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Abstract

A method in this work, that combines the defect and deferred correction approaches

to approximate solutions of Navier-Stokes equations at high Reynolds number is pre-

sented. This method is of high accuracy in both space and time, and it allows for the

usage of legacy codes – a frequent requirement in the simulation of turbulent flows

in complex geometries. The two-step method is considered here: in order to obtain a

regularization, that is second order accurate in space and time, the method computes

a low-order accurate, stable and computationally inexpensive approximation (Back-

ward Euler with artificial viscosity) twice. The results are readily extendable to the

higher order accuracy cases by adding more correction steps. Both the theoretical re-

sults and the numerical tests are provided to demonstrate that the computed solution

is stable and the accuracy in both space and time is improved after the correction

step. We also perform a qualitative test to demonstrate that the method is capable

of capturing qualitative features of a turbulent flow, even on a very coarse mesh.

ix



Chapter 1

Introduction

The motion of incompressible fluid flow in the flow domain Ω = (0, L)d is governed by

the Navier-Stokes equations: find the velocity-pressure pair u : Ω× (0, T ]→ Rd, (d =

2, 3) and p : Ω× (0, T ]→ R satisfying

ut + u · ∇u− ν∆u+∇p = f, for x ∈ Ω, 0 < t ≤ T (1.0.1)

∇ · u = 0, x ∈ Ω, for 0 ≤ t ≤ T,

u(x, 0) = u0(x), for x ∈ Ω,

with the normalization condition
∫

Ω p(x, t) dx = 0 for 0 < t ≤ T . Throughout this

paper, we consider the case of homogeneous Dirichlet boundary conditions to simplify

the proofs; non-homogeneous Dirichlet boundary conditions can be treated in exactly

the same manner and the same results hold.

According to the Kolmogorov theory [24], there exists a continuum of scales in tur-

bulent fluid flow, with the smallest scales (in the case of a 3 − D flow) being of

the order O(Re−3/4), where the Reynolds number Re is inverse proportional to the

viscosity coefficient ν. Thus, capturing all the small structures in a turbulent flow

requires the number of mesh points in space for each time step to be O(Re9/4) for
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three-dimensional problems. It is not uncommon to have Re ∼ O(108) in real-life

applications.

Hence, the direct numerical simulation (DNS) of a 3−D turbulent flow is often not

computationally economical or even feasible. Sometimes it is desirable (especially for

turbulent flows in complex geometries) to be able to use pre-existing codes. Thus, we

are aiming at constructing a method that would approximate a flow at high Reynolds

number, while being computationally attractive, stable and of high accuracy in both

space and time.

To that end, we consider a defect correction approach from [15]. Defect correction

strategies have been successfully applied to stiff systems [3, 16, 11, 6, 18], and in

particular to evolutionary Navier Stokes Equation (NSE) - see, e.g., [15] and references

therein.

The general idea of any Defect Correction Method (DCM) can be formulated as

follows (see, e.g., [27, 1]):

Find a unique solution of Fx = 0, by

DCM: Use an approximation F̃ to build an iterative procedure:

F̃ x1 = 0,

xi+1 = (I − F̃−1F )xi, i ≥ 1.

The choice of a particular approximation F̃ determines the defect correction method in

use. As a result of using the artificial viscosity approximation-based defect correction

method of [15], we have an approach that allows for the usage of legacy codes and

gives a second order accurate in space approximation of a flow at high Reynolds

number. This is obtained by computing two consecutive approximations u1 and u2

with Backward Euler method and with exactly the same matrix (the correction step

2



only modifies the right hand side of the system for u2 by a function of the previously

computed u1). These approximations, however, are first order accurate in time. The

question is: can we increase the time accuracy without increasing the computational

cost? The answer lies in the temporal counterpart of the defect correction idea, known

as deferred correction.

The main advantage of the deferred correction approach is that a simple low-order

method can be employed, and the recovered solution is of high-order accuracy, due to a

sequence of deferred correction equations. The classical deferred correction approach

could be seen, e.g., in [28]. However, in 2000 a modification of the classical deferred

correction approach was introduced by Dutt, Greengard and Rokhlin, [25]. This

allowed the construction of stable and high-order accurate spectral deferred correction

methods. In [20], M.L. Minion discusses these spectral deferred correction (SDC)

methods in application to an initial value ODE

φ′(t) = F (t, φ(t)), t ∈ [a, b] (1.0.2)

φ(a) = φa.

The solution is written in terms of the Picard integral equation; a polynomial is used

to interpolate the subintegrand function and the obtained integral term is replaced by

its quadrature approximation. The deferred correction approach was used to improve

the temporal accuracy of a turbulence model in [31].

When both the defect and deferred correction are combined into one method, we seek

two approximations uh,i1 and uh,i2 to the true solution u(ti). Both are computed with

the same matrix of the system, but with different right hand sides. The computa-

tional attractiveness is due to two important factors. First, the cost of computing

each approximation is the cost of solving a Backward Euler method for the NSE with

increased viscosity coefficient - a method which is hard to beat in terms of compu-

tational cost. Secondly, the defect-deferred correction methods are readily paralleliz-

able, as the solutions uh,i+k1 , uh,i+k−1
2 ,...,uh,ik+1 can be computed simultaneously on k+1
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cores to produce a potentially (k + 1)-order accurate approximation.

We propose the following two-step method that produces a sequence of approxima-

tions (uh1 , ph1), (uh2 , ph2) of the true solution (u, p).

(u
h,n+1
1 − uh,n1

k
, vh) + (h+ ν)(∇uh,n+1

1 ,∇vh) + b∗(uh,n+1
1 , uh,n+1

1 , vh)

−(ph,n+1
1 ,∇ · vh) = (f(tn+1), vh),

(1.0.3)

(u
h,n+1
2 − uh,n2

k
, vh) + (h+ ν)(∇uh,n+1

2 ,∇vh) + b∗(uh,n+1
2 , uh,n+1

2 , vh)

−(ph,n+1
2 ,∇ · vh) = (f(tn+1) + f(tn)

2 , vh) + ν

2k(∇(u
h,n+1
1 − uh,n1

k
), vh)

+1
2b
∗(uh,n+1

1 , uh,n+1
1 , vh)− 1

2b
∗(uh,n1 , uh,n1 , vh) + h(∇uh,n+1

1 ,∇vh),

(1.0.4)

where b∗(·, ·, ·) is the explicitly skew-symmetrized trilinear form, defined below.

The remainder of this paper is organized as follows. Section 2 introduces the necessary

notation and preliminaries; then follows Section 3 on the accuracy and stability of

the defect step approximation. These results come mostly from [15], as the equation

for the defect step of the defect-deferred approach is exactly the defect step of the

approach in [15]. The novelty of the proposed method appears in Section 4, where

stability and increased accuracy (both time and space) of the correction step is stud-

ied. The quantitative and qualitative computational tests are presented in Section

5.
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Chapter 2

Mathematical Preliminaries and

Notations

Throughout this paper, the norm ||.|| denotes the usual L2(Ω) norm of scalars, vectors

and tensors, induced by the usual L2 inner-product, denoted by (·, ·). The space in

which velocity sought(at time t) is

X = H1
0 (Ω)d = {v ∈ L2(Ω)d : ∇v ∈ L2(Ω)dxd and v = 0 on ∂Ω}.

with the norm ||v||X = ||∇v||. The space dual to X is equipped with the norm

||f ||−1 = sup
v∈X

(f, v)
||∇v||

.

The space that velocity (at time t) belongs to is

Q = L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω
q(x)dx = 0}.

Introduce the space of weakly divergence-free functions
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X ⊃ V = {v ∈ X : (∇ · v, q) = 0,∀q ∈ Q}.

For measurable v : [0, T ]→ X, we define

||v||Lp(0,T ;X) = (
∫ T

0
||v||PXdt)

1
p , 1 ≤ p <∞,

and

||v||L∞(0,T ;X) = ess sup
0≤t≤T

||v(t)||X .

Define the trilinear form on X ×X ×X

b(u, v, w) =
∫

Ω
u · ∇v · wdx.

The following lemma is also necessary for the analysis.

Lemma 2.0.1 There exist finite constant M = M(d) and N = N(d) s.t. M ≥ N

and

M = sup
u,v,w∈X

b(u, v, w)
||u||||v||||w||

<∞, N = sup
u,v,w∈V

b(u, v, w)
||u||||v||||w||

<∞.

The proof can be found in [29]. The corresponding constantsMh and Nh are defined

by replacing X by the finite element space Xh ⊂ X and V by V h ⊂ X. Note that

M ≥ max(Mh, N,Nh) and that as h→ 0, Nh → N and Mh →M (see [29]).

Throughout the paper, we shall assume that the velocity-pressure finite element spaces

Xh ⊂ X and Qh ⊂ Q are conforming, have typical approximation properties of finite

element spaces commonly in use, and satisfy the discrete inf-sup, or LBBh, condition

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)
‖∇vh‖‖qh‖

≥ βh > 0, (2.0.1)

where βh is bounded away from zero uniformly in h. Examples of such spaces can

be found in [29]. We shall consider Xh ⊂ X, Qh ⊂ Q to be spaces of continuous

6



piecewise polynomials of degree m and m − 1, respectively, with m ≥ 2. The case

of m = 1 is not considered, because the optimal error estimate (of the order h) is

obtained after the first step of the method, and therefore the DCM in this case is

reduced to the artificial viscosity approach.

The space of discretely divergence-free functions is defined as follows

V h = {vh ∈ Xh : (qh,∇ · vh) = 0,∀qh ∈ Qh}.

In the analysis we use the properties of the following Modified Stokes Projection

Definition 2.0.2 (Modified Stokes Projection) Define the Stokes projection op-

erator PS: (X,Q)→ (Xh, Qh), PS(u, p) = (ũ, p̃), satisfying

(h+ ν)(∇(u− ũ),∇vh)− (p− p̃,∇ · vh) = 0, (2.0.2)

(∇ · (u− ũ), qh) = 0,

for any vh ∈ V h, qh ∈ Qh.

In (V h, Qh) this formulation reads: given (u, p) ∈ (X,Q), find ũ ∈ V h satisfying

(h+ ν)(∇(u− ũ),∇vh)− (p− qh,∇ · vh) = 0, (2.0.3)

for any vh ∈ V h, qh ∈ Qh.

Define the explicitly skew-symmetrized trilinear form

b∗(u, v, w) := 1
2(u · ∇v, w)− 1

2(u · ∇w, v).

The following estimate is easy to prove (see, e.g., [29]): there exists a constant

C = C(Ω) such that

|b∗(u, v, w)| ≤ C(Ω)‖∇u‖‖∇v‖‖∇w‖. (2.0.4)
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The proofs will require the sharper bound on the nonlinearity. This upper bound is

improvable in R2.

Lemma 2.0.3 (The sharper bound on the nonlinear term) Let Ω ⊂ Rd, d =

2, 3. For all u, v, w ∈ X

|b∗(u, v, w)| ≤ C(Ω)
√
‖u‖‖∇u‖‖∇v‖‖∇w‖.

Proof 2.0.1 See [29].

We will also need the following inequalities: for any u ∈ V

inf
v∈V h
‖∇(u− v)‖ ≤ C(Ω) inf

v∈Xh
‖∇(u− v)‖, (2.0.5)

inf
v∈V h
‖u− v‖ ≤ C(Ω) inf

v∈Xh
‖∇(u− v)‖, (2.0.6)

The proof of (2.0.5) can be found, e.g., in [29], and (2.0.6) follows from the Poincare-

Friedrich’s inequality and (2.0.5).

We will also assume that the inverse inequality holds: there exists a constant C

independent of h, such that

||∇v|| ≤ Ch−1||v||, ∀v ∈ Xh. (2.0.7)

Define also the number of time steps N := T
k
.

We will use the error decomposition

ei` = ui − uh,i` = ui − ũi + ũi − uh,i` = ηi` − φ
h,i
` ,

where ũi ∈ V h is some projection of ui onto V h,

and ηi` = ui − ũi, φh,i` = uh,i` − ũi, φ
h,i
` ∈ V h,∀i,∀` = 1, 2.

(2.0.8)
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We conclude the preliminaries by formulating the discrete Gronwall’s lemma, see, e.g.

[30]

Lemma 2.0.4 Let k,B, and aµ, bµ, cµ, γµ, for integers µ ≥ 0, be nonnegative numbers

such that:

an + k
n∑
µ=0

bµ ≤ k
n∑
µ=0

γµaµ + k
n∑
µ=0

cµ +B for n ≥ 0.

Suppose that kγµ < 1 for all µ, and set σµ = (1− kγµ)−1. Then

an + k
n∑
µ=0

bµ ≤ ek
∑n

µ=0 σµγµ · [k
n∑
µ=0

cµ +B].

Upon giving the relationship between Reynolds Number and the kinetic viscosity (ν)

below, we will use ν instead of Re−1.

Re = ρvL

µ
= vL

ν
,

where v is the maximum velocity of the object relative to the fluid, L is a characteristic

linear dimension, µ is the dynamic viscosity of the fluid and ρ is the density of the

fluid.

9



Chapter 3

AV Approximation

In this section we prove the unconditional stability and error estimate of the discrete

artificial viscosity approximation uh1 and use this result to prove an error estimate

of its time derivative de1
dt
. Over 0 ≤ t ≤ T < ∞ the approximations uh1 is bounded

uniformly in ν.

Hence, the formulation (1.0.3) gives O(h + k) accurate, unconditionally stable ex-

tension of the artificial viscosity approximation to the time-dependent Navier-Stokes

equations.

We start by giving stability and error estimate of the modified Stokes Projection, that

we use as the approximation ũ0 to the initial velocity u0.

10



3.1 Stokes Projection

Proposition 3.1.1 (Stability of the Stokes projection) Let u, ũ satisfy (2.0.3).

The following bound holds

(h+ ν)‖∇ũ‖2 ≤ 2(h+ ν)‖∇u‖2 (3.1.1)

+2d(h+ ν)−1 inf
qh∈Qh

‖p− qh‖2,

where d is the dimension, d = 2, 3.

Proposition 3.1.2 (Error estimate for Stokes Projection). Suppose the discrete inf-

sup condition (2.0.1) holds. Then the error in Stokes Projection satisfies

(h+ ν)||∇(u− ũ)||2 ≤ C[(h+ ν) inf
vh∈V h

||∇(u− vh)||2

+(h+ ν)−1 inf
qh∈Qh

||p− qh||2],

where C is a constant independent of h and Re.

(3.1.2)

Proof 3.1.1 Proofs can be found in [15]

3.2 Stability of the AV approximation

Lemma 3.2.1 Let uh1 satisfy the equation (1.0.3). Let f ∈ L2(0, T ;H−1(Ω)). Then

for n = 0, ..., N − 1

‖uh,n+1
1 ‖2 + kΣn+1

i=1 (h+ ν)‖∇uh,i1 ‖2 ≤ ‖us0‖2

+ 1
h+ ν

kΣn+1
i=1 ‖f(ti)‖2

−1.

11



Also, if f ∈ L2(0, T ;L2(Ω)) and the time constraint T is finite, then there exists a

constant C = C(T ) such that

‖uh,n+1
1 ‖2 + kΣn+1

i=1 (h+ ν)‖∇uh,i1 ‖2 (3.2.1)

≤ C(‖us0‖2 + kΣn+1
i=1 ‖f(ti)‖2).

Proof 3.2.1 Can be found in [15].

3.3 Error Estimates of AV Approximation

Definition 3.3.1 Let

Cu := ||u(x, t)||L∞(0,T ;L∞(Ω)),

C∇u := ||∇u(x, t)||L∞(0,T ;L∞(Ω)),

C̃u := ||u(x, t)||L∞(0,T ;L2(Ω)),

C̃∇u := ||∇u(x, t)||L∞(0,T ;L2(Ω)),

and introduce C̃, satisfying

inf
v∈V h
||∇(u− v)|| ≤ C1 inf

v∈Xh
||∇(u− v)|| ≤ C2h

m||u||Hm+1 ≤ C̃hm (3.3.1)

Also, using the constant C(Ω) from Lemma 2.3, we define C̄ := 1728C4(Ω).

Theorem 3.3.2 Let f ∈ L2(0, T ;H−1), let uh1 , uh2 satisfy (1.0.3) and (1.0.4), respec-

tively,

k ≤ h+ ν

4C2
u + 2(h+ ν)C∇u + 2C̄C̃4(h+ ν)−2h4m

,

u ∈ L2(0, T ;Hm+1(Ω)) ∩ L∞(0, T ;L∞(Ω)),∇u ∈ L∞(0, T, L∞(Ω)),

ut ∈ L2(0, T ;Hm+1(Ω)), utt ∈ L2(0, T ;L2(Ω)), p ∈ L2(0, T ;Hm(Ω)).

12



Then there exist a constant C = C(Ω, T, u, p, f, h+ ν), such that

max
1≤i≤N

||u(ti)− uh,i1 ||+
(
k
n+1∑
i=1

(h+ ν)||∇(u(ti)− uh,i1 )||2
)1/2
≤ C(hm + h+ k)

Proof 3.3.1 Can be found [15].

We will need the following lemma in the proof of Theorem (3.3.4).

Lemma 3.3.3 Let f ∈ L2(0, T ;H−1(Ω)). Suppose φ0 and φ1 to be the Stokes projec-

tions of the initial velocity and velocity at the first time level, respectively. Let m ≥ 2

and

k <
4(h+ ν)

13(4(h+ ν)C∇u + 3C2
u) .

Then there exist a constant C = C(Ω, T, u, p, f, h+ ν), such that

||φ
1 − φ0

k
||2 + 13

2 (h+ ν)k||∇φ
1 − φ0

k
||2 ≤ C(kh2m + h2 + k2 + k2h2m−3) (3.3.2)

Proof 3.3.2 From the Stokes Projection(2.0.2) and error decomposition(2.0.8), we

have

(h+ ν)(∇φ0,∇v)− (h+ ν)(∇η0,∇v)− (p0 − q,∇.v) = 0 (3.3.3)

On the other hand the solution at the first time level satisfies the following

13



||φ
1 − φ0

k
||2 + (h+ ν)(∇φ1,∇φ

1 − φ0

k
) + b∗(u1, u1,

φ1 − φ0

k
)

−b∗(u1
1, u

1
1,
φ1 − φ0

k
) + (p1,∇.φ

1 − φ0

k
)

= h(∇u1,∇φ
1 − φ0

k
) + k(ρ1,

φ1 − φ0

k
)

+(η
1 − η0

k
,
φ1 − φ0

k
) + (h+ ν)(∇η1,

φ1 − φ0

k
),

where kρ1 = u1 − u0

k
− u1

t = kuθtt, for some θ ∈ (0, k).

(3.3.4)

Subtracting equation 3.3.3 from equation 3.3.4 for v = φ1−φ0

k
, we have

||φ
1 − φ0

k
||2 + k(h+ ν)||∇φ

1 − φ0

k
||2

+b∗(u1, u1,
φ1 − φ0

k
)− b∗(u1

1, u
1
1,
φ1 − φ0

k
)

−k(p
1 − p0

k
− q,∇.φ

1 − φ0

k
)

= h(∇u1,∇φ
1 − φ0

k
) + (ρ1,

φ1 − φ0

k
) + (η

1 − η0

k
,
φ1 − φ0

k
)

+k(h+ ν)(∇η
1 − η0

k
,∇φ

1 − φ0

k
)

(3.3.5)

Adding and subtracting b∗(u1
1, u

1, φ
1−φ0

k
) to the nonlinear terms in equation (3.3.5)

together with error decomposition (2.0.8) gives

b∗(u1, u1,
φ1 − φ0

k
)− b∗(u1

1, u
1
1,
φ1 − φ0

k
)

= b∗(e1
1, u

1,
φ1 − φ0

k
) + b∗(u1

1, e
1
1,
φ1 − φ0

k
)

= b∗(φ1, u1,
φ1 − φ0

k
)− b∗(η1, u1,

φ1 − φ0

k
)

+ b∗(u1
1, φ

1,
φ1 − φ0

k
)− b∗(u1

1, η
1,
φ1 − φ0

k
) (3.3.6)
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Adding and subtracting φ0 to the first component of the first nonlinear term in the

equation (3.3.6) gives

b∗(φ1, u1,
φ1 − φ0

k
) = kb∗(φ

1 − φ0

k
, u1,

φ1 − φ0

k
) + b∗(φ0, u1,

φ1 − φ0

k
) (3.3.7)

In the first nonlinear term of (3.3.7), applying Cauchy-Schwarz and Young’s inequal-

ities together with the regularity assumption of u and bound 2.0.4 gives

k|b∗(φ
1 − φ0

k
, u1,

φ1 − φ0

k
)| ≤ kC∇u||

φ1 − φ0

k
||2

+kµ∗(h+ ν)||∇φ
1 − φ0

k
||2 + k

C2
u

16(h+ ν)µ∗ ||
φ1 − φ0

k
||2

(3.3.8)

In the second nonlinear term of (3.3.7), applying Cauchy Schwarz and Young’s in-

equalities together with bound 2.0.4 and inverse inequality (2.0.7) gives

|b∗(φ0, u1,
φ1 − φ0

k
)| ≤ µ||φ

1 − φ0

k
||2 + Ch−2

4µ ||∇φ
0||2 (3.3.9)

In the second nonlinear term of (3.3.6), applying Cauchy Schwarz and Young’s in-

equalities together with bound 2.0.4 and inverse inequality (2.0.7) gives

|b∗(η1, u1,
φ1 − φ0

k
)| ≤ µ||φ

1 − φ0

k
||2 + Ch−2

4µ ||∇η
1||2 (3.3.10)

For the third nonlinear term of equation (3.3.6), applying error decomposition (2.0.8)

gives

|b∗(u1
1, φ

1,
φ1 − φ0

k
)| ≤ |b∗(u1, φ1,

φ1 − φ0

k
)|+ |b∗(φ1, φ1,

φ1 − φ0

k
)|

+|b∗(η1, φ1,
φ1 − φ0

k
)|

(3.3.11)
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Since nonlinear form is skew-symmetric in the second and third entry, we can re-

place terms like the first nonlinear term in the inequality (3.3.11) with terms like

|b∗(u1, φ0, φ
1−φ0

k
)|. Applying Cauchy-Schwarz and Young’s inequalities together with

the regularity assumption of u and inverse inequality gives

|b∗(u1, φ0,
φ1 − φ0

k
)| ≤ 2µ||φ

1 − φ0

k
||2 + C2

u

4µ (||∇φ0||2 + h−2||φ0||2) (3.3.12)

Applying Young’s inequality together with the sharper bound (2.0.3) and inverse in-

equality (2.0.7) in the second nonlinear term of 3.3.11 gives

|b∗(φ1, φ1,
φ1 − φ0

k
)| = |b∗(φ1, φ0,

φ1 − φ0

k
)| ≤ µ||φ

1 − φ0

k
||2 + Ch−3

4µ ||φ
1||2||∇φ0||2

(3.3.13)

For the last nonlinear term in the inequality (3.3.11), we can apply 2.0.4 and inverse

inequality followed by Young’s inequality to have

|b∗(η1, φ1,
φ1 − φ0

k
)| = |b∗(η1, φ0,

φ1 − φ0

k
)|

≤ µ||φ
1 − φ0

k
||2 + Ch−2

4µ ||∇η
1||2||∇φ0||2

(3.3.14)

For the forth nonlinear term of equation (3.3.6), applying error decomposition gives

|b∗(u1
1, η

1,
φ1 − φ0

k
)| ≤ |b∗(u1, η1,

φ1 − φ0

k
)|+ |b∗(φ1, η1,

φ1 − φ0

k
)|

+|b∗(η1, η1,
φ1 − φ0

k
)|

(3.3.15)

For all the nonlinear terms in the inequality (3.3.15), we can apply bound 2.0.4 and

inverse inequality followed by Young’s inequality to have
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|b∗(u1, η1,
φ1 − φ0

k
)| ≤ µ||φ

1 − φ0

k
||2 + Ch−2

4µ ||∇η
1||2 (3.3.16)

|b∗(φ1, η1,
φ1 − φ0

k
)| ≤ µ||φ

1 − φ0

k
||2 + Ch−4||∇η1||2||φ1||2 (3.3.17)

|b∗(η1, η1,
φ1 − φ0

k
)| ≤ µ||φ

1 − φ0

k
)||2 + Ch−2||∇η1||4 (3.3.18)

Apply Cauchy-Schwarz and Young’s inequalities to (3.3.5).

Since ||∇.φ1−φ0

k
|| ≤ d||∇φ1−φ0

k
||,

(1− 12µ− (C∇u2 + C2
u

16(h+ ν)µ∗ )k)||φ
1 − φ0

k
||2

+(1− 3µ∗)(h+ ν)k||∇φ
1 − φ0

k
||2

≤ dk

4µ∗(h+ ν) inf
q∈Qh
||p

1 − p0

k
− q||2 + h2

4µ ||∆u
1||2 + k2

4µ ||ρ
1||2 + 1

4µ ||
η1 − η0

k
||2

+k(h+ ν)
4µ∗ ||∇η

1 − η0

k
||2 + Ch−2

4µ ||∇φ
0||2 + C2

u

4µ ||∇φ
0||2 + C2

uh
−2

4µ ||φ0||2

+Ch
−3

4µ ||φ
1||2||∇φ0||2 + Ch−2

4µ ||∇η
1||2||∇φ0||2

+Ch
−2

2µ ||∇η
1||2 + Ch−4||φ1||2||∇η1||2 + Ch−2||∇η1||4

(3.3.19)

Use the approximation properties of Xh, Qh. Since the mesh nodes do not depend upon

the time level, it follows from (2.0.5), (2.0.6) that
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inf
q∈Q
||p

1 + p0

k
− q||2 ≤ Ch2m,

||η
1
2 − η0

2
k
||2 ≤ Ch2m+2,

||η1
2||2 ≤ Ch2m+2.

(3.3.20)

Taking µ = 1/13 and µ∗ = 1/6 and using bounds (3.3.20) for each term, it follows

from the regularity assumption of u that

( 1
13 − (C∇u2 + 3C2

u

8(h+ ν))k)||φ
1 − φ0

k
||2 + 1

2(h+ ν)k||∇φ
1 − φ0

k
||2

≤ C(h2m−2 + h2 + k2 + k2h2m−3)
(3.3.21)

The last inequality implies the lemma statement.

Theorem 3.3.4 Let the assumptions of Lemma (3.3.3) and Theorem (3.3.2) be sat-

isfied.

Let k ≤ min{ h+ν
2CC∇u(h+ν)+2CC2

u
, C(h+ ν) 5

3 , C(h+ ν)3}

Then

||e
n+1
1 − en1
k

||2 + k
n∑
i=0

(h+ ν)||∇e
i+1
1 − ei1
k

||2 ≤ C[h2m + h2 + k2]

Proof 3.3.3 Start with the proof of the bound for ||φn+1−φn
k
||.

From the inequality (5.14) in [15], we have

18



||sh,n+1||2 + k(h+ ν)
n∑
i=1
||∇sh,i+1||2

≤ ||sh,1||2 + C[h2m + h2 + k2]

+Ck
n∑
i=1

(C∇u + C2
u

h+ ν
+ 1

(h+ ν)3 ||∇e
i
1||4)||sh,i+1||2,

where sh,n+1 = φn+1 − φn

k

(3.3.22)

In order to apply Gronwall’s Lemma 2.0.4 in the inequality 3.3.22, we have to verify

that

Ck(C∇u + C2
u

h+ ν
+ 1

(h+ ν)3 ||∇e
i
1||4) < 1.

To this end, we can first assume

Ck(C∇u + C2
u

h+ ν
) < 1

2 and Ck

(h+ ν)3 ||∇e
i
1||4 <

1
2 .

Due to the first inequality, we have a bound on k in the form

k <
h+ ν

CC∇u(h+ ν) + CC2
u

.

For the second inequality we investigate case by case.

For k ≤ h, it follows from the inverse inequality and theorem (3.3.2) that

Ck

(h+ ν)3 ||∇e
i
1||4 ≤

Ckh−4

(h+ ν)3 ||e
i
1||4 ≤

Ck

(h+ ν)3 (1 + k

h
)4

≤ Ck

(h+ ν)3 <
1
2 .

Thus, we have a bound on k in the form k < C(h+ ν)3.
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For h ≤ k, it follows from the theorem (3.3.2) that

Ck

(h+ ν)3 ||∇e
i
1||4 ≤

Ck−1

(h+ ν)5 (h4 + k4) ≤ 2Ck3

(h+ ν)5 <
1
2 .

It follows from the above calculations and theorem statement that

(C∇u + C2
u

h+ ν
+ 1

(h+ ν)3 ||∇e
i
1||4)k < 1.

Now, we can apply discrete Gronwall’s Lemma in the inequality (3.3.22) to have

following bound

||φ
n+1 − φn

k
||2 + (h+ ν)k

n∑
i=1
||∇φ

i+1 − φi

k
||2 ≤ C[h2m + h2 + k2] (3.3.23)

Using the triangle inequality in the error decomposition (2.0.8), we obtain

||e
n+1
1 − en1
k

||2 + k
n∑
i=0

(h+ ν)||∇e
n+1
1 − en1
k

||2 ≤ C[h2m + h2 + k2] (3.3.24)

This result proves the theorem.
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Chapter 4

Correction Step Approximation

In this section we prove the unconditional stability and error estimate of the correction

step approximation uh2 . Over 0 ≤ t ≤ T < ∞ the approximations uh2 is bounded

uniformly in Re.

Hence, the formulation (1.0.4) gives O(h2+k2) accurate, unconditionally stable exten-

sion of correction step approximation to the time-dependent Navier-Stokes equations.

We start by proving stability of correction step approximation.

4.1 Stability of the CS Approximation

Theorem 4.1.1 Let f ∈ L2(0, T ;H−1(Ω)), let uh1 , uh2 satisfy (1.0.3) and (1.0.4),

respectively. Then for n=0,...,N-1,
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||uh,n+1
2 ||2 + 5h2(h+ ν)−2||uh,n+1

1 ||2 + k
n+1∑
i=1

(h+ ν)||∇uh,i2 ||2

≤ C[||us0||2 + (h+ ν)−1k
n+1∑
i=1
||f(ti)||2−1].

Proof 4.1.1 Take vh = uh,n+1
2 ∈ V h in the equation (1.0.4). This gives with Cauchy-

Schwarz and Young’s inequality that

1
2k (||uh,n+1

2 ||2 − ||uh,n2 ||2) + (h+ ν)||∇uh,n+1
2 ||2

≤ (f(tn+1) + f(tn)
2 , uh,n+1

2 ) + ν

2k(∇(u
n+1
1 − un+1

1
k

,∇uh,n+1
2 )

+1
2b
∗(uh,n+1

1 , uh,n+1
1 , uh,n+1

2 )− 1
2b
∗(uh,n1 , uh,n1 , uh,n+1

2 ) + h(∇uh,n1 ,∇uh,n2 )

(4.1.1)

It follows from Cauchy-Schwarz, Young’s and triangle inequalities with the error es-

timate ei1 = u(ti)− ui1 that

ν

2k(∇(u
n+1
1 − un1
k

,∇uh,n+1
2 ) ≤ µ(h+ ν)||∇uh,n+1

2 ||2

+ ν2k2

8µ(h+ ν) ||∇(u
n+1 − un

k
)||2 + ν2k

8µ(h+ ν)k||∇(e
n+1
1 − en1
k

)||2.
(4.1.2)

Adding and subtracting 1
2b
∗(uh,n+1

1 , uh,n1 , uh,n+1
2 ) to the nonlinear terms and applying

the bound (2.0.4) followed by Cauchy-Schwarz, Young’s and triangle inequalities with

regularity assumption of u, we have
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1
2b
∗(uh,n+1

1 , uh,n+1
1 , uh,n+1

2 )− 1
2b
∗(uh,n1 , uh,n1 , uh,n+1

2 )

≤ 1
2[kb∗(uh,n+1

1 ,
uh,n+1

1 − uh,n1
k

, uh,n+1
2 ) + kb∗(u

h,n+1
1 − uh,n1

k
, uh,n1 , uh,n+1

2 )]

≤ 2µ(h+ ν)||∇uh,n+1
2 ||2

+ 1
16µ(h+ ν)3 (h+ ν)k||∇(u

h,n+1
1 − uh,n1

k
)||2[(h+ ν)k||∇uh,n+1

1 ||2

+(h+ ν)k||∇uh,n1 ||2]

≤ 2µ(h+ ν)||∇uh,n+1
2 ||2

+ 1
8µ(h+ ν)3 (h+ ν)k||∇(e

h,n+1
1 − eh,n1

k
)||2[(h+ ν)k||∇uh,n+1

1 ||2

+(h+ ν)k||∇uh,n1 ||2]

+ 1
8µ(h+ ν)2kC

2
∇ut [(h+ ν)k||∇uh,n+1

1 ||2 + (h+ ν)k||∇uh,n1 ||2],

where C∇ut = ||∇(u
n+1 − un

k
)||2

(4.1.3)

Cauchy-Schwarz and Young’s inequalities with µ = 1/10 give

1
2k (||uh,n+1

2 ||2 − ||uh,n2 ||2) + 1
2(h+ ν)||∇uh,n+1

2 ||2

≤ 5
2(h+ ν) ||

f(tn+1)− f(tn)
2 ||2−1

+ 5ν2k2

4(h+ ν)C
2
∇ut + 5ν2k

4(h+ ν)2k(h+ ν)||∇(e
n+1
1 − en1
k

)||2

+ 5h2

2(h+ ν)2 (h+ ν)||∇uh,n+1
1 ||2

+ 5
4(h+ ν)3 (h+ ν)k||∇(e

h,n+1
1 − eh,n1

k
)||2[(h+ ν)k||∇uh,n+1

1 ||2

+(h+ ν)k||∇uh,n1 ||2]

+ 5
4(h+ ν)2kC

2
∇ut [(h+ ν)k||∇uh,n+1

1 ||2 + (h+ ν)k||∇uh,n1 ||2]

(4.1.4)
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Multiplying inequality by 2k and summing over all time levels followed by Lemma

(3.2.1) and Theorem (3.3.4) give

||uh,n+1
2 ||2 +

n+1∑
i=1

(h+ ν)||∇uh,i2 ||2

≤ ||us0||2 + 5
(h+ ν)k

n+1∑
i=1
||f(ti)− f(ti−1)

2 ||2−1

+ 5ν2k3

2(h+ ν)C
2
∇ut + 5ν2k2

2(h+ ν)2C(h2m + h2 + k2)

+ 5h2

(h+ ν)2 (||us0||2 − ||u
h,n+1
1 ||2 + 1

h+ ν
k
n+1∑
i=1
||f(ti)||2−1)

+ 5
2(h+ ν)2 ((h2m + h2 + k2)

(h+ ν) + k2C2
∇ut)[2||u

s
0||2

+ 1
h+ ν

k
n+1∑
i=1
||f(ti)||2−1 + 1

h+ ν
k
n+1∑
i=1
||f(ti)||2−1]

(4.1.5)

After some algebraic manipulation, we have the following inequality

||uh,n+1
2 ||2 + 5h2

(h+ ν)2 ||u
h,n+1
1 ||2 +

n+1∑
i=1

(h+ ν)||∇uh,i2 ||2

≤ ||us0||2 + 5
(h+ ν)k

n+1∑
i=1
||f(ti)− f(ti−1)

2 ||2−1

+ 5ν2k3

2(h+ ν)C
2
∇ut + 5ν2k2

2(h+ ν)2C(h2m + h2 + k2)

+C(||us0||2 + 1
h+ ν

k
n+1∑
i=1
||f(ti)||2−1)

(4.1.6)

The last inequality implies the theorem statement.

The result of Theorem (4.1.1), combined with the result Proposition (3.1.1), proves

the unconditional stability of both uh,i1 and uh,i2 for any i ≥ 0.

Next we will prove the error estimate of correction step approximation.
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4.2 Error Estimate of CS Approximation

Theorem 4.2.1 Let the assumptions of Theorem (3.3.4) be satisfied. Let

k <
h+ ν

(h+ ν)C∇u + 2C2
u + (h+ ν)Chm−1 + 2Ch2m .

Then there exists a constant C = C(Ω, T, u, p, f, h+ ν), such that

max
1≤i≤N

||u(ti)− uh,i2 ||+ (k
n∑
i=0

(h+ ν)||∇(u(ti)− uh,i2 )||2)1/2

≤ C(hm + h2 + k2 + hk).

Proof 4.2.1 By Taylor expansion around t = tn+1+tn
2 , we have un+1−un

k
− un+1

t +unt
2 =

k2ρn+1, where ρn+1 = u
n+ 1

2
ttt

8 .

Summing variational formulations of NSE at t = tn and at t = tn+1, and then,

dividing by 2, we have the following equation.

(u
n+1 − un

k
, v) + ν

2(∇(u
n+1 + un

2 ),∇v) + 1
2b
∗(un+1, un+1, v)

+1
2b
∗(un, un, v)− (p

n+1 + pn

2 ,∇.v)

= (f(tn+1) + f(tn)
2 , v)− (u

n+1
t + unt

2 , v) + (u
n+1 − un

k
, v)

(4.2.1)

Subtracting (1.0.4) from the equation (4.2.1) and using error decomposition (2.0.8),

we have
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(φ
h,n+1
2 − φh,n2

k
, φh,n+1

2 ) + (h+ ν)(∇φh,n+1
2 ,∇φh,n+1

2 )

= ν

2k(∇(e
h,n+1
1 − eh,n1

k
),∇φh,n+1

2 ) + (p
h,n+1 + ph,n

2 − pn+1
2 ,∇.φh,n+1

2 )

−b∗(un+1, φh,n+1
2 , φh,n+1

2 ) + b∗(un+1, ηn+1
2 , φh,n+1

2 )

−b∗(φh,n+1
2 , uh,n+1

2 , φh,n+1
2 ) + b∗(ηn+1

2 , uh,n+1
2 , φh,n+1

2 )

+1
2kb

∗(u
n+1 − un

k
, eh,n1 , φh,n+1

2 ) + 1
2kb

∗(un+1,
eh,n+1

1 − eh,n1
k

, φh,n+1
2 )

+1
2kb

∗(eh,n+1
1 ,

uh,n+1
1 − uh,n1

k
, φh,n+1

2 ) + 1
2kb

∗(e
h,n+1
1 − eh,n1

k
, uh,n1 , φh,n+1

2 )

h(∇eh,n+1
1 ,∇φh,n+1

2 ) + k2(ρn+1, φh,n+1
2 ) + (η

n+1
2 − ηn2

k
, φh,n+1

2 )

+(h+ ν)(∇ηn+1
2 ,∇φh,n+1

2 )

(4.2.2)

We bound the nonlinear terms on the right hand side of (4.2.2), starting now with the

second, fifth and sixth terms. Use the bound (2.0.4), regularity assumption of u and

Young’s inequality to obtain

|b∗(un+1, ηn+1
2 , φh,n+1

2 )| ≤ µ(h+ ν)||∇φh,n+1
2 ||2

+ C2
∇u

4µ(h+ ν) ||∇η
n+1
2 ||2

(4.2.3)

|12kb
∗(u

n+1 − un

k
, eh,n1 , φh,n+1

2 )| ≤ µ(h+ ν)||∇φh,n+1
2 ||2

+ k2C2
∇ut

16µ(h+ ν) ||∇e
h,n
1 ||2

(4.2.4)

|12kb
∗(un+1,

eh,n+1
1 − eh,n1

k
, φh,n+1

2 )| ≤ µ(h+ ν)||∇φh,n+1
2 ||2

+ k2C2
∇u

16µ(h+ ν) ||∇(e
h,n+1
1 − eh,n1

k
)||2

(4.2.5)

26



In order to obtain bounds on the third and the fourth terms, we use the error decom-

position (2.0.8), triangle inequality, bound (2.0.3), regularity assumption of u and

Young’s inequality

|b∗(φh,n+1
2 , uh,n+1

2 , φh,n+1
2 )| ≤ |b∗(φh,n+1

2 , uh,n+1, φh,n+1
2 )|

+|b∗(φh,n+1
2 , ηn+1

2 , φh,n+1
2 )|

≤ 2µ(h+ ν)||∇φh,n+1
2 ||2

+||φh,n+1
2 ||2(C∇u2 + C2

u

16µ(h+ ν) + 1
2 ||∇η

n+1
2 ||+ 1

16µ(h+ ν) ||∇η
n+1
2 ||2)

(4.2.6)

|b∗(ηn+1
2 , uh,n+1

2 , φh,n+1
2 )| ≤ |b∗(ηn+1

2 , uh,n+1, φh,n+1
2 )|+ |b∗(ηn+1

2 , ηn+1
2 , φh,n+1

2 )|

≤ 2µ(h+ ν)||∇φh,n+1
2 ||2

+ 1
4µ(h+ ν) ||∇η

n+1
2 ||2(C2

∇u + ||∇ηn+1
2 ||2)

(4.2.7)

For the bounds on the seventh and the eighth terms, we use the error decomposition

uh,n1 = un − eh,n1 , triangle inequality, bound (2.0.4), regularity assumptions of u and

Young’s inequality

|12kb
∗(eh,n+1

1 ,
uh,n+1

1 − uh,n1
k

, φh,n+1
2 )| ≤ |12kb

∗(eh,n+1
1 ,

eh,n+1
1 − eh,n1

k
, φh,n+1

2 )|

+|12kb
∗(eh,n+1

1 ,
un+1 − un

k
, φh,n+1

2 )| ≤ 2µ(h+ ν)||∇φh,n+1
2 ||2

+ 1
16µ(h+ ν) ||∇e

h,n+1
1 ||2(k2C2

∇ut + k2||∇(e
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1 − eh,n1

k
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(4.2.8)

|12kb
∗(e

h,n+1
1 − eh,n1

k
, uh,n1 , φh,n+1

2 )| ≤ |12kb
∗(e

h,n+1
1 − eh,n1

k
, un, φh,n+1

2 )|

+|12kb
∗(e

h,n+1
1 − eh,n1

k
, eh,n1 , φh,n+1

2 )| ≤ 2µ(h+ ν)||∇φh,n+1
2 ||2

+ 1
16µ(h+ ν) ||∇(e

h,n+1
1 − eh,n1

k
)||2(k2C2

∇u + k2||∇eh,n1 ||2)

(4.2.9)
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Apply the Cauchy-Schwarz and Young’s inequality to (4.2.2). Since ||∇.φh,n+1
2 ||2 ≤

d||∇φh,n+1
2 ||2 for all µ > 0

||φh,n+1
2 ||2 − ||φh,n2 ||2

2k + (1− 16µ)(h+ ν)||∇φh,n+1
2 ||2

≤ d

4µ(h+ ν) inf
qh∈Qh

||p
h,n+1 + ph,n

2 − qh,n+1||2

+ ν2k2

16µ(h+ ν) ||∇(e
h,n+1
1 − eh,n1

k
)||2

+ h2

4µ(h+ ν) ||∇e
h,n+1
1 ||2 + k4

4µ(h+ ν) ||ρ
n+1||2−1

+ 1
4µ(h+ ν) ||

ηn+1
2 − ηn2

k
||2−1 + h+ ν

4µ ||∇η
n+1
2 ||2 + C2

∇u
4µ(h+ ν) ||∇η

n+1
2 ||2

+ k2C2
∇ut

16µ(h+ ν) ||∇e
h,n
1 ||2 + k2C2

∇u
16µ(h+ ν) ||∇(e

h,n+1
1 − eh,n1

k
)||2

+||φh,n+1
2 ||2(C∇u2 + C2

u

16µ(h+ ν) + 1
2 ||∇η

n+1
2 ||+ 1

16µ(h+ ν) ||∇η
n+1
2 ||2)

+ 1
4µ(h+ ν) ||∇η

n+1
2 ||2(C2

∇u + ||∇ηn+1
2 ||2)

+ k2

16µ(h+ ν) ||∇e
h,n+1
1 ||2(C2

∇ut + ||∇(e
h,n+1
1 − eh,n1

k
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+ k2

16µ(h+ ν) ||∇(e
h,n+1
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k
)||2(C2

∇u + ||∇eh,n1 ||2)

(4.2.10)

Take µ = 1/32, multiply (4.2.10) by 2k and sum over all time levels. It follows from

the regularity assumptions of theorem that

k
n∑
i=0
||ρi+1||2−1k

4 ≤ Ck
n∑
i=0
||ρi+1||2k4 ≤ Ck4

Therefore we obtain
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2 ||2

≤ C
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[
inf

qh∈Qh
||p
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k2||∇(e
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1
k
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1 ||2 + k4 + ||η

i+1
2 − ηi2
k

||2−1

+||∇ηi+1
2 ||2 + k2||∇ei+1

1 ||2 + ||∇ηi+1
2 ||4

+k||∇(e
i+1
1 − ei+1

1
k

)||2(k||∇ei+1
1 ||2 + k||∇ei1||2)

+k
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i=0
||φh,i+1

2 ||2
[
C∇u

2 + 2C2
u

(h+ ν) + 1
2 ||∇η

i+1
2 ||

+ 2
h+ ν

||∇ηi+1
2 ||2

]
+ ||φh,02 ||2

(4.2.11)

Take ũi in the error decomposition (2.0.8) to be the L2-projection onto V h, for i ≥ 1.

Take ũ0 to be us0. This gives φ
h,0
2 = 0 and e0

1 = η0
2. Also it follows from the Proposition

(3.1.2) that ||η0
2|| ≤ Chm; under the assumption of the theorem applying the discrete

Gronwall’s lemma (2.0.4) and using bounds in theorems (3.3.2), (3.3.4), give

||φh,n+1
2 ||2 + (h+ ν)k

n∑
i=0
||∇φh,i+1

2 ||2

≤ C

h+ ν
k

n∑
i=0

[
inf

qh∈Qh
||p

h,i+1 + ph,i

2 − qh,i+1||2

+ k2

h+ ν
(h2 + k2) + h2

h+ ν
(h2 + k2) + k4

+||η
i+1
2 − ηi2
k

||2−1 + ||∇ηi+1
2 ||2 + ||∇ηi+1

2 ||4

+ k

(h+ ν)2 (h2 + k2)(h2 + k2)
]

+ Ch2m

(4.2.12)

Use the approximation properties of Xh, Qh. Since the mesh nodes do not depend upon

the time level, it follows from (2.0.5), (2.0.6) that
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k
n∑
i=0

inf
qh∈Qh

||p
h,i+1 + ph,i

2 − qh,i+1||2 ≤ Ch2m,

k
n∑
i=0
||η

i+1
2 − ηi2
k

||2−1 ≤ Ck
n∑
i=0
||η

i+1
2 − ηi2
k

||2 ≤ Ch2m,

k
n∑
i=0
||ηi+1

2 ||2 ≤ Ch2m.

(4.2.13)

Bounds (4.2.12) and (4.2.13) give the following result

||φh,n+1
2 ||2 + (h+ ν)k

n∑
i=0
||∇φh,i+1

2 ||2

≤ C

(h+ ν)2 (h2m + h4 + k4 + h2k2).
(4.2.14)

Using the error decomposition and triangle inequality with (4.2.14), we obtain

||eh,n+1
2 ||+ ((h+ ν)k

n∑
i=0
||∇eh,i+1

2 ||2) 1
2

≤ C

(h+ ν)(hm + h2 + k2 + hk).
(4.2.15)

This proves the Theorem (4.2.1). Thus, we derived the error estimates, that agree

with the general theory of the defect and deferred correction methods. Briefly, the

Correction Step approximation uh2 is improved by an order of h in space and of k in

time, compared to the Artificial Viscosity approximation uh1 .

Next, we will give some computational results.
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Chapter 5

Computational Tests

We perform one quantitative and one qualitative test of the proposed regularization

procedure. In both tests the non-homogeneous Dirichlet boundary conditions are

implemented, and the computational results support the theoretical findings.

5.1 Quantitative Test

For the quantitative assessment, consider a two-dimensional problem with a known

exact solution. The traveling wave solution of the NSE in Ω = [0.5, 1]2 is given by

u =

0.75 + 0.25 cos(2π(x− t)) sin(2π(y − t))exp(−8π2tν)

0.75− 0.25 sin(2π(x− t)) cos(2π(y − t))exp(−8π2tν)

 , (5.1.1)

p = − 1
64(cos(4π(x− t)) + cos(4π(y − t)))exp(−16π2tν),

and the right-hand side f and initial condition u0 are computed so that (5.1.1) satisfies

(1.0.1). The final time in the computations is taken to be T = 1.

In order to verify the theoretical claims on the convergence rates, we take the time
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step equal to the mesh diameter, ∆t = h.

For ν = 1
100 the calculated convergence rates in Tables 5.1 and 5.2 confirm what is

predicted by Theorems (3.3.2) and (4.2.1) for (P2, P1) Taylor-Hood finite elements:

the convergence rates are doubled after the correction step. Notice also the asymptotic

character of convergence, typical of the defect correction methods.

Table 5.1: AV approximation, ν = 0.01.

N ||u− uh1 ||L2(0,T ;L2(Ω)) rate ||u− uh1 ||L2(0,T ;H1(Ω)) rate

8 0.0139742 - 0.23282 -

16 0.00945258 0.56 0.179798 0.37

32 0.00580328 0.70 0.123682 0.54

64 0.00331349 0.81 0.0766837 0.69

128 0.00178142 0.90 0.0433087 0.82

256 0.000922772 0.95 0.0228883 0.92

Table 5.2: Correction step approximation, ν = 0.01.

N ||u− uh2 ||L2(0,T ;L2(Ω)) rate ||u− uh2 ||L2(0,T ;H1(Ω)) rate

8 0.0106313 - 0.189918 -

16 0.0060028 0.83 0.128519 0.56

32 0.00272105 1.14 0.0710604 0.86

64 0.000993846 1.45 0.0314236 1.18

128 0.000302142 1.72 0.0111824 1.49

256 0.0000817667 1.89 0.00336761 1.73

As the viscosity coefficient ν decreases, the convergence rates improve slower - see the

results for the flow at ν = 1
2000 in Tables 5.3 and 5.4.
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Table 5.3: AV approximation, ν = 0.0005.

N ||u− uh1 ||L2(0,T ;L2(Ω)) rate ||u− uh1 ||L2(0,T ;H1(Ω)) rate

8 0.0262208 - 0.439399 -

16 0.0188948 0.47 0.367997 0.26

32 0.0125722 0.59 0.291022 0.34

64 0.00776946 0.69 0.2206 0.40

128 0.00443914 0.81 0.159449 0.49

256 0.00237518 0.9 0.108957 0.55

Table 5.4: Correction step approximation, ν = 0.0005.

N ||u− uh2 ||L2(0,T ;L2(Ω)) rate ||u− uh2 ||L2(0,T ;H1(Ω)) rate

8 0.0217697 - 0.396863 -

16 0.0141143 0.63 0.32536 0.29

32 0.00777988 0.86 0.249133 0.39

64 0.0036525 1.09 0.178223 0.48

128 0.00152888 1.26 0.118064 0.59

256 0.000597594 1.36 0.0709845 0.73

To further comment on the asymptotic nature of convergence of defect correction

methods, notice that the a priori error estimates have the term (h+ ν)−1 in the right

hand side. This decreases the convergence rates on the coarse meshes, where h >> ν.

The term that contains ∇(u−uhi ), i = 1, 2 in the left hand side is also proportional to

(h+ ν), which further decreases the convergence rates in the H1-seminorm on coarse

meshes for problems with high Reynolds number. We also ran the same tests (not

shown here) with ∆t = h2 and obtained the convergence rates very similar to those

presented above, which indicates that the reduced convergence rates are due to the
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asymptotic behaviour of the defect correction, and not the deferred correction part

of the error.

5.2 Qualitative Test

For the qualitative assessment, consider the 2-D flow past an obstacle, at high Reynolds

number Re = 600. The von Karman vortex street is expected to be seen for a fully

resolved flow; on a coarse mesh with h ∼ 1
32 the true solution demonstrates the os-

cillatory behavior past the obstacle (Figure 5.1). Note that the solution is known

to depend on the Reynolds number in the following manner: for 1 < Re < 10 the

flow is no longer symmetric behind the obstacle, for 10 < Re < 100 re-circulation

areas appear in the wake behind the obstacle and, as the Reynolds number grows be-

yond Re = 100, these vortices develop and start to oscillate. Roughly at Re = 1000

turbulence develops and the coherent structures in the flow disappear.

Figure 5.1: DNS velocity field u

We compute the defect step solution u1 and the corrected solution u2 on the same

coarse mesh with 32 nodes per unit boundary (h ∼ 1
32). The domain is Ω =

34



[0, 1] × [0, 3] with a circle of radius 0.15, centered at (0.5, 0.5), cut out of Ω. The

parabolic inflow on the left boundary is introduced, with zero forcing. The results

were computed with Re = 600, T = 20, ∆t = h.

Figure 5.2: AV Approximation uh1

Figure 5.3: AV Approximation zoomed in

As seen in Figures 5.2 and 5.3, artificial viscosity approximation gives a result that

cannot capture the flow pattern due to high viscosity coefficient and low accuracy of

the AV approximation.
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Figure 5.4: CS Approximation uh2

Figure 5.5: CS Approximation Zoomed in

Although the correction solution is computed with the same viscosity coefficient as

the AV approximation, it gives some qualitative features of the flow pattern even on

the coarse mesh - one can clearly see the re-circulation regions in the wake. This

demonstrates the qualitative behavior of the correction step solution: it behaves as if

the Reynolds number of the flow was increased, although the matrix of the system re-

mains the same as in the AV case. Thus, the benefits of using the correction procedure
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are clear: for virtually no extra cost (when the parallelization is implemented) one

can model turbulent flows at increasing Reynolds numbers (the interesting possibility

that two or three correction steps would deepen this effect is yet to be explored).
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Chapter 6

Conclusions

The method for solving nearly singular, time-dependent problems is presented. It

combines both deferred correction method for the time derivative and the defect

correction method for the spatial operator. The method is applied to the Navier-

Stokes equations, and the stability and the error estimate results for velocity is given.

As observed in both theoretical and numerical results, the method presented is high

accurate in both time and space.
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