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Abstract

The presents a Fault Tolerant and Data Fusion (FTDF) algorithm for a Ducted Fan Uninhabited
Aerial Vehicle (DFUAV) Navigation System. The algorithm have two parts: the Gradient Descent
(GD) for the Attitude and Heading Reference System (AHRS) and the Interacting Multiple Model
(IMM) for position estimation. The GD methodology was designed is to fuse gyroscope,
accelerometer, and geomagnetic sensor. The IMM algorithm is able to identify and compensate

for multiple sensors data failures. There are three parts to this paper.

Frist, system identification technique are used and the Allan Variance method is used to build

dynamic models and noise models for multiple Sensors and Actuators.

Second, a GD filter applicable to the Inertial Measurement Unit (IMU) consisting of tri-axis
gyroscopes, accelerometers and magnetometers. The MARG (Magnetic, Angular Rate, and
Gravity) implementation incorporates magnetic distortion and gyroscope bias drift compensation.
The filter uses a quaternion representation, allowing accelerometer and magnetometer data to be
used in an analytically derived and optimized gradient-descent algorithm to compute the direction

of the gyroscope measurement error as a quaternion derivative.

Finally, The IMM algorithm is used to combine data from multiple sensors simultaneously. This
filter uses multiple models that incorporate sensor failures. The probabilities of these models being
correct is generated by the IMM. These probabilities can be used to identify sensor failures and

compensate for these failures.

Keywords: Navigation System, Interacting Multiple Model, Gradient Descent, Fault Tolerant

vi



1. Introduction

Unmanned Aerial Vehicle (UAV) is one kind of robotic that are computerized and
autonomous using a digital system as a pilot. Thus there is no risk of loss of life
and the aircraft is easier to maintain than manned aircraft. Vertical Take-Off and
Landing Unmanned Aerial Vehicle (VTOL) UAV operate in level flight without an
airstrip, so they are widely used in surveillance and transportation. Examples are
Aerie Long Endurance UAV and Eagle Eye’'sTR-911 X VT-UAV shown in Figure

11.

(b) Eagle Eye TR-911 X VT-UAV

Figure 1.1 VTOL UAV
Actually aircraft navigation system design process is similar with observer
designing. Base on observer designing theory, several factor needs to Identify
and know such as dynamic model of the aircraft, the sensor model and noise

source model. Firstly, Dynamics model of the aircraft identify for building filter



model and simulation. They are include engine thrust model, airfoil lift-drag
model and ground effect model, these models are nonlinear, time-varying
generally. Secondly, sensors model and noise source identify to get an accurate
physical measuring. The high sensitivity sensors are susceptible from externally
and internally noise, such as vibration noise, electrical noise, thermal noise and
electromagnetic interference (EMI), so there are different noise distribution with
measured values. If want to filter those noises, different methods are required to

recognize the noise model and parameters.

Inthe UAV navigation system can be separate into two parts. A high sensitivity
aircraft attitude measurement system, which belonging to the lower information
fusion, requires high update frequency, high sensitivity. A high accuracy position
measurement system which achieve for multiple sensor data fusion, high accuracy
and fault tolerance ability. Aircraft attitude estimate system is composed by
strapdown inertial sensors, such as gyroscopes, accelerometers and geomagnetic
etc. body motion information of UAV will detected by those sensor. An efficient
attitude conversion algorithm to process attitude information of the aircraft into
earth coordinate system, these data are almost nonlinear. Currently, some
algorisms can handle multi-sensor data fusion problem. They are Extended
Kalman Filter, and Gardens Descent Filter, etc. For position of the aircraft
mensuration which belong to middle-level data fusion, the systems can fuse GPSs,
barometric pressure sensor, laser radar, air system of aircraft and other measuring
equipment data to generate velocity and position information. Particle Filtering,
Unscented Kalman Filter, Federated Filter are availability. Position and speed data
may are from different reference frame and update frequencies the filter should be
able to unify into a space-time, the final output information are latitude, longitude

and altitude in Earth coordinate.



The VTOL UAV is a nonlinear, multivariable, close coupe problem. Multiple
dynamic models can be constructed for the VTOL UAV to account for maneuvering
and sensor failures. An Interacting multiple (IMM) filter is used for data fusion and
fault detection, this paper presents two independent systems to process attitude
and position information. The Attitude and Heading Reference System (AHRS) is
a gradient descent algorithm. The Position Estimation System (PES) uses an IMM
algorithm. These algorithm are shown in Figure 1.2 along with their inter

connections.

R )
Gyroscop —» Position and
Gardens IMM

Attitude Filter Velocity Estimate

Acceleration —»| Descent

. Acceleration
Filter

of earth
Geomagnetic —»

frame

—

Global Positioning

Dynamic

Failure Detection

Model and Ildentification

\ 4

Set

=

Actuator Data
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Figure 1.2 VTOL UAV Navigation System Connections

1.1. How to Design a Data Fusion and Fault Tolerant System

There are three technological key point for the Navigation system Designing.
First, establish mathematical models including kinetics models and the noise models, we
can identify the model parameters by the methods of linear system identification and variance

parameters of noise by statistical (Allan Variance). The presentation shown in chapter 2.



Secondly, a gradient descent algorithm is used to fusion IMU’s tri-axis gyroscopes,
accelerometers and magnetometers. A motion detection algorithm to turn off/on the bias
correction information form the gradient descent algorithm. The shown in chapter 3.

Finally, to build the interacting multiple model (IMM) filter for position estimation. It is an
adaptive filter. It can automatically remove the lager error data on the system by the fault
sensor state assessment. Which allows DFUAV under the situation of partial damage to the

equipment remains normal flight. Chapter 4 is shown the detailed introduction.

2. Modeling and Noise Identification

2.1. Coordinate Systems

If build equations of motion of UAV to calculate the relative position, speed, acceleration and

forces’ vector, two axes’ coordinates must be mentioned.
*  Body-Axes Coordinate System Oxb yb zb

e Earth-Axes Coordinate System Oxg yg zg

a) Transfer between Oxg yg zg and Oxb yb zb

The attitude of UAV in the body frame transform to earth frame which are usually described
by three Euler angles. They are yawing (), pitching (8) and rolling (¢) respectively. System.

The transform function shown as:

cos@dcosy sin@singcosy —cos@gsiny  Sin@cos ¢ cosy +Sin gsiny
R,, =| cosdsiny sinysin@sing+cosy cos¢ sin @cos@siny —sin ¢ cosy
—siné@ cosdsin ¢ cos & cos ¢



b) Estimate flat earth position from geodetic latitude, longitude, and altitude

For UAV position control is normal in a Cartesian Coordinate Plane. However the GPS use
the WGS-84 World Geodetic System comprises a standard coordinate for the Earth. It output
the latitude, longitude and altitude data, but it is not easy to For UAV Control, we need to use
an algorithm transform The LLA a geodetic latitude « , longitude | , and altitude (h) into a Flat
Earth position(x, y, h). The flat Earth coordinate system assumes the z-axis is downward
positive. The estimation begins by finding the small changes in latitude and longitude from

the output latitude and longitude minus the initial latitude and longitude.

du=p—py
dl=1-1,

where duis changes in latitude and dl is changes in longitude. g, ,l,is origin coordinate

in latitude and longitude.

~ R
N = —
J1-2f - f1sin® g
1-2f — %)
N T, . O
1-(2f - f)=in” g

R

Ry =R

Where (R) is the equatorial radius of the planet and f is the flattening of the planet. In

WGS84 R = 6378137.0; f = 1/298.257223563,;

No_ du
1
arctan| —
( RM j
. dl
arctan| ————
( Ry €OS 4, ]

where N is North small changes positions, E is East positions small changes.

With the conversion of the North and East coordinates to the flat Earth x and y coordinates,

the transformation has the form of



Py| [cosy siny|[N
Py | —siny  cosy || E

()

where is the angle in degrees clockwise between the x-axis and north

Pz=—h—hy

where h,, isthe flat Earth z-axis value, it is the negative altitude minus.

2.2.Noise Model of Sensors

The normal sensor noises sources are scale factor errors (SFEs), drift, axis misalignments,
angle random walk, bias Instability, rate random walk, and rate ramp noise to as shown in
figure 3.2. Where N is Angle Random walk, B is Bias Instability, K is Rate Random Walk, and
R is Rate Ramp Noise.

N Acceleraton/

AngularRat

K S /—+ tOutput
B R(Ramp)
BiasInstability

Figure 2.1 Normal Sensor Noises Model Structure

In multivariable output sensor, Have more character such as scale factor errors (SFEs), drift,
input — axis misalignments, input/output nonlinearities.

Those can be describe by equation:



Y, =ST(1+M)X, +b +W,

bt = bfb + 6ri

- 1-
bi=-= A
T

r

— —
—

where b, Total of Bias; D, Fix of Bias; b, Bias Instability; W,, white noise;

S Scale Factor; M Misalignment;

2.3. Root Mean Square Error (RMSE)

The RMSE of an estimator X with respect to an estimated parameter X' is defined as
the square root of the mean square error:

RMSE(k):\/MZ(x(k)—xj(k))(x(k)—xj(k))

2.4. Measurements for Multiple Sensors

a) Inertial Measurement Unit

IMU that combines three Gyroscopes, a 3-axis Accelerometer, a 3-axis Geomagnetic

Sensor, and a Barometric Pressure Sensor package given in Fig. 3.

Figure 2.2 Inertial Measurement Unit

B  Three High Vibration Immunity Digital Gyroscopes (ADXRS450)



+300°/sec angular rate sensing 1
Sensitivity to Linear Acceleration 0.03°/sec/q;
Excellent 25°/hour null offset stability

The gyroscope noise model is giving in equation:

i M Xy M Xz
S,
wmx 1 a)X
_ bR o
Oy | = Myx S_ Myz o, +Gfg+bg+wg
a)mz g a)Z
M X M zy Si

~ 1.
bgzbfb+ i’ bri:_;bbs—i_wrw;
where @, @, ,@,, isthe measured angular velocity;

o,,o,, 0, represents the true angular velocity in the body frame;

G is a 3x3 matrix encompassing the acceleration-sensitivity coefficients;

S

is the scale factor;

M s the misalignment;

—

b

9 s the gyroscope total of bias;

—

i js the gyroscope bias Instability;
9 is the gyroscope white noise in rate;

" s the gyroscope white noise in bias random walk;

B 3-axis Digital Accelerometer (ADXL313)
Resolution as 0.025° of inclination [
Low noise performance
150ug/VHz typical for X- and Y-axes
250ug/VHz typical for the Z-axis

The accelerometer noise model is giving in equation:

afazzazy

)



" -
S_ Mxy sz
a,, X 1 a, 0 a)j o? |[ Ax
2 2 - vy
oy | = My s M, [[Ry,la, [+|@; 0 @ || Ay|+b,+W, 2
- y . a,| |of o] 0| Az
sz Mz o
y
L SZ .
Ay 8y, 8y, is the measured acceleration

a,,a,,a, represents the true acceleration in the body frame

where AX,AY,AZ is error which is a distance from the “center” of the Inertial Measurement
Unit (IMU) to center-of-gravity position.

S is the scale factor;
M is the misalignment;

o, 0, O, is the angular velocity of three axis.

—

ba is the acceleration bias;

W, is the acceleration white noise in rate.

R, is the rotation angle for the tilt effect.

B 3-axis Geomagnetic Sensor (RM3100)

It over 10 times better resolution and over 20 times lower noise than the leading Hall Effect
sensor [,

Geomagnetic noise model, Induced effect of the soft iron and hard iron.

Si M Xy M xz
mmx g 1 mX
Moy | =My = My | Ry m, |+ b, + W, ®)
mmZ / mZ
M x M 7y i
L SZ _

where m_.,m_ M represents the measured magnetic field;

my !



m,,m,,m, represents the true measured magnetic field in the body frame;
is the Scale Factor; l ‘
4
M is the misalignment Induced effect of soft iron; . ~

b /////////’//
a s the bias Induced effect of hard iron; Y

S

Wa is the white noise in rate;

¢ is the rotation angle for the tilt effect;

B Barometric Pressure Sensor (MS5611-01BA03)
High resolution module, 10 cm
Fast conversion down to 1 ms

Operating range: 10 to 1200 mbar, -40 to +85 °C

Barometric Pressure Sensor noise model
h,=S-h+b +w, (4)

b +W,,;

i

361
Il
—«Ul
o
+
Ol
Oy
N

where h_ is the represents the measured high;
h is the represents the true high;

S is the scale factor;

M is the misalignment Induced effect of soft iron;

—

bh is the Barometric Pressure sensor long run bias;

W, is the white noise in rate.

10



B GPS Module

The GPS Module is the newest family of standalone GPS/GNSS
modules from u-blox. With the exceptional performance of the u-
blox 7 multi-GNSS (GPS, GLONASS, Galileo, QZSS and
SBAS) engine. The GPS Module provides maximum sensitivity

while maintaining low system power.

Table 1 Specification of GPS U

Receiver type 56-channel
GPS/QZSS L1 C/A, GLONASS L1 FDMA,
SBAS: WAAS, EGNOS, MSAS

Navigation update rate up to 10 Hz

Accuracy GPS / GLONASS Position 2.5 m CEP /4.0 m
SBAS 2.0 m CEP / n.a.

Acquisition GPS / GLONASS Cold starts: 29s/30 s

Aided starts: 5s/n.a.

Reaquisition: 1s/3 s

Sensitivity GPS / GLONASS Tracking: —162 dBm / —-158 dBm
Cold starts: =148 dBm / —140 dBm
Warm starts: =148 dBm / —145 dBm

GPS positioning is a basic principle of triangulation, using satellite GPS receivers to measure
the radio signal transmission delay time to calculate the distance. Three or more distances
and the position of the satellite can be used to determine the GPS receiver’s position. GPS
accuracy’s deserted by a lot of factors such as lonospheric effects, Shifts in the satellite
orbits, clock errors of the satellites' clocks, multipath effects, tropospheric effects and
calculation rounding errors.

The errors of the GPS system are summarized in the following table 2. The individual values
are not constant values, but are probability. All numbers are approximate values.

Table 2 Errors of the GPS System [2]

Sources of Errors in GPS Standard deviation

lonospheric effects + 5 meters

Shifts in the satellite orbits + 2.5 meter

11



Clock errors of the satellites' clocks + 2 meter

Multipath effect + 1 meter
Tropospheric effects + 0.5 meter
Calculation- und rounding errors + 1 meter

The GPS noise equation can desecration into the Pseudo-range and time error estimation
equation.
Pseudo-range and time error equation:

r=Th-Ta
=(7h—Ats)—(ra—Atr)
=(rh—7a)+Atr — Ats
v =(rh—7a)+Atr—Ats+4,
cr =c[ (b —ra)+Atr — Ats + Ata |
PR =R +¢5,
o, = Atr — Ats + Ata
R = J(X=X)?+(Y =Y +(Z-Z,)
PR = (X = X2 +(Y =Y,)* +(Z - Z,)* +¢5,+W,(i=1,2,3,4)

PR, Pseudo-range is for GPS;

XY Z, are the GPS satellites position is in Earth-centered inertial (ECI) coordinate

frames.

XY, Z are the Receiver position is in ECI. (Unknown)

o, is the clock error. (Unknown)

W, is the total of noise

12



DOP (Dilution of precision)

DOP descriptor error of estimate with sources of errors in GPS in dynamic condition. Those
data can tell us the GPS precision situation in real time. [3]

There are six kind of DOP:

* GDOP: Geometrical Dilution of Precision, (measure of accuracy in 3-D position and
time)

* GDOP2=PDOP 2+TDOP 2
e TDOP: Time Dilution of Precision (measure of accuracy in Time)

*  PDOP: Position Dilution of Precision (measure of accuracy in 3-D position), also called
spherical DOP

«  PDOP 2=HDOP 2+VDOP 2

*  HDOP: Horizontal Dilution of Precision (measure of accuracy in 2-D position, for
example Latitude and Longitude)

* VDOP: Vertical Dilution of Precision (measure of accuracy in 1-D position, Height)

We do a test which receive GPS position and velocity data in ECEF (Earth-Centered, Earth-
Fixed) coordinate for 10min at 5Hz sampling frequency. The GPS data Variance statistics

show in Figure 2.

ECEF x axis velocity ECEF x mas wlociy

2 8

°

2
Prosablty
8

2
Vho5E V05 Ti0% e Ti657 Tiose %5 02
positon x (m) i wiocty (ms)

ECEF y axis welocity ECEF y axis wlocity

Probabilty
s R &8

°
{
8

20

4347 EET EET a7 a7 FET TUT | aMT | AMn . dwMn
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ECEF 2 axis velocity

8888 E

Prozabiy
o
8
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e " " b= T \ e
sber Tesar V607 Teso7 Tok7 Tasor 6 04 02 0 02 04 [
poskion x (m) a whocity (mis)

Figure 2.3 GPS Position and Velocity Variance
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GPS Position signal with color noise, but velocity approximate a white noise.
Because the UAV power support limit, the flight time only 10min at VTOL state.
The GPS noise model can be consider a first-order Markov model.

px,y,z = px,y,z +bri +Ww ’ b

1~
ri =__bbs +Wrw
T
w, Gaussian noise;
w,, Gaussian noise for Bias random walk;

p,,. Position data with noise and bias;

p,,. Estimate position data without noise and bias;

B Rotation Servomotor

A robotics digital servo is state of the art modular smart servos
incorporating motor, gear reducer, control circuitry and
communications capability in one single package. Servo is capable

of detecting and controlling angle position and rotation speed.

B RPM Sensor for High-Voltage ESC

It detects the voltage changes at the wires of brushless

motor, and then outputs the RPM signal. This RPM sensor

can work with some speed control systems for helicopters.

RPM testing range (for 2 poles brushless motor): 1000rpm

to 300000rpm.

14



2.5.Noise ldentify Technique

Allan variance by the national bureau of standards, is put forward in 1960. It is a
kind of time domain analysis technology which is recognized generally by the
IEEE standard analysis method [2] of gyroscope performance. The
characteristics of this method is easy to compare it to various error sources of a
detailed characterization and identification of statistical properties. Noise sources
may exist within the instrument and even don't know the mechanical structure of
the instrument, as long as the test system, can find the noise source. Allan
variance can be used as a single data analysis method, also can be used to
supplement the frequency domain analysis technology, this technology can be
applied to any instrument noise research.

Allan variance equations can write that:
N—-2n-1

1
Z ($1'+2ﬂ. - 21751'+'n. + Ii’)z
i=0

(N —2n)

2 T — ATy —
o, (n70, N) = AVAR(nm, N) = o

We base on the equation to calculate the solution. The Figure2.5 show the Gyro
Allan variance statistics characteristic curve for 20,000 Second.

B Figure 1 o= ][=®=
File Edit View Insert Tools Desktop Window Help k]
jﬁﬂé [% +\-_\-{ﬂ-?@@0{' @) Dl:‘ a0

Allen Deviation: Sample Rate(10.2400265 Hz)

T-- T -

L] e s 1 5 181 SIS —— T

Figure 2.4 20,000 Sec. Gyroscope Allan Variance Statistics Characteristic
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Figure 2.5 Typical Allan Deviation plot for a system ["}
The Noise Coefficient can be calculate from the table 3.
Table 3 Allan Variance Parameters [3]
Error Type PSD(5,) AV (ciit)) Comments
. ) 2 Q: Quant.
Qu.'}\i;.n_sauon (27O, 31::,: ote
-one 2 coefficient
; N-
Random 1 Ne 3 'Rélfﬁom
Walk A = ek
: T coefficient
B: Bias
7 7| instability
{33) 1 . coefficient.
Bias iy sy, L ) N Y - Tft
Instability \_;r , ] ?{smx +4xcosy) . N
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The gyroscope root and Accelerometer root Allan variance show in Figure 2.6 and 2.7
from IMU Datasheet.
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Figure 2.6 Gyroscope Root Allan Variance

0.01
5
w
(5]
=z
<
<
> 0.001
=
3 3
2 ™
5 A +1a
E ".\‘::-.. i e ]
SRR~ RIS MEAN
M = A= L= |
o e = =t T[] d -1a
0.0001 | ‘
0.1 1 10 100 1K 10K
Tau (sec)

Figure 2.7 Accelerometer Root Allan Variance
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2.6.Electronic Duct Fan Model

Electronic Duct Fan system is a very imported part which support the power
when the UAV run. Its characteristic influent the UAV stability and sensitivity
dirtily, species in DFUAV State. The EDF system include Electronic Duct Fan,
Brushless Electronic speed controller and PRM Sensor. As show in Figure2.1
Assembly of Electronic Duct Fan system.

Electronic
DuctFan

@ RPM Sensor

Figure 2.8 Assembly of Electronic Duct Fan system
The UAV main engine are two 12 Blade 70mm diameter Electronic Duct Fan.
The Specification of Electronic Duct Fan show in Table 4

Table 4 Specification of Electronic Duct Fan

Outside Diameter : 71.8mm

Material : Fiber Reinforced Nylon Rotor
Rotor Diameter : 68mm , 12 blades

Max RPM : 52000 RPM

Motor Shaft : 3.17mm & 4.0mm

Working Voltage : 14.8v-222v(4-6S)

Max Power : 1800W

Motors required : 28mm Inrunner Motor 2200 - 3300Kv
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Electronic Duct Fan setup a 3600Kv 28mm diameter inrunner motor supprte the
power. The Specification of Brushless Motor show in Table 5

Table 5 Specification of Brushless Motor
BL15 Ducted Fan Motor
6-pole Inrunner Brushless

15-size for Ducted Fans

Two 4 x 10 x 4mm Bearings

11.1-16.8V

3600

0.02 ohms

2.80A @ 10V

46A

55A (15 sec)

3S—4S LiPo power 10-14 Ni-MH/Ni-Cd battery

60A brushless

106 g (3.7 02)

28mm (1.10 in)

4mm (0.16 in)

40mm (1.56 in)

In order to test the characteristics of the engine we designed a test system, as
shown, the system includes a power sensor, voltmeter, power meter, tension
meter, torque meter and anemometer. Can measure the Force, voltage, Power
(W), Ampere, RPM, and Airspeed.

System identification is generally divided into two kinds of static and dynamic
parameters. Static parameters mainly on account of the proportion of the
characteristics of the various components in the static. We control EDF into
different rotation speed then recode the data curve, we can very easily identify
physical parameter equation system, such as to determine the order of the system.
DC motor dynamic parameters considering various factors, including of Coulomb
Friction Coefficient, Viscous Friction Coefficient, moment of inertia. Our data
sampled at different engine speeds, as Table 6 Test Data of EDF

Table 6 Test Data of EDF

0 14.96 1.9 0.13 0 0 0 0

0.784 14.92 28 1.9 7920 121 2.857142857 12.99139605 0.00164033



1.274
2.744
3.528
4.41
5.096
5.88
6.566
7.252

8.232

14

12

10

Thrust (N)
(o)}

14.88 51 3.34 10000 1.23 2.549019608 16.93870807 0.00169387
14.77 119.2 8.15 14260 1.25 2.348993289 23.95495069 0.00167987
14.69 163.3 11.14 15940 1.326 2.204531537 26.62443914 0.00167029
14.58 223.4 15.23 17720 1.36 2.014324082 29.62494103 0.00167184
14.48 265.2 18.54 18920 1.39 1.960784314 32.8659212 0.0017371
14.34 330 22.98 20400 1.43 1.818181818 34.37200313 0.0016849
14.62 381 26.56 21520 1.468 1.758530184 36.28299459 0.00168601
14.05 443 31.8 22500 1.51 1.670428894 37.8761027 0.00168338
13.89 515 37.18 24000 1.55 1.631067961 40.04217186 0.00166842
RPM and Thrust
y = 2E-08x%- 2E-05x - 0.0051
R?=0.9999

—@— Thrust(N
— Fitting c{

5000 10000 15000 20000 25000 30000 35

RPM

Figure 2.9 RPM and Thrust

The table shows us information from the chart, we can make a polynomial curve
fitting original, and then a formula can calculated by MATLAB:

rve

00

Voret = (1.52938e—08)-x,,.? —(2.2741e—05)- X, —0.00511756

where Yy, isthrustof EDF, X is EDF rotate speed of propeller
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2.7. CA and TCA Model

At radar multiple target maneuvering tracking applications, Three kind filter
models have been selected in common use. These models are a constant
velocity (CV), a constant acceleration (CA), and a three-dimensional turn with a
kinematic constraint (TURN), the turn value is estimation. In the AHRS, the three-
dimensional turn information can calculate form the INS, so the acceleration
value can transform from body frame to the earth frame. The CV and CA model
will use a rotation matrix to finish turn information fusion. The model will become
a three-dimensional turn with a kinematic constraint (TCV) and a three-
dimensional turn with a dynamics constraint (TCA). A normal model show in
below formula

x(k +1) = Ax(k) + Bu(k) + Gw(k)
y(k) = Cx(k) + Hv(K)

* CA Model

The state vector for the CA continuous time model is defined as
X=[xy zv v v a a a)]

diag,,(0) diag,,(1) diag,,(0)
A=|diag,,(0) diag,,(0) diag,,(1)

diag,;(0) diag,,(0) diag,,(0)
C= diaggxg (1)

Discrete-time CA model

Xz[x y z v, Vv, Vv, a, a, az]
diag, (1) diag,,(At) diagm(%mzj

A=| diag,,(0) diagSXS(l) diagM(At)
diag,,,(0) diagaxs(o) diagaxs(l)

E 2 T
B= A_t A_t At
6 2
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where At is the difference of the measurement time

System and measurement noise convenience matrices for each state, this matrix
Is given as

. At® . At* . At?
dlagaxs ? dlagsxs T dlag3><3 [?]
o At? . At® . At? -
Q= 04 dlag3><3 T dlagsx3 ? dlagsxs 7 » R= O, dlaggxg (1)
. At® . At? .
dlagaxs ? dlag3x3 7 dlagaxa (At)

The parameter o is the filter plant noise spectral density and has units of

m?/s®, the parameter o2 is the filter measurement noise spectral density and

has units of m?/s

* TCA Model

The state vector for the TCA continuous time model is defined as
X=[xy zv v v a a a)
diag,,(0) R,diag,,(1) diag,,(0)
A=|diag,,(0) diag,,(0) R,diag,,(1)
diag,;(0) diag,,(0) diag,,;(0)
C= diag9><9 (l)

Discrete-time TCA model
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X=[xy zv v v, a a a,]

diag3><3 (1) RbediagB><3 (At) Rbedia‘gSXS (%Atzj

A=|diag,,(0)  diag,. (1) Ry diag,,, (At)
diag,,(0)  diag,,(0) diag,,, (1)

M A+3 2 T
B= A_t A_t At
6 2

where Atis the difference of the measurement time

System and measurement noise convenience matrices for each state, this matrix
is given as
At® At*

. . . At ]
diag,,, diag,, T dlag3x3(?j

. At . At . At? .
Q=O‘§ diag,,, T diag,,, ? dlagsxa(Tj ’ R:Grzdlaggxe(l)

diagaxs a diagaxa 5 diagaxs(At)

The parameter o7 is the filter plant noise spectral density and has units of

m?/s®, the parameter o2 is the filter measurement noise spectral density and

has units of m?/s
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2.8.Dynamics Model of DFUAV

The aerodynamic characteristics of the UAV determines the need for stability of
the vertical plane. The UAV should have three fans for motion controlling, to load
the maximum weight of the UAV at 2 kg. In The total weight of all equipment to
operate the UAV in flight should limit at 1 kg.

\ VTOL Engine

Electronic Duct Fan

Tail Plane

Figure 2.10 Configuration View of UAV

Table 7 UAV design characteristics

Characteristic Value

Length of the fuselage, m 1.4

Weight of UAV, kg 1.7

Cruise speed, m/s 70

Minimum climb speed, m/s 2

Maximum Thrust, N 25.49 (2.5kQ)
Viscous coefficient, kg/ (m-s) TBD
Ambient pressure, hPa 1013.25

As an aerial vehicle operated in 3 dimensional space, for each dimension, there
are a pair of forces that can maintain the momentum balance:
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X-axis: Thrust & Drag

Y-axis: Crosswind & Side Thrust

Z-axis: Lift & Weight

A pair of torques can maintain the angular momentum balance:
X- axis: Rolling

Y-axis: Pitching

Z-axis: Yawing

This DFUAYV has three statuses transferred from take-off to horizontal flight. Each
status has a unique requirement of balance.

The first states is vertical take-off. Three engines provide thrust; T1, T2 and T3,
which maintains the balance of Lift and Weight, and offsets rolling and pitching.
The rolling can also offset the crosswind by making the vehicle lean towards it.
Two EDFs, one for engine 1 and the other for engine 2, can create vector
components that thrust forward or backward. When two engines both roll the same
direction, the balance of forward and backward can be maintained; when two
engines roll in different directions, they can create yawing to maintain the angular
momentum balance of the z-axis, as shown in Figurel.5 (a) (VTOL State of Force
and Moment).

The second states is Transformation from take-off to flight. During this process,
the EDFs change the angle of the engine from vertical to horizontal. This process
can be reviewed as the direct thrust transformed to the lift, created by the speed
of the vehicle.

The third states is horizontal flight. Thrust from 2 engines counteract the drag, and
the thrust difference between two engines creates yawing for the aircraft. The
rolling and pitching are controlled by the movement of flaps, and rolling can also
balance the crosswind by creating horizontal lift. It is worth noting that both the lift
and drag are dominated by functions which are proportional to the square of air
speed. The lift and drag of wind can be calculated by wing profile, however, the lift
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and drag of the main body structure can only be simulated by the CFD, as shown
in Figurel.5 (b) (Airplane State of Force and Moment).

(&) VTOL State of Force and Moment

(b) Airplane State of Force and Moment

Figure 2.11 Definition of Force and Moment

Flight dynamics describes the motion of an UAV influenced by engine, airfoil or
physical state. For this transmutation DFUAV, the research and development of
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stability and control abilities is important. To describe a rigid-body motion of
DFUAYV, the Completeness equations of motion with six degrees of freedom must
be considered and analyzed.

Consider the DFUAV as a single rigid body with 6 DOFs. Assuming the earth
is flat and neglecting the ground effect, the equations of motion for a rigid body

b b ¢b b 3
subject to body force f° and body moment % (f 7 eR ), applied at the

center of mass and expressed in Newton-Euler formalism, are given by:
b o]l @° b b
|:fb:|:|:m j| ) +|:a)meVbi| (1)
T o 1 o’ o’ xlo
b b
Where, @ is the body angular velocity V is the body velocity, specifies

b .,b RIS
. 33, . ) .
@,V € . mis the total mass, leR is an inertial matrix.

a. w X mV is Coriolis force

b. w X Iw is gyroscope torque

We ignore the Coriolis force in the DFUAV Model, because it is a small value in slowly
varying motion of body. Forces of UAV are from the gravity, thrust of ducted fan, Slipstream
Effect of faces and Crosswind Effect of faces. Moments of UAV also are from those effects
which are forces with the forces arm. The arms are distance between the center of gravity

and pressure of gravity and the distance between the center of gravity control surface.

* Gravity

The UAV frights near the ground. As a result the gravity acceleration is a negligible value

than the other force with different latitude, so ignore the parameter latitude.

F

gravity = muavg
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e Thrust

The Thrust base on the momentum has a direction as well as magnitude. The Slipstream

Theory can be expressed as below (see Ref. [4])

Thrust is generated from pressure differences between region 2 and 3.

B e
D

Figure 2.12 Air Flow through the Duct Fans

Touet = Meyer (V propeller +Vo)

Myyer = P Vpropeller At

V opetier 18 Induced velocity of propeller
if V >V,

propeller

_ 2
Tduct - IOAduct propeller

* Nonlinear Dynamic Equation in Earth-Axes Coordinate System

VTOL state consider position controlling characteristics, the Earth -Axes
Coordinate System is a direct distribution the relation VTOL motion and position
location.

* Newton-Euler Formalism in Earth Frame
The Nonlinear Dynamic Equation can sprite force equation and moment
equation. Above all, the forces and moments are summarized,

Ftotal = I:thrust + I:gravity
M. ., =M

total rotor

Force equation:
F, =mV, +mR g
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cosdcosy sindsin@gcosy —Ccos@siny  Sin @ cos@cosy +sin gsiny
R, =| cosé@siny sinysindsing+cosy cos¢ sin &cos gsiny —sin gcosy
—-siné cosé@sing cosdcos ¢

Where R, is rotation matrix from earth fame to body fame, m is mass, V, is

acceleration at body framing, g is gravity in earth framing.

Force Equation in Earth-Axes Coordinate System

" sing; T, —sino; T, 0 @
F= Fyb = 0 R, | 0 (2
Fol |-(coss,T,+coss, T, +T,) mg €)

gravity force
Forces control

where o;,0; are EDF tilt angle in body fame, T,,T,,T,is EDF thrust

Equation of Motion in earth

X Fo ()
Yo |=Re| Fpo (8)
h F (9)

Moment equation in body frame (rotate around center of mass):

L p 0 r —-q p Ixx Ixy Ixz
M = ‘]body q + T 0 p ‘]body q ’ ‘]body = Iyx Iyy Iyz
N r q -p O r e 1, 1

Gyroscopic Moment

Moment of Control by engine:

(cos &, T, —€0s 6, T, )b oo

Ty b, o —(COSG; T, +€08 5, T, )by oo

Zz2 < r
Il

(sin o, T, +sino; T, ) S S

Forces control
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where Ty is rotational inertia; p, g, r reference rotational speed x, y, z of axis. p

d r are rotational acceleration; L, M, N are moment of control by engine. 1, .

|, _sc b7, oc kroc are distance EDF from center of gravity to EDF.

Finally Dynamic Equation:

5 (cosd, T, =055, T,) Iy e 0 r g 0

q|=J b_oldy T3 ) IT3—GC - (COS 5T1Tl +C0s §T2T2 ) ’ IT1T2 e |7| 7T 0 p|J body |

' (sin O Ty +sin 5T2T2)-IT7GC L9 P O "]
/ Gyroscopic Moment

Forces control

Equation of Motion in Euler angle:
¢ =p+tand(qsing+rcosg)
0 =qcosp—rsing

. 1 .
W _Eq(sm¢+rcos¢)

where ¢ 0y are reference rotational speed at END(North, East, Down) earth

framing.
3. GD Filter for Attitude Estimation

Gradient descent algorithm [5] is a liner regression algorithm is used Atrtificial
Intelligence domain to find a local minimum. The paper use the algorithm to
fusion IMU'’s tri-axis gyroscopes, accelerometers and magnetometers.

These are several processing. Firstly, we need to get a direction of the gradient
Vi

A Ba BA 4
: . . eR
[Vt ". It essentially uses the quaternion of previous moment E Y : e to
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calculate the virtual acceleration and magnet values. Secondly, get the

fom(0

BA B

. 4, m) .
acceleration and magnetometers errors through using actual

acceleration and magnetometers to minus the virtual values. Thirdly, transfer

these parameters to error of quaternion gradient by the Jacobian matrix
Ba
‘Jg,m(eq—l) )

IEBqt = EBthfl +At( Equ,t - EBqu,tfl)

Ba
Renew the quaternion of the next moment quv“lby the equation

. It uses the gradient information of quaternion

errors to iterate so that it makes the error become 0. The down velocity is

depends on the first order partial derivative value. P is the learning rate. Finally,
if the GD algorisms what the prerequisites are not stationary state, the algorism
will contain extra acceleration and magnetic field changes. so a Motion detection
function is used to turn off/on correcting signal when acceleration and

magnetometers value change. Their pdf value were used identify motion change.
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Figure 3.1 Gradient Descent Algorithm Block Diagram
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A

4
4]

v

Orientation from angular rate

. 1,
Equ,t = E EBqt4 ® Ba)t

3
w, €N
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B &
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2(q2q4 — 0.0, ) a
f,(£6,°8) =| 2(qa, +9,0,) || 3,

1 a,
_2(5—%2 _qu

_2q3 2q4 _2q1 2q2

T
E qe,t—l - ”Vf ”

Gradient update law:

EBqdes,t = EBqa)t _ﬂEqu,t—l

Rotation matrix transfer earth frame to body frame:

_qg + Q12 - %2 - Q32 2(Q1Q2 + quS) 2(Q1Q3 - qoqz)
Ree =| 2(0.0,-00;) Go—0 +0; =05 2(0,0, +0)

| 2(0p8, +00;)  2(0,05-0p%) o~ 0 — 0y +0;
Beacuse: > +q’+q; +q; =1
205 +207 -1 200, + o) 2(6,0 — o)

Rbe = 2(q1q2 _qoqs) 2q§ + 2q22 -1 2(q2q3 + qoql)
| 2(05%, +G0)  2(0,05—00) 205 +20; ~1

Euler angles from quaternion:
6, =arcsin (—2(0,0; —0,0,))

2(9,9; +9,9,)
=arctan| ————=
Z ( 292 +292 -1

v, =arctan (—z(qlqz + Gy0a) J

292 +2q7 -1

Motion detection function
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The likelihood functions for acceleration model is as follows:

PDF = V' (A,,:0;07)

_A?om
e 20?2

1

2
27O

A.m = JJacc, +acc, +acc,

Where A, is acceleration modulus, A, is the covariance matrix,

acc, ,acc,, acc, is acceleration sensor data.

3.1.Simulation and Result

A flight signal generator is needed which combine inertial navigation system,

GPS system and magnetic system, each block can setup noise parameters as

Rate random walk, correlation time and measure noise. The detail show in Figure

8 (Flight Signal Generator Noise Parameters)

Wl Function Block Parameters: Inertial Navigation System
Subsysten (mask)

..................... i
Gyroscope | Accelerometer

Gyrozcope zetup pozition

[000]

Gyro Rate Random Walk (K)

[0.0007; 0.000T; 0.0007;]

Gyro Measurement Noise (GR)

[0.0087; 0.008T; 0.0087;]

Gyro upper and lower limits:

‘180%pi  -300/180%pi  300/180#pi 300/180%pi 300/180%pil

Noise correlation time (sec)

[3600;3600; 3600;]

| P Help

][ Cancel H

Apply

| Function Block Parameters: Inertial Navigation System

o |

Subsysten (mask)

_?...J Aocelerometer ]

"

Loc Rate Random Walk (K)

¥ [0.0001; 0.0001: 0.0001:]

fcc Measurement Noise (4R)

[0.005; 0.005%; 0.005;]

Acocelerometer upper and lower limits:
[-18 -18 -18 18 18§ 18]
Gravitational Acceleration

9,78

Noise correlation time (sec)

[14400; 14400, 14400;]

[ ox Help

) (Lconcer ] |

Apply
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¥ Function Block Parameters: GPS System [=]
Subsystem (mask) -

Parameters

|¥] Noize ON

W Function Block Parameters: Magnetic system 82

GPS Pozition Random Walk Subsysten (mask) &

[2.5; 2.8, §:]
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GP3 Measurement HNoise

Mag_Noi
[0.1; 0.1 0.1;] oS
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Noizse correlation time (sec)

[1; 1: 1]
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216.8

[ ok [ cancel |[ Help || sroly

Figure 3.2 Flight Signal Generator Noise Parameters

Gradient Descent Algorithm (GDA) confirmation is need do the test which input a
signal with noises to observe module response in MATLAB simulation for 200
second. A group stationary state data of magnetic, gyroscope, acceleration are
used an excitation source. Figure 9 (Sensor Data Input) show the sensor data
input. Different Learning Rates are tested By RMS at Figure 9. Figure 10 (GDA
Attitude Estimate output) show the attitude estimate output. Yellow line shown
pith angle data. Pink line shown roll angle data. Cyanic shown yaw angle data.
The error range of angle data in +£0.04° . So the Figure show that if learning rate

Bis set at 0.004, the GD Algorithm will get the minimum RMSE.

35



mis?

deg/s

Gauss (G)

Accelerometer

T
Acc x
Acc y
Acc z
0.4 I | | | I 1 1 I
20 40 60 80 100 120 140 180 200
Time(s)
Gyroscope
004 ! ! ! ; ! ! T
0.02 kb g lalid oL a:acoabia Ao bbbt i 3 bk ot ocreioie b B
0
0.02
B 1 N S R R R R SR R R e R IR SR S S St
006 i i | I i i i | |
0 20 40 60 80 100 120 140 160 180 200
Time(s)
Geomagnetic sensor
0.6 T T T T T T T T L
04
02 f
0 : ;
02 I | | 1 | I | 1 |
20 40 60 80 100 120 140 160 180 200
Time(s)

Figure 3.3 Sensor Data Input
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4. IMM Filter for Position Estimation

4.1. IMM Filter Description

When set up estimation models, considering mathematical modeling
assumptions the only uncertainty is by white noise process and measurement
with known additive statistical properties. In other words, the system model, the
state transition matrix, input gain, the measurement noise covariance matrix and
are assumed to be known. But the reality is that because of the internal noise
superimposed on the sensor, such as generating a random walk noise by
gyroscope; GPS measurements in reflection and refraction of radio waves to
produce multipath effect; the impact of the geomagnetic sensor that is fixed
external magnetic interference tendency bias, and ambient wind generation
aircraft involuntary displacement. It will cause the measurement system will
introduce a variety of time-varying color noise. Therefore, system modeling will
be a combination of system parameter uncertainties with unknown inputs where
the system parameters (are assumed to) take values in a discrete set.

X(k + 1) = F(k) x(k) + G(k) u(k) + v(k)

but the input u (k), which enters the v (k), is unknown, F (k) is time varying, it is
desirable to establish an Adaptive estimation algorithms in real-time assessment
of noise w change and the system state changes.

Considering above condition UAV belong to a random process Dynamic Multiple
Model. As shown in the table for such a system can use several discrete levels
with merging or switching between them.

Thus we may consider the system, the current system is composed of a discrete
group (contains n models), which is remarked M = {M1, ..., Mn}. We assume that
each model is Mj, and we have a model corresponding prior probability u = P
{M}.switched from model i to model j, the probability in the next moment is
assumed to be known, and remarked Pij. This can be seen as a first order
Markov chain model mode conversion process, this type of system is commonly
referred to as Markovian switching systems. The best way to take advantage of
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this state of the plurality of filter to estimate a model system, we must require
every optimal filter records of all state sequence, In other words, the optimal filter
processing kin measurements, for n model requires recording n® message.
Therefore, in order to avoid such a doubling of the historical record storage, need
some approximation in the practical application of multiple model systems,
actually this is a suboptimal techniques.

A simple suboptimal techniques approach is record the maximum probability in n
histories, other information discarded and re-normalized probability, making them
add up to 1. Suboptimal techniques filtering problem is generalized Pseudo-
Bayesian (GPB) algorithm, Generalized Pseudo-Bayesian (GPB) approach
combines many historical model that "old" models. First Order '‘GPB, expressed
as GPB1, considering only the past time possible model. Second Order, GPB2,
considering all possible model past two moments. These two algorithms require r
and 2r filters operate respectively in parallel. (See Ref [6], [7])

The Interacting Multiple Model (IMM) estimator algorithm is a dynamic multiple
model estimator. The algorithm assumes that the system behaves according to
one of a finite number of models - it is in one of several modes (operating
regimes). The models can differ in noise levels or their structure - different state
dimensions and unknown inputs can be accommodated as well. Such system is
called a hybrid system - it has both discrete (structure/parameters) and
continuous uncertainties (additive noises). This algorithm is conceptually similar
to GPB2, but requires only r filters to operate in parallel (See Ref [8]) as Figure
4.1 shown frameworks.

. (i} 2 . (i) = (i) Py 2 lE) J,-lel ] j,-:1: =lE) j,-:u:
Ty i1 T2 Tziz T3)a Taa T 1)1 Ta)2 2|2 Tya aja

e \'/\/\ Model ! \ AN AN 4 \ A AN 7
Ve N7\
Model 2 . . Model 2 X AAA, \ \/\ AN AV
f XN (X f / NN,
Model 3 Model 3 / \\\ \ J \J/ \\‘

(a) GPB1 (b) GPB2
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(c) IMM

Figure 4.1 GPB1, GBP2 and IMM frameworks
Comparison of complexities of the MM algorithms.

Table 8 Compare different computation complexity with different algorithm

Static | GPB1 | GPB2 | IMM

Number of filters r r rl r

Number of combinations of r estimates and 1 1 r+1 r+1
covariances

Number of probability calculations r r r2+r r+r

In aresearch paper [9] [10], author publish the “steady-state” errors during non-
maneuvering obtained and the average errors during maneuver obtained by time
averaging by time averaging in Table 9 and Table 10.

Table 9 Average RMSEs during Non-Maneuvering

GPB1 GPB2 IMM
Position (m) 79.9 63.3 65.8
Velocity (m/s) 18.5 10.4 11.1

Table 10 Average Position & Velocity RMSEs during Maneuver

GPB1 GPB2 IMM
Position (m) 152.7 116.7 118.1
Velocity (m/s) 111.6 79.1 79.8
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In terms of position error the algorithms rank as follows: GPB2-best, IMM-middle,
and GPB1-worst.

An execution time testing are followed. The execution times for the algorithms
relative to the IMM are given in Table 11.

Table 11 Relative Execution Time

GPB1 GPB2 IMM

Execution Time 1.09 7.91 2.30
(s)

All'in this article, we use IMM estimator algorithm, to achieve complex DFUAV
Navigation System.

4.2.Design of IMM Filter

4.2.1. IMM Filter Process Framework

Processing of the IMM algorithm is shown in figure one. A mixing probabilities is
using moment matching to GPB2 Gaussian mixture models one method of
Approximation by a single Gaussian. Interaction of different models mixture with
weightings create the new x and P. Then use EKF state estimation of Interaction
x get anew, x and P. Used likelihood functions corresponding to the different filters,
Then using Bayesian total probability formula update each new measurement, and
the resulting weighting factors are used in calculating the state. Finally, for
Gaussian mixture models we can use mixture probability density function
combined the status of each model according to the model probabilities. We can

A

. k . . Sk .
get mixture mean Xl_mix and mixture covariance Pl_mix. One cycle of a practical

IMM algorithm consists of the following steps [11] [12] [13].
The IMM estimator have five process in one cycle. [12]
e Calculation of the mixing probabilities.

* Interaction/Mixing.
* Mode-matched filtering.
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* Mode probability update.
* Estimate and covariance combination.
The following section describes the specific core algorithms on IMM total of 4

models: Model Switch Algorithm, Interacting multiple model estimation, Mode-
matched filtering.

P Estimation
i Xi.P
Xlk-l = > KFl > X’\lk mix’lplkmix
# k-1
2 Mixing Mode Combination
Interacting Matched Estimate
ﬂlkl—zl Filters Diagnosis
~ ~ k
1 b —*J]
k-1 [ iz »
Xz k-1 KF2 i
Hapn
t
Mixi Aj‘ Model Transition
ixing el
. Likelihood Probability
Probabilities - - : : .
— Mixing Probabilities/Model Switch Algorithm <“— P

Figure 4.2 Block diagram for the IMM Algorithm

4.2.2. IMM Models Bank

In this case the mode the system is in can undergo switching in time. The state of
UAV System models are denoted as equation for different sensor subsets:

X(K) = F[M(K)]x(k =1 +G[M (K)]u(k=1)+w[k -1 M (K)]
2(k) = H M (K)]x(K) +v[K, M (K)]

where X € R™ s the system state vector, Z¢€ R™ is the measurement vector,

ueR™ and

veR™ are mutually independent, white zero mean Gaussian noises with normal
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distribution N(O, &%) . The parameter M (k) presents the current system model.

F is the system dynamic matrix, and H is the measuring matrix. Because the
current system model is unknown, the system is described by possible n modes.

M (k) e{Mm,}’

j=1
So the discrete model at one time can denote as:
x(k)= F[M; [x(k-1)+G[M Ju(k-1)+w[k-1 M|

2(k)=H [ M [x(k)+v[k,M,] (1)
The system noise is W[k—l, MJNNW@J-,QJ-),

The measurement noise is V[k, Mj] ~N, (ﬂj,Qj)
The Ith mode history - or sequence of models - through time k is denoted as

MY = (M, M, 1=1...,n"
11 k|
where i, , is the model index at time k from history | and

1<i, <n k=1....k

It is assumed that the system mode (model) switching is a Homogeneity Markov

Chain. The p,; is transition probabilities

Py 2 PM (k) =M, M (k-1)=M,}

where > p;; =1 i=12..., n )
j=1

4.2.3. Calculate the Mixing Probabilities

The mixing probability pﬁ;l for mode m; was effect at time k-1 given that m; is in effect at time

. k-1 .
k conditioned on Z is
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it =P{m (k=1)|m; (k), z**}
_ pj|i:u;<4
D Pk
i=1

n
where EJ- = z p;i p;('l is the predicted mode probabilities and n different modes.
j=1

4.2.4. Calculate the Mixed Initial Condition

A mixing probabilities is using moment matching to GPB2 Gaussian mixture
models approach an Approximation by a single Gaussian (See Ref [14]).

Interaction to the different models mixture with weightings ;" create new g

k-1
end P, .

Minute probability density function:
P(X):Z;M‘N(X; %,,P))
J:

A

. . . . k-1 . .
Starting with previous state estimates %, and PJ- previous covariance

matrices obtained as output from the n different Kalman filters (acting as the n
different modes).

Mixed initial condition for the filter m; at time k is:

n

ok-1 ok-1 k-1 H

X; :E X My J=1...,n
i=1

F’}jk—l _ iznl:/uikjl { Pik—l N I:)fzik—l _ k?—l][ﬁik—l B )A(;H]T } j=1....n

4.2.5. Mode-Matched Filtering and Likelihood Function

Kalman filter is used to estimate the state for each model as call mode-matched filtering, it is

)z_kfl lf,k—l Ak
an important part of IMM algorithm, which can be estimated "% " and” ! . A basic
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assumption of the Kalman filter is to measure noise and process noise is Gaussian distribution
and uncorrelated. Eight Kalman filter equations can be divided into two parts, forecasts and

updates. Prediction section includes former two equations and updated part by the 3 to 8
equation. [14]

Step Kalman filter is as follows:

Predict:

Xkl k-1 = Fk Xkl k-1 + BkUk Predicted (a priori) state estimate

P =FP R +Q Predicted (a priori) estimate covariance
Update:

Y, =2, —H, X« ka Innovation or measurement residual

S, =HP, H{ +R, Innovation (or residual) covariance

K¢ =R, ,H S Optimal Kalman gain

Xkl k = Xkl k-1 + Kk Yy Updated (a posteriori) state estimate

P = —KH)R Updated (a posteriori) estimate covariance

Y., S.arethe innovation process and its covariance matrix; K, the Kalman filter
gain.
Y., S.arethe innovation process and its covariance matrix; K, the Kalman filter

gain.
The likelihood functions for filter j is as follows:

Al = N(yi;O;Sk")
(vi) ¥

_ 1 e7 2s)

\J27S)

Where y; =2,-1,,, isthe innovation for filter jand S/ is the covariance

matrix associated with 'y,
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4.2.6. Update Model Probability

1 =k C k  =k-1

k k k-1 —

uj:EAj-pj where c—_ElAj-pj
J=

4.2.7. Combine Model- Conditioned Estimates and Covariance

A Gaussian mixture model is a weighted sum of n component Gaussian densities
as given by the equation,

P(X)ijn_l:WJN(X; %.P)
Mean of a mixture:
RS Ryt j=1...n
i
Covariance of a mixture:
ﬁjkzgﬂjk{ak1+[ﬁ§-mﬁ§][k§—mk§ﬂ j=1...n

A

. " . . k
where Current state estimates ¥, "%; Current mixture state matrices, and P,

Current covariance matrices.
4.2.8. Fault Diagnose

A threshold was set upped to detect each model probability. The Identification
can screen out fault sensor signal.

if 224 <threshold value, f=1,where f* is faultsignal for each sensor.

Threshold was set to 2% in the simulation.

46



4.3. IMM Model Organized

IMM model select Robustness and computational complexity, which can directly
affects the Fault Tolerant and Diagnosis of Navigation System. To minimize
complexity system states and number of model, using 2 + 2 model structure 2
mixture estimates 2 autoregressive estimates, this paper uses 4 blocks of
measurement mechanisms, Inertial Navigation System position information
combination, aircraft dynamics model information combination and two GPS
forecasting mode. These 4 blocks completely separate independent use 2 GPS
measurement information and sensor information, this will maximum provide
each other reference basis for the error diagnostics.

Velocity
Actuator Sensor ——; .
bosit INS Failure
. osition N . .
GPS Mixture ——— Estimation & Diagnosis
Acceleration
INS — GPS Failure
Velocity — _ .
Actuator Sensor ————p Estimation & Diagnosis
INS Velocity
» .
- Actuator Failure
GPS Mixture Position,| Estimation & Diagnosis

Figure 4.3 IMM Model organized structure
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4.4. Simulation and Results

In the DFUAV, there are five actuator sensor, two GPS, one IMU model that
sensors have organized at four sensor model, all individual sensor failures were
detected and properly identified. The failure scenario consists of a front rotation
speed sensor failure [60sec - 100sec] and GPS 1 Signal Lost [40sec-80sec].
Both failures were properly detected and identified (see Figure 8) and the Fault
Tolerant and Diagnosis of Navigation System was able to correct those error.

GPS Position Signal
" . ! ! ! !

Pasition(m)

d
20 40 60 80 100 120 140 160 180 200
Time(s)

Engine Speed Signal

10000
3000 : : ; IS P e ——E— e Ve .
8000 : : : NIEENE FEE T, s _
i s R R
O NN S S S SO & S— RS S S —
E 000 Engine 1 RPM [
74 4000 Engine 2 RPM | . _|

: : : : Engine 3 RPM

3000 ] : I CETTEEEPPEEE SRR PR e |
2000 : : : SN SR — SRS S— -
ot 5 SN TN SO U N
| S O 0 N ST 5 0 et R S -
0 20 40 60 80 100 120 140 160 180 200

Time(s)

Figure 4.4 Speed sensor failures and GPS 1 signal lost describes
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The actuator sensor model probability have change to near zero. (see Figure 9).

Model Probability
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M2 Likelihood |
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| | |
0 20 40 60 80 100 120 140 160 180 200

Figure 4.5 Fault-Tolerance Processing when sensor failures

The actuator sensor model probability have change to near zero. (see Figure 10).
To minimize complexity system states and number of model, using 2 + 2 model
structure. Inertial Navigation System position information combination, aircraft
dynamics model information combination using the GPS signal to comparison
and recognition in Fault Tolerant and Diagnosis of Navigation System. If the GPS
signal is lost, it will lost information to refer and contrast, so diagnosis system will
consider Inertial Navigation System position information combination and aircraft

49



dynamics model information combination may be incorrect, we can call

Diagnosis Mix.
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Figure 4.6 Diagnosis information

Fault Tolerant and Diagnosis of Navigation System is different whit other systems
before. We using 2 + 2 model structure, which can still maintain a good track
performance and stability in the case of multi-sensor failure (see Figure 11). To
minimize complexity system. Although there will be problems Diagnosis Mix, but
did not affect the correct assessment of the Navigation System. We used root-
mean-square error (RMSE) analyzed the results of the assessment in the Fault
state still maintained high accuracy and stability (see Figure 12).
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Figure 4.7 IMM filter estimation, Dotted line show actual signal

51



0.8

mis

0.6

0.4

0z

Position RMSE

T T T T T T T T
: g : : g Pusition RMSE x
P SO e .............................................. Position RMSE y H
: Position RMSE z
i I I i i i I I
] 20 40 [=in] 80 100 120 140 160 180 200
Timels)
Welocity RMSE
T T T T T T T T
: : : g ; Yelocity RMSE x
A A A A A A A A AL A A A A Yelocity RMEE y H
Welocity RMSE z
I i i \
i} 20 40 B0 80 100 120 140 160 180 200
Time(s)

Figure 4.8 IMM filter position and velocity RMSE

Used RMSE statistical method to verify FTDF navigation system statistical

characteristic. In the actual verification results show that the system in Normal

state and Fault state RMSE respectively, namely, the system is stability and
robustness, as shown Table 12:

Table 12 Compare RMSE in different state

RMSE X Y Z State
.. Normal state 0.25034 0.228327 | 0.456877
Position _
Speed sensor failures [40sec-80sec]
(m) Fault state 0.25049 | 0.228406 | 0.456635
GPS 1 signal lost [60sec-100sec]
. Normal state 0.015272 | 0.01487 0.029752
Velocity :
Speed sensor failures [40sec-80sec]
(m/s) Fault state 0.015275 | 0.01488 | 0.02978
GPS 1 signal lost [60sec-100sec]
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5. Hardware Demo

5.1. Description of Hardware
IMM Navigation system hardware is require high reliability. The system structure have a

Triaxial Inertial Sensor with Magnetometer Module, a barometric pressure sensor, two GPSs
and 1G Flash NAND ROM, an ARM Cortex M4 processor. The functional block diagram

show in figure 5.1.
GPS1 GPS2
y

ARM Cortex M4 1G NAND

Processor ROM

Barometric

Pressure

Sensor

I I
3.3V LDO Aoy S5V DC/DC Loy 11.1V Battery

Figure 5.1 VTOL UAV Electronic System Functional Block Diagram

A lot of sensor are integrated lead to electromagnetic interference (EMI) is strangely. So the
headwear filter and separate power supply have to consider in the electronic system
schematic. EMI design, various interfaces are using double clock backup work, and the
design is very compact. To ensure the reliability of the navigation also can reduce weight
again. The navigation system are designed on a card about the size of PCB. The PCB show
in Figure 5.2.
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Figure 5.2 Navigation Computer

IMM navigation system was tested with a car in real environment. Consider the
car cannot supply dynamic information as RPM of wheel, turn and throttle, so to
car system dynamic model was canceled. Only use three model to estimate

position. The structure show in Figure 5.3

IMU Data

GPS1

Data —
PDOP —

GPS2

Data —
PDOP —

Mix GPSs

32Hz

IMM

\ 4

\ 4

10Hz

32Hz  Etimation

\ 4

Figure 5.3 Car Navigation System Structure
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5.2. Results

For testing condition are made as table 13

Table 13 Testing Condition
Testing situation Barometric

Pressure Sensor

GPSs Signal lost  GPS1 lost 60 GPS2 lost 60

Sec Sec
Car steep turn Effect for angle
with lateral
acceleration
Accelerate and Effect for angle
Decelerate with
acceleration
Long runs Barometric Pressure

Sensor bias

Effect for angle with lateral acceleration shown in Figure 5.4, when the pdf larger
than the threshold value GD correction signal will be turn off.
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Figure 5.4 Pitch, Roll and Yaw Data from GD Filter

A simple GPB one filter was used mixture multiple GPSs signal into one output.
W eight of mix depend on depend on each GPS PDOP, the figure 5.4 show GPSs
PDOP likelihood and GPS switch process.
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6. Conclusion

Nonlinear dynamics model and multi-sensor fusion of DFUAV determine the use of a system
with Fault Tolerant and Diagnosis and Diagnosis robust navigation to realize evaluation to
attitude and position of the aircraft. This paper focus on a FTD position system building process,
including modeling model set, realize IMM fault detection, IMM model organized and verify
process stability and robustness of the system. Modeling model set is to establish the
corresponding mathematical model for different sensor, including dynamics model and noise
model. By system identification methods and statistical variance (Allan variance) identify linear
model parameters and noise parameter, using partial differential to nonlinear model to get

Jacobian Matrix each state.

Realize IMM fault detection, to build the interacting multiple model (IMM) filter for Fault Tolerant
and Diagnosis. IMM filter is an adaptive filter. It can automatically remove the impact of fault
sensor state assessment on the system. In addition, using threshold to evaluate each model
probability to identify the Fault sensor, provide to the controller for multi-model control switch,

enable DFUAYV can still normal flight when part of the sensor is damaged.

IMM model organize using 2 + 2 model structure and 2 mixture estimates 2 autoregressive
estimates, this paper uses 4 blocks of measurement mechanisms: Inertial Navigation System
position information combination, aircraft dynamics model information combination and 2
prediction Model. These 4 blocks completely separate independent use 2 GPS measurement

information and sensor information to minimize complexity system states and number of model.

To verify system stability and robustness, the processing has include software simulation and
hardware verification. Mainly on account of the system response in case of occurrence which
is sensor failed. Used RMSE statistical method to verify FTDF navigation system statistical
characteristic. In the actual verification results show that the system in Normal state and Fault

state RMSE respectively, namely, the system is stability and robustness, as shown Table 14:

Table 14 Compare RMSE in different state
RMSE X Y z State

Position (m) | Normal state | 0.25034 | 0.228327 | 0.456877

59



Speed sensor failures [40sec-80sec]

Fault state | 0.25049 | 0.228406 | 0.456635
GPS 1 signal lost [60sec-100sec]
: Normal state | 0.015272 | 0.01487 | 0.029752
Velocity
(m/s) Fault state | 0.015275 | 0.01488 | 0.02978 | Speedsensorfailures [40sec-80sec]

GPS 1 signal lost [60sec-100sec]

6.1. Recommended Further work

*  Continue to optimize dynamic model and navigation system noise model by more

testing.

e GD Filter will be improve by Conjugate Gradient Method or Levenberg—Marquardt

Algorithm

* Todesign a Multi-Model Optimal Controller (MMOC) cooperate with IMM Filter.
* Rebuild Ducted Fan UAV structure base on Air dynamics research.
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