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Abstract 

The goal of this study was to evaluate permeability and study the controls on permeability 

in a gas saturated formation. Conventional well logs, mineral identification crossplots and 

empirical models were applied to analyze different lithologic and diagenetic features and 

to examine the effect that these features may have on the reservoir. An unusual feature 

was observed, and required detailed examination: there existed (in two wells) five zones 

of lower resistivity (higher water saturation) above the gas-water contact. This is 

unexpected, as above that contact, the water is usually at irreducible water saturation. I 

conclude that the lower resistivity (the higher water saturation) is due to unusual 

mineralogy containing small grain size, ineffective microporosity and secondary porosity 

within specific grains, and support this conclusion with a variety of indicators. 

 

Two wells in New Zealand’s Taranaki Basin were used for this study. First, various 

routinely applied methods were used to assign the boundaries of the gas-saturated zones 

of the Mangaa C-1 sandstone and to identify the mineralogy. From Archie and non-Archie 

(Simandoux, Schlumberger, Indonesia, and Dual-Water) models, four subzones in 

Karewa-1 well and two subzones in Kahawai-1 well were recognized as high water 

saturation intervals within the Mangaa C-1 gas saturated formation.  

 

The analysis of saturation can be used to identify grain size (and pore size) distribution, 

which turned out to be critical in understanding the high water saturation zones. Bulk 

volume water analysis was used together with created lithology logs and with core 

descriptions that had been made available to recognize the detrimental diagenetic zones 
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in the gas formation. Dissolution of minerals, grain size distributions, and different pore 

type characteristics increase bulk volume water in high water saturation zones while 

keeping the formation at irreducible water saturation, but at levels that are elevated in 

comparison with higher-quality (and lower irreducible water saturation) zones both above 

and below. 

 

The various irreducible water saturation zones were then used to predict the absolute 

permeability of those zones using several empirical models. Then, different flow unit 

characterization methods were applied to better understand the different quality rocks 

within the formation. One approach represents a new attempt to compare results for pore 

size classifications. My results showed that diagenesis is more detrimental to reservoir 

quality than grain size within the Mangaa C-1 gas sandstone, and that there is no transition 

or fully-water saturated zone under the gas reservoir at Karewa-1 well, while the 

transition zone exists for the same formation at Kahawai-1 well. 

 



 

1 
 

1 Introduction 

The Taranaki Basin, New Zealand hosts well known oil and gas reservoirs. These 

reservoirs are still being explored for potential hydrocarbon plays including detailed 

analysis of existing seismic and wireline log data. This study details petrophysical 

analysis of a shaly-sand gas reservoir. In particular, there are anomalies in the wireline 

logs that suggest unusual mineralogy. Two wells were analyzed in this study using 

suitable log measurements for the Mangaa C-1 shaly sand formation in the Taranaki 

Basin, New Zealand. This formation consists of mainly quartz in addition to plagioclase 

feldspar, K-feldspar, lithic fragments and considerable amount of clay minerals (mainly 

illite, chlorite, and mixed layers) (Karewa-1 well completion reports, 2002-2003).  

 

The key problem investigated here is the existence of multiple low-resistivity zones 

within the neutron-density crossover, which at first glance, seem to be water-producing 

zones. But the reasons might be different and critical to identify different petrophysical 

parameters in this study. Higher capillary bound water, smaller grain size, lower pore 

size, poor sorting, higher clay content, diagenesis, the existence of some mobile water as 

the non-wetting fluid, the mobile water occluding the pores in the transition zone of the 

hydrocarbon reservoir, or any combination of those reasons could result in low resistivity 

zones (higher water saturation zones). The aim of the study is to understand the reasons 

of unusual low resistivity zones (higher water saturation zones) within the gas formation 

at irreducible water saturation by means of the combination of well logs and thin sections. 

According to the core descriptions at three different depths in the Karewa-1 well, clay 

minerals and diagenesis effects in the Mangaa C-1 formation played a significant role in 
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reservoir quality (Karewa-1 well completion reports, 2002-2003). Empirical models were 

used to identify lithology and pore type characteristics in this gas saturated zone to 

determine all diagenetic zones, the effects of the diagenesis on the well log responses and 

the reservoir quality. Gamma-ray (GRI, CGR, or SGR), density (FDC or RHOB), neutron 

(TNPH), resistivity (LLD, LLS, and MSFL), and photo-electric factor (PEF) are the main 

logs used in carrying out mineralogical and petrophysical analysis of the Mangaa C-1 gas 

sandstone.  

 

In general, conventional well logs include neither nuclear magnetic resonance logs nor 

core permeability information to predict pay zones and quality of reserves. Use of 

conventional logs to determine irreducible water saturation (Swi) and effective porosity 

of the shaly sand gas reservoir will assist in calculating the absolute permeability of the 

Mangaa C-1 gas formation. Applied shaly sand non-Archie models in addition to the 

Archie equation to the shaly sand formation demonstrated that there are four intervals at 

different depths which have high water saturation values encountered in Karewa-1 well 

and two zones of high water saturation values found at various depths of Kahawai-1 well.  

 

Bulk volume water analysis combined with lithology logs was applied to interpret the 

reasons for high water saturation zones and irreducible water saturation zones by well 

logs because different reasons will change the reliability of the absolute permeability 

estimations of the Mangaa C-1 gas sandstone. 
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Different flow unit methods were used to classify different pore type zones of the gas 

reservoir. Using the Winland empirical model was a first attempt to characterize the flow 

units by using well logs rather than using core permeability and porosity.  

 

2 Geology of Mangaa C1 Sandstone Formation 

The Mangaa C-1 formation is an abyssal fan complex of sandstone of the latest Miocene 

to the earliest Pliocene age (King Thrasher, 1996). These fans provide massive sand beds 

formed by turbidity currents. The overlying Intra Giant Foresets Marker is a shale 

formation which seals the Mangaa C-1 formation and the underlying Mohakatino 

formation is volcanic (Hansen Kamp, 2002). 

 

The Karewa-1 and Kahawai-1 wells were drilled in the northern part of the North 

Taranaki Graben seen below (Figure 1). 

 

Figure 1 The location map of the two wells in Taranaki Basin, New Zealand. 
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At the Karewa-1 well, the formations and markers from the top to the bottom are 

Whenuakura, Giant Foresets, Plio-Pleistocene Marker, Intra Giant Foresets Marker, 

Mangaa C-1, and Intra Mangaa C-1 Marker (Karewa-1 well completion reports, 2002-

2003). At the Kahawai-1 well, Whenuakura, Giant Foresets, Mangaa C-1, and 

volcaniclastic Manganui formations were encountered (Kahawai-1 well completion 

report, 1990). 

 

The permeability was not measured in either well encountering the Mangaa C-1 

sandstone formation. In this study, I will attempt to predict reliable permeability results 

from well logs. 

 

Almost eighty meters of the Mangaa C-1 sandstone is brine-saturated. On average, ten 

meters of the formation on the upper part have the potential gas bearing zone with no oil. 

This dry gas shows biogenic features with 98% methane, with small amount of ethane 

and propane (Karewa-1 well completion reports, 2002-2003).  

 

At the Karewa-1 well, the Mangaa C-1 formation (1930-2020m) consists of very fine to 

fine grained argillaceous sandstone with interbedded silt and clay formations (King & 

Thrasher, 1996). According to the thin section data of the core descriptions, the gas 

saturated part of the Mangaa C-1 formation (1930-1942m) in the Karewa-1 well has 

mainly quartz minerals with abundant feldspar minerals, lithic fragments, and some 

amount of clay minerals (illite minerals dominantly) (Karewa-1 well completion reports, 

2002-2003). Rather than argillaceous sandstone, the Mangaa C-1 gas saturated formation 
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was classified as arkose or lithic arkose depending on the volumes of feldspar minerals 

and lithic fragments in addition to quartz content observed on the thin section data 

(Karewa-1 well completion reports, 2002-2003).  

 

According to the Bowen’s reaction series, the presence of unstable minerals (feldspar 

minerals) within the Mangaa C-1 gas sandstone means conditions are favorable for 

diagenesis because these minerals will tend to transform to the more stable minerals 

(quartz, K-feldspar, illite, etc.) at low pressure and temperature conditions (Ali Sa, 2010). 

Abundant plagioclase minerals and K-feldspar minerals from the thin sections show the 

possibility of diagenesis. Lithic fragments also contained some K-feldspar minerals 

which might affect the well logs, misleading routine interpretations (Karewa-1 well 

completion reports, 2002-2003).  

 

At the Kahawai-1 well, the Mangaa C-1 formation is composed mostly of shale with some 

interbedded sandstone and siltstone. In the gas saturated zone (1849-1852m), the mineral 

composition was defined as fine grained lithic feldsarenite of the granite origin (Kahawai-

1 well completion report, 1990). The gas formation is poorly sorted and includes high 

authigenic clay cementation (Kahawai-1 well completion report, 1990).  

 

The diagenesis effects at some depths within the Mangaa C-1 gas saturated formation in 

the Karewa-1 well were confirmed by the thin sections (Kahawai-1 well completion 

report, 1990). I will recognize the diagenesis effects on well logs and will show how these 

features affect reservoir quality. 
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3 Methodology  

To apply the shaly sand analysis to the Mangaa C-1 gas saturated sandstone, formation 

tops were located and mineral identification of the gas reservoirs was conducted. The clay 

volume found by the gamma-ray log was calibrated by means of the Larianov-young 

rocks equation (Larianov, 1969). The porosity of the gas reservoir is corrected for the 

clay in order to distinguish the effective porosity from the total porosity. 

 

Among several wells encountering the Mangaa C-1 formation, two wells, Karewa-1 and 

Kahawai-1 have hydrocarbon-bearing zones. Gamma-ray, density, neutron, resistivity, 

and photo-electric factor logs were used to determine the gas saturated zones and the 

mineralogy of the reservoir at these two wells. The Thomas-Stieber method (1975) for 

both wells and crossplots of spectral gamma ray logs for Kahawai-1 well were applied to 

identify the clay types (laminated, dispersed, and/or structural) and clay minerals (illite, 

chlorite, montmorillonite, kaolinite, etc.), respectively. Considering the Mangaa C-1 gas 

sandstone as “shaly sand”, non-Archie shaly sand water saturation models were used to 

estimate the effective water saturation.  

 

Bulk volume water analysis was carried out for distinguishing the irreducible water 

saturation zones from other zones by including the lithology logs and core information 

within the gas formation at two wells. Then, absolute permeability predictions and flow 

unit characterizations were applied to identify different pore types, diagenetic zones, 

transition zone, and irreducible water saturation zones and to better classify the reservoir 

quality within the gas formation. 
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3.1 Zones and Depth Shifts 

The Mangaa C-1 gas saturated formation in the Karewa well was divided into several 

zones (Zones A to M), using the gamma-ray, density, neutron, PEF, and resistivity logs, 

knowing the expected diagenesis effects, and different features from the core description 

at some points. Zones A, C, E, and G have high resistivity, high porosity, and low PEF 

values whereas Zones B, D, and H have low resistivity, high porosity, and high PEF 

values. Zone F has high resistivity, low porosity, and high PEF values.  

 
       Table 1 Zone names and depths. 
 

Zones with Well Names Depth Intervals (meters) 

Zone A (Karewa-1) 1930.9-1932.6 

Zone B (Karewa-1) 1932.6-1933.2 

Zone C (Karewa-1) 1933.2-1934.4 

Zone D (Karewa-1) 1934.4-1935.3 

Zone E (Karewa-1) 1935.3-1936.6 

Zone F (Karewa-1) 1936.6-1937.5 

Zone G (Karewa-1) 1937.5-1940.0 

Zone H (Karewa-1) 1940.0-1941.4 

Zone K (Kahawai-1) 1849.2-1850.9 

Zone L (Kahawai-1) 1850.9-1852.0 

Zone M (Kahawai-1) 1852.0-1852.7 
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On the other hand, the Mangaa C-1 gas formation in the Kahawai-1 well was divided into 

three zones (Zones K, L, and M) by using the deep resistivity log. Zones K, L, and M 

show high, low, and quite low resistivity values, respectively. 

 

Borehole and invasion corrections were not necessary in the gas formation because these 

effects were not observed at the Karewa-1 well.  

 

A gas reservoir is seen by the neutron-density crossover at the Karewa-1 well (Figure 2). 

Zones B, D, and H at the Karewa-1 well were identified as low resistivity zones within 

the Mangaa C-1 formation whereas zones A, C, E, F, and G showed consistently high 

resistivity values, which, at first glance, were thought to have similar lithology and gas-

water concentrations. Yet, zone F indicated quite high density and PEF values which 

result from the high degree of calcite cementation (Figure 2).  

 

Also, density-neutron crossover and high resistivity are seen for the thin Mangaa C-1 

formation in the Kahawai-1 well (Figure 3). Zone K at the Kahawai-1 well showed the 

highest resistivity results in comparison to zones L and M. Neutron-density crossover 

continues within zone L even though this zone has low resistivity. This low resistivity 

zone (zone L) shows similar well log responses to zone B, D, and H in the Karewa-1 well 

in terms of gamma-ray, resistivity, and neutron-density crossover. Dramatic increase of 

neutron log and gradual decrease of true resistivity curve are shown within zone M 

(Figure 3).  
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Figure 2 Full log suite of the Karewa-1 well (1930.9-1941m). On the left side, gamma-
ray (GRI), caliper (CLD), and bit size (BIT) curves were shown whereas in the middle, 
uninvaded deep lateralog (LLD), shallow lateralog (LLS), and invaded zone resistivity 
(RXO) logs were plotted together. On the right side, bulk density (FDC), sonic 
compressional (DTC), neutron (TNPH), and photo-electric factor (PEF) logs were 
indicated.  
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Figure 3 Full log suite of the Kahawai-1 well (1849.2-1852.7m). On the left track, 
standard gamma-ray (SGR), computed gamma-ray (CGR), caliper (CALI), bit size (BS), 
and three spectral gamma-ray (thorium (THOR), potassium (K),and uranium (URAN)) 
curves were displayed, while in the middle track, deep lateralog (LLD), shallow lateralog 
(LLS), and micro-spherical focused (MSFL) logs were shown. On the right track, bulk 
density (RHOB), sonic compressional (DT), neutron (TNPH), and photoelectric factor 
(PEF) logs were demonstrated. 
 

In addition to the standard gamma ray log, the computed and spectral gamma ray logs 

were measured at the Kahawai-1 well and were useful in identifying the clay minerals 

and the clay volume more precisely. 
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Initial observations indicated that depth-corrections of logs (as provided) were not 

accurate, and not all logs were properly depth-registered. Mostly, PEF and density logs 

are linearly correlated to each other, but sharp changes in these two logs were not seen at 

same depths. These changes in the PEF log have delays in comparison to the changes in 

the density log. Similarly, sharp changes in the invaded zone resistivity and true resistivity 

logs were expected to be at the same depths.  

 

According to my observations, at three low resistivity zones (zones B, D, and H), higher 

invaded zone resistivity values were seen due to the salinity difference between mud 

filtrate and formation water in isolated dissolution pores (Figure 2). Especially, sharp 

increases in the invaded zone resistivity values were observed at zones B and D. This 

proves that the mud filtrate could not push all water from the pores because invaded zone 

resistivity values in these low resistivity zones are higher than other zones. According to 

this study, water in the isolated pores is fresher than the mud filtrate. More importantly, 

this study proves that the invaded zone resistivity log is a powerful tool to identify the 

ineffective micro pores and secondary pores within the low resistivity hydrocarbon 

bearing zones. 

 

These two low resistivity zones and high invaded zone resistivity values do not match 

perfectly and depth-shift of the RXO is needed in addition to the depth-shift of the PEF 

log. 
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Use of density in detail helped to apply depth-correction to PEF log (Figure 4). Uninvaded 

zone resistivity log (RXO) was also depth-shifted with a reference log (Rt) (Figure 6). 

After the depth-correction of these two logs, all main logs in Karewa-1 well showed 

consistency with each other.  

 

Zones A, C, E, and G were identical to each other, but were different from the diagenetic 

zones (B, D, F, and H), in terms of well log measurements. Consistent high resistivity, 

low gamma-ray, low bulk density, low neutron porosity, and low PEF values are 

attributed to high productive gas saturated zones (Figure 6). Diagenesis effects 

(dissolution and alteration of the minerals, ineffective microporosity or secondary 

porosity) were not expected in these zones (A, C, E, and G). 

 

Even though almost the entire gas formation consists of shale (suppressing the resistivity 

log) in both wells, some zones (zone B, D, H, and L) showed even lower resistivity values 

in the formations. The reasons for low resistivity zones might be ineffective dissolution 

porosity, authigenic clay cements, small grain size, or transition zone in this formation. 

Different petrophysical analysis will assist find the reasons of low resistivity values in 

zones B, D, H, and L.   

 

After lithology-correction of neutron log, and depth-shifts of PEF and invaded zone 

resistivity (RXO) logs in the Karewa-1 well, different characteristics of each zone were 

shown more precisely (Figure 6).  
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(a) 

 

(b) 

Figure 4 Karewa-1 well. (a) Original PEF and FDC logs were plotted. (b) After shifting   
the PEF log, depth shifted PEF log (PEFshft) and FDC logs were plotted. Correlation of 
these two logs were improved after depth-correction was applied.   
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(a) 

(b) 

Figure 5 Karewa-1 well. (a) Depth-shifted PEF (PEFshft) and original invaded zone 
resistivity (RXO) logs were shown on the crossplot. (b) After shifting the RXO log, 
PEFshft and depth-shifted invaded resistivity (RXOds) logs were plotted together to show 
the improvement of the correlation between these two logs.  
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Figure 6 Karewa-1 (Zones A to H) well logs. On the right side, pink dashed line showed 
the original PEF log. PEFshft log (purple curve) is the depth-shifted PEF log. In the 
middle, RXOds (aqua solid line) log is the depth-shifted version of the invaded zone 
resistivity log (RXO log- blue dashed line). Arrows show how much depth-shift applied 
to the PEF and RXO logs. On the resistivity track, depth-shifted invaded zone resistivity 
(RXOds) shows better correlation with the true resistivity log (Rt). Similarly, the depth-
shifted PEF log (PEFshft) displayed better correlation with bulk density (FDC) and 
lithology-corrected neutron (PHIns) logs on the right side. 
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3.2 Mineral Identification Crossplots 

Different kinds of crossplots can be useful in observing gas and mineralogy effects in the 

Mangaa C-1 gas sandstone at the Karewa-1 and Kahawai-1 wells. 

 

From the density-neutron crossplot, a gas trend is seen at Karewa-1 well (Figure 7a). 

Zones B, D, F, and H in Karewa-1 well contained higher water saturation than zones A, 

C, E, and G. The points (hollow circles) in zone F which were interpreted as highly calcite 

cemented zone approached the sandstone line on the neutron-density crossplot (Figure 

7). This is because the calcite cementation narrows the pores by coating the framework 

grains. By doing that, zone F will have smaller pores, lower porosity and will keep more 

water because of the higher capillarity in the pores. Hence, the diagenetic points in zone 

F having almost no clay minerals (observed by low gamma-ray responses) will approach 

the sandstone line due to having more water and low porosity. The mineralogy templates 

are designed for a fully water saturated formation; therefore, when water saturation 

increases highly, points will approach to true places on the mineralogy plots.  

 

M-N plot is a useful mineralogy indicator because gas effects, various minerals, 

secondary porosity, and shale regions can be identified. The gas effects and calcite 

cementation (zone F) were seen with trends in opposite directions at the Karewa-1 well 

(Figure 7b). Zones B, D, and H gave similar responses on the M-N plot. Zone B (hollow 

triangle), zone D (hollow perpendicular), and zone H (cross) approached the shale region 

because of the increased dominancy of the clay minerals (authigenic clay precipitated 

from the dissolution of feldspar minerals and lithic fragments) on these zones. Also, slight 



 

17 
 

increase in “M” number for zone D on the M-N plot displays secondary porosity in the 

formation (Figure 7b).  

 

The Mangaa C-1 gas sandstone in Kahawai-1 well shows similar results on the neutron-

density crossplot in comparison to the gas formation in the Karewa-1 well. When water 

saturation increases drastically in zone M, the points moved to the sandstone line (Figure 

8a). The highest gas saturation of the Mangaa C-1 formation in the Kahawai-1 well was 

observed within zone K (circles), and points in zone L approached closer to the sandstone 

line due to a higher amount of water in the formation (Figure 8a).  

 

As for the M-N plot, gas trends in Kahawai-1 well were not seen easily because the sonic 

log might be affected by the poor quality of well log measurements even though the well 

log measurements and borehole quality in the formation of interest were good. Yet, the 

sonic log values of this thin layered gas reservoir in Kahawai-1 well might be affected by 

cycle-skipping effects. Higher water saturations in zone  
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(a) 

 

(b) 

Figure 7 Karewa-1 well (Zones A to H). (a) The crossplot of the neutron (TNPH)-density 
(FDC) logs displays the gas trend (solid circles) and high calcite cemented zone (zone F-
hollow circles). (b) M-N crossplot shows the gas trend (solid circles), high calcite 
cemented zone (zone F-hollow circles), and secondary porosity (hollow triangles and 
cross signs). 
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(a) 

 

(b) 

Figure 8 Kahawai-1 well (Zone K, L, and M). (a) Neutron (TNPH)-density (FDC) logs 
crossplot shows the increasing gas saturation trend (solid circles). (b) M-N crossplot did 
not display the gas trend clearly because sonic log used to calculate “M” might be affected 
by cycle-skipping effects. Zone M (triangle signs) includes higher water saturation and 
approaches to the mineral points.  
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(a) 

 

(b) 

Figure 9 Karewa-1 well (Zones A to H). (a) Apparent matrix grain density (ϱmaa) and 
apparent matrix transit time (∆tmaa) MID crossplot displays the gas trend and calcite 
cemented zone (hollow circles). (b) Apparent matrix grain density (ϱmaa) and apparent 
matrix volumetric cross section (Umaa) MID crossplot indicates the gas effects and calcite 
cementation.  
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M (triangle) resulted in moving the points to the mineral points (sandstone line) (Figure 

8b). Apparent matrix density and apparent matrix transit time parameters were calculated 

and plotted in order to define different fluid and mineral concentrations of the Mangaa C-

1 gas zone at two wells. Zone B (hollow triangle), zone D (hollow perpendicular), and 

zone H (cross) were interpreted to have fewer gas saturation effects on the crossplot 

(Figure 9a). Moreover, data points were observed around the orthoclase mineral point and 

removing the gas effects will place the points somewhere between quartz, plagioclase, 

and the K-feldspar mineral points at the Karewa-1 well.  

 

As to the ϱmaa vs. Umaa MID crossplot (Figure 9b), gas trends were seen with increasing 

apparent matrix density and similar apparent matrix volumetric cross section. Zone F 

(highly calcite cemented sandstone) is seen with hollow circle signs and points are closer 

to the calcite mineral point shown with the horizontal arrow (Figure 9b). Diagenetic zones 

(zones B, D, and H) showed slightly higher apparent matrix volumetric cross section 

values (Umaa). On the other, increasing gas saturation results in decrease in apparent 

matrix density (Figure 9b).  

 

Apparent matrix density and apparent matrix transit time were also plotted for the thin 

gas formation in the Kahawai-1 well (Figure 10a). The increase in apparent matrix transit 

time and a decrease in apparent matrix density correspond to increasing amount of gas 

saturation in the formation. On the other hand, the ϱmaa vs. Umaa MID crossplot (Figure 

10b) shows higher gas saturation for zone K (solid circles). 
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Using the PEF log for the mineral identification had the limitation in the existence of the 

feldspar minerals and illite minerals which have similar PEF as dolomite (Figures 11 and 

12). The core descriptions of the gas reservoir at some depths show that there are no 

calcite or dolomite minerals within the formation. Rather, the formation consists of 

mainly quartz with abundant feldspar and clay minerals. The core descriptions at a few 

depths which were combined with the PEF-density crossplot helped us understand the 

mineralogy of the gas formation at all depths within the gas formation. 

 

The crossplot of the PEF and density logs shows that the density log is affected not only 

by minerals but also by fluids. Nevertheless, the PEF-density crossplot will be the best 

mineral identification option because points on the crossplot would be seen between the 

K-feldspar, plagioclase feldspar, and illite mineral points if the density log was not 

affected by gas (Figures 11 and 12). The mineralogy crossplots cite the best results of 

mineralogy for fully-water filled zones, and gas zones will be seen with different trends 

on the various mineralogy crossplots. 
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(a) 

 

(b) 

Figure 10 Kahawai-1 well (Zones K, L, and M). (a) Apparent matrix grain density (ϱmaa) 
and apparent matrix transit time (∆tmaa) MID crossplot shows the gas trend. Zone M has 
less gas effects and approaches to the mineral points. (b) Apparent matrix grain density 
(ϱmaa) and apparent matrix volumetric cross section (Umaa) MID crossplot exhibits 
increasing gas saturation points (solid circles) and increasing water saturation points 
(solid triangles). 
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Figure 11 Karewa-1 well (Zones A to H). PEF-FDC crossplot. Increasing density and 
PEF log values showed the calcite cementation zones (hollow circles). Higher gas 
saturation is seen with lower density values on the upper side. 
 

 

Figure 12 Kahawai-1 well (Zone K, L, and M). PEF-FDC logs crossplot displays slightly 
higher gas saturation points with solid circles.  
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The PEF log and spectral gamma-ray logs are plotted to determine different kinds of clay 

minerals in the gas sandstone. These crossplots showed that the gas formation in the 

Kahawai-1 well is illite-rich sandstone (Figures 13 and 14). Thorium-potassium crossplot 

gave more precise results than PEF-Potassium and PEF-Potassium/Thorium ratio 

crossplots to identify the clay minerals in the sandstone (Figure 13b). This is because PEF 

values are not only affected by clay minerals, but also feldspar and quartz minerals change 

the PEF values. On the other hand, potassium and thorium elements tend to occur within 

the clay minerals and are more useful to identify the dominant clay minerals from the 

plot. Illite minerals might suppress the resistivity log and affect water saturation 

calculations. Therefore, shaly sand water saturation equations will be used in this study 

to predict the effective water saturation. 
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(a) 

 

(b) 

Figure 13 Kahawai-1 well (Zone K, L, and M). (a) Potassium (K)-PEF logs crossplot 
shows clay mineral type as illite and montmorillonite. (b) Potassium-thorium logs 
crossplot clearly proves that the clay minerals in thin gas formation are illite, primarily. 
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Figure 14 Kahawai-1 well (Zone K, L, and M). Thorium-potassium ratio and the PEF log 
crossplot shows the points among illite, muscovite, and mixed layer 
(illite/montmorillonite) minerals. 
 

3.3 Petrophysical Properties  

In this section, shale volume, effective and total porosity, and total and effective water 

saturation of the Mangaa C-1 gas reservoir at Karewa-1 and Kahawai-1 wells were 

predicted. Then, with these estimated parameters, the lithology logs were created to 

understand the different geological features in the gas reservoir. 

 

Reasonable shale volume and effective porosity must be determined by the well logs for 

the shaly sand formation to estimate other petrophysical parameters such as effective 

water saturation and the productivity of the gas reservoir, properly. To find the shale 

volume in the gas reservoir, I used the non-linear Larianov equation for Tertiary-aged 

rocks since potassium feldspar minerals, which show high radioactivity, complicate shale 
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volume estimations (Larianov, 1969). The results of the Larianov shale volume compared 

to the thin section clay volume at four depths were very consistent in the Karewa-1 well 

(Figure 15). The reflection of the coefficient between these two clay volume results was 

0.431152 which was acceptable for using few data points for linear regression.  

 

Secondly, the effective porosity was estimated for this gas formation in two wells. 

Effective porosity does not include the pores in shale since these pores are too small for 

gas or oil to flow through. Correlation of the coefficient between thin section porosity 

and porosity calculated from well logs was 0.501317, which was adequate for this study 

(Figure 16). 

 

 

Figure 15 Karewa-1 well (Zones A to H). Comparison of the clay volumes from thin 
sections (VCLThin) and well logs (Vsh). 
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Figure 16 Karewa-1 well (Zones A to H). Comparison of effective porosity from thin 
sections (PHIThinsect) and well logs (PHIe). 
 

Effective water saturation is then calculated by different equations for a shaly sand 

formation with 15% shale volume. The Archie equation (1942) assumes that rock 

minerals have zero conductivity; only water is conductive in formations; hydrocarbons 

are non-conductive fluids; formations are shale-free clean sand.  

 

In reality, in some heavy minerals such as pyrite, glauconite, or magnetite, clay minerals 

(montmorillonite and illite), ineffective microporosity and secondary porosity created by 

dissolution of minerals will create extra conductivity pathways in addition to free water 

and will suppress the resistivity logs.  
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The gas formation in two wells is illite-rich sandstone. Illite minerals have high 

conductivity due to high cation exchange capacity and high specific surface area. These 

minerals will hold more bound water on their surfaces.  

 

More importantly, abundant dissolution porosity (microporosity and secondary porosity) 

in the gas formation suppress the resistivity logs and cause the overestimations of the 

effective water saturation results calculated by the Archie equation. At three depths, 

microporosity and secondary porosity values were known from the thin section data 

(Karewa-1 well completion reports, 2002-2003).  

 

The Pickett plot (1966) is applied to estimate the water resistivity (Rw) on the formation 

and cementation component (m) (Figure 17). Also, shale resistivity, shale density and 

neutron porosity, and shale total porosity were read from the nearby shale formation 

(1925.3m), assuming that petrophysical properties of shale in the gas formation and in 

the nearby shale formation are similar.  
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Figure 17 Karewa-1 (1930.9-2020m) and Kahawai-1 (1849.2-1852m) wells. Pickett plot 
to find the water resistivity (Rw) and cementation component (m). Arrows show the 
higher water saturation zones with different trends. More or less constant true resistivity 
and decreasing total porosity are attributed to a high calcite cementation zone. On the 
other hand, constant total porosity and dramatic decrease of true resistivity are thought to 
be the zones having ineffective dissolution porosity and some authigenic clay minerals. 
 
 
       Table 2 Estimated water saturation parameters. 
 

Formation Rw a m n 

Mangaa 

C-1 

0.0827 1 2.23 2 
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(a) 

 

(b) 

Figure 18 Karewa-1 well (Zones A to H). (a) The Thomas-Stieber crossplot for the clay 
type in the gas sand reservoir by thin section porosity (PHIThinsect) and clay volume 
(VCLThin). At four depths, the plot shows some dispersed and laminated shale. (b) The 
Thomas-Stieber crossplot for the clay type in the gas sand reservoir by well log porosity 
(PHIe) and clay volume (Vsh). The plots displays laminated shale in the formation. The 
Thomas-Stieber method is accurate when porosity is only decreased by shale. In zone F 
(hollow circles), calcite cementation decreased the porosity. There is no dispersed shale 
in zone F even though there seems to be some dispersed shale on the plot. 
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Figure 19 Kahawai-1 well (Zone K, L, and M). The Thomas-Stieber crossplot by well log 
porosity (PHIe) and clay volume (Vsh) presents that shale in the gas formation is 
laminated. Zone L shows some dispersed shale which might result from the alteration of 
unstable minerals (feldspar minerals). 
 
       
      Table 3 Estimated shale properties from nearby shale formation. 
 

Formation Depth Rsh Φdsh 

 

Φnsh 

 

Φtsh 

Mangaa C-1 1925.3m 1.92 0.231 0.495 0.31 

 

The Thomas-Stieber plot (1975) is used to identify clay minerals in formations. The 

method assumes that the porosity is only decreased by clay minerals. Plots in two wells 

showed that shale in the gas formations is laminated with some dispersed shale (Figure 

18 and 19). This dispersed shale was probably generated after the dissolution and 

alteration of feldspar minerals and lithic fragments. The Thomas-Stieber crossplot with 
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thin section porosity and shale volume at four depths (Karewa-1 well) showed that there 

are some dispersed shale which is interpreted as authigenic shale generated by dissolution 

and alteration of feldspar minerals in this formation (Figure 18a). Unlike the Thomas-

Stieber method with well log porosity and clay volume, the Thomas Stieber plot with four 

thin section porosity and clay volume (Figure 18a) showed some dispersed shale in the 

low resistivity zones. The Thomas-Stieber plot is so sensitive to slight overestimations or 

underestimations of porosity. Therefore, dispersed shale was not seen clearly on the 

Thomas-Stieber plot using well log data (Figure 18b). For the same formation in the 

Kahawai-1 well, some dispersed shale, which might result from the dissolution and the 

alteration of diagenetic minerals was seen within zone L (solid perpendicular signs) and 

the rest of the formation has mostly laminated shale (Figure19).  

 

Archie (1942) and non-Archie shale models (Simandoux (1963), Schlumberger (1972), 

Indonesia (Poupon and Leveaux, 1971), and Dual Water (Dewan, 1983)) were used to 

estimate the effective water saturation results. The Archie (Swarchie), Indonesia (Sweind), 

and total water saturation (Swdual) from Dual Water model gave similar results (Figure 

20). The similarity of total water saturation from Dual Water and Archie water saturation 

proves that the Archie equation estimates total water saturation in this formation. At some 

zones, Archie gave even higher water saturation estimations than total water saturation 

estimation calculated by the Dual Water model. On the other hand, effective water 

saturation (Swedual) from the Dual Water model gave quite low water saturation results in 

some zones (Figure 20).  
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(a) 

 

(b) 
Figure 20 Comparison of the non-Archie models with the Archie equation. (a) Karewa-1 
well (Zones A to H) water saturation models. (b) Kahawai-1 well (Zones K, L, and M) 
water saturation models. In both wells, the water saturation models gave similar results. 
The Dual Water model (asterisk signs) shows the lowest water saturation results in low 
irreducible water saturation zones (zones A, C, E, G, and K). The results of Indonesia and 
Archie models are similar. Simandoux and Schlumberger models give similar results, but 
differ from other three models. 
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Figure 21 Karewa-1 well (Zones A to H). Lithology logs from different water saturation 
models show that zone B, D, and H are high water saturated zones. Other zones showed 
low water saturation results. Zone F exhibits higher rock volume which is interpreted as 
high degree of calcite cements. 
 

 

Figure 22 Kahawai-1 well (Zone K, L, and M). Lithology logs from different water 
saturation models. Zone L shows higher water saturation. Dramatic increase in water 
saturation is observed for zone M which is likely to be gas-water transition zone. Zone K 
showed minimum water saturation. Gas showings are misleading above zone K and 
below zone M due to the poor quality of well log measurements at those depths. 
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Simandoux (Swesim) and Schlumberger (Swesch) gave best results for effective water 

saturation in comparison to other models.  

 

After finding shale and sand volume, effective and total porosity, and effective, bound, 

and total water saturation, lithology logs were created to combine with the bulk volume 

water plot in further steps (Figures 21 and 22). Lithology logs help us determine the 

transition zone and irreducible water saturation zones. 

 

3.4 Bulk Volume Water (BVW) 

The challenge remaining is to determine whether the Mangaa C-1 shaly sand formation 

is at irreducible water saturation or not. Bulk volume water will be used here; it is the 

multiplication of the effective water saturation and the effective porosity. 

 

Buckles (1965) and Asquith and Krygowski (2004) showed that bulk volume of water is 

constant or nearly constant at irreducible water saturation for the same lithology and grain 

size. Swe-Φe parameters were plotted (bulk volume water plot) and the distribution of 

the bulk volume water values on the plot was observed. Increasing grain size will result 

in increasing bulk volume water and in the transition zone, the bulk volume water will 

drastically increase, regardless of the porosity (Asquith and Krygowski, 2004). 

Furthermore, if the hydrocarbon bearing reservoirs have mobile water in the pores, the 

points get randomly scattered (Asquith and Krygowski, 2004).  
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In the bulk volume water plot, I used the effective porosity and the effective water 

saturation estimated by the Schlumberger water saturation model. When I used the bulk 

volume water plot (different water saturation results vs. the effective porosity), I 

classified the points in terms of the mean grain size found by the bulk volume water 

(Asquith, 1985). The Mangaa C-1 gas saturated formation contained very fine to fine 

grained rocks (Karewa-1 well completion report, 2002-2003). After classifying the mean 

grain size of the zones by the bulk volume water, I decided to use the effective water 

saturation results calculated by the Schlumberger model which gave the best mean grain 

size classification on the bulk volume water plot, and hence the best effective water 

saturation results (Figure 23). For the Mangaa C-1 gas zones (Zones A to H) in the 

Karewa-1 well, most of the zones showed the same bulk volume water values on the plot. 

Zones A, C, E, and G (circles) and zone F (hollow circles) showed similar bulk volume 

water values (Figure 23). Slight changes in the bulk volume water for zones A, C, E, G 

and F corresponded to the changes in the grain size of the formation.  
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(a) 

 
(b) 

Figure 23 Karewa-1 well (Zones A to H). Bulk volume water (BVW) plots (Swe from 
Schlumberger model) with lithology logs to observe the transition zone and irreducible 
water saturation levels. Big circle covering hollow circle points on the left shows high 
calcite cemented zone (zone F). Zone F (hollow circles) has minimum bulk volume water 
and shows similar bulk volume water values with other low irreducible water saturation 
zones (zones A, C, E, and G) symbolized with solid circles. On the other hand, another 
large circle on the left shows zones B, D, and H (hollow perpendicular, hollow triangle, 
and cross signs). These scattered points are caused by ineffective dissolution porosity 
(microporosity and secondary porosity). (a) Logarithmic scale. (b) Linear scale. 
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I interpreted that the calcite cemented zone F (hollow circle) displayed the same grain 

size with zones A, C, E, and G (circles), even though the porosity of zone F was too low 

(Figure 23). This is true because porosity is independent of grain size changes. Calcite 

cementation coated the sand grains without changing the grain size. The high degree of 

calcite cementation might completely close micro pores and secondary pores generated 

by feldspar dissolution, and this high degree of calcite cementation probably occurred 

after dissolution and alteration of feldspar minerals and lithic fragments, resulting in 

really low porosity in this zone. It means that if some mineral grains in zone F were 

partially or completely dissolved and created extra pore spaces, high calcite cementation 

which resulted from the chemical interactions of the minerals with water would fill these 

secondary pores and decrease the porosity drastically. Consequently, the high degree of 

the calcite cementation of zone F occurred after minerals were dissolved; otherwise, the 

porosity of zone F would not be so low.    

 

There are several zones (zones B, D, and H) which have higher bulk volume water and 

which are scattered on the upper parts of the bulk volume water plot (Figure 23). They 

were caused by neither the transition zone nor the mobile water; rather, microporosity 

and secondary porosity created by unstable diagenetic feldspar minerals (plagioclase or 

potassium feldspar minerals) and lithic fragments caused the increase of the bulk volume 

water as a result of higher irreducible water in the pores. 
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Figure 24 Dissolution of feldspar minerals (diagenesis) and forming of micro pores, 
secondary pores, and authigenic clay cements within pores. 
 

Partially or fully dissolved feldspar minerals and lithic fragments created micro pores and 

secondary pores within the formation (Karewa-1 well completion reports, 2002-2003) 

(Figure 24). If the micro pores and the secondary pores were connected to the effective 

pore systems in the formation, the bulk volume water values for zones B, D, and H 

calculated from the effective porosity would be similar to other zones (low irreducible 

water zones) for the same grain size. On the other hand, bulk volume water values in 
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zones B, D, and H were higher than irreducible water saturation zones (zones A, C, E, F, 

and G) (Figure 23). The reason is not expected to be the existence of mobile water because 

the PEF log increases in zones B, D, and H.  

 

PEF log was not affected by water and the increase of the PEF log was due to the 

abundancy of the plagioclase and potassium feldspar minerals which were prone to be 

subjected to diagenesis effects at low pressure and temperature conditions (Ali Sa, 2010) 

and due to the some precipitating clay minerals (authigenic) which might form as 

byproducts of altering feldspar minerals and lithic fragments (Huang W. L., 1986).  

 

Core descriptions (thin sections) showed that there were some microporosity and 

secondary porosity (formed after diagenesis) in addition to intergranular porosity in zones 

B, D, and H (Karewa-1 well completion report, 2002-2003). Removing dissolution 

porosity will help us identify the true bulk volume water values in the effective pore 

systems in which gas flows. 
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Figure 25 Karewa-1 well (Zones A to H). Three thin section intergranular porosity 
(removed for secondary and micro pores in zones B, D, and H) and water saturation from 
the Schlumberger equation adjusting the Rt log and effective porosity (dissolution 
porosity removed) were added to the bulk volume water plot to show the true places of 
the diagenetic zones (zones B, D, and H). Before removing the dissolution porosity, these 
diagenetic zones (triangle, perpendicular, and cross signs) marked with a large circle on 
the right misleadingly correspond to mobile water or transition zone. Yet, after removing 
the dissolution porosity (known from thin sections at three depths), the true bulk volume 
water values of these zones marked with a large circle on the left are seen to be similar to 
low irreducible water saturation zones (solid circles and hollow circles). Removing 
ineffective dissolution porosity moved the points to lower bulk volume water values 
shown with an arrow. Logarithmic scale. 
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Figure 26 Karewa-1 well (Zones A to H). Three thin section intergranular porosity 
(removed for secondary and micro pores in zones B, D, and H) and water saturation from 
the Schlumberger equation adjusting the Rt log and effective porosity (dissolution 
porosity removed) were added to the bulk volume water plot to show the true places of 
the diagenetic zones (zones B, D, and H). Linear scale. 
 

Thin section microporosity and secondary porosity at three depths for zones B, D, and H 

were removed from the effective porosity. To find the true irreducible water saturation at 

these three depths, the deep resistivity log must be adjusted on the Schlumberger 

equation. This is because the deep resistivity log results at three diagenetic zones were 

not only suppressed by the clay minerals, but also water in the ineffective dissolution 

pores will create extra conductivity pathways and will suppress the resistivity log even 



 

45 
 

more. Schlumberger equation attempts to eliminate only the effects of the clay minerals 

on the conductivity, but ineffective dissolution porosity must be removed, as well. 

 

Grain size classification within the diagenetic zones (B, D, and H) is very fine. Knowing 

the effective porosity and grain size classification at these zones, I adjusted the true 

resistivity values to find the effective water saturation (Figures 25 and 26). The bulk 

volume water irreducible was then calculated for each. Results show that true predictions 

of effective porosity (in addition to microporosity in shale, microporosity and secondary 

porosity in diagenetic minerals were removed) and irreducible water saturation assist in 

finding true bulk volume water values of these zones (B, D, and H) within the effective 

pore systems. 

 

The transition zone can be recognized on bulk volume water plots with increasing bulk 

volume water values (scattered points). At first glance, zone H might be thought to be the 

transition zone because bulk volume water values are variously increasing within this 

zone, but removing dissolution porosity showed that the reason for increasing bulk 

volume water values in the zone is ineffective dissolution porosity (microporosity and 

secondary porosity) rather than mobile water. Also, under zone H, there is a shale interval 

rather than water saturated sandstone; thus, there is no transition zone or free water level 

identified under the gas formation in the Karewa-1 well.  

 

As for the thin gas formation in the Kahawai-1 well, the same process is applied. Bulk 

volume water results showed that zone K has minimum and constant bulk volume water 
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which corresponds to irreducible water saturation (Figure 27). On the other hand, the 

consistency of the bulk volume water values within zone L is seen on the plot, but rather 

than minimum bulk volume water, higher bulk volume water values were seen in zone L 

(Figure 27). The grain size decrease in zone L corresponds to higher capillarity in the 

pores. This silt-size grains within zone L will hold more water in the pores. Additionally, 

there might be some other reasons such as microporosity and secondary porosity which 

increase bulk volume water values, but within zone L, bulk volume water is consistent 

(big circle) which corresponds to changes in the grain size (Figure 27). Lastly, combining 

with lithology logs, the bulk volume water plot displayed that zone M is the transition 

zone due to the dramatic increase of the bulk volume water (shown with the arrow) 

(Figure 27). 
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(a) 

 

(b) 

Figure 27 Kahawai-1 well (Zone K, L, and M). Bulk volume water (BVW) plots (Swe 
from Schlumberger model) with lithology logs to observe the transition zone and 
irreducible water saturation levels. Zone L (perpendicular signs) marked with a large 
circle shows constant bulk volume water values, affected by grain size. Smaller grain size 
(higher capillarity in the pores) caused high irreducible water saturation. On the other 
hand, drastic increase of bulk volume water shown with the arrow in zone M (triangle 
signs) indicates a typical transition zone. (a) Logarithmic scale. (b) Linear scale. 
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All information mentioned above proved that the bulk volume water plot combined with 

the lithology logs and core descriptions can be used to determine detrimental diagenesis 

effects (ineffective microporosity and ineffective secondary porosity). Also, the bulk 

volume water plot demonstrated that the diagenesis effects caused higher irreducible 

water saturation in zones B, D, and H whereas in zone L, abundant-silt sized grains kept 

higher irreducible water in the pores. This information will be useful in estimating the 

permeability of the zones at irreducible water saturation. 

 

3.5 Log-derived Permeability 

In this section, permeability will be calculated for zones at irreducible water saturations 

and results will be discussed. Moreover, air permeability to be used in the Winland 

correlation for pore type characterization of the reservoir was estimated from the gas 

absolute permeability of the formation, using an empirical relationship (Swanson, 1981).  

 

Permeability might be estimated from irreducible water saturation and effective porosity 

by using some empirical models (Timur, Morris-Biggs, Coates-Denoo, and Coates-

Dumanoir). All these formulas were created from the Wyllie-Rose (1950) equation. 

Except Morris-Biggs equation, other three empirical models are suitable for medium 

gravity oil fields. Morris-Biggs permeability equation used in this study is already 

suitable for gas fields. 

 

Permeability of the gas formation cannot be estimated from the empirical permeability 

equations (Timur, Coates-Denoo, and Coates-Dumanoir) which are suitable for medium 
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gravity oil fields because these three equations were used for laminar flow (Dewan, 

1983). On the other hand, around the borehole, gas flow might be turbulent (Dewan, 

1983). For gas reservoirs, these three equations must be modified.  

 

With respect to Dewan’s suggestion (1983), gas density must be added to the permeability 

equation to better predict the absolute permeability for gas fields. Therefore, I modified 

the permeability Timur, Coates-Denoo, and Coates-Dumanoir equations by adding the 

gas density (Assumed to be 0.1 g/cm3).  

 

To approximate air permeability (laboratory permeability) which is used in Winland’s 

equation, I assumed that the gas absolute permeability found by empirical models in this 

study is equal to the liquid permeability (no Klinkenberg effect). I used Swanson’s 

empirical relationship (1981) which converts liquid permeability to air permeability. 

 

Also, multi-linear regression analysis is used to create a permeability equation from well 

logs, using Timur permeability results and the gamma ray, density and deep resistivity 

logs. 

 

Lastly, Timur permeability (Kt) is calculated from the irreducible water saturation and 

effective porosity (dissolution porosity removed) for zones B, D, and H, at three depths. 

This is because dissolution porosity was isolated in zones B, D, and H and must be 

removed from effective porosity for true judgement of permeability within these zones. 
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Removing dissolution porosity in three zones assisted to find more reliable permeability 

results shown with red points (Figure 25a).  

 

As I showed on the bulk volume water plot, except for in zone M (transition zone), the 

gas formation in two wells is at irreducible water saturation (no water cut). Therefore, the 

permeability estimations are invalid for zone M which has mobile water, and pore type 

characterization of zone M will not be included in this study. 

 

The Timur and Coates-Denoo permeability results were similar in both wells. The Morris-

Biggs gas permeability values were lower than other three permeability equations. The 

Coates-Dumanoir gave higher values than other equations.  

 

Permeability estimations display high productive and low quality (diagenetic) rocks in 

the gas formation in the Karewa-1 well (Figure 25a). Even though calcite cementation 

might mostly contribute permeability of rocks, in this gas formation, the high degree of 

calcite cementation (zone F) showed quite detrimental effects to reservoir quality and 

decreased the permeability and the porosity in the gas formation. Even though grain size 

(related to permeability) was not changed in zone  
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Figure 28 Permeability results. Karewa-1 well for zones A to H. Permeability estimations 
from empirical models. Ktsch, Kmbgsch, Kcsch, Kcdsch, Ktairsch, Kmultisch, Kt, and 
Ktair are Timur, Morris-Biggs, Coates-Denoo, Coates-Dumanoir, air (converted from 
Timur permeability), multi-linear regression, Timur absolute (dissolution porosity 
removed), Air (dissolution porosity removed) permeability results calculated from the 
effective porosity and the irreducible water saturation of the Schlumberger model, 
respectively. Permeability results are high in zones A, C, E, and G whereas permeability 
results are too low in diagenetic zones (zones B, D, F, and H). 
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Figure 29 Permeability results. Kahawai-1 well for zones K and L. Permeability 
estimations from empirical models. Ktsch, Kmbgsch, Kcsch, Kcdsch, Ktairsch, and 
Kmultisch are Timur, Morris-Biggs, Coates-Denoo, Coates-Dumanoir, air (converted 
from Timur permeability), and multi-linear regression permeability results calculated 
from the effective porosity and the irreducible water saturation of the Schlumberger 
model, respectively. Within zone M (transition zone), permeability results are not 
reliable. Permeability results are high in zone K. 
 

F (calcite cemented), permeability was decreased due to low porosity, small intergranular 

pores and high irreducible water saturation.  

 

As for zones B, D, and H, diagenesis effects such as dissolution, alteration and 

precipitation of minerals decreased the absolute permeability due to the poor connectivity 

of micro pores and secondary pores (dissolution porosity) to effective pore systems. Rest 

of the formation (zones A, C, E, and G) are recognized as highly permeable zones (low 

irreducible water saturation zones) (Figure 25a). The main controls of permeability for 

the gas formation in Karewa-1 well are isolated micro pores, secondary pores, and shale 

in sandstone. 
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For the thin gas formation in Kahawai-1 well, high permeability was observed in zone K. 

On the other hand, zone L showed lower permeability due to smaller grain size (abundant 

silt grains) and high irreducible water saturation (Figure 25b). 

 

3.6 Flow Unit Characterization  

3.6.1 Flow Zone Indicator (FZI) 

The Flow zone indicator or the hydraulic flow unit characterize different flow units in 

formations. High productive zones, low-quality rocks, and diagenesis effects can be 

identified by a flow zone indicator (FZI). Soto et al. (2010) created an equation to estimate 

reservoir quality index from permeability and effective porosity. Amaefule (1993) 

identified the flow zone indicator from the ratio of the reservoir quality index to the 

normalized porosity. Normalized porosity is the ratio of pore volume to rock volume. A 

Log-log plot of the reservoir quality index and the normalized porosity was used to 

observe the different flow zone units (high productive, low quality, or diagenetic zones). 

I used Timur permeability results estimated by effective porosity and Schlumberger 

effective water saturation to find the reservoir quality index (RQI), normalized porosity, 

and flow zone indicator (FZI) values in different zones. Higher flow zone indicator values 

were attributed higher reservoir quality rocks on the plot.  

 

Flow zone indicator plot distinguished the diagenetic rocks, silt-size grained rocks, and 

highly gas productive zones from each other (Figures 30a and 30b). Diagenetic rocks 

(zones B, D, F, and H) gave the lowest flow zone indicator values whereas the silt-size 

grained zone (zone L) showed slightly higher flow units. Zones A, C, E, G, and K showed  
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(a) 

 

(b) 

Figure 30 Flow zone indicator (FZI) plot. Karewa-1 (Zones A to H) and Kahawai-1 
(Zones K and L) wells. FZI from Timur absolute permeability (Ktsch) found by 
Schlumberger water saturation equation. (a) Red color symbols show the low flow zone 
indicator values (diagenetic and smaller grain size rocks) whereas green color points 
display the high flow zone indicator values (high permeable and low irreducible water 
saturation zones). (b) It shows detailed version of the flow zone indicator plot. 
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higher flow zone indicator values. Depending on the similar flow zone indicator values, 

points were colored on the plot (Figure 30b).  

 

As a result of the flow zone indicator plot, diagenesis was interpreted more detrimental 

to the reservoir quality than the effects of smaller grain size (silt size grains) within the 

gas formation. 

 

3.6.2 Winland (R35) Empirical Correlation   

H. D. Winland (Amoco Production Company) created empirical equations by correlating 

the air permeability, the porosity and the pore throat size with different mercury saturation 

values from mercury injection capillary tests (Kolodzie, 1980). Winland concluded that 

pore throat radii at 35% mercury saturation give the best results for the dominant pore 

throat size of the rocks (Kolodzie, 1980). Winland used 82 (56 sandstone and 26 

carbonate) samples with Klinkenberg-corrected permeabilities and 240 sandstone and 

carbonate samples with uncorrected air permeabilities. Kolodzie (1980) published the 

equation that Winland created. 
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Figure 31 Karewa-1 well (Zones A to H). Winland (R35) plot. Pore throat size at 35% 
mercury saturation (R35) from Timur air permeability (Ktairsch) (Logarithmic scale). 
 

 

Figure 32 Kahawai-1 well (Zone K and M). Winland (R35) plot. Pore throat size at 35% 
mercury saturation (R35) from Timur air permeability (Ktairsch) (Logarithmic scale).  
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To use Winland’s empirical correlation for pore size and pore type classification, I 

converted the gas absolute permeability to the uncorrected air permeability by using the 

Swanson’s empirical relationship (1981) between the liquid permeability and the air 

permeability. My assumption was that the liquid permeability which does not have gas 

slippage effects was accepted to be equal to the gas absolute permeability that I found 

from the Timur, Morris-Biggs, Coates-Denoo, and Coates-Dumanoir models.  

 

The results for the Mangaa C-1 gas formation in the Karewa-1 well showed that the pore 

throat radius at 35% mercury saturation (port size or R35) was decreased by the 

diagenesis effects (calcite cementation, dissolution and alteration of feldspar minerals and 

lithic fragments, and precipitation of authigenic clay cements) in zones B, D, F, and H.  

In zone F, the high degree of calcite cementation which might fill the pores created by 

the diagenesis effects narrowed the pore throats greatly without decreasing the grain size 

of the formation at these depths. Lower pore throats correspond to higher capillarity 

within the pores by keeping a greater amount of irreducible water among the grains.  

 

After removing the ineffective dissolution porosity in zones B, D, and H, I estimated the 

dominant port size (R35) more reasonably in the diagenetic zones (B, D, and H). Before 

correction, port size of zones B, D, and H (hollow perpendicular, hollow triangle, and 

times signs, respectively) was higher and classified as “macroport” on Winland’s plot. 

After the diagenesis correction (shown with the arrow), port size of the diagenetic zones 

was lowered and classified as “mesoport” similar to zone F (Figure 31).  
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On the other hand, the high productive zones (A, C, E, and G) showed higher port sizes 

and were classified as “macroport”. Zones A, C, E, and G were interpreted as 

intergranular porous zones.  

 

In the Kahawai-1 well, the Mangaa C-1 gas formation showed macro port size on 

Winland’s plot (Figure 32). Pore throat size of zone K was interpreted as macroport and 

is similar to high productive zones (zones A, C, E, and G) in the Karewa-1 well. On the 

other hand, zone L showed decreasing pore throat size, but the dominant pore throat type 

in the zone is classified as macroport. 

 

Zone M was not considered in the pore type characterizations because all pore type 

characterization methods in this study necessitated effective porosity and absolute 

permeability parameters, but zone M was recognized as the transition zone which the 

permeability models were invalid. Therefore, zone M was not involved for flow unit 

methods. 

 

3.6.3 K/Φ ratio 

The permeability-porosity ratio was used to characterize different flow units (pore size) 

in the gas reservoir for the Karewa-1 and Kahawai-1 wells (Figure 33). Rather than 

interpreting porosity or permeability alone, I used the permeability-porosity ratio to better 

understand different hydraulic flow units in the gas reservoir. I plotted the gas absolute 

permeability calculated from Timur’s model, the effective porosity, and the ratio of these  
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(a) 

 

(b) 

Figure 33 (a) Karewa-1 well-permeability (K)-porosity (Φ) plot from Timur absolute 
permeability (Ktsch). Porosity-permeability ratio was dramatically reduced by diagenesis 
effects in zones B, D, F, and H. After removing the dissolution porosity from the effective 
porosity, true places of the diagenetic zones (zone B, D, and H) were indicated by an 
arrow. (b) Kahawai-1 well (Zone K and M) permeability (K)-porosity (Φ) plot from 
Timur absolute permeability (Ktsch). Zone L has a lower permeability-porosity ratio due 
to abundant smaller grain size and pore throat size. 
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parameters. In this plot, I observed three different flow unit types in terms of the 

permeability-porosity ratio. Zones A, C, E, and G in the Karewa-1 well and zone K in the 

Kahawai-1 well showed a high permeability-porosity ratio (K/phi% > 2) (). Conversely, 

zones B, D, F, and H in the Karewa-1 well showed a low permeability-porosity ratio 

(K/phi% < 0.5) (diagenetic zones). Lastly, zone L in the Kahawai-1 well displayed a 

permeability-porosity ratio between 0.5 and 2 which corresponds to lower quality rocks 

(abundant silt-sized grains). 

 

4 Results and Discussion 

Using conventional well logs, the petrophysical study of the Mangaa C-1 shaly sand gas 

formation was conducted. The log-derived permeability values of the Mangaa C-1 gas 

saturated shaly sand formation and pore type characterization of the formation were made 

at the Karewa-1 and Kahawai-1 wells, in the Taranaki Basin. Shale existence and 

diagenesis effects (dissolution, cementation, and precipitation of the minerals) complicate 

pore type and grain size distributions and hence predictions of permeability. However, 

mineralogy crossplots helped us understand fluid, mineralogy, and diagenesis effects on 

the rocks to proceed in this study. 

 

Different diagenesis effects on the mineralogy crossplots were seen with different trends. 

On the neutron-density crossplot, M-N crossplot, ϱmaa-tmaa MID plot, and ϱmaa -Umaa 

MID plot,  gas and diagenesis effects were observed more readily whereas the PEF-

density crossplot showed better mineralogy identifications in both wells even though 
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none of them were powerful due to the existence of gas, clay minerals, and diagenetic 

feldspar minerals, simultaneously.  

 

True estimations of shale volume, porosity, and effective water saturation allowed us to 

confidently predict absolute permeability of hydrocarbon bearing formations. Shale 

volume found by the GR log and calibrated by the Larianov tertiary rocks equation was 

more or less consistent with the clay volume of thin section and XRD data. Likewise, the 

effective porosity was estimated by neutron-density logs by removing the micro pores in 

shale and matched thin section porosity results. 

 

The Mangaa C-1 gas-saturated formation consisted of mainly illite minerals confirmed 

by the spectral gamma-ray logs and crossplots in the Kahawai-1 well and known from 

thin sections of the formation in the Karewa-1 well. Also, the Thomas-Stieber method 

showed that the shale type within the gas formation at both wells was laminated with 

some dispersed shale in the gas formation. This is not surprising because dispersed shale 

was thought to be authigenic and might precipitate immediately after dissolution and 

alteration of feldspar minerals and lithic fragments because of the reactions of these 

minerals with formation water.  

 

To better estimate the effective water saturation of the gas formation, Simandoux, 

Schlumberger, Indonesia, and Dual-Water models, as well as the clean matrix Archie 

equation calculations, were used to minimize clay conductivity effects on the water 

saturation calculations. After finding shale and sand volumes, effective, clay bound, and 
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total porosity, and effective, clay bound, and total water saturation, the lithology logs 

from water saturation models were created. All lithology logs indicated that four zones 

(zones B, D, F, and H) in the Karewa-1 well and two zones (zones K and L) in the 

Kahawai-1 well have high water saturation results. 

 

The bulk volume water plot was used to find the irreducible water saturation zones and 

the transition zone of the gas formation in two wells. Combining the bulk volume water 

results with thin section descriptions and lithology logs indicated the reasons for high 

irreducible water saturations in zones B, D, F, and H.  

 

Microporosity and secondary porosity in zones B, D, and H were recognized as 

ineffective pores from the bulk volume water analysis and interpreting the invaded zone 

resistivity log and were removed to find the true bulk volume water values in these zones 

by adjusting the deep resistivity log. After removing this dissolution porosity, the bulk 

volume water results became similar to the low irreducible water saturation zones. In 

zone F, the high degree of calcite cementation decreased porosity and pore throat size. 

Because of narrowing the pore throat size, high capillarity in zone F caused higher 

irreducible water saturation within the pores and decreased the permeability of that zone. 

Zones A, C, E, and G presented low irreducible water saturation and minimum bulk 

volume water values.  

 

Zone L in the Kahawai-1 well showed abundant silt-sized grains which caused higher 

irreducible water saturation in the pores. Bulk volume water values were consistent within 
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zone L, but were higher than the low irreducible water saturation zone (zone K). Higher 

bulk volume water results in zone L was due to smaller grain size. Zone M showed 

increasing bulk volume water values and was thought to be the transition zone. 

 

Irreducible water saturation values and effective porosity (shale microporosity and 

dissolution porosity were removed) were used to estimate the permeability of the gas 

formation in two wells, using empirical models. Low irreducible water saturation zones 

(A, C, E, G, and K) showed higher permeability results than diagenetic zones (B, D, F, 

and H) which have high irreducible water saturation values. Lower grain size in zone L 

decreased the permeability due to higher capillarity in the pores.  

 

Pore type characterizations distinguished a low quality zone (zone L), diagenetic zones 

(zones B, D, F, and H), and high quality zones (zones A, C, E, and G) from each other. 

 

5 Conclusion 

The primary mineral compositions of the Mangaa C-1 gas saturated formation are quartz, 

plagioclase and K-feldspar minerals with illite minerals. After the depth shifts of the PEF 

and the RXO logs were applied, different mineralogy crossplots such as neutron-density, 

M-N plot, ϱmaa-Umaa, ϱmaa-tmaa, and PEF-density crossplots were implemented to 

observe different mineralogy, fluid effects, and even diagenesis effects. Also, in two 

wells, the Thomas-Stieber method was used to identify different clay types by well logs 

and thin section data, and at the Kahawai well, the spectral gamma-ray logs and crossplots 
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were applied in order to demonstrate different clay minerals within the gas-saturated 

zone. 

 

For the Mangaa C-1 gas sandstone (1930.9-1941.4m) in the Karewa-1 well, higher clay 

volume estimations, using the gamma-ray log caused by the potassium feldspar minerals 

were minimized by Larianov-young rocks equation. The effective porosity was estimated 

from the density-neutron logs by eliminating the shale effects. Then, the effective water 

saturation using the Archie equation and from several shaly sand water saturation models 

were estimated. The results indicated that four zones (B, D, F, and H) in the Karewa-1 

well and two zones (L and M) in the Kahawai-1 well have higher water saturation values. 

 

The higher water saturation values in different zones were explained by the invaded zone 

resistivity log, using bulk volume water analysis, lithology logs, and core descriptions. 

Zones A, C, E, and G from the Karewa-1 well and zone K presented minimum irreducible 

water saturation whereas zones B, D, F, and H from the Karewa-1 well and zone L from 

the Kahawai-1 well displayed higher irreducible water saturation results.  

 

Zone B was altered by diagenesis effects (the dissolution of the feldspar minerals and the 

precipitation of some authigenic clay minerals (mainly illite)) which resulted in higher 

irreducible water saturation. Zone D having abundant lithic fragments which were also 

dissolved in water has high irreducible water saturation, as well. In zone H, the feldspar 

minerals and lithic fragments were also the main reason for higher irreducible water 

saturation because dissolution of these minerals corresponded to the forming of isolated 
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microporosity and secondary porosity which kept more capillary bound water between 

grains. Zone F was recognized as the calcite cementation zone, using the well logs, 

mineralogy crossplots, and bulk volume water analysis and was interpreted to have lower 

pore size and fine grain size. Dissolution and alteration of minerals were not expected at 

zones A, C, E, and G (abundant intergranular pores), and there was no transition zone or 

free water level encountered in the Karewa-1 well because of the presence of shale under 

zone H. 

 

As for the Kahawai-1 well, zone L was interpreted to have more bulk volume water 

because of silt-sized grains. By combining the bulk volume water analysis with the 

lithology logs, zone M was recognized as a transition zone which was proven by low 

gamma-ray and the PEF values. Similar to high quality zones (A, C, E, and G) in the 

Karewa-1 well, zone K in Kahawai-1 presented low irreducible water saturation with high 

permeability. 

 

Timur, Morris-Biggs, Coates-Denoo, and Coates-Dumanoir models were applied to the 

irreducible water saturation zones to estimate absolute permeability of the gas formation. 

Even though those models, except the Morris-Biggs model, were best suited to medium 

gravity oil reservoirs, these equations are modified for gas fields, adding the gas density. 

Therefore, these three models, Timur, Coates-Denoo, and Coates-Dumanoir, were 

modified in this study to determine better permeability results. Afterwards, by Swanson’s 

empirical equation, these permeability values were attempted to transform to the 

uncorrected air permeability. Winland (R35) empirical model, flow zone indicator and 
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K/phi ratio parameters were used to identify different flow units in the gas formation. As 

a result of these flow unit methods, zones under the diagenesis were attributed to low 

reservoir quality rocks in Mangaa C-1 gas sandstone in Karewa-1 and Kahawai-1 wells. 
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Appendix A: Mineralogy Crossplots 

A.1   M-N plot 

One of the strongest mineralogy crossplot is M-N plot which uses sonic, density and 

neutron logs. For M number, sonic transit time and bulk density were used. As for N 

number, bulk density and neutron limestone porosity were used. 

 

𝑀𝑀 =  
𝑡𝑡𝑓𝑓 − 𝑡𝑡
𝜚𝜚𝑏𝑏 −  𝜚𝜚𝑓𝑓

𝑥𝑥 0.01 

 

𝑁𝑁 =  
𝛷𝛷𝑁𝑁𝑓𝑓 − 𝛷𝛷𝑁𝑁

𝜚𝜚𝑏𝑏 −  𝜚𝜚𝑓𝑓
 

 

where 

𝑡𝑡𝑓𝑓 = The transit time of the formation fluid (I used 185 µsec/ft) (µsec/ft) 

𝑡𝑡  = The sonic log transit time (Read from sonic log) (µsec/ft) 

𝜚𝜚𝑏𝑏 = Bulk density (Read from density log) (g/cm3) 

𝜚𝜚𝑓𝑓 = The density of the formation fluid (I used 1.1000 g/cm3 for Karewa-1 and 1.1144 

g/cm3 for Kahawai-1) (g/cm3) 

𝛷𝛷𝑁𝑁𝑓𝑓 = Neutron porosity of the fluid (I used “1”) (decimal) 

𝛷𝛷𝑁𝑁 = The neutron porosity for water-saturated limestone (Read from neutron log) 

(decimal) 
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A.2   𝛠𝛠𝐦𝐦𝐦𝐦𝐦𝐦 vs. 𝐭𝐭𝐦𝐦𝐦𝐦𝐦𝐦 MID plot 

The apparent matrix transit time and the apparent matrix density values were plotted in 

this part in order to see mineral and fluid effects.  

 

ϱmaa =  
ϱ𝑏𝑏 − 𝛷𝛷𝑡𝑡𝑡𝑡𝜚𝜚𝑓𝑓

1 −  𝛷𝛷𝑡𝑡𝑡𝑡
 

 

tmaa =  𝑡𝑡−𝛷𝛷𝑡𝑡𝑡𝑡𝑡𝑡𝑓𝑓
1− 𝛷𝛷𝑡𝑡𝑡𝑡

     Time-average relationship 

 

where 

𝜚𝜚𝑏𝑏 = Bulk density (Read from density log) (g/cm3) 

𝑡𝑡  = The sonic log transit time (Read from sonic log) (µsec/ft) 

𝜚𝜚𝑓𝑓 = The density of the formation fluid (I used 1.1 g/cm3 for Karewa-1 and 1.1144 g/cm3 

for Kahawai-1)   (g/cm3) 

𝑡𝑡𝑓𝑓 = The transit time of the formation fluid (I used 185 µsec/ft) (µsec/ft) 

𝛷𝛷𝑡𝑡𝑡𝑡 = Apparent total porosity (decimal) 

 

A.3   𝛠𝛠𝐦𝐦𝐦𝐦𝐦𝐦 vs. 𝐔𝐔𝐦𝐦𝐦𝐦𝐦𝐦 MID plot 

This mineral identification plot can be used to determine lithology, shale effects, 

diagenesis, and gas effects. To create this plot, PEF and density logs were needed. 

 

Umaa =  
P𝑖𝑖𝜚𝜚𝑖𝑖 − 𝛷𝛷𝑡𝑡𝑡𝑡𝑈𝑈𝑓𝑓

1 −  𝛷𝛷𝑡𝑡𝑡𝑡
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 𝜚𝜚𝑖𝑖 =  𝜚𝜚𝑏𝑏+0.1883
1.0704

 

 

where 

Umaa = The apparent matrix volumetric cross section (barn/cc) 

P𝑖𝑖 = The photoelectric absorption factor (b/e) 

𝜚𝜚𝑖𝑖 = Electron density (g/cm3) 

𝛷𝛷𝑡𝑡𝑡𝑡 = The apparent total porosity (decimal)  

𝜚𝜚𝑏𝑏 = Bulk density (Read from density log) (g/cm3) 

𝑈𝑈𝑓𝑓 = Volumetric section of the fluid 

 

Appendix B: Petrophysical Formation Properties 

B.1 Clay Volume Calculation 

Clay volume was calculated from GR log and was calibrated by Larianov tertiary rocks 

equation (Larianov, 1969). 

 

IGR = 
GRLOG−GRMIN
GRMAX−GRMIN

 

𝑉𝑉𝑆𝑆𝑆𝑆 =  0.083 ∗ (2(3.7∗𝐼𝐼𝐺𝐺𝐺𝐺)  −  1) 

 

where 

IGR = Gamma Ray Index (Linear) (decimal) 

GRLOG = Gamma ray value (Read from gamma-ray log) (API)    

GRMIN = Minimum gamma ray value from clean zone (I used 60 API) (API)    
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GRMAX = Maximum gamma ray value from shale zone (I used 107 API) (API)    

VSH = Larianov equation for tertiary (young) rocks (decimal) 

 

Figure B-1 Kahawai-1 well (Zone K, L, and M)-Potassium-thorium logs crossplot 
(different version). 
 

 

Figure B-2 Kahawai-1 well (Zone K, L, and M)-Potassium-thorium logs crossplot. 
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B.2 Effective and Total Porosity 

Density porosity was calculated from the formation bulk density (ρb), the matrix density 

(ρma), and fluid density (ρfl). 

 

Φ𝐷𝐷 =   𝜌𝜌𝑚𝑚𝑡𝑡− 𝜌𝜌𝑏𝑏
𝜌𝜌𝑚𝑚𝑡𝑡− 𝜌𝜌𝑓𝑓𝑓𝑓

  

where, 

ΦD = Density porosity (decimal) 

ρma = Matrix density (I used 2.70 g/cm3) (g/cm3) 

ρb = Formation bulk density (Read from FDC log) (g/cm3) 

ρfl = Fluid density (I used 1.1 g/cm3 for Karewa-1 and 1.1144 g/cm3 for Kahawai-1 well) 

(g/cm3) 

Density porosity and lithology corrected neutron log porosity values were corrected for 

the shale effects within the sandstone. 

 

Φ𝑑𝑑𝑖𝑖  =  Φ𝐷𝐷  −  (𝑉𝑉𝑆𝑆𝑆𝑆  ∗  Φ𝑑𝑑𝑖𝑖ℎ) 

Φ𝑖𝑖𝑖𝑖  =  Φ𝑖𝑖𝑖𝑖  −  (𝑉𝑉𝑆𝑆𝑆𝑆  ∗  Φ𝑖𝑖𝑖𝑖ℎ) 

 

where 

Φ𝑑𝑑  = Density porosity (decimal) 

Φ𝑑𝑑𝑖𝑖 = Clay−corrected density porosity (decimal) 

Φ𝑖𝑖𝑖𝑖 = Clay−corrected neutron porosity (decimal) 

V𝑖𝑖ℎ  = Larianov equation for tertiary (young) rocks (decimal) 
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Φ𝑑𝑑𝑖𝑖ℎ = Density shale porosity at nearby shale, at 1253m (decimal) 

Φ𝑖𝑖𝑖𝑖 = Neutron porosity (Limestone to sandstone converted) (decimal) 

Φ𝑖𝑖𝑖𝑖ℎ= Neutron shale porosity at nearby shale, at 1253m (decimal) 

 

Effective porosity was calculated from the shale-corrected density porosity and the shale-

corrected neutron porosity. Estimating the total shale porosity from shale density porosity 

and shale neutron porosity at nearby shale, the total gas porosity was calculated. 

 

Φ𝑖𝑖 = �(Φ𝑑𝑑𝑖𝑖
2 + Φ𝑖𝑖𝑖𝑖

2 )
2

 

Φ𝑡𝑡𝑖𝑖ℎ =  δ ∗  Φ𝑑𝑑𝑖𝑖ℎ  +  (1 −  δ)  ∗  Φ𝑖𝑖𝑖𝑖ℎ                      

Φ𝑡𝑡  =  Φ𝑖𝑖  + (V𝑖𝑖ℎ  ∗  Φ𝑡𝑡𝑖𝑖ℎ)  

 

where 

Φ𝑖𝑖 = Effective porosity (decimal) 

Φ𝑡𝑡𝑖𝑖ℎ = Total shale porosity (decimal) 

δ = Field-dependent constant which is between 0.5 and 1.0 (I took 0.7)  

Φ𝑡𝑡 = Total porosity (decimal) 

V𝑖𝑖ℎ  = Larianov equation for tertiary (young) rocks (decimal) 

Φ𝑑𝑑𝑖𝑖ℎ = Shale porosity from density porosity (Estimated from nearby overlying shale at 

1925.3 m) (decimal) 

Φ𝑖𝑖𝑖𝑖ℎ = Shale porosity from neutron porosity (Estimated from nearby overlying shale at 

1925.3 m) (decimal) 
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B.3 Water Saturation Models 

Effective water saturation of the gas saturated shaly sand Mangaa C-1 formation was 

estimated by the Archie and non-Archie shaly sand models, Simandoux, Schlumberger, 

Indonesia, and Dual-Water in order to get rid of the effects of clay conductivity. 

 

B.3.1 Archie Water Saturation 

Archie (Archie, 1942) equation was calculated without adding a clay conductivity factor. 

𝑆𝑆𝑆𝑆𝑡𝑡𝑎𝑎𝑖𝑖ℎ𝑖𝑖𝑖𝑖 = � 𝑎𝑎 ∗ 𝑅𝑅𝑆𝑆
Φ𝑒𝑒𝑚𝑚 ∗ Rt 

𝑛𝑛
 

 

where 

Swarchie = Archie water saturation (decimal)  

Φe = Effective porosity (decimal) 

Rw = Resistivity of the formation water (From the Pickett plot) (ohm-m) 

Rt = True resistivity of the formation (Calibrated from LLD log) (ohm-m) 

m = Cementation exponent (I used “2.23” from the Pickett plot)) 

n = Saturation exponent (I used “2”) 

a = Tortuosity exponent (I used “1”) 

 

B.3.2 Simandoux Water Saturation 

Simandoux (Simandoux, 1963) equation includes Rsh and Vsh parameters in order to 

decrease the shale effect on the water saturation results. 
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𝑆𝑆𝑆𝑆𝑒𝑒𝑖𝑖𝑖𝑖𝑚𝑚 = 0.4∗𝑅𝑅𝑆𝑆
Φ𝑒𝑒𝑚𝑚 ∗ (�(𝑉𝑉𝑉𝑉ℎ𝑅𝑅𝑉𝑉ℎ)

2
∗ (5∗Φ𝑒𝑒𝑚𝑚

𝑅𝑅𝑡𝑡∗𝑅𝑅𝑆𝑆)− 𝑉𝑉𝑉𝑉ℎ
𝑅𝑅𝑉𝑉ℎ) 

 

where 

Swesim = Simandoux effective water saturation (decimal) 

VSH = Larianov equation for tertiary (young) rocks (decimal) 

Rsh = Shale resistivity (Estimated from nearby overlying shale at 1925.3 m) (ohm-m) 

Φe = Effective porosity (decimal) 

Rw = Resistivity of the formation water (From the Pickett plot) (ohm-m) 

Rt = True resistivity of the formation (ohm-m) 

m = Cementation exponent (I used “2.23” from the Pickett plot)) 

 

B.3.3 Schlumberger Water Saturation 

Schlumberger (Schlumberger, 1972) model is (1-Vsh) added version of the Simandoux 

equation to make the shale volume more dominant on the equation. 

 

𝑆𝑆𝑆𝑆𝑒𝑒𝑖𝑖𝑖𝑖ℎ = 0.4∗(1−𝑉𝑉𝑉𝑉ℎ)∗𝑅𝑅𝑆𝑆
Φ𝑒𝑒𝑚𝑚 ∗ (�(𝑉𝑉𝑉𝑉ℎ𝑅𝑅𝑉𝑉ℎ)

2
∗ ( 5∗Φ𝑒𝑒𝑚𝑚

𝑅𝑅𝑡𝑡∗(1−𝑉𝑉𝑉𝑉ℎ)∗𝑅𝑅𝑆𝑆)− 𝑉𝑉𝑉𝑉ℎ
𝑅𝑅𝑉𝑉ℎ) 

where 

Swesch = Schlumberger effective water saturation (decimal) 

VSH = Larianov equation for tertiary (young) rocks (decimal) 

Rsh = Shale Resistivity (Estimated from nearby overlying shale at 1925.3 m) (ohm-m) 

Φe = Effective porosity (decimal) 
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Rw = Resistivity of the formation water (From the Pickett plot) (ohm-m) 

Rt = True resistivity of the formation (ohm-m) 

m= Cementation exponent (I used “2.23” from the Pickett plot)) 

 

B.3.4 Indonesia Water Saturation 

Indonesia (Poupon and Leveaux, 1971) water model was also used in this study by 

considering the shale resistivity and the shale volume in addition to standard parameters, 

cementation component, tortuosity component, true formation resistivity, and water 

resistivity. 

𝑆𝑆𝑆𝑆𝑒𝑒𝑖𝑖𝑖𝑖𝑑𝑑 =
1
𝑅𝑅𝑡𝑡

((𝑉𝑉𝑉𝑉ℎ
(1−𝑉𝑉𝑖𝑖ℎ2 )

√𝑅𝑅𝑉𝑉ℎ
) + (� Φe𝑚𝑚

𝑎𝑎 ∗ 𝑅𝑅𝑆𝑆))

 

 

where 

SweInd = Indonesia effective water saturation (decimal) 

m = Cementation exponent (I used “2.23” from the Pickett plot))  

Rt = True resistivity of the formation (ohm-m) 

VSH = Larianov equation for the tertiary (young) rocks (decimal) 

Rsh = Shale resistivity (Estimated from nearby overlying shale at 1925.3 m) (ohm-m) 

Φe = Effective porosity (decimal) 

Rw = Resistivity of the formation water (From the Pickett plot) (ohm-m) 

a = Tortuosity exponent (I used “1”) 
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B.3.5 Dual-Water Saturation 

Dual-Water model (Dewan, 1983) was used in order to estimate the clay bound, effective 

and total water saturation. 

  

𝑆𝑆𝑆𝑆 = 𝑉𝑉𝑆𝑆𝑆𝑆 ∗ (Φtsh
Φt
� )  

𝑅𝑅𝑆𝑆 = 𝑅𝑅𝑉𝑉ℎ ∗ (Φtsh2) 

𝑅𝑅𝑆𝑆𝑎𝑎 = 𝑅𝑅𝑡𝑡 ∗ (Φt2) 

𝑅𝑅𝑆𝑆 = 𝑅𝑅𝑅𝑅𝑅𝑅 ∗ (Φt2) or (Read from the Pickett plot.) 

Swdual = 𝑆𝑆 + �b2 + (Rw/Rwa)  

b = S𝑆𝑆 ∗
(1 − 𝑅𝑅𝑤𝑤

𝑅𝑅𝑏𝑏� )

2
 

Swedual =
(Swdual − Sb)

(1 − Sb)
 

 

where 

Swedual = Dual-Water effective water saturation (decimal) 

Swdual = Dual-Water total water saturation (decimal) 

Sb = Clay bound water saturation (decimal) 

Vsh = Larianov equation for tertiary (young) rocks (decimal) 

Φtsh = Total shale porosity (decimal) 

Φt = Total porosity (decimal) 

Rb = Resistivity of clay bound water (ohm-m) 

Rsh = Shale resistivity (Estimated from nearby overlying shale at 1925.3 m) (ohm-m) 
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Rwa = Apparent resistivity of the formation water of the shaly sand reservoir (ohm-m) 

Rt = True resistivity of the formation (Read from the logs) (ohm-m) 

Rw = Calculated resistivity of the water at nearby clean water formation or read from the 

Pickett plot (ohm-m) 

Rcl = Resistivity of nearby clean water formation (ohm-m) 

 

Appendix C: Bulk Volume Water and Flow Zone Indicator 

C.1 Bulk Volume Water and Bulk Volume Water Irreducible 

Bulk volume water was determined from the effective water saturation and the effective 

porosity. 

 

BVW = Swe ∗  Φe 

 

where 

BVW = Bulk volume water (decimal) 

Swe = Effective water saturation (decimal) 

Φe = Effective porosity (decimal) 

 

At irreducible water saturation, BVW gives the lowest values and was called as “Bulk 

Volume Water Irreducible (BVI)”. BVI should be constant or nearly constant for the same 

lithology and grain size at irreducible water saturation (Asquith, 1985). 

BVI = Swi ∗  Φe 
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where 

BVI = Bulk volume water irreducible (decimal)  

Swi = Irreducible water saturation (decimal) 

Φe = Effective porosity (decimal) 

 

C.2   Grain size from Bulk Volume Water 

The mean grain size of the formation might be determined by the bulk volume water. I 

created the following equation from the chart (Asquith, 1985) showing the grain size 

classification with the bulk volume water. 

 

𝑇𝑇ℎ𝑒𝑒 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚 𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔𝑚𝑚 𝑉𝑉𝑔𝑔𝑠𝑠𝑒𝑒 (𝑚𝑚𝑚𝑚) = 0.0002 ∗ 𝐵𝐵𝑉𝑉𝐵𝐵−2.154           (R2= 0.994) 

 

where 

       BVW = Bulk volume water (decimal) 
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Figure C-1 The mean grain size determination from bulk volume of water using the table 
created by Asquith (1985). 
 

Appendix D: Permeability Calculations 

D.1 Permeability Calculations 

There are four different permeability models used in this study which use the irreducible 

water saturation and effective porosity.  

 

D.1.1 Timur Absolute Permeability 

Wyllie and Rose (1950) created a generalized equation to estimate the intrinsic 

permeability of the rocks by using the effective porosity and the irreducible water 

saturation. One of the most common formula using the Wyllie-Rose equation is Timur 

model. 

Mean Grain size = 0.0002*BVW-2.154
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0

0.2

0.4

0.6

0.8

1

1.2

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

T
he

 m
ea

n 
gr

ai
n 

si
ze

 (m
ill

im
et

er
s)

Bulk Volume Water (BVW)

The mean grain size determination from Bulk Volume 
of Water



 

83 
 

Timur (1968) used 155 sandstone cores of the different oil areas in the USA and estimated 

the permeability of the rocks for the medium gravity oil at laboratory studies. Timur 

permeability model uses the Wyllie-Rose equation with three constants. The constants of 

this permeability model are called a, b, and c. This equation is only valid for the 

formations at irreducible water saturation.  

 

Timur permeability is a laboratory measurement and give good results for only oil fields. 

According to the Dewan’s book (Dewan, J. T., 1983), the results of the empirical 

permeability models using the Wyllie-Rose equation must be corrected for the gas 

reservoirs. Multiplying the results of the permeability models for medium gravity oil 

fields by the gas density (Assumed to be 0.1 g/cm3) will give better results for the gas 

reservoirs (Dewan, J. T., 1983). Therefore, except the Morris-Biggs gas equation which 

is suitable for the gas reservoirs, I used the gas density to modify the medium gravity oil 

models, Timur, Coates-Denoo, and Coates-Dumanoir models 

. 

𝐾𝐾𝑇𝑇𝐼𝐼𝑇𝑇𝑇𝑇𝑖𝑖𝑇𝑇 = (100 ∗  Φe
2.25

𝑆𝑆𝑤𝑤𝑖𝑖
)2      for medium gravity oil 

𝐾𝐾𝑇𝑇𝐼𝐼𝑇𝑇 = 𝐾𝐾𝑇𝑇𝐼𝐼𝑇𝑇𝑇𝑇𝑖𝑖𝑇𝑇 ∗  𝜌𝜌𝑔𝑔   for gas  

 

where 

KT IMoil = Timur absolute permeability for oil (millidarcies) 

KT IM = Timur gas absolute permeability (millidarcies) 

Φe = Effective porosity (decimal) 
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Swi = Irreducible water saturation of the formation of the interest (decimal) 

 𝜌𝜌𝑔𝑔 = Gas density (Assumed to be 0.1 g/cm3) (g/cm3) 

  

D.1.2 Morris-Biggs Gas Absolute Permeability 

Another permeability model is Morris-Biggs Gas equation. Morris and Biggs (1967) 

presented the permeability equations for both oil and gas reservoirs by using the Wyllie-

Rose equation. Morris-Biggs gas permeability calculations in the fully gas saturated zone 

(at irreducible water saturation) are slightly different than the permeability determined 

from Timur model. Unlike Timur model, Morris-Biggs model gives the permeability 

equation for the gas fields and is not needed to be corrected.  

 

Tixier (1949) also created the permeability equation empirically by using the Wyllie-

Rose equation, but the permeability results were almost same with the permeability 

calculations of the Morris-Biggs gas equation. Therefore, I only displayed the 

permeability results from the Morris-Biggs equation, using the irreducible water 

saturation and the effective porosity of the gas reservoirs. 

 

𝐾𝐾𝑇𝑇𝑀𝑀𝐺𝐺 = 6241 ∗
Φ𝑒𝑒6

𝑆𝑆𝑆𝑆𝑔𝑔2
 

where 

KMBG = Morris − Biggs gas absolute permeability (millidarcies) 

Φe = Effective porosity (decimal) 

Swi = Irreducible water saturation of the formation of the interest (decimal) 
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D.1.3 Coates-Denoo Absolute Permeability 

Like Timur and Morris-Biggs models, Coates-Denoo (1981) model included the effective 

porosity and the irreducible water saturation to calculate the absolute permeability of the 

formation. Another similarity of the Coates-Denoo permeability to Timur model was that 

the absolute permeability must be corrected from medium gravity oil to gas by the gas 

density of the formation. Multiplication of the gas density with the Coates-Denoo 

absolute permeability will correspond to better absolute permeability predictions for the 

gas reservoir. 

 

𝐾𝐾𝑅𝑅𝐾𝐾𝑔𝑔𝑅𝑅 = (100 ∗ Φ𝑖𝑖
2.∗ (1−𝑆𝑆𝑤𝑤𝑖𝑖)
𝑆𝑆𝑤𝑤𝑖𝑖

)2    for medium gravity oil 

𝐾𝐾𝐶𝐶 = 𝐾𝐾𝐶𝐶𝑇𝑇𝑖𝑖𝑇𝑇 ∗ 𝜌𝜌𝑔𝑔 for gas 

 

where 

KCoil = Coates-Denoo absolute permeability for oil (millidarcies) 

KC = Coates-Denoo gas absolute permeability (millidarcies) 

Φe = Effective porosity (decimal) 

Swi = Irreducible water saturation of the formation of the interest (decimal) 

𝜌𝜌𝑔𝑔 = Gas density (Assumed to be 0.1 g/cm3) (g/cm3) 

 

D.1.4 Coates-Dumanoir Absolute Permeability 

Coates and Dumanoir (1974) presented an empirical relationship for the permeability 

estimations of the medium gravity oil reservoirs from the irreducible water saturation and 
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the effective porosity. Rather than only using the effective porosity and the irreducible 

water saturation, textural parameter (w) was included on the equation which was assumed 

to be equal to the cementation and saturation components. Similarly, multiplying the gas 

used for the medium gravity oil will density of the formation with the absolute 

permeability correspond to the true absolute permeability of the gas reservoir. 

  

𝐾𝐾𝐶𝐶𝐷𝐷𝑇𝑇𝑖𝑖𝑇𝑇 = (�300
𝑤𝑤4 � ∗ (Φ𝑖𝑖

𝑤𝑤

𝑆𝑆𝑤𝑤𝑖𝑖𝑤𝑤
))2     for medium gravity oil 

𝐾𝐾𝐶𝐶𝐷𝐷 = 𝐾𝐾𝐶𝐶𝐷𝐷𝑇𝑇𝑖𝑖𝑇𝑇 ∗ 𝜌𝜌𝑔𝑔   for gas 

where 

KCDoil = Coates − Dumanoir absolute permeability for oil (millidarcies) 

KCD = Coates − Dumanoir gas absolute permeability (millidarcies) 

Φe = Effective porosity (decimal) 

Swi = Irreducible water saturation of the formation of the interest (decimal) 

w = Textural parameter ~ m (cementation exponent) ~ n (saturation exponent) (I used 

2.23 for “w”) 

𝜌𝜌𝑔𝑔 = Gas density (Assumed to be 0.1 g/cm3) (g/cm3) 

 

D.2 Multi-linear Regression Absolute Permeability 

I finally used multi-linear regression to create the permeability equation from the 

conventional well logs for the Mangaa C-1 gas formation in Taranaki basin. To apply the 

multi-linear regression, Timur gas permeability with gamma ray, true resistivity, and 

density logs were used because these three logs showed the highest influence on the log-
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derived permeability results. Created regression equation is not valid for quite low 

permeability zones of the gas reservoir and gave negative values, but the rest of the multi-

linear regression permeability results of the formation were pretty similar to the log-

derived permeability results. 

 

I used the multi-linear regression equation created for the Mangaa C-1 gas saturated 

formation. 

 

𝐾𝐾𝑚𝑚𝑚𝑚𝑇𝑇𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖ℎ = (1.88462726 − 0.69889826 ∗ 𝐹𝐹𝐹𝐹𝐹𝐹 +  0.0033509 ∗ 𝑅𝑅𝑡𝑡 − 0.00514935 ∗

𝐺𝐺𝑅𝑅𝐺𝐺 (𝐹𝐹𝑎𝑎𝑔𝑔𝑅𝑅𝐷𝐷) (R2 = 0.88663) 

 

where 

FDC = Bulk density log (g/cm3) 

Rt = True resistivity of the formation (ohm-m) 

GRI = Gamma-ray log (API) 

 

 

D.3 Air Permeability from Swanson equation 

Air permeability is the permeability of the rocks measured at laboratory conditions. 

Klinkenberg (1941) determined that due to the gas slippage effects, the permeability 

measured at laboratory conditions changes with the fluid types (different gas types) 

especially at low mean pressures, but the permeability is the property of a rock and cannot 

be different with different fluids.  
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At laboratories, gas or liquid might be used to examine the permeability of the rocks. 

Unlike the liquid, gas molecules have finite velocity on the pore walls, which causes 

higher flow rate (Klinkenberg, 1941; Schön, 2004). Then, due the gas slippage, air 

permeability is overestimated in comparison to liquid permeability which has zero 

velocity on the pore walls (laminar flow) (Klinkenberg, 1941; Schön, 2004).  

 

I assumed that the absolute permeability of the gas reservoir found by Timur, Morris-

Biggs, Coates-Denoo, and Coates-Dumanoir models was the true absolute permeability 

of gas reservoir and was needed to be converted to the uncorrected air permeability to use 

the empirical R35 correlations for pore type classifications of the formation.  

 

To convert our true absolute permeability results to the uncorrected air permeability 

(uncorrected for Klinkenberg gas slippage effects), I used Swanson empirical equation. 

Swanson (1981) generated the empirical relationships to estimate the air permeability and 

brine permeability from the laboratory studies. These empirical equations are correlated 

to establish a relationship to convert the brine permeability to the uncorrected air 

permeability (Swanson, 1981). Instead of the brine permeability in the equation, I used 

the absolute permeability of gas reservoir estimated by the empirical models to convert 

to the uncorrected air permeability in order to use them on Winland’s equation. In other 

words, liquid permeability (no Klinkenberg effect) was thought to be true absolute 

permeability of core and might be assumed to be equal to the estimated absolute 

permeability of the gas reservoir in this study. 

 

https://www.google.com/search?tbo=p&tbm=bks&q=inauthor:%22J%C3%BCrgen+Sch%C3%B6n%22&source=gbs_metadata_r&cad=4
https://www.google.com/search?tbo=p&tbm=bks&q=inauthor:%22J%C3%BCrgen+Sch%C3%B6n%22&source=gbs_metadata_r&cad=4
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𝐾𝐾𝑎𝑎𝑔𝑔𝑔𝑔 = (
𝐾𝐾𝑏𝑏𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖
0.292

)(1 1.186� ) 

 

where 

Kair = Uncorrected air permeability (millidarcies) 

Kbrine = Liquid permeability (It is assumed to be the true absolute permeability) 

(millidarcies) 

 

D.4 Permeability and PEF log crossplot 

Permeability results were plotted with photo-electric factor log because in the diagenetic 

zones , if the diagenesis is detrimental, higher PEF values will mean less stable minerals 

(quartz) and more unstable minerals (feldspar minerals) for clastic reservoirs. According 

to the Bowen’s reaction series, unstable minerals (feldspar minerals) tend to alter more 

easily with diagenesis process to transform to more stable minerals (quartz). Therefore, I 

knew that quartz has quite lower PEF values than feldspar minerals (plagioclase or K-

feldspar), calcite, dolomite, most of the clay minerals, and heavy minerals, higher PEF 

values will decrease the permeability of the formation because of the diagenetic feldspar 

minerals and precipitating authigenic clay cements which are the resultant products of the 

diagenetic feldspar minerals. Therefore, in this study, the PEF log which fluid phases do 

not have a big impact on will be a powerful tool to compare the permeability of the 

formation which is the property of rocks. 
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Figure D-1 Karewa-1 well (Zones A to H). PEF log and Timur permeability (Ktsch) found 
by the Schlumberger water saturation results. The diagenetic minerals (displaying higher 
PEF values) in the zones (Zones B, D, F, and H) decreased the permeability. 

 

 
Appendix E: Flow Unit Characterizations 

E.1 Flow Zone Indicator (FZI) and Reservoir Quality Index (RQI) 

Flow zone indicator is a good parameter to identify different reservoir flow units at 

irreducible water saturation and can be estimated by the ratio of the reservoir quality index 

and normalized porosity found by Amaefule et al. (1993).  

𝑅𝑅𝑅𝑅𝐺𝐺 = 0.0314 ∗ �
𝐾𝐾
Φe

 

Φz =
Φe

1 −Φe
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𝐹𝐹𝐹𝐹𝐺𝐺 =
𝑅𝑅𝑅𝑅𝐺𝐺
Φ𝑍𝑍

 

where 

RQI = Reservoir quality index (micron) 

K = Absolute permeability (millidarcies) 

Φe = Effective porosity (decimal) 

Φz = Pore volume to total rock volume (decimal) 

FZI = Flow zone indicator (micron) 

 

E.2 R35 (Winland) empirical correlation 

Winland created an equation by using core samples of clastic and carbonate rocks in order 

to identify the pore throat size at %35 mercury saturation by mercury injection capillary 

pressure test. Winland included uncorrected core permeability and core porosity to 

estimate the port size. 

𝑅𝑅35 =  10(0.732+0.588∗log(𝐾𝐾𝑡𝑡𝑖𝑖𝑎𝑎)−0.864∗log(𝛷𝛷𝑖𝑖𝑇𝑇𝑎𝑎𝑖𝑖)) 

where 

R35 = Port size (Pore throat size corresponding to 35% mercury saturation measured by 

mercury injection capillary pressure experiment) (micron) 

Kair = Uncorrected air permeability (millidarcies) 

𝛷𝛷𝑅𝑅𝐾𝐾𝑔𝑔𝑒𝑒 = Core porosity (percent) 
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E.3 R35 (Pittman) empirical correlation 

Pittman (1992) used 202 sandstone samples of fourteen formations between Ordovician 

and Tertiary ages and applied multi-linear regression analyses by considering Winland’s 

work to estimate the pore throat radii at different mercury saturation values. The best 

results were observed at 35% mercury saturation. Like Winland’s equation, Pittman’s 

correlation used the air permeability and the porosity to estimate the various rocks with 

different pore throat size (Pittman, 1992). By using the dominant pore throat size at 35% 

mercury saturation, the different flow units, rock types, and diagenetic zones were 

attempted to be observed in Pittman’s plot. 

  

Pittman’s port size results were almost identical to the results calculated by Winland’s 

correlation. Pore throat size at %35 mercury saturation calculated by Pittman’s equation 

give slightly lower values than the Winland’s results. 

 

𝑅𝑅35 =  10(0.255+0.565∗log(𝐾𝐾𝑡𝑡𝑖𝑖𝑎𝑎)−0.523∗log(𝛷𝛷𝑖𝑖𝑇𝑇𝑎𝑎𝑖𝑖)) 

where 

R35 = Port size (Pore throat radius corresponding to 35% mercury saturation measured 

by mercury injection capillary pressure experiment) (micron) 

Kair = Uncorrected air permeability (millidarcies) 

𝛷𝛷𝑅𝑅𝐾𝐾𝑔𝑔𝑒𝑒 = Core porosity (percent) 
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Figure E-1 Karewa-1 well (Zones A to H). Pittman (R35) plot. (a) Pore throat size at 35% 
mercury saturation (R35) from Timur air permeability (Ktairsch) (Linear lines). 
 

 

Figure E-2 Kahawai-1 well (Zone K and M). Pittman (R35) plot. (a) Pore throat size at 
35% mercury saturation (R35) from Timur air permeability (Ktairsch) (Linear lines). 
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