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1. ABSTRACT 
Streams and riparian areas can be intricately connected via physical and biotic 

interactions that influence habitat conditions and supply resource subsidies between these 

ecosystems.  Streambed characteristics such as the size of substrate particles influence the 

composition and the abundance of emergent aquatic insects, which can be an important 

resource for riparian breeding birds.  We predict fine sediment abundance in small 

headwater streams directly affects the composition and number of emergent insects while 

it may indirectly affect riparian bird assemblages.  Streams with abundant fine sediments 

that embed larger substrates should have lower emergence of large insects such as 

Ephemeroptera, Plecoptera and Trichoptera.  Streams with lower emergent insect 

abundance are predicted to support fewer breeding birds and may lack certain bird 

species that specialize on aquatic insects.  This study examined relationships between 

streambed characteristics, and emergent insects (composition, abundance and biomass), 

and riparian breeding birds (abundance and richness) along headwater streams of the 

Otter River Watershed.  The stream bed habitats of seven stream reaches were 

characterized using longitudinal surveys.  Malaise traps were deployed to sample 

emergent aquatic insects.  Riparian breeding birds were surveyed using fixed-radius 

point-counts.  Streams differed within a wide range of fine sediment abundances.  Total 

emergent aquatic insect abundance increased as coverage by instream substrates 

increased in diameter, while bird community was unresponsive to insect or stream 

features.  Knowledge of stream and riparian relationships is important for understanding 

of food webs in these ecosystems, and it is useful for riparian forest conservation and 

improving land-use management to reduce sediment pollution in these systems. 
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2. INTRODUCTION 
Streams and riparian areas (RAs) are often tightly coupled ecologically.  RAs function to 

protect, maintain, and create stream habitat as well as to reciprocally subsidize consumers 

in both habitats via the transfer of inorganic and organic materials and food resources 

(Naiman and Decamps 1997; Nakano and Murakami 2001).  Disturbance from natural 

forces (i.e. wildfires and flooding events) as well as human activities (i.e. logging, road 

construction, pollution, dam construction, and artificial channelization) can alter the 

linkages within and among streams and RAs (Northcote and Hartman 2004).  Forestry 

practices, in particular, near streams can have a strong influence on stream 

characteristics.  For example, Northcote and Hartman (2004) noted that factors such as 

road construction, timber harvesting, scarification, slash burning, fertilization, and 

chemical applications can impact stream characteristics.  These factors can influence 

channel morphology (Gottesfeld et al. 2008); nutrient regimes, water chemistry, 

vegetation community composition (Moore and Bull 2004) and invertebrate/vertebrate 

community (Burns 1972).  Sediment pollution is a common result of RA disturbance 

caused by forest practices, which has prompted much research on the effects of fine 

sediment abundance in streams and its influence on the biotic community in adjoining 

aquatic and terrestrial habitats (e.g., Beaubien 1999; Brown and Timms 2002; VanDusen 

et al. 2005; Pinto et al. 2006; Molinos and Donohue 2011). 

Fine sediment abundance can greatly influence the physical and behavioral biology of 

aquatic life (Brusven and Prather 1974; Merritt and Cummins 1996; Harrison et al. 2008).  

Many emergent insect taxa, especially those from the orders of Ephemeroptera, 
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Plecoptera, and Trichoptera (EPT), require streams with low fine sediment abundance 

(i.e. sand depth and coverage) to survive.  The loss of interstitial spaces between coarse 

sediments (boulders, cobbles, pebbles, and gravels), due to deposition of sand or other 

fine materials, reduces areas for insect development, feeding, and protection from 

predators (Brusven and Prather 1974). 

Bub et al. (2004) surveyed breeding bird assemblages along headwater streams in 

Michigan’s Upper Peninsula and studied the relationship between time since forest 

thinning and bird community composition.  One question that was not specifically 

addressed in their work was how riparian breeding bird assemblage related to the 

availability of emergent aquatic insects as well as stream habitat characteristics (i.e. fine 

sediment abundance). 

The transfer of insects between streams and RAs are greatly impacted by stream 

sedimentation.  Terrestrial and emergent aquatic insects, namely EPT, are important 

sources of food for aquatic and terrestrial consumers (Nakano and Murakami 2001).  

Aquatic insects, in particular, can have a strong influence on terrestrial food webs 

(Ormerod 1986; Carlisle 2004; Paetzold 2006; Uesugi and Murakami 2006; Smith et al. 

2007; Hagar and Saintours 2008).  They supply food for terrestrial predators (i.e. birds, 

bats, lizards, and spiders) and compose 25 to 100% of the daily diet for some terrestrial 

species (Iwata 2006; Malison et al. 2010a).  Baxter et al. (2005) emphasized the 

importance of emergent aquatic insects as a food source to riparian breeding birds after 

they conducted a literature review on studies dated back to 1966 focusing on emergent 

aquatic insects and riparian birds of temperate zones.  Baxter et al. (2005) concluded that 
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emergent insects provided 26 to 86% of overall breeding bird diets along the riparian area 

of streams.  Murakami and Nakano (2001) noted that aquatic insect prey accounted for 

over 25% of the energy demand of temperate deciduous riparian forest bird communities 

along the Horonai Stream in the Tomakomai Experimental Forest of Hokkaido, Japan. 

The objective of this study was to examine relationships between stream habitat 

characteristics (i.e. fine sediment abundance), emergent aquatic insects (i.e. EPT), and 

riparian bird assemblage.  Here, my main hypothesis is that breeding bird abundance and 

species richness will be greatest in RAs where emergent aquatic insect abundance 

(Ephemeroptera, Plecoptera, Trichoptera) and dry mass are greatest.  The secondary 

hypothesis states that the detection abundance and species richness of breeding birds will 

be greater adjacent to headwater streams with higher coarse sediment abundance (i.e. 

boulder, cobble, pebble, gravel coverage).  Finally, detection abundance of birds such as 

the Winter wren (Troglodytes troglodytes) and American redstart (Setophaga ruticilla), 

that have been shown to prefer emergent aquatic insects as food (Nakano and Murakami 

2001), will show the greatest sensitivity to differences in emergent aquatic insect 

abundance and biomass as well as to instream coarse sediment abundance.  Streams 

containing high fine sediment abundances (i.e. sand depth and coverage) will have lower 

abundances and biomass of larger emergent aquatic insects such as EPT, as well as lower 

riparian breeding bird abundances and species richness. 
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3. METHODS 

3.1 Study Area 
The Otter River Watershed (ORW) is located in Michigan’s Upper Peninsula (UP), USA.  

The 40,040 ha watershed is situated on the western end of the UP within Houghton, 

Baraga, and Ontonagon counties (Sturgeon/Otter River Watershed Council 2000), which 

contain 96%, 3%, and 1% of the watershed, respectively.  The bedrock of the ORW was 

formed in the Keweenaw sub-epoch of the Pre-Cambrian era (ca. 1 bya) and is primarily 

of the Jacobsville sandstone formation (Beaubien 1999).  This layer was overlaid by a 

thick layer of sediment deposited when the last glaciers receded 10,000 years ago (Price 

2011).  The sediment layer was composed of lacustrine sand and poorly sorted gravel.  

Top soils were moderate to well drained sandy loam or loams as referenced in Schwenner 

(1991) and VanDusen et al. (2005).  Forested land comprises 80.3% of the total 

watershed, followed by 9.9% wetlands, 3.4% agriculture, 2.1% grassland, 1.4% urban 

roads, 0.3% shrub/scrub, and 0.1% barren land (UPRCD 2008).  Forested land is 

comprised mostly of northern hardwoods, including sugar maple (Acer saccharum), 

eastern hemlock (Tsuga Canadensis), American basswood (Tilia Americana), yellow 

birch (Betula alleghaniensis), red maple (A. rubrum), and tag alder (Alnus rugosa).  

Elevations of the watershed range from 260 to 355m (VanDusen et al. 2005).   

3.2 Study Site Characteristics 

3.2.1 Stream Habitat 
Seven streams in the ORW such as West Branch of the Sante River, Thirteen Mile Creek, 

Deer Camp (also known as Thirteen Mile Creek), Otter Siding River (also known as 



 

12 

West Branch Otter River), Pike Lake Curve (also known as Lake Fifteen), Ogre (also 

known as Beaver Creek), and Lake Fifteen Creek, comparable to Bub et al. (2004), were 

sampled in the early summer of 2011 (June 6th to June 16th) (Appendix Figure 9.1).  

Acronyms will be used when referring to these streams: WBS (West Branch of the Sante 

River), THM (Thirteen Mile), DEC (Deer Camp), OSR (Otter Siding River), PLC (Pike 

Lake Curve), OGR (Ogre), and LKF (Lake Fifteen). 

Habitat characteristics were assessed along 11 cross-stream transects, separated by 50m, 

of a 500m reach within each stream (Figure 3.1).  Each transect was subdivided into five 

segments according to Bain and Stevenson (1999).  Within each segment, substrate 

composition was classified under one of eight substrate categories (bedrock (B), boulder 

(BO, >254mm), cobble (CO, 63.5 –> 254mm), pebble (P, 15.9 –> 63.5mm), gravel (G, 

1.59 –> 15.9mm), sand (S), organic (O, silt, detritus, muck), and clay (C)) (Cummins 

1962).  Coverage by primary, secondary, and tertiary substrates within each segment was 

visually assessed (Casey Huckins, pers. comm.).  Surveys were performed in the 

upstream direction.  Surveyors walked on dry land from transect to transect, when 

possible, to minimize disruption of stream habitat.  
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Stream Cross-section at Transect
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Riparian Area

30m

Transects
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Figure 3.1: Headwater stream study reach separated into 11 lateral transects to 
longitudinally profile streambed habitat. 
For each reach, average substrate coverage according intermediate diameter was 

calculated as the mean of all 11 transects.  Sand depth for each segment was estimated by 

measuring the depth to which a 0.64 cm steel rod penetrated the sand before hitting a 

hard substrate.  The mean sand depth along each transect was calculated then averaged 

across all transects of each stream.  To characterize stream particle size, mean and 

median pebble diameters were estimated from pebble counts conducted along the entire 

length of each reach (Bain and Stevenson 1999).  Stream wetted width was measured at 

each transect. Discharge was estimated for each stream reach using a Marsh-McBirney 

flow meter attached to a wading rod to measure water depth and velocity at 10 evenly 

spaced points along a wetted-channel transect (procedure in Bain and Stevenson, 1999) in 

early-summer (June 6th – June 16th). 
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3.2.1.1 Riparian Vegetation Density and Canopy Cover 
Methods for measuring riparian vegetation density and canopy cover followed procedures 

from the Bureau of Land Management (1996).  Riparian forest density was estimated  

using a density board at four equally spaced plots (Figure 3.2) along each stream.  Mean 

riparian forest density was calculated as an average across all four plots.  Canopy cover 

within the riparian area of each stream was estimated with a sighting device (i.e. ocular 

tube).  At each transect, ten equally spaced points were established within 30 meters 

perpendicular from the stream.  At each point, canopy cover readings were taken at 4 

cardinal directions.  A total of 440 ocular tube readings were recorded for each study site.  

Mean canopy cover was calculated as the total number of hits (points where ocular tube 

cross hairs intersected vegetation) divided by total number of readings taken.  
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50m
Stream

500m

Vegetation Density Plots
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Figure 3.2: Headwater stream reach with designation of riparian vegetation plots used 
to survey riparian vegetation density and Malaise traps to sample emergent aquatic 
insects along headwater streams in Michigan’s Upper Peninsula, USA. 

3.2.2 Insect Community Characteristics 
Emerging aquatic insects were sampled near peak emergence for our region from June 6th 

to June 18th (Baxter et al. 2005) using Malaise traps deployed along stream banks.  To  

capture a snap shot of the riparian insect community, Malaise traps were located at two 

sampling locations along each stream (Figure 3.2).  Traps were approximately 1.83 

meters long *1.22 meters high and constructed of charcoal-colored, fiberglass mosquito 

screen based on configurations and dimensions described in Uesugi and Murakami 

(2006) (Appendix Figure 9.2).  From initial stream observations of the previous fall 

(2010), in-stream productivity was assumed to be relatively uniform since uniform 

streambed habitat along each reach was observed.  Therefore, at each site, two traps were 
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placed in the RA on the stream bank within 10m of the stream, any further and adult 

insect abundances exponentially decline (Baxter et al. 2005) and perpendicular to areas 

where insect flight tends to be concentrated (along borders of dense vegetation, in 

openings between trees, across wide trails, etc).  Traps were deployed for twelve nights 

from June 6th to June 18th and checked every two days.  Intercepted insects were funneled 

into plastic containers partially filled with anti-freeze (Ethylene glycol), a killing agent.  

Insects were field preserved in ethyl alcohol and later separated into terrestrial and 

aquatic groups.  They were further identified to order using identification guides from 

Borror and White (1970) and Arnett (2000).  Abundance and order richness was derived.  

Wet mass was obtained after insects were blotted with a dry paper towel for 10 seconds 

then weighed to the nearest 0.0001mg.  To obtain dry mass, insects were placed in a 

drying oven at 55°C for 72 hours then weighed to the nearest 0.0001g, a technique 

modified from Landeiro et al. (2010). 

3.2.3 Breeding Bird Surveys 

Bird surveys followed procedures described in Howe et al. (1997) and Bub et al. (2004).  

Four 25-meter fixed radius point-count surveys were conducted along each study reach 

within the breeding season (June 6st to June 19th).  Fixed-radius plots limited bird 

detections to the riparian area.  Each plot was located 25 m from the stream bank to 

reduce noise interference from flowing water.  Each plot was separated 150 m from each 

other (Figure 3.3).  Surveys were conducted between 30 min before sunrise and ended 5 

hours later (approximately 9:30am) (Howe et al. 1997).  Birds detected by sight or sound 
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were recorded within a 10-minute period.  Bird abundance, species richness, and 

abundance of emergent insect-preferred species was later derived.  

To control and account for surveyor presence during surveys, the surveyor waited 2 

minutes after approaching a plot to acclimate birds to the surveyor’s presence.  Surveys 

continued for 10 minutes thereafter while limiting movement and noise.  

50m
Stream

500m

Fixed-Radius Point-Count Plots
 

Figure 3.3: Headwater stream reach with designation of fixed-radius point-count plots 
used to survey riparian bird community along headwater streams in Michigan’s Upper 
Peninsula, USA. 
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3.3 Data Analysis 

3.3.1 Statistical Methods 

Data was analyzed in Excel.  Analysis of variance (ANOVA) was calculated (α = 0.05) to 

identify streams of different fine sediment abundances (i.e. sand depth) (Table 3.1).  

Pearson correlations (r) were used to measure the intensity of association between stream, 

insect, and bird variables (Zar 1999).  Pearson correlation values that fell between ±1.0 

and ±0.6 were interpreted as explaining sufficient variation for consideration of a 

relationship (U of S 2011).  A Tukey multiple comparison test was used to compare 

stream groups regarding sand depths (Figure 3.4; Appendix Table 9.1).  

Table 3.1 

Analysis of Variance (ANOVA) among seven headwater streams in MI Upper 
Peninsula regarding sand depth. 

 
Source of 
Variation 

SS df MS F P-value F crit 

Between Groups 2.47 6 0.412 17.7 2.3E-12 2.23 
Within Groups 1.63 70 0.0233    

       
Total 4.10 76         
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Figure 3.4: Results of measurements of sand depth for seven streams, with numbers 
showing mean depth of error bars showing standard error.  Streams with the same 
letters are those having depths that do not differ significantly (P>0.05), when compared 
with a Tukey Multiple Comparison (Zar 1999). 
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4. RESULTS 

4.1 Stream and Riparian Habitat 
Stream Habitat: Stream habitat condition characterized by metrics of substrate size and 

composition varied greatly among the 7 stream reaches where sand depth differed 

spatially between streams (Appendix Table 9.2).  An analysis of variance (ANOVA) 

indicated that our seven stream reaches were significantly different (P = 2.3E-12, Table 

3.1).  Stream reaches at PLC, OGR, and LKF had significantly higher sand depths than 

WBS, THM and DEC (P ≤ 4.42E-8).  OSR was not significantly different from WBS, 

THM and DEC nor from PLC and OGR (Figure 3.4). 

Coverage by predominant stream substrates varied between streams (Figure 4.1).  I 

estimated that streambeds of reaches PLC, OGR, and LKF were 60% or more composed  
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Figure 4.1: Average percent coverage of primary stream substrates of n = 11 transects 
along seven 500m headwater stream reaches in Michigan’s Upper Peninsula.  Streams 
in order of increasing sand depth.  
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Figure 4.2: Composition of streambed substrates based on particle diameter from 
pebble counts (n = 331 counts) in seven headwater streams in MI’s Upper Peninsula.  
 
of fine substrates (i.e. sand), whereas WBS, THM, DEC, and OSR had 32% or less of 

their streambeds composed of sand.  

Substrate particle sizes based on pebble counts differed between the study stream 

reaches.  Streambed substrate composition in WBS, THM and DEC contained less than 

30% fine sediments (≤ 2mm in diameter); whereas substrate composition in OSR, PLC, 

OGR, and LKF contained 47% or more of fine sediments (≤ 2mm in diameter) (Figure 

4.2).  Median pebble diameters also show some differences between streams (Appendix 

Figure 9.3). 

Riparian Vegetation: Riparian vegetation density within the first 2m from ground level 

along the study reaches was not significantly different between streams (P = 0.74; 

Appendix Figure 9.4).  However the study sites did differ in percent canopy cover (P = 
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3.77E-6).  Few stream habitat metrics correlated with riparian vegetation density and 

canopy cover.  Riparian vegetation density was negatively correlated with boulder 

coverage (r = -0.73) while canopy cover was negatively correlated to stream wetted width 

(r = -0.90). 

4.2 Insect Community Characteristics 
A total of 285 individual insects were captured from fourteen traps within the riparian 

area of our seven study streams (Appendix Table 9.3a). Captured insects were 

numerically dominated by aquatic emergent whereas terrestrial insects accounted for 

most of the dry mass.  Emergent aquatic insects comprised 58% of the total insects 

captured across all sites and the other 42% were classified as terrestrial insects.  Of the 

total emergent aquatic insect assemblage, members of Ephemeroptera, Plecoptera and 

Trichopter combined (EPT) comprised 11% while Dipterans comprised the other 47%. 

Total insect abundance was negatively correlated with sand depth (r = -0.46) and sand 

coverage (r = -0.48) (Appendix Figure 9.5).  Abundance of total aquatic insects and EPT 

insects were negatively correlated to sand depth (r = -0.63, r = -0.22, respectively; Figure 

4.3).  Total EPT abundance was also negatively correlated with % sand coverage (r = -

0.50, Appendix Figure 9.6).   

It follows that total aquatic insect abundance was positively correlated with the percent 

coverage by larger substrates such as boulders (r = 0.68), cobbles (r = 0.5), and pebbles (r 

= 0.28) (Figure 4.4).  Correlations between EPT abundance and coverage by larger 

substrates such as boulders (r = 0.34), cobbles (r = 0.53), and pebbles (r = 0.88) were also 

positive (Appendix Figure 9.6). 
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Figure 4.3: Total emergent aquatic insects (a) and emergent EPT (b) abundance (   ) 
and dry mass (   ) relative to sand depth of n = 11 transects within seven headwater 
streams of Michigan’s Upper Peninsula, USA.  Pearson Correlation Coefficient (r).  
Coefficients (r) between ±1.0 & ±0.6 indicates sufficient relationship. 
 
Total dry mass of insects was 769.5mg (Appendix Table 9.3b).  Approximately 44% of 

the total dry mass of the insects collected were emergent aquatic insects.  Within the 

aquatic insects 24% of the dry mass was from EPT individuals and the rest were 

Dipterans. 
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b 



 

24 

Total riparian insect dry mass was negatively correlated with sand depth (r = -0.28) and 

sand coverage (r = -0.37; Appendix Figure 9.5).  Total aquatic dry mass was negatively 

correlated with sand depth (r = -0.25, Figure 4.3a). EPT dry mass was also negatively 

correlated with sand depth (r = -0.16, Figure 4.3a) and sand coverage (r = -0.24; 

Appendix Figure 9.6d). 

Positive correlations were found between both total aquatic and EPT dry mass with 

coverage by boulders (r = 0.34 and r = 0.20, respectively; Figure 4.4a and 9.6a). Total 

aquatic insects were slightly negatively correlated with pebble coverage (r = -0.043), 

whereas EPT was slightly positive (r = 0.0021).  Low negative correlations of total 

aquatic insects, including EPT, were found with coverage by cobbles (r = -0.018 and r = -

0.019, respectively) (Figure 4.4b and 9.6b). 
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Figure 4.4: Relationships between coverage by various stream substrates (a) boulder, 
b) cobble, c) pebble, d) gravel, e) sand within n = 77 stream transects and f) median 
stream substrate diamter from pebble counts (n = 2317 counts), to total emergent 
aquatic insect abundance (   ) and dry mass (   ) along riparian areas of headwater 
streams in Michigan’s Upper Peninsula, USA.  Pearson correlation coefficients (r) 
between ±1.0 & ±0.6 indicates sufficient relationship. 

4.3 Breeding Bird Surveys 
I detected substantial variation in the abundance and the species composition of breeding 

birds in the riparian zones of the study streams (Figure 4.5, Table 9.4).  A total of 487 

individual birds from 50 species were detected.  Bird detection abundance and species 

richness was lowest at DEC (22 individuals, 8 species) and greatest at OSR (56 

individuals, 24 species).  Emergent insect-preferred species (Winter Wren (WIWR) 

(Troglodytes troglodytes) and American Redstart (AMRE) (Setophaga ruticilla)) 

abundances also varied between streams.  No Winter wrens or American redstarts were 

detected at DEC, whereas five wrens were detected at OSR and six redstarts at OSR and 

THM (Figure 4.5 and Appendix Table 9.4).  Study sites were I detected greater total bird 

abundance also had greater species richness (r = 0.946).  

f 
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Although the species richness of the breeding birds did not appear to be related to the 

total abundance of emergent insects (r = -0.21, Figure 4.6a), richness of the bird 

community was greater in the streams that supplied more emergent EPT abundance (r = 

0.79, Figure 4.6b).  
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Figure 4.5: Total riparian bird detection abundance (n = 487 birds), species richness (n 
= 50 species), and detection abundance of emergent insect-preferred species (n = 2 
species), in the riparian area along seven headwater streams in Michigan’s Upper 
Peninsula, USA.  Standard error bars are shown. 
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Figure 4.6: Total bird detection abundance (n=487) (   ), species richness (n=50) (    ), 
and emergent insect-preferred bird abundance (n=33) (Winter Wren (WIWR) (   ) and 
American redstart (AMRE) (   )) in relation to total emergent aquatic (a) and EPT (b) 
insect abundance (n=18) in riparian areas along headwater streams of Michigan’s 
Upper Peninsula, USA.  Pearson Correlation Coefficients (r) between ±1.0 & ±0.6 
indicates sufficient relationship in bold. 
 
Relationships between ripairan bird abundance and richness with total emergent aquatic 

insect abundance were weak (Figure 4.6a).  Total birds detected were negatively 

correlated to total aquatic insect abundance (r = -0.34) and slightly positive to EPT 

a 
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abundance (r = 0.04).  Bird richness was sharply positively correlated with EPT 

abundance (r = 0.79, Figure 4.6b).  Winter wren abundance was slightly negative to total 

aquatic insect abundance (r = -0.075), but more strongly negative to EPT abundance (r = 

-0.57).  American redstart abundance was slightly negatively correlated to total aquatic 

insect abundance (r = -0.17), but positively correlated with EPT abundance (r = 0.26). 

Relationships between riparian bird abundance and richness with total emergent aquatic 

insect dry mass was weak (Appendix Figure 9.8a).  Total abundance of birds detected 

was negatively correlated to emergent aquatic insect dry mass (r = -0.33) and EPT dry 

mass (r = -0.10) while species richness was weakly correlated to total aquatic insect dry 

mass (r = -0.097) and sharply positively correlated with EPT dry mass (r = 0.88, 

Appendix Figure 9.8b).  Winter wren abundance showed very little correlation to either 

total aquatic (r = -0.011) and EPT (r = -0.080) dry mass.  American redstart abundance 

was negatively correlated to total aquatic insect dry mass (r = -0.18) while positively 

correlated with EPT dry mass (r = 0.25). 

Relationships between stream characteristics and riparian bird community assemblage 

(abundance and richness) were largely weak (Appendix Table 9.5).  The few correlations 

that were strong were comparisons between bird species richness and streambed coverage 

by clay (r = 0.69) and organic material (r = 0.66).  A wide range of correlations between 

total bird abundance to substarte coverage was observed with bouders (r = -0.51), cobbles 

(r = -0.25), pebbles (r = -0.15), gravel (r = -0.12), sand (r = -0.051), clay (r = 0.66), and 

organic material (r = 0.51). 



 

31 

5. DISCUSSION 
In this comparative study I investigated relationships between stream habitat, emergent 

aquatic insects, and riparian breeding birds in headwater streams of Michigan’s Upper 

Peninsula.  Overall, streams with less sand and larger substrates in the wetted channel 

appeared to supply more emergent aquatic insects to the riparian area than streams with 

more fine sediments.  Likewise, streams contributing higher EPT abundances to the 

riparian area showed higher bird species richness. 

5.1 Stream and Insect Relationships 
Past logging practices of forest stands adjacent to our streams (VanDusen et al. 2005) 

(Appendix Figure 9.9) is most likely the cause for the presence of an apparent 

overabundance of fine sediments (i.e. sand) observed in some of our study sites.  Streams 

that contained high sand depths resulted in lower abundances of emergent aquatic insects 

in the riparian area, whereas streams with shallower sand depths had greater abundances.  

This relationship is likely due to the effects of streambed smothering caused by increased 

inputs of sand.  Brusven and Prather (1974) discussed the harmful effects of sediment 

pollution to stream biota, and Merritt and Cummins (1996) explained the importance of 

rough streambed structures, such as boulders, cobbles, and pebbles, to support insect 

emergence from streams for many species in the orders of Ephemeroptera, Plecoptera, 

and Trichoptera.  If large amounts of sand wash into a stream, larger substrates become 

embedded and cannot properly support insect emergence. 

In this study, streams predominantly covered by larger substrates such as boulders, 

cobbles, and pebbles supplied greater abundances of emergent aquatic insects to the 
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riparian area than streams that were predominantly covered by finer substrates such as 

gravel and sand.  These results were corroborated by other studies (Rabeni et al. 2005; 

Gomi et al. 2010; Long et al. 2011), especially Brusven and Prather (1974) who studied 

substrate preferences of five species of aquatic stream insects belonging to the orders of 

Ephemeroptera, Plecoptera, Trichoptera (EPT), and Diptera.  They concluded that 

streams containing larger substrates such as large pebbles (12 – 25mm) and cobbles (64-

256mm in diameter) had higher macroinvertebrate abundances over streams with half or 

fully embedded cobble or no cobble at all.  Therefore, we expected to find higher 

abundances of emergent aquatic insects, as well as EPT assemblage, in the riparian area 

along streams that were predominantly covered by larger substrates.  

The number of Malaise traps and timing of insect surveys with peak insect emergence for 

our region are a few major limiting factors which may have prevented us from observing 

stronger relationships between instream habitat characteristics and emergent aquatic 

insects.  The number of traps deployed along stream banks may have underrepresented 

emergent aquatic insects in the riparian area.  Budget constraints and material costs 

limited us to two traps per stream.  According to Baxter et al. (2005), peak emergence of 

aquatic insects occurs in the later spring/early summer in temperate regions.  Abiotic 

conditions, such as air and water temperature, if altered, can influence timing of 

emergence and flight activity of aquatic insects (Harper and Peckarsky 2006; Fin and 

Poff 2008).  Due to a cold, late spring the timing for peak insect emergence for our region 

may have been pushed outside of our sampling timeline.  
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5.2 Insect and Bird Relationships 
The emergence of aquatic insects from streams has been understood to provide an 

abundant source of food that attracts large numbers of insect consumers (i.e. birds, bats, 

lizards, spiders) from upland areas located away from the stream (Murakami and Nakano 

2002; Baxter et al. 2005; Iwata 2006).  A strong positive correlation between bird 

abundance and the flux of emergent aquatic insects into the riparian area was found in the 

literature review by Baxter et al. (2005).  In this study we detected weak relationships 

between bird abundance and total emergent insect abundance, but found a very strong 

relationship between EPT abundance with bird species richness.  Such a strong 

relationship between emergent EPT and bird species richness has been supported by work 

from Murakami and Nakano (2002).  They observed that insectivorous birds who fed on 

both aquatic and terrestrial insects were more frequently detected in the riparian forests 

than in upland forests because they are attracted to the overabundance of allochthonous 

prey input from streams. 

Insectivorous birds, Winter wrens and American Redstarts in particular, are generally 

more prevalent in riparian forest habitats and prefer to consume emergent aquatic insects 

over terrestrial insects (Waterhouse et al. 1990; Keast et al. 1995; Wiebe and Martin 

1998; Murakami and Nakano 2001).  One main reason for this behavior is due to high 

energy demands made on parents when rearing nestling young.  So it is at this time where 

parents try to synchronize rearing of young with the emergence of aquatic insects (Martin 

1987; Gray 1993).  In the current study, there was a weak relationship between the 

Winter wren and the ratio of aquatic to terrestrial insect availability in the riparian area (r 
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= 0.046, Appendix Figure 9.7).  American redstarts however were found to correlate 

positively with Trichopteran abundance (r= 0.6412).  We may not have detected a 

relationship regarding Winter wrens because of a low average abundance detected per 

stream (mean = 2). 

In this study, I chose not to look at individual bird diets, but instead to look at the 

community of potentially available emergent aquatic insects as prey to riparian 

consumers, namely insectivorous breeding birds.  The aquatic prey captured in this study 

belonged to orders that have been shown to make up a significant proportion of riparian 

bird diets (Rosenberg et al. 1982; Nakano and Murakami 2001; Yard et al. 2004; Baxter 

et al. 2005; Kirkpatrick and Conway 2006; Uesugi and Murakami 2006).  All insects 

captured were assumed to be an available food source for all riparian birds detected.  

Dipterans, which made up a large proportion of the abundance and dry mass of total 

emergent aquatic insects captured, were assumed to have originated from the stream. 

The timing of insect surveys as well as the timing of bird surveys were likely limiting 

factors preventing observation of stronger relationships between emergent aquatic insects 

and the riparian bird community.  Bird surveys were conducted within the breeding 

season (June 1st to July 15th) and during the morning hours of the day when birds are 

most active.  Within the daily time frame of the most bird activity (singing/detectable by 

plain sight), there existed distinct periods of lower and higher activity.  Lower periods of 

activity typically occurred between one half hour before sunrise until about 6:00am and 

then after 8:30am, whereas higher periods of activity occurred between 6:00am and 
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8:30am.  Accounting for the lower periods of activity most likely skewed our results 

which showed weaker relationships then there may have existed. 
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6. FUTURE WORK 

6.1 Questions that Remain 
 
More work beyond the scope of this study is needed to enhance this type of approach to 

studying stream and riparian forest relationships.  Firstly, comparing headwater streams 

to higher orders of the same stream will help further elucidate how stream size and 

changes in substrate composition related to larger stream orders, influences the patterns 

we found. This information would broaden understanding of the relationships between 

stream habitat and riparian bird community relative to headwater streams in north 

temperate forests.  Lastly, studying seasonality trends of streambed characteristics, 

emergent insects, and bird community would provide information on relationship 

dynamics between stream and riparian habitats as the seasons change.  Pursuing 

seasonality studies would allow forest managers to put into consideration time of year 

when planning harvesting operations in order to optimize timber harvest yield while at 

the same time minimizing impact to streams and riparian bird communities. 

6.2 Theoretical Implications 
 
This study’s approach to exploring the intricately interconnected relationships shared 

between stream and riparian areas aimed to identify and analyz key relationships between 

instream fine sediment abundance, emergent aquatic insects, and riparian bird 

community.  This approach will help increase understanding of stream and riparian food 

web for ecologists and other researchers.  Forest resource managers that harvest timber 
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near headwater streams can use this study to build a more complete understanding as to 

the importance of stream habitat for riparian bird community.  Therefore, future forest  

management plans should be evaluated and/or updated to conserve stream habitat 

condition in order to benefit aquatic macroinvertebrates as well as riparian breeding 

birds.  This approach will also help to promote protection of streams from excessive input 

of fine sediments which will benefit stream and riparian forest biota. 
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7. CONCLUSION 
As a comparative study, relationships between stream habitat, emergent aquatic insects, 

and riparian breeding birds were investigated in headwater streams of Michigan’s Upper 

Peninsula.  Streams containing low fine sediment abundance (i.e. sand depth and 

coverage) as well as coarse sediment abundance (i.e. boulder, cobble, and gravel 

coverage) expressed stronger correlations with emergent aquatic insect abundance in the 

riparian area than with streams containing higher fine sediment and lower coarse 

sediment abundances.  There were insufficient and weak considerations of a relationship 

between riparian breeding bird community and either stream habitat or emergent aquatic 

insects.  Work beyond the scope of this study is needed to further this type of approach to 

studying stream and riparian forest relationships. 
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9. APPENDIX A 

 
Study Site GPS (WGS 84) 

Otter Siding Creek (1) N 46°46’32.0” 
W 88°51’49.3” 

Lake Fifteen (2) N 46°47’55.2” 
W 88°50’42.6” 

Pike Lake Curve (3) N 46°48’10.6” 
W 88°49’33.1” 

Ogre (4) N 46°48’44.2” 
W 88°48’45.3” 

West Sante River (5) N 46°57’36.4” 
W 88°44’02.4” 

Thirteen Mile Creek (6) N 46°57’45.6” 
W 88°43’23.5” 

Deer Camp (7) N 46°57’41.3” 
W 88°43’01.2” 

Figure 9.1: Map designating seven headwater stream study sites (with GPS position 
listed below) in the Otter River Watershed of Michigan’s Upper Peninsula. Map from 
www.uprcd.org/downloads/otter_river_rwa_newsletter.pdf (UPRCD, 2008). 
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Figure 9.2: Design and dimensions of Malaise traps used to sample flying insects in 
the riparian areas along headwater streams of Michigan’s Upper Peninsula, USA. 
 

 
 

 

4’H 

3’H 

2’W 

6’W 



 

46 

0

10

20

30

40

50

60

WBS THM DEC OSR PLC OGR LKF

D
ia

m
et

er
 (m

m
)

Stream
 

Figure 9.3: Median pebble diameter based on pebble counts (n = 331 counts) in seven 
headwater streams of Michigan’s Upper Peninsula, USA. 
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Figure 9.4: Mean canopy cover and riparian vegetation density along seven headwater 
streams in the Otter River Watershed of Michigan’s Upper Peninsula.  Standard error 
bars are displayed. 
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Figure 9.5: Total riparian insect abundance (   ) and dry mass (   ) relative to instream 
sand depth (a) and coverage (b) along Seven headwater streams in the Otter River 
Watershed. 
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Figure 9.6: Relationships between coverage by various stream substrates (a) boulder, 
b) cobble, c) pebble, d) gravel, e) sand within n = 77 stream transects and f) median 
stream substrate diamter from pebble counts (n = 2317 counts), to emergent aquatic 
insects (EPT) abundance (   ) and dry mass (   ) along riparian areas of headwater 
streams in Michigan’s Upper Peninsula, USA.  Pearson correlation coefficients (r) 
between ±1.0 & ±0.6 indicates sufficient relationship. 
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Figure 9.7: Total bird abundance (   ) (n=487), species richness (   ) (n = 50), and 
emergent insect-preferred bird abundance (n=33) (Winter wren (   ) and American 
redstart (   )) in relation to the ratio of aquatic/terrestrial insect availability in the 
riparian area along seven headwater streams in Michigan’s Upper Peninsula, USA.  
Pearson Correlation Coefficients (r) between ±1.0 & ±0.6 indicates sufficient 
relationship. 
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Figure 9.8: Total bird detection abundance (n=487) (   ), species richness (n=50) (    ), 
and emergent insect-preferred bird abundance (n=33) (Winter Wren (WIWR) (   ) and 
American redstart (AMRE) (   )) in relation to total emergent aquatic (a) and EPT (b) 
insect dry mass in riparian areas along headwater streams of Michigan’s Upper 
Peninsula, USA.  Pearson Correlation Coefficients (r) between ±1.0 & ±0.6 indicates 
sufficient relationship in bold. 
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Unpublished DNR inventory data (Price 2011). 
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Owner: State of Michigan 
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Unpublished DNR inventory data (Price 2011). 
 
 
 
  

Deer Camp (DEC) 
Owner: State of Michigan 

Ogre (OGR) 
Owner: State of Michigan 

c d 



 

55 

 

 

 

 

 

 

 

 

 

Figure 9.9: PLAT maps of areas designated for selection logging within the Otter River 
Watershed including year of entry (YOE), acreage, and land owner information for a) 
PLC, b) OSR, c)DEC, d) OGR, and e) LKF. Relative placement of Malaise traps are 
designated by a black dash encircled with a red line (Flynn 2011).  See appendix B for 
documentation of permission to republish figure 9.9e. 
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Table 9.1 

Tukey multiple comparison test (Zar 1999) of sand depth in seven headwater 
streams in Michigan’s Upper Peninsula. 

 
Order Number 1 2 3 4 5 6 7 
Stream DEC WBS THM OGR LKF PLC OSR 
Mean Sand Depth (m) 0.052 0.028 0.041 0.287 0.561 0.284 0.151 
Comparison Difference SE q q0.05, 70, 7 Conclusion 

(B v. A) (Mean B - Mean A) 
5 v. 2 0.534 0.04599 11.61 4.314 Reject 
5 v. 3 0.520 0.04599 11.32 4.314 Reject 
5 v. 1 0.510 0.04599 11.09 4.314 Reject 
5 v. 7 0.411 0.04599 8.931 4.314 Reject 
5 v. 6 0.277 0.04599 6.025 4.314 Reject 
5 v. 4 0.274 0.04599 5.962 4.314 Reject 
4 v. 2 0.260 0.04599 5.644 4.314 Reject 
4 v. 3 0.246 0.04599 5.354 4.314 Reject 
4 v. 1 0.236 0.04599 5.124 4.314 Reject 
4 v. 7 0.137 0.04599 2.969 4.314 Not Rejected 
4 v. 6 Do not test         
6 v. 2 0.257 0.04599 5.580 4.314 Reject 
6 v. 3 0.243 0.04599 5.290 4.314 Reject 
6 v. 1 0.233 0.04599 5.060 4.314 Reject 
6 v. 7 Do not test         
7 v. 2 0.123 0.04599 2.674 4.314 Not Rejected 
7 v. 3 Do not test         
7 v. 1 Do not test         
1 v. 2 Do not test         
1 v. 3 Do not test         
3 v. 2 Do not test         
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Table 9.2 

Instream habitat characteristics from longitudinal surveys of a 500m reach in seven 
headwater streams in Michigan’s Upper Peninsula during the summer of 2011. 

 
Habitat Variable Mean SE Std. Dev. Range Min. Max. 
Sand Depth (cm)       

DEC 5.2 1.1 8.4 36 0 36 
WBS 2.8 0.34 2.5 12 0 12 
THM 4.1 0.51 3.8 24 0 24 
OGR 29 2.1 16 73 0 73 
LKF 56 4.8 35 100 0 100 
PLC 28 3.2 24 85 5 90 
OSR 15 3.2 24 95 0 95 

Wetted Width (m)             
DEC 3.67 0.136 1.01 3.1 2.1 5.2 
WBS 3.86 0.141 1.03 3.3 2.6 5.9 
THM 3.1 0.084 0.616 2.1 2 4.1 
OGR 2.07 0.065 0.475 1.5 1.3 2.8 
LKF 2.18 0.047 0.341 1 1.6 2.6 
PLC 3.58 0.218 1.6 5.4 1.9 7.3 
OSR 6.4 0.144 1.01 3 5.1 8.1 

Water Depth (cm)             
DEC 12 0.96 7.1 32 0 32 
WBS 10 0.92 6.7 25 0 25 
THM 9.1 0.83 6.1 26 0 26 
OGR 9.9 1.3 9.8 70 0 70 
LKF 12 1.2 9.1 45 0 45 
PLC 17 2.0 14 68 0 68 
OSR 37 4.4 31 144 4 148 

Discharge (cm³/s)             
DEC 6.06 0.957 7.09 27.7 0 27.7 
WBS 3.72 0.56 4.11 16.5 0 16.5 
THM 3.42 0.484 3.56 13.2 0 13.2 
OGR 1.86 0.433 3.18 22.4 0 22.4 
LKF 1.72 0.253 1.86 7.18 0 7.18 
PLC 3.98 0.668 4.91 19.9 0 19.9 
OSR 13.3 1.94 13.6 61.4 0 61.4 

Riparian Vegetation 
Density (%)             

DEC 45 9.3 19 39 32 71 
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Table 9.2, continued 
Habitat Variable Mean SE Std. Dev. Range Min. Max. 

WBS 26 12 23 47 2.6 50 
THM 42 4 8 17 31 48 
OGR 31 4.9 9.8 22 17 40 
LKF 38 6.4 13 30 26 56 
PLC 44 15 31 60 15 75 
OSR 43 8.8 18 39 24 63 

Riparian Canopy 
Cover (%)             

DEC 79 0.041 0.14 0.48 0.5 0.98 
WBS 71 0.039 0.13 0.48 0.45 0.93 
THM 77 0.040 0.13 0.45 0.45 0.9 
OGR 81 0.020 0.065 0.25 0.68 0.93 
LKF 75 0.027 0.089 0.28 0.58 0.85 
PLC 69 0.025 0.084 0.23 0.58 0.8 
OSR 54 0.038 0.13 0.43 0.33 0.75 

Table 9.3a 

Abundance (number) of the flying insects (identified to order) captured in the 
riparian areas along seven headwater streams in the Otter River Watershed of 
Michigan’s Upper Peninsula during 12 trap nights in 2011. West Sante River 

(WBS), Thirteen Mile (THM), Deer Camp (DEC), Otter Siding Creek (OSR), Pike 
Lake Curve (PLC), Ogre (OGR), and Lake Fifteen Creek (LKF). 

 
Number of Insects (%) 

 
Stream 

 
WBS THM DEC OSR PLC OGR LKF Total 

Terrestrial 21(33) 16(44) 9(32) 13(24) 52(73) 5(26) 5(39) 121(42) 
Phalangida 0(0) 0(0) 0(0) 1(8) 0(0) 0(0) 0(0) 1(0.8) 
Lepidoptera 3(14) 3(19) 0(0) 1(8) 4(8) 0(0) 0(0) 11(9) 
Araneida 0(0) 0(0) 1(11) 1(8) 0(0) 1(20) 0(0) 3(2) 
Hymenoptera 1(5) 2(13) 1(11) 1(8) 1(2) 0(0) 0(0) 6(5) 
Coleoptera 17(81) 11(69) 7(78) 9(69) 47(90) 4(80) 5(100) 100(83) 

Aquatic 43(67) 
 

20(56) 19(68) 41(76) 19(27) 14(74) 8(61) 164(58) 
Ephemeroptera 0(0) 0(0) 0(0) 0(0) 1(5) 0(0) 0(0) 1(0.6) 
Plecoptera 3(7) 0(0) 0(0) 1(2) 1(5) 0(0) 0(0) 5(3) 
Trichoptera 1(2) 6(30) 1(5) 0(0) 1(5) 0(0) 3(38) 12(7.3) 
Diptera 39(91) 14(70) 18(95) 40(98) 16(84) 14(100) 5(62) 146(89) 
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Table 9.3a, continued 

 
WBS THM DEC OSR PLC OGR LKF Total 

Total (%) 64(22) 36(13) 28(10) 54(19) 71(25) 19(7) 13(5) 285 

Table 9.3b 

Dry mass of the flying insects (identified to order) captured in the riparian areas 
along seven headwater streams in the Otter River Watershed of Michigan’s Upper 
Peninsula in the summer of 2011. West Sante River (WBS), Thirteen Mile (THM), 

Deer Camp (DEC), Otter Siding Creek (OSR), Pike Lake Curve (PLC), Ogre 
(OGR), and Lake Fifteen Creek (LKF). 

 
Dry Mass (mg) of Insects (%) 

 
Stream 

WBS THM DEC OSR PLC OGR LKF Total 

Terrestrial 81(47) 84(93) 51.2(72) 24(19) 162(72) 11(19) 18(69) 431.2(56) 

Phalangida 0 (0) 8.7 (10) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 8.7(2) 

Lepidoptera 21.7(27) 41.8 (50) 0 (0) 5.8 (24) 21.6(13) 0 (0) 0 (0) 90.9 (21) 

Araneida 0 (0) 0 (0) 11.9 (23) 2.1(9) 0 (0) 0 (0) 0 (0) 14(3) 

Hymenoptera 4.9 (6) 5 (6) 0 (0) 2.9 (12) 1.2(1) 0 (0) 0 (0) 14(3) 

Coleoptera 54.6(67) 28.8 (34) 39.3 (77) 13.2 (55) 140(86) 10.7 (100) 18.3(100) 304.9 (71) 

Aquatic 91(53) 6.7 20.4(28) 100(81) 64.3(28) 48(81) 7.9(31) 338.3 (44) 

Ephemeroptera 0 (0) 0 (0) 0 (0) 0 (0) 28.6(44) 0 (0) 0 (0) 28.6 (8) 

Plecoptera 17.4(19) 0 (0) 0 (0) 19.2 (19) 0.4(1) 0 (0) 0 (0) 37 (11) 

Trichoptera 1.8(2) 2.7 (40) 7.7 (38) 0 (0) 0.2(0.3) 0 (0) 4 (51) 16.4 (5) 

Diptera 71.9(79) 4 (60) 12.7 (62) 81.4 (81) 35.1(55) 48.3 (100) 3.9(49) 257.3 (76) 

        
Total (%) 172(22) 90.7 (12) 71.6 (9) 124 (16) 226.3 (29) 59(8) 25.9(3) 769.5 
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Table 9.4 

Riparian bird community surveyed in 2011 along seven headwater streams in 
Michigan’s Upper Peninsula.  WIWR: Winter wren (Troglodytes troglodytes), 

AMRE: American redstart (Setophaga ruticilla). 

 
Stream 

 
DEC WBS THM OGR LKF PLC OSR Total 

Abundance 
(Number of Birds) 

22 22 41 25 34 46 56 246 

Species 
Richness 
(Number of 

Species) 
8 13 19 11 16 18 24 109 

Emergent Insect-Preferred Bird Abundance (Number of Birds) 
WIWR 0 2 3 1 3 0 5 14 
AMRE 0 0 0 6 2 5 6 19 
Total 0 2 3 7 5 5 11 33 

Table 9.5 

Pearson Correlation Coefficients between instream habitat characteristics and 
riparian bird community along seven headwater streams of Michigan’s Upper 

Peninsula.  Values between ±0.6 to ±1.0 is considered sufficient for consideration of 
relationship (in bold). 

 

Variables 
Correlation 
Coefficient 

Bird Species Richness v. %BO -0.28 
Bird Species Richness v. %CO -0.14 
Bird Species Richness v. %P 0.24 
Bird Species Richness v. %G -0.33 
Bird Species Richness v. %S -0.26 
Total Bird Abundance v. %BO -0.51 
Total Bird Abundance v. %CO -0.25 
Total Bird Abundance v. %P -0.15 
Total Bird Abundance v. %G -0.12 
Total Bird Abundance v. % S -0.051 
Winter wren Abundance v. %BO -0.22 
Winter wren Abundance v. %CO -0.31 
Winter wren Abundance v. %P -0.17 
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Table 9.5, continued 

Variables 
Correlation 
Coefficient 

Winter wren Abundance v. %G -0.44 
Winter wren Abundance v. %S 0.13 
American redstart Abundance v. %BO -0.29 
American redstart Abundance v. %CO 0.17 
American redstart Abundance v. %P 0.57 
American redstart Abundance v. %G -0.058 
American redstart Abundance v. %S -0.41 
Bird Species Richness v. % Canopy 
Cover -0.72 
Bird Species Richness v. % O coverage 0.66 
Bird Species Richness v. % C coverage 0.69 
Bird Abundance v. % C coverage 0.66 
WIWR Abundance v. % C coverage 0.6 
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10. APPENDIX B 
Permission to Publish Copyrighted Materials 

No permission necessary to print figure 9.1 from the Upper Peninsula Resource 
Conservation and Development Council (UPRCD) (2008). 

No permission necessary to print figures 9.9a-d from Price (2011).
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Permission letter granting republishing of figure 9.9e. 
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