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Abstract 
Contact (seepage) springs are frequently the only source of potable drinking water for the 

Ngäbe people located in the Comarca Ngäbe-Buglé, Western Panama. Dry season flows 

drastically diminish and sometimes dry up, greatly affecting locals’ access to clean drinking 

water. This study uses MODFLOW 2005 to model two aquifer systems. One is a lab-created, 

idealized system, and the other is a small, steeply-sloping aquifer in the Comarca Ngäbe-Buglé. 

Modeling the idealized aquifer demonstrated that MODFLOW 2005 has the capacity to model 

the dewatering of a steeply sloping aquifer. Modeling the field based aquifer demonstrated that a 

changing climate (increased temperature and decreased rainfall) will affect wet season discharge 

and have a small effect on late dry season discharge.  
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1.0 Introduction 
 Panama is a country located in the southern portion of Central America between 

Columbia and Costa Rica. It is home to the Comarca Ngäbe-Buglé which is located in the 

western portion of the country. This study looks at the drainage of two separate aquifer systems. 

One an idealized sloping aquifer in the lab created by Hewlett and Hibbert (Hewlett, 1963), and 

the other a sloping aquifer in western Panama. MODFLOW 2005 was used to model both of the 

aquifer’s discharges and compare it to the observed data. Different recharge rates were entered 

into the Panama model to forecast how a changing climate will affect dry season flows in the 

Comarca Ngäbe-Buglé. 

1.1 Cultural Context 
As a Peace Corps Volunteer (PCV) serving as a sustainable agricultural systems, I 

volunteered in Panama from June 19, 2013 to August 21, 2015. I was assigned to Salto Dupi, a 

medium sized village in the Comarca Ngäbe-Buglé, roughly 350 km west of Panama City. Salto 

Dupi is a rural village with limited access to electricity, running water, and modern 

transportation. The region is defined by steep, mountainous terrain and a tropical climate.  

My work as a PCV included teaching soil conservation techniques to rural farmers. Much 

time was spent teaching locals how to prune coffee and cacao in order to increase their yields 

and better their standard of living. In addition to agricultural work, I spent time educating locals 

about the springs in the area. Locals had many questions about where spring water is derived, 

how they could prevent spring flows from diminishing in the dry season, and how they could use 

spring water for crop irrigation to extend the growing season into the dry season. This proved to 

be a natural connection between Peace Corps work and my geology background.  

The Comarca Ngäbe-Buglé is primarily composed of the Ngäbe people. The Ngäbe 

people, also known as the Guaymi, represent the largest population of indigenous people in 

Panama at 65.5%. They traditionally live in small family compounds with no access to running 

water, electricity, and sanitation facilities. Because of this, 73% of households live in extreme 

poverty (Inchauste & Cancho, 2010). As of 2008, 71% of Ngäbes were receiving their water 

from local mountainous springs or aqueducts, which ultimately are fed by mountainous springs 

(Inchauste & Cancho, 2010).These springs in many cases are the only source of potable drinking 

water in the area, thus the Ngäbe people are highly dependent on these springs for daily life.   
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1.2 Motivation 
 Growing population worldwide continues to put stress on water resources. Not only is 

there an increased demand for potable water, but more water is needed for agriculture to provide 

increased yields for a growing population. These factors will put more pressure on an already 

threatened resource (Molden, 2007). These problems will only be exacerbated with global 

climate change. Rainfall in Panama is forecasted to change up to 50% by 2100, and temperatures 

are expected to increase by 3°C to 6°C due to a changing climate (Magrin & Marengo, 2014). 

Higher temperatures coupled with an alteration of the wet/dry season cycle could have extreme 

effects on the Ngäbe people.  

Panama’s climate has distinct wet and dry seasons. Groundwater recharge and storage in 

the wet season provides base flow throughout the dry season which is the sole source of potable 

drinking water.  Being able to better predict how climate change may affect these springs could 

provide more resiliency to locals and allow them to better prepare for a changing climate. As a 

PCV living in the community, there was great potential to study these mountainous springs and 

then pass this knowledge on to the local Ngäbe people.  

 As a resident of the community, I was proximal to many springs. This presented an 

opportunity to collect flow data on these springs to monitor them temporally. It also presented 

the opportunity to collect site specific climatic data with a high temporal resolution.  

  

  

1.3 Scope of Study/Objectives 
 This study focused on a small (<1 hectare), shallow, steeply sloping aquifer in the 

Comarca Ngäbe-Buglé in western Panama. Eleven months of meteorological data were collected 

from August 2014-July 2015 for this study. Flow measurements were recorded for those 11 

months on a spring draining this aquifer. Soil infiltration rates were deduced using permeameter 

data collected on the watershed. Groundwater Modeling Systems (AquaveoTM, Provo, Utah) was 

used to investigate how sensitive spring discharge of the aquifer is to different aquifer parameters 

and a changing climate.  

  

The overall goal of this study was to forecast how a changing climate will affect late dry season 

flows. To achieve this goal, the following objectives were created: 
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• Perform a water budget analysis on the spring catchment. 

• Model published observations from an idealized, steeply sloping aquifer apparatus using 

a groundwater flow model (MODFLOW-2005) to ascertain how to use MODFLOW-

2005 to simulate the spring catchment.   

• Ascertain aquifer properties that affect summer base flow conditions using MODFLOW 

2005. 

• Compare different model geometries in MODFLOW 2005 and compare them to base 

flow conditions observed in the field.  

• Once an appropriate model geometry is selected, calibrate MODFLOW 2005 to observed 

data in the field.   

• Use the calibrated MODFLOW 2005 model to evaluate how various climatic scenarios 

will affect summer base flow conditions.  

 

 

2.0 Background 
 

2.1 Geography  
  

Panama is an equatorial (N 7-10˚) country in Central America. It is bordered by the 

Atlantic Ocean to the north and the Pacific Ocean to the south, as well as Costa Rica to the west 

and Columbia to the east. A defining feature of the country is the Cordillera Central, a spine of 

mountains that trends east-west and forms the continental divide.  

 Panama experiences a tropical climate. Temperatures remain fairly constant around 25°C 

at night and 30°C during the daytime throughout the year. The western highlands stay relatively 

wet and cool throughout most of the year due to their higher elevation. There are distinct wet and 

dry seasons, with the dry season starting around the end of December and the wet season starting 

in late April or early May. Much of the country receives annually between 3-4 meters of rainfall 

(ESTESA, 2016).  

 The study site was based in Salto Dupi, a small indigenous community located roughly 

350 km west of Panama City in the Comarca Ngäbe-Buglé (Figure 1). The community is located 
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at 8.350137N, 81.888083W, which is in the foothills of the central spine of the mountains on the 

Pacific side of the country. The author lived in Salto Dupi for two years as a PCV and was 

proximal to the study site (Figure 2). The area of study is defined by steep mountainous terrain. 

Small streams are abundant and have cut steep valleys down to bedrock. This contact with 

bedrock in the valleys is usually the location of contact springs.   

 

 
Figure 1: Map of Panama showing study site. (Map created in ArcGIS 10.3.1, Basemap and outline of the 
Comarca obtained from ArcGIS online. Projection: WGS 1984.) 
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Figure 2: Satellite image of the author’s community (Map created using Google Maps map creator. Imagery 
Date: 3/5/2006)  

 

 

Land use is dedicated mostly to agriculture, including the cultivation of rice, banana, 

corn, beans, coffee, and cacao. The land cover of the watershed studied was a mix of coffee and 

cacao fields. Banana and large wood (timber) trees were also present but at much lower density. 

Cacao and coffee trees were established, from 5 to 20 years old. They were spaced roughly 1.5 

meters apart. Banana and large wood trees were spaced at 10 meters apart. The ground surface 

was shaded most of the time due to the full canopy cover. Soil was covered by a small amount of 

grass and small plants. This left soil mostly bare. Little decomposing organic matter was present 

on the soil surface. Slash and burn agriculture is still practiced by most of the community 

members. This process leaves the loose unconsolidated soil exposed to rainfall. The exposed 

soils combined with high rain intensity promotes high rates of erosion and has left the soil in 

very poor condition.    
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2.2 Hydrogeology 
 The geology in Salto Dupi is dominated by highly weathered ocean sediments that were 

deposited during the Miocene and Pliocene. Underlining these ocean sediments are Tertiary and 

Quaternary volcanics (Coates & Obando, 1996).  

High rates of erosion have cut steep valleys into the ocean sediments. At the base of these 

valleys, erosion has cut down to bedrock. Valleys typically have ephemeral or perennial streams 

that are fed by springs. These springs are located where surface topography contacts bedrock to 

form seepage/contact springs (Figure 3).  In addition to spring flow, streams in the area are fed 

by surface runoff during most rain events. Because of the steep topographic gradient, surface 

runoff flows downslope relatively quickly. During the dry season, flow from springs is the only 

source of streamflow. In the dry season, flow decreases in springs and thus, some streams dry up. 

 
Figure 3: Conceptual model of seepage springs (Drawn by author)  

Springs are very important for the local Ngäbe people, often providing the only source of 

clean drinking water. Some community members have built crude spring boxes around springs to 

reduce sediment load from surface runoff. Spring boxes also serve as crude catchment systems to 

funnel spring flow into PVC pipes which channel water downslope into crude water distribution 

systems. More information on the importance of spring catchments on rural health can be found 

in (Fry, 2004). More information about spring catchments in the Comarca Ngäbe-Buglé can be 

found in (Jones, 2014). 
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3.0 Methods 
 To better understand steeply sloping aquifers in the tropics and simulate how a changing 

climate might affect base flow discharge, a numerical model was developed and applied to 

simulate the observed flows in the spring catchment. This aquifer was selected because of its 

size, uniformity of land cover, and proximity to the author’s work area. Spring flow discharge 

was continuously captured by the owner of the watershed before the author’s arrival, allowing 

for easy spring base flow measurements. The spring catchment area was delineated using the 

track feature on a Garmin GPS (GPSmap 60CSx, Olathe, KS). GPS points were taken every 30 

seconds while the author walked the border of the watershed. The border of the aquifer was 

defined by a ridgeline to the west and north, and steeply sloping valley to the east.  

 Hydrologic and meteorological data was collected for this aquifer along with spring flow 

measurements and soil infiltration rates. Spring flow data was collected for 11 months using a 

DLJ totalizer meter (DLJ50, Hackensack, NJ). Hydraulic conductivity was measured on the 

aquifer using a soil infiltrometer and the Glover solution (Amoozegar, 1989). Evapotranspiration 

was estimated using climatic data collected by the author in site. The NRCS curve number 

method was used to estimate surface storm related runoff (USDA, 1986). Hydrological data was 

entered into Groundwater Modeling Software 10.0 (GMS) by Aquaveo, and MODFLOW 2005 

was used to model spring discharge. Computed flow was compared to observed flow, and aquifer 

geometry was calibrated to match flows. Once calibrated, different climate scenarios were 

entered into the groundwater model, and spring discharge was forecasted.  

 

3.1 Water Budget 
 The water budget, or water balance, is a useful tool for understanding and evaluating 

components of the hydrologic cycle. A water balance assumes a conservation of water (mass or, 

as is often the case, because water density can be treated as a constant, volume) for a closed 

system such as a watershed or aquifer. In this study, it was assumed that all recharge served as 

aquifer storage or aquifer discharge. 

 Recharge was broken down into three components in this study and is reflected by the 

following equation: 

𝑅𝑅 = 𝑃𝑃 − 𝐸𝐸𝐸𝐸 − 𝑄𝑄𝑟𝑟𝑟𝑟 
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Where: 

R = Recharge 

P = Precipitation 

ET = Evapotranspiration 

Qro = Surface runoff 

A year was chosen as the time scale for this study because of available data. In this study, 

water balance parameters were entered into groundwater modeling software to deduce how 

hydraulic conductivity and aquifer storage properties affect flow over time.  

 

3.1.1 Weather Data Collection 

 The project site has a climate that is defined as hot and humid. There is a network of 

weather stations in Panama operated by the Panamanian electric transmission network (ESTESA, 

2016). The network had two stations within 5 miles of the project site. In addition to these 

stations, an Ambient Weather WS 1090 wireless home weather station was installed in the 

author’s home to record weather in situ. This weather station has a data logging feature with a 

30-minute temporal resolution. Data was collected starting Aug 25, 2014 until July 24, 2015. 

Temperature, relative humidity, rainfall, wind speed and wind direction were collected every 

thirty minutes. Temperature and rainfall accuracy were verified with a hand thermometer and 

volumetric cylinder, respectively.  

 A total of 3.58 meters of rainfall was measured for the 11-month period that the weather 

station was installed. Missing data spanned from mid-July to mid-August because the author had 

to leave the study site in mid-July. Measured rainfall was compared to ETESA data for the 

stations proximal to the study site. An amount of 0.3 meters of rainfall (0.1 meter in July and 0.2 

meters in August) was added in order to compensate for the lack of a month of data. 0.3 meters 

was chosen to achieve a year total of 3.88 meters. This is 0.2 meters less than the average 

proximal to the study site. 0.3 was chosen because the study year was a dry year and climate is 

becoming dryer in the study site. 

 In the study site, seasons are defined by differences in precipitation rather than a 

difference in temperature. The dry season typically starts at the end of December, and the wet 

usually begins at the start of May. During the dry season there were 3 rain events that resulted in 

a total of 7.5 mm of rainfall. These small and very localized storms served only to wet the 
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ground cover and evaporated within minutes. Thus they were not included in the total rainfall.  

The last rainfall of the wet season in 2014 occurred on Dec 20, 2014, and the first rainfall 

initiating the 2015 wet season started on April 20, 2015. The first appreciable amount of rain in 

the 2015 wet season happened on April 29, 2015 (82 mm). These dates were used to define the 

end and the start of the wet season in the MODFLOW model.  

  

3.1.2 Evapotranspiration  

Evapotranspiration (ET) can be a very large portion of any water balance, but it is often 

one of the hardest parameters to measure. Various methods have been developed for measuring 

ET, but they are often extensive and expensive. Many methods have been developed for 

estimating potential evapotranspiration (PET), most notably the Thornthwaite-Mather 

(Thornthwaite, 1948) and the Penman-Monteith (Penman, 1948). Both of these methods use 

average temperatures and relative humidity to estimate PET. For this study, both of these 

methods were considered for analysis. The Penman-Monteith method was performed using daily 

maximum and minimum temperature and relative humidity that was collected in the study site 

(Richard, Luis, & Smith, 1998). This method also took into account solar shine hours that were 

collected by a government-operated weather station about 31 km away. The Thornthwaite-

Mather method was performed using monthly average temperature collected in the study site. 

PET was calculated using the Hamon equation (Dingman, 2015). Actual ET was estimated using 

a soil moisture budget. Assumed soil field capacity of 30% and a rooting depth of 0.5 meters 

were used. The results were not sensitive to these assumed values.  

 

 

3.1.3 NRCS Curve Number Method 

 The amount of rainfall that actually infiltrates into the aquifer is dependent on the slope 

of the surface, land cover, rainfall intensity and duration, and the nature of the soil. In the 

mountainous tropics, high precipitation intensity and steep topography causes high amounts of 

surface runoff. Thus, it is important to estimate this runoff so it can be accurately accounted for 

in the water balance. The United States Department of Agriculture’s Natural Resources 

Conservation Service (NRCS) developed the curve number method from runoff observed from 
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test plots (USDA, 1986). It is used in the federal, state, and private sectors to estimate the 

amount of surface runoff that is present for a given precipitation event.  

 The NRCS curve method assigns a curve number from 30 to 100, with higher numbers 

resulting in high runoff potential. A forest cover type was chosen for the study site due to the 

large amount of woody plants in the area. Poor hydrological conditions and a poor soil type 

yielded a curve number of 83 within this cover type. This curve number was used to calculate 

surface runoff.   

 Another important aspect to consider when simulating soil infiltration is the antecedent 

moisture condition (AMC). This relates to the soil moisture conditions prior to the rain event. 

Dry soil will absorb more moisture from a storm event than wet soil. The average moisture curve 

number (AMC II) must be adjusted for dry (AMC I) or wet (AMC III) soils. The following 

equations were used to convert AMC II to an antecedent wet and dry curve numbers (USDA, 

1986).   

 

AMC I = AMC II / (2.3) – (0.013*AMCII) 

AMC III = AMC II / (0.43) – (0.0057*AMCII) 

Where: 

AMC I = Antecedent dry conditions curve number 

AMC II = Average conditions curve number 

AMC III = Antecedent wet conditions curve number 

 Based on the equations above, for example, if in the previous 5 days it rained more than 

53 mm, the soil had wet antecedent conditions and a curve number of 93.5 was used.  If in the 

previous 5 days it rained 35-53 mm, the soil had average antecedent conditions and a curve 

number of 83 was used. If in the previous 5 days it rained less than 35 mm, the soil had 

antecedent dry conditions and a curve number of 72.7 was used. The NRCS method was 

performed for each storm event. A storm event was defined as any amount of rain that fell in a 

given day.  

 

 



 

16 
 

3.1.4 Hydraulic Conductivity 

 Saturated hydraulic conductivity was measured in the vadose zone using an 

amoozemeter. The infiltrometer methodology was developed by A. Amoozegar and it allows one 

to determine the saturated hydraulic conductivity (Ksat) of the vadose zone with limited materials 

(Amoozegar, 1989). This method was advantageous because it allows Ksat to be determined in 

about an hour using small boreholes and a few liters of water. Figure 4 shows the general design 

of the amoozemeter used. A borehole with a diameter of 6.2 cm and 56.6 cm deep was dug using 

a PVC auger fabricated by the author. The permeameter was filled with water and then inverted 

into the borehole. Water flowed out of the permeameter forming a constant head in the borehole. 

The flow (change in height in the reservoir over time) was recorded until the flow reached a 

steady state.  
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Figure 4: Design of the amoozemeter used in this study (drawn by Author) 

 The Glover solution (Zangar, 1953) was used to determine Ksat from a flow rate 

determined from the amoozemeter. The Glover solution only takes into consideration the 

saturated flow emanating from the borehole. The equation has been used to provide an accurate 

estimation of Ksat. The equation is as follows: 

 

𝑲𝑲𝒔𝒔𝒔𝒔𝒔𝒔 = 𝑸𝑸

⎝
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⎛
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Where: 

Ksat = Saturated hydraulic conductivity (cm/day) 

Q = Steady flow rate from amoozemeter (cc/day) 

H = Height of water in borehole (cm) 

r = radius of borehole (cm) 

 A total of three Ksat tests were conducted in the area. An average Ksat of 10 cm/day was 

measured for the area. A Ksat of 16 cm/day was measured in the aquifer that was studied. This 

value was chosen as the saturated hydraulic conductivity of the study site to be entered into the 

groundwater flow model because it was collected in the watershed under study.  

 

3.2 Spring Base Flow Recession 
 Key aquifer parameters can be deduced from performing a base flow recession analysis. 

In this study, a base flow recession analysis was performed during the dry season to deduce 

aquifer storage and aquifer geometry. Spring discharge rates were collected using a DLJ totalizer 

meter. Spring discharge was collected and funneled into a 2-inch pvc pipe by a crude spring box 

that was built prior to the author’s arrival (Figure 5).  
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Figure 5: Picture of the spring box and seepage spring for this study (Photo taken by author) 

The base of the spring box was bedrock and assumed to be impermeable. It was assumed 

that the spring box only captured spring flow and not surface runoff during storm events because 

the spring box was covered during normal operation. The author visited the DLJ meter 

throughout the 11 months to record the time and total gallons of discharge. This discharge 

provided a hydrograph to which a flow model could be calibrated.  

  

3.3 Groundwater Flow Model  
 A three-dimensional groundwater flow model was constructed in Groundwater Modeling 

Systems 10.0.1 (GMS). GMS is computer software that combines a GIS user interface with 

United States Geological Survey’s (USGS) MODFLOW package (Aquaveo, 2016). GMS was 

used for this study because of its ability to incorporate geographic data such as location and 

elevations and its ability to map them to the MODFLOW flow equations. MODFLOW is a 

modular finite-difference flow model that was developed by USGS (McDonald & Harbaugh, 

1988). This study used the 2005 version of MODFLOW. MODFLOW incorporates aquifer 

parameters such as hydraulic conductivity, specific storage, sources, and sinks and applies them 

to 3D flow calculations.  
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3.3.1 Hewett-Hibbert Test Model 

In order to better understand sloping aquifers in the Appalachians, Hewlett and Hibbert 

constructed a 3-ft by 3-ft by 45-ft, 40% sloping trough (Figure 6). The trough was filled with a 

homogeneous mixture of sand (60%), silt (18%), and clay (22%). The soil was saturated with 

water, and the top was covered to prevent evaporation. An outlet port was located on the 

downslope end at a height of 1.5 ft above the bottom and opened to allow gravity drainage. 

Outlet flows were monitored over time, but only a few milestone volumes were reported in the 

literature. They observed that 1.26 m3 of water drained from a total of 10.85 m3 of soil. Of this 

1.26 m3, 76% drained in the first 5 days, 19% in the next 45 days, and 5% in the last 95 days 

(Hewlett, 1963).  

 

 
Figure 6: Diagram of sloping aquifer designed by Hewlett and Hibbert. (Adapted from (Hewlett, 1963)) 

This sloping trough was modeled in GMS to gain experience modeling a sloping aquifer 

system--similar to how the author envisioned the catchment hydrology--in GMS and to 

investigate the capacity of GMS to accurately model an idealized sloping aquifer. The trough 
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was represented by a uniform grid that was 3 cells wide, 1 cell high, and 45 cells long, each 

having a cubic volume of 3 ft3. A MODFLOW 2005 model was initiated for the grid. The model 

was set to transient, and a stress period of 145 days was used. A drain was placed at the lower 

end of the model at an elevation of 1.5 feet. A drain was used because it allows water to flow out 

of the model as long as the surrounding head is above the elevation of the drain. If head falls 

below the elevation of the drain, the flow becomes zero. Drain conductance was set at 500 

ft2/day, and this conductance was high enough that all resistance to flow was due to the hydraulic 

conductivity of the soil in the trough. Starting heads were set to the surface elevation.  

It is known that 1.26 m3 (44.5 cubic feet) was drained from this trough over 145 days. 

This provided a target total discharge for the model. Specific storage was set at 0.0001 

(dimensionless) and had little effect on the model due to this being modeled as an unconfined 

aquifer. An initial specific yield of 2% and a hydraulic conductivity of 3 ft/day were used. The 

model was allowed to drain, and flow variations with time were observed. Specific yield was 

adjusted to 0.113 to achieve a total volume out of 44.5 cubic feet. Hydraulic conductivity was 

adjusted to 2.45 ft/day to achieve 76% volume outflow in the first 5 days and the remaining 24% 

in the following 140 days of the simulation. The hydraulic conductivity of the soil was not 

independently measured. The model results are presented in Section 4.3. 

 

3.3.2 Salto Dupi Flow Model Configuration 

A model was created in GMS for the author’s watershed in Salto Dupi using a similar 

approach to that used for the Hewlett-Hibbert model. Surface topography and lateral boundaries 

were more irregular and complex in the field, so these had to be incorporated into the model in a 

different fashion than the simple specifications used for the Hewlett-Hibbert experiment. GPS 

coordinates from the watershed delineation were imported into GMS. These coordinates served 

as the boundary of the watershed and also served as the surface elevations in the model. A 

MODFLOW 2005 simulation was created and the GIS data was applied to it to form the model 

boundaries. The model was set to transient conditions, and four stress periods were set up to 

represent evapotranspiration estimates for January, February, March, and April. 

Evapotranspiration rates were estimated to decrease during the dry season because the water 

table would naturally deepen with drainage. The rates were estimated using the Thornthwaite 

type water budget method. These months coincide with the dry season in the study site. Cell size 
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was 1.5 by 1.5 meters in the horizontal, and 12 meters vertically, with a total of 2765 cells and 

total area of 6221.25 m2. The starting geometry of the aquifer was a uniform sloping lens that 

mimicked surface topography. This lens was set to become flat and pinch out at the drain 

elevation.  The drain was set at 359.5 mamls and was four cells wide. The drain conductance was 

set to 500 m2/day for each of the four drain cells. Like in the Hewlett-Hibbert simulations, this 

conductance was nonrestrictive. Starting heads were set to the surface elevation because the 

bottom elevations of the aquifer were unknown and it was conceptualized that the water table 

mimicked the bottom topography at the beginning of the dry season. 

 

3.3.3 Salto Dupi Flow Model Configuration and Calibration 

Modeling the Hewlett-Hibbert trough in GMS demonstrated that modeling the 

dewatering of a sloping aquifer can allow one to use known aquifer parameters to estimate 

unknown parameters. Spring discharge, hydraulic conductivity, and groundwater recharge were 

estimated from measurements and used to calibrate aquifer thickness for the aquifer in Dupi. 

Specific storage was set at 0.0001 (dimensionless). Hydraulic conductivity was set at 0.16 

m/day. Evapotranspiration was modeled as a negative recharge to accurately depict the water 

leaving the surface of the aquifer. This was entered at -0.0026 m/day, -0.0013 m/day, -0.0005 

m/day, and 0 m/day for January, February, March, and April, respectively. Although specific 

yield was an unknown, it was entered as 2%, which is consistent with average values for clays 

from textbooks (Fetter, 2001). Aquifer thickness was manually adjusted until modeled discharge 

matched observed flows.  

A thickness of 10 meters was used for the first simulation of the model. Spring discharge 

values were taken from the model and entered into a spreadsheet to visualize and calculate spring 

discharge. A total volume of water discharged from the spring was calculated. The aquifer 

thickness was changed until the modeled total discharge during the dry season matched the 

observed total of 435 cubic meters, resulting in a model-adjusted aquifer thickness of 12 m.  

After calibrating thickness, additional stress periods were added to the model to simulate 

the wet season. Table 1 shows the parameters that were used for the wet season model and an 

explanation of the values. Spring discharge was plotted in the spreadsheet. 
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Table 1: Parameters and stress periods that were entered into the groundwater flow model 

 
3.3.3 Climate Scenario Testing 

 In order to estimate the sensitivity of the model to a changing climate and to forecast the 

effect that a changing climate has on the dry season spring flows, different climate scenarios 

were implemented into the model. The 2014 Intergovernmental Panel on Climate Change 

predicts that average temperatures could increase by 3˚C by 2050 in Panama (Magrin & 

Aquifer Parameters Values Used Explanation 
Cell Area 1.5 by 1.5 meters  

 
Aquifer thickness 

 
12 meters 

Thickness was 
calibrated using 

observed flow data from 
the spring 

Specific storage 0.0001 Estimated (not 
significant because this 
is a unconfined aquifer) 

Specific yield 0.02 Estimated using 
published data 

Hydraulic conductivity 0.16 m/day Measured in the study 
site with an 

amoozemeter 
Stress Periods Recharge Rate (M/Day)  

5/1/2014 0.0045 Calculated using water 
budget and collected 

data 
12/20/2014 -0.0026 Calculated using TM  
2/1/2015 -0.0013 Calculated using TM 
3/1/2015 -0.0005 Calculated using TM 
4/1/2015 0 No recharge 
5/1/2015 0.05 Initial recharge rate to 

initiate recharge 
5/2/2015 0.0045 Calculated using water 

budget and collected 
data 

12/20/2015 end  
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Marengo, 2014). This 3˚C increase was entered into the Thornthwaite ET equation to estimate 

changes to ET. It was entered as a 3 ˚C increase for each month’s average temperature. The 

resulting change in PET was then used to estimate actual ET which was incorporated into a new 

water budget. The new recharge rate was then entered into the model and changes in spring 

flows were calculated.  

 Climate models for Panama predict a change in yearly precipitation by up the 50% by 

2100 (Magrin & Marengo, 2014). A 10% change in precipitation total was modeled to observe 

the effect it had on dry season spring discharge. Every rain event was multiplied by 0.9 to 

simulate a decrease of precipitation of 10%. The NRCS method was performed to estimate the 

runoff. ET was subtracted and a recharge rate for the model was obtained. This was entered into 

the model and flow was observed. Table 2 shows the parameters that were entered into the model 

for both the 3 degree increase in temperature and the 10% decrease in precipitation. 

 
Climate Scenario Inputs 

 Recharge Rate (m/day) 
Stress Period 3˚C Increase 10% 

decrease 
5/1/2014 0.0037 0.0042 

12/20/2014 -0.03 -0.0027 
2/1/2015 -0.0012 -0.0013 
3/1/2015 -0.0004 -0.0005 
4/1/2015 0 0 
5/1/2015 0.05 0.05 
5/2/2015 0.0037 0.0042 

12/20/2015 end end 
Table 2: Stress periods and values used in the model for different climate scenarios 

4.0 Results and Discussion  
 4.1 Water Budget 
Precipitation:   

 The total precipitation for the year in the study site was 3880 mm, all falling within the 

wet season from April 20 to December 20. The rainiest month was September with 831mm of 

total rainfall. Table 3 summarizes rainfall on a monthly basis in the study site. Amounts of 100 

mm and 200 mm were added to July and August, respectively, to make up for a month of 

missing data. These were selected based on historical data that was collected by a government 

station roughly 7 kilometers from the study site (ESTESA, 2016). The dry season is January-
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April. April was modeled in the dry season because 169 mm of precipitation fell in the last 9 

days of the month, with the majority of that on the last two days. 

Measured Precipitation 
Month Rainfall (mm) 

January 0 
February 0 

March 0 
April 169 
May 278 
June 756 
July 379 

August 402 
September 832 

October 524 
November 390 
December 152 

Year Total 3880 
Table 3: Summary of monthly precipitation in the study site 

Evapotranspiration: 

 Various methods were considered to estimate evapotranspiration. The first method 

analyzed was the Penman-Montieth method. This method is advantageous because of its diurnal 

resolution. It also has the ability to incorporate daily cloud cover by considering the sunshine 

hours (sunshine duration) of the area in addition to the average day length. A total PET of 1011 

mm was estimated for the year. If the cloud cover is not taken into consideration, a total PET of 

1957 mm is estimated. This is an overestimation as it assumes that there is no cloud cover 

throughout the day. During the wet season, significant cloud cover is present for half of the day 

or more. This method uses a crop conversion coefficient to estimate actual ET. A crop of coffee 

and cacao was used which yielded a crop conversion coefficient of 1. This results in PET 

equaling actual ET. This method assumes that the crops were grown in large fields under 

excellent soil moisture conditions. These assumptions do not take into consideration diminishing 

soil moisture conditions in the dry season. Thus, this method was not used for this study because 

it could not accurately predict actual ET in the dry season. Additionally, the higher accuracy of 

this method would be out-weighted in lesser accuracy of the other measurements.  
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 The Thornthwaite-Mather method was performed using data that was collected in the 

study site. This method has a monthly temporal resolution. A yearly PET total of 1518 mm was 

estimated. Actual yearly ET was estimated to be 1261 mm from this method using the Hamon 

equation, with 1123 mm of this during the wet season and 138 mm during the dry season. ET 

deviated from PET in the dry season because of a reduction in soil moisture conditions. Soil field 

capacity was selected to be 0.30 m3/m3 due to the nature of clay soils (Fetter, 2001). A rooting 

depth of 0.5 meters was estimated. In performing soil infiltration tests, the soil was dense and 

compacted in the top 0.5 meters. This created a substrate that is difficult for roots to penetrate, 

thus promoting them to grow laterally instead of horizontally. Clay also has a relatively high 

water retention rate. Both of these factors promote root growth in the upper 0.5 meters of the soil 

column. A yearly total summary of ET for both methods are compiled in Table 4. 

  

 

 Evaporation 

 Thornthwaite Penman 

Month PET (mm) ET (mm) PET (mm) ET (mm) 

January 126 85 107 107 

February 130 37 113 113 

March 138 16 125 125 

April 138 138 103 103 

May 134 134 81 81 

June 136 136 64 64 

July 132 132 68 68 

August 121 121 73 73 

September 118 118 67 67 

October 114 114 66 66 

November 115 115 65 65 

December 116 116 79 79 

Totals 1518 1261 1011 1011 
Table 4: summary of PET and ET for the Thornthwaite and Penman equations 
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Surface runoff: 

 Surface runoff was calculated using the NRCS curve number method. Using a curve 

number of 83 and a total rainfall of 3880 mm, a total of 1615 mm of runoff was calculated. This 

left 2265 mm as potential recharge.  

 

Water Budget: 

 To accurately estimate groundwater recharge, a water budget was performed using 

rainfall, runoff, and ET for the Salto Dupi aquifer. Recharge was broken up into wet season and 

dry season recharge to allow it to be conceptually modeled in GMS. A yearly precipitation of 

3880 mm fell within the wet season. After surface runoff, 2265 mm of potential recharge was 

available. A value of 1123 mm for the wet season evapotranspiration was subtracted from the 

potential recharge to represent the water lost due to ET. A recharge of 1142 mm was the resultant 

recharge during the wet season. Recharge in the dry season was modeled as a negative value to 

simulate ET in the dry season. These values were 85, 37, 16 and 0 mm for January, February, 

March, and April, respectively.  

 4.2 Hydraulic Conductivity 
 A total of three amoozemeter infiltration tests were performed to measure soil-surface 

hydraulic conductivity. Two measurements were made outside the watershed and one inside the 

watershed. The measurements outside the watershed were 6 cm/day and 9 cm/day, and inside the 

watershed the measurement was 16 cm/day. The 16 cm/day measurement was used for the model 

as it was taken from the study site aquifer and was thought to be the most representative for the 

watershed.  

4.3 Hewlett-Hibbert Model  
 The Hewlett-Hibbert trough was modeled in GMS in order to evaluate the capacity of 

GMS to model sloping aquifers. The model showed that the dewatering of the trough can be 

modeled with some limitations. After the trough was constructed, MODFLOW 2005 was 

initiated and flow was observed. Figure 7 shows a side profile of the trough with corresponding 

head values early in the simulation. Flow from the drain was imported into a spreadsheet to 

better visualize and compute flow.  

 



 

28 
 

 
Figure 7: Side profile of the modeled Hewlett-Hibbert Trough. Each cell is 1 foot wide and 3 feet tall. Colored 
lines within each cell represents the water table.  
 

The total flow volume of discharge was reported by Hewlett to be 1.26 m3 (44.5 ft3). In 

addition to this, it was reported that 76% of the outflow was within the first five days, 19% in the 

following 45 days, and 5% during the last five days. Specific storage was set to 0.0001 and had 

little effect on the model because of its unconfined nature. Specific yield determined how much 

water is able to drain due to gravity. This value was manually adjusted in the model to yield a 

total volume of 44.5 ft3. Hydraulic conductivity determined how fast the water was able to flow 

within and out of the trough. This was manually adjusted in the model to match that 76% of the 

modeled discharge was within the first five days. Figure 8 shows flow over time as well as total 

discharge for the first 27 days of the model.  
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Figure 8: Flow and total volume out for the first 27 days of the Hewlett-Hibbert Model. Specific yield and 
hydraulic conductivity were calibrated to observed flow data. 

 

It was discovered that a specific yield of 0.113 (ft3/ ft3) yielded a total drained volume of 

43.5 ft3. Hydraulic conductivity was manually adjusted until 76% of the total volume drained in 

the first 5 days. This yielded a value of 2.45 ft/day. In the model, the following 24% drained in 

the following 15 days. The deviation from the observed data is most likely explained by 

MODFLOW 2005 modeling saturated zone flow and not unsaturated (vadose) zone drainage. 

There is a package within GMS to model unsaturated zone flow, but it requires significant 

amounts of soil moisture observation data. This package was considered but ultimately not 

pursued due to lack of observation data for the vadose zone both for the Hewlett-Hibbert model 

and the project site. Also, more importantly, it is hypothesized that UZF would not have a very 

large effect on dry season drainage unless the aquifer was allowed to drain completely. Where 

UZF flow would have a more significant impact is early wet season recharge. When recharge 

begins early in the wet season, it would be dominated by UZF flow, causing a lag in actual 

recharge. This would not have a significant effect on dry season flows because the wet season is 

long enough to ensure that the aquifer is fully recharged at the beginning of the dry season. The 

calibrated values for hydraulic conductivity and specific yield are within measured values for the 

water bearing medium in the trough.  
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  4.4 Salto Dupi Model  
 Applying what was learned in modeling the Hewlett-Hibbert trough, a model was 

constructed and evaluated for the Salto Dupi aquifer. Modeling the Hewlett-Hibbert trough 

demonstrated that aquifer characteristics can be estimated when modeling the dewatering of a 

sloping aquifer. Spring discharge, hydraulic conductivity, and evapotranspiration were known 

and used to calibrate aquifer geometry (aquifer thickness) for the aquifer in Dupi. Two possible 

geometries were considered for the Dupi watershed. Scenario one involves a wedge shaped 

aquifer where impermeable bedrock remains at a constant elevation while surface topography 

elevation increases as it nears the headwaters of the aquifer. Scenario two involves a lens shaped 

aquifer where impermeable bedrock mimics surface topography at a constant depth. Figure 9 

shows a conceptual model of these two geometries.  
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Figure 9: Side profile view of the wedge and lens model comparing their geometries. Wedge shape geometry was 
not used as it was compared in another study (VanSickle, 2016). 
 

 The wedge shaped geometry is GMS has large amounts of water storage. The modeled 

discharge flows at the end of the dry season were high compared to the observed flows. The 

author also observed that bedrock streams in the study area have a slope similar to surface 

topography, implying that bedrock mimics surface topography. Thus, the lens shape geometry 
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was used for the model because of the author’s bedrock observations in the field. Additionally, a 

study was conducted by Jordan VanSickle in a watershed proximal (5km) to the Salto Dupi study 

site, comparing different aquifer geometries (lens and wedge shape) and their influence of spring 

discharge (VanSickle, 2016). Because of the author’s bedrock observations and VanSickle’s 

work regarding the wedge/lens shape comparison, the wedge geometry was not explored in this 

study.  

After the 10-meter (lens shaped) model was constructed, MODFLOW 2005 was initiated 

and flows were simulated to compare the observations. This model was calibrated using 

observed dry season flows from January 1st to May 1st. It was observed that an aquifer thickness 

of 12 meters was needed to model the total discharge of 115,000 gallons (435 m3). This was 

achieved using a specific yield of 2%. Figure 10 shows the different aquifer thicknesses plotted 

along with the observed dry season flows. The 12 meter thickness is closest to the observed 

discharge. The model was calibrated to total discharge because the spring flow discharge meter 

was measuring total gallons discharged and not a flow over time. Flow rate was deduced from 

change in gallons over time.  

 

 
Figure 10: Modeled dry season flows for different aquifer thicknesses. The 12-meter thickness best matched the total 
spring discharge for the dry season.  
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Once the aquifer thickness was calibrated to simulate the observed dry season flows, 

more stress periods were added along with wet season recharge to model a full-year hydrological 

cycle. The dry season was set to begin on December 20th, which was the last day of observed 

rainfall in the wet season. The wet season begins on May 1st. Figure 11 shows modeled flow 

along with observed data. The model reaches steady-state conditions in the wet season where 

recharge is equal to discharge. Flow at this steady state in the wet season is 27.9 m3/day. This 

compared closely to the observed flow rate of 26.5 m3/day during the wet season.  Flow 

drastically decreases at the beginning of the dry season and decreases exponentially as the dry 

season continues. The modeled flow on the last day of the dry season 1.34 m3/day. That 

compared very well to the observed flow on 1.04 m3/day. This model assumes that recharge is 

constant over the wet season, when in reality recharge varies monthly and daily with 

precipitation.  

 
Figure 11: Modeled wet and dry season flows for the 12 meter aquifer thickness. Hydraulic conductivity and 
recharge were specified, and specific yield and aquifer thickness were calibrated to observed flow.  

 

Specific yield and aquifer thickness are the two unknown variables in this model. As 

stated before, a specific yield of 2% was used as this is the average value for clays. Then model 

thickness was calibrated to the data. The model was calibrated in this way because aquifer 

thickness was the greater unknown. A separate model was designed where aquifer thickness was 

constant at 10 meters and specific yield was calibrated to observed flow. Not only was the 
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calibration successful, but modeled flow was very similar to that of the thickness calibrated 

model. Thus, this model demonstrated non-uniqueness. One could calibrate the model for aquifer 

thickness keeping specific yield constant, or one could calibrate for specific yield keeping 

thickness constant. Similarly, one could adjust both parameters to model observed flow. 

Ultimately, the base flow recession is similar for a model calibrated for thickness or one 

calibrated for specific yield. The author estimated that the aquifer thickness was 9-11 meters due 

to observations in site. A calibrated aquifer thickness of 12 meters is very plausible for the study 

site. The incorporated wet season model modeled peak wet season flows without the author 

having to modify and re-adjust ET or runoff. All of these gave credit to the model.  

 
4.5 Climate Scenario Testing 

 Two different climate scenarios were explored to forecast how changing climate would 

affect spring flow. The first was an increase of average monthly temperatures of 3 °C, resulting 

in an increased PET of 1.79 meters per year and actual ET of 1.47 meters. Most of this (1.32 

meters) was in the wet season, with only 0.14 m in the dry season. After incorporating this into 

the water budget, recharge was 0.938 meters for the wet season. This was entered into the model 

and flow was simulated. Flow in the wet season was 22.5 m3/day. Flow at the end of the dry 

season was 1.06 m3/day.  

 The second climate scenario was a 10% reduction in precipitation. Rainfall was reduced 

to 3.50 meters before runoff and 2.17 meters after runoff. After ET was incorporated, a recharge 

of 1.05 meters was entered into the model and flow was simulated. Flow in the wet season was 

25.5 m3/day, while flow at the end of the dry season was 1.29 m3/day.  

 After running these two climate scenarios, a pattern started to emerge. It was observed 

that changing the recharge rate had an effect on wet season flows but had little effect on dry 

season flows. The model is most sensitive in the wet season flows. In order to estimate how long 

it would take for the simulated aquifer to de-water, a simulation was run where the model was 

left to drain for one year. After 6 months flow was 0.90 m3/day, and after one year flow was 0.24 

m3/day. This showed that spring discharge drastically changes at the beginning of the dry season, 

but as the dry season continues, change in flow over time becomes reduced. Figure 12 shows 

modeled flow for the climatic scenarios compared to the baseline model.  
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Figure 12: Modeled flow for various climate scenarios  

 
4.6 Impact on the Ngäbe People  

The primary goal of this study was to forecast how a changing climate would affect the 

local Ngäbe people who depend on these springs for potable water. The author observed that in 

the wet season, there is more than enough water for everyone. The study site is a good example. 

Wet season flows were in excess of 25 m3/day (6604 gallons/day). For one family this is 

sufficient. But, it was also observed that at the end of the dry season flows were around 1 m3/day 

(264 gallons). This is roughly 50 gallons a day for a family of five. The model showed that a 

changing climate has little effect on late dry season flows and that these flows will be resilient to 

climate change.  

 Forecasting different climate scenarios showed that peak wet season flows were most 

sensitive to changes in recharge. This has the potential to affect large scale water distribution 

systems in the Comarca. In some small towns, larger spring flow is captured and piped to small 

distribution systems. These systems are engineered for peak wet season flows, allowing 

community members to receive water from a spigot for 8 months out of the year. During the dry 

season, these systems become unusable due to diminishing flows. Community members are then 

forced to find their own personal springs to support their family. Diminishing wet season flows 

will limit the capacity of these community-scale water distribution systems, making them 

unusable for longer periods due to reduced wet season flows. This will ultimately burden family 

members because they will have to spend more time collecting water from springs farther away.  
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5.0 Conclusion 
  This study demonstrated that MODFLOW 2005 has the capacity to model steeply 

sloping aquifers. The Dupi groundwater model showed non-uniqueness, but ultimately this was 

not significant because no one parameter had a significant impact on late dry season spring 

discharge. The calibrated Dupi model forecasted that a changing climate will have a large impact 

on peak wet season flows and a small impact on late dry season flows. This will impact 

community members who receive their water during the wet season from water distribution 

systems while having little impact on families who rely on smaller personal springs for their 

daily water needs.  

 

6.0 Future Work 
Opportunities exist for future studies. Soil moisture data could be collected to explore the 

unsaturated zone flow of the springs. This would allow the opportunity to quantify how much of 

an effect unsaturated zone flow has on small, steeply sloping aquifers. In addition to this, more 

climatic data, soil infiltration rates, and spring discharge data could be included to increase the 

temporal resolution of the model. More data could be collected on the bedrock geology to deduce 

the thickness and geometry of the aquifer. More springs in the area could be modeled, and their 

results should be compared to the study site. In addition to more data, other models could be 

explored. This includes performing climate scenario testing on a model where specific yield is 

calibrated instead of aquifer thickness.  

 Members of the community were interested in how they could increase the flow of the 

springs both in the wet season and the dry season. Community members knew that deforestation 

and changing climate were the impetus for reduced spring flow, but to what extent was 

unknown. The effect of land cover on spring flow could be explored. One could observe forested 

and deforested lands, but also different agricultural crops as well. This would help to show what 

could be planted in the watershed to alleviate the effects of climate change. Slash and burn 

agriculture is still practiced in the area of study. It would be interesting to study the effect that 

burning has on the water budget and spring flow.  
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