation HT will be used.

A substantial part of this chapter deals with one of the most fundamental incidence struc-

tures in combinatorial design theory. A Steiner 2-design, denoted by S(2,μ,v), is a 2-

(v,μ,1) design. A Steiner triple system of order v, denoted by STS(v), is a Steiner 2-design

with block size three. The S(2,μ,v)s are trivial Steiner 2-designs if v ≤ μ . We generally

do not consider trivial designs to be Steiner 2-designs unless they play an important role.

It is easy to see that both point-by-block and block-by-point incidence matrices of an

S(2,μ,v) give regular LDPC codes with girth six (see, for example, [JW01]).

5.2.2 General combinatorial constructions

In this subsection we present a general framework for designing entanglement-assisted

quantum LDPC codes based on combinatorial design theory. Specialized construction

methods for desirable EAQECCs in this framework will be illustrated in Section 5.3.

The following propositions are derived from Theorem 41 by using incidence matrices as

parity-check matrices of binary LDPC codes.

Proposition 4. Let H be a point-by-block incidence matrix of an incidence structure (V,B).
Then there exists a [[|B|, |B|−2rankH + rankHHT ; rankHHT ]] EAQECC.

Proposition 5. Let HT be a block-by-point incidence matrix of an incidence structure
(V,B). Then there exists a [[|V |, |V |−2rankH + rankHT H; rankHT H]] EAQECC.

We employ the following two theorems.

Theorem 42 (Hillebrandt [Hil92]). The rank of an incidence matrix H of an S(2,μ,v)
satisfies the following inequalities:⌈

1

2
+

√
1

4
+

(v−1)(v−μ)
μ

⌉
≤ rankH ≤ v.

Theorem 43 (Hamada [Ham73]). If H is an incidence matrix of an S(2,μ,v) with even
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replication number r = v−1
μ−1 then

rankH =

{
v−1 when μ is even,

v or v−1 when μ is odd.

We now give three simple constructions by applying Propositions 4 and 5 to incidence

matrices of Steiner 2-designs. These constructions will be specialized and modified to give

desirable codes.

Theorem 44 (High-Rate 1-Ebit Code). Let H be a point-by-block incidence matrix of an
S(2,μ,v). Suppose r = v−1

μ−1 is odd. Then H has row weight r, column weight μ , girth 6,
and the corresponding [[n,k;c]] EAQECC satisfies the following conditions:

n =
v(v−1)

μ(μ −1)
,

vr
μ
−2v+1 ≤ k ≤ vr

μ
−2

⌈
1

2
+

√
1

4
+

(v−1)(v−μ)
μ

⌉
+1,

c = 1.

Proof. By Proposition 4 and Theorem 42, it suffices to prove that rankHHT = 1. Because

r is odd, Equation (5.3) reduces to HHT = J, which implies that the rank of HHT is equal

to one.

Theorem 45 (High-Rate High-Consumption Code). Let H be a point-by-block incidence
matrix of an S(2,μ,v). Suppose r = v−1

μ−1 is even. Then H has row weight r, column weight
μ , girth 6, and the corresponding [[n,k;c]] EAQECC satisfies the following conditions:

n =
v(v−1)

μ(μ −1)
,

k =

{
vr
μ − v+1 when μ is even,

vr
μ − v+1 or vr

μ − v−1 when μ is odd,

c = v−1.

Proof. By Proposition 4 and Theorem 43, it suffices to prove that rankHHT = v−1. Be-
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cause r is even, Equation (5.3) reduces to

HHT =

⎡⎢⎢⎢⎣
0 1 1

1 0 · · · 1
...

. . .
...

1 1 · · · 0

⎤⎥⎥⎥⎦ ,
that is, a matrix containing zeros on the diagonal and ones in the other entries. Because

r = v−1
μ−1 is even, v is odd. Hence, we have rankHHT = v−1 as desired.

Theorem 46 (Low-Rate High-Redundancy Code). Let HT be a block-by-point incidence
matrix of an S(2,μ,v). Then H has row weight μ , column weight r, girth 6, and the
corresponding [[n,k;c]] EAQECC satisfies the following conditions:

n = v,

k ≤ v−2

⌈
1

2
+

√
1

4
+

(v−1)(v−μ)
μ

⌉
+ c,

c ≥ 1.

Proof. Let HT be a block-by-point incidence matrix of an S(2,μ,v). Because any non-

trivial S(2,μ,v) contains a pair of blocks that share exactly one point, we have rankHT H ≥
1. Applying Proposition 5 to Theorem 42 completes the proof.

It is worth mentioning that a weaker version of Theorem 44 was used in the context of

integrated optics and photonic crystal technology [Djo10]. Also notable is that Theorems

44 and 45 can be easily extended to the case when preexisting entanglement is not avail-

able. For example, quantum LDPC codes that do not require entanglement can be obtained

by applying the extra column method used in Construction U in [MMM04] and the CSS

construction to S(2,μ,v)s in the same manner as in Proposition 4. Aly’s construction for

quantum LDPC codes [Aly08] is a special case of this extended method. Djordjevic’s

construction for quantum LDPC codes [Djo08] can be obtained by applying the CSS con-

struction to 2-designs of even index in the same way as in Proposition 4.

The existence of 2-designs is discussed in Appendix 5.A, which provides Steiner 2-designs

necessary to obtain several infinite families of new entanglement-assisted quantum LDPC

codes from Theorems 44, 45, and 46. Before applying our theorems to specific S(2,μ,v)s,

we explore general characteristics of our EAQECCs and further develop methods for de-

signing desirable codes.
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Theorem 44 yields entanglement-assisted quantum LDPC codes with very high net rates

and various lengths while requiring only one ebit. Theorem 45 gives codes which have

very high net rates and naturally take advantage of larger numbers of ebits when there is

an adequate supply of entanglement. Because rankHHT ≤ rankH holds for any parity-

check matrix H, the required amounts of entanglement of high rate codes in Theorem 45

are expected to be relatively low when compared with randomly chosen codes of the same

lengths. Theorem 46 generates entanglement-assisted quantum LDPC codes which can

correct many quantum errors by taking advantage of the higher redundancy. The high error

correction performance of these codes will be demonstrated in simulations in Section 5.4.

When a parity-check matrix H of an S(2,μ,v) is of full rank v, the corresponding classical

LDPC code in Theorems 44 and 45 achieves an upper bound on the rate for an LDPC code

with girth six.

Theorem 47 (MacKay and Davey [MD99]). Let H be a v× n parity-check matrix of a
classical regular LDPC code of length n, column weight μ , and girth 6. Let also rankH = v.
Then it holds that n ≤ v(v−1)

μ(μ−1) , where equality holds if and only if H is an incidence matrix
of an S(2,μ,v).

It follows that EAQECCs based on Steiner 2-designs achieve the highest possible net rates

for quantum LDPC codes with girth at least six constructed from full rank parity-check

matrices with constant column weights through the CSS construction.

The rank of an incidence matrix of an S(2,μ,v) may not be full depending on the structure

of the design. If one wishes a parity-check matrix to be regular and full rank at the same

time, it is important to choose an S(2,μ,v) with a full rank incidence matrix. This can

always be done for the case when μ = 3 except for v = 7 [DHV78]. For a more detailed

treatment of the ranks of S(2,μ,v)s, we refer the reader to [Ham73, Ham68, AK92].

In general, the code minimum distance plays less of a role in the performance of sum-

product decoding than maximum likelihood decoding [MMM04]. Therefore, we explore

in detail the distance d of [[n,k,d;c]] EAQECCs based on LDPC codes only when it is

of great theoretical interest. Because codes derived from finite geometries are of great

importance in coding theory, the distances of EAQECCs obtained from finite geometries

will be investigated in detail in Section 5.3.

Here we briefly review the minimum distances of LDPC codes based on Steiner 2-designs.

A pair of S(2,μ,v)s which are not mutually isomorphic may give different minimum dis-

tances. The tightest known upper and lower bounds on the minimum distance of an LDPC

code based on an STS(v) can be found in the very large scale integration (VLSI) literature

as bounds on even-freeness.
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Theorem 48 (Fujiwara and Colbourn [FC10]). The minimum distance d of a classical
binary linear code whose parity-check matrix forms an incidence matrix of a non-trivial
STS(v) satisfies 4 ≤ d ≤ 8.

A carefully chosen triple system can have a good topological structure which gives good

decoding performance. If conditions require larger minimum distances, the code designer

may use either block-by-point incidence matrices, or S(2,μ,v)s of larger block sizes. For

known results on minimum distances, girths, and related characteristics of LDPC codes

based on combinatorial designs, the reader is referred to [CF09, FC10, Joh04] and refer-

ences therein.

In what follows, we describe general guidelines for designing entanglement-assisted quan-

tum LDPC codes with desired parameters and properties by exploiting codes we have pre-

sented in this section.

We first consider an [[n,k;c]] EAQECC requiring only a small amount of entanglement. The

extreme case is when c = 1. The following theorem gives infinitely many such EAQECCs

having extremely high rates and low decoding complexity.

Theorem 49. Let v and μ be positive integers satisfying v−1 ≡ 0 (mod μ −1) and v(v−
1)≡ 0 (mod μ(μ −1)). Suppose also that v−1

μ−1 is odd. Then for all sufficiently large v and

some k satisfying the condition of Theorem 44, there exists an [[ v(v−1)
μ(μ−1) ,k;1]] EAQECC.

Proof. Use Wilson’s Theorem [Wil72a, Wil72b, Wil75], which guarantees the existence of

an S(2,μ,v) for all sufficiently large v, and apply Theorem 44.

Similarly, applying Theorem 44 to known S(2,μ,v)s with small v discussed in Appendix

5.A gives [[n,k;1]] EAQECCs of shorter length n.

In general, the error floor of a well-designed LDPC code is not dominated by low-weight

codewords. Nonetheless, it is desirable to carefully choose an S(2,μ,v) when applying our

simple constructions so that the resulting code has a promising topological structure. While

incidence matrices of S(2,μ,v)s have long been investigated in various fields, it appears to

be difficult to achieve the known upper bounds on the minimum distance of an LDPC code

based on an incidence matrix of an S(2,μ,v). In fact, it is conjectured that the known upper

bounds are generally not achievable even for the case μ = 3 [CF09].

An STS is 4-even-free (or anti-Pasch) if its incidence matrix gives a classical LDPC code

with minimum distance five or greater. A 4-even-free STS(v) exists for all v 
= 7,13 satis-
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fying the necessary conditions (5.4) [GGW00]. It is conjectured that an incidence matrix

of a 4-even-free STS(v) gives the largest possible minimum distance [CF09].

Theorem 50. There exists a [[ v(v−1)
6 ,k,d;1]] EAQECC with k ≥ v(v−1)

6 −2v+1 and d ≥ 5

for every v ≡ 3,7 (mod 12) except for v = 7.

Proof. If v ≡ 3,7 (mod 12), then the replication number of an STS(v) is odd. Applying

Theorem 44 to a 4-even-free STS(v) completes the proof.

A block-by-point incidence matrix of a symmetric S(2,μ,v) can also be viewed as a point-

by-block incidence matrix of a Steiner 2-design of the same parameters [CD07]. Hence,

Theorems 44 and 46 can overlap when symmetric designs are employed. This special

case gives the EAQECCs with c = 1 and good error correction performance originally

presented in [HYH11]. For completeness, we give a simple proof by using the following

two theorems.

Theorem 51. For every integer t ≥ 1 there exists a symmetric S(2,2t +1,4t +2t +1) whose
incidence matrix H satisfies rankH = 3t +1.

Proof. Take as S(2,2t +1,4t +2t +1) the Desarguesian projective plane of order 2t , whose

incidence matrix has rank 3t +1 [GM72].

Theorem 52 (Calkin, Key, and de Resmini [CKdR99]). Let HT be a block-by-point in-
cidence matrix of a symmetric S(2,2t + 1,4t + 2t + 1) being the Desarguesian projective
plane PG(2,2t). Then HT defines a classical binary linear [4t +2t +1,4t +2t −3t ,2t +2]
code.

Now as a corollary of Theorems 44 and 46 and the preceding two theorems, we obtain the

following result.

Theorem 53. For every integer t ≥ 1 there exists a [[4t + 2t + 1,4t + 2t − 2 · 3t ,2t + 2;1]]
EAQECC.

EAQECCs of this kind can be seen as quantum analogues of special Type I PG-LDPC

codes, which have notable error correction performance in the classical setting [KLF01,

TXK+04, TXLAG05]. Because of the direct correspondence between entanglement as-

sisted quantum codes and classical codes, these EAQECCs inherit excellent error cor-

rection performance while consuming only one initial ebit. We will further investigate

entanglement-assisted quantum LDPC codes based on S(2,μ,v)s with large minimum dis-

tances in Section 5.3.
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Next we present general combinatorial methods for designing EAQECCs with relatively

small c and better error correction performance. The main idea is that we discard some

columns from an incidence matrix of an S(2,μ,v) and then apply Proposition 4 as we did

in Theorem 44. Our methods encompass the rate control technique for classical LDPC

codes proposed in [JW03] as a special case.

Let (V,B) be an S(2,μ,v). Take two subsets V ′ � V and B′ � B. The pair (V ′,B′)
is called a proper subdesign of block size μ if it is an S(2,μ, |V ′|). Because we do not

consider other kinds of subdesigns, we simply call a proper subdesign (V ′,B′) of block

size μ a subdesign. A pair of subdesigns (V ′,B′) and (V ′′,B′′) of an S(2,μ,v) are point-
wise disjoint if V ′ ∩V ′′ = /0.

Theorem 54. Let (V,B) be an S(2,μ,v) with odd r = v−1
μ−1 . Assume that (V,B) contains j

point-wise mutually disjoint subdesigns (Vi,Bi), 1 ≤ i ≤ j, such that
⋃ j

i=1Vi �V and each
(Vi,Bi) has odd replication number. Then there exists an [[n,k;c]] EAQECC satisfying the
following conditions:

n =
v(v−1)

μ(μ −1)
−|

⋃
Bi|,

c = j+1.

Proof. Take an arbitrary incidence matrix H of an S(2,μ,v) with odd r. Delete j point-

wise mutually disjoint subdesigns (Vi,Bi) each of which has odd replication number. It is

always possible to reorder the rows and columns of the resulting incidence matrix H ′ such

that H ′H ′T has the form:

H ′H ′T =

⎡⎢⎢⎢⎣
J J J
J 01 · · · J

...
. . .

...

J J · · · 0 j

⎤⎥⎥⎥⎦
where 0i is a |Vi|× |Vi| zero matrix and each J is an all-one matrix of appropriate size. It is

easy to see that rankH ′H ′T = j+1. Applying Proposition 4 to H ′ completes the proof.

Deleting subdesigns always shortens the length of the corresponding code. Discarding

columns will not decrease the minimum distance or the girth. The rank of the parity-

check matrix is unlikely to change. In this sense, we expect EAQECCs obtained through

subdesign deletion to have better error correction performance than the original code. We

will demonstrate this effect in simulations in Section 5.4.

In general, deleting a subdesign makes a parity-check matrix slightly irregular. If this
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irregularity is not desirable because of particular circumstances or conditions, it can be al-

leviated by discarding more point-wise disjoint subdesigns. In fact, if we delete subdesigns

of the same order such that each point belongs to one deleted subdesign, we obtain a regular

parity-check matrix again. The following construction demonstrates this.

Let (V,B) be an S(2,μ,v) and S a set of Steiner 2-designs (Vi,Bi),1 ≤ i ≤ |S |, where

V1, . . . ,V|S | partition V , that is,
⋃

Vi = V and Vi ∩Vj = /0 for all i 
= j. Then S is called a

Steiner spread in (V,B) if each (Vi,Bi) forms a subdesign S(2,μ, |Vi|) of (V,B).

Theorem 55. Let (V,B) be an S(2,μ,v) with odd replication number r = v−1
μ−1 . Assume

that (V,B) contains a Steiner spread S , where each subdesign (Vi,Bi) has odd replication
number. Then there exists an [[n,k;c]] EAQECC satisfying the following conditions:

n =
v(v−1)

μ(μ −1)
−|

⋃
Bi|,

c =
{ |S |−1 when |S | is odd,

|S | when |S | is even.

Moreover, if |Vi|= |Vi′ |=w for all i and i′, then the parity-check matrix of the corresponding
LDPC code is regular and has row weight r− w−1

μ−1 and column weight μ .

Proof. Let H be an incidence matrix of an S(2,μ,v) with odd r which contains a Steiner

spread S . Delete all members of the Steiner spread from (V,B). By following the same

argument as in the proof of Theorem 54, it is straightforward to see that rankHHT =
|S | − 1 when |S | is odd, and |S | otherwise. If |Vi| = |Vi′ | = w for all i and i′, each

subdesign has the same replication number w−1
μ−1 . Hence, the resulting code is regular.

When there is an adequate supply of entanglement, it may be acceptable to exploit a rela-

tively large amount of entanglement to improve error correction performance while keep-

ing similar characteristics of high rate codes. Deleting an S(2,μ,w) with even replication

number w−1
k−1 increases the required amount of entanglement to a slightly larger extent.

Theorem 56. Let (V,B) be an S(2,μ,v) with odd replication number r = v−1
μ−1 . Assume

that (V,B) contains j point-wise mutually disjoint subdesigns (Vi,Bi), 1 ≤ i ≤ j, such that⋃ j
i=1Vi ⊆ V and each (Vi,Bi) has even replication number. Then there exists an [[n,k;c]]

EAQECC satisfying the following conditions:

n =
v(v−1)

μ(μ −1)
−|

⋃
Bi|,
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c =
j

∑
i=1

(|Vi|−1)+1.

Moreover, if the subdesigns (Vi,Bi) for 1 ≤ i ≤ j form a Steiner spread with |Vi|= |Vi′ |= w
for all i and i′, then the parity-check matrix of the corresponding LDPC code is regular and
has row weight r− w−1

μ−1 and column weight μ .

Proof. Take an arbitrary incidence matrix H of an S(2,μ,v) with odd r. Delete j point-

wise mutually disjoint subdesigns (Vi,Bi) each of which has even replication number. If⋃ j
i=1Vi � V , it is always possible to reorder the columns of the resulting incidence matrix

H ′ such that H ′H ′T is of the form:

H ′H ′T =

⎡⎢⎢⎢⎣
J J J
J I1 · · · J

...
. . .

...

J J · · · I j

⎤⎥⎥⎥⎦
where Ii is the |Vi|× |Vi| identity matrix and each J is an all-one matrix of appropriate size.

Because each Ii has Vi independent rows and each |Vi| is odd, rankH ′H ′T =∑ j
i=1 (|Vi|−1)+

1. Applying Proposition 4 to H ′ gives c = ∑ j
i=1 (|Vi|−1) + 1. If

⋃ j
i=1Vi = V , we have

identity matrices across the diagonal of H ′H ′T . Hence, we have c = ∑ j
i=1 (|Vi|−1) + 1

again. If each Vi is of the same size, it is straightforward to see that the resulting code is

regular.

When irregularity in a parity-check matrix is acceptable or favorable, the code designer can

combine the techniques of Theorems 54, 55, and 56. The required amount of entanglement

is readily computed by the same argument as above.

In general, subdesign deletion changes the parameters of a code in a gradual manner.

Hence, these techniques are also useful when one would like an EAQECC of specific length

or dimension. While we only employed Theorem 44 in the above arguments, Theorem 45

can also be used in a straightforward manner to fine-tune the parameters of EAQECCs.

In order to exploit the subdesign deletion techniques, one needs Steiner 2-designs having

subdesigns or preferably Steiner spreads of appropriate sizes. We conclude this section

with a brief review of known general results and useful theorems for finding S(2,μ,v) with

subdesigns and Steiner spreads. For a more thorough treatment, the reader is referred to

[CD07, BJL99] and references therein.

The well-known Doyen-Wilson theorem [DW79] states that one can always find an STS(v)
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containing an STS(w) as a subdesign as long as both v and w satisfy the necessary condi-

tions for the existence of an STS and v ≥ 2w+ 1. The following is a general asymptotic

theorem on Steiner 2-designs having subdesigns.

Theorem 57 (Fujiwara [Fuj07]). Let μ ≥ 2 be a positive integer and w ≡ 1 (mod μ(μ −
1)). Then there exist a constant number w0 depending on μ , and a constant number v0

depending on w and μ such that if w > w0 and v > v0 satisfies the conditions v− 1 ≡ 0

(mod μ − 1) and v(v− 1) ≡ 0 (mod μ(μ − 1)), then there exists an S(2,μ,v) having an
S(2,μ,w) as a subdesign.

Theorem 57 states that one can always find an S(2,μ,v) having an S(2,μ,w) as a subdesign

as long as v is a sufficiently large integer satisfying the necessary conditions (5.4) and w is

a sufficiently large integer satisfying w ≡ 1 (mod μ(μ −1)).

Steiner spreads are closely related to a special kind of combinatorial design. A group
divisible design (GDD) with index one is a triple (V,G ,B), where

(i) V is a finite set of elements called points,

(ii) G is a family of subsets of V , called groups, which partition V ,

(iii) B is a collection of subsets of V , called blocks, such that every pair of points from

distinct groups occurs in exactly one block,

(iv) |G∩B| ≤ 1 for all G ∈ G and B ∈ B.

If all groups are of the same size g, all blocks are of the same size μ , and |G |= t, one refers

to the design as a μ-GDD of type gt .

Theorem 58. The existence of an S(2,μ,g) and a μ-GDD (V,G ,B) of type gt with index
one implies the existence of an S(2,μ,gt) having a Steiner spread S , where each member
of S is an S(2,μ,g).

Proof. Let (V,G ,B) be a μ-GDD of type gt with index one and (V ′,B′) an S(2,μ,g).
For each G ∈ G , we construct an S(2,μ,g), (G,B′

G), by mapping each point of (V ′,B′)
to an element of G by an arbitrary bijection πG : V ′ → G. Define C =

⋃
G∈G B′

G. It is

straightforward to check that (V,B ∪C ) is an S(2,μ,gt) having a Steiner spread whose

members are all S(2,μ,g)s.
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The above theorem is useful to obtain regular LDPC codes through Theorems 55 and 56 and

similar subdesgin deletion techniques based on Theorem 45. One can also modify Theorem

58 for the case when a GDD has different group sizes by a similar argument. The existence

of GDDs and their constructions have been extensively investigated in combinatorial design

theory. For a comprehensive list of known existence results on GDDs, we refer the reader

to [CD07].

5.3 Finite geometry codes

In this section, we demonstrate applications of our general designing methods by using

combinatorial designs arising from finite geometries.

The classical LDPC codes obtained from finite geometries are known to have remarkable

error correction abilities. By using these codes, we generate infinitely many new high per-

formance entanglement-assisted quantum LDPC codes having numerous Steiner spreads of

various sizes. The various Steiner spreads in each code allow the code designer to flexibly

fine-tune the parameters and error correction performance.

This section is divided into three subsections. Subsection 5.3.1 studies entanglement-

assisted quantum LDPC codes of girth six obtained from projective geometries. Codes

based on affine geometries are investigated in Subsection 5.3.2. In Subsection 5.3.3 we in-

vestigate slightly modified affine geometry codes, called Euclidean geometry codes. Clas-

sical LDPC codes based on these three kinds of finite geometries are called finite geometry
LDPC codes or simply FG-LDPC codes.

Many of the results presented in this section can also be seen as new results on classical

finite geometry LDPC codes. In particular, properties of finite geometries have been inde-

pendently studied in the combinatorial literature, and hence many of the “known" results

are new results in the field of LDPC codes. For the convenience of the reader, we summa-

rize our results on fundamental parameters of LDPC codes from finite geometries in Tables

5.14 and 5.15 in Appendix 5.B. Lengths, dimensions, and minimum distances of the FG-

LDPC codes with girth six from projective geometry PG(m,q), affine geometry AG(m,q),
and Euclidean geometry EG(2,2t) are all determined. Specifically for EAQECCs based on

FG-LDPC codes, we also determine the required amounts of entanglement for most cases.

For a few cases, we give upper bounds on the required amount of entanglement.
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5.3.1 Projective geometry codes

We begin with EAQECCs obtained from finite projective geometries. The use of projective

geometries for constructing EAQECCs first appeared in the work of Hsieh, Yen, and Hsu

[HYH11]. This subsection illustrates how our combinatorial framework generalizes their

method and determines fundamental parameters of quantum and classical LDPC codes

obtained from PG(m,q).

Points of the m-dimensional projective geometry PG(m,q) over Fq are the 1-dimensional

subspaces of Fm+1
q . The i-dimensional projective subspaces of PG(m,q) are the (i+ 1)-

dimensional vector subspaces of Fm+1
q . The points and lines of PG(m,q) form an S(2,q+

1, qm+1−1
q−1 ), denoted by PG1(m,q), having

(qm+1−1)(qm−1)
(q2−1)(q−1)

blocks and replication number

qm−1
q−1 = qm−1 +qm−2 + · · ·+q+1.

One can obtain two types of EAQECCs from projective geometry designs: Type II (using

a point-by-block incidence matrix) and Type I (using a block-by-point incidence matrix

of the design). Applying Proposition 4 to an incidence matrix of PG1(m,q), we obtain a

Type II EAQECC. This type of EAQECC belongs to the high rate entanglement-assisted

quantum LDPC codes given in Theorems 44 and 45. If we apply Proposition 5 to a block-

by-point incidence matrix, we obtain a Type I EAQECC. This kind of EAQECC belongs to

the high redundancy entanglement-assisted quantum LDPC codes given in Theorem 46.

The rank of an incidence matrix determines the dimension of the corresponding FG-LDPC

code, hence it is one of the key values in the quantum setting as well. Exact values for

many sporadic examples have been computed in the fields of quantum and classical LDPC

codes. The following two theorems give the exact rank for all projective geometry designs.

Theorem 59 (Hamada [Ham68]). The rank of PG1(m,2t) is given by

rankPG1(m,2t) = ϕ(m,2t) =

∑
(s0,s1,...,st)

t−1

∏
j=0

L(s j+1,s j)

∑
i=0

(−1)i
(

m+1

i

)(
m+2s j+1 − s j −2i

m

)
where the sum is taken over all ordered sets (s0,s1, . . . ,st) with s0 = st , s j ∈ Z such that
0 ≤ s j ≤ m−1, and 0 ≤ 2s j+1 − s j ≤ m+1 for each j = 0, . . . , t −1, and

L(s j+1,s j) =

[
2s j+1 − s j

2

]
.
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We will use the notation ϕ(m,2t) for the rank of PG1(m,q) when q is even, that is, q = 2t .

When q is odd, the rank of PG1(m,q) is given by a formula of Frumkin and Yakir [FY90].

Theorem 60 (Frumkin and Yakir [FY90]). Let q be odd and H an incidence matrix of the
design PG1(m,q) with v = qm+1−1

q−1 points. Then rankH = v−1 = qm+1−q
q−1 .

Hence the exact dimensions of the corresponding FG-LDPC codes obtained from projective

geometries can be calculated for all cases.

The rank of PG1(m,2t) was conjectured by Hamada [Ham73] to be the lowest rank among

all Steiner 2-designs of the same order and block size. This has been confirmed in a num-

ber of cases, although in general the conjecture is still open. Thus we expect that the

designs PG1(m,2t) should provide codes with the best possible dimensions among all non-

isomorphic S(2,2t +1, 2t(m+1)−1
2t−1 )s.

We will now examine the codes obtained from PG1(m,q) in detail. This subsection is

divided into two portions based on the orientation of the incidence matrix.

5.3.1.1 Point-by-block (Type II) Projective geometry codes

In this portion, we consider the EAQECCs corresponding to a point-by-block incidence

matrix of PG1(m,q).

We first consider the case q = 2t for some positive integer t. The following theorem gives

an infinite family of entanglement-assisted quantum LDPC codes which consume only one

initial ebit and have extremely large net rate.

Theorem 61. For every pair of integers t ≥ 1 and m ≥ 2 there exists an entanglement-
assisted quantum LDPC codes with girth six whose parameters [[n,k,d;c]] are

n =
(2t(m+1)−1)(2tm −1)

(22t −1)(2t −1)
,

k =
(2t(m+1)−1)(2tm −1)

(22t −1)(2t −1)
−2ϕ(m,2t)+1,

d = 2t +2, and

c = 1.
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To prove Theorem 61, we first prove a new result on the distance of EAQECCs obtained

from an incidence matrix of PG1(m,2t). We use a special set of lines. A dual hyperoval
H is a set of q+2 lines of PG1(2,q), such that each point of PG1(2,q) lies on either zero

or two lines of H . Dual hyperovals exist if and only if q is even. An example is the set of

projective lines with equations

{X0 +βX1 +β 2X2 = 0 : β ∈ Fq}∪{X1 = 0}∪{X2 = 0}.

Theorem 62. Let H be an incidence matrix of PG1(m,2t). The minimum distance of the
classical binary linear code with parity-check matrix H is 2t +2.

Proof. First, we note that coordinates of the codewords correspond to lines of the geom-

etry, and a codeword corresponds to a set S of lines in PG1(m,2t) such that every point

is contained in an even number of lines of S. Assume that c is a non-zero codeword, and

let supp(c) denote the support of c, that is, the set of indices of the nonzero coordinates

of c. Because c 
= 0, the support of c contains at least one line �. Through each point of

PG(m,2t), there pass an even number of lines from supp(c). In particular, each of the 2t +1

points on � lies on at least one other line of supp(c), and all these lines are different as they

have different intersections with �. Hence, there are at least 1+(2t + 1) lines in supp(c),
that is, minimum distance d is at least 2t + 2. Let π be a plane in PG(m,2t) and S the set

of the 2t + 2 lines of a dual hyperoval in π . Then S corresponds to a codeword of weight

2t +2, hence d = 2t +2.

Proof of Theorem 61. Let H be an incidence matrix of PG1(m,2t). The rank of H is

ϕ(m,2t) given by Theorem 59. The index of PG1(m,2t) is one. The replication num-

ber is odd. By Equation (5.3) and Theorem 44, we have rankHHT = 1. By Theorem 62,

the minimum distance of the binary linear code with parity-check matrix H is 2t +2.

Next, we examine EAQECCs obtained from an incidence matrix of PG1(m,q) with q odd.

This case also gives very high rate entanglement-assisted quantum LDPC codes.

Lemma 19. Let H be an incidence matrix of PG1(2,q), q odd. Then the classical binary
linear code defined by parity-check matrix H consists of only the zero vector and the all-one
vector.

Proof. This follows directly from Theorem 60.

A hyperbolic quadric Q is a substructure (P,L ) of PG1(3,q) with (q+ 1)2 points and

2(q+1) lines, such that each point of P lies on exactly two lines of L and every plane of

84



PG(3,q) contains zero or two lines of L . Hyperbolic quadrics exist for every odd prime

power q.

Theorem 63. Let H be an incidence matrix of PG1(m,q), m ≥ 3, q odd. Then the minimum
distance of the classical binary linear code with a parity-check matrix H is 2(q+1).

Proof. Let Π be a 3-dimensional subspace of PG(m,q) and (P,L ) a hyperbolic quadric

in Π. The set of lines L determines a codeword of weight 2q+ 2, because each point of

PG(m,q) is contained in zero or two lines of L . Hence minimum distance d is at least

2q+2.

We show that there are no codewords of weight smaller than 2q+ 2. Assume that there

exists a codeword c of weight smaller than 2q+ 2, that is, supp(c) is a set of less than

2q+ 2 lines of PG(m,q), such that each point lies on an even number of lines of supp(c).
We will show that for any 2-dimensional subspace π one has either |supp(c)∩π| ≤ 1 or

|supp(c)∩π| ≥ q+2.

First, let S = supp(c)∩π = {�1, . . . , �i}. For each j ∈ {1, . . . , i}, each of the points on � j
has to lie on at least one other line of supp(c), and at most i−1 of them can lie on a line of

S. Hence, at least q+1− (i−1) of them are lines in supp(c)\S and because they all have

different intersections with π , this yields i(q− i+2) lines in supp(c)\S. Together with the

i lines of S, we have

i(q− i+2)+ i < 2q+2

and solving this quadratic inequality for i gives us that either i > q+1 or i < 2. Because i
is an integer, hence i ≥ q+2 or i ≤ 1.

Now, let � be any line of supp(c). Each point of � must lie on at least one other line, hence

there certainly exist planes π with i ≥ 2, and we have i ≥ q+ 2. Let π be such a plane.

We will now show that all lines of supp(c) are contained in π . Assume the contrary, that

there exists a line �′ ∈ supp(c) \ S. Through each of the points on �′ \π , we need at least

one other line of supp(c) which is not contained in π . Because there are at least q points

on �′ \π , one has

|supp(c)|= |S|+ |supp(c)\S| ≥ (q+2)+(1+q)> 2q+2,

a contradiction. Hence, �′ does not exist and supp(c) is contained within a single plane π .

However, π is a PG1(2,q) and by Lemma 19 we need q2+q+1 > 2q+2 lines in this case,

a contradiction. Hence, there are no codewords of weight less than 2q+2.

We now give another infinite family of Type II entanglement-assisted quantum LDPC

codes.
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Table 5.1
Sample parameters of Type II [[n,k,d;c]] EAQECCs obtained from

PG1(m,q), q even.

m q n k d c
3 2 35 14 4 1

4 2 155 104 4 1

5 2 651 538 4 1

6 2 2667 2428 4 1

3 4 357 236 6 1

4 4 5795 5204 6 1

2 8 73 18 10 1

3 8 4745 3944 10 1

Theorem 64. Let q be an odd prime power. Then for every integer m ≥ 3 there exists an
entanglement-assisted quantum LDPC code with girth six whose parameters [[n,k,d;c]]
are

n =
(qm+1 −1)(qm −1)

(q2 −1)(q−1)
,

k =
(qm+1 −1)(qm −1)

(q2 −1)(q−1)
−2

qm+1 −q
q−1

+ c,

d = 2q+2, and

c =

{
1 when m is odd,

qm+1−q
q−1 when m is even.

Proof. This follows directly from Proposition 4 and Theorems 44, 60, and 63.

Therefore in the case where m is odd, we have another infinite class of EAQECCs which

consume only one ebit. If m is even, we obtain infinitely many high rate codes which

consume reasonable numbers of ebit. Tables 5.1 and 5.2 give a sample of the parameters

of the Type II codes obtained from PG1(m,q) with q even and q odd respectively.

In the reminder of this portion, we examine Steiner spreads of projective geometry designs.

These substructures can be used in Theorems 54, 55, and 56 and their analogous techniques

based on Theorem 45 to fine-turn the rates and distances of the EAQECCs.

An s-spread of PG(m,q) is a set of s-dimensional projective subspaces which partition the

86



Table 5.2
Sample parameters of Type II [[n,k,d;c]] EAQECCs obtained from

PG1(m,q), q odd.

m q n k d c
3 3 130 53 8 1

3 5 806 497 12 1

3 7 2850 2053 16 1

4 3 1210 1090 8 120

points of the geometry. In other words, an s-spread consists of a set of (s+1)-dimensional

vector subspaces of Fm+1
q which contain every nonzero vector exactly once. It is known that

PG(m,q) admits an s-spread if and only if s+1 divides m+1 (see [Seg64] and [Dem68, p.

29]).

Take PG1(m,q) and suppose s≥ 2 is chosen so that s+1 divides m+1. Then an s-spread of

PG(m,q) exists. Each s-dimensional subspace in the spread contains an isomorphic copy

of PG1(s,q), and hence this forms a Steiner spread. Note that the blocks of PG1(s,q) have

size q+1 and are also blocks of PG1(m,q). Therefore we have the following result.

Theorem 65. Let s, m ≥ 1 be positive integers such that s + 1 divides m + 1. Then
PG1(m,q) contains qm+1−1

qs+1−1
disjoint copies of PG1(s,q) whose point sets partition the point

of PG1(m,q).

Thus, we can find a set of disjoint subdesigns which partition the points of PG1(m,q) when-

ever m+1 has a nontrivial factor. Naturally, we may further sub-divide each subdesign of

dimension s into smaller subdesigns, based on the nontrivial factors of s+ 1. Hence, the

S(2,μ,v)s from PG1(m,q) are very flexible in that they have Steiner spreads of various

sizes.

In general, the length, dimension, required ebits, and rate each change gradually as we

delete subdesigns in a Steiner spread. The minimum distance and rank are either remain

the same or improve slightly. Table 5.3 lists the example parameters of EAQECCs created

by deleting subdesigns from PG1(5,2). The first and last rows correspond to regular LDPC

codes.
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5.3.1.2 Block-by-point (Type I) Projective geometry codes

Next we consider EAQECCs obtained via Theorem 46 by using the block-by-point inci-

dence matrix of PG1(m,q). The codes obtained in this manner correspond to the classical

Type I LDPC codes. As in the classical setting, Type I entanglement-assisted quantum

regular LDPC codes can correct many quantum errors. Because an incidence matrix of

PG1(m,q) for q odd is almost full rank, the corresponding Type I code is not of much

interest. Hence, in this portion we always assume that q = 2t for some positive integer t.

Theorem 66. For every pair of integers t ≥ 1 and m ≥ 2 there exists an entanglement-
assisted quantum LDPC code with girth six whose parameters [[n,k,d;c]] are

n =
2t(m+1)−1

2t −1
,

k =
2t(m+1)−1

2t −1
−2ϕ(m,2t)+ c,

d = (2t +2)2t(m−2), and

c ≤ ϕ(m,2t).

Proof. Let HT be a block-by-point incidence matrix of PG1(m,2t). Then rankHT H ≤
rankH = ϕ(m,2t), where ϕ(m,2t) is given by Theorem 59. By a result of Calkin, Key, and

Table 5.3
Summary of parameters of Type II codes obtained by deleting a Steiner

spread of subdesigns isomorphic to PG1(2,2) from PG1(5,2). Subs
denotes the number of subdesigns removed.

Subs n rankH k d c Rate

0 651 57 538 4 1 0.8264

1 644 57 532 4 2 0.8370

2 637 57 526 4 3 0.8477

3 630 57 520 4 4 0.8587

4 623 57 514 4 5 0.8700

5 616 57 508 4 6 0.8815

6 609 57 502 4 7 0.8933

7 602 57 496 4 8 0.9053

8 595 57 490 4 9 0.9176

9 588 57 482 4 8 0.9269
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Table 5.4
Sample parameters of Type I [[n,k,d;c]] EAQECCs obtained from

PG1(m,q), q even.

m q n k d c
2 4 21 2 6 1

2 8 73 18 10 1

2 16 273 110 18 1

2 32 1057 570 34 1

de Resmini [CKdR99], the minimum distance of the binary linear code with parity-check

matrix HT is (2t +2)2t(m−2). Applying Proposition 5 proves the assertion.

Note that here the distance grows exponentially as the dimension of the geometry increases.

When m = 2, the EAQECCs are based on projective planes. As shown in Subsection 5.2.2,

the EAQECC obtained from a Desarguesian projective plane of order 2t consumes only one

initial ebit. Basing on Hamada’s conjecture, we expect that in general the EAQECCs given

in Theorem 66 consume relatively small numbers of ebits.

It is not clear from the formula for ϕ(m,2t) whether the net rate of a Type I EAQECC

based on PG1(m,2t) is positive. In order to produce useful catalytic quantum codes, it is

important to understand when the net rate is positive.

Proposition 6. Let H be an incidence matrix of PG1(2,2
t). Then for all t ≥ 2 the EAQECC

obtained from HT has a positive net rate.

Proof. By Hamada’s formula, we have rankH = 3t +1. The number of points in PG1(2,2
t)

is 22t +2t +1.

For m ≥ 3, we note that as q increases, rankH grows at a slower rate than the code length.

Thus we may expect that, for q large when compared to m, the net rate will eventually

become positive. For example, one can check that the net rate of the Type I EAQECC

obtained from PG1(3,2
t) is positive for t ≥ 7. Table 5.4 gives sample parameters of the

Type I codes obtained from PG1(m,2t).
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5.3.2 Affine geometry codes

In this subsection, we will study the EAQECCs obtained from affine geometry designs.

The affine geometry AG(m,q) of dimension m over Fq is a finite geometry whose points

are the vectors in Fm
q . The i-dimensional affine subspaces (or i-flats) are the i-dimensional

vector subspaces of Fm
q and their cosets. Thus AG(m,q) has a natural parallelism.

The points and lines (that is, 1-flats) of an affine geometry form an S(2,q,qm), denoted

by AG1(m,q). The design has qm−1 qm−1
q−1 blocks and replication number qm−1

q−1 = qm−1 +

qm−2 + · · ·+q+1.

We note that in many papers concerning LDPC codes, the term “Euclidean geometry” and

the notation EG(m,q) are used for affine geometries. Most of the codes studied in relation

to Euclidean geometries does not use the zero vector, and hence they do not generally cor-

respond to S(2,μ,v)s. Because the term “affine geometry" is standard in the recent research

on finite geometry in mathematics, we use the notation AG1(m,q) when we take all points

and lines to form an incidence matrix. The incidence structure obtained by discarding the

zero vector and the lines containing the zero vector from AG1(m,q) will be denoted by

EG1(m,q), which we will study in Subsection 5.3.3. Because many of the classical FG-

LDPC codes obtained from affine geometries are based on EG1(m,q), they are generally

not the same as the affine geometry codes presented in this section.

As with projective geometry designs, Propositions 4 and 5 give Type II and Type I affine

geometry codes respectively. It is notable that the classical ingredients of these codes are

quasi-cyclic LDPC codes similar to other FG-LDPC codes because the elementary abelian

group acts transitively on the points of AG1(m,q) (see [BJL99, KLF01]). The rank of an

affine geometry design AG1(m,2t) is directly related to ϕ given in Theorem 59.

Theorem 67 (Hamada [Ham73]). The rank of the affine geometry design AG1(m,2t) is
given by

rankAG1(m,2t) = ϕ(m,2t)−ϕ(m−1,2t).

If q is odd, the rank of AG1(m,q) over F2 is full.

Theorem 68 (Yakir [Yak93]). Let H be an incidence matrix of the design AG1(m,q) with
q odd. Then rankH = qm.

Thus the dimensions of the corresponding FG-LDPC codes can be easily calculated.
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As in the case of projective designs, Hamada conjectured that the rank of AG1(m,2t) is

minimum among all Steiner 2-designs of the same order and block size. Thus, affine geom-

etry designs with q even may be expected to give codes with the best possible dimensions

among all non-isomorphic S(2,2t ,2tm)s.

We divide this subsection into two portions. In the first portion we examine high rate Type

II entanglement-assisted quantum LDPC codes obtained from AG1(m,q). Then in the next

portion we present Type I entanglement-assisted quantum LDPC codes based on AG1(m,q),
which effectively exploit the redundancy to give excellent error correction performance.

5.3.2.1 Point-by-block (Type II) Affine geometry codes

The geometric structure of affine geometry has often been studied independently in various

fields. The special substructure we need to give distances has been investigated in connec-

tion with the disk failure resilience ability of a class of redundant arrays of independent

disks (RAID). Here we present a known result on RAID related to our codes in coding

theoretic terminology.

Theorem 69 (Müller and Jimbo [MJ04]). Let H be an incidence matrix of AG1(m,q). The
minimum distance of the classical binary linear code having H as a parity-check matrix is
q+1 if q is even, and 2q otherwise.

The following two theorems give infinite families of EAQECCs which consume only one

initial ebit and have very large net rate.

Theorem 70. For every pair of integers t ≥ 1 and m ≥ 2 there exists an entanglement-
assisted quantum LDPC code with girth six whose parameters [[n,k,d;c]] are

n = 2t(m−1)2tm −1

2t −1
,

k = 2t(m−1)2tm −1

2t −1
−2(ϕ(m,2t)−ϕ(m−1,2t))+1,

d = 2t +1, and

c = 1.

Proof. Let H be an incidence matrix of AG1(m,2t). By Theorem 67, we have rankH =
ϕ(m,2t)−ϕ(m−1,2t). The index of the design AG1(m,2t) is one. Its replication number
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is always odd. Thus, by Theorem 44, we have rankHHT = 1. Applying Proposition 4 and

Theorem 69 completes the proof.

Theorem 71. Let q be an odd prime power. Then for every integer m ≥ 2 there exists an
entanglement-assisted quantum LDPC code with girth six whose parameters [[n,k,d;c]]
are

n = qm−1 qm −1

q−1
,

k = qm−1 qm −1

q−1
−2qm + c,

d = 2q, and

c =
{

1 when m is odd,
qm −1 when m is even.

Proof. Let H be an incidence matrix of AG1(m,q) with q odd. By Theorem 68, we have

rankH = qm. The index of the design AG1(m,q) is one. Its replication number r is a sum

of m terms, each being an odd number. Thus r is odd only when m is odd. By Theorem 44,

we have rankHHT = 1 for m odd. If m is even, we have rankHHT = qm−1 from Theorem

45. Applying Proposition 4 and Theorem 69 proves the assertion.

Theorem 71 gives an infinite family of high rate entanglement-assisted quantum LDPC

codes which exploit reasonable amounts of entanglement as well. Tables 5.5 and 5.6 give

a sample of the parameters of the Type II codes obtained from AG1(m,q) with q even and

q odd respectively.

Next we show that affine geometry designs have numerous subdesigns and Steiner spreads,

which make it possible to fine-tune the parameters and error correction performance of the

corresponding EAQECCs.

Theorem 72. If m ≥ 3, the points of AG1(m,q) can be partitioned into q disjoint subsets of
size qm−1, being the point sets of subdesigns isomorphic to AG1(m−1,q).

Proof. Take a parallel class {H1, . . . ,Hq} of q hyperplanes of AG(m,q). Let the point set of

Hj be Vj. Clearly ∪q
j=1Vj = V , and the set of all blocks of AG1(m,q) which are contained

entirely in Hj form a subdesign isomorphic to AG1(m−1,q).

Theorem 72 can be applied recursively to create additional disjoint subdesigns of smaller

dimension, giving a variety of EAQECCs via Theorems 54, 55, and 56. Similar subde-

sign deletion techniques based on Theorem 45 further give infinitely many new high rate
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Table 5.5
Sample parameters of Type II [[n,k,d;c]] EAQECCs obtained from

AG1(m,q), q even.

m q n k d c
3 2 28 15 3 1

4 2 120 91 3 1

5 2 496 435 3 1

6 2 2016 1891 3 1

2 4 20 3 5 1

3 4 336 235 5 1

4 4 5440 4971 5 1

2 8 72 19 9 1

3 8 4672 3927 9 1

Table 5.6
Sample parameters of Type II [[n,k,d;c]] EAQECCs obtained from

AG1(m,q), q odd.

m q n k d c
3 3 117 64 6 1

3 5 775 526 10 1

3 7 2793 2108 14 1

5 3 9801 9316 6 1

4 3 1080 998 6 80

EAQECCs. Table 5.7 lists the parameters of the EAQECCs created by spread deletion from

AG1(3,4).

5.3.2.2 Block-by-point (Type I) Affine geometry codes

Next we consider EAQECCs obtained from a block-by-point incidence matrix of AG1(m,q).
Because incidence matrices of AG1(m,q) with q odd are of full rank, here we always as-

sume q = 2t to obtain interesting codes. The entanglement-assisted quantum LDPC codes

presented in this section effectively exploit redundancy. The excellent error correction per-

formance will be demonstrated in simulations in Section 5.4.

Theorem 73 (Calkin, Key, and de Resmini [CKdR99]). Let H be a block-by-point inci-
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Table 5.7
Summary of parameters of Type II codes obtained by deleting a Steiner

spread of subdesigns isomorphic to AG1(2,4) from AG1(3,4). Subs
denotes the number of subdesigns removed.

Subs n rankH k d c Rate

0 336 51 235 5 1 0.6994

1 316 51 216 5 2 0.7468

2 296 51 197 5 3 0.8007

3 276 51 178 5 4 0.8623

4 256 51 158 6 4 0.9297

dence matrix of AG1(m,2t). Then the minimum distance of the classical binary linear code
for which H is a parity-check matrix is (2t +2)2t(m−2).

Theorem 74. For every pair of integers t ≥ 1 and m ≥ 3 there exists an entanglement-
assisted quantum LDPC code with girth six whose parameters [[n,k,d;c]] are

n = 2tm,

k = 2tm −2(ϕ(m,2t)−ϕ(m−1,2t))+ c,

d = (2t +2)2t(m−2), and

c ≤ ϕ(m,2t)−ϕ(m−1,2t).

Proof. Let HT be a block-by-point incidence matrix of AG1(m,2t). By Theorem 67, we

have rankHT H ≤ rankH =ϕ(m,2t)−ϕ(m−1,2t). By Theorem 73, the minimum distance

of the binary linear code with a parity-check matrix H is (2t + 2)2t(m−2). The assertion

follows from Proposition 5.

It is worth mentioning that here the distance grows exponentially with linear increase of the

geometry dimension m. Because the rank of AG1(m,2t) is conjectured to be the smallest

possible among all non-isomorphic S(2,2t ,2tm)s, we expect that the EAQECCs obtained

from these affine geometry designs consume the smallest possible numbers of ebits attain-

able by this method with S(2,2t ,2tm)s.

When m = 2, we can easily determine the required amount of entanglement.

Theorem 75. For every positive integer t there exists an entanglement-assisted quantum
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Table 5.8
Sample parameters of Type I [[n,k,d;c]] EAQECCs obtained from

AG1(m,q), q even.

m q n k d c
2 8 64 18 10 8

2 16 256 110 18 16

2 32 1024 570 34 32

2 64 4096 2702 66 64

LDPC code with girth six whose parameters [[n,k,d;c]] are

n = 4t ,

k = 4t +2t −2 ·3t ,

d = 2t +2, and

c = 2t .

Proof. Let HT be a block-by-point incidence matrix of AG1(2,2
t). We first prove that

rankHT H = 2t . Two lines of an affine plane are either parallel or intersect in exactly one

point. There are 2t +1 parallel classes of lines, each containing exactly 2t lines, and each

line contains 2t points. Because 2t is even, it is always possible to reorder the rows of HT

such that HT H is a block matrix of the following form:

HT H =

⎡⎢⎢⎢⎣
0 J J
J 0 · · · J

...
. . .

...

J J · · · 0

⎤⎥⎥⎥⎦
where J is the 2t ×2t all-one matrix. Hence, we have rankHT H = 2t . By Theorem 67, we

have rankH = 3t . Applying Proposition 5 and Theorem 73 completes the proof.

Table 5.8 gives sample parameters of the Type I EAQECCs obtained from AG1(m,2t).
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5.3.3 Euclidean geometry codes

In this final subsection concerning finite geometry EAQECCs, we will examine Euclidean

geometry codes.

Given a prime power q and integer m ≥ 2, we define an incidence structure EG1(m,q)
having as points all points of AG1(m,q) except the zero vector, and having as blocks (or

lines) all lines of AG(m,q) except those lines containing the zero vector. The lines which

are excluded from AG1(m,q) to form EG1(m,q) consist of all multiples of a single nonzero

vector. Thus, EG1(m,q) has qm − 1 points and
(
qm−1 −1

) qm−1
q−1 lines. Each line con-

tains q points, and each point appears in qm−1
q−1 − 1 = qm−1 + qm−2 + · · ·+ q lines. Thus,

EG1(m,q) yields regular LDPC codes. Each pair of points appears in at most one line.

Hence, EG1(m,q) is a partial Steiner 2-design. Its Tanner graph does not contain 4-cycles.

Applying Proposition 5 to a line-by-point incidence matrix of EG1(m,q) gives a Type I

EAQECC. If q is even, the distance is bounded from below by the BCH bound.

Theorem 76 (Kou, Lin, and Fossorier [KLF01]). Let H be a line-by-point incidence matrix
of EG1(m,2t). Then the minimum distance d of the classical binary linear code having H
as a parity-check matrix satisfies d ≥ 2tm−1

2t−1 . Equality holds if m = 2.

We use the following theorem to give the dimensions of FG-LDPC codes obtained from

EG1(m,2t) and their entanglement-assisted quantum counterparts.

Theorem 77 (Hamada [Ham73]). The rank of the incidence structure EG1(m,2t), t > 1, is
given by

rankEG1(m,2t) = ϕ(m,2t)−ϕ(m−1,2t)−1.

Theorem 78. For every pair of integers t ≥ 1 and m ≥ 2 there exists an entanglement-
assisted quantum LDPC code with girth six whose parameters [[n,k,d;c]] are

n = 2tm −1,

k = 2tm −2(ϕ(m,2t)−ϕ(m−1,2t))+1+ c,

d ≥ 2tm −1

2t −1
, and

c ≤ ϕ(m,2t)−ϕ(m−1,2t)−1.

Proof. Let HT be a line-by-point incidence matrix of EG1(m,2t). By Theorem 77, we have
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Table 5.9
Sample parameters of Type I [[n,k,d;c]] EAQECCs obtained from

EG1(2,q), q even.

m q n k d c
2 8 63 19 9 8

2 16 255 111 17 16

2 32 1023 571 33 32

rankHT H ≤ rankH = ϕ(m,2t)−ϕ(m− 1,2t)− 1. Applying Proposition 5 and Theorem

76 completes the proof.

A simple observation gives exact values of all the parameters of the Type I codes based on

EG1(2,2
t).

Theorem 79. For every positive integer t there exists an entanglement-assisted quantum
LDPC code with girth six whose parameters [[n,k,d;c]] are

n = 4t −1,

k = 4t +2t −2 ·3t +1,

d = 2t +1, and

c = 2t .

Proof. Let HT be a line-by-point incidence matrix of EG1(2,2
t). An incidence matrix of

EG1(2,2
t) is obtained by removing one row and one column from each block from that

of AG1(2,2
t). By following the argument in Theorem 75, it is straightforward to see that

rankHT H = 2t . By Theorem 77, we have rankH = ϕ(m,2t)−ϕ(m− 1,2t)− 1 = 3t − 1.

Theorem 76 and Proposition 5 prove the assertion.

Table 5.9 gives a sample of the parameters of the Type I codes obtained from EG1(2,2
t).

As with S(2,μ,v)s, the incidence structure EG1(m,q) can also generate a high rate LDPC

code with girth six. Applying Proposition 4 to incidence matrices, we obtain Type II

EAQECCs. Here we investigate their parameters.

Theorem 80. The minimum distance of a Type II EAQECC based on EG1(m,q) is q+1 if
q is even, and 2q if q is odd and m > 2.
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Proof. Consider any set of linearly dependent columns in an incidence matrix of EG1(m,q).
The same columns appear in the corresponding incidence matrix of AG1(m,q), but with a

single zero coordinate added. These columns are still dependent in AG1(m,q). Hence the

minimum distance is upper bounded by Theorem 69. Thus we need only to show lower

bounds.

We begin with q even. If q = m = 2, we can check by hand that the minimum distance is

three. Henceforth assume that q > 2 or m > 2. Because the minimum distance of the code

obtained from AG1(m,q) is q+1, there exists a set S of q+1 linearly dependent columns of

an incidence matrix of AG1(m,q), corresponding to a set D of q+ 1 blocks of AG1(m,q).
Let P be the multiset of points appearing in the blocks of D . As each block of D has q
points, |P| = q(q+ 1). However, because the columns of S are dependent over F2, each

point in P must appear with multiplicity two or more. Hence, the number of distinct points

in P is at most
q(q+1)

2 < qm − 1 except for q = m = 2. Therefore there is a nonzero point

p of AG(m,q) which does not appear in P. Let D ′ = {B− p : B ∈ D}, that is, we shift

each block of D by p. Each new block corresponds to a coset of a linear space. Because

p 
∈ P, no element of D ′ contains the zero vector, and so the elements of D ′ are lines of

EG1(m,q). Thus D ′ is a linearly dependent set in EG1(m,q) of size q+1. Therefore in all

cases, the minimum distance of Type II EAQECC based on EG1(m,q), q even, is q+1. A

similar argument proves the case when q is odd and m 
= 2.

Theorem 81. For every pair of integers t ≥ 1 and m ≥ 2 there exists an entanglement-
assisted quantum LDPC code with girth six whose parameters [[n,k,d;c]] are

n = (2t(m−1)−1)
2tm −1

2t −1
,

k = (2t(m−1)−1)
2tm −1

2t −1
−2rankEG1(m,2t)+ c,

d = 2t +1, and

c =
2tm −2t

2t −1
,

where rankEG1(m,2t) = ϕ(m,2t)−ϕ(m−1,2t)−1.

Proof. Let H be an incidence matrix of EG1(m,2t). Because H is obtained from an in-

cidence matrix of AG1(m,2t) by deleting the row representing the zero vector and the

columns that represent the lines containing the zero vector, it is easy to see that the rows
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Table 5.10
Sample parameters of Type II [[n,k,d;c]] EAQECCs obtained from

EG1(m,q), q even.

m q n k d c
3 2 21 15 3 6

4 2 105 91 3 14

5 2 465 434 3 30

6 2 1953 1891 3 62

3 4 315 235 5 20

4 4 5355 4971 5 84

2 8 63 19 9 8

3 8 4599 3927 9 72

and columns of HHT can be reordered such that the matrix is of the form:

HHT =

⎡⎢⎢⎢⎣
0 J J
J 0 · · · J

...
. . .

...

J J · · · 0

⎤⎥⎥⎥⎦
where J is the (2t − 1)× (2t − 1) all-one matrix. Because 2tm − 1 is odd, rankHHT =
2tm−1
2t−1 −1. Applying Proposition 4 and Theorems 80 and 77 completes the proof.

Tables 5.10 gives sample parameters for the Type II codes obtained from EG1(m,2t).

For the case q odd, Hamada [Ham73] conjectured that an incidence matrix of EG1(m,q) is

of full rank. As shown in Table 5.11, the conjecture is true for small m and q.

5.4 Performance

In this section, we present simulation results for EAQECC codes constructed in the previ-

ous sections. As in the related works [HBD09, HYH11], we performed simulations over

the depolarizing channel. In this model, each error (X , Y , and Z) occurs independently

in each qubit with equal probability fm. For a given CSS type EAQECC, we performed

each decoding in two separate decoding steps, each using the sum-product algorithm. The

shared ebits, which do not pass through the noisy channel, are assumed to be error-free.

99



Table 5.11
Sample parameters of Type II [[n,k,d;c]] EAQECCs obtained from

EG1(m,q), q odd.

m q n k d c
3 3 104 64 6 12

4 3 1040 960 6 80

5 3 9680 9316 6 120

3 5 744 526 10 30

3 7 2736 2108 14 56
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Figure 5.1: Performance of Type I EAQECCs

Our simulation results are reported in terms of the block error rate (BLER).

We first examine codes obtained from a block-by-point incidence matrix. Figure 5.1 shows

the performance of several such codes based on projective and affine geometry designs. As

shown in Section 5.3, these codes have very large distances for sparse-graph codes while
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avoiding short cycles. As expected, these codes perform excellently at relatively high fm.

To illustrate how well these codes perform, we compare one of our Type I LDPC codes

with previously known entanglement-assisted quantum LDPC codes with best BLERs.

Theorem 75 gives a new EAQECC with parameters [[256,110,18;16]] obtained from the

design AG1(2,16). The [[255,111,17;16]] EAQECC in the work of Hsieh, Yen, and Hsu

[HYH11] used EG1(2,16) outperformed all previously known quantum codes of similar

rate in simulations over the depolarizing channel. Their code based on PG1(2,16), which

also performed very well, has parameters [[273,110,18;1]]. Exactly the same EAQECCs as

these two can be constructed using Theorems 79 and 53 in our framework without relying

on computers to calculate their parameters.

These three EAQECCs based on finite geometries have similar geometrical structures, and

they behave quite similarly in simulations. Performance of the AG1(2,16) and PG1(2,16)
codes is directly compared in Figure 5.1. The BLER of the EG1(2,16) code, which is

slightly worse than that of our AG1(2,16) code, is plotted in Figure 5.2 to compare the

three with EAQECCs having different parameters. As shown in the figures, our new

[[256,110,18;16]] EAQECC obtained from AG1(2,16) shows a better BLER than the other

two. The BLERs of AG1(2,16), EG1(2,16), and PG1(2,16) codes at fm = 0.02 are 1.0×
10−4, 1.6×10−4, and 3.8×10−4 respectively.

Entanglement-assisted quantum quasi-cyclic LDPC codes proposed by Hsieh, Brun, and

Devetak in [HBD09] have also shown excellent BLERs. In simulations, their EAQECCs

with parameters [[128,58,6;18]], called EX1 and EX2, outperformed the previously known

best quantum LDPC codes at a similar rate about 0.316. The net rate of EX1 and EX2 is
58−16

128 ≈ 0.312. Our [[256,110,18;16]] EAQECC obtained from AG1(2,16) has net rate
110−16

256 ≈ 0.367, which is higher than that of EX1 and EX2. Their simulation results and

our independent simulation results for EX1 and EX2 showed that their BLERs at fm = 0.02

are higher than 1.1× 10−2 while our AG1(2,16) code has BLER about 1.0× 10−4 at the

same fm, which is better than EX1 and EX2 by two orders of magnitude. Our EAQECC

also requires a smaller amount of entanglement than EX1 and EX2.

Our results here confirm the close linkage between EAQECCs and classical error-correcting

codes: good performance in the classical setting translates directly into good performance

from the corresponding quantum codes.

We next examine codes obtained from a point-by-block incidence matrix. These codes are

capable of achieving extremely high rates even at moderate block lengths.

101



�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�
� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0.01 0.03 0.05
1.�10�6

0.00001

0.0001

0.001

0.01

0.1

1

Crossover probability fm on the depolarizing channel

B
L

E
R

� AG1�2,8�

� EG1�2,16�

� EG1�2,8�

� PG1�3,3�

Figure 5.2: Performance of Type II EAQECCs

Figures 5.2 and 5.3 show the performance of several Type II codes based on finite geome-

tries. The Type II code from PG1(3,3) is shown in both figures to serve as a point of

reference between the two figures. Figure 5.4 gives the block error rates for several codes

with high rates including [[301,216,6;1]] and [[1080,998,6;80]] codes from cyclic 5-sparse

STSs of order 43 and 81 respectively. The incidence matrices of these two Steiner triple

systems are constructed from the list of base blocks in [CMRv94]. Note that the cyclic au-

tomorphisms and sparse configurations immediately give the dimensions and distances of

the EAQECCs obtained from the cyclic 5-sparse STSs (see [DHV78, Fuj07]). Table 5.12

lists the rates of selected finite geometry codes shown in figures.

As in the classical setting, our codes obtained from point-by-block incidence matrices have

waterfall regions at low fm and transmit at extremely high rates. This direct correlation

in performance between the classical and quantum settings can also be seen when codes

require only one ebit. It may be worth mentioning that changing geometries or choosing a

non-geometric S(2,μ,v) can give slightly different BLER curves. It would be interesting

to investigate theoretical methods for finding S(2,μ,v)s with desirable performance curves

in given situations.
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Figure 5.3: Performance of Type II EAQECCs

Finally, we compare EAQECCs obtained by removing subdesigns from the parent design.

Here we test a subdesign deletion technique where each deletion step increases the required

amount of entanglement to a slightly larger degree than the examples we gave in Section

5.3. Each code in Figure 5.5 is constructed from a Type II code based on AG1(3,3). Fun-

damental parameters of these codes are shown in Table 5.13. The original code is also

shown for reference. The code labeled “one sub” has had a single subdesign isomorphic to

AG1(2,3) removed. The code labeled “3 subs” has had a Steiner spread removed. This last

code is a regular LDPC code. As can be seen from their BLERs, removing subdesigns has

improved the error correction performance while increasing the rate and maintaining many

of the essential properties.

Because removing subdesigns can increase the required amount of entanglement in a flexi-

ble manner, one can generate an EAQECC which effectively exploits preexisting entangle-

ment. For example, a high net rate code consuming only one ebit can turn into a heavily

entanglement-assisted code to achieve better error correction performance at the same fm.

As illustrated in Table 5.13, a [[117,64,6;1]] code with a regular parity-check matrix be-

comes a [[81,56,6;25]] code with a regular parity-check matrix through gradual steps.
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Figure 5.4: Performance of high-rate Type II EAQECCs

One can also fine-tune parameters and improve error correction performance while almost

keeping the extremely low required amount of entanglement by applying Theorems 54 and

55. As shown in Section 5.3, all FG-LDPC codes found in [HYH11] can be constructed

using our method. The subdesign deletion techniques further give infinitely many new

codes by fine-tuning their parameters and error correction performance. In this sense, our

method gives many kinds of new and known excellent EAQECCs in a single framework.

5.5 Conclusion

We have developed a general framework for constructing entanglement-assisted quantum

LDPC codes using combinatorial design theory. Our constructions generate infinitely many

new codes with various desirable properties such as high error correction performance, high

rates, and requiring only one initial entanglement bit. Our methods are flexible and allow

us to design EAQECCs with desirable properties while requiring prescribed amounts of

entanglement. All quantum codes constructed in this chapter can be efficiently decoded

through the sum-product algorithm.
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Table 5.12
Rates of EAQECCs obtained from finite geometries.

Type Geometry m q Rate

II PG 4 3 0.9008

II PG 3 7 0.7203

II PG 3 5 0.6166

II PG 3 3 0.4076

II AG 3 7 0.7547

II AG 3 5 0.6787

II AG 3 3 0.5470

II AG 2 8 0.2638

II EG 2 16 0.4352

II EG 2 8 0.3015

I PG 2 32 0.5392

I PG 2 16 0.4029

I PG 2 8 0.2465

I AG 2 32 0.5566

I AG 2 16 0.4296

I AG 2 8 0.2812

Table 5.13
Summary of parameters of Type II EAQECCs obtained by deleting

subdesigns from AG1(3,3). Subs denotes the number of subdesigns

removed.

Subs n rankH k d c Rate

0 117 27 64 6 1 0.5470

1 105 27 60 6 9 0.5714

2 93 26 58 6 17 0.6236

3 81 25 56 6 25 0.6913

We have introduced many new families of entanglement-assisted quantum LDPC codes

based on combinatorial designs as well as determined all fundamental parameters of the

well-known families of LDPC codes based on finite geometries for most cases. Because

the entanglement-assisted stabilizer formalism bridges classical and quantum codes in a

direct manner, these results on entanglement-assisted quantum LDPC codes are useful both

in quantum and classical coding theories.
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Figure 5.5: Performance of EAQECCs obtained by deleting subdesigns

from AG1(3,3).

Our framework encompasses many previously proposed excellent quantum LDPC codes as

well. In fact, our method can also be applied to quantum LDPC codes under the standard

stabilizer formalism by employing the ideas found in [Aly08, Djo08].

We have focused on the fundamental classes of combinatorial designs. However, other

classes of incidence structures may provide interesting results as well. For example, the

entanglement-assisted quantum LDPC codes presented in [HBD09] can be seen as inci-

dence structures generated from the so-called difference matrices and their generalizations

(see [CD07] for the definition and basic facts about difference matrices). More general

families of combinatorial designs can have nested structures or similar strong orthogonal

relations between two incidence matrices. This kind of structure can give asymmetric quan-

tum codes (see [IM07, SKR09]). Structures in finite geometry we did not employ may also

give interesting quantum LDPC codes as well as classical LDPC codes. Because LDPC

codes and sparse incidence structures are equivalent, we expect that our methods may be

further generalized to encompass a wider range of both new and known quantum LDPC

codes in future work.
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5.A Appendix A: Existence of 2-designs

Here we discuss the existence of 2-designs to be applied to our constructions given in

Subsection 5.2.2. The following is the well-known asymptotic existence theorem.

Theorem 82 (Wilson [Wil72a, Wil72b, Wil75]). The necessary conditions for the existence
of a 2-(v,μ,λ ) design, λ (v−1)≡ 0 (mod μ −1) and λv(v−1)≡ 0 (mod μ(μ −1)), are
also sufficient if v > vμ,λ , where vμ,λ is a constant depending only on μ and λ .

For μ ∈ {3,4,5}, necessary and sufficient conditions for the existence of an S(2,μ,v) are

known.

Theorem 83 (Kirkman [Kir47]). There exists an STS(v) if and only if v ≡ 1,3 (mod 6).

Theorem 84 (Hanani [Han61]). There exists an S(2,4,v) if and only if v ≡ 1,4 (mod 12).

Theorem 85 (Hanani [Han72]). There exists an S(2,5,v) if and only if v ≡ 1,5 (mod 20).

For μ ≥ 6, the necessary and sufficient conditions on v for the existence of an S(2,μ,v) are

not known in general, although for small values of μ substantial results are known. For a

comprehensive table of known Steiner 2-designs, see [CD07].

Theorems 82, 83, 84, and 85 were proved by constructive methods. Hence, these existence

results allow us to construct infinitely many explicit examples of entanglement-assisted

quantum LDPC codes. It is worth mentioning that many of the known proofs of these

theorems employ the same construction technique we used in Theorem 58. In fact, most

S(2,μ,v)s in the original proofs of these existence theorems have either Steiner spreads or

nontrivial subdesigns.
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Numerous other constructions for 2-designs also give explicit examples of S(2,μ,v)s for a

wide range of parameters. A detailed treatment of STS(v)s is available in [CR99]. Various

constructions for S(2,μ,v)s for many values of μ are also given in [Hal98].

5.B Appendix B: Parameters of quantum and classical FG-
LDPC codes with girth six

Here we give tables of parameters of LDPC codes with girth six based on finite geome-

tries. Table 5.14 gives parameters of entanglement-assisted quantum LDPC codes obtained

from PG1(m,q), AG1(m,q), and EG1(m,q). Parameters of the corresponding classical FG-

LDPC codes are listed in Table 5.15.
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Chapter 6

Summary and future work

6.1 Summary

The central theme in this dissertation has been the power of finite geometry designs. These

designs lie at the intersection of design theory and finite geometries, and are closely related

to error-correcting codes. The highly structured nature of design and finite geometries

allow us to create designs and codes with desirable properties.

Chapter 2 introduces an infinite family of counterexamples to Hamada’s conjecture. This is

the first infinite family of counterexamples in the affine case. These polarity designs share

many properties with the corresponding finite geometry designs, including parameters and

2-ranks. The construction also allows us to create many non-geometric designs which

maintain the same parameters (but not p-ranks) as the geometric designs.

Chapter 3 continues this thread, by demonstrating another way in which the projective and

affine polarity designs retain a great deal of geometric structure. The polarity constructions

from [JT09] and Chapter 2 produce designs which maintain the nested structure of the fi-

nite geometries from which they are obtained. We show that, as a result of this structure,

the codes whose parity check matrices are the incidence matrices of polarity designs ad-

mit multi-step majority logic decoding. In the case of polarity designs constructed over

the binary field, the codes obtained from these designs have error-correcting performance

which is equal to the geometric codes. In addition, we showed that the minimum distance

of the block codes of these designs is also equal to that of the codes obtained from finite

geometries in the binary case. Thus, the polarity designs maintain a great deal of geometric

structure. This structure exists even in the non-polarity modified designs.
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Chapter 4 makes use of the structure of finite geometry designs in another way, this time in

the context of quantum error-correcting codes. The properties of finite geometry designs

allow us to construct quantum codes with known parameters. We not only show how to

construct such codes from finite geometry designs and their relatives, but also determine

the minimum distance of related classical codes.

Chapter 5 approaches the construction of quantum codes from a different direction. This

chapter demonstrates that designs are the ideal structure from which to construct EAQECCs.

This systematizes the construction of EAQECCs, by providing a framework for creating

EAQECCs with known parameters and desirable structure. The properties of Steiner de-

signs – especially those obtained from finite geometries – allow us to determine all param-

eters of the EAQECCs. These designs also impart a structure on the codes which admits

an excellent decoding algorithm, as well as allowing for flexible parameters. This chapter

includes not only new results on quantum codes, but also for the classical codes used to

construct them.

Together, these chapters demonstrate how finite geometry designs may be used as a base

on which to construct combinatorial objects which inherit their most desirable properties

from the designs themselves.

6.2 Future work

The work presented in this dissertation opens many doors for further study. Several of these

possibilities are enumerated below.

The affine polarity designs described in Chapter 2 provide, for the affine case, the first

known infinite family of counterexamples to Hamada’s conjecture. Together with the pro-

jective polarity designs of Jungnickel and Tonchev [JT09], these counterexamples open

many questions concerning Hamada’s conjecture.

• The main problem related to Hamada’s conjecture is characterization. Hamada’s

conjecture is known to be true for a variety of parameters, but it is also known to

be false for others. For many parameters, no results are known at all. Thus, the

major question is: for which parameter sets are the finite geometry designs the unique

designs of minimum p-rank? For which are there non-isomorphic designs with the

same p-rank? Do there exist designs with a lower p-rank than the geometric designs?

This answer to this final question is wholly unknown, other than those cases in which

Hamada’s conjecture has already been proven to be correct.
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• To what extent can the polarity construction be extended? The polarity construc-

tion, as it currently stands, applies to designs constructed over prime fields (in the

projective case) and the binary field (in the affine case). Are there counterexamples

for general prime power q? The polarity constructions also limit the possible block

dimensions: can these be expanded?

• Is there a construction which generalizes the other known counterexamples, which

are not yet part of infinite families? What additional properties do these designs share

with the finite geometry designs?

Chapter 3 addresses additional structural properties of the polarity designs, within the

framework of a decoding algorithm for related codes.

• What other geometric properties do the polarity designs maintain? Are there equiv-

alents of common finite geometric substructures (such as arcs, ovals, or generalized

quadrangles) which may be found within these designs?

• Is it possible to determine the minimum distances of the block codes of the projec-

tive polarity designs other than in the binary case? Is it possible to determine the

minimum distances for block codes obtained from non-polarity modified designs?

The quantum codes examined in Chapters 4 and 5 are constructed from finite geometries,

and make use of key properties of the finite geometries.

• What other geometric structures have combinatorial properties which are desirable

for quantum codes? For example, generalized quadrangles are a structure for which

many properties are known, including rankHHT for an incidence matrix H. What

are the parameters and properties of the codes defined by these structures?

• There are many constructions which allow for the creation of quantum codes from

classical codes. In these works, we explored two of these constructions. How do

other constructions benefit from codes with strong combinatorial properties? In what

ways do designs and finite geometries contribute to the construction of such codes?

• Is it possible to use the incidence matrices of the polarity designs to define quantum

codes, whether q-ary or EAQECCs?

The process of discovering answers to these questions will address many fundamental ques-

tions of design and coding theory, while deepening our insight into the structure of finite

geometries and their relatives.
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