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Abstract

LOOP TRANSFORMATIONS FOR CLUSTERED VLIW ARCHITECTURES

by

YI QIAN

Advisor: Dr. Steven M. Carr

With increasing demands for performance by embedded systems, especially by digital signal

processing (DSP) applications, embedded processors must increase available instruction-

level parallelism (ILP) within significant constraints on power consumption and chip cost.

Unfortunately, supporting a large amount of ILP on a processor while maintaining a single

register file increases chip cost and potentially decreases overall performance due to increased

cycle time. To address this problem, some modern embedded processors partition the

register file into multiple low-ported register files, each directly connected with one or more

functional units. These functional unit/register file groups are called clusters.

Clustered VLIW (very long instruction word) architectures need extra copy oper-

ations or delays to transfer values among clusters. To take advantage of clustered archi-

tectures, the compiler must expose parallelism for maximal functional-unit utilization, and

schedule instructions to reduce intercluster communication overhead.

High-level loop transformations offer an excellent opportunity to enhance the abil-

ities of low-level optimizers to generate code for clustered architectures. This disserta-

tion investigates the effects of three loop transformations, i.e., loop fusion, loop unrolling,

and unroll-and-jam, on clustered VLIW architectures. The objective is to achieve high

performance with low communication overhead. This dissertation discusses the following

techniques:

Loop Fusion This research examines the impact of loop fusion on clustered architectures.

A metric based upon communication costs for guiding loop fusion is developed and

tested on DSP benchmarks.

Unroll-and-jam and Loop Unrolling A new method that integrates a communication

cost model with an integer-optimization problem is developed to determine unroll
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amounts for loop unrolling and unroll-and-jam automatically for a specific loop on a

specific architecture.

These techniques have been implemented and tested using DSP benchmarks on

simulated, clustered VLIW architectures and a real clustered, embedded processor, the TI

TMS320C64X. The results show that the new techniques achieve an average speedup of

1.72-1.89 on five different clustered architectures.
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Chapter 1

Introduction

Modern architectures achieve great performance through parallel technology. Par-

allelism ranges from fine-grained parallelism such as instruction-level parallelism(or ILP)

to coarse-grained parallelism such as process-level parallelism. ILP architectures, e.g., su-

perscalar and VLIW (very long instruction word), gain computation speedups via simul-

taneously executing multiple low-level instructions in different functional units. This relies

on complex hardware or advanced compilers to extract independent instructions from se-

quential code. In superscalar architectures, several dynamically scheduled instructions can

be issued in a single cycle, while in VLIW architectures, independent instructions, called

operations, are detected and grouped into a very long word instruction at compilation time

such that a multi-operation instruction can be issued in each cycle. Compiler techniques,

such as software pipelining and global instruction scheduling, have been proven necessary

methods to increase the degree of instruction-level parallelism in programs.

A high degree of ILP requires a large register file with a good number of read/write

ports to support simultaneous access to registers, because typically one write port and two

read ports are needed for each functional unit. Considering that the current architecture

techniques usually restrict the number of read/write ports to fewer than 20 in a single

register file, the number of functional units connected to a register file is limited [57].

Furthermore, an increase in the number of read/write ports may impede overall performance

due to the increased access time. As a result, supporting a high degree of ILP via a single

large register file becomes unrealizable and unprofitable.

The search for a high degree of ILP with low demands on register ports gives

rise to the introduction of clustered architectures. Clustered VLIW architectures partition
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a single register file into multiple small register files with a low number of ports, each of

which is associated with one or more functional units. Such functional unit/register file

groups are called clusters. Each functional unit has direct access to its local register file and

limited connection to remote register files. The overhead of clustered architectures comes

from the additional data transfers across clusters when a functional unit needs values from

other clusters. To take advantage of clustered VLIW architectures, the compiler must both

expose more parallelism for maximal functional-unit utilization, and schedule instructions

among clusters such that the overhead caused by intercluster communication is minimized.

Some of state-of-the-art embedded processors, in particular DSP chips (e.g., the

Texas Instruments TMS320C6x), have employed clustered VLIW architectures. Embedded

system applications typically are sensitive to memory usage, and energy consumption, as

well as performance. Therefore, sophisticated compiler techniques are needed to achieve

high performance while maintaining modest power consumption and code size on clustered

VLIW architectures.

Much recent work in compilation for clustered VLIW architectures has concen-

trated on methods to partition virtual registers amongst the target architecture’s clusters

effectively for software pipelined loops [4, 32, 48, 66]. Since it is commonly accepted that

general applications spend a large fraction of time in loops, high-level loop transformations

offer an excellent opportunity to enhance these partitioning schemes and greatly improve

performance.

This dissertation shows how to utilize loop transformations to reduce commu-

nication overhead and exploit good ILP for architectures with partitioned register files.

Particularly, the effect of three loop transformations, i.e., loop fusion, unroll-and-jam, and

loop unrolling, is investigated. New metrics based upon communication cost models are

developed to guide loop transformations. The experimentation shows the optimization al-

gorithms proposed in this dissertation are effective in enhancing software pipelining and

generating efficient code.

This dissertation consists of six chapters. Chapter 1 introduces the background

related to ILP architectures and compiler techniques for clustered VLIW machines and

summarizes the previous work. Chapter 2 gives an overview of the loop transformation

strategy used in this work. Chapter 3 discusses loop unrolling and unroll-and-jam to improve

ILP with low overhead. Chapter 4 addresses loop fusion to enhance parallelism on clustered

architectures. Chapter 5 reports the experimental results. Finally, Chapter 6 concludes and
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offers suggestions for future work.

1.1 Background

This section is devoted to presenting a foundation for understanding this disser-

tation. First, we describe the concept of dependence to aid in the discussion of the legality

and profitability of reordering transformations. Then, a measure of machine and loop per-

formance is introduced. Next, we outline the advantages and limitations of clustered VLIW

machines. Finally, compiler techniques for clustered architectures are presented.

1.1.1 Data Dependences

A transformation is legal (or safe) if the transformed code preserves the program

semantics. This research is based upon dependence analysis to determine the safety and

profitability of a transformation.

There is a dependence between two references R1 and R2 if both references access

the same memory location, and there is a feasible run-time execution path from R1 to R2

[40]. Dependence represents a relation between the references in a program. If a program

is executed in sequential order, dependences do not cause problems. Dependences impose

constraints on the execution order of instructions if the program is transformed to achieve

parallel execution. More specifically, only if the dependence information is detected and

preserved can the transformed program compute the same result as the original program.

For instance, a loop transformation that reorders the execution of statements in a loop is

legal if and only if the resulting loop satisfies the dependence constraints.

Data dependences can fall into three categories [40, 41]:

1. true dependence - the first reference stores into a location that is later used by the

second reference.

2. antidependence - the first reference reads from a location into which the second refer-

ence later stores.

3. output dependence - the two references write into the same location.

Program transformations must observe these dependences in order to preserve

the semantics of the original program. There exists another dependence, termed input
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dependence, that occurs when two references read from the same location. Reordering two

instructions with input dependences does not affect the meaning of the program. Input

dependences are, however, useful for detecting and improving data reuse.

Data dependences are usually represented by a data dependence graph (DDG)

where each node is a reference (or the statement that contains this reference) and the edges

represent the dependences between two nodes.

Dependences in loops can be further classified into two categories: loop independent

and loop carried [10]. A dependence is loop independent when control flows from the first

statement to the second within a single iteration of the loop. For example, the dependence

between two references to A(I) in the following loop is loop independent:

Do I = 1, N
A(I) = B(I) + X
C(I) = A(I)

ENDDO

Such a dependence exists on every iteration of the I-loop.

A dependence is loop-carried if control flows from the first statement to the sec-

ond crossing an iteration of the loop, as the dependence between A(I) and A(I-1) in the

following loop shows

DO I = 1, N
A(I) = B(I) + X
C(I) = A(I-1)

ENDDO

A(I) and A(I-1) will not refer to the same location unless the loop is iterated. Consider

another loop as follows:

DO I = 1, N
DO J = 1, N

A(I,J) = B(I,J) + X
C(I,J) = A(I-1,J)

ENDDO
ENDDO

the dependence from A(I,J) to A(I-1,J) exists when the outer loop is iterated. In this

case we say that the dependence is carried by the outer loop (I loop).
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A loop-independent dependence is preserved if the original statement order is

preserved. A loop-carried dependence, however, is strongly dependent upon the order in

which the loops are iterated, but independent of statement order within the loops.

Dependences in loops can be represented via distance vectors [42] or direction

vectors [65]. To define distance and direction vectors, a representation of a specific loop

iteration, termed iteration vector is first given. An iteration vector ~i is simply a vector

of values for the loop control variables. The set of iteration vectors corresponding to all

iterations of the loop nest is called the iteration space. Using iteration vectors, we can

define the distance vector and direction vector. If two iteration vectors ~i and ~j represent

the execution of two references that are contained in n common loops, then

the distance vector (or distance) d(i, j) between the references is defined as a vector of

length n, such that the kth component of the distance vector d(i, j)k is equal to
~jk − ~ik.

the direction vector D = (i, j) is defined as a vector of length n, such that the kth component

of the direction vector is

D(i, j)k =


<, if d(i, j)k > 0

>, if d(i, j)k < 0

=, if d(i, j)k = 0.

For instance, the distance vector between A(I,J) and A(I-1,J) in the previous

example is 〈1, 0〉, and the direction vector is 〈<,=〉. Goff et al. proposed a practical

dependence testing scheme for determining distance and direction vectors in [30].

The loop associated with the outermost nonzero direction (or distance) vector

entry is called the carrier of the dependence. If the value of the distance vector entry for

the dependence carrier is constant throughout the execution of the loop, the dependence is

called a consistent dependence; otherwise it is called an inconsistent dependence.

Data dependence analysis provides the information on the execution order con-

straints of operations in loops. To measure the performance of loops, the notion of balance,

described below, is used.
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1.1.2 Machine Balance and Loop Balance

Callahan et al. first introduced the notion of balance to estimate how efficiently a

given loop can be executed on a particular ILP machine [14].

A computer is balanced when it can operate in a steady state manner with both

memory accesses and floating-point operations being performed at peak speed. Machine

balance, βM , is defined as the rate at which operations can be fetched from memory, MM ,

compared to the rate at which floating-point operations (flops) can be performed, FM :

βM = max words/cycle = MM

max flops/cycle = FM

Similarly, balance for a loop L is defined as

βL = number of words accessed= ML

number of flops performed= FL
.

These two metrics give us a measure of the performance of a loop executed on a

particular machine. If βL > βM , the loop needs data at a higher rate than the memory

system can provide and idle computational cycles will exist. Such a loop is called a memory-

bound loop. If βL < βM , more memory operands can be delivered in a time unit than the

floating-point unit can process. In this case the loop is called a compute-bound loop. If

βL = βM , the loop is balanced and runs well on that machine.

1.1.3 ILP and Clustered VLIW Architectures

Parallel processing has emerged as a solution to the increasing demand for high

speed and low cost in today’s computer applications. Parallelism appears in various forms,

among them is instruction-level parallelism, a fine-grained parallelism. Unlike the coarse-

grained parallel processing which allows large sections of code to be run in parallel on

independent processors, ILP utilizes the parallel execution of the lowest level computer

operations to increase performance. ILP architectures gain computation speedup at a cost

of increased demand on register resources. Some state-of-art embedded system processors

use clustering to simplify hardware design and support a high degree of ILP.

This section introduces ILP architectures and discusses advantages and limitations

of clustered VLIWs.
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1.1.3.1 Introduction to ILP

In ILP architectures, multiple instruction-level operations, like additions, multipli-

cations, loads, etc., are issued to multiple functional units during each machine cycle [53].

Consider, for example, the user-level code in Figure 1.1 for which the sequential low-level

operations are shown in Figure 1.2:

e = a * b + b / 2
f = c - d + b
g = e + f

Figure 1.1: User Level Code

Suppose each addition or subtraction operation takes one cycle to complete, and

each multiplication or division operation takes four cycles. If these operations were executed

in sequential order, then a total of 12 cycles would be needed. However, the sequential

execution is not necessary if the architecture provides multiple functional units. Operations

that do not depend on one another can be executed simultaneously in different functional

units. The first, the second, and the fourth operations in this example have no dependences;

therefore, their execution can be overlapped. This is also true for the third and the fifth

operations. The third operation must follow the first two operations, since it needs the values

calculated by the first two operations. Thus by executing some operations in parallel, the

total cycles can be reduced by half (see Figure 1.3).

The use of ILP is transparent to the programmers, who do not have to change

their algorithms or programs. This has presented challenges to processors and compilers

which are expected to be in charge of exploiting ILP available for the target architecture.

r1 = a * b
r2 = b / 2
e = r1 + r2
r3 = c -d
f = r3 + b
g = e + f

Figure 1.2: Sequential Low-level Code
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r1 = a * b r2 = b / 2 r3 = c - d
nop nop nop
nop nop nop
nop nop nop
e = r1 + r2 f = r3 + b
g = e + f

Figure 1.3: VLIW Code

1.1.3.2 Superscalar and VLIW

Two types of ILP architectures are superscalar and VLIW, representing two meth-

ods of scheduling parallel instructions through hardware and software solutions. Both su-

perscalar and VLIW provide multiple functional units and aim to speed up computation

by making efficient use of concurrently working functional units. The differences reside in

how the instructions are constructed and how the dependences are detected. In superscalar

processors, specialized hardware is used to detect dependences dynamically and determine

the issuing order. Parallelism in superscalar processors comes from issuing multiple short,

RISC-like instructions in a cycle. On the other hand, VLIW machines rely on compilers

to extract parallelism and generate a stream of long word instructions, each consisting of

multiple fields that specify the operations for each functional unit. When no operation is

found for a functional unit, a nop operation is explicitly inserted. Figure 1.3 shows the

VLIW code of Figure 1.1 on a VLIW processor with 3 functional units.

The dynamic features of a superscalar processor leads to unpredictable execution

time and increased power consumption, making it a poor candidate for DSP applications.

The execution time in superscalar processors may vary during different executions of a

program based on the accessed data [26]. For example, the processor may select independent

instructions to be executed in parallel one way the first time a program is executed, but

issue the parallel instructions in another way the next time the same program is executed.

This raises difficulties for programmers, since programmers of real-time applications must

predict how long it will take a piece of code to complete. Measuring execution time using

the worst-case implementation is a solution; however, it may waste machine resources and

hence cause performance degradation. In addition, complicated hardware in superscalar

processors further increases constraints of power consumption of DSP applications. As a
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result most commercial DSP chips (e.g., TI’s TMS320C6000 and Starcore’s SC140) have

adopted VLIW architectures.

1.1.3.3 Clustered VLIW Architectures

To perform efficiently, superscalar and VLIW architectures depend on activating

as many simultaneous functional units as possible. The compiler techniques described

in Section 1.1.4 have been used to extract a high level of ILP from programs run on a

VLIW machine. However a high degree of parallelism gives rise to a high demand on

machine resources, such as registers, read/write ports, and buses, which in turn may impede

performance. Consider an ideal VLIW machine where multiple functional units share the

use of a common register file, typically a functional unit must, in a single cycle, be able to

read two operands from the register and write the result to the register. To support a high

degree of parallelism, multiple functional units have to be satisfied with concurrent accesses

to a good number of read/write ports in each cycle. From a technological perspective, it is

impractical or inconvenient to build a single register file with an excessive number of ports.

Furthermore, Capitanio et al., showed via their experiments that the access time is roughly

proportional to the logarithm of the number of output ports [15]. As a result, the overall

performance may be hampered as the number of functional units increases. This means

that the number of functional units in an ILP machine is limited due to the constraints on

the chip space and access time.

Many state-of-art DSP architectures have utilized clustering as a solution to achieve

a high degree of ILP as well as a high clock rate. In clustered VLIW machines, the register

file is partitioned into several separate register files with a small number of read/write ports.

Each register file is grouped with one or more functional units such that a functional unit

has direct access to the local register file. These register file/functional units groups are

called clusters. For example, TI’s TMS320C64x has two register files, each associated with

four functional units, as shown in Figure 1.4 [60]. Thus each register file only needs to

support 12 ports.

A mechanism must be provided to enable a functional unit to access values residing

in other register files. One possible approach is to use an interconnection network that

connects each functional unit to each register file. This method provides a fast means to

access data in the remote clusters, but is not feasible for a large number of functional units
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Program Memory
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Figure 1.4: Clustered VLIW DSP: The TMS320C64x
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when complexity and cost are taken into account. An alternative approach is to transfer

data among clusters via explicit value copy operations, moving values through a data bus

shared by all functional units. In this case, it is the compiler’s job to schedule instructions

among clusters and insert value copy operations when needed. These copy operations

require extra execution time and hardware resources, and, thus, may degrade performance

over the ideal but not realizable VLIW architectures. The goal of a compiler is to minimize

the overhead caused by additional copy operations, while maintaining a high degree of ILP.

To gain the best performance, the compiler must trade off between two scheduling schemes:

the distribution of operations among all available functional units to obtain the maximum

parallelism and the use of as fewer clusters as possible in order to minimize intercluster

communication overhead.

1.1.4 Compiler Techniques for Clustered VLIWs

Since instruction parallelism in a VLIW machine is completely determined at com-

pilation time, the compiler plays a very important role in performance. Two of the main

tasks of a clustered VLIW complier are instruction scheduling and register partitioning. In

the instruction scheduling phase, the compiler reorders the execution of machine operations

to exploit parallelism (Section 1.1.4.1). Particularly a technique termed software pipelining

has been used to enhance parallelism of loops (Section 1.1.4.2). In the register partition-

ing phase, the values are spread among clusters to achieve both maximum parallelism and

minimum intercluster communication (Section 1.1.4.3).

High-level transformations are effective ways to enhance the ability of a compiler

to produce high-quality code for clustered machines (Section 1.1.4.4). Some loop trans-

formations, e.g., scalar replacement, loop fusion, and unroll-and-jam, can be applied to

improve utilization of hardware resources in a single cluster. Others such as loop unrolling

and unroll-and-jam allow a high degree of intercluster parallelism to be achieved.

It is hard for a compiler to generate excellent code due to interaction of these

optimizations. Therefore, it is essential to study the effects of each individual technique as

well as the tradeoff that must be made when using multiple optimizing techniques in order

to maximize the overall benefit.
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1.1.4.1 Instruction Scheduling

The compiler rearranges the ordering of machine operations in order to effectively

use an ILP architecture’s parallelism. This technique is known as instruction scheduling.

Building an optimal scheduling of instructions has been proven to be a NP-complete problem

[23] and several scheduling methods have been developed to generate suboptimal code.

List scheduling is the most popular scheduling technique to increase parallelism

within a single basic block1 [28]. List scheduling iteratively selects an operation from a

list of ready-to-execute operations and schedules it if there exists no resource conflicts. An

operation is ready-to-execute if it is dependence free (when all source operands have valid

values). One or more heuristics can be used to determine the priorities for each operation

and to break ties when several operations have the same priority.

However, basic block scheduling, or local scheduling, cannot extract sufficient par-

allelism to feed ILP processors with a large number of functional units. It has been shown

that the average number of parallel operations that are restricted by true dependences in a

basic block ranges from one to three, indicating the potential speedup of an ILP processor

over a conventional processor is two [42, 44, 36, 62]. There are two means by which we

can achieve a higher degree of ILP: software pipelining and global scheduling. Software

pipelining exploits parallelism in loops, while global scheduling extracts as many indepen-

dent operations as possible from code in multiple basic blocks. Trace scheduling [27] and

dominator-path scheduling [58] are two global scheduling techniques. Trace scheduling iter-

atively selects the most frequently executed path from the unscheduled code of a program

(such a path is called a trace), and schedules it as though it were a single block. Dominator-

path scheduling performs scheduling on a group of basic blocks based upon the dominator
2 relation. Unlike most global scheduling methods, dominator-path scheduling does not

require copies of operations to preserve the program semantics. Other global scheduling

techniques are described in [3], [11], and [31]. Local scheduling is simple to apply, while

global scheduling is more effective at using available parallelism in that it schedules instruc-

tions beyond the block boundaries.
1A basic block is a single entrance, a single exit sequence of operations that can have a branch only at

the bottom.
2A block B1 dominates block B2 if and only if every path from the program entry to B2 contains B1.
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1.1.4.2 Software Pipelining

Software Pipelining is a loop transformation technique to achieve instruction-level

parallelism [5, 45, 52]. Software pipelining gets its name from its similarity with hardware

pipelining, where the execution of different instructions is overlapped. In software pipelining

the execution of different loop iterations can be overlapped.

A simple example to illustrate software pipelining is shown in Figure 1.5. Suppose

the code is run on a VLIW machine with two functional units, and each operation takes one

cycle to complete. In this figure, we use the convention that Xm is the version of statement

X on the mth iteration. The simple local scheduling can not schedule two additions in the

same cycle due to the true dependence between them. Thus, up to 200 (2×100 = 200) cycles

are necessary to complete the loop. However parallelism can be exploited when we find that

A2 can actually follow the execution of A1 immediately and be run at the same cycle with

B1 (as shown in the second row in Figure 1.5(b)). This pattern can be repeated such that

two operations (from two successive iterations) are started each cycle. The instructions of

a repeating pattern are called the kernel of the software pipelined loop. The pipelined code

shown in Figure 1.5 (c) needs 101 (1 + 1× 99 + 1 = 101) cycles to complete, achieving the

approximate speedup of 2.

DO I = 1, 100 A1

A: A(I+1) = A(I) + 2 A2 B1

B: B(I) = A(I+1) + B(I) A3 B2

ENDDO ....
A100 B99

B100

(a) Original Loop Code (b) Schedule

A(2) = A(1)+2
DO I = 1, 99

A(I+2) = A(I+1) + 2 || B(I) = A(I+1) + B(I)
ENDDO
B(100) = A(101) + B(100)

(c) Software Pipelined Code

Figure 1.5: Software Pipelining Example
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The delay between the initiation of iterations of the pipelined loop is termed the

initiation interval, or II [5]. For instance, the II of the pipelined loop in Figure 1.5 is one.

The goal of software pipelining is to minimize II.

This work uses a software pipelining approach called modulo scheduling [52]. Mod-

ulo scheduling selects a schedule for one iteration of a loop such that, when that schedule is

repeated, no resource or dependence constraints are violated. To do this, modulo scheduling

starts by predicting the minimal number of instructions required between initiating execu-

tion of successive loop iterations, called the minimum initiation interval or MinII. When

determining the MinII, modulo scheduling considers two factors, the constraints from the

machine resources, termed the resource initiation interval or ResII , and the limitations from

the dependences between operations, termed the recurrence initiation interval or RecII. Re-

sII is the maximum number of instructions in a loop requiring a specific functional unit

resource, and RecII is the length of the longest recurrence in the data dependence graph

of a loop. The maximum of RecII and ResII imposes a lower bound on MinII. Once MinII

is determined, instruction scheduling attempts to find a schedule in MinII instructions. If

no such schedule can be found, then the II is incremented and software pipelining is tried

again. Otherwise, code to set up the software pipeline (prelude) and drain the pipeline

(postlude) are added.

1.1.4.3 Register Partitioning

A compiler in a clustered VLIW machine has to achieve both a maximum level

of parallelism by using aggressive instruction scheduling and a minimum amount of inter-

cluster communication by wisely distributing the data among partitioned register files. The

technique used in this work to partition registers for a clustered VLIW machine is called

register component graph partitioning [35]. This method builds a register component graph

(RCG) from an “ideal” instruction schedule, a schedule for an equivalent VLIW machine

with a single multi-ported register file. In the RCG, each node represents a register operand

(symbolic registers) and edges are added between the destination registers and the source

registers for each (atomic) operation. The graph is partitioned using a greedy heuristic

based upon the weights associated with the nodes and edges. The nodes that are connected

by an edge with a positive weight should be placed into the same register file; otherwise,

they should go in separate clusters. The edge and node weights are based upon schedul-
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ing freedom, parallelism and copy costs. After partitioning the RCG, the instructions are

re-scheduled based upon the register locations and copies are inserted when necessary.

To demonstrate the register component graph method of partitioning, consider the

following example:

DO I = 1, 2*N, 2
S1 = 0
S2 = 0
DO J = 1, N
B = X(J)
K = I + J
S1 = S1 + A(K) * B
S2 = S2 + A(K+1) * B

ENDDO
C(I) = S1
C(I+1) = S2

ENDDO

We software pipeline the inner loop, assuming a single cycle latency for addition, and a

two-cycle pipeline for multiplication. In addition, it is assumed that all memory accesses

are cache hits and also use a two-cycle pipeline. An ideal schedule for this inner loop in

a 2-wide VLIW machine is shown in Figure 1.6 ( The symbols represent registers). The

corresponding register component graph appears in Figure 1.7. The loop kernel requires 4

cycles to complete.3

mult t1, a1, b add k, i, j
mult t2, a2, b load a1, A(k++)
add s1, t1, s1 load b, X(j++)
add s2, t2, s2 load a2, A(k)

Figure 1.6: Ideal Schedule

One potential partitioning of the graph in Figure 1.7 (given the appropriate edge

and node weights) is the following:

P1 = {t1, a1, s1, b, i1, j1}, P2 = {t2, a2, s2, k, i2, j2}

3We assume the availability of a load command that allows for either pre-increment or post-increment of
the address operand.
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t1
i

s2

t2

a2a1

s1 b

j

k

Figure 1.7: Register Component Graph

mult t1, a1, b add k, i, j
load b, X(j++) add s2, t2, s2
copy k1, k load a2, A(++k)
load a1, A(k1) copy b2, b
add s1, t1, s1 mult t2, a2, b2

Figure 1.8: Partitioned Schedule

In the above partition we assume that i and j (read-only variables) are cloned to have one

copy in each of the clusters [43]. This assumption allows us to produce the partitioned

code of Figure 1.8, which requires 5 cycles for the loop kernel, a degradation of 20% over

the ideal schedule of Figure 1.6. The additional instructions are necessary to copy the value

of k from cluster 2 to cluster 1, where it is known as k1, and to copy the value of b from

cluster 1 to cluster 2, where it is known as b2.

1.1.4.4 Loop Transformations

Scalar Replacement Scalar replacement [14] transforms array references into sequences

of temporary scalar variables to achieve array element reuse. Frequently accessed array

references, after replaced with scalars, are likely to be assigned into registers; hence fewer

memory accesses are needed.

For example, in the loop
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DO I = 1, N
A(I) = 0;
DO J = 1, N

A(I) = A(I) + B(J) * C(I, J)
ENDDO

ENDDO

the reference to A(I) can be moved out of the inner loop and replaced with a scalar tem-

porary as follows:

DO I = 1, N
T = 0;
DO J = 1, N

T = T + B(J) * C(I, J)
ENDDO
A(I) = T

ENDDO

One memory load and one memory store are removed from the innermost loop via

scalar replacement. On most architectures the second loop would run faster.

Loop Fusion Loop fusion, or loop jamming [6], combines loop bodies of multiple count-

able loops that have the same loop limits into a single loop. Fusion can reduce loop overhead

and expose more instructions for local optimization. More importantly, loop fusion improves

data reuse by bringing references to the same memory location closer together. Consider

the loops

DO I = 1, N
A(I) = B(I) + C(I)

ENDDO
DO I = 1, N
X(I) = B(I) + A(I)

ENDDO

Fusing these loops would result in

DO I = 1, N
A(I) = B(I) + C(I)
X(I) = B(I) + A(I)

ENDDO

The fused loop can capture temporal reuse for the array A and B. Chapter 4 will investigate

the impact of loop fusion on clustered VLIW machines.
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Loop Unrolling and Unroll-and-jam Loop unrolling [6] is a transformation that un-

rolls the innermost loop to generate several copies of the loop body. Originally loop unrolling

was used to reduce inter-iteration overhead (such as testing for loop end and branching back

conditionally) and to enlarge loop body size to obtain a better schedule. For clustered VLIW

architectures loop unrolling can be employed to improve intercluster parallelism [54, 55].

Unroll-and-jam, or outer-loop unrolling [6], unrolls the outer loop and then fuses

the copies of the inner loops. Unroll-and-jam introduces more computations into an inner-

most loop body without a proportional increase in memory references; therefore, it is used

to balance the computation and memory-access requirements of a loop with the correspond-

ing resources provided by a specific machine. For example, applying unroll-and-jam to the

loop

DO I = 1, 2*N
DO J = 1, N
A(I,J) = A(I,J) + B(J) * C(J)

ENDDO
ENDDO

will produce

DO I = 1, 2*N, 2
DO J = 1, N
A(I,J) = A(I,J) + B(J) * C(J)
A(I+1,J) = A(I+1,J) + B(J) * C(J)

ENDDO
ENDDO

The original loop has three loads, one store, and two computations, giving a loop

balance of 2. After unroll-and-jam, the loop has six memory accesses and four computations,

reducing the loop balance to 1.5. This is because the data reuse involving B(J) and C(J),

which existed at the outer loop level, is moved to the innermost loop after unroll-and-jam.

Chapter 3 will discuss how to apply loop unrolling and unroll-and-jam for clustered VLIW

machines.

Loop Alignment Loop alignment [7] can convert the loop carried dependences into loop

independent dependences, so that the loop computes and uses values on the same iteration.

This converts loop-carried dependences into the loop-independent dependences. Alignment

is used to improve the parallelism and reduce the register pressure. For example, the

following loop has a loop carried dependence involving A(I):
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DO I = 1, N
A(I) = B(I) + C(I)
X(I) = A(I-1) * Q

ENDDO

Aligning A(I) and A(I-1) would result in a loop as follows:

X(1) = A(0) * Q
DO I = 1, N-1

A(I) = B(I) + C(I)
X(I+1) = A(I) * Q

ENDDO
A(N) = B(N) + C(N)

where the definition and use of A(I) are on the same iteration. The aligned loop carries no

dependences, and hence can be parallelized.

However, loop alignment is not sufficient to eliminate all loop-carried dependences.

A situation in which two or more dependences cannot be simultaneously aligned is called

an alignment conflict. Alignment conflict occurs when recurrences exist or multiple de-

pendences between the same statements have different distances. For instance, the two

dependences between the statements in the following loop have distances of 1 and 2 respec-

tively, making it impossible to align them at the same time.

DO I = 2, N
A(I) = B(I) + Q
C(I) = A(I-1) + A(I-2)

ENDDO

More details regarding how alignment conflicts affect loop transformations on clus-

tered architectures can be found in Chapter 2, Chapter 3, and Chapter 4.

1.2 Related Work

Several algorithms have been proposed to deal with instruction assignment and

scheduling at compilation time for clustered VLIW architectures. This section gives an

overview of previous work solving the partitioning problem and a summary of loop trans-

formations used for various architectures.
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1.2.1 Partitioning Problem

The first work regarding partitioning and scheduling code on a multiple register

file architecture can be traced back to 1985 when Ellis presented a bottom-up greedy (BUG)

algorithm in the bulldog compiler [25]. BUG schedules operations in a collection of basic

blocks termed a trace according to availability of functional units and registers, and inserts

value copy operations if necessary.

Capitanio et al. examined performance degradation for a clustered VLIW model

called the limited connectivity VLIW (LC-VLIW), and analyzed architectural tradeoffs for

LC-VLIW [15]. Their code partitioning method partitions a directed cyclic graph derived

from scheduled code for an ideal VLIW machine with a single, multi-ported register file.

Value copies are inserted into the partitioned code which is then compacted to generate

the final code. Their experimental results suggest good performance can be expected by

using partitioned register files with a small number of read/write ports, while limiting the

number of intercluster value copies.

Nystrom and Eichenberger proposed an iterative approach to generate effective

software pipelined loops for a clustered VLIW machine [48]. Their method consists of two

phases: cluster assignment and modulo scheduling. Failure of either phase will lead to

restarting the whole process with an increased initiation interval. The cluster assignment

phase avoids increasing II in two ways: first it predicts and reserves resources for future copy

operations to reduce the likelihood of assignment failure. Secondly it assigns instructions

of a recurrence into the same cluster whenever possible to prevent increasing RecII. Their

results show that a majority of loops scheduled by this algorithm maintain identical IIs for

clustered architectures compared with an equivalent architecture with a single register file.

Desoli exploited a heuristic method addressing instruction assignment for DSP

applications with large amounts of computation [22]. This method first pre-partitions in-

structions to clusters, trying to minimize the schedule length by gathering the nodes in

critical paths together. Then the initial partitions are mapped to clusters to get a balanced

load. Finally, the resulting code is refined by a simplified list scheduler to further reduce the

schedule length. This method proves simple and efficient for the DSP benchmarks which

have a large number of instructions and present symmetric patterns.

Some researchers direct their work to the techniques that integrate cluster parti-

tioning and instruction scheduling. Őzer et al. described a method called unified assign and
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schedule (UAS), meant to take into account the resource constraints imposed by a partial

schedule when a cluster assignment decision is made [49]. UAS employs list scheduler with

a modification that reflects copy latency. Each instruction with available source operands

is assigned to the cluster containing the highest priority. If no such cluster can be found,

UAS will try to schedule the current instruction into the next cycle. The authors stated

that UAS can utilize clusters more effectively and generate more compact schedules than

BUG.

Sànchez et al. designed another unified technique that performs cluster assignment

and instruction scheduling within one pass [54, 55]. The goal of their method is to find a

minimal II for a given loop. Therefore, they allocate dependent instructions, especially those

in a recurrence, in the same clusters as much as possible. In addition, because they observed

fewer dependences crossing loop iterations than dependences within the same iteration in

normal situations, they propose unrolling the loops and scheduling them when intercluster

communication is a limiting factor for computing II.

Hiser et al. developed a global greedy algorithm for partitioning register resources

on a clustered VLIW machine [32, 33]. They aimed to gain retargetability and flexibility in

their code generator. For this reason their method, unlike other approaches that are based

upon partitioning operation graphs, builds a data value graph whose nodes and edges are

associated with machine dependent details. This makes it easier to generate code for special-

purpose architectures such as DSP chips using an approach independent of scheduling and

allocation algorithms. They applied their method to software pipelined loops and entire

functions as well.

1.2.2 Loop Transformations

Loop transformations are important techniques for generating efficient code for a

variety of architectures. This section summarizes research that employs loop transforma-

tions to enhance code performance for pipelined machines and shared-memory architectures

as well as for improving memory performance.

1.2.2.1 Loop Fusion

Callahan, Cocke, and Kennedy proposed a metric based upon loop balance to

measure efficiency of pipelined architectures [14]. They investigated the impact of loop
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fusion on processor efficiency and found that the balance of a fused loop can be lowered by

fusing a memory-bound loop and a compute-bound loop.

Allen, Callahan, and Kennedy developed a greedy algorithm for transforming se-

quential programs into equivalent parallel programs that can be run on a shared-memory

machine [7]. Their method attempts to enhance the granularity of parallelism via loop

fusion. This greedy algorithm is task parallelism oriented and may not achieve maximum

loop-level parallelism. Later Kennedy and McKinley used a greedy fusion algorithm to

maximize loop-level parallelism while minimizing the synchronization overhead [38]. They

derived a fusion graph, where nodes represent loops and edges represent dependences be-

tween loops, from a program. Maximum parallelism granularity can be achieved by fusing

parallel components of a fusion graph when semantic constraints imposed by the original

program are satisfied.

These algorithms have only considered the cases when all loop headers are con-

formable, i.e., all loops have the same number of iterations and are all either parallel or

sequential loops. Kennedy and McKinley improved their work by presenting a more gen-

eral method called typed fusion [39]. This algorithm gives each loop a type based upon

its header(s), and fuses the loops with the same type if the dependence constraints are not

violated. The typed fusion algorithm takes O((N +E)T ) time, given a graph with N nodes,

E edges, and T types.

Loop fusion for reuse was discussed in [9] where an ad hoc greedy algorithm was

used without presenting a time bound. Later Kennedy and McKinley developed a weighted

greedy fusion algorithm using weights of edges to represent the amount of data reuse and

proved that the fusion problem for maximizing data locality is NP-hard [38]. In that paper,

they also proposed to characterize the data reuse problem as a maximum-flow/minimum-

cut problem that breaks the fusion-preventing edges to generate a minimum number of

groups such that loops in each group can be fused together to achieve the best reuse. The

complexity of the resulting algorithm is O(kEN log(N2/E) where k is the application times

of the maximum-flow algorithm.

Similar work was done by Gao et al. for improving reuse on uniprocessors [29].

Their work, which is also based on the maximum-flow/minimum-cut algorithm, takes a pre-

processing step to pre-assign some nodes to partitions based on fusion-preventing edges. By

doing so, they claim a good payoff in the running time can be obtained due to the reduced

size of the input graph to the maxflow algorithm.
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McKinley, Carr, and Tseng designed a loop cost model for their loop transforma-

tion framework to improve data locality [47]. Their algorithm groups the array references in

a given loop nest based upon their data reuse types, and computes the number of cache line

accesses using the cost model. The loop cost is used to guide loop optimizations including

loop fusion. Loop fusion is profitable if the fused loop has a lower cost than the sum of the

costs of the individual loops.

Kennedy proposed the first global fusion algorithm in [37]. This algorithm exam-

ines the entire program to determine collections of loops that can be fused together to obtain

optimal reuse. The algorithm takes O(N(E+N))time and is faster than the straightforward

greedy algorithm whose complexity is O(E(E +N)), when considering in practice N � E .

Although loop fusion has been studied extensively for improving both parallelism

and reuse, how to apply this transformation for architectures with multiple register files is

still unknown.

1.2.2.2 Scalar Replacement

Callahan, Cocke, and Kennedy proposed to eliminate redundant memory accesses

via scalar replacement for improving efficiency of pipelined architectures [14]. Callahan,

Carr, and Kennedy developed a general procedure for scalar replacement [13]. The algorithm

is based on a pruned dependence graph, in which each true or input dependence represents

an opportunity of an array element reuse. For each dependence (source, sink) in the graph,

r + 1 temporaries are used to hold the variables, where r is the number of loop iterations

between source and sink. The algorithm then inserts the necessary register-to-register

moves and initialization operations to keep the values of the temporaries correct. This

work was extended by Carr et al. to address scalar replacement in the presence of inner-

loop conditional control flow [20]. When computations involving subscripted variables are

available only on certain paths, scalar replacement is incorporated with partial redundancy

elimination to make computations available along each path. They reported integer-factor

improvement over code generated by a commercial compiler of conventional design.

Duesterwalk, Gupta, and Soffa developed a data flow framework for array refer-

ences that can support scalar replacement [24]. They modeled the flow of array references

in a loop that may contain conditionals and determined the iteration distance value be-

tween a definition of an array reference and its use. This information can be used to assign



CHAPTER 1. INTRODUCTION 24

subscripted variables to registers. Their work differs from [20] in that it does not perform

partial redundancy elimination.

1.2.2.3 Loop Unrolling and Unroll-and-jam

Loop unrolling has been shown an important technique for software pipelining

to generate high performance code [45, 46, 52]. Unrolling enables more instructions from

different iterations to be scheduled in the same cycle, and hence improves the resource

utilization.

The impact of loop unrolling and unroll-and-jam on loop balance was examined

in [14], where a method for updating the dependence graph after unrolling was developed.

loop unrolling has no effect on machine efficiency if costs associated with control flow and

address computation can be ignored when compared with floating-point computation. On

the other hand unroll-and-jam introduces more computation into an innermost loop body

without a proportional increase in memory references, and hence is a useful transformation

for improving loop balance. Unfortunately, performing unroll-and-jam automatically is not

straightforward. Excessive unroll-and-jamming may degrade the performance due to large

amount of memory spill caused by high register pressure. A number of studies have been

proposed to address this problem.

Carr and Kennedy investigated in depth the combination of scalar replacement

and unroll-and-jam for ILP architectures [21]. Their method applied unroll-and-jam au-

tomatically to a loop nest based upon dependence analysis. The objective is to balance

memory accesses and floating-point instructions and to satisfy register constraints on a spe-

cific target architecture. The experiment showed that a speedup of nearly 3 was attainable

on loop kernels. That work suggested that automatic techniques for loop transformations,

such as unroll-and-jam, can be not only possible but also extremely effective.

Another method for determining unroll factors was described in [19] by Carr and

Guan. That technique used a data reuse model and a linear algebra framework from [64]

to compute loop balance and register pressure. As a result, less memory space is needed

for storing a dependence graph, as compared to the dependence-based approach in [21].

Carr utilized unroll-and-jam for improving ILP in the context of cache performance

[17]. To do this, he modified the formula of computing loop balance so as to include the

effects of cache misses and software prefetching.
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Sarkar’s work on selection of unroll-and-jam amounts has concentrated on ILP

and instruction cache constraints [56]. The cost model in his work reflects the cost caused

by register spill and instruction-cache misses as well as the degree of ILP in an unroll-and-

jammed loop. An approach similar to computing ResII and RecII in modulo scheduling

was used to compute ILP benefit in his cost model. Sarkar also designed a code generation

algorithm to produce compact code for unrolled loops such that the resulting code includes

fewer remainder loops when the loop iteration count is not a multiply of the unroll amount.

He reported that this method obtained an average speedup of 1.08 in execution time on

seven benchmarks.

Carr et al. used unroll-and-jam to improve ILP available for software pipelining

[18]. Unroll-and-jammed loop can utilize the hardware resources more efficiently, allowing a

software pipelining algorithm to find a better schedule. Their experiment showed an average

improvement of 43% in II.

Huang et al. described a loop transformation scheme to enhance ILP for software

pipelined loops on partitioned register file architectures [34]. Their method uses unroll-and-

jam to increase parallelism within a single cluster, then unrolls the loop level with the fewest

alignment conflicts to improve parallelism across clusters. The transformed program, after

scalar replacement is applied to further improve register usage, is used to generate the final

code using the method described in [32]. In their experiments, the transformed loops obtain

27% and 20% II improvement over untransformed loops on a 8-wide machine with 2 clusters

and 4 clusters respectively. Their work is based upon an ad hoc approach; therefore, it does

not make use of parameters of a specific architectures to transform a specific loop.

1.2.2.4 Loop Alignment

In the automatic scheme developed by Allen et al. for exposing parallelism from

sequential programs, loop alignment was employed to create parallel loops by making loop-

carried dependences loop independent [7]. They designed a technique, termed code repli-

cation, to eliminate alignment conflicts in a loop. Code replication splits the source of an

alignment conflict into different statements such that the dependences in the alignment

conflict can be aligned separately. They proved that the combination of code replication,

loop alignment, and statement reordering is sufficient to eliminate all alignment conflicts in

a loop. However, to find a minimum amount of replication is a NP-hard problem.
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Chapter 2

Loop Transformation Strategy

This chapter begins with a brief description of the compiler organization used

in this work and then demonstrates the effects of high-level transformations on clustered

VLIW architectures. Finally, an overview of the loop transformation strategy for clustered

VLIW architectures, followed by a discussion of transformation overhead, is given.

2.1 Compiler Structure

Figure 2.1 shows the optimizations used in this work. Optimizations are performed

at two levels: high-level transformations that restructure high-level language programs, and

low-level optimizations that are applied to low-level intermediate code.

The high-level transformation phase focuses on loop optimizations that reorder

the execution of loop iterations for maximizing parallelism and data locality while mini-

mizing the communication overhead. These transformations are performed on a high-level

intermediate representation, which preserves all semantic information of source code pro-

grams. Transformations at a high-level can exploit optimizing opportunities that can not

be detected easily by low-level optimizations, and hence increase the abilities of low-level

optimizers to generate excellent code. For example, array references are easy to detect,

whereas in low-level intermediate code, they appear as sequences of address calculations.

Detection of array references provides high-level transformations a way to capture potential

parallelism and predict communication overhead for a given loop nest, such that the loop

can be transformed to enhance ILP available to a low-level code generator while maintaining

semantic constraints.
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Figure 2.1: Compiler Structure
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After high-level transformations, the transformed source code is converted into a

low-level intermediate form. Low-level data flow optimizations, followed by register parti-

tioning and software pipelining, are applied and, finally, the assembly code for the target

machine is generated.

This research focuses on the high-level optimization phase. High-level transforma-

tions include loop fusion, loop unrolling /unroll-and-jam, and scalar replacement. The goal

is to improve performance by maximizing concurrent use of functional units and minimizing

the communication overhead among clusters. The transformed loops exploit considerable

parallelism and data locality, and therefore are amenable to software pipelining to generate

high performance code. In this work the initiation interval of software-pipelined loops is

used to measure loop performance. The examples in the next section illustrate how loop

fusion, loop unrolling, unroll-and-jam, and scalar replacement can be applied to improve II

on a clustered VLIW machine.

2.2 Examples

By fusing two loops together, memory references are brought into the same loop

body and hence are likely to be allocated into registers for reuse. In addition, loop fusion

enables operations in the second loop to use the open instruction slots in the original loops,

making more efficient use of functional units. Consequently fusion not only speeds up

computation but also reduces power waste caused by idle functional units. The benefit of

loop fusion on performance can be demonstrated by the following example. The original

loops are listed below:
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DO I = 1, 2*N
s = 0
DO J = 1, M

s = s + H(J) * X(I,J)
ENDDO
A(I) = s

ENDDO
DO I = 1, 2*N
t = 0
DO J = 1, M

t = t + L(J) * X(I,J)
ENDDO
B(I) = t

ENDDO

Suppose load and multiplication take two cycles to complete, and other opera-

tions take one cycle. Given a 4-functional unit 2-cluster machine, a schedule for the inner

loop of the first loop needs three cycles as shown below (assume value cloning is applied [43]):

mult r1, h1, x1 nop nop nop
load h1,H(J) load x1, X(I,J++) nop nop
add s, s, r1 nop nop nop

The second loop can be scheduled similarly. The two loops need IIs of six in total,

leaving more than half of the functional units unused. Fusing the two loops results in a

loop as follows

DO I = 1, 2*N
s = 0
t = 0
DO J = 1, M

s = s + H(J) * X(I,J)
t = t + L(J) * X(I,J)

ENDDO
A(I) = s
B(I) = t

ENDDO

and an II of 3, or a speedup of 2 over the original loops. One schedule of the fused loop is

shown below:
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mult r1, h1, x1 nop mult r11, h,x nop
load h1,H(J) load x1, X(I,J++) load h, H(J) load x, X(I,J++)
add s, s, r1 nop add t, t, r11 nop

The fused loop can be further transformed to improve usage of machine resources

in a single cluster via unroll-and-jam and scalar replacement as described in Section 1.1.4.

Unroll-and-jam can move outer loop-carried reuse into the innermost loop and improve

software pipelining. Scalar replacement replaces memory references with temporary scalar

variables, making them easier to be allocated to registers.

Furthermore, unroll-and-jam or loop unrolling can be performed to increase the

data independent parallelism crossing different clusters. The resulting loop provides mul-

tiple copies of the loop body that can be executed in parallel on different clusters. This

transformation is analogous to a parallel loop where different iterations run on different

processors. On a clustered architecture, each unrolled iteration can be executed on a sep-

arate cluster. While on shared memory machines the startup of loop parallelism can cause

significant overhead, in the context of clustered architectures there is no such overhead [34].

For example, unroll-and-jamming the fused loop by a factor of 2 produces the loop

DO I = 1, 2*N, 2
s1 = 0
t1 = 0
s2 = 0
t2 = 0
DO J = 1, M

C iteration i
s1 = s1 + H(J) * X(I,J)
t1 = t1 + L(J) * X(I,J)

C iteration i+1
s2 = s2 + H(J) * X(I+1,J)
t2 = t2 + L(J) * X(I+1,J)

ENDDO
A(I) = s1
B(I) = t1
A(I+1) = s2
B(I+1) = t2

ENDDO

Since there are no dependences between the iterations, no intercluster communication is

required if iterations i and i+1 are executed on different clusters.

Performing scalar replacement can remove redundant memory accesses, but may

cause intercluster communication. After scalar replacement the above loop becomes
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DO I = 1, 2*N, 2
s1 = 0
t1 = 0
s2 = 0
t2 = 0
DO J = 1, M

C iteration i
hh = H(J)
ll = L(J)
x1 = X(I,J)
s1 = s1 + hh * x1
t1 = t1 + ll * x1

C iteration i+1
x2 = X(I+1,J)
s2 = s2 + hh * x2
t2 = t2 + ll * x2

ENDDO
A(I) = s1
B(I) = t1
A(I+1) = s2
B(I+1) = t2

ENDDO

The additional copy operations are needed to transfer the values of H(J) and L(J) between

clusters. The latencies for intercluster copies can sometimes be hidden in the software

pipelined code. For example, one potential schedule for the above transformed loop is

mult r1, h1, x1 mult r2, l1, x1 mult r11, h2, x2 mult r12, l2, x2
load h1, H(J) load l1, L(J) load x2, X(I+1,J++) nop
load x1, X(I,J++) nop add s2, s2, r11 add t2, t2, r12
add s1, s1, r1 add t1, t1, r2 copy h2, h1 copy l2, l1

which results in an II of 4 for the loop kernel. This means a unit II (II per unrolled iteration)

of 2, or a speedup of 3 over the original loop.

Typically communication between clusters occurs when the inner loop carries a

dependence. Consider the loop



CHAPTER 2. LOOP TRANSFORMATION STRATEGY 32

DO I = 1, 2*N
A(I) = A(I-1) + 1

ENDDO

and the unrolled loop

DO I = 1, 2*N, 2
C iteration i

A(I) = A(I-1) + 1
C iteration i+1

A(I+1) = A(I) + 1
ENDDO

Before unrolling there is a true dependence from the statement to itself carried by the I-

loop. After unrolling by a factor of 2, there are two dependences between the statements. If

the code for iteration i is executed on one cluster and the code for iteration i+1 on another,

the loop schedule requires communication between clusters.

Not all loop-carried dependences require communication. As in shared-memory

parallel code generation, loop alignment can be used to change a loop-carried dependence

into a loop-independent dependence such that the aligned loop carries no dependences and

is amenable to loop unrolling or unroll-and-jam. However, when alignment conflicts exist

(as in the previous example), intercluster communication becomes inevitable if unrolled

loop iterations are distributed in distinct clusters. Actually aligning a loop is unnecessary

to expose the intercluster parallelism as [34] demonstrates. Consider the following loop:

DO I = 1, 2*N
A(I) = B(I) + Q
C(I) = A(I-1) + X(I)

ENDDO

Unrolling this loop once for a 2-cluster machine produces:

DO I = 1, 2*N, 2
A(I) = B(I) + Q
C(I) = A(I-1) + X(I)
A(I+1) = B(I+1) + Q
C(I+1) = A(I) + X(I+1)

ENDDO

The low-level optimizer can keep the source and sink of a dependence on the same cluster

by assigning the first and the forth statements into one cluster, and the other two state-

ments into another cluster. This would result in the same effect as loop alignment since no
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communication is needed. Therefore, loop alignment is not applied in this work. Instead

the low-level optimizer is responsible for capturing parallelism in the unrolled loop with

alignable dependences. In fact, alignment conflicts are used in this work to determine the

intercluster communication cost in a loop.

2.3 Loop Transformation Strategy

When various transformations are performed, the benefit obtained by one indi-

vidual transformation may be negated by other transformations. Careless organization of

transformations can degrade collective performance. This gives rise to an ordering issue.

The complete loop transformation strategy is listed below; namely, loop transformations

are performed in the following order:

1. Fuse loops to enhance intracluster parallelism and, later, exploit intercluster paral-

lelism by unrolling.

2. Unroll-and-jam (or unroll) loops to increase intracluster parallelism and enhance data-

independent parallelism across multiple clusters.

3. Perform scalar replacement to improve register usage.

Loop fusion and unrolling will increase the size of the loop body. While enlarged

code scope provides opportunities for optimizations, an excessively large loop body may

make it difficult for software pipelining to find an efficient schedule. High register pressure

that results from a large loop body also hampers the overall performance. The transforma-

tion strategy in this research performs loop fusion before unroll-and-jam ( or loop unrolling)

in order to avoid unprofitable loop body size, because when unroll-and-jam is performed,

the code size and register pressure can be limited by restricting unroll amounts. Both

loop fusion and unroll-and-jam provide opportunities for improving data locality via scalar

replacement; therefore, it is reasonable to perform scalar replacement during the last step.

2.4 Overhead

When the trip count of a loop (i.e., the number of times a loop body is executed)

is unknown, or is not a multiple of the unroll amount, a few loop iterations must be moved
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from the beginning or end of the loop and executed separately such that loop unrolling or

unroll-and-jam is applicable. This transformation is called loop peeling. Loop peeling is

useful for applying loop fusion as well. When two loops cannot be fused together due to

different trip counts, peeling the loop with a larger trip count enables loop fusion. The code

for the peeled iterations can be enclosed within a conditional or a new loop, introducing

an extra control overhead. When the loop to be transformed is iterated a small number of

times, the overhead caused by loop peeling may overcome the benefit of loop unrolling (or

fusion) and degrade the overall performance. The experiments of this research showed that

the overhead of peeling loops is ignorable if the trip count of a loop is greater than 32.
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Chapter 3

Unroll-and-jam

To generate a good software pipeline for unroll-and-jammed loops on clustered

VLIW machines, a compiler should not only be able to determine which dependences in-

troduce intercluster communication, but also predict whether the communication increases

the schedule length of the software pipelined code. This needs to be done before any unroll-

and-jam is performed. The method in this section uses unit MinII, or uMinII, including

the effects of intercluster data transfers, as a metric to guide unroll-and-jam for clustered

VLIW machines. It performs unroll-and-jam on the loop levels that will create the most in-

tracluster and/or intercluster parallelism and determines the unroll-and-jam amounts that

will give the best loop performance.

This chapter is organized as follows. Section 3.1 discusses the safety of unroll-

and-jam and a method for updating the dependence graph for unroll-and-jammed loops.

Section 3.2 provides a heuristic approach for picking loops to unroll. Section 3.3 describes

a method to compute uMinII for unroll-and-jammed loops. Section 3.4 gives the formula

for register pressure caused by unroll-and-jam. Finally, Section 3.5 presents a method for

computing unroll-and-jam amounts to achieve a lower uMinII.

3.1 Safety and Updating the Dependence Graph

Unroll-and-jam changes the execution order of loop iterations. Consider the fol-

lowing loop,
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DO I = 1, 2*N
DO J = 1, N

A(I+1,J) = A(I,J+1) + B(I,J)
ENDO

ENDDO

Unroll-and-jamming the I loop once results in

DO I = 1, 2*N, 2
DO J = 1, N

A(I+1,J) = A(I,J+1) + B(I,J)
A(I+2,J) = A(I+1,J+1) + B(I+1,J)

ENDO
ENDDO

Note that the original loop executes the instance of the statement for the kth iteration

of the I-loop after all instances for the (k − 1)th iteration of the I-loop are completed.

In the transformed loop, however, two iterations of the I-loop are executed on the same

iteration of the J-loop. In this example, unroll-and-jam reverses the source and sink for

some dependences. For instance, the original loop stores into the location of A(2,2) on

iteration 〈1, 2〉, and reads from the same location on iteration 〈2, 1〉. After unroll-and-jam,

the read of A(2,2) is brought prior to its definition, as the value is accessed on iteration

〈1, 1〉 and is assigned one iteration of the J-loop later, i.e., when I=1, J=2. This is illegal,

since the access order of the same memory location is changed by unroll-and-jam. The

data dependences reflect this changes. Unroll-and-jam converts a true dependence with

a distance vector of 〈1,−1〉 into two dependences: an anti dependence 〈0, 1〉 and a true

dependence 〈1,−1〉. The new anti dependence indicates that a reverse of execution order

occurs.

The following example discusses the constraints of dependences on unroll amounts

in detail. In the loop

DO I = 1, 6*N
DO J = 1, N
A(I+2,J) = A(I,J+1) + B(I,J)

ENDO
ENDDO

a true dependence 〈2,−1〉 exists between A(I+2,J) and A(I,J+1). Unroll-and-jamming the

I-loop once results in
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DO I = 1, 6*N, 2
DO J = 1, N

A(I+2,J) = A(I,J+1) + B(I,J)
A(I+3,J) = A(I+1,J+1) + B(I+1,J)

ENDO
ENDDO

where two true dependences with the distance vector 〈1,−1〉 guarantee that the sources of

dependences are executed before the sinks. However unrolling the outer loop by a factor of

three would reverse the dependence, as shown below

DO I = 1, 6*N, 3
DO J = 1, N
A(I+2,J) = A(I,J+1) + B(I,J)
A(I+3,J) = A(I+1,J+1) + B(I+1,J)
A(I+4,J) = A(I+2,J+1) + B(I+2,J)

ENDO
ENDDO

An anti dependence 〈0, 1〉 goes from A(I+2,J+1) to A(I+2,J), reversing the memory access

order. This means unroll-and-jamming by a factor of three is illegal for this example.

Callahan et al. proved the following theorem which lists the conditions under

which unroll-and-jam is legal [14]:

Theorem 1 An unroll-and-jam factor n is legal if and only if there exists no dependence

with direction vector (<,>) such that the distance for the outer loop is < n.

When unroll-and-jam is legal, the data dependences for the unroll-and-jammed

loop are used to examine the effect of unroll-and-jam on intercluster communication. Calla-

han et al. proposed a method for computing the data dependence graph (DDG) after loop

unrolling for consistent dependences whose array references contain only one loop induction

variable in each subscript position and whose references are variant with respect to the

unrolled loop [14].

If we unroll the mth loop in a nest L k times, then the updated dependence

graph G
′
= (V

′
, E

′
) for the unrolled loop L

′
can be computed from the dependence graph

G = (V,E) for L by the following rules:

1. For each v ∈ V , there are k + 1 nodes v0, . . . , vk in V
′
. These correspond to the

original reference and its k copies.
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2. For each edge e = 〈v, w〉 ∈ E, with distance vector d(e), let dm(e) be the mth entry

of d(e), there are k + 1 edges e0, . . . , ek where ej = 〈vj , wi〉, vj is the jth copy of v, wi

is the ith copy of w and

i = (j + dm(e)) mod (k + 1)

dm(ej) =

 bdm(e)
k+1 c if i ≥ j

bdm(e)
k+1 c+ 1 if i < j .

Consider, as an example, the following loop

DO I = 1, 3*N
A(I) = A(I-1) + Q

ENDDO

where a dependence with distance vector 〈1〉 exits. Unrolling this loop twice produces

DO I = 1, 3*N, 3
A(I) = A(I-1) + Q
A(I+1) = A(I) + Q
A(I+2) = A(I+1) + Q

ENDDO

The updated dependence graph contains three nodes, v0, v1, and v2, representing three

statements in the unrolled loop. Two forward dependence edges, (v0, v1) and (v1, v2), have a

distance of 0 (b1/3c = 0), and one backward edge, (v2, v0), has a distance of 1 (b1/3c+1 = 1),

as shown in Figure 3.1.

In this research, the updated dependence graph is utilized for determining the

dependences in the innermost loop after loop unrolling or unroll-and-jam is applied.

3.2 Determining Loops to Unroll

In this research unroll-and-jam is applied to achieve both intracluster and interclus-

ter parallelism. The first step of this approach is to determine the loop levels for unrolling

or unroll-and-jam. For improving ILP in a single cluster, this method seeks the loop level,

la, that will have the most data reuse after unroll-and-jam is applied. In other words, this

method chooses the loop level that carries the most dependences that can become amenable

to scalar replacement after applying unroll-and-jam. To obtain intercluster parallelism, we



CHAPTER 3. UNROLL-AND-JAM 39

v

v2

v1

v0

<0>

<0>

<1>
<1>

(a) The Original DDG (b) The Updated DDG

Figure 3.1: Updating the Dependence Graph

unroll the loop level, lp, that contains the fewest dependences that may result in intercluster

data transfers after unrolling.

To aid in the discussion that follows we define Ua as the unroll factor for la and

Up as the unroll factor for lp. Hence, the unroll factor of the entire loop nest is Ua × Up.

Note that la and lp can be the same loop.

3.3 Computing unit MinII

To compute the unit MinII (uMinII) of a loop, both the unit RecII (uRecII) and

the unit ResII (uResII) need to be computed. Callahan et al. have shown that unrolling and

unroll-and-jam do not increase the uRecII of a loop [14]. Thus, this method only computes

the uRecII once. If the innermost loop is unrolled, then the uRecII remains unchanged. If

an outer loop is unrolled, then the uRecII decreases by a factor of the unroll amount.

On an architecture with hardware loop support, FUf fixed-point units, FUm mem-

ory/address units and support for FUc intercluster copies per cycle, the uResII is

max{d F
FUf

e, d M
FUm

e, d C
FUc

e}
Ua × Up

.

Here F is the number of fixed-point operations in the loop body, M is the number of memory

references and C is the number of intercluster data transfers. F is defined as
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f ×
∏

1≤i≤n

Ui,

where f is the original number of fixed-point operations in the loop, Ui is the unroll amount

of the ith loop, and n is the loop nesting depth. M = ML×Un, where ML is the number of

memory references in the loop after unroll-and-jam and scalar replacement, and Un is the

unroll amount of the innermost loop. The computation of ML is outlined in detail by Carr

and Kennedy [21].

When computing C it is assumed that the unroll-and-jammed loop is partitioned

in such a way that Ua copies of loop body derived from unroll-and-jamming loop la are

placed in a single cluster. Then each of the Up copies of this statement group is executed

in distinct clusters. There are two reasons for this assumption. First, by distributing the

copies of the same statement group in separate clusters, a balanced work load across clusters

is likely obtained. Second, this partitioning scheme keeps many operations involving data

reuse within a single cluster, which limits intercluster communication.

Section 3.3.1 addresses computing uMinII when a single loop is unrolled. Then

the discussion is extended to unrolling multiple loops in Section 3.3.2.

3.3.1 Unrolling a Single Loop

When computing the intercluster copies caused by unrolling a single loop l (l =

la = lp), we consider the dependence graph Gl = (Vl, El) consisting of all dependences where

the distance vector associated with the dependence, d(e), is of the form 〈0, . . . , 0, dl, 0, . . . , dn〉
such that the lth entry of d(e), dl(e), is not 0. El is partitioned into two groups: EC

l and

EI
l . EC

l is the set of unalignable dependences carried by l whose source and sink are variant

with respect to l. EI
l is the set of dependences whose references are invariant with respect

to l. The communication cost due to edges in EC
l is denoted CC

l and the communication

cost due to edges in EI
l is denoted CI

l . For simplicity of presentation, it is assumed that

each array reference has at most one incoming dependence edge. If a reference has multiple

incoming edges, a distance vector is constructed such that its ith entry has the minimum

value over all incoming edges. This vector represents the possible earliest point in unrolling

from where the reference can get its value. See [21] for details on handling multiple incoming

edges.
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Computing CC
l : For each edge e = (v0, w0) ∈ El there are Up×Ua edges e0, e1,...,eUp×Ua−1

∈ E′
l after unroll-and-jam. For each em = (vm, wn) ∈ E′

l, n = (m + dl(e)) mod (Up × Ua)

[14]. We examine the first Ua edges created by unrolling to determine the communication

cost per cluster for l, denoted uCl(e) for each edge e ∈ El . Since the sources of the first

Ua edges, v0, v1, . . . , vUa−1, will be located in the first cluster, communication exists if and

only if any sink is not in the first cluster, i.e., if any n ≥ Ua. This implies that uCl(e) is

the number of edges where n = (m + dl(e)) mod (Up × Ua) ≥ Ua, and m = 0, 1, . . . , Ua − 1.

Hence,

CC
l =

∑
e∈EC

l

uCl(e)× Up.

To derive uCl(e), we break down the computation into four cases. These cases

arise from the fact that dependences in loops are usually very simple. For each case we give

our conclusion and proof followed by an example.

Case 1: If dl(e) mod (Ua × Up) = 0, then uCl(e) = 0.

Proof:

n = (m + dl(e)) mod (Up × Ua) = (m + dl(e))− bm + dl(e)
Up × Ua

cUp × Ua.

If dl(e) mod (Ua × Up) = 0, then there exists a t = 0, 1, 2, . . . , such that dl(e) =

t(Ua × Up). This gives

m + dl(e) = m + t(Up × Ua).

Since 0 ≤ m < Ua,

tUp × Ua < m + t(Up × Ua) < (tUp + 1)Ua.

From this follows
tUp×Ua

Up×Ua
< m+dl(e)

Up×Ua

<
(tUp+1)Ua

Up×Ua

<
(tUp+Up)Ua

Up×Ua
(since Up ≥ 2).

Thus,

t <
m + dl(e)
Up × Ua

< t + 1.
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So

bm + dl(e)
Up × Ua

c = t.

This gives
n = (m + dl(e))− bm+dl(e)

Up×Ua
cUp × Ua

= m + dl(e)− t(Up × Ua)
= m .

Since m < Ua, then n < Ua, which means there exists no communication, i.e.,

uCl(e) = 0 .

Example:

Consider the following loop where dl(e) = 4:

DO I = 1, 4*N
A(I) = A(I-4)

ENDDO

To generate code for a 4-cluster machine, the loop is unrolled by a factor of 4, giving

DO I = 1, 4*N, 4
A(I) = A(I-4)
A(I+1) = A(I-3)
A(I+2) = A(I-2)
A(I+3) = A(I-1)

ENDDO

Each statement may be executed on a different cluster without incurring a communi-

cation cost due to the original dependence.

Case 2: If Ua = 1 and dl(e) mod (Ua × Up) 6= 0, then uCl(e) = 1.

Proof:

Since Ua = 1, each cluster has one copy of loop body, i.e., m = 0.
n = (m + dl(e))− bm+dl(e)

Up×Ua
cUp × Ua

= dl(e)− bdl(e)
Up

cUp.

If n = 0, dl(e) = bdl(e)
Up

cUp. Then dl(e) mod (Ua × Up) = 0. This is a contradiction.

Therefore n 6= 0, giving uCl(e) = 1.

Example:

Consider the following loop where dl(e) = 1:
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DO I = 1, 3*N
A(I) = A(I-1)

ENDDO

After unrolling by a factor of 3, where Up = 3, Ua = 1, we have

DO I = 1, 3*N, 3
A(I) = A(I-1)
A(I+1) = A(I)
A(I+2) = A(I+1)

ENDDO

If each of these statements is assigned to a different cluster, each cluster needs one

intercluster data transfer.

Case 3: If dl(e) mod (Ua × Up) 6= 0, Ua > 1, and Ua ≥ dl(e), then uCl(e) = dl(e).

Proof:

Since m < Ua, and dl(e) ≤ Ua, then m + dl(e) < 2Ua.

Up ≥ 2, so m + dl(e) < Up × Ua, or

bm + dl(e)
Up × Ua

c = 0.

From this follows
n= (m + dl(e)) mod (Up × Ua)
= m + dl(e)− bm+dl(e)

Up×Ua
cUp × Ua

= m + dl(e).

The value of uCl(e) equals the number of m whose value makes n ≥ Ua hold. When

m ≥ Ua − dl(e), n ≥ Ua. Among m = 0, 1, ...., Ua − dl(e), Ua − dl(e) + 1, ..., Ua − 1

there are dl(e) m′s whose values are greater than or equal to Ua − dl(e). Therefore,

uCl(e) = dl(e).

Example:

Consider the following loop where dl(e) = 2:

DO I = 1, 6*N
A(I) = A(I-2)

ENDDO
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After unrolling by a factor of 6 (assume Up = 2, Ua = 3), the loop becomes

DO I = 1, 6*N, 6
A(I) = A(I-2)
A(I+1) = A(I-1)
A(I+2) = A(I)
A(I+3) = A(I+1)
A(I+4) = A(I+2)
A(I+5) = A(I+3)

ENDDO

If the first three statements are executed on one cluster and the last three on another

cluster, each cluster needs two intercluster copies.

Case 4: If 1 < Ua < dl(e) < (Ua × Up), and dl(e) mod (Ua × Up) 6= 0 then uCl(e) =

min(Up × Ua − dl(e), Ua) .

Proof:

We consider two cases:

case 1: m < Ua × Up − dl(e), or m + dl(e) < Ua × Up. This gives

bm + dl(e)
Up × Ua

c = 0.

Then

n = (m + dl(e)) mod (Up × Ua)

= m + dl(e)− bm+dl(e)
Up×Ua

cUp × Ua

= m + dl(e)

> Ua (since dl(e) > Ua is assumed).

This means when m < Up ×Ua − dl(e), n > Ua. If Up ×Ua − dl(e) < Ua, each cluster

has Up × Ua − dl(e) value copies. Otherwise each cluster needs Ua value copies.

case 2: m ≥ Up × Ua − dl(e), or m + dl(e) ≥ Up × Ua.

Since m < Ua, and dl(e) < Up × Ua (the assumption),

Up × Ua ≤ m + dl(e) < (Up + 1)× Ua
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Then
1 ≤ m+dl(e)

Up×Ua

<
Up+1

Up

<
Up+Up

Up
(since Up ≥ 2)

< 2.

From this follows

bm + dl(e)
Up × Ua

c = 1,

and
n = m + dl(e)− bm+dl(e)

Up×Ua
cUp × Ua

= m + dl(e)− Up × Ua.

Since dl(e) < Up × Ua (the assumption), i.e., dl(e) − Up × Ua < 0, and m < Ua, we

have m + dl(e) − Up × Ua < Ua. This shows that when m ≥ Up × Ua − dl(e) no

communication is needed.

Combining the two cases gives uCl(e) = min(Up × Ua − dl(e), Ua).

Example:

The original loop

DO I = 1, 6*N
A(I) = A(I-3)

ENDDO

has dl(e) = 3. Unrolling by a factor of 6 (Up = 3, Ua = 2) results in a new loop as

follows

DO I = 1, 6*N, 6
S0: A(I) = A(I-3)
S1: A(I+1) = A(I-2)
S2: A(I+2) = A(I-1)
S3: A(I+3) = A(I)
S4: A(I+4) = A(I+1)
S5: A(I+5) = A(I+2)

ENDDO

If we partition the new loop as {S0, S1}, {S2, S3}, and {S4, S5}, each cluster will need

2 (min(3× 2− 3, 2) = 2) value copies.

Here is another example where dl(e) = 5:
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DO I = 1, 8*N
A(I) = A(I-5)

ENDDO

Unrolling this loop 7 times (Up = 2, Ua = 4) gives

DO I = 1, 8*N, 8
A(I) = A(I-5)
A(I+1) = A(I-4)
A(I+2) = A(I-3)
A(I+3) = A(I-2)
A(I+4) = A(I-1)
A(I+5) = A(I)
A(I+6) = A(I+1)
A(I+7) = A(I+2)

ENDDO

If the first four statements are placed in one cluster, and the last four statements are

placed in another cluster, each cluster needs 3 (min(2× 4− 5, 4) = 3) value copies.

In practice most dependences fall into the first three cases. From the derivation

of uCl(e) for those three cases, the following observation can be derived: when unrolling a

single loop l, the communication cost per cluster caused by dependences that are variant

with respect to l does not change much with respect to the unroll factor. To compute uCl(e)

for variant references in general, the code in Figure 3.2 can be used.

Computing CI
l : For each dependence whose source and sink are invariant with respect to

l, there are Ua×Up references in the loop body after unroll-and-jam/unrolling. Ua×Up− 1

memory references are eliminated by scalar replacement. When partitioning the loop body

into Up separate clusters, a memory operation is executed in one cluster and the other Up−1

clusters require a copy operation. This function remains constant as Ua changes, giving

CI
l =

∑
e∈EI

l

(Up − 1).

3.3.2 Unrolling Multiple Loops

When la 6= lp, we must consider the effects of multiple loops. Unroll-and-jam of

la will potentially increase the number of loop-carried dependences causing communication
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Procedure CommCost(dl(e), Up, Ua)
Input: dl(e): dependence distance

Up, Ua: unroll amounts
Output: uCl(e): the unit communication cost

if dl(e) mod (Ua × Up) = 0
uCl(e)=0

else if Ua = 1
uCl(e) = 1

else if Ua ≥ dl(e)
uCl(e) = dl(e)

else if (Up × Ua) > dl(e)
uCl(e)=min (Up × Ua − dl(e), Ua)

else
uCl(e)=0
for ( m = 0; m < Ua; m++)

if ( (m + dl(e)) mod (Up × Ua) > Ua)
uCl(e)=uCl(e)+1

Figure 3.2: Compute Unit Communication Cost for EC
l
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when lp is unrolled or unroll-and-jammed to spread computation across clusters. For refer-

ences invariant with respect to lp, the communication costs can be computed as described

in the previous section. However, the same is not true for variant references.

To compute the communication cost for variant references, we consider the case

when lp is the innermost loop and the case when it is not. When lp is the innermost loop,

the two types of dependences that can cause communication are

1. innermost-loop-carried dependences, and

2. outer-loop-carried dependences that become carried by the innermost loop after unroll-

and-jam.

In the first case, the method presented in the previous section accurately computes the

communication cost. Note that when computing uCn(e) for this case, Ua and Up are 1 and

Un respectively. Therefore, either case 1 or case 2 described in the previous section is used.

For the second case, only dependences with a distance vector of the form 〈0,. . .,di,

. . .,0, . . .,dn〉, where di 6= 0 and i is la, are considered. This set of dependences is denoted EU
i .

Consider any e ∈ EU
i , after performing unroll-and-jam on i by a factor of Ui, (Ui − di(e))+

dependences have a zero entry at ith component of the distance vector and are carried by

the innermost loop or are loop independent1 [21].

For each edge e ∈ EU
i made innermost by unroll-and-jam, we need to compute the

communication cost caused by unrolling lp (the innermost loop). To derive this commu-

nication cost, we use the convention that Cn(e), where n is lp, is the communication cost

caused by the dependences with distance dn(e) after unrolling the innermost loop Un − 1

times. Since unrolling the innermost loop cannot increase data reuse, the only reason for

unrolling the innermost loop is to create intercluster parallelism.

From the previous section, we have

Cn(e) = uCn(e)× Un.

Thus, if the set of unalignable innermost-loop-carried dependences is denoted EC
n , then the

communication cost when lp is the innermost loop is

1x+ is defined as:

x+ =

{
x, if x ≥ 0
0, if x < 0
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∑
e∈EC

n

UiCn(e) +
∑

e∈EU
i

(Ui − di(e))+Cn(e).

When lp is not the innermost loop, we also only consider the dependences that

can be made innermost. This set of dependences is denoted EU
ij and the distance vector of

each of these edges is of the form 〈0, . . . , di, . . . , 0, dj , 0, . . . , dn〉, where i is la and j is lp, or

vice versa. In this case both i and j must be unroll-and-jammed enough to make di = 0

and dj = 0, giving a communication cost of

∑
e∈EU

ij

(Ui − di(e))+(Uj − dj(e))+.

Note that Cn(e) is not needed here since the innermost loop is not unrolled.

Example To demonstrate intercluster copy prediction for unrolling multiple loops, con-

sider the following loop:

DO J = 1, N
DO I = 1, N

A(I,J) = A(I-1,J)
B(I,J) = A(I,J-1) + A(I-1,J-1)

ENDDO
ENDDO

Let e1 denote the edge from A(I,J) to A(I-1,J), e2 denote the edge from A(I,J) to

A(I,J-1), and e3 denote the edge from A(I,J) to A(I-1,J-1). Note that d(e1) = 〈0, 1〉,
d(e2) = 〈1, 0〉 and d(e3) = 〈1, 1〉. If Ui = 2, Uj = 2 for a 2-cluster machine, we have

EC
n = {e1}

EU
j = {e2, e3}

Cn(e1) = 1× 2 = 2

Cn(e2) = 0

Cn(e3) = 1× 2 = 2

Therefore,
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C = Uj × Cn(e1) + (Uj − dj(e2))+ × Cn(e2)+

(Uj − dj(e3))+ × Cn(e3)

= 2× 2 + 1× 0 + 1× 2

= 6

3.4 Register Pressure

Unroll-and-jam/unrolling can increase the number of registers needed in the in-

nermost loop body. Carr and Kennedy have presented a method to compute the number

of registers required by scalar replacement for an unroll-and-jammed loop before unroll-

and-jam is applied [21]. Their work does not consider unrolling an innermost loop, and is

extended in this section to include the effects of inner-loop unrolling.

In computing register pressure R, the method proposed in [21] partitions the ref-

erence set of a loop into the following three sets that exhibit different memory behavior

when unroll-and-jam is applied.

• V ∅ is the set of references without an incoming dependence,

• V C
r is the set of memory reads that have a loop-carried or loop-independent incoming

dependence, but are not invariant with respect to any loop, and

• V I
r is the set of memory reads that are invariant with respect to a loop.

The number of registers required by each reference set is represented by R∅, RC
r , and RI

r

respectively, giving R = R∅ + RC
r + RI

r . We have

(1) R∅ = 0 since the references in V ∅ are not amenable to scalar replacement.

(2) For each reference v ∈ V C
r such that the edge associated with v is carried by

the innermost loop n, unrolling the innermost loop by Un will create Un dependence edges

amenable to scalar replacement. From Callahan et al., (Un − dn(ev))+ of these edges have

distances of bdn(ev)/Unc, and min(Un, dn(ev)) of them have distances of bdn(ev)/Unc + 1

[14]. Therefore, for each dependence in the innermost loop, the number of registers required

for scalar replacement after unrolling the innermost loop is

Rn = (Un − dn(ev))+ ×
(⌊

dn(ev)
Un

⌋
+ 1

)
+

min(Un, dn(ev))×
(⌊

dn(ev)
Un

⌋
+ 2

)
.
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Since Carr and Kennedy show that

RC
r =

∑
v∈V C

r

(
∏

1≤i<n

(Ui − di(ev))+)× (dn(ev) + 1)

when the innermost loop is not unrolled, we have

RC
r =

∑
v∈V C

r

∏
1≤i<n

(Ui − di(ev))+Rn

when the innermost loop is unrolled.

If dn(ev) ≥ Un, then (Un − dn(ev))+ = 0. This gives

Rn = Un × (bdn(ev)
Un

c+ 2).

If dn(ev) < Un, then ⌊
dn(ev)

Un

⌋
= 0.

Thus, Rn becomes

(Un − dn(ev))× 1 + dn(ev)× 2 = Un + dn(ev),

In practice dependence distances are almost always 0 or 1, i.e., dn(ev) < Un,

allowing us to simplify the computation of register pressure using

RC
r =

∑
v∈V C

r

∏
1≤i<n

(Ui − di(ev))+(Un + dn(ev)).

(3) For each reference v ∈ V I
r that is invariant with respect to loop n, one register

is required if loop n is unrolled. If v is not invariant with respect to n, unrolling n does

not increase register pressure, but provides opportunities for scalar replacement that may

be utilized if an outer loop j is unrolled and v is invariant with respect to loop j.

Carr and Kennedy have formularized the register pressure for unroll-and-jammed

loops [21]. Combining their results and the above observation gives:

RI
r =

∑
v∈V I

r

(
∏

1≤i≤n

α(ev, i, n)),

where
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α(e, i, n) ⇐ if e is invariant wrt loop i then

if (∃Uj |Uj > 1 ∧ e is invariant wrt loop j) or

(e is invariant wrt loop n) then

return 1

else

return 0

else

if (i 6= n) or

(∃Uj |Uj > 1 ∧ e is invariant wrt loop j)

return Ui

else

return 0 .

3.5 Computing Unroll Amounts

To find the best unroll amounts for a particular loop on a particular target archi-

tecture, the following integer-optimization problem is solved:

objective function: min uMinII

constraints: RC
r + RI

r ≤ Rm

Ua, Up ≥ 1
where Rm is the number of physical registers in the target machine.2

To solve this problem, we can bound the search space and do an exhaustive search

to find the best unroll amounts. Carr and Kennedy have shown that bounding the space

by Rm in each dimension is sufficient [21]. If an exhaustive search is too expensive, the

heuristic search algorithm shown in Figure 3.3 may be used. This algorithm attempts to

find the optimal unroll amount based upon the type of a loop, which is defined below,

• A loop is called a memory-bound loop if ResII=d M
FUm

e.

• A loop is communication-bound if ResII=d C
FUc

e.
2Note that registers will need to be reserved to allow for the increase in register pressure caused by

software pipelining.
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• Otherwise the loop is a compute-bound loop.

Initially two loops la and lp (they can be the same loop) are selected to unroll,

as proposed in Section 3.2. The routine ComputeUnrollAmounts starts with Ua = Up = 1,

and uses a heuristic approach to reduce the unit ResII by adjusting the values of Ua and

Up according to the limiting factor that determines ResII. This step is repeatedly executed

until the unit ResII cannot be improved or the register pressure exceeds the physical register

size.

If a loop is compute-bound, unroll-and-jam or loop unrolling cannot remove the

computation from the innermost loop body. In this case ComputerUnrollAmounts simply

generates copies of the loop body for multiple clusters by unrolling lp loop with a factor

less than or equal to the number of clusters as long as unrolling does not increase the unit

ResII or yield too much register pressure.

The performance of a memory-bound loop can be improved by increasing the

amount of data reuse via unroll-and-jam. Therefore ComputeUnrollAmounts tries a new II

with Ua + 1 for memory-bound loops.

For a communication-bound loop, we consider the following cases:

1. la = lp The unit ResII is determined by:

uResII =
d C

FUc
e

Ua × Up
.

The discussion in Section 3.3.1 shows that the number of intercluster copies for un-

rolling a single loop can be considered as a constant with respect to the unroll amount

Ua. As a result a smaller unit ResII can be expected by increasing Ua.

2. la 6= lp

It is hard to predict the exact effect of changing Ua or Up on communication costs. A

heuristic is used for this case. First a smaller Ua is used to recompute a new ResII since

unroll-and-jamming la fewer times can cause fewer dependences to become innermost,

and hence is likely to reduce the intercluster communication. If a smaller Ua fails to

decrease ResII, a smaller Up is used to compute ResII with hope that fewer lp-carried

dependences will be brought into the innermost loop after unroll-and-jam or loop

unrolling.
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Procedure ComputeUnrollAmount()

Ua = Up = 1
uResII = GetUnitResII(Ua, Up, loopType)
oldResII = uResII
newResII = 0
while (oldResII > newResII and

GetRegisterPressure(Ua, Up)< Rm)
{

if (loopType = compute bound)
if (Up < # of clusters)

Up = Up + 1
else if (loopType = memory bound)

if (Up < # of clusters)
{

Up = Up + 1
newResII = GetUnitResII(Ua, Up, loopType)
if (newResII>oldResII or

GetRegisterPressure(Ua, Up)> Rm)
{

Up = Up − 1
Ua = Ua + 1

}
}
else

Ua = Ua + 1
else /* communication-bound loop*/

if (la = lp)
Ua = Ua + 1;

else
if (Ua >2)
{

Ua = Ua − 1
newResII = GetUnitResII(Ua, Up, loopType)
if (newResII>oldResII or GetRegisterPressure(Ua, Up)> Rm)

if (Ua >2)
Ua= Up-1

}
else if (Up > 2)

Up= Up-1
newResII = GetUnitResII(Ua, Up, loopType)

}

Figure 3.3: Compute Unroll Amounts
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3.6 Summary

This chapter has presented a new method for performing unroll-and-jam and/or

loop unrolling to achieve a high degree of ILP on a clustered VLIW machine. Instead of

using fixed unroll amounts, this method automatically tailors unroll-and-jam/unrolling for

a given loop nest based upon resources available on a specific architecture. This is done

by solving an integer-optimization problem which predicts the performance of software

pipelined loops and the register pressure after unroll-and-jam/loop unrolling and scalar

replacement are applied. This method has been implemented in a research compiler and

tested on DSP benchmarks. The results are reported in Chapter 5.
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Chapter 4

Loop Fusion

This chapter demonstrates how loop fusion, used as a precursor to unrolling, can

be used to improve loop performance on clustered VLIW architectures.

The profitability of fusion is computed by examining its effect on unrolling. By

combining two (or more) loop nests into a single nest, operations from the second loop can

be scheduled in any empty instruction slots that exist in the original loop. The resulting

loop provides more parallelism than the two loops in isolation, reduces the effect of leakage

power due to unused functional units, lessens the overhead due to loop code, and often takes

less code space. However, loop fusion may degrade performance if the fused loop increases

the amount of intercluster communication. This chapter describes a method that fuses as

many loops as possible while retaining low communication overhead.

This chapter first introduces the safety of loop fusion, then presents a cost model

for determining the profitability of fusion, followed by a slightly modified greedy fusion

algorithm.

4.1 Safety of Loop Fusion

In this work, loop fusion is applied to compatible loops. Two loops are compatible

if they have the same loop bounds and loop stride. (Note that the loops can have different

loop indices.) If the trip counts of two loops differ by a small number t, peeling t iterations

of the loop that has a larger trip count can generate a new loop with a compatible loop

header.

If the source and sink of a dependence are located in the same loop, loop fusion
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does not change their execution order. Therefore, only dependences between two loops are

examined to determine the safety of loop fusion. If the loops to be fused have a common

outer loop and the dependence is carried by the outer loop, reordering the execution order

of the inner loops does not change the dependence carrier. The dependence constraints are

satisfied through the execution of the outer loop, and hence it is safe to fuse the inner loops.

After fusion, loop-independent dependences will become (1) loop-independent de-

pendences, (2) loop-carried forward dependences, or (3) loop-carried backward dependences.

Cases (1) and (2) preserve the direction of dependences. On the other hand, loop fusion is

illegal for the third case, because after fusion the execution order of the source and sink of

a dependence is reversed, as shown in the following example. The original loops are:

DO I = 1, N
A(I) = B(I) + C(I)

ENDDO
DO I = 1, N

D(I) = A(I+1) + B(I)
ENDDO

and the fused loop will be

DO I = 1, N
A(I) = B(I) + C(I)
D(I) = A(I+1) + B(I)

ENNDO

The array A is defined in the first loop and is used in the second loop. In the

fused loop, a loop-carried anti dependence is introduced and the value of an array element

used on the current iteration will be assigned one iteration later. Therefore, loop fusion is

not safe. A loop-independent dependence is fusion-preventing if the dependence becomes a

backward loop carried dependence after fusion [1, 63].

When two loops are not adjacent, checking the dependences between two loops is

not sufficient to determine the safety of fusion. The dependence paths connecting two loops

must be considered. If a dependence path from the first loop to the second loop contains a

statement or a loop that cannot be fused with either loop, two loops cannot be fused unless

some transformations are performed to break the path (e.g., scalar renaming can be used to

remove anti or output dependences [8, 50]). For instance, in the following loop, loop fusion

is prevented because there is no way to preserve both loop-independent true dependences

at the same time after fusion.
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S = 0
DO I = 1, N
S = S + A(I) * B(I)

ENDDO
T = X(S)
DO I = 1, N
T = T + C(I)

ENDDO

In summary, two loops can be fused together legally if

• the loop headers are compatible,

• fusion does not convert a loop-independent dependence into a backward loop-carried

dependence, and

• there is no dependence path between two loops that contains a statement or a loop

that is being fused with them.

4.2 Communication Cost

Although loop fusion provides opportunities to make efficient use of clustered

VLIW machines, careless use of loop fusion may hamper performance due to high interclus-

ter communication. For example, given the following loops:

DO I = 1, N
A(I) = X(I) + Q

ENDDO
DO I = 1, N

B(I) = A(I) * C(I)
ENDDO
DO I = 1, N

D(I) = A(I-1) + B(I)
ENDDO

fusing them together gives the loop

DO I = 1, N
A(I) = X(I) + Q
B(I) = A(I) * C(I)
D(I) = A(I-1) + B(I)

ENDDO
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This loop provides opportunities for data reuse involving references to A(I) and B(I).

However, extra alignment conflicts are introduced into the fused loop. One dependence

path from the first statement to the third statement, due to references to A(I) and B(I),

has a total distance of 0, while a second dependence path between these two statements

due to references to A(I) and A(I-1) has a distance of 1. This is an alignment conflict that

may restrict intercluster parallelism when the loop is unrolled for multiple clusters.

To avoid introducing additional alignment conflicts, we can fuse the first two loops,

or the second and third loop, instead of fusing all three together. The resulting loops can

be unrolled to generate independent copies of statements that can be executed in parallel

across multiple clusters.

The following example illustrates another case when loop fusion can adversely

affect unroll-and-jam.

DO I = 1, N
S = 0
DO J = 1, M
S = S + A(J) * B(J)

ENDDO
X(I) = S

ENDDO
DO I = 1, N

C(I) = C(I-1) * Q
DO J = 1, M
D(J) = C(I) + A(J) * B(J)

ENDDO
ENDDO

The I-loop in the first loop nest contains no alignment conflicts, indicating unroll-

and-jam will be beneficial. This is not the case for the second loop nest where the I-loop

carries a recurrence and makes unroll-and-jam unprofitable at this level. Instead, unrolling

the J-loop in the second nest will produce independent copies of the loop body. In this

example, fusing two loops together is not a good choice since either loop level of the fused

loop will carry a recurrence that inhibits the ability of unroll-and-jam and unrolling to

create data-independent intercluster parallelism.

Based upon the above discussion, loop fusion is applied when the fused loop does

not increase the number of alignment conflicts. To compute this, a notion of communication

cost is first introduced. Communication cost at level l of a loop nest L, CL(l), is defined
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Procedure FusionIsProfitable(L1, L2)
Input: L1, L2: original loops

compute CL1 , CL2

compute MinL1 , MinL2

compute CLf
for the fused loop Lf

commonLevels = MinL1 ∩MinL2

if commonLevels 6= φ
if ∃ l ∈ commonLevels and

CLf
(l) = CL1(l) + CL2(l)

return true;
return false;

Figure 4.1: Determine Profitability of Loop Fusion

as the number of alignment conflicts at that level. For a loop nest L, the set of loop levels

containing the least communication cost among communication costs at all levels is called

the set of minimal loop levels for L, denoted MinL.

Figure 4.1 shows the algorithm for determining whether loop fusion is profitable.

The algorithm first computes the communication cost for original loops and the fused loop,

and finds common loop levels at which both loops have minimal communication costs.

These loop levels are good candidates for applying unroll-and-jam or unrolling during future

transformations. The algorithm returns true if the communication cost of the fused loop at

one of these levels is equal to the sum of the communication costs of the original loops at

the same level, i.e., no extra alignment conflicts are introduced into the fused loop at this

level.

It is worth noting that legal fusion does not introduce new recurrences into the

fused loop, making this transformation more attractive.

4.3 Implementing Fusion

It has been shown that finding the optimal solution for a global fusion problem

is NP-hard, and in practice a greedy heuristic for applying fusion is simple and sufficient
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for finding good solutions [38]. This work performs loop fusion based upon the greedy

algorithm proposed by Kennedy and McKinley in [38] using the algorithm in Figure 4.1 to

evaluate profitability.

The approach proposed by Kennedy and McKinley begins by constructing a fusion

graph, where each node n represents a loop, and an edge (n1, n2) is added between two

nodes if there exists a dependence between two corresponding loops. Then the legality of

loop fusion is examined. An edge (n1, n2) is marked fusion-preventing if n1 and n2 cannot

be fused safely. Finally, the approach iteratively selects two loops and fuses them together

if fusion is legal and beneficial until no such loop pair can be found.

Originally the communication cost is computed for each node and each edge as

if the sink and source node of the edge were in the same loop. After fusion, two fusible

nodes are collapsed into a single node, and the edges that connect the two old nodes are

also collapsed. The communication cost of the new node is equal to the sum of communi-

cation costs of the two old nodes. Unlike the fusion problem for improving data locality

where weights for collapsed edges can be calculated from the original graph, in this fusion

problem, the communication costs for the edges into and out of the fused node need to

be re-computed based upon the dependences between the fused loop and associated loops.

This is because the original graph only records communication costs for fusing loop pairs,

but has no information for fusing more than two loops into one. Fusion may introduce

new alignment conflicts that were not detected when the original graph was constructed.

Consider for instance the first example in the last section, the communication costs for three

edges connecting original loops are all equal to zero. Fusing the first two loops together

gives a communication cost of one to the collapsed edge. This value is computed base upon

dependences between the fused loop and the third loop.

4.4 Summary

This chapter has demonstrated that loop fusion can provide more parallelism and

improve the utilization of functional units, and therefore, is an important transformation for

generating code with high quality on clustered VLIW architectures. A new metric has been

developed to determine the profitability of loop fusion. The fusion algorithm based upon this

metric has been implemented in a research compiler. The next chapter presents the results

of applying loop fusion to DSP benchmarks on different clustered VLIW architectures.
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Chapter 5

Experimental Results

The preceding chapters have developed new loop transformation methods to achieve

a high degree of parallelism and reduce communication overhead on clustered architec-

tures. This chapter evaluates those techniques using DSP benchmarks and five different

architectures. Section 5.1 introduces the benchmarks and architectures used in this experi-

ment. Section 5.2 reports the results achieved by the unroll-and-jam algorithm. Section 5.3

presents the improvement obtained via loop fusion.

5.1 Benchmarks and Configurations

The proposed algorithms have been implemented in Memoria [16], a source-to-

source FORTRAN transformer based upon the DSystem [2]. The benchmark suite for this

experiment consists of 119 loops that have been extracted from a DSP benchmark suite

provided by Texas Instruments. The suite, including two full applications and 48 DSP

kernels, contains typical DSP applications: FIR filter, correlation, Reed-Solomon decoding,

lattice filter, LMS filter, etc. The DSP benchmarks were converted from C into FORTRAN

by hand so that Memoria could process them. After conversion, each C data type or

operation is replaced with a similar FORTRAN data type or operation. For example,

unsigned integers are converted into integers in the FORTRAN code and bitwise operations

in C are converted into the corresponding bitwise intrinsics in FORTRAN. By defining the

operation cycle counts properly, this conversion allows accurate results to be achieved from

this experiment.

To evaluate the effectiveness of the transformations, a simulated architecture,



CHAPTER 5. EXPERIMENTAL RESULTS 63

called the URM [51], and the Texas Instruments TMS320C64x were used. For the URM, the

code generated by Memoria has been translated into intermediate code and then compiled

with Rocket [59], a retargetable compiler for ILP architectures. Rocket performs cluster

partitioning [32], software pipelining [52], and Chaitin/Briggs style register assignment [12].

In this experiment, Rocket targets four different clustered VLIW architectures

with the following configurations:

1. 8 functional units with 2 clusters of size 4

2. 8 functional units with 4 clusters of size 2

3. 16 functional units with 2 clusters of size 8

4. 16 functional units with 4 clusters of size 4

Each cluster has 48 integer registers. All functional units are homogeneous and have instruc-

tion timings as shown in Table 5.1. Intercluster copy operations do not use the instruction

slots in the functional units. Instead, extra issue slot(s) are reserved for copies. The 8-wide

machines support one copy unit and the 16-wide machines support two. As a result, each

machine with 8 functional units can perform one copy between register fines in a single

cycle, while the 16 functional unit machines can perform two per cycle.

Operations Cycles
integer copies 1
float copies 1

loads 5
stores 1

integer mult. 2
integer divide 12
other integer 1
other float 2

Table 5.1: Operation Cycle Counts

In addition to the results for the URM, the proposed algorithms have been eval-

uated on the Texas Instruments TMS320C64x (or C64x). The C64x CPU is a two-cluster

VLIW fixed-point processor with eight functional units that are divided equally between

the clusters. Each cluster is directly connected to one register file having 32 general purpose

registers. All eight of the functional units can access the register file in their own cluster
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directly, and the register file in another cluster through a cross path. Since only two cross

paths exist, a total of up to two cross path source reads can be executed per cycle. Other

intercluster value transfers have to be done via explicit copy operations. On the C64x,

multiplication instructions have one delay slot, load instructions have four delay slots, and

branch instructions have five delay slots. Most other instructions have zero delay slots,

while some can have up to three delay slots [60].

To make use of the C64x C compiler, the transformed code generated by the

Memoria were converted into C by hand. Then, the C64x compiler was applied to both

the original and transformed versions of the code, using the highest optimization level (-o3)

[61].

Section 5.2 reports the results achieved by the unroll-and-jam algorithm on the

URM and the TI C64x. Section 5.3 presents the improvement obtained via loop fusion.

For each architecture, the speedups are evaluated by comparing the code generated by the

new algorithms with the untransformed code. The previous work has shown that using the

partitioning method presented in [32], one can expect 10-20% degradation in execution time

when compared to an ideal monolithic-register architecture with the same level of ILP.

5.2 Unroll-and-jam Results

Out of the 119 loops in the benchmark suite, unroll-and-jam or loop unrolling is

applicable to 71 loops. The results are reported over these 71 loops. Other loops contain

function calls or conditional statements. Since Rocket cannot software pipeline such loops,

loop unrolling was not performed on them. Section 5.2.1 reports the speedups achieved

by Memoria on four clustered VLIW architectures modeled with the URM. Section 5.2.2

presents the speedups achieved by Memoria on the Texas Instruments TMS320C64x.

5.2.1 URM Results

The URM results for individual loops are presented in Tables A.1, A.2, A.3, and

A.4, and are summarized in Tables 5.2 and 5.3. The results reflect the effect of the new

unroll-and-jam method using heuristic search over 71 loops. Table 5.2 shows the average

speedup obtained by unroll-and-jam (and/or loop unrolling) only. Table 5.3 reports the

combined improvement of loop unrolling/unroll-and-jam) and scalar replacement over the

original untransformed loops. The speedup is measured using the actual unit II (II per un-
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rolled iteration) of the software pipelined loop before and after loop transformations. The

rows labeled “Average” show the average speedup in unit II obtained by the transformed

loops after unrolling (either inner- or outer-loop unrolling) and scalar replacement are ap-

plied, when compared with the unit II of loops without the transformations. The rows

labeled “Harmonic,” “Median,” and “Std Dev” give the harmonic mean speedup in unit II,

the median speedup in unit II and the standard deviation, respectively. The “Improved”

row shows the number of loops that gain improvement via unroll-and-jam.

Width 8 FUs 16 FUs
Clusters 2 4 2 4

Speedup
Average 1.61 2.02 1.55 1.79

Harmonic 1.33 1.60 1.34 1.35
Median 1.52 1.60 1.53 1.60
Std Dev 0.93 1.35 0.69 1.17
Improved 50 69 50 51

Table 5.2: URM Speedups: Unrolled vs. Original

Width 8 FUs 16 FUs
Clusters 2 4 2 4

Speedup
Average 1.91 2.51 1.87 2.38

Harmonic 1.39 1.68 1.40 1.43
Median 1.52 1.78 1.60 1.60
Std Dev 1.72 2.52 1.65 2.58
Improved 50 69 50 51

Table 5.3: URM Speedups: Transformed vs. Original

The results show that the new unroll-and-jam algorithm improves the performance

of 71 loops by an average harmonic mean of 1.33 – 1.60. The speedups for individual loops

range from 0.69 to 8.00, with more than 50 loops, or 42% of loops in the benchmark suite,

seeing improvement by the unroll-and-jam algorithm. Loop unrolling/unroll-and-jam and

scalar replacement together achieved a 1.39 – 1.68 harmonic mean speedup in unit II over

the original loops. The median speedup ranges from 1.52 – 1.78. The speedups for individual

loops range from 0.7 to 14.4.

As can be seen in the range of speedups, some loops have very large speedups
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and some loops actually show a degradation. Loop 26, 29 and 47 gain large speedups via

unroll-and-jam. These loops are doubly nested and compute a reduction. Unroll-and-jam

improves the performance of this type of loop particularly well. Unroll-and-jam also provide

opportunities for scalar replacement for some loops, e.g., loop 16, 26, and 32. These loops

contain outer-loop carried reuse that can be moved to the innermost loop level by unroll-

and-jam and become amenable to scalar replacement. The transformed code for these loops

appear excellent intracluster and intercluster parallelism.

Loop 22, 24 and 25 do not achieve performance improvement on any architectures.

The index arrays in these loops make accurate dependence analysis nearly impossible. Be-

cause the dependence analysis is inexact, the prediction scheme does not correctly predict

the communication needed by the loop. The performance degradation shown for other loops

are due to the increase in RecII after unrolling. This can be attributed to the heuristic fea-

ture of Rocket.

Although the architecture with 8 functional units arranged in 4 clusters achieves

the best overall speedup, the performance of each individual loop is lower than on the other

architectures. In addition, the value of standard deviation suggests that speedups of indi-

vidual loops on 4-cluster architecture vary more widely than on 2-cluster architectures. This

is because some loops that have good parallelism can be unrolled more times to generate

higher ILP on architectures with four clusters; other loops, however, gain small speedups

due to a large number of intercluster data copies since having four clusters increases com-

munication.

Using a fixed unroll amount, as is done in [34], may cause performance degradation

when communication costs are dominant. Table A.6 shows the performance difference

between the new unroll-and-jam algorithm and Huang’s method [34] when the methods use

different unroll amounts. The results are summarized in Table 5.4. The row marked “#

of Loops” shows how many of loops have different unroll amounts under both methods on

each clustered architecture. The row labeled “Harmonic Mean” gives the harmonic mean

speedup in unit II obtained by the new method. The row labeled “Harmonic (Fixed)” shows

the harmonic mean speedup in unit II obtained by Huang’s method. The new algorithm

gives a better harmonic mean speedup in unit II than Huang’s method on each architecture.

The degradations seen on the 4-cluster 8-wide machine are due to the dependences with

indeterminate dependence distances caused by index arrays.
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Width 8 FUs 16 FUs
Clusters 2 4 2 4

# of Loops 9 4 9 21
Speedup

Harmonic Mean 1.00 0.91 1.00 1.07
Harmonic (Fixed) 0.88 0.84 0.88 0.95

Table 5.4: URM Speedups: The New Algorithm vs. Fixed Unroll Amounts

5.2.2 TMS320C64x Results

The transformed versions of the code were run on the C64x and the resulting IIs

were compared with the original code. Since the unrolling scheme in the C64x compiler is

a subset of Huang’s algorithm, unrolling in the TI complier was turned off to examine the

effect of the new unrolling algorithm on the set of loops. The new algorithm was compared

to Huang’s later in this section.

Table 5.5 summarizes the results obtained on the C64x, and the results of indi-

vidual loops are listed in Table A.5. The C64x compiler failed to find a profitable schedule

for two loops, and thus generated code for these loops without applying software pipelin-

ing. Additionally two loops that contain a division operation cannot be software pipelined

either since the C64x compiler treats division operations as function calls that disable soft-

ware pipelining. Therefore, Table 5.5 and Table A.5 gives the results for 67 loops of the

benchmark suite.

Speedup
Average 1.94

Harmonic 1.70
Median 2.00
Std Dev 0.74
Improved 57

Table 5.5: TMS320C64X Speedups: Unrolled vs. Original

On the C64x, all cases showed improvement or remained unchanged with unrolling.

The harmonic mean speedup in unit II across the entire benchmark suite is 1.7. The

individual speedups for the loops ranged from 1.0 to 4. The harmonic mean speedup

improvement is better than that seen on the URM. The C64x supports more intercluster

copies which, in turn, reduces the overhead of the copy operations.



CHAPTER 5. EXPERIMENTAL RESULTS 68

On the 9 loops where the new algorithm produces a different result than Huang’s

algorithm, Huang’s algorithm gets better performance. This is because the C64x supports

SIMD operations and the new performance model does not considers these effects. The

new model will choose not to unroll these loops because of communication. However,

unrolling allows the C64x compiler to detect the SIMD operations and an improvement

is obtained. Since Huang’s algorithm always unrolls irrespective of communication cost,

it blindly exposes the SIMD operations. The solution to this problem is to model SIMD

operations in the performance model.

5.2.3 Accuracy of Communication Cost Prediction

To evaluate the accuracy of the unroll-and-jam algorithm in predicting intercluster

communication, we compare the number of intercluster data transfers due to cross-cluster

dependences predicted by the communication cost model against the actual number of

cross-cluster dependences found in the transformed loops. For each loop after unroll-and-

jam/unrolling and scalar replacement are applied, Memoria counts the intercluster true

dependences whose sinks are not killed by a definition in the path from the source to the

sink. The input dependences whose sources and sinks reside in distinct clusters are also

recorded. Table A.7 lists the number of predicted copies and the number of intercluster

dependences for each individual loops on four clustered architectures.

The results show that the communication cost model makes an exact prediction

for most of the loops in the benchmark suite. For the 2-cluster machines, only 5 out of 71

loops show a misprediction. For the 4-cluster machines, 7 loops have a misprediction. In

each case expect for loop 22 and 25, the misprediction is by one, two, or three dependences

and occurs in the loops that contain inconsistent dependences. Loop 22 and 25 show a large

misprediction due to the index arrays in these loops.

Many heuristic algorithms may not be able to derive a partition that limits copies

to the extent that the cost model predicts. However, this prediction serves as a lower bound

for these heuristics to attempt to achieve.

5.3 Fusion results

Out of the 119 loops in the benchmark suite, fusion is applicable to 12 sets of loops

consisting of 25 total loops. Table 5.6 describes the main functions of those loops.
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Loop Set # Description
1,2 solves the error locater polynomial

equation
3 scales up or down a line of data
4 performs 2D wavelet transform on input

data
5,6,7,8,9 performs shift and dot product on vectors

10 performs multiplication, accumulation,
and subtraction on an array and finds
the largest value

11 performs dot product on vectors
12 transposes the data to get pixel planes

Table 5.6: Loop Description

Section 5.3.1 reports the speedups achieved by Memoria on four clustered VLIW

architectures modeled with the URM. Section 5.3.2 presents the speedups achieved by

Memoria on the Texas Instruments TMS320C64x.

5.3.1 URM Results

Tables 5.7, 5.8 and 5.9, show the effects of loop fusion and loop unrolling (either

inner- or outer-loop unrolling) on the 12 sets of loops. (For the results on individual loops,

see Tables B.1, B.2, B.3, and B.4.) The rows labeled “Average” show the average

speedup in unit II obtained by the transformed loops when compared with the unit II of

loops without the transformations. For the unfused loops the sum of the original unit IIs

was compared to the unit II of the fused loop. The rows labeled “Harmonic,” “Median,”

and “Std Dev” give the harmonic mean speedup in unit II, the median speedup in unit II,

and the standard deviation, respectively.

Width 8 FUs 16 FUs
Clusters 2 4 2 4

Speedup
Average 1.59 1.65 1.66 1.59

Harmonic 1.48 1.56 1.56 1.48
Median 1.38 1.51 1.90 1.38
Std Dev 0.45 0.45 0.40 0.45

Table 5.7: URM Speedups: Fused vs. Original
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Table 5.7 shows the effects of performing only loop fusion on the benchmark suites.

Loop fusion has gained a 1.48 – 1.56 harmonic mean speedup in unit II over the four target

architectures. The speedups on individual loops range from 1.14 to 2.67. For most of these

tests, the architecture configuration made little difference. This is because the original loops

do not have enough parallelism to occupy all of the issue slots.

Width 8 FUs 16 FUs
Clusters 2 4 2 4

Speedup
Average 1.57 1.58 1.55 1.48

Harmonic 1.49 1.41 1.47 1.29
Median 1.54 1.65 1.58 1.27
Std Dev 0.41 0.54 0.37 0.54

Table 5.8: URM Speedups: Fused & Unrolled vs. Unrolled Only

Table 5.8 shows the improvements obtained by loop fusion over unrolling. Again,

we see significant gains with a 1.29 – 1.49 harmonic mean speedup in unit II. The speedups

on individual loops ranged from 0.61 to 2.67, with the median speedup ranging from 1.27

to 1.65. A degradation in unit II was observed for one test case (loop set 11) on 4-cluster

architectures. This is because the fused loop contains significant amount of computation

which causes high communication overhead on architectures with more clusters. On the

other hand, the original loops are relatively small and can create more parallelism via loop

unrolling.

Finally, Table 5.9 reports the total improvement of fusion and unrolling over the

original untransformed loop. We have observed a 1.72 – 1.89 harmonic mean speedup in

unit II and a median speedup of 1.94 – 2. The speedups for individual loops ranged from

1 to 3.05.

Width 8 FUs 16 FUs
Clusters 2 4 2 4

Speedup
Average 1.92 2.09 1.94 1.89

Harmonic 1.82 1.89 1.86 1.72
Median 1.94 2 2 1.9
Std Dev 0.43 0.68 0.35 0.57

Table 5.9: URM Speedups: Fused & Unrolled vs. Original
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The largest speedup was seen in the architecture with 8 functional units arranged in

4 clusters. However, the performance of individual loops is lower than on other architectures.

This is because this architecture has enough functional units to capture parallelism exploited

by unrolling, but requires a significant number of intercluster data transfers since only one

such transfer can be initiated in a single cycle. When the performance of individual loops

and the average overall speedups are considered, the architectures with fewer partitions can

perform better. The reason is that such architectures offer a large amount of ILP with a

relatively low communication overhead since there are only two clusters.

The results for the URM show that loop fusion offers tremendous potential for

improving code on clustered VLIW architectures. Fusion is applicable to 21% of the loops

found in the benchmark suite and, when it is applied, significant improvements are obtained.

5.3.2 TMS320C64x Results

The TI compiler already performs unrolling, so our measurements only show the

effects of loop fusion. Table 5.10 summarizes the results obtained on the C64x, while

Table B.5 reports the results for individual loops.

Speedup
Average 1.46

Harmonic 1.33
Median 1.33
Std Dev 0.46

Table 5.10: TMS320C64x Speedups: Fused vs. Original

On the C64x, fusion achieves an average speedup in unit II of 1.46, a harmonic

mean speedup of 1.33, and a median speedup of 1.33. The speedups ranged from 1 to 2 with

four of the loop sets giving a speedup of 2. The C64x unrolls four loop sets entirely and

hence no improvement was gained with fusion for these four loop sets. The mean speedup

improvement on all loop sets is less than that seen on the URM. The difference in speedup

and the lack of any speedup in four of the loops can be attributed to the availability of cross

paths on C64x. The cross paths allow communication between clusters without an explicit

copy operation. This reduces the overhead of the communication compared to the URM

and offers fewer opportunities for improvements.
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5.4 Summary

This chapter has tested the proposed loop transformation strategy on different

kinds of clustered architectures. The results show that

• Unroll-and-jam and loop unrolling are very effective for the DSP benchmark suite

used in this research, improving more than 40% of loops with an average harmonic

mean speedup of 1.33 – 1.60.

• Unroll-and-jam and scalar replacement can generate high quality of code with en-

hanced intracluster and intercluster parallelism, giving an average harmonic mean

speedup of 1.39 – 1.68.

• Loop fusion is applicable to 21% of the loops found in the benchmark suite and, when

it is applied, a 1.33 – 1.56 harmonic mean speedup is obtained.

• Combined optimizations of loop fusion, loop unrolling, and scalar replacement offer

tremendous potential for improving code on clustered VLIW architectures. A speedup

of 1.72 – 1.89 can be expected through the combined optimization strategy.
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Chapter 6

Conclusions and Future Work

This dissertation has studied the effects of high-level loop transformations on clus-

tered VLIW architectures. The goal is to improve code generation to make efficient use

of clustered architectures. This chapter summarizes the new techniques developed in the

preceding chapters and then discusses the future work of this research.

6.1 Contribution

Loop Fusion This dissertation is the first work that investigates the effect of loop fusion

on clustered VLIW architectures. Loop fusion enhances instruction-level parallelism, gener-

ates compact code and improves the utilization of functional units. The method developed

in Chapter 4 employed alignment conflicts as a metric for guiding loop fusion and prevent-

ing aggressive fusion that would restrict intercluster parallelism created by unroll-and-jam.

A greedy loop fusion algorithm has been implemented and tested on DSP benchmarks for

four different simulated, clustered VLIW architectures, and the TI C6x. The results show

that, out of 119 DSP benchmarks, loop fusion is applicable to 21% of the loops, and can

result in a 1.33 – 1.56 harmonic mean speedup in the unit II. Fusion and unrolling together

gain a 1.72 – 1.89 harmonic mean speedup on four simulated architectures.

Unroll-and-jam and Loop Unrolling Unroll-and-jamming a loop nest can improve the

utilization of functional units in a single cluster. This research also uses unroll-and-jam and

loop unrolling to generate intercluster parallelism while maintaining low communication

overhead. Chapter 3 presents a new method for predicting the amount of intercluster
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data transfers caused by data dependences in loops run on clustered VLIW architectures.

This method is part of an integer-optimization problem used to predict the performance of

software-pipelined loops and to guide unroll-and-jam or loop unrolling for clustered VLIW

architectures.

The results show that the prediction of intercluster data dependences that cause

communication is accurate. In addition, out of the 119 DSP benchmarks used, 42%-58%

of the loops can be improved via unroll-and-jam/unrolling and scalar replacement by a

harmonic mean speedup of 1.39 – 1.68 for four different simulated, clustered VLIW ar-

chitectures, and a harmonic mean speedup of 1.7 for the TI TM320C64x. In contrast

to previous work that simply uses fixed unroll amounts, this method tailors unroll-and-

jam/loop unrolling for specific loops based upon the parameters of specific architectures,

and therefore, can generate more efficient code.

6.2 Future Work

This research confirms the abilities of high-level loop transformations to improve

performance for clustered VLIW architectures, and it paves the way for much more compiler

research.

Define a Unified Metric for Loop Transformations This research determines the

profitability of loop fusion based upon the impact of fused loops on parallelism caused by

unroll-and-jam. The algorithm that computes the communication cost can be extended to

examine whether the extra data transfers can be hidden in software pipelined loops. This

can result in a unified metric based upon the performance prediction for guiding loop fusion

and unroll-and-jam.

Overcome Inaccurate Dependence Analysis The effectiveness of the unroll-and-jam

algorithm highly depends on the accuracy of the prediction of intercluter communication.

Although dependence analysis is enough for accurate prediction for most cases, dependence

patterns such as index arrays and variant dependence distances do exist in DSP benchmarks,

making exact dependence analysis very difficult. Integrating the prediction of intercluster

copies with an improved dependence testing method that deals with complex dependence

patterns would generate better unroll-and-jammed loops.
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Study the Effects of Scalar Replacement The loop transformation strategy described

in Chapter 2 uses scalar replacement to enhance the effectiveness of loop fusion and unroll-

and-jam. The results show that some loops obtain large improvement via unrolling and

scalar replacement, while others gain small improvement or even degradations in perfor-

mance. An open question is: how will scalar replacement affect clustered VLIW architec-

tures? Scalar replacement eliminates redundant memory accesses by keeping array elements

in registers. However, it increases register pressure and possibly communication overhead,

making it difficult to produce a high degree of intercluster parallelism. A compiler must

make tradeoffs between effective register use and a high level of intercluster parallelism

when performing scalar replacement.

Investigate Pre-partitioning This dissertation has verified the abilities of high-level

transformations to expose more ILP available to the low-level optimizer. However the

low-level optimizer may not be able to make full use of parallelism due to lack of informa-

tion on parallelism in the intermediate code. A remedy is to perform pre-partitioning at a

high-level after loop transformations are applied. High-level pre-partitioning distributes the

statements of the transformed loop among clusters according to predicted intercluster com-

munication overhead. The resulting partitions can be used to improve register partitioning

at the low-level. For instance, the low-level optimizer can use the high-level partitions as

the initial partitioning scheme, or as a tie-breaker when multiple clusters have equal priority

to hold a value.

Investigate Other Objectives The goal of loop transformations in this research is to

improve performance of applications run on clustered VLIW architectures. This research

can be extended to achieve other objectives. For instance, some clustered VLIW architec-

tures provide SIMD, or the single-instruction multiple-data techniques that execute multiple

instances of the same operations in parallel using different data. Unroll-and-jam or loop

unrolling can be applied to provide opportunities of creating SIMD instructions. In addi-

tion, new metrics can be adopted for guiding loop transformations, such as, making efficient

use of functional units or reducing the code size after transformations. Such an extension

would be extremely important for those embedded system applications that are sensitive to

power consumption and memory use as well as performance.
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6.3 Final Remarks

Using compiler techniques to take advantage of target architectures has a long

history. Clustered VLIW embedded processors are increasing in use, making it important

for compilers to achieve high ILP with low communication overhead. The work presented

in this dissertation provides automatic techniques that free programmers from optimizing

programs manually. This research is an important step in generating high performance

code for clustered architectures, indicating that high-level loop transformations should be

an integral part of compilation for clustered VLIW machines.
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Appendix A

Individual Loop Performance for

Unrolling

Table A.1, A.2, A.3, and A.4 present the URM results for individual loops when

loop unrolling (and/or unroll-and-jam) and scalar replacement are applied. In these tables,

Loop# is the loop number,

Org II is the II for the original loop,

Unroll uII is the unit II for the unrolled loop,

UnrollSR uII is the unit II after loop unrolling/unroll-and-jam and scalar replacement

are applied,

Unroll vs Org is the speedup of the unrolled unit II compared with the orginal II,

UnrollSR vs Org is the speedup of the unit II for the transformed loop compared with

the original II,

Avg is the average mean speedup in unit II,

Har is the harmonic mean speedup in unit II,

Med is the median speedup in unit II,

SD is the standard deviation.
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Org Unroll UnrollSR Speedup
Loop# II uII uII Unroll vs Org UnrollSR vs Org

1 9 4.5 4.5 2 2
2 14 9.5 5 1.47 2.8
3 15 8 8 1.875 1.875
4 2 1 1 2 2
5 2 1.167 1.167 1.71 1.71
6 2 1.167 1.167 1.71 1.71
7 2 1.167 1.167 1.71 1.71
8 5 4 4 1.25 1.25
9 2 2.75 2.5 0.73 0.8
10 7 5.167 5.167 1.35 1.35
11 2 2.75 2.5 0.73 0.8
12 2 2.75 2.5 0.73 0.8
13 2 1 1 2 2
14 2 2 2 1 1
15 2 1 1 2 2
16 21 9.5 2 2.21 10.5
17 4 3 3 1.33 1.33
18 2 1 1 2 2
19 3 1.5 1.5 2 2
20 15 8 7 1.875 2.14
21 11 5.5 5.5 2 2
22 28 28 28 1 1
23 34 17 17 2 2
24 8 8 8 1 1
25 32 33.5 33.5 0.96 0.96
26 21 5 2.5 4.2 8.4
27 23 21 10.5 1.10 2.19
28 13 8.5 6.5 1.53 2
29 3 0.5 0.5 6 6
30 5 2.833 2.333 1.769 2.14
31 5 2.5 2.5 2 2
32 18 8.5 2.5 2.12 7.2
33 5 2.5 2.5 2 2
34 8 5 5 1.6 1.6
35 2 1 1.5 2 1.33
36 3 2.5 2.5 1.2 1.2
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Org Unroll UnrollSR Speedup
Loop# II uII uII Unroll vs Org UnrollSR vs Org

37 2 1.167 1.167 1.71 1.71
38 2 1.167 1.167 1.71 1.71
39 15 8 8 1.875 1.88
40 2 2.5 2.5 0.8 0.8
41 5 4 4 1.25 1.25
42 5 4 4 1.25 1.25
43 2 2 2 1 1
44 2 2.5 2.5 0.8 0.8
45 3 2.333 2.333 1.29 1.29
46 3 2.5 2.5 1.2 1.2
47 3 0.5 0.5 6 6
48 2 2 2 1 1
49 2 2.5 2.5 0.8 0.8
50 5 3 3 1.67 1.67
51 2 2 2 1 1
52 2 2.5 2.5 0.8 0.8
53 2 2.5 2.125 0.8 0.94
54 3 2 2 1.5 1.5
55 5 4 4 1.25 1.25
56 5 4 4 1.25 1.25
57 2 1 1 2 2
58 2 2 2 1 1
59 9 5 5 1.8 1.8
60 5 3 3 1.67 1.67
61 5 4 4 1.25 1.25
62 2 2 2 1 1
63 5 3 3 1.67 1.67
64 2 2 2 1 1
65 5 3 3 1.67 1.67
66 2 2 2 1 1
67 8 5.25 5.25 1.52 1.52
68 16 10 5 1.6 3.2
69 3 3 3 1 1
70 3 1.5 3 2 1
71 2 2.5 2.5 0.8 0.8

Avg 1.61 1.91
Har 1.33 1.39
Med 1.52 1.52
SD 0.93 1.72

Table A.1: Unrolling Results for Individual Loops on 8-wide 2-cluster
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Org Unroll UnrollSR Speedup
Loop# II uII uII Unroll vs Org UnrollSR vs Org

1 9 4.25 4.25 2.12 2.12
2 14 10.5 1.25 1.33 11.2
3 15 7.25 7.25 2.07 2.07
4 3 0.75 0.75 4 4
5 3 1.875 1.75 1.6 1.71
6 3 1.875 1.75 1.6 1.71
7 3 1.875 1.5 1.6 2
8 5 4.25 4.25 1.18 1.18
9 3 2.667 2.5 1.12 1.2
10 7 5.583 5.583 1.25 1.25
11 3 2.667 2.5 1.12 1.2
12 3 2.667 2.5 1.12 1.2
13 3 0.75 0.75 4 4
14 4 1.75 1.75 2.29 2.29
15 3 0.75 0.75 4 4
16 21 4.75 2 4.42 10.5
17 4 2.25 2.25 1.78 1.78
18 3 0.75 0.75 4 4
19 3 1 1 3 3
20 15 8 7.5 1.88 2
21 11 5.25 5.25 2.09 2.09
22 29 26.5 26.5 1.09 1.09
23 34 13.75 13.75 2.47 2.47
24 8 11.667 11.66 0.69 0.69
25 32 33.5 33.5 0.96 0.95
26 21 5 2.5 4.2 8.4
27 23 21.75 11.75 1.06 1.96
28 13 9.25 7.25 1.40 1.79
29 3 0.375 0.375 8 8
30 5 2.75 2.75 1.82 1.82
31 5 2.5 2.5 2 2
32 18 4.5 1.25 4 14.4
33 5 2.5 2.5 2 2
34 8 4.5 4.5 1.78 1.78
35 3 1.625 1.625 1.85 1.85
36 5 3.75 3.75 1.33 1.33
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Org Unroll UnrollSR Speedup
Loop# II uII uII Unroll vs Org UnrollSR vs Org

37 3 2 2 1.5 1.5
38 3 2 2 1.5 1.5
39 15 6 6 2.5 2.5
40 3 2.417 2.417 1.24 1.24
41 5 4.25 4.25 1.18 1.18
42 5 4.25 4.25 1.18 1.18
43 4 2.25 2.25 1.78 1.78
44 3 2.5 2.5 1.2 1.2
45 4 2.5 2.5 1.6 1.6
46 4 2.25 2.25 1.78 1.78
47 5 0.625 0.625 8 8
48 3 3 3 1 1
49 3 2.5 2.5 1.2 1.2
50 5 2.5 2.5 2 2
51 3 2.5 2.5 1.2 1.2
52 3 2.5 2.5 1.2 1.2
53 3 2.5 2.5 1.2 1.2
54 5 2.25 2.25 2.22 2.22
55 5 4.25 4.25 1.18 1.18
56 5 4.25 4.25 1.18 1.18
57 3 1 1.125 3 2.67
58 3 2.5 2.5 1.2 1.2
59 9 3.5 3.5 2.57 2.57
60 5 2.5 2.5 2 2
61 5 4.25 4.25 1.18 1.18
62 3 2.5 2.5 1.2 1.2
63 5 2.5 2.5 2 2
64 3 2.5 2.5 1.2 1.2
65 5 2.5 2.5 2 2
66 3 2.5 2.5 1.2 1.2
67 8 5.167 5.167 1.54 1.54
68 16 9.75 4.25 1.64 3.76
69 3 1.25 1.25 2.4 2.4
70 3 1.75 2.5 1.71 1.2
71 3 2.5 2.5 1.2 1.2

Avg 2.02 2.51
Har 1.60 1.68
Med 1.6 1.78
SD 1.35 2.52

Table A.2: Unrolling Results for Individual Loops on 8-wide 4-cluster
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Org Unroll UnrollSR Speedup
Loop# II uII uII Unroll vs Org UnrollSR vs Org

1 9 4.5 4.5 2 2
2 14 9.5 5 1.47 2.8
3 15 8 8 1.86 1.86
4 2 1 1 2 2
5 2 1.25 1.25 1.6 1.6
6 2 1.25 1.25 1.6 1.6
7 2 1.25 1.25 1.6 1.6
8 5 4 4 1.25 1.25
9 2 2.833 2.333 0.71 0.86
10 7 5.75 5.75 1.22 1.22
11 2 2.833 2.333 0.71 0.86
12 2 2.833 2.333 0.71 0.86
13 2 1 1 2 2
14 2 1 1 2 2
15 2 1 1 2 2
16 21 9.5 2 2.21 10.5
17 4 3 3 1.33 1.33
18 2 1 1 2 2
19 3 1.5 1.5 2 2
20 15 8 7 1.88 2.14
21 11 5.5 5.5 2 2
22 28 28 28 1 1
23 34 17 17 2 2
24 8 8 8 1 1
25 32 33.5 33.5 0.96 0.96
26 21 4.833 2.333 4.34 9.00
27 23 21.5 10.5 1.07 2.19
28 13 8.5 6.5 1.53 2
29 3 0.75 0.75 4 4
30 5 3 2.25 1.67 2.22
31 5 2.5 2.5 2 2
32 18 8.5 2.5 2.12 7.2
33 5 2.5 2.5 2 2
34 8 5 5 1.6 1.6
35 2 1 1 2 2
36 2 2 2 1 1
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Org Unroll UnrollSR Speedup
Loop# II uII uII Unroll vs Org UnrollSR vs Org

37 2 1.25 1.25 1.6 1.6
38 2 1.25 1.25 1.6 1.6
39 15 8 8 1.88 1.87
40 2 2.333 2.333 0.86 0.85
41 5 4 4 1.25 1.25
42 5 4 4 1.25 1.25
43 2 2 2 1 1
44 2 2.333 2.333 0.86 0.85
45 3 2.25 2.25 1.33 1.33
46 3 2.5 2.5 1.2 1.2
47 3 0.75 0.75 4 4
48 2 2 2 1 1
49 2 2.333 2.333 0.86 0.86
50 5 3 3 1.67 1.67
51 2 2 2 1 1
52 2 2.333 2.333 0.86 0.86
53 2 2.333 2.333 0.86 0.86
54 2 1.5 1.5 1.33 1.33
55 5 4 4 1.25 1.25
56 5 4 4 1.25 1.25
57 2 1 1 2 2
58 2 2 2 1 1
59 9 5 5 1.8 1.8
60 5 3 3 1.67 1.67
61 5 4 4 1.25 1.25
62 2 2 2 1 1
63 5 3 3 1.67 1.67
64 2 2 2 1 1
65 5 3 3 1.67 1.67
66 2 2 2 1 1
67 8 5.333 5.333 1.50 1.50
68 16 10 5 1.6 3.2
69 3 3 3 1 1
70 3 1.5 3 2 1
71 2 2.333 2.333 0.87 0.85

Avg 1.55 1.87
Har 1.34 1.40
Med 1.53 1.6
SD 0.69 1.65

Table A.3: Unrolling Results for Individual Loops on 16-wide 2-cluster
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Org Unroll UnrollSR Speedup
Loop# II uII uII Unroll vs Org UnrollSR vs Org

1 9 4.25 4.25 2.12 2.12
2 14 8.25 1.13 1.70 12.4
3 15 7.25 7.25 2.07 2.07
4 2 0.75 0.75 2.67 2.67
5 2 1.25 1.25 1.6 1.6
6 2 1.25 1.25 1.6 1.6
7 2 1.25 1.25 1.6 1.6
8 5 4 4 1.25 1.25
9 2 2.75 2.5 0.73 0.8
10 7 6.42 6.42 1.09 1.09
11 2 2.75 2.5 0.73 0.8
12 2 2.75 2.5 0.73 0.8
13 2 0.75 0.75 2.67 2.67
14 2 0.75 0.75 2.67 2.67
15 2 0.75 0.75 2.67 2.67
16 21 4.75 2 4.42 10.5
17 2 2.25 2.25 0.89 0.89
18 2 0.75 0.75 2.67 2.67
19 3 0.75 0.75 4 4
20 15 7.75 4 1.94 3.75
21 11 5.25 5.25 2.09 2.09
22 28 34 34 0.82 0.82
23 34 13.75 13.75 2.47 2.47
24 8 10 10 0.8 0.8
25 32 33.5 33.5 0.96 0.96
26 21 5 2.5 4.2 8.4
27 23 21.5 5.5 1.05 4.18
28 13 9.25 7 1.41 1.86
29 3 0.75 0.75 4 4
30 5 2.75 2.5 1.82 2
31 5 2.5 2.5 2 2
32 18 4.5 1.25 4 14.4
33 5 2.5 2.5 2 2
34 8 4.25 4.25 1.88 1.88
35 2 1.125 1.125 1.78 1.78
36 3 2.5 2.5 1.2 1.2
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Org Unroll UnrollSR Speedup
Loop# II uII uII Unroll vs Org UnrollSR vs Org

37 2 1.125 1.125 1.78 1.78
38 2 1.333 1.333 1.50 1.50
39 15 5.75 5.75 2.61 2.61
40 2 2.5 2.5 0.8 0.8
41 5 4 4 1.25 1.25
42 5 4 4 1.25 1.25
43 2 2.25 2.25 0.89 0.89
44 2 2.5 2.5 0.8 0.8
45 3 2.333 2.333 1.29 1.26
46 3 2.5 2.5 1.2 1.2
47 3 0.375 0.375 8 8
48 2 2 2 1 1
49 2 2.5 2.5 0.8 0.8
50 5 2.5 2.5 2 2
51 2 2.5 2.5 0.8 0.8
52 2 2.5 2.5 0.8 0.8
53 2 2.5 2.5 0.8 0.8
54 3 1.5 1.5 2 2
55 5 4 4 1.25 1.25
56 5 4 4 1.25 1.25
57 2 1 0.5 2 4
58 2 2.5 2.5 0.8 0.8
59 9 3.5 3.5 2.57 2.57
60 5 2.5 2.5 2 2
61 5 4 4 1.25 1.25
62 2 2.5 2.5 0.8 0.8
63 5 2.5 2.5 2 2
64 2 2.5 2.5 0.8 0.8
65 5 2.5 2.5 2 2
66 2 2.5 2.5 0.8 0.8
67 8 5.25 5.25 1.52 1.52
68 16 10.33 3.33 1.55 4.80
69 3 1.5 1.5 2 2
70 3 1.667 2.333 1.80 1.29
71 2 2.5 2.5 0.8 0.8

Avg 1.79 2.38
Har 1.35 1.43
Med 1.6 1.60
SD 1.17 2.58

Table A.4: Unrolling Results for Individual Loops on 16-wide 4-cluster
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Table A.5 lists the results for individual loops on TI TMS320C64x when loop

unrolling or unroll-and-jam is applied.

Loop# is the loop number,

Org II is the II for the original loop,

Unrolled II is the II for the unrolled loop,

Unroll Amount is the unroll times plus one,

Unroll uII is the unit II for the unrolled loop,

Speedup is the speedup of the unrolled unit II compared with the original II.
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Org Unrolled Unroll Unroll
Loop# II II Amount uII Speedup

1 3 2 2 1 3
2 12 24 2 12 1
3 6 6 2 3 2
4 1 0.5 2 0.25 4
5 3 9 6 1.5 2
6 3 9 6 1.5 2
7 3 9 6 1.5 2
8 3 3 2 1.5 2
9 3 12 8 1.5 2
10 6 24 4 6 1
11 2 12 8 1.5 1.33
12 3 12 8 1.5 2
13 1 1 2 0.5 2
14 1 1 2 0.5 2
15 1 0.5 2 0.25 4
16 3 8 2 4 0.75
17 2 2 2 1 2
18 1 0.5 2 0.25 4
19 1 1 2 0.5 2
20 4 6 2 3 1.33
21 3 2 2 1 3
22 15 15 1 15 1
23 3 3.5 2 1.75 1.71
24 7 13 2 6.5 1.07
25 17 17 2 8.5 2
26 3 13 8 1.63 1.85
27 22 22 2 11 2
29 1 4 6 0.67 1.5
30 2 9 6 1.5 1.33
31 1 1 2 0.5 2
32 7 13 2 6.5 1.08
33 1 1 2 0.5 2
34 2 1.5 2 0.75 2.67
35 3 11 6 1.83 1.64
37 3 9 6 1.5 2
38 3 9 6 1.5 2
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Org Unrolled Unroll Unroll
Loop# II II Amount uII Speedup

39 2 1.5 2 0.75 2.67
40 3 12 8 1.5 2
41 3 3 2 1.5 2
42 3 3 2 1.5 2
43 1 1 2 0.5 2
44 3 12 8 1.5 2
45 3 9 6 1.5 2
46 2 3 2 1.5 1.33
47 2 4 6 0.67 3
48 3 3 1 3 1
49 3 12 8 1.5 2
50 1 1 2 0.5 2
51 2 2 1 2 1
52 3 12 8 1.5 2
53 3 12 8 1.5 2
54 3 2 2 1 3
55 3 3 2 1.5 2
56 3 3 2 1.5 2
57 2 9 6 1.5 1.33
58 2 2 1 2 1
59 2 2 2 1 2
60 1 1 2 0.5 2
61 3 3 2 1.5 2
62 2 2 1 2 1
63 1 1 2 0.5 2
64 2 2 1 2 1
65 1 1 2 0.5 2
66 2 2 1 2 1
69 2 2 1 2 1
70 3 1.5 2 0.75 4
71 3 12 8 1.5 2

Avg 1.94
Har 1.70
Med 2.00
SD 0.74

Table A.5: Unrolling Results for Individual Loops on TMS320C64x
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Table A.6 reports the performance difference between the new unroll-and-jam

method and Huang’s method when the methods use different unroll amounts.

Loop # is the loop number,

Org II is the II for the original loop,

New is the unit II obtained by the new unroll-and-jam algorithm,

Fixed is the unit II obtained by Huang’s method,

NewSpeedup is the speedup in unit II achieved by the new unroll-and-jam algorithm,

FixedSpeedup is the speedup in unit II achieved by Huang’s method.

Loop# Org II New Fixed NewSpeedup FixedSpeedup
8-wide 2-cluster

22 28 28 34 1 0.82
24 8 8 10 1 0.8
48 2 2 2 1 1
51 2 2 2.5 1 0.8
58 2 2 2.5 1 0.8
62 2 2 2.5 1 0.8
64 2 2 2.5 1 0.8
66 2 2 2.5 1 0.8
69 3 3 1.5 1 2

Avg 1 0.96
Har 1 0.88

8-wide 4-cluster
22 29 26.5 41.5 1.09 0.7
24 8 11.67 12.25 0.65 0.69
25 32 33.5 34.25 0.96 0.93
48 3 3 1 2.25 1.33

Avg 0.93 0.9
Har 0.91 0.84
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Loop# Org II New Fixed NewSpeedup FixedSpeedup
16-wide 2-cluster

22 28 28 34 1 0.82
24 8 8 10 1 0.8
48 2 2 2 1 1
51 2 2 2.5 1 0.8
58 2 2 2.5 1 0.8
62 2 2 2.5 1 0.8
64 2 2 2.5 1 0.8
66 2 2 2.5 1 0.8
69 3 3 1.5 1 2

Avg 1 0.96
Har 1 0.88

16-wide 4-cluster
8 5 4 4.25 1.25 1.18
22 28 34 41.5 0.82 0.67
24 8 10 12.25 0.8 0.65
25 32 33.5 34.25 0.96 0.93
27 23 21.5 21.75 1.07 1.06
38 2 1.33 2.25 1.5 0.89
41 5 4 4.25 1.25 1.18
42 5 4 4.25 1.25 1.18
45 3 2.33 5 1.29 0.6
48 2 2 2.25 1 0.89
51 2 2.5 2.5 0.8 0.8
55 5 4 4.25 1.25 1.18
56 5 4 4.25 1.25 1.18
58 2 2.5 2.5 0.8 0.8
61 5 4 4.25 1.25 1.18
62 2 2.5 2.5 0.8 0.8
64 2 2.5 2.5 0.8 0.8
66 2 2.5 2.5 0.8 0.8
68 16 10.33 10.25 1.55 1.56
69 3 1.5 1.5 2 2
70 3 1.67 1.75 1.8 1.71

Avg 1.16 1.05
Har 1.07 0.95

Table A.6: The New Algorithm vs. Fixed Unroll Amounts
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Table A.7 lists the number of copies predicted by the new unroll-and-jam algorithm

and the number of actual cross-cluster dependences collected by Memoria after unrolling

and scalar replacement are applied.

Loop# is the loop number,

Pred is the number of predicted copies,

Dep is the number of intercluster dependences.

The loops marked “*” have a misprediction on the number of intercluter value copies.
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Width 8 FUs 16 FUs
Clusters 2 4 2 4
Loop# Pred Dep Pred Dep Pred Dep Pred Dep

1 0 0 0 0 0 0 0 0
2* 0 0 1 4 0 0 1 4
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 1 1 3 3 1 1 3 3
6 1 1 3 3 1 1 3 3
7* 0 1 0 3 0 1 0 3
8 2 2 4 4 2 2 3 3
9 1 1 3 3 1 1 3 3

10* 3 2 9 6 3 2 9 6
11 1 1 3 3 1 1 3 3
12 1 1 3 3 1 1 3 3
13 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0
22* 0 0 51 54 0 0 48 24
23 0 0 0 0 0 0 0 0
24 0 0 9 9 0 0 3 3
25* 54 39 54 30 54 39 54 18
26 1 1 3 3 1 1 3 3
27 4 4 8 8 4 4 6 6
28 2 2 4 4 2 2 4 4
29 1 1 3 3 1 1 3 3
30 1 1 3 3 1 1 3 3
31 0 0 0 0 0 0 0 0
32* 1 0 3 0 1 0 1 0
33 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0
35 1 1 3 3 1 1 3 3
36 0 0 0 0 0 0 0 0
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Width 8 FUs 16 FUs
Clusters 2 4 2 4
Loop# Pred Dep Pred Dep Pred Dep Pred Dep

37 1 1 3 3 1 1 3 3
38 1 1 3 3 1 1 2 2
39 0 0 0 0 0 0 0 0
40 1 1 3 3 1 1 3 3
41 2 2 4 4 2 2 3 3
42 2 2 4 4 2 2 3 3
43 0 0 0 0 0 0 0 0
44 1 1 3 3 1 1 3 3
45 1 1 3 3 1 1 2 2
46 0 0 0 0 0 0 0 0
47 1 1 3 3 1 1 3 3
48 0 0 0 0 0 0 0 0
49 1 1 3 3 1 1 3 3
50 0 0 0 0 0 0 0 0
51 0 0 4 4 0 0 2 2
52 1 1 3 3 1 1 3 3
53 1 1 3 3 1 1 3 3
54 0 0 0 0 0 0 0 0
55 2 2 4 4 2 2 3 3
56 2 2 4 4 2 2 3 3
57 1 1 3 3 1 1 3 3
58 0 0 4 4 0 0 2 2
59 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0
61 2 2 4 4 2 2 3 3
62 0 0 4 4 0 0 2 2
63 0 0 0 0 0 0 0 0
64 0 0 4 4 0 0 2 2
65 0 0 0 0 0 0 0 0
66 0 0 4 4 0 0 2 2
67 0 0 0 0 0 0 0 0
68 2 2 4 4 2 2 3 3
69 0 0 4 4 0 0 2 2
70* 4 2 8 5 4 2 6 3
71 1 1 3 3 1 1 3 3

Table A.7: Predicted Copies vs. Intercluter Dependences
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Appendix B

Individual Loop Performance for

Loop Fusion

Table B.1, B.2, B.3, B.4, and B.5 presents the results for individual loops on

different clustered VLIW architectures when loop fusion and/or unrolling are performed.

In these tables,

Loop Set# is the number of loop set,

Org II is the II for the original loop,

Unroll uII is the unit II for the unrolled loop,

Fuse II is the II for the fused loop,

FusUnroll uII is the unit II for the fused and unrolled loop,

Fused vs Org is the speedup of the fused II compared with the sum of original IIs,

FusUnroll vs Unroll is the speedup of the unit II for the fused and unrolled loop com-

pared with the sum of unrolled unit IIs,

FusUnroll vs Org is the speedup of the unit II for the fused and unrolled loop compared

with the sum of original IIs,

Avg is the average mean speedup in unit II,

Har is the harmonic mean speedup in unit II,
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Med is the median speedup in unit II,

SD is the standard deviation.
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Speedup
Loop Org Unroll Fuse FusUnroll Fused FusUnroll FusUnroll
Set# II uII II uII vs Org vs Unroll vs Org

1 3 2.33 3 2.5 2 1.93 2.4
3 2.5

2 5 3 6 4.5 1.17 1.11 1.56
2 2

3 3 3 2 2 2.5 2.5 2.5
2 2

4 5 3 7 5.5 1.43 1.27 1.82
5 4

5 5 3 6 3 1.17 1.67 2.33
2 2

6 5 3 6 3 1.17 1.67 2.33
2 2

7 3 3 3 3 2 1.5 2
3 1.5

8 4 4 4 4 2 2 2
4 4

9 4 4 7 7 1.14 1.14 1.14
4 4

10 2 2 3 3 1.33 1.33 1.33
2 2

11 2 1.67 3 2.13 1.33 1.57 1.88
2 1.67

12 3 2 5 5 1.8 1.2 1.8
3 2
3 2

Avg 1.59 1.57 1.92
Har 1.48 1.49 1.82
Med 1.38 1.54 1.94
SD 0.45 0.41 0.43

Table B.1: Fusion Results for Individual Loops on 8-wide 2-cluster
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Speedup
Loop Org Unroll Fuse FuseUnroll Fused FusUnroll FusUnroll
Set# II uII II uII vs Org vs Unroll vs Org

1 4 2.5 5 2.63 1.6 1.81 3.05
4 2.25

2 5 2.5 6 5 1.33 1 1.6
3 2.5

3 5 5 3 3 2.67 2.67 2.67
3 3

4 5 2.5 7 5.67 1.43 1.19 1.76
5 4.25

5 5 2.5 6 2.67 1.33 1.88 3
3 2.5

6 5 2.5 6 2.67 1.33 1.88 3
3 2.5

7 3 1.25 3 3 2 1 2
3 1.75

8 4 4 4 4 2 2 2
4 4

9 4 4 7 7 1.14 1.14 1.14
4 4

10 3 3 5 3 1.2 2 2
3 3

11 3 2 3 4.5 2 0.89 1.33
3 2

12 3 3 5 6 1.8 1.5 1.5
3 3
3 3

Avg 1.65 1.58 2.09
Har 1.56 1.41 1.89
Med 1.51 1.65 2
SD 0.45 0.54 0.68

Table B.2: Fusion Results for Individual Loops on 8-wide 4-cluster
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Speedup
Loop Org Unroll Fuse FusUnroll Fused FusUnroll FusUnroll
Set# II uII II uII vs Org vs Unroll vs Org

1 3 2.25 3 2.5 2 1.9 2.4
3 2.5

2 5 3 6 4.5 1.17 1.11 1.56
2 2

3 2 2 2 2 2 2 2
2 2

4 5 3 7 5.5 1.43 1.27 1.82
5 4

5 5 3 6 3 1.17 1.67 2.33
2 2

6 5 3 6 3 1.17 1.67 2.33
2 2

7 3 3 3 3 2 1.5 2
3 1.5

8 4 4 4 4 2 2 2
4 4

9 4 4 7 7 1.14 1.14 1.14
4 4

10 2 2 2 2 2 2 2
2 2

11 2 1.25 2 2.17 2 1.15 1.85
2 1.25

12 3 2 5 5 1.8 1.2 1.8
3 2
3 2

Avg 1.66 1.55 1.94
Har 1.56 1.47 1.86
Med 1.9 1.58 2
SD 0.4 0.37 0.35

Table B.3: Fusion Results for Individual Loops on 16-wide 2-cluster
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Speedup
Loop Org Unroll Fuse FusUnroll Fused FusUnroll FusUnroll
Set# II uII II uII vs Org vs Unroll vs Org

1 3 2.33 3 2.5 2 1.93 2.4
3 2.5

2 5 2.5 6 4.67 1.17 1.07 1.5
2 2.5

3 3 3 2 2 2.5 2.5 2.5
2 2

4 5 2.5 7 5.67 1.43 1.15 1.76
5 4

5 5 2.5 6 2.67 1.17 1.88 2.63
2 2.5

6 5 2.5 6 2.67 1.17 1.88 2.63
2 2.5

7 3 1.5 3 3 2 1.06 2
3 1.67

8 4 4 4 4 2 2 2
4 4

9 4 4 7 7 1.14 1.14 1.14
4 4

10 2 2 3 3 1.33 1.33 1.33
2 2

11 2 1.13 3 4 1.33 0.61 1
2 1.33

12 3 2 5 5 1.8 1.2 1.8
3 2
3 2

Avg 1.59 1.48 1.89
Har 1.48 1.29 1.72
Med 1.38 1.27 1.9
SD 0.45 0.54 0.57

Table B.4: Fusion Results for Individual Loops on 16-wide 4-cluster
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Loop Org Fuse Fused
Set# II II vs Org

1 2.5 3 1.5
2

2 1.5 1.5 2
1.5

3 12 12 1.17
2

4 1.5 2 1.75
2

5 1.5 1.5 2
1.5

6 1.5 1.5 2
1.5

7 1.5 3 1
1.5

8 26 26 1
9 16 15 1.07
10 14 14 1
11 3 3 2

3
12 17 17 1

Avg 1.46
Har 1.33
Med 1.33
SD 0.46

Table B.5: Fusion Results for Individual Loops on TMS320C64x
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