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Abstract 

The presents a Fault Tolerant and Data Fusion (FTDF) algorithm for a Ducted Fan Uninhabited 

Aerial Vehicle (DFUAV) Navigation System. The algorithm have two parts: the Gradient Descent 

(GD) for the Attitude and Heading Reference System (AHRS) and the Interacting Multiple Model 

(IMM) for position estimation. The GD methodology was designed is to fuse gyroscope, 

accelerometer, and geomagnetic sensor. The IMM algorithm is able to identify and compensate 

for multiple sensors data failures. There are three parts to this paper.  

Frist, system identification technique are used and the Allan Variance method is used to build 

dynamic models and noise models for multiple Sensors and Actuators.  

Second, a GD filter applicable to the Inertial Measurement Unit (IMU) consisting of tri-axis 

gyroscopes, accelerometers and magnetometers. The MARG (Magnetic, Angular Rate, and 

Gravity) implementation incorporates magnetic distortion and gyroscope bias drift compensation. 

The filter uses a quaternion representation, allowing accelerometer and magnetometer data to be 

used in an analytically derived and optimized gradient-descent algorithm to compute the direction 

of the gyroscope measurement error as a quaternion derivative.  

Finally, The IMM algorithm is used to combine data from multiple sensors simultaneously. This 

filter uses multiple models that incorporate sensor failures. The probabilities of these models being 

correct is generated by the IMM. These probabilities can be used to identify sensor failures and 

compensate for these failures. 

Keywords: Navigation System, Interacting Multiple Model, Gradient Descent, Fault Tolerant 
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1. Introduction 

Unmanned Aerial Vehicle (UAV) is one kind of robotic that are computerized and 

autonomous using a digital system as a pilot. Thus there is no risk of loss of life 

and the aircraft is easier to maintain than manned aircraft. Vertical Take-Off and 

Landing Unmanned Aerial Vehicle (VTOL) UAV operate in level flight without an 

airstrip, so they are widely used in surveillance and transportation. Examples are 

Aerie Long Endurance UAV and Eagle Eye’sTR-911 X VT-UAV shown in Figure 

1.1.  

  

(a) Aerie Offers Long Endurance UAV 

 

(b) Eagle Eye TR-911 X VT-UAV 

Figure 1.1 VTOL UAV 

Actually aircraft navigation system design process is similar with observer 

designing. Base on observer designing theory, several factor needs to Identify 

and know such as dynamic model of the aircraft, the sensor model and noise 

source model. Firstly, Dynamics model of the aircraft identify for building filter 
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model and simulation. They are include engine thrust model, airfoil lift-drag 

model and ground effect model, these models are nonlinear, time-varying 

generally. Secondly, sensors model and noise source identify to get an accurate 

physical measuring. The high sensitivity sensors are susceptible from externally 

and internally noise, such as vibration noise, electrical noise, thermal noise and 

electromagnetic interference (EMI), so there are different noise distribution with 

measured values. If want to filter those noises, different methods are required to 

recognize the noise model and parameters. 

In the UAV navigation system can be separate into two parts. A high sensitivity 

aircraft attitude measurement system, which belonging to the lower information 

fusion, requires high update frequency, high sensitivity. A high accuracy position 

measurement system which achieve for multiple sensor data fusion, high accuracy 

and fault tolerance ability. Aircraft attitude estimate system is composed by 

strapdown inertial sensors, such as gyroscopes, accelerometers and geomagnetic 

etc. body motion information of UAV will detected by those sensor. An efficient 

attitude conversion algorithm to process attitude information of the aircraft into 

earth coordinate system, these data are almost nonlinear. Currently, some 

algorisms can handle multi-sensor data fusion problem. They are Extended 

Kalman Filter, and Gardens Descent Filter, etc. For position of the aircraft 

mensuration which belong to middle-level data fusion, the systems can fuse GPSs, 

barometric pressure sensor, laser radar, air system of aircraft and other measuring 

equipment data to generate velocity and position information. Particle Filtering, 

Unscented Kalman Filter, Federated Filter are availability. Position and speed data 

may are from different reference frame and update frequencies the filter should be 

able to unify into a space-time, the final output information are latitude, longitude 

and altitude in Earth coordinate. 
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The VTOL UAV is a nonlinear, multivariable, close coupe problem. Multiple 

dynamic models can be constructed for the VTOL UAV to account for maneuvering 

and sensor failures. An Interacting multiple (IMM) filter is used for data fusion and 

fault detection, this paper presents two independent systems to process attitude 

and position information. The Attitude and Heading Reference System (AHRS) is 

a gradient descent algorithm. The Position Estimation System (PES) uses an IMM 

algorithm. These algorithm are shown in Figure 1.2 along with their inter 

connections. 

 

Figure 1.2 VTOL UAV Navigation System Connections 

 

1.1. How to Design a Data Fusion and Fault Tolerant System 

There are three technological key point for the Navigation system Designing. 

First, establish mathematical models including kinetics models and the noise models, we 

can identify the model parameters by the methods of linear system identification and variance 

parameters of noise by statistical (Allan Variance). The presentation shown in chapter 2. 
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Secondly, a gradient descent algorithm is used to fusion IMU’s tri-axis gyroscopes, 

accelerometers and magnetometers. A motion detection algorithm to turn off/on the bias 

correction information form the gradient descent algorithm. The shown in chapter 3. 

Finally, to build the interacting multiple model (IMM) filter for position estimation. It is an 

adaptive filter. It can automatically remove the lager error data on the system by the fault 

sensor state assessment. Which allows DFUAV under the situation of partial damage to the 

equipment remains normal flight. Chapter 4 is shown the detailed introduction. 

 

 

 

 

2. Modeling and Noise Identification 

2.1. Coordinate Systems 

If build equations of motion of UAV to calculate the relative position, speed, acceleration and 

forces’ vector, two axes’ coordinates must be mentioned. 

 Body-Axes Coordinate System Oxb yb zb 

 Earth-Axes Coordinate System Oxg yg zg 

a) Transfer between Oxg yg zg and Oxb yb zb 

The attitude of UAV in the body frame transform to earth frame which are usually described 

by three Euler angles. They are yawing (ψ), pitching (θ) and rolling (φ) respectively. System. 

The transform function shown as: 

cos cos sin sin cos cos sin sin cos cos sin sin

cos sin sin sin sin cos cos sin cos sin sin cos

sin cos sin cos cos

ebR

           

           

    

  
 

  
 
  
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b) Estimate flat earth position from geodetic latitude, longitude, and altitude 

For UAV position control is normal in a Cartesian Coordinate Plane. However the GPS use 

the WGS-84 World Geodetic System comprises a standard coordinate for the Earth. It output 

the latitude, longitude and altitude data, but it is not easy to For UAV Control, we need to use 

an algorithm transform The LLA a geodetic latitude  , longitude l , and altitude (h) into a Flat 

Earth position(x, y, h). The flat Earth coordinate system assumes the z-axis is downward 

positive. The estimation begins by finding the small changes in latitude and longitude from 

the output latitude and longitude minus the initial latitude and longitude. 

0

0

d

dl l l

   

 
  

where d is changes in latitude and dl  is changes in longitude. 0 ,
0l is origin coordinate 

in latitude and longitude. 

 

Where (R) is the equatorial radius of the planet and  is the flattening of the planet. In 

WGS84 R = 6378137.0; f = 1/298.257223563; 

0

1
arctan

1
arctan

cos

M

N

d
N

R

dl
E

R






 
 
 


 
 
 

  

where N  is North small changes positions, E is East positions small changes. 

With the conversion of the North and East coordinates to the flat Earth x and y coordinates, 

the transformation has the form of 



6 

 

 

where is the angle in degrees clockwise between the x-axis and north 

 

where refh  is the flat Earth z-axis value, it is the negative altitude minus. 

2.2. Noise Model of Sensors 

The normal sensor noises sources are scale factor errors (SFEs), drift, axis misalignments, 

angle random walk, bias Instability, rate random walk, and rate ramp noise to as shown in 

figure 3.2. Where N is Angle Random walk, B is Bias Instability, K is Rate Random Walk, and 

R is Rate Ramp Noise. 

 

Figure 2.1 Normal Sensor Noises Model Structure 

 

In multivariable output sensor, Have more character such as scale factor errors (SFEs), drift, 

input – axis misalignments, input/output nonlinearities.  

Those can be describe by equation:  
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1 ( )

1

out in t w

t fb ri

ri bs rw

Y S I M X b w

b b b

b b w


    

 

  

 

where tb  Total of Bias; fbb  Fix of Bias; rib  Bias Instability; ww white noise; 

S  Scale Factor; M Misalignment; 

2.3. Root Mean Square Error (RMSE) 

The RMSE of an estimator x  with respect to an estimated parameter
jx  is defined as 

the square root of the mean square error:  

           
1

1 M
T

j j

j

RMSE k x k x k x k x k
M 

     

 

2.4. Measurements for Multiple Sensors 

a) Inertial Measurement Unit 

IMU that combines three Gyroscopes, a 3-axis Accelerometer, a 3-axis Geomagnetic 

Sensor, and a Barometric Pressure Sensor package given in Fig. 3.  

 

Figure 2.2 Inertial Measurement Unit 

 

 

 Three High Vibration Immunity Digital Gyroscopes (ADXRS450)  
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±300°/sec angular rate sensing [10];  

Sensitivity to Linear Acceleration 0.03°/sec/g;  

Excellent 25°/hour null offset stability 

 

The gyroscope noise model is giving in equation: 

1

1

1

xy xz

x

mx x

b

my yx yz y g g g

y

mz z

zx zy

z

M M
S

M M Gf b w
S

M M
S

 

 

 

 
 
    
    

       
        
 
  

                           (1) 

g fb rib b b  , 
1

ri bs rwb b w


   ; 

where , ,mx my mz    is the measured angular velocity; 

, ,x y z    represents the true angular velocity in the body frame; 

G  is a 3x3 matrix encompassing the acceleration-sensitivity coefficients; 

S  is the scale factor; 

M  is the misalignment; 

gb
 is the gyroscope total of bias; 

rib
 is the gyroscope bias Instability; 

gw
 is the gyroscope white noise in rate; 

rww
 is the gyroscope white noise in bias random walk; 

 

 3-axis Digital Accelerometer (ADXL313) 

Resolution as 0.025° of inclination [8] 

Low noise performance 

150μg/√Hz typical for X- and Y-axes 

250μg/√Hz typical for the Z-axis 

 

The accelerometer noise model is giving in equation: 
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2 2

2 2

,

2 2

1

0
1

0

0
1

xy xz

x

mx x y z

my yx yz y x z a a

y

mz z x y

zx zy

z

M M
S

a a x

a M M R a y b w
S

a a z

M M
S

 

 

 

 

 
 
          
         

             
                 
 
  

               (2) 

, ,mx my mza a a  is the measured acceleration 

, ,x y za a a  represents the true acceleration in the body frame 

where , ,x y z    is error which is a distance from the “center” of the Inertial Measurement 

Unit (IMU) to center-of-gravity position. 

S  is the scale factor; 

M  is the misalignment; 

, ,y x z    is the angular velocity of three axis. 

ab  is the acceleration bias; 

aw  is the acceleration white noise in rate. 

,R  is the rotation angle for the tilt effect. 

 

 

 3-axis Geomagnetic Sensor (RM3100)  

It over 10 times better resolution and over 20 times lower noise than the leading Hall Effect 

sensor [6]. 

Geomagnetic noise model, Induced effect of the soft iron and hard iron. 

,

1

1

1

xy xz

x

mx x

my yx yz y a a

y

mz z

zx zy

z

M M
S

m m

m M M R m b w
S

m m

M M
S

 

 
 
      
      

        
           
 
  

                                     (3) 

where , ,mx my mzm m m  represents the measured magnetic field;  
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, ,y x zm m m  represents the true measured magnetic field in the body frame; 

S  is the Scale Factor; 

M is the misalignment Induced effect of soft iron; 

ab
 is the bias Induced effect of hard iron; 

aw
 is the white noise in rate; 

,R  is the rotation angle for the tilt effect; 

 

 

 Barometric Pressure Sensor (MS5611-01BA03) 

High resolution module, 10 cm 

Fast conversion down to 1 ms 

Operating range: 10 to 1200 mbar, -40 to +85 °C 

 

Barometric Pressure Sensor noise model 

m h hh S h b w                                                             (4) 

h fh rib b b  , 
1

ri hs rwb b w


   ; 

where mh  is the represents the measured high;  

h  is the represents the true high; 

S  is the scale factor; 

M is the misalignment Induced effect of soft iron; 

hb is the Barometric Pressure sensor long run bias; 

hw  is the white noise in rate. 
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 GPS Module  

The GPS Module is the newest family of standalone GPS/GNSS 

modules from u-blox. With the exceptional performance of the u-

blox 7 multi-GNSS (GPS, GLONASS, Galileo, QZSS and 

SBAS) engine. The GPS Module provides maximum sensitivity 

while maintaining low system power. 

Table 1 Specification of GPS [11] 

Receiver type 56-channel 

GPS/QZSS L1 C/A, GLONASS L1 FDMA, 

SBAS: WAAS, EGNOS, MSAS 

Navigation update rate up to  10 Hz 

Accuracy GPS / GLONASS Position 2.5 m CEP / 4.0 m 

SBAS 2.0 m CEP / n.a. 

Acquisition GPS / GLONASS Cold starts: 29 s / 30 s 

Aided starts: 5 s / n.a. 

Reaquisition: 1 s / 3 s 

Sensitivity GPS / GLONASS Tracking: –162 dBm / –158 dBm 

Cold starts: –148 dBm / –140 dBm 

Warm starts: –148 dBm / –145 dBm 

 

GPS positioning is a basic principle of triangulation, using satellite GPS receivers to measure 

the radio signal transmission delay time to calculate the distance. Three or more distances 

and the position of the satellite can be used to determine the GPS receiver’s position. GPS 

accuracy’s deserted by a lot of factors such as Ionospheric effects, Shifts in the satellite 

orbits, clock errors of the satellites' clocks, multipath effects, tropospheric effects and 

calculation rounding errors. 

 

The errors of the GPS system are summarized in the following table 2. The individual values 

are not constant values, but are probability. All numbers are approximate values. 

Table 2 Errors of the GPS System [2] 

Sources of Errors in GPS Standard deviation 

Ionospheric effects ± 5 meters 

Shifts in the satellite orbits ± 2.5 meter 
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Clock errors of the satellites' clocks ± 2 meter 

Multipath effect ± 1 meter 

Tropospheric effects ± 0.5 meter 

Calculation- und rounding errors ± 1 meter 

 

The GPS noise equation can desecration into the Pseudo-range and time error estimation 

equation. 

Pseudo-range and time error equation: 

   

 

 

 

2 2 2

2 2 2

 

R  ( ) ( ) ( )

( ) ( ) ( ) ( 1, 2,3, 4)

t

i i t

t

i i i

i i i i t i

Tb Ta

b ts a tr

b a tr ts

b a tr ts

c c b a tr ts ta

PR R c

tr ts ta

X X Y Y Z Z

PR X X Y Y Z Z c w i



 

 

   

  







 

   

    

     

        

 

    

     

        

 

iPR Pseudo-range is for GPS; 

, ,i i iX Y Z
  are the GPS satellites position is in Earth-centered inertial (ECI) coordinate 

frames.  

, ,X Y Z
  are the Receiver position is in ECI. (Unknown) 

t  is the clock error. (Unknown) 

iw  is the total of noise 
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DOP (Dilution of precision)  

DOP descriptor error of estimate with sources of errors in GPS in dynamic condition. Those 

data can tell us the GPS precision situation in real time. [3] 

There are six kind of DOP： 

 GDOP: Geometrical Dilution of Precision, (measure of accuracy in 3-D position and 

time)  

 GDOP²=PDOP ²+TDOP ²  

 TDOP: Time Dilution of Precision (measure of accuracy in Time) 

 PDOP: Position Dilution of Precision (measure of accuracy in 3-D position), also called 

spherical DOP 

 PDOP ²=HDOP ²+VDOP ² 

 HDOP: Horizontal Dilution of Precision (measure of accuracy in 2-D position, for 

example Latitude and Longitude) 

 VDOP: Vertical Dilution of Precision (measure of accuracy in 1-D position, Height)  

We do a test which receive GPS position and velocity data in ECEF (Earth-Centered, Earth-

Fixed) coordinate for 10min at 5Hz sampling frequency. The GPS data Variance statistics 

show in Figure 2. 

 

Figure 2.3 GPS Position and Velocity Variance 
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GPS Position signal with color noise, but velocity approximate a white noise. 

Because the UAV power support limit, the flight time only 10min at VTOL state. 

The GPS noise model can be consider a first-order Markov model. 

, , , ,
ˆ

x y z x y z ri wp p b w   , 
1

ri bs rwb b w


    

ww  Gaussian noise; 

rww  Gaussian noise for Bias random walk; 

, ,x y zp  Position data with noise and bias; 

, ,
ˆ

x y zp  Estimate position data without noise and bias; 

 

 Rotation Servomotor 

A robotics digital servo is state of the art modular smart servos 

incorporating motor, gear reducer, control circuitry and 

communications capability in one single package. Servo is capable 

of detecting and controlling angle position and rotation speed. 

 

 RPM Sensor for High-Voltage ESC 

It detects the voltage changes at the wires of brushless 

motor, and then outputs the RPM signal. This RPM sensor 

can work with some speed control systems for helicopters. 

RPM testing range (for 2 poles brushless motor): 1000rpm 

to 300000rpm.  
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2.5. Noise Identify Technique 

Allan variance by the national bureau of standards, is put forward in 1960. It is a 

kind of time domain analysis technology which is recognized generally by the 

IEEE standard analysis method [2] of gyroscope performance. The 

characteristics of this method is easy to compare it to various error sources of a 

detailed characterization and identification of statistical properties. Noise sources 

may exist within the instrument and even don't know the mechanical structure of 

the instrument, as long as the test system, can find the noise source. Allan 

variance can be used as a single data analysis method, also can be used to 

supplement the frequency domain analysis technology, this technology can be 

applied to any instrument noise research.  

Allan variance equations can write that: 

 

We base on the equation to calculate the solution. The Figure2.5 show the Gyro 

Allan variance statistics characteristic curve for 20,000 Second. 

 

 

Figure 2.4 20,000 Sec. Gyroscope Allan Variance Statistics Characteristic 
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Figure 2.5 Typical Allan Deviation plot for a system [7] 

The Noise Coefficient can be calculate from the table 3. 

Table 3 Allan Variance Parameters [3] 
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The gyroscope root and Accelerometer root Allan variance show in Figure 2.6 and 2.7 

from IMU Datasheet.  

 

Figure 2.6 Gyroscope Root Allan Variance 

 

Figure 2.7 Accelerometer Root Allan Variance 
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2.6. Electronic Duct Fan Model 

Electronic Duct Fan system is a very imported part which support the power 

when the UAV run. Its characteristic influent the UAV stability and sensitivity 

dirtily, species in DFUAV State. The EDF system include Electronic Duct Fan, 

Brushless Electronic speed controller and PRM Sensor. As show in Figure2.1 

Assembly of Electronic Duct Fan system. 

 

Figure 2.8 Assembly of Electronic Duct Fan system 

The UAV main engine are two 12 Blade 70mm diameter Electronic Duct Fan. 

The Specification of Electronic Duct Fan show in Table 4 

Table 4 Specification of Electronic Duct Fan 

12 Blade 70mm Electronic Duct Fan 

Outside Diameter : 71.8mm 

Material : Fiber Reinforced Nylon Rotor 

Rotor Diameter : 68mm , 12 blades 

Max RPM : 52000 RPM 

Motor Shaft : 3.17mm & 4.0mm 

Working Voltage : 14.8v - 22.2v ( 4 - 6S ) 

Max Power : 1800W 

Motors required : 28mm Inrunner Motor 2200 - 3300Kv 
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Electronic Duct Fan setup a 3600Kv 28mm diameter inrunner motor supprte the 

power. The Specification of Brushless Motor show in Table 5 

Table 5 Specification of Brushless Motor 

BL15 Ducted Fan Motor 

Type: 6-pole Inrunner Brushless 

Size: 15-size for Ducted Fans 

Bearings or Bushings: Two 4 x 10 x 4mm Bearings 

Voltage: 11.1–16.8V 

RPM/Volt (Kv): 3600 

Resistance (Ri): 0.02 ohms 

Idle Current (Io): 2.80A @ 10V 

Continuous Current: 46A 

Maximum Burst Current: 55A (15 sec) 

Cells: 3S–4S LiPo power 10–14 Ni-MH/Ni-Cd battery 

Speed Control: 60A brushless 

Weight: 106 g (3.7 oz) 

Overall Diameter: 28mm (1.10 in) 

Shaft Diameter: 4mm (0.16 in) 

Overall Length: 40mm (1.56 in) 

In order to test the characteristics of the engine we designed a test system, as 

shown, the system includes a power sensor, voltmeter, power meter, tension 

meter, torque meter and anemometer. Can measure the Force, voltage, Power 

(W), Ampere, RPM, and Airspeed. 

System identification is generally divided into two kinds of static and dynamic 

parameters. Static parameters mainly on account of the proportion of the 

characteristics of the various components in the static. We control EDF into 

different rotation speed then recode the data curve, we can very easily identify 

physical parameter equation system, such as to determine the order of the system. 

DC motor dynamic parameters considering various factors, including of Coulomb 

Friction Coefficient, Viscous Friction Coefficient, moment of inertia. Our data 

sampled at different engine speeds, as Table 6 Test Data of EDF 

Table 6 Test Data of EDF 

Force(N) 
V 

power 
Power(W) A RPM PWM(ms) Effect(g/W) Airspeed(m/s) K 

0 14.96 1.9 0.13 0 0 0 0  

0.784 14.92 28 1.9 7920 1.21 2.857142857 12.99139605 0.00164033 
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1.274 14.88 51 3.34 10000 1.23 2.549019608 16.93870807 0.00169387 

2.744 14.77 119.2 8.15 14260 1.25 2.348993289 23.95495069 0.00167987 

3.528 14.69 163.3 11.14 15940 1.326 2.204531537 26.62443914 0.00167029 

4.41 14.58 223.4 15.23 17720 1.36 2.014324082 29.62494103 0.00167184 

5.096 14.48 265.2 18.54 18920 1.39 1.960784314 32.8659212 0.0017371 

5.88 14.34 330 22.98 20400 1.43 1.818181818 34.37200313 0.0016849 

6.566 14.62 381 26.56 21520 1.468 1.758530184 36.28299459 0.00168601 

7.252 14.05 443 31.8 22500 1.51 1.670428894 37.8761027 0.00168338 

8.232 13.89 515 37.18 24000 1.55 1.631067961 40.04217186 0.00166842 

 

 

Figure 2.9 RPM and Thrust 

The table shows us information from the chart, we can make a polynomial curve 

fitting original, and then a formula can calculated by MATLAB: 

   2  1.52938 0 0.00518 2.2741 0 1 65 75thrust rpm rpmy e x e x      

 

where thrusty  is thrust of EDF, rpmx  is EDF rotate speed of propeller 

y = 2E-08x2 - 2E-05x - 0.0051
R² = 0.9999
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2.7. CA and TCA Model 

At radar multiple target maneuvering tracking applications，Three kind filter 

models have been selected in common use. These models are a constant 

velocity (CV), a constant acceleration (CA), and a three-dimensional turn with a 

kinematic constraint (TURN), the turn value is estimation. In the AHRS, the three-

dimensional turn information can calculate form the INS，so the acceleration 

value can transform from body frame to the earth frame. The CV and CA model 

will use a rotation matrix to finish turn information fusion. The model will become 

a three-dimensional turn with a kinematic constraint (TCV) and a three-

dimensional turn with a dynamics constraint (TCA). A normal model show in 

below formula 

( 1) ( ) ( ) ( )

( ) ( ) ( )

x k Ax k Bu k Gw k

y k Cx k Hv k

   

 
 

 CA Model 

The state vector for the CA continuous time model is defined as 

     

     

     

3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3 3 3

9 9

0 1 0

0 0 1

0 0 0

(1)

x x x x y zX x y z v v v a a a

diag diag diag

A diag diag diag

diag diag diag

C diag

  

  

  



   

 
 

  
 
 



 

 

Discrete-time CA model 

   

     

     

2

3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3 3 3

3 2

1
1

2

0 1

0 0 1

6 2

x x x x y z

T

X x y z v v v a a a

diag diag t diag t

A diag diag diag t

diag diag diag

t t
B t

  

  

  

   

  
   

  
  
 
 
  

  
  
 

  



22 

 

where Δt is the difference of the measurement time 

System and measurement noise convenience matrices for each state, this matrix 

is given as 

 

 

5 4 3

3 3 3 3 3 3

4 3 2
2 2

3 3 3 3 3 3 9 9

3 2

3 3 3 3 3 3

5 4 3

1
4 3 2

3 2

q r

t t t
diag diag diag

t t t
Q diag diag diag R diag

t t
diag diag diag t

 

  

   

  

        
      

      
        
       
      
 

         
    

，  

The parameter 2

q  is the filter plant noise spectral density and has units of 

m2/s5, the parameter 2

r  is the filter measurement noise spectral density and 

has units of m2/s 

 

 TCA Model 

The state vector for the TCA continuous time model is defined as 

     

     

     

3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3 3 3

9 9

0 1 0

0 0 1

0 0 0

(1)

x x x x y z

be

be

X x y z v v v a a a

diag R diag diag

A diag diag R diag

diag diag diag

C diag

  

  

  



   

 
 

  
 
 



 

 

Discrete-time TCA model 



23 

 

   

     

     

2

3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3 3 3

3 2

1
1

2

0 1

0 0 1

6 2

x x x x y z

be be

be

T

X x y z v v v a a a

diag R diag t R diag t

A diag diag R diag t

diag diag diag

t t
B t

  

  

  

   

  
   

  
  
 
 
  

  
  
 

  

where Δt is the difference of the measurement time 

System and measurement noise convenience matrices for each state, this matrix 

is given as 

 

 

5 4 3

3 3 3 3 3 3

4 3 2
2 2

3 3 3 3 3 3 9 9

3 2

3 3 3 3 3 3

5 4 3

1
4 3 2

3 2

q r

t t t
diag diag diag

t t t
Q diag diag diag R diag

t t
diag diag diag t

 

  

   

  

        
      

      
        
       
      
 

         
    

，  

The parameter 2

q  is the filter plant noise spectral density and has units of 

m2/s5, the parameter 2

r  is the filter measurement noise spectral density and 

has units of m2/s 
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2.8. Dynamics Model of DFUAV 

The aerodynamic characteristics of the UAV determines the need for stability of 

the vertical plane. The UAV should have three fans for motion controlling, to load 

the maximum weight of the UAV at 2 kg. In The total weight of all equipment to 

operate the UAV in flight should limit at 1 kg. 

 

Figure 2.10 Configuration View of UAV 

 

Table 7 UAV design characteristics 

Characteristic Value 

Length of the fuselage, m 1.4 

Weight of UAV, kg 1.7 

Cruise speed, m/s  70 

Minimum climb speed, m/s 2 

Maximum Thrust, N 25.49 (2.5kg) 

Viscous coefficient, kg/ (m·s) TBD 

Ambient pressure, hPa 1013.25 

 

As an aerial vehicle operated in 3 dimensional space, for each dimension, there 

are a pair of forces that can maintain the momentum balance: 

Rotation Servomotor 

Engine Supports 

Tail Plane 

Electronic Duct Fan 

VTOL Engine 

Aileron 

Wing 

Electronic system 
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X-axis: Thrust & Drag 

Y-axis: Crosswind & Side Thrust 

Z-axis: Lift & Weight 

A pair of torques can maintain the angular momentum balance: 

X- axis: Rolling 

Y-axis: Pitching 

Z-axis: Yawing 

This DFUAV has three statuses transferred from take-off to horizontal flight. Each 

status has a unique requirement of balance. 

The first states is vertical take-off. Three engines provide thrust; T1, T2 and T3, 

which maintains the balance of Lift and Weight, and offsets rolling and pitching. 

The rolling can also offset the crosswind by making the vehicle lean towards it. 

Two EDFs, one for engine 1 and the other for engine 2, can create vector 

components that thrust forward or backward. When two engines both roll the same 

direction, the balance of forward and backward can be maintained; when two 

engines roll in different directions, they can create yawing to maintain the angular 

momentum balance of the z-axis, as shown in Figure1.5 (a) (VTOL State of Force 

and Moment). 

The second states is Transformation from take-off to flight. During this process, 

the EDFs change the angle of the engine from vertical to horizontal. This process 

can be reviewed as the direct thrust transformed to the lift, created by the speed 

of the vehicle.  

The third states is horizontal flight. Thrust from 2 engines counteract the drag, and 

the thrust difference between two engines creates yawing for the aircraft. The 

rolling and pitching are controlled by the movement of flaps, and rolling can also 

balance the crosswind by creating horizontal lift. It is worth noting that both the lift 

and drag are dominated by functions which are proportional to the square of air 

speed. The lift and drag of wind can be calculated by wing profile, however, the lift 
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and drag of the main body structure can only be simulated by the CFD, as shown 

in Figure1.5 (b) (Airplane State of Force and Moment). 

 

(a) VTOL State of Force and Moment 

 

 

(b) Airplane State of Force and Moment 

Figure 2.11 Definition of Force and Moment 

 

Flight dynamics describes the motion of an UAV influenced by engine, airfoil or 

physical state. For this transmutation DFUAV, the research and development of 
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stability and control abilities is important. To describe a rigid-body motion of 

DFUAV, the Completeness equations of motion with six degrees of freedom must 

be considered and analyzed.  

Consider the DFUAV as a single rigid body with 6 DOFs. Assuming the earth 

is flat and neglecting the ground effect, the equations of motion for a rigid body 

subject to body force 
bf  and body moment 

b (
3,b bf   ), applied at the 

center of mass and expressed in Newton-Euler formalism, are given by: 

0

0

b
b b b

b b b
b

amf mv

  

     
      

      
I I

           (1) 

Where, 
b is the body angular velocity

bv  is the body velocity, specifies

3,b bv 
.  m is the total mass, 

3 3I is an inertial matrix. 

a. 𝜔 ×𝑚𝑉 is Coriolis force 

b. 𝜔 × 𝐼𝜔 is gyroscope torque 

We ignore the Coriolis force in the DFUAV Model, because it is a small value in slowly 

varying motion of body. Forces of UAV are from the gravity, thrust of ducted fan, Slipstream 

Effect of faces and Crosswind Effect of faces. Moments of UAV also are from those effects 

which are forces with the forces arm. The arms are distance between the center of gravity 

and pressure of gravity and the distance between the center of gravity control surface. 

 

 Gravity 

The UAV frights near the ground. As a result the gravity acceleration is a negligible value 

than the other force with different latitude, so ignore the parameter latitude.  

gravity uavF m g  
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 Thrust 

The Thrust base on the momentum has a direction as well as magnitude. The Slipstream 

Theory can be expressed as below (see Ref. [4])  

Thrust is generated from pressure differences between region 2 and 3. 

 

Figure 2.12 Air Flow through the Duct Fans 

 

  propeller 0

 propeller

 propeller

 propeller 0

2

 

V  is induced velocity of propeller

 

duct duct

duct duct

duct duct propeller

T m V V

m V A

if V V

T A V





 





 

 Nonlinear Dynamic Equation in Earth-Axes Coordinate System 

VTOL state consider position controlling characteristics, the Earth -Axes 

Coordinate System is a direct distribution the relation VTOL motion and position 

location.  

 

 

 Newton-Euler Formalism in Earth Frame 

The Nonlinear Dynamic Equation can sprite force equation and moment 

equation. Above all, the forces and moments are summarized,

total thrust gravity

total rotor

F F F

M M

 




 

Force equation: 

b b beF mV mR g   
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cos cos sin sin cos cos sin sin cos cos sin sin

cos sin sin sin sin cos cos sin cos sin sin cos

sin cos sin cos cos

ebR

           

           

    

  
 

  
 
  

 

Where 
ebR is rotation matrix from earth fame to body fame, m is mass, 

bV  is 

acceleration at body framing, g is gravity in earth framing. 

Force Equation in Earth-Axes Coordinate System 

 

1 2

1 2

1 2

1 2 3

gravity force
Forces control

sin sin 0 (1)

 0 + 0          (2)

(3)cos cos

T Txb

b yb be

zb T T

T TF

F F R

F mgT T T

 

 

    
 

   
   
   

 
          

 

where 
1 2
,T T  are EDF tilt angle in body fame, 1 2 3, ,T T T is EDF thrust 

Equation of Motion in earth 

(7)

                       (8)

(9)

g xb

g eb yb

zb

x F

y R F

h F

   
   


   
      

 

Moment equation in body frame (rotate around center of mass):  

Gyroscopic Moment

0

0

0

body body

L p r q p

M J q r p J q

N r q p r

       
       

  
       
              

,  

xx xy xz

body yx yy yz

zx zy zz

I I I

J I I I

I I I

 
 

  
 
 

 

Moment of Control by engine: 

 

 

 

1 2

3 1 2 1 2

1 2

1 2

3 1 2

1 2

Forces control

cos cos

cos cos

sin sin

T T T GC

T GC T T T T GC

T T T GC

T T l
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M T l T T l

N
T T l

 

 

 



 



  
   
       
   
      

 
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where bodyJ
is rotational inertia; p, q, r reference rotational speed x, y, z of axis. p

q r  are rotational acceleration; L, M, N are moment of control by engine. 
T GCl 

3T GCl  1 2T T GCl  T GCl 
 are distance EDF from center of gravity to EDF. 

Finally Dynamic Equation: 

 

 

 

1 2

3 1 2 1 2

1 2

1 2

1

3 1 2

1 2
Gyroscopic

Forces control

cos cos
0

cos cos 0

0
sin sin

T T T GC

body T GC T T T T GC body

T T T GC

T T l
p r q p

q J T l T T l r p J q

r q p r
T T l

 

 
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Equation of Motion in Euler angle: 

 

 

tan sin cos

cos sin

1
sin cos

cos

p q r

q r

q r

   

  

  


  

 

 

 

where     are reference rotational speed at END(North, East, Down) earth 

framing. 

3. GD Filter for Attitude Estimation 

Gradient descent algorithm [5] is a liner regression algorithm is used Artificial 

Intelligence domain to find a local minimum. The paper use the algorithm to 

fusion IMU’s tri-axis gyroscopes, accelerometers and magnetometers.  

These are several processing. Firstly, we need to get a direction of the gradient

f

f




. It essentially uses the quaternion of previous moment

ˆB

E tq
, 

4ˆB

E tq 
to 
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calculate the virtual acceleration and magnet values. Secondly, get the 

acceleration and magnetometers errors ,
ˆ ˆ ˆ( , , )B B B

g m Ef q a m
through using actual 

acceleration and magnetometers to minus the virtual values. Thirdly, transfer 

these parameters to error of quaternion gradient by the Jacobian matrix

, 1
ˆ( )B

g m E tJ q  .  Renew the quaternion of the next moment , 1
ˆB

E e tq  by the equation

 1 , , 1
ˆ ˆ ˆB B B B

E t E t E t E e tq q t q q    
. It uses the gradient information of quaternion 

errors to iterate so that it makes the error become 0. The down velocity is 

depends on the first order partial derivative value. 


 is the learning rate. Finally, 

if the GD algorisms what the prerequisites are not stationary state, the algorism 

will contain extra acceleration and magnetic field changes. so a Motion detection 

function is used to turn off/on correcting signal when acceleration and 

magnetometers value change. Their pdf value were used identify motion change. 
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Figure 3.1 Gradient Descent Algorithm Block Diagram 

 

 Orientation from angular rate 
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3

t   

t : Values of x, y, z axis gyroscopes. 

Update next time quaternion ˆB

E tq  use integration law. 

1 ,
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 Gradient from error of accelerometer and magnetometers 
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Gradient update law： 

, , , 1
ˆB B B

E des t E t E e tq q q   
 

Rotation matrix transfer earth frame to body frame: 
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Euler angles from quaternion: 
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Motion detection function 
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The likelihood functions for acceleration model is as follows: 

 
2

2

2

2

2

;

1

2

;0

nom

nom

A

nom x y z

A

e

A acc acc acc

PDF





 





  



 

Where nomA  is acceleration modulus, 
nomA  is the covariance matrix, 

, ,x y zacc acc acc is acceleration sensor data. 

 

3.1. Simulation and Result 

A flight signal generator is needed which combine inertial navigation system, 

GPS system and magnetic system, each block can setup noise parameters as 

Rate random walk, correlation time and measure noise. The detail show in Figure 

8 (Flight Signal Generator Noise Parameters) 
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Figure 3.2 Flight Signal Generator Noise Parameters 

 

Gradient Descent Algorithm (GDA) confirmation is need do the test which input a 

signal with noises to observe module response in MATLAB simulation for 200 

second. A group stationary state data of magnetic, gyroscope, acceleration are 

used an excitation source. Figure 9 (Sensor Data Input) show the sensor data 

input. Different Learning Rates are tested By RMS at Figure 9. Figure 10 (GDA 

Attitude Estimate output) show the attitude estimate output. Yellow line shown 

pith angle data. Pink line shown roll angle data. Cyanic shown yaw angle data. 

The error range of angle data in 0.04  . So the Figure show that if learning rate

 is set at 0.004, the GD Algorithm will get the minimum RMSE.  
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Figure 3.3 Sensor Data Input 
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Figure 3.4 GDA Attitude Estimate Output 

 

 

Figure 3.5 RMSE Testing for Different Learning Rates   
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4. IMM Filter for Position Estimation 

4.1. IMM Filter Description 

When set up estimation models, considering mathematical modeling 

assumptions the only uncertainty is by white noise process and measurement 

with known additive statistical properties. In other words, the system model, the 

state transition matrix, input gain, the measurement noise covariance matrix and 

are assumed to be known. But the reality is that because of the internal noise 

superimposed on the sensor, such as generating a random walk noise by 

gyroscope; GPS measurements in reflection and refraction of radio waves to 

produce multipath effect; the impact of the geomagnetic sensor that is fixed 

external magnetic interference tendency bias, and ambient wind generation 

aircraft involuntary displacement. It will cause the measurement system will 

introduce a variety of time-varying color noise. Therefore, system modeling will 

be a combination of system parameter uncertainties with unknown inputs where 

the system parameters (are assumed to) take values in a discrete set. 

X(k + 1) = F(k) x(k) + G(k) u(k) + v(k) 

but the input u (k), which enters the v (k), is unknown, F (k) is time varying, it is 

desirable to establish an Adaptive estimation algorithms in real-time assessment 

of noise w change and the system state changes. 

Considering above condition UAV belong to a random process Dynamic Multiple 

Model. As shown in the table for such a system can use several discrete levels 

with merging or switching between them. 

Thus we may consider the system, the current system is composed of a discrete 

group (contains n models), which is remarked M = {M1, …, Mn}. We assume that 

each model is Mj, and we have a model corresponding prior probability u = P 

{M}.switched from model i to model j, the probability in the next moment is 

assumed to be known, and remarked Pij. This can be seen as a first order 

Markov chain model mode conversion process, this type of system is commonly 

referred to as Markovian switching systems. The best way to take advantage of 
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this state of the plurality of filter to estimate a model system, we must require 

every optimal filter records of all state sequence, In other words, the optimal filter 

processing kth measurements, for n model requires recording nk message. 

Therefore, in order to avoid such a doubling of the historical record storage, need 

some approximation in the practical application of multiple model systems, 

actually this is a suboptimal techniques. 

A simple suboptimal techniques approach is record the maximum probability in n 

histories, other information discarded and re-normalized probability, making them 

add up to 1. Suboptimal techniques filtering problem is generalized Pseudo-

Bayesian (GPB) algorithm, Generalized Pseudo-Bayesian (GPB) approach 

combines many historical model that "old" models. First Order 'GPB, expressed 

as GPB1, considering only the past time possible model. Second Order, GPB2, 

considering all possible model past two moments. These two algorithms require r 

and 2r filters operate respectively in parallel. (See Ref [6], [7]) 

The Interacting Multiple Model (IMM) estimator algorithm is a dynamic multiple 

model estimator. The algorithm assumes that the system behaves according to 

one of a finite number of models - it is in one of several modes (operating 

regimes). The models can differ in noise levels or their structure - different state 

dimensions and unknown inputs can be accommodated as well. Such system is 

called a hybrid system - it has both discrete (structure/parameters) and 

continuous uncertainties (additive noises). This algorithm is conceptually similar 

to GPB2, but requires only r filters to operate in parallel (See Ref [8]) as Figure 

4.1 shown frameworks. 

 

(a) GPB1                           (b) GPB2 
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(c) IMM 

Figure 4.1 GPB1, GBP2 and IMM frameworks 

Comparison of complexities of the MM algorithms. 

Table 8 Compare different computation complexity with different algorithm 

 Static GPB1 GPB2 IMM 

Number of filters r r r2 r 

Number of combinations of r estimates and 

covariances 

1 1 r+1 r+1 

Number of probability calculations r r r2+r r2+r 

In a research paper [9] [10], author publish the “steady-state” errors during non-

maneuvering obtained and the average errors during maneuver obtained by time 

averaging by time averaging in Table 9 and Table 10.  

Table 9 Average RMSEs during Non-Maneuvering 

 GPB1 GPB2 IMM 

Position (m) 79.9 63.3 65.8 

Velocity (m/s) 18.5 10.4 11.1 

Table 10 Average Position & Velocity RMSEs during Maneuver 

 GPB1 GPB2 IMM 

Position (m) 152.7 116.7 118.1 

Velocity (m/s) 111.6 79.1 79.8 
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In terms of position error the algorithms rank as follows: GPB2-best, IMM-middle, 

and GPB1-worst.  

An execution time testing are followed. The execution times for the algorithms 

relative to the IMM are given in Table 11. 

Table 11 Relative Execution Time 

 GPB1 GPB2 IMM 

Execution Time 

(s) 

1.09 7.91 2.30 

All in this article, we use IMM estimator algorithm, to achieve complex DFUAV 

Navigation System. 

 

4.2. Design of IMM Filter 

4.2.1. IMM Filter Process Framework 

Processing of the IMM algorithm is shown in figure one. A mixing probabilities is 

using moment matching to GPB2 Gaussian mixture models one method of 

Approximation by a single Gaussian. Interaction of different models mixture with 

weightings create the new x and P. Then use EKF state estimation of Interaction 

x get a new, x and P. Used likelihood functions corresponding to the different filters, 

Then using Bayesian total probability formula update each new measurement, and 

the resulting weighting factors are used in calculating the state. Finally, for 

Gaussian mixture models we can use mixture probability density function 

combined the status of each model according to the model probabilities. We can 

get mixture mean 
k

1_ mixX̂ and mixture covariance 1_
ˆ k

mixP . One cycle of a practical 

IMM algorithm consists of the following steps [11] [12] [13]. 

 

The IMM estimator have five process in one cycle. [12] 

 Calculation of the mixing probabilities. 

 Interaction/Mixing. 

 Mode-matched filtering. 
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 Mode probability update.  

 Estimate and covariance combination. 

The following section describes the specific core algorithms on IMM total of 4 

models: Model Switch Algorithm, Interacting multiple model estimation, Mode-

matched filtering. 

 

Figure 4.2 Block diagram for the IMM Algorithm  

 

4.2.2. IMM Models Bank 

In this case the mode the system is in can undergo switching in time. The state of 

UAV System models are denoted as equation for different sensor subsets: 

       

   

( )  ( ) ( 1) ( ) 1 1, ( )

( ) ( ) ( ) , ( )

x k F M k x k G M k u k w k M k

z k H M k x k v k M k

     

 
  

where xn
x R is the system state vector, zn

z R  is the measurement vector, 

uu
n

R  and 

zn
v R  are mutually independent, white zero mean Gaussian noises with normal 
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distribution
20N （ ， ）. The parameter ( )M k  presents the current system model. 

F is the system dynamic matrix, and H is the measuring matrix. Because the 

current system model is unknown, the system is described by possible n modes. 

 
1

( )
n

j j
M k M


  

So the discrete model at one time can denote as: 

 ( )  ( 1) 1 1,

( ) ( ) ,

j j j

j j

x k F M x k G M u k w k M

z k H M x k v k M

               

       

                           (1) 

The system noise is  1 ,, j w j jQw k M     ,  

The measurement noise is  ,, v jj jk M Qv      

The lth mode history - or sequence of models - through time k is denoted as 

 
1, ,

,                      , ,, 1
l k l

k l

i i

kM M l nM     

where 
,k li  is the model index at time k from history l and 

,1                        1, ,k li n k k     

It is assumed that the system mode (model) switching is a Homogeneity Markov 

Chain. The
|j ip is transition probabilities 

    | | 1j i j ip P M k M M k M    

where |

1

1,
n

j i

j

p


   i = 1,2……，n                                                 (2) 

4.2.3. Calculate the Mixing Probabilities 

The mixing probability 1

|

k

i jp   for mode im  was effect at time k-1 given that jm is in effect at time 

k conditioned on 
1kZ 
 is 
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    1 1

|

1

|

1

|

1

1 |k k

i j i j

k

j i j

n
k

j i j

i

P m k m k Z

p

p







 







 





，

 

where
-1

|

1

n
k k

j j i j

j

p p p


  is the predicted mode probabilities and n different modes. 

4.2.4. Calculate the Mixed Initial Condition 

A mixing probabilities is using moment matching to GPB2 Gaussian mixture 

models approach an Approximation by a single Gaussian (See Ref [14]). 

Interaction to the different models mixture with weightings 1

|

k

i j  create new 1ˆk

jx   

end
1ˆ k

jP 
. 

Minute probability density function: 

   
1

ˆ; ,
n

j jj

j

xP x Px 


  

Starting with previous state estimates 1ˆk

jx  , and 
1ˆ k

jP 
 previous covariance 

matrices obtained as output from the n different Kalman filters (acting as the n 

different modes). 

Mixed initial condition for the filter 
jm at time k is: 

 

1 1 1

|

1

1 1 1 1 1 1 1

|

1

ˆ ˆ          1, ,

ˆ ˆ ˆ ˆ ˆ          1, ,

n
k k k

j i i j

i

n
T

k k k k k k k

j i j i i j i j

i

x x j n

P P x x x x j n





  



      



  

           





 

 

4.2.5. Mode-Matched Filtering and Likelihood Function 

Kalman filter is used to estimate the state for each model as call mode-matched filtering, it is 

an important part of IMM algorithm, which can be estimated
1ˆk

ix 

,
1ˆ k

iP 

 and
k

j
.  A basic 
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assumption of the Kalman filter is to measure noise and process noise is Gaussian distribution 

and uncorrelated. Eight Kalman filter equations can be divided into two parts, forecasts and 

updates. Prediction section includes former two equations and updated part by the 3 to 8 

equation. [14] 

 

Step Kalman filter is as follows: 

 

Predict： 

1 1 1k k k kk k kx F x B u   ∣ ∣                  Predicted (a priori) state estimate 

T

1 1 1k k kk k k k
P F P F Q

  
 ∣ ∣

                   Predicted (a priori) estimate covariance 

Update： 

1k kk kk
y z H x   ∣                      Innovation or measurement residual 

1

T

k k k kk k
S H P H R


 ∣

                     Innovation (or residual) covariance 

1

1

T

k k kk k
K P H S 


 ∣

                         Optimal Kalman gain 

1k k k k k k
x x K y ∣ ∣                       Updated (a posteriori) state estimate 

| | 1( )k k k k k kP I K H P                       Updated (a posteriori) estimate covariance 

k
y , kS are the innovation process and its covariance matrix; kK the Kalman filter 

gain. 

k
y , kS are the innovation process and its covariance matrix; kK the Kalman filter 

gain. 

The likelihood functions for filter j is as follows: 

 
 

2

k

j ;0;

1

2

T
j j

k k

j
k

j
j

kk

y y

S

j

k

y S

e
S











 

Where 1

j

kk k k
y z z


  ∣  is the innovation for filter j and j

kS  is the covariance 

matrix associated with 
k

y  
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4.2.6. Update Model Probability 

11k k k

j j jp
c

     where 
1

1

n
k k

j j

j

c p 



    

4.2.7. Combine Model- Conditioned Estimates and Covariance 

A Gaussian mixture model is a weighted sum of n component Gaussian densities 

as given by the equation, 

   
1

ˆ; ,
n

j jj

j

xP Px w x


   

Mean of a mixture: 

1

ˆ ˆ          1, ,
n

m k k k

j j j

j

x x j n


    

Covariance of a mixture: 

 1

1

ˆ ˆ ˆ ˆ ˆ          1, ,
n

T
k k k k m k k m k

j j j j j j j

j

P P x x x x j n 



             

where Current state estimates ˆ k

jx , ˆm k

jx  Current mixture state matrices, and ˆ k

jP  

Current covariance matrices. 

4.2.8. Fault Diagnose 

A threshold was set upped to detect each model probability. The Identification 

can screen out fault sensor signal. 

  1k k

j jthreshold valueif f  ， , where k

jf  is fault signal for each sensor. 

Threshold was set to 2% in the simulation. 
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4.3. IMM Model Organized 

IMM model select Robustness and computational complexity, which can directly 

affects the Fault Tolerant and Diagnosis of Navigation System. To minimize 

complexity system states and number of model, using 2 + 2 model structure 2 

mixture estimates 2 autoregressive estimates, this paper uses 4 blocks of 

measurement mechanisms, Inertial Navigation System position information 

combination, aircraft dynamics model information combination and two GPS 

forecasting mode. These 4 blocks completely separate independent use 2 GPS 

measurement information and sensor information, this will maximum provide 

each other reference basis for the error diagnostics. 

 

 

 

Figure 4.3 IMM Model organized structure 
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4.4. Simulation and Results 

In the DFUAV, there are five actuator sensor, two GPS, one IMU model that 

sensors have organized at four sensor model，all individual sensor failures were 

detected and properly identified. The failure scenario consists of a front rotation 

speed sensor failure [60sec - 100sec] and GPS 1 Signal Lost [40sec-80sec]. 

Both failures were properly detected and identified (see Figure 8) and the Fault 

Tolerant and Diagnosis of Navigation System was able to correct those error. 

 

Figure 4.4 Speed sensor failures and GPS 1 signal lost describes 

 

 

GPS 1 Signal Lost 
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Speed sensor 

failure 
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The actuator sensor model probability have change to near zero. (see Figure 9).  

 

Figure 4.5 Fault-Tolerance Processing when sensor failures 

 

The actuator sensor model probability have change to near zero. (see Figure 10). 

To minimize complexity system states and number of model, using 2 + 2 model 

structure. Inertial Navigation System position information combination, aircraft 

dynamics model information combination using the GPS signal to comparison 

and recognition in Fault Tolerant and Diagnosis of Navigation System. If the GPS 

signal is lost, it will lost information to refer and contrast, so diagnosis system will 

consider Inertial Navigation System position information combination and aircraft 

Model Switch 

Likelihood 
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dynamics model information combination may be incorrect, we can call 

Diagnosis Mix. 

 

Figure 4.6 Diagnosis information 

 

Fault Tolerant and Diagnosis of Navigation System is different whit other systems 

before. We using 2 + 2 model structure, which can still maintain a good track 

performance and stability in the case of multi-sensor failure (see Figure 11). To 

minimize complexity system. Although there will be problems Diagnosis Mix, but 

did not affect the correct assessment of the Navigation System. We used root-

mean-square error (RMSE) analyzed the results of the assessment in the Fault 

state still maintained high accuracy and stability (see Figure 12). 

Diagnosis Mix 
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Figure 4.7 IMM filter estimation, Dotted line show actual signal 
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Figure 4.8 IMM filter position and velocity RMSE 

Used RMSE statistical method to verify FTDF navigation system statistical 

characteristic. In the actual verification results show that the system in Normal 

state and Fault state RMSE respectively, namely, the system is stability and 

robustness, as shown Table 12: 

Table 12 Compare RMSE in different state 

RMSE X Y Z State 

Position 

(m) 

Normal state 0.25034 0.228327 0.456877  

Fault state 0.25049 0.228406 0.456635 
Speed sensor failures [40sec-80sec] 

GPS 1 signal lost [60sec-100sec] 

Velocity 

(m/s) 

Normal state 0.015272 0.01487 0.029752  

Fault state 0.015275 0.01488 0.02978 
Speed sensor failures [40sec-80sec] 

GPS 1 signal lost [60sec-100sec] 
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5. Hardware Demo 

5.1. Description of Hardware 

IMM Navigation system hardware is require high reliability. The system structure have a 

Triaxial Inertial Sensor with Magnetometer Module, a barometric pressure sensor, two GPSs 

and 1G Flash NAND ROM, an ARM Cortex M4 processor. The functional block diagram 

show in figure 5.1. 

 

Figure 5.1 VTOL UAV Electronic System Functional Block Diagram 

A lot of sensor are integrated lead to electromagnetic interference (EMI) is strangely. So the 

headwear filter and separate power supply have to consider in the electronic system 

schematic. EMI design, various interfaces are using double clock backup work, and the 

design is very compact. To ensure the reliability of the navigation also can reduce weight 

again. The navigation system are designed on a card about the size of PCB. The PCB show 

in Figure 5.2. 
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ARM Cortex M4 
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11.1V Battery 3.3V LDO 5V DC/DC 

GPS2 
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Figure 5.2 Navigation Computer 

IMM navigation system was tested with a car in real environment. Consider the 

car cannot supply dynamic information as RPM of wheel, turn and throttle, so to 

car system dynamic model was canceled. Only use three model to estimate 

position. The structure show in Figure 5.3 

 

Figure 5.3 Car Navigation System Structure 
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5.2. Results 

For testing condition are made as table 13 

Table 13 Testing Condition 

Testing situation GPS1 GPS2 IMU Barometric 

Pressure Sensor 

GPSs Signal lost GPS1 lost 60 

Sec 

GPS2 lost 60 

Sec 

  

Car steep turn   Effect for angle 

with lateral 

acceleration 

 

Accelerate and 

Decelerate 

  Effect for angle 

with 

acceleration 

 

Long runs    Barometric Pressure 

Sensor bias 

Effect for angle with lateral acceleration shown in Figure 5.4, when the pdf larger 

than the threshold value GD correction signal will be turn off. 
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Figure 5.3 Acceleration and Magnetometers PDF 
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Figure 5.4 Pitch, Roll and Yaw Data from GD Filter 

 

A simple GPB one filter was used mixture multiple GPSs signal into one output. 

Weight of mix depend on depend on each GPS PDOP, the figure 5.4 show GPSs 

PDOP likelihood and GPS switch process. 
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Figure 5.5 GPB 1 filter for multiple GPSs signal mixture 

 

 

Figure 5.6 Google Map path matching with IMM estimation 
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6. Conclusion 

Nonlinear dynamics model and multi-sensor fusion of DFUAV determine the use of a system 

with Fault Tolerant and Diagnosis and Diagnosis robust navigation to realize evaluation to 

attitude and position of the aircraft. This paper focus on a FTD position system building process, 

including modeling model set, realize IMM fault detection, IMM model organized and verify 

process stability and robustness of the system. Modeling model set is to establish the 

corresponding mathematical model for different sensor, including dynamics model and noise 

model. By system identification methods and statistical variance (Allan variance) identify linear 

model parameters and noise parameter, using partial differential to nonlinear model to get 

Jacobian Matrix each state. 

Realize IMM fault detection, to build the interacting multiple model (IMM) filter for Fault Tolerant 

and Diagnosis. IMM filter is an adaptive filter. It can automatically remove the impact of fault 

sensor state assessment on the system. In addition, using threshold to evaluate each model 

probability to identify the Fault sensor, provide to the controller for multi-model control switch, 

enable DFUAV can still normal flight when part of the sensor is damaged.  

IMM model organize using 2 + 2 model structure and 2 mixture estimates 2 autoregressive 

estimates, this paper uses 4 blocks of measurement mechanisms：Inertial Navigation System 

position information combination, aircraft dynamics model information combination and 2 

prediction Model. These 4 blocks completely separate independent use 2 GPS measurement 

information and sensor information to minimize complexity system states and number of model.  

To verify system stability and robustness, the processing has include software simulation and 

hardware verification. Mainly on account of the system response in case of occurrence which 

is sensor failed. Used RMSE statistical method to verify FTDF navigation system statistical 

characteristic. In the actual verification results show that the system in Normal state and Fault 

state RMSE respectively, namely, the system is stability and robustness, as shown Table 14: 

Table 14 Compare RMSE in different state 

RMSE X Y Z State 

Position (m) Normal state 0.25034 0.228327 0.456877  
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Fault state 0.25049 0.228406 0.456635 Speed sensor failures [40sec-80sec] 

GPS 1 signal lost [60sec-100sec] 

Velocity 

(m/s) 

Normal state 0.015272 0.01487 0.029752  

Fault state 0.015275 0.01488 0.02978 Speed sensor failures [40sec-80sec] 

GPS 1 signal lost [60sec-100sec] 

6.1. Recommended Further work 

 Continue to optimize dynamic model and navigation system noise model by more 

testing. 

 GD Filter will be improve by Conjugate Gradient Method or Levenberg–Marquardt 

Algorithm 

 To design a Multi-Model Optimal Controller (MMOC) cooperate with IMM Filter.  

 Rebuild Ducted Fan UAV structure base on Air dynamics research. 
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