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Abstract

Computational methods for the investigation of drop deformation, drop breakup and

drop solidification are developed and implemented in the open source computing en-

vironment OpenFOAM® [63]. The goal of this research is to simulate these drop

phenomena by resolving all the relevant time and length scales in order to obtain

correlations and statistical information which then can be used in the modeling of

dispersed multiphase flows such as sprays. The use of such models is central for the

simulation of dispersed multiphase flows because present-day computational technol-

ogy does not have the capacity to resolve millions of droplets, as is typically encoun-

tered in sprays.

There are three aspects to this thesis. Three types of simulations are performed. First,

the two-phase flow solver, interFoam, is modified to allow for simulating a moving

droplet in an external airflow within a fixed computational domain. The modified

solver is then used for the modeling and simulation of deformation and breakup of

drops in axisymmetric and three dimensional symmetric flows, and the results are

utilized to validate drop deformation and breakup theories, and to derive statistical

information for the product drop size distributions in the various flow regimes. The

Taylor Analogy Breakup (TAB) model has been modified, and this modified TAB

model is also presented and validated.

xxxv



Second, the feasibility and accuracy of calculating convective heat transfer coefficients

using CFD is studied for two test cases: the flow between parallel flat plates and the

flow past a cylinder. The feasibility and accuracy is demonstrated and achieved by

comparing the results with the literature.

Third, for the investigation of the solidification of drops, an enhanced enthalpy-

porosity model [6] is presented and implemented into OpenFOAM® to form a

new solver, modPolyMeltFoam. Two test cases are used to validate the model

and its implementation: the pure natural convection of water in a cavity and

the solidification of water in a cavity. These tests show that the code performs

very well comparing with results from the literature. The code is then coupled

with the conjugate heat transfer solver, chtMultiRegionFoam, to create the solver

modFluidFluidChtMultiRegionFoam which is able to simulate a stationary water

droplet solidifying in a cold airflow. The results of the solidification studies are used

to obtain correlations for the convective heat transfer coefficients, which in turn can

be utilized in the modeling of freezing sprays where the solidification of millions of

droplets needs to be described.
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Chapter 1

Introduction

1.1 Background

Two-phase flows occur in many industrial and manufacturing applications, includ-

ing spray-related applications, the formation of polymer blends and the creation of

emulsions. In these applications, it is desirable to disperse one fluid in another, ei-

ther to increase the rate of heat and mass transfer, or to form an emulsion with

specific properties. This thesis focuses on sprays. One of the difficulties of simu-

lating sprays is that one cannot resolve the length and time scales sufficiently due

to the exceptionally high computational costs. However, modeling can be used to

overcome this difficulty. Information needed for spray modeling can be provided by

1



using CFD. Specifically, in this thesis drop deformation and breakup is investigated

to gain insight into the breakup mechanisms and to obtain statistical information on

the product drop size distributions. Also, in order to obtain correlations used in the

modeling of heat transfer in freezing sprays, solidification processes are simulated by

resolving all the relevant length and time scales.

One method for spray freezing (also called spray chilling or prilling) processes is by

contacting with a cold gas. It involves several mechanisms: (i) the deformation and

breakup of individual droplets, (ii) the heat transfer between gas and droplets, and

(iii) the solidification under natural convection inside droplets in a cold airflow.

There are three parts to this research. Background of these three parts is given in

the following three subsections.

1.1.1 Droplet Deformation and Breakup

In sprays, droplet deformation and breakup play an important role in increasing the

liquid-gas interface area and, consequently, in the enhancement of heat and mass

transfer between the liquid and the surrounding gas. One of the difficulties of simu-

lating sprays is that one cannot resolve the length and time scales sufficiently due to

the exceptionally high computational costs. To overcome this difficulty, there are sev-

eral drop breakup models in use, including the TAB model of O’Rourke and Amsden

2



[64], the Surface Wave Instability Atomization (Wave) model of Reitz [71], the Drop

Deformation and Breakup (DDB) model of Ibrahim et al. [40], the Enhanced TAB

(ETAB) model of Tanner [82], Tanner and Weisser [85] and its improved Cascade

Atomization and Drop Breakup (CAB) model of Tanner [83].

Drop breakup of liquid-in-gas systems is categorized into four regimes, based on exper-

imental observations, as reported by Guildenbecher et al. [30]. When the Ohnesorge

number (Oh) is small, i.e., Oh < 0.1, the effects of drop viscosity can be neglected and

the breakup depends only on the Weber number (We) of the droplets. The Ohnesorge

number and the Weber number are defined as Oh = µ/
√
ρσD, We = ρv2D/σ, where

µ is the drop dynamic viscosity, ρ is the drop density, σ is the surface tension, D is

the characteristic length (typically the drop diameter), and v is the relative velocity

between the drop and the surrounding air. For smaller Weber numbers (We < 11),

breakup does not occur and only deformation takes place. For larger Weber numbers,

drop breakup takes place in the following four breakup regimes: the bag breakup,

11 < We < 35; the stamen breakup, 35 < We < 80; the sheet-thinning/stripping

breakup, 80 < We < 350; and the catastrophic breakup, We > 350.

Computer simulations are an effective tool for the investigation of the dynamics of

drop deformation and the mechanisms of drop breakup in different regimes. Various

researchers have simulated the drop deformation and breakup numerically. Zaleski

et al. [96] simulated the deformation and breakup of two dimensional drops. Their
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simulations were able to capture details of the nonlinear interaction between the de-

forming droplets and the vortical structures in the droplets’ wake. Meng and Colonius

[55] performed two dimensional symmetric simulations of breakup of water cylinders

in the flow behind normal shocks. They found the existence of recirculation regions

and an upstream jet in the wake. The steady motion of deformable axisymmetric

drops was simulated by Dandy and Leal [15] at several Reynolds and Weber numbers

using finite difference methods. These investigations showed that at smaller Reynolds

numbers the shape of the drop tends toward a spherical cap, but at larger Reynolds

numbers the drop becomes more disk shaped. Bozzi et al. [9] used finite element

methods to simulate the steady motion of axisymmetric drops. One of their findings

was that external recirculation zones can be attached to or disjoint from the drop,

depending on the Reynolds number. Liang et al. [50] presented simulations of axisym-

metric drop breakups using the volume of fluid (VOF) method for a limited number

of cases. Their results showed fair qualitative agreement with experiments and theo-

retical correlations in terms of the droplet shape, breakup time, and drag coefficients.

Han and Tryggvason [32] presented simulations of axisymmetric drop breakups due

to acceleration by a constant body force. Their numerical results are summarized by

“breakup maps” where the different breakup modes are shown in the Eötvös number-

Ohnesorge number (Eo-Oh) diagram for different values of the viscosity and the

density ratios. Later, the same authors, Han and Tryggvason [33], presented simula-

tions of axisymmetric drop breakups caused by impulsive acceleration using the finite
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difference front tracking method. Their results are summarized by “breakup maps”

where the different breakup modes are shown in the Weber number-Reynolds number

(We-Re) diagram for different values of the density ratios.

In the DDB, TAB, ETAB and CAB models, the drop deformation and onset of

breakup are predicted using the Taylor Oscillator. Various modifications to the Taylor

Oscillator have been made by several researchers, and the modified models have been

tested by simulating sprays. Liu et al. [52] accounted for the effects of drop distortion

and oscillation due to the relative motion between the drop and the gas, and let the

drag coefficient vary between a rigid sphere (no distortion) and a disk (maximum

distortion). They tested the modified drop drag model with the TAB and the WAVE

model to obtain improved predictions of diesel sprays. Experiments investigating the

microscopic structure of the drop breakup process have been conducted by Hwang

et al. [39], and the results show that the drop flattening significantly affects the drop’s

drag coefficient. They found that the drop trajectories could be modeled adequately

using a modified dynamic drag model that accounts for drop distortion. Liu and

Reitz [53] used a dynamic drag model that is a modified version of the DDB model

and accounts for the increase of both the drop’s frontal area and its drag coefficient,

as a function of its distortion. They analyzed the drop trajectory and its distortion

during the initial stage of the drop breakup process.

Investigations have also been conducted to model product drop size distribution after
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drop breakup. One method for modeling drop size distributions is empirical. A simple

mathematical expression is chosen that fits the data collected for a range of atomizers,

resulting in various distributions including Rosin-Rammler [73], Nukiyama-Tanasawa

[61], log-normal, root-normal [86], log-hyperbolic [94]. However, with an empirical

approach it is difficult to extrapolate the data to regimes outside the experimental

range [4]. An alternative to the empirical approach is the maximum entropy (ME)

method, pioneered by Sellens and Brzustowski [75] and Li and Tankino [49], which

determines the most likely drop size distribution as the one that maximizes an entropy

function under a set of physical constraints [4, 20]. A drawback of the ME method

is its low convergence rate [47]. Another alternative to the empirical approach is the

Discrete Probability Function (DPF) method, developed by Sivathanu and Gore [76],

which divides the spray formation process into deterministic and non-deterministic

portions by assuming that the spray formation involves a series of breakup stages

where a fluid mechanics instability analysis can be used. The DPF method was

first applied to modeling drop size distributions in Newtonian sprays by Sovani et al.

[78, 79]. The DPF method has not been validated extensively due to the difficulties of

obtaining experimental data. In addition, the DPF method requires the probability

density function (PDF) of the fluctuating initial conditions as input, which can be

provided by methods of Computational Fluid Dynamics (CFD) [4].
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1.1.2 Convective Heat Transfer Coefficient Calculation

Convective heat transfer coefficients (CHTCs) are required in practically all heat

transport calculations and they depend on material and flow properties. CHTCs are

generally not easily calculated analytically and are difficult to derive from experi-

mental measurements. More often, they are determined using empirical correlations

based on measurements of different geometry and flows with great costs. Recently,

CFD was used to determine CHTCs on building surfaces [8, 16]. An advantage of this

technique is that detailed information on the thermal flow field is available. CFD can

be used to predict CHTCs, but the model must always be validated with experimental

data in order to verify the accuracy of the solution.

1.1.3 Solidification under Natural Convection

Melting and Solidification are phase change processes in which a moving boundary

separates the two phases. They are of importance in a lot of practical applications

including purification of metals, welding and many other technologies. Phase change

with pure heat conduction is rarely encountered in the real world. A phase change

process is necessarily associated with temperature and/or concentration gradients in

the liquid phase where convection arises under the action of buoyancy forces due to
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these gradients. The convection flow can have a very significant influence on the

phase change process. A number of researchers [11, 36, 69, 81] have reported that the

convection affects not only the rate of melting or solidification but also the resulting

structure and distribution of the solutes in the liquid phase of a multicomponent

system.

Mathematical models for solving phase change with natural convection can be divided

into two categories, the multi-domain formulation (transformed grid method) and the

single-domain formulation (fixed grid method). In the multi-domain formulation, the

governing equations are solved in each phase domain separately [24, 31, 90]. This

approach requires a continuous update of the two domains due to the time dependent

interface position. In the single-domain formulation, the governing equations are

solved in the entire physical domain [68, 74, 91]. The main advantage of this approach

is that the interface is not explicitly computed and the energy balance condition is

automatically satisfied at the interface.

1.2 Contributions of this Thesis

This thesis makes several contributions to the field of Computational Multi-phase

Flows. The major contributions are:
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1. The two-phase incompressible flow solver, interFoam, has been modified to form

a new solver, interSEAFoam. This new solver is based on the Shifted Eulerian

Adaption (SEA) method to keep the droplet within the fixed computational

domain.

2. The solver interSEAFoam was used to investigate the:

(a) Deformation and breakup of drops in axisymmetric flows.

(b) Deformation and breakup of drops in three dimensional symmetric flows.

3. The Taylor Analogy Breakup (TAB) model has been modified to account for

the change in the cross-sectional area of the drop to predict the drop defor-

mation more accurately. Numerical results from a drop in axisymmetric flows

are compared with the TAB and the modified TAB models, and show better

agreement with the modified TAB model. The types of breakup are found to

be in good qualitative agreement with experimental observations.

4. Numerical simulations of three dimensional symmetric flows at different Weber

numbers corresponding to different breakup regimes agree with experimental

observations. The product drop size distribution of each breakup regime is

quantified and is found to be consistent with experimental observations. This

statistical information can be used to develop and improve spray models.

5. The feasibility and accuracy of calculating convective heat transfer coefficients

using CFD was tested in two cases:

9



(a) Calculation of convective heat transfer coefficients along parallel flat plates

in the laminar flow regime with imposed constant heat flux and with im-

posed constant wall temperature.

(b) Calculation of convective heat transfer coefficients along a cylinder wall in

the laminar flow regime with imposed constant heat flux and with imposed

constant wall temperature.

Comparisons of the results with reference values from the literature show good

accuracy and performance of calculating convective heat transfer coefficients

using CFD.

6. An enhanced enthalpy-porosity model [6] has been implemented into

OpenFOAM® to form a new solver, modPolyMeltFoam. This enhanced

enthalpy-porosity model takes different thermophysical properties of solid and

liquid phases into account. The code was tested for two cases:

(a) Pure natural convection of water in a cavity.

(b) Solidification of water in a cavity.

The performance of the code was evaluated on these two test cases. Comparisons

with results from the literature show good agreement.

7. The chtMultiRegionFoam solver in OpenFOAM® has been modified to form

a new solver, modFluidFluidChtMultiRegionFoam, to simulate a water drop

solidifying in a cold airflow. Specifically, the part of the code for the fluid in the
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original chtMultiRegionFoam is replaced by icoFoam coupled with the temper-

ature equation, while the code for the solid in the original chtMultiRegionFoam

is replaced by modPolyMeltFoam.

The codes are documented in the appendix.
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Chapter 2

Computational Fluid Dynamics

and Numerical Methods

Computational fluid dynamics (CFD) uses numerical methods to solve the funda-

mental nonlinear differential equations that describe fluid flows. There are many

advantages of employing CFD, e.g., 1) CFD provides insight into flow mechanisms

which are difficult to get from experiments; 2) CFD reduces time and costs greatly in

new designs compared to experiments; 3) CFD makes it possible to analyze problems

whose experiments are very difficult or dangerous to carry out; 4) CFD offers the

possibility of studying systems under conditions over its limits.

Fluid flow is typically caused by external forces. These driving forces consist of surface
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forces and body forces. Surface forces include viscous force, surface tension, etc. while

body forces include gravity, aerodynamic drag, buoyancy force, etc.

2.1 Conservation Principles

In fluid dynamics, the general form of convection-diffusion equation in the Eulerian

frame of reference takes the form

∂(ρφ)

∂t︸ ︷︷ ︸
temporal derivative

+ ∇ · (ρvφ)︸ ︷︷ ︸
convection term

= ∇ · (ρΓφ∇φ)︸ ︷︷ ︸
diffusion term

+ qφ(φ)︸ ︷︷ ︸
source term

, (2.1)

where φ is a general property and Γφ is the diffusion coefficient. Taking φ = 1 in

Eq. (2.1) leads to the equation for conservation of mass. Taking φ = v in Eq. (2.1)

leads to the equation for conservation of momentum. Taking φ = e in Eq. (2.1) leads

to the equation of conservation of energy.
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2.2 Numerical Methods

2.2.1 Finite Volume Method

The finite volume method (FVM) is a method for approximating partial differential

equations in the form of algebraic equations [48]. In the FVM, the computational

domain is divided into a finite number of non-overlapping control volumes (CVs)

which completely cover the computational domain. The governing equations are

integrated on each CV to get the integral form of the equations. The description of

the FVM below follows in part that given in the thesis of Jasak [42].

Each control volume, except the ones adjacent to the boundaries, of a computational

domain is a convex polytope bounded by a set of flat faces and each face is shared

with only one neighboring control volume. For a CV, suppose VP is the volume of the

CV, P is a computational point at the centroid of the CV, f is a computational point

at the center of a face, Sf is the area of the face, nf is the outward unit normal vector

to the face, N is a computational point of a neighboring CV, df is the displacement

vector between P and N , and rP is the displacement vector between the origin and

P .

The coordinates of the centroid of the CV and the center of a face, xP and xf , are
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given by ∫
VP

(x− xP ) dV = 0, (2.2)

∫
f

(x− xf ) dS = 0. (2.3)

The key step of the FVM is the integration of Eq. (2.1) over a CV yielding

∫
VP

∂(ρφ)

∂t
dV +

∫
VP

∇ · (ρvφ) dV =

∫
VP

∇ · (ρΓφ∇φ) dV +

∫
VP

qφ(φ) dV. (2.4)

After applying the Gauss divergence theorem, Eq. (2.4) becomes

∫
VP

∂(ρφ)

∂t
dV +

∫
∂VP

n · (ρvφ) dS =

∫
∂VP

n · (ρΓφ∇φ) dS +

∫
VP

qφ(φ) dV, (2.5)

where n is the outward unit normal vector to the face. Integrating Eq. (2.5) with

respect to time t over a small interval yields

∫ t+∆t

t

[∫
VP

∂(ρφ)

∂t
dV +

∫
∂VP

n · (ρvφ) dS −
∫
∂VP

n · (ρΓφ∇φ) dS

]
dt

=

∫ t+∆t

t

∫
VP

qφ(φ) dV dt. (2.6)

In the FVM, φ is assumed to have a linear variation both in space and time around

the computational point P . This gives a second-order discretization method in space

and time, which is accurate since Eq. (2.6) is a second-order integral equation. The
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linear variations of φ are given by

φ(x) = φP + (x− xP ) · (∇φ)P , (2.7)

φ(t+ ∆t) = φo + ∆t

(
∂φ

∂t

)o
, (2.8)

where φP = φ(xP ), (∇φ)P = ∇φ(xP ), φo = φ(t) and
(
∂φ
∂t

)o
= ∂φ

∂t
(t).

The discretization methods in space and time are discussed next.

2.2.1.1 Discretization of Convection Term

Each CV is bounded by a number of faces, so the surface integral can be written as

∫
∂VP

(ρvφ · n) dS =
∑
f

(∫
f

(ρvφ · nf ) dS
)
. (2.9)

Applying the assumption of linear variation of φ around the point f , the term ρvφ

in Eq. (2.9) can be written as

ρvφ(x) = (ρvφ)f + (x− xf ) · (∇(ρvφ))f . (2.10)
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Therefore, the integral inside the sum in Eq. (2.9) is approximated as

∫
f

(ρvφ · nf ) dS = (ρvφ)f ·
∫
f

nf dS + (∇(ρvφ))f :

∫
f

(x− xf )nf dS, (2.11)

where : is the double dot product between two tensors. Assuming nf is constant on

face f , i.e., the face is a planar surface, and using Eq. (2.3), Eq. (2.9) becomes

∫
∂VP

(ρvφ · n) dS =
∑
f

(ρvφ)f · S

=
∑
f

S · (ρv)fφf

=
∑
f

Fφf , (2.12)

where S =
∫
f
nf dS is the area vector, and F = S · (ρv)f is the convective mass flux

through the face f . ρ, v and φ are found at the face f by interpolating from the

values at the centroids. In the basic approach, a variate of interpolation schemes can

be used for the convection term (see [62] for details). A weighted average is used to

calculate ρ, v and φ at the face f as

ρf = bfρP + (1− bf )ρN , (2.13)

vf = bfvP + (1− bf )vN , (2.14)

φf = bfφP + (1− bf )φN , (2.15)
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There are several methods to compute the weight factor bf . The most common ones

are given below.

1. Central Differencing (CD)

The weight factor, bf , in Eq. (2.13) - (2.15) is defined as

bf =
fN

PN
, (2.16)

where fN is the distance between the face and the centroid point N in the

neighbouring CV, PN is the distance between the centroid point P in the CV

and the centroid point N in the neighbouring CV. This method is second-order

accurate but sometimes makes the solution unbounded, i.e., φ can take values

outside its physically meaningful range. More details are found in Chapter 14

of Hoffmanand and Frankel [38] and Chapter 4 of Wesseling [92].

2. Full Upwind Differencing (UD)

The weight factor, bf , in Eq. (2.13) - (2.15) is defined as

bf =


1, if F ≥ 0

0, if F < 0

(2.17)

where F = S · (ρv)f is the flux. The value of bf in this method depends on

the flux direction, therefore the solution is bounded and the method is stable.
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However, this method is only first-order accurate because it uses the first-order

backward differencing. More details are found in [42].

3. Blended Differencing (BD)

This method is a combination of the CD and the UD, and it is defined as

φf = (1− kf )(φf )UD + kf (φf )CD, (2.18)

where (φf )UD is the value from the UD, (φf )CD is the value from the CD, and kf

is a blending factor between 0 and 1. The blending factor kf controls how much

numerical diffusion will be introduced. This method is developed to preserve

the accuracy and the boundedness. More details are found in [42].

2.2.1.2 Discretization of Diffusion Term

By using a similar approach as above, the diffusion term is discretized as

∫
∂VP

(ρΓφ∇φ) · n dS =
∑
f

(ρΓφ∇φ)f · S

=
∑
f

(ρΓφ)fS · (∇φ)f . (2.19)
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If the computational mesh is orthogonal, i.e., vectors d and S shown in Fig. 2.1 are

parallel, then the estimation for S · (∇φ)f can be defined as

S · (∇φ)f = |S|φN − φP|d| . (2.20)

NP f
d

S

Figure 2.1: Vectors S and d on a non-orthogonal mesh.

If the computational mesh is non-orthogonal, i.e., vectors d and S shown in Fig. 2.1

are not parallel, then the estimation for S · (∇φ)f can be defined as

S · (∇φ)f = ∆ · (∇φ)f︸ ︷︷ ︸
orthogonal contribution

+ K · (∇φ)f︸ ︷︷ ︸
non-orthogonal contribution

, (2.21)

where ∆ is parallel to the vector d, and S = ∆+K. The orthogonal contribution can

be approximated by the estimation in Eq. (2.20), and the non-orthogonal contribution

can be approximated by estimating (∇φ)f using the weighted average as

(∇φ)f = bf (∇φ)P + (1− bf )(∇φ)N , (2.22)
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where bf is defined in Eq. (2.16) and (∇φ)P can be approximated using the second-

order approximation to the Gauss divergence theorem as

∫
VP

∇φ dV =

∫
∂VP

φ · n dS, (2.23)

(∇φ)PVP =
∑
f

(∫
f

φ · nf dS
)
, (2.24)

(∇φ)P =
1

VP

∑
f

Sφf . (2.25)

There are several ways to find the vectors ∆ and K. Two common approaches are

given below.

1. Minimum Correction Approach

K is chosen to be orthogonal to the vector ∆, as shown in Fig. 2.2, to keep the

non-orthogonal contribution as small as possible. ∆ can be written as

∆ =
d · S
d · dd. (2.26)

∆ is the orthogonal projection of S onto d, so that K has the minimal distance

between S and d.

2. Over-relaxed Approach

∆ is defined as

∆ =
S · S
d · Sd. (2.27)
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d

S

K

∆
P f N

Figure 2.2: Vectors ∆ and K in the minimum correction approach.

Substituting Eq. (2.27) in Eq. (2.21) yields

S · (∇φ)f = |∆|φN − φP|d| + K · (∇φ)f , (2.28)

where φN−φP
|d| is the magnitude of the orthogonal projection of (∇φ)f onto ∆.

From Eq. (2.27), |∆| increases with the increase of non-orthogonality (decrease

of the denominator), which indicates that the importance of the term in φP and

φN is caused to increase with increase of non-orthogonality. The decomposition

of S is shown in Fig. 2.3. More details are found in [42].

d

S

K

∆
P f N

Figure 2.3: Vectors ∆ and K in the over-relaxed approach.
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2.2.1.3 Discretization of Source Term

The source terms are the terms that cannot be written as temporal contribution,

convection, or diffusion. These terms need to be linearized as

qφ(φ) = qu + qPφ, (2.29)

where qu and qP can also depend on φ. The integral form of the source term can be

approximated as

∫
V

qφ(φ) dV = (qu + qPφ)PVP

= quVP + qPVPφP . (2.30)

2.2.1.4 Temporal Discretization

Applying the above spatial discretization methods, Eq. (2.6) can be written as

∫ t+∆t

t

[(
∂(ρφ)

∂t

)
P

VP +
∑
f

Fφf −
∑
f

(ρΓφ)fS · (∇φ)f

]
dt

=

∫ t+∆t

t

(quVP + qPVPφP ) dt, (2.31)
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where
(
∂(ρφ)
∂t

)
P
VP is the approximation to

∫
VP

∂(ρφ)
∂t

dV by using the Gauss one-point

centroidal rule. In order to fully discretize Eq. (2.31), the following approximations

are used (
∂(ρφ)

∂t

)
P

=
ρnPφ

n
P − ρoPφoP

∆t
, (2.32)

∫ t+∆t

t

φ(t) dt = [wφo + (1− w)φn]∆t, (2.33)

where φn = φ(t+∆t), φo = φ(t), and w is a constant. Using Eq. (2.32) and Eq. (2.33)

in Eq. (2.31), and assuming that ρ and Γφ do not change with time, Eq. (2.31) becomes

ρPφ
n
P − ρPφoP

∆t
VP +

∑
f

[(1− w)Fφnf + wFφof ]

−
∑
f

[(1− w)(ρΓφ)fS · (∇φ)nf + w(ρΓφ)fS · (∇φ)of ]

= quVP + (1− w)qPVPφ
n
P + wqPVPφ

o
P . (2.34)

The first-order explicit Euler method is obtained by letting w = 1, the first-order

implicit Euler method is obtained by letting w = 0, and the second-order Crank-

Nicholson method is obtained by letting w = 1
2
. The values of φf and (∇φ)f depend

on the values of φ in the neighbouring CV, therefore for any CV with centroid xP ,

Eq. (2.34) can be written as

aPφ
n
P +

∑
N

aNφ
n
N = RP , (2.35)
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where aP includes the contribution from all terms corresponding to φnP , i.e., the

temporal derivative, convection and diffusion terms as well as the linear part of the

source term. aN include the corresponding terms in each of the neighbouring CVs.

RP includes the parts of the temporal derivative, convection and diffusion terms

corresponding to the previous time-level as well as the constant part of the source

term.

Assembling the fully discretized equations, Eq. (2.35), for all CVs yields a system of

algebraic equations

Ax = b (2.36)

in each time step, where A is a sparse matrix containing aP and aN , x is the vector

of unknown φ in all CVs, and b contains the source terms, RP . This system is linear,

i.e. A is constant, if the original continuous convection-diffusion equation is linear in

φ, or if terms have been linearized.

The momentum equation is a convection-diffusion equation with the pressure gradient

as a source term, and it can be discretized using the above discretization methods.

However, there are some difficulties to solve the equation, e.g., (1) there are nonlinear

terms such as the convection term ∇ · (ρvv) and the viscous stress tensor τ for a

non-Newtonian fluid; (2) the continuity equation and the momentum equation are

coupled and a treatment is required to handle the pressure-velocity coupling.
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2.2.2 Pressure-Velocity Coupling

For incompressible fluids, the mass (continuity) and the momentum equation read

∇ · v = 0, (2.37)

∂(ρv)

∂t
+∇ · (ρvv)−∇ · η(γ̇)(∇v +∇vT ) = −∇p, (2.38)

where η is the dynamic viscosity of fluids and γ̇ is the shear rate. For Newtonian fluids,

η(γ̇) is a constant. For inelastic non-Newtonian fluids, there are different models of

η(γ̇). In this thesis, only Newtonian fluids are considered.

The difficulty of nonlinear terms such as ∇ · (ρvv) is solved by linearization in order

to reduce the computational time. The nonlinear term ∇ · (ρvv) is linearized as

∫
VP

∇ · (ρvv) dV =

∫
∂VP

(ρvv · n) dS

=
∑
f

vf (ρv)of · S

=
∑
f

F ovf

= aPvP +
∑
N

aNvN , (2.39)

where vo is the velocity from the previous time step and F o is the flux from the
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previous time step.

The difficulty of the coupling of pressure and velocity is solved by applying the Rhie

and Chow procedure [72], in which a pressure equation is derived from the continuity

and momentum equation. Specifically, the continuity equation, Eq. (2.37), can be

discretized as ∫
VP

∇ · v dV =

∫
∂VP

v · n dS =
∑
f

S · vf = 0. (2.40)

The momentum equation, Eq. (2.38), can be semi-discretized as

aPvP = H(v)−∇p, (2.41)

where

H(v) = −
∑
N

aNvN +
vo

∆t
. (2.42)

From Eq. (2.41),

vP =
H(v)

aP
− 1

aP
∇p. (2.43)

The velocity at faces of the CV can be interpolated as

vf =

(
H(v)

aP

)
f

−
(

1

aP
∇p
)
. (2.44)
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Substituting Eq. (2.44) into Eq. (2.40) yields

∑
f

S ·
(

1

aP
∇p
)
f

=
∑
f

S ·
(

H(v)

aP

)
f

. (2.45)

The pressure gradient can be found by interpolating the pressure in each CV to the

faces of the CV. Hence Eq. (2.41) can be written as

aPvP = H(v)−
∑
f

Spf . (2.46)

The flux F can be found as

F = S ·
[(

ρ
H(v)

aP

)
f

−
(
ρ

1

aP
∇p
)
f

]
. (2.47)

Eq. (2.45) and Eq. (2.46) are the discrete pressure and velocity equations, respectively.

In order to solve them, the following three predictor-corrector methods are often to

be used.

† The Semi-Implicit Method for Pressure-Linked Equation (SIMPLE)

The SIMPLE algorithm is used to solve steady-state flows. To increase the

diagonal dominance of the matrix resulting from the discrete momentum equa-

tion, an under-relaxed form has been obtained by adding an artificial term to
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both sides of Eq. (2.35) as

aP
αv

vnP +
∑
N

aNvnN = RP +
1− αv

αv

aPvoP , (2.48)

where αv is the velocity under-relaxation factor (0 < αv ≤ 1).

The SIMPLE algorithm for Newtonian fluids can be summarized as following:

1. Start with an initial value of pressure p∗, which is either an initial guess

or the value from the previous iteration.

2. Solve for the velocity v∗ from the under-relaxed momentum equation,

Eq. (2.48), using the guessed pressure p∗ to find RP . This step is called

the momentum predictor.

3. Calculate the mass flux at the faces of CVs, F ∗ = S ·
(
ρH(v∗)

aP

)
f
.

4. Solve Eq. (2.45) to find the new value of pressure p∗∗.

5. Correct the mass flux at the faces of CVs using p∗∗ in Eq. (2.47), F =

F ∗ −
(
ρ 1
aP
∇p∗∗

)
f
· S.

6. Apply an under-relaxation factor 0 < αp ≤ 1 to find the new value of

pressure pnew = p∗ + αp(p
∗∗ − p∗).

7. Calculate the corrected velocity vnew using Eq. (2.43) and the new value

of pressure pnew.

8. Test for convergence, and repeat the steps by setting the new value of

pressure pnew as the initial value if not converged.
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It is desired to repeat step 4 for a number of iterations if there are

non-orthogonal cells in a computational mesh. In OpenFOAM®,

the parameter nNonOrthogonalCorrectors is specified in the file

<case>/system/fvSolution. The recommended values for the under-

relaxation factors according to [66] are αp = 0.2 and αv = 0.8. Test for

convergence is done by checking the residuals of the discrete pressure and

velocity equations, Eq. (2.45) and Eq. (2.46), respectively. If the Euclidean

norm of each residual is within a specified tolerance, then the SIMPLE

procedure stops. In OpenFOAM®, the parameters are found in the file

<case>/system/fvSolution under the name of residualControl.

† Pressure Implicit with Splitting of Operators (PISO)

The PISO algorithm was developed originally for computations of unsteady

compressible flows [41]. Later it was further developed for steady calculations

and for incompressible flows. The PISO algorithm uses more than one pressure

corrector step. The PISO algorithm for Newtonian fluids can be summarized

as following:

1. Calculate the velocity v∗ using Eq. (2.46) and pressure p∗ from the previous

step.

2. Calculate the mass flux at the faces of CVs, F ∗ = S ·
(
ρH(v∗)

aP

)
f
.

3. Solve Eq. (2.45) to find the new value of pressure p∗∗.
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4. Correct the mass flux at the faces of CVs using p∗∗ in Eq. (2.47), F =

F ∗ −
(
ρ 1
aP
∇p∗∗

)
f
· S.

5. Apply an under-relaxation factor 0 < αp ≤ 1 to find the new value of

pressure pnew = p∗ + αp(p
∗∗ − p∗).

6. Calculate the corrected velocity vnew using Eq. (2.43) and the new value

of pressure pnew.

7. Repeat steps 2 - 6 several (nCorrectors in OpenFOAM®) more times.

The parameters are found in the file <case>/system/fvSolution.

† Merged PISO-SIMPLE (PIMPLE)

The PIMPLE algorithm combines the SIMPLE and the PISO algorithms to-

gether, and is good to be used in transient calculations. The PIMPLE algorithm

for Newtonian fluids can be summarized as following:

1. Calculate the velocity v∗ using Eq. (2.48) and pressure p∗ from the previous

step.

2. Calculate the mass flux at the faces of CVs, F ∗ = S ·
(
ρH(v∗)

aP

)
f
.

3. Solve Eq. (2.45) to find the new value of pressure p∗∗.

4. Correct the mass flux at the faces of CVs using p∗∗ in Eq. (2.47), F =

F ∗ −
(
ρ 1
aP
∇p∗∗

)
f
· S.

5. Apply an under-relaxation factor 0 < αp ≤ 1 to find the new value of

pressure pnew = p∗ + αp(p
∗∗ − p∗).
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6. Calculate the corrected velocity vnew using Eq. (2.43) and the new value

of pressure pnew.

7. Repeat steps 2 - 6 several (nCorrectors in OpenFOAM®) more times.

8. Test for convergence, and repeat the steps at most several

(nOuterCorrectors in OpenFOAM®) more times if not converged.

Test for convergence is controlled by residualControl as in the SIMPLE algo-

rithm. If nOuterCorrectors = 1, then the PIMPLE will operate in the PISO

mode. The nCorrectors, nOuterCorrectors and residualControl parame-

ters are all found in the file <case>/system/fvSolution.

2.2.3 Linear Solvers

In this subsection some of the numerical methods are described to solve the

linear system

Ax = b (2.49)

resulting from discretizing the equations.

There are two families of methods: direct methods and iterative methods. In this

subsection, some of the basic iterative methods are discussed. The methods can be

preconditioned using several techniques (see [62] for details).
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1. Gauss Seidel Method

For the linear system Eq. (2.49), if A is a symmetric positive definite matrix,

the Gauss Seidel method uses the decomposition

A = D−U− L, (2.50)

where D is a diagonal matrix containing the diagonal elements of A, −U is

the upper triangular matrix of A, −L is the lower triangular matrix of A. The

linear system Eq. (2.49) can be written as

(D− L)x = Ux + b. (2.51)

The Gauss Seidel method uses the value of x from the previous iteration on the

right hand side of Eq. (2.51) to calculate the new value of x:

xk+1 = (D− L)−1Uxk + (D− L)−1b, (2.52)

where xk+1 is the new value of x, xk is the value of x from the previous iteration.

2. Conjugate Gradient (CG) Method

For the linear system Eq. (2.49), if A is a symmetric positive definite ma-

trix, then solving the linear system Eq. (2.49) is equivalent to minimizing the

quadratic function f(x) = 1
2
xTAx − bTx. The solution is updated iteratively
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by

xk+1 = xk + αkpk, (2.53)

where the step length αk and the search direction pk are defined below. The

CG method chooses the set of search directions {p0,p1, · · · ,pn} such that the

set is A-conjugate, i.e., pTi Apj = 0, i 6= j.

αk =
rTk rk

pTkApk
, (2.54)

pk = rk + βkpk−1, (2.55)

where the residual rk = b−Ax, and βk =
rTk rk

rTk−1rk−1
. The CG method starts with

an initial residual r0 = b −Ax0 and calculates the initial guess for the search

direction p0 = r0. Then the following steps are repeated until the residual gets

below a specified tolerance:

(i) Calculate the step length αk =
rTk rk

pTkApk
.

(ii) Calculate xk+1 = xk + αkpk.

(iii) Calculate the new residual rk+1 = rk − αkApk.

(iv) Calculate βk =
rTk+1rk+1

rTk rk
.

(v) Calculate the new direction pk+1 = rk+1 + βkpk.

3. Bi-Conjugate Gradient (BiCG) Method

Unlike the CG method, the BiCG method is applicable for a non-symmetric
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matrix A. This method constructs two sets of search directions {p0,p1, · · · ,pn}

for A and {q0,q1, · · · ,qn} for AT, and the two sets are mutually orthogonal,

i.e., qTi Api = 0. The BiCG method starts with an initial guess r0 = b−Ax0 and

sets p0 = q0 = s0 = r0, and then repeats the following steps until convergence:

(i) Calculate the step length αk =
sTk rk

qTkApk
.

(ii) Calculate xk+1 = xk + αkpk.

(iii) Calculate the new residual of A, rk+1 = rk − αkApk.

(iv) Calculate the new residual of AT , sk+1 = sk − αkATqk.

(v) Calculate βk =
sTk+1rk+1

sTk rk
.

(vi) Calculate the new direction pk+1 = rk+1 + βkpk.

(vii) Calculate the new direction qk+1 = sk+1 + βkqk.

4. Generalized Geometric-Algebraic Multi-Grid (GAMG) Method

For the linear system Eq. (2.49), if the approximated solution is xh, then the

error e = x − xh assuming x is the exact solution to the linear system. The

residual is defined as r = b−Axh. The error e and the residual r satisfy

Ae = A(x− xh)

= Ax−Axh

= r. (2.56)
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The GAMG method solves Eq. (2.56) on a coarse grid first and then interpolates

the solution to the fine grid. This method is applied by using a restriction

matrix T which transfers a vector from the find grid to the coarse grid, and an

interpolation matrix P which returns the vector to the find grid.

The GAMG method repeats the following steps until convergence:

(i) Solve for xh from Ax = b through a few iterations.

(ii) Calculate the residual on the coarse grid, rc = Tr.

(iii) Calculate the error ec on the coarse grid by rc from Acec = rc.

(iv) Calculate eh = Pec by interpolating the error to the find grid.

(v) Add the error to the approximated solution, xnew = xh + eh.
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Chapter 3

Droplet Deformation and Breakup

3.1 Deformation and Breakup Computations of

Drops in Axisymmetric Flows and Compar-

isons with the Taylor Analogy Breakup Model

Drop deformation and breakup are transient processes and it is important to study

their long time behavior. However, in an Eulerian framework, one of the difficulties

is that the computational domain needs to be large enough in order to simulate the

entire process. This results in huge computational costs. In order to keep the drop

within the fixed computational domain, the Shifted Eulerian Adaption (SEA) method
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has been developed. In this approach, the location of the drop is adjusted every N

time steps such that the center of mass of the liquid phase remains fixed in the domain.

This shifting mechanism has been implemented into the interFoam solver of the open

source software OpenFOAM® [63] which was also used for the CFD simulations.

In this section, we investigate the behavior of the Taylor drop oscillator using ax-

isymmetric CFD simulations. The simulations are used to validate a modification

which accounts for the change in the cross-sectional area of the deforming drop. It

is found that this modification leads to improved drop deformation prediction. Fur-

ther, the drop breakup is simulated for the bag breakup, the stamen breakup and

the stripping breakup regimes. These simulations show that the breakup initiation

times are in good agreement with experimental data, and that the breakup behavior

in the respective breakup regimes compares well with observations reported in the

literature.

3.1.1 TAB Model

The TAB model is a classic method for calculating droplet breakup, and this method

is based on Taylor’s analogy [87] between an oscillating and distorting droplet and a
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spring mass system. The equation governing a damped, forced oscillator [64] is

mẍ = F − kx− dẋ, (3.1)

where m is the mass of the drop, k is the spring constant, d is the damping coefficient,

and x is the displacement of the equator of the drop from its equilibrium position. In

Eq. (3.1), F is the external force, −kx is the restoring force, and −dẋ is the damping

force. The physical dependencies of the coefficients in Eq. (3.1) are

F

m
= CF

ρgv
2

ρlr
, (3.2)

k

m
= Ck

σ

ρlr3
, (3.3)

d

m
= Cd

µl
ρlr2

, (3.4)

where ρg and ρl are the gas and liquid densities, v is the relative velocity between the

gas and the droplet, r is the droplet radius, σ is the gas-liquid surface tension, and µl

is the liquid dynamic viscosity. Drop breakup occurs if x > Cbr, where values for the

dimensionless constants CF , Ck, Cd and Cb are determined by comparing experimental

and theoretical results [64], and are found to be CF = 1/3, Ck = 8, Cd = 5, and

Cb = 1/2. It has been reported by Grover et al. [29] that for gasoline sprays, Ck = 0.6

resulted in better agreement with measurements. Therefore, the need for model

parameter calibration for different liquids is clearly needed. By nondimensionalizing
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x by Cbr, letting

y =
x

Cbr
(3.5)

and using Eqs. (3.2), (3.3) and (3.4) in Eq. (3.1) gives

ÿ =
CF
Cb

ρg
ρl

v2

r2
− Ckσ

ρlr3
y − Cdµl

ρlr2
ẏ, (3.6)

with breakup occurring if y > 1.

3.1.2 Modified TAB Model

The drag of a drop moving at relative velocity v in the gas is

F =
1

2
CDρgAv

2, (3.7)

where CD is the drag coefficient, ρg is the gas density, and A is the cross-sectional

area of the drop. The TAB model is based on the assumption that the drop’s cross-

section is fixed. In reality, during deformation, the cross-sectional area changes, and

here we assume a circular shape with radius r + x, where x is the increase in the

cross-sectional radius. Under this assumption, the drag of a drop becomes

F =
1

2
CDρgπ(r + x)2v2. (3.8)
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Comparing the drag coefficient and dimensionless constants in the TAB model yields

CD =
8

3
CF , (3.9)

where CF = 1/3. Note that in general, the drag coefficient depends on the Reynolds

number and the shape of the immersed object [52]. However, in the modified TAB

model we assume that CD is fixed as in the original TAB model. After nondimen-

sionalization, the equation for the modified TAB model becomes

ÿ =
CF
Cb

(1 + Cby)2ρg
ρl

v2

r2
− Ckσ

ρlr3
y − Cdµl

ρlr2
ẏ. (3.10)

By comparing Eqs. (3.6) and (3.10), the only difference is (1 + Cby)2 in the forcing

term, which makes the modified TAB model a non-linear differential equation.

3.1.3 Problem Description

The problem of droplet deformation and breakup is studied by simulating a water

droplet of 1 mm diameter in airflow. The transport properties at room temperature

for water are the kinematic viscosity νl = 1.004 × 10−6 m2/s and the density ρl =

998.2 kg/m3 while the transport properties at room temperature for air are νg =

1.511 × 10−5 m2/s and ρg = 1.205 kg/m3. The surface tension between water and

air is σ = 0.07286 kg/s2. The deformation and breakup of the water droplet is
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simulated using the computational setup shown schematically in Fig. 3.1 for the three

dimensional simulations and in Fig. 3.2 for the axisymmetric simulations.

inlet outlet

top

bottom

1mm

6m
m

5mm 10mm

Figure 3.1: Three dimensional computational domain (front view).

inlet outlet1mm
centerline

top

H

5mm 10mm

Figure 3.2: Axisymmetric computational domain.

Initially, the water droplet is at rest and the airflow is set at a constant velocity vg.

On the inlet boundary the velocity is set to vg and the pressure has zero normal

gradient. On the outlet boundary, the velocity is set to zero normal gradient and the

pressure is fixed to zero. The top boundary is given far-field conditions, that is, the

velocity is set to vg and the normal pressure gradient is zero.

3.1.4 Mathematical Model and Numerical Methods

The problem is formulated using the volume of fluid (VOF) method. The governing

equations are the mass and momentum balance equations for the two-phase flow,
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which hold over the entire computational domain, and are given by

∇ · v = 0, (3.11)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+∇ · (µγ̇) + σκδsn, (3.12)

where v is the velocity, p is the pressure, γ̇ = ∇v+(∇v)T is the rate-of-strain tensor,

and µ and ρ are the dynamic viscosity and density, respectively. The last term on

the right-hand side of Eq. (3.12) is the continuum surface force (CSF) and is nonzero

only on the interface, as is indicated by the Dirac delta function δs = δ(x−xs), where

xs is a point on the interface.

In the VOF method, the interface between two phases is described by a scalar function

α called the volume fraction function. This function takes the value α = 0 in cells

that contain only the continuous phase, i.e., air in this chapter, and the value α = 1

in cells that contain only the disperse phase, i.e., water in this chapter. In cells where

the interface is located, 0 < α < 1 and represents the volume fraction of dispersed

phase in the cell. The volume fraction function α is governed by

∂α

∂t
+∇ · (vα) = 0. (3.13)

Equation (3.13) is used to reformulate the CSF term in Eq. (3.12) as σκ∇α [26] and

to represent the fluid transport properties as µ(α) = αµl + (1 − α)µg and ρ(α) =
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αρl + (1− α)ρg.

The above equations are solved using a modified version of the interFoam solver of

OpenFOAM® [63], in which a second-order finite volume method (FVM) is used for

spatial discretization, an implicit first-order method is used for temporal discretiza-

tion, and interface compression is used for the volume fraction equation. See [18] for

a complete description and evaluation of the standard interFoam solver.

In order to keep the drop within the fixed computational domain, the SEA method

is used and the standard interFoam solver had to be modified such that the location

of the drop is adjusted every N time steps. More precisely, the center of mass of the

liquid phase is calculated every N time steps (N = 100 in this study) over the entire

domain according to the formula

x̄ =

∫
V
αx dV∫

V
α dV

, (3.14)

where the denominator represents the total volume of the liquid phase. Note

that Eq. (3.14) assumes that density is constant. This modified solver is called

interSEAFoam. If the center of mass of the liquid phase has moved more than the

distance of one cell, then all field values in the computational domain, including v,

p and α, are shifted (or mapped) back by one cell, while maintaining the boundary

conditions. This shift introduces a small error at the inlet and outlet boundaries,
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which, however, is corrected in the next time step through the SIMPLE iterations in

that time step. In order to guarantee that there are no additional errors introduced

around the drop, a uniform grid has been used.

3.1.5 Axisymmetry Assumption Justification

A three dimensional and an axisymmetric simulation, as described above, have been

performed for the air inlet speed of vg = 20 m/s, corresponding to We = 6.56. The

same mesh resolution was used for both domains. Figure 3.3 shows that the drop

deformation contours agree well between the three dimensional and the axisymmetric

simulations near the maximal deformation at t = 1.8 ms. The discrepancy is at most

within one cell, i.e., at the same level of mesh resolution. Figure 3.4 shows that the

velocity and pressure fields of the three dimensional simulation are fully symmetric.

Asymmetries in the flow fields, as for example the von Karman vortex street, are

not observed. In fact, a two dimensional simulation of a flow over a non-deforming

cylinder for the same flow conditions showed that it takes at least 6 ms until the

symmetry starts to break and the von Karman vortices start to develop. Therefore,

since the drop is deforming, asymmetries do not have time to evolve in the time frame

under consideration, and the flow remains symmetric.

The discussion in the previous paragraph shows that the difference between the three

47



Figure 3.3: Drop deformation contours for the We = 6.56 case at t =
1.8ms; red: three dimensional, green: axisymmetric. (The cross-sectional
radius is 0.71 mm.)

(a) (b)

Figure 3.4: (a) Velocity magnitude field on a cross-sectional plane through
the center of the drop, (b) pressure field on a cross-sectional plane through
the center of the drop for the three dimensional We = 6.56 case at t =
1.8 ms.

dimensional and the axisymmetric simulations is negligible. Also, since the flow field

is highly symmetric, it appears to be justified to continue the further investigations

using axisymmetric simulations. This greatly decreases the computational cost.
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3.1.6 Axisymmetric Simulations

3.1.6.1 Domain Independence Study

As discussed above, the computational domain, shown in Fig. 3.2, is an axisymmetric

cylinder with far-field boundary conditions on the top boundary. In order to make

sure that these boundary conditions do not influence the drop deformation behavior,

a domain independence study has been conducted to determine the minimum accept-

able height of the domain. Three domains with heights 2 mm, 3 mm and 4.5 mm have

been used to simulate the case with 20 m/s inlet velocity corresponding to We = 6.56

and no breakup. The drop deformations of these computations are shown in Fig. 3.5.

As is seen, the drop deformations for the domain heights corresponding to 3 mm and

4.5 mm are almost identical. Consequently, the domain height of 3 mm has been

chosen for all subsequent computations.

3.1.6.2 Mesh Independence Study

The computational meshes consist of six blocks, three in the flow direction and two

in the radial direction. A front view of the standard mesh is shown in Fig. 3.6. The

block which contains the drop has cells of uniform length and height. The uniform
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Figure 3.5: Drop deformation contours for the axisymmetric We = 6.56
case at t = 1.8 ms; blue: H = 2 mm, red: H = 3 mm, green: H = 4.5 mm.

cell size is important to guarantee mass conservation of the liquid when using the

SEA method to compensate for the drop movement. The cells of the outer blocks are

graded geometrically by a factor of eight such that the largest cells are located at the

boundaries. This enables a finer grid near the drop where the velocity and pressure

gradients are larger, and still yields sufficient mesh resolution at the boundaries.

Figure 3.6: Axisymmetric computational mesh (length = 15 mm, height
= 3 mm).

Three meshes have been considered for the mesh independence study. In each mesh

the number of cells are changed by a factor of 1.5 in each direction, resulting in a

change of number of cells by a factor of 2.25. This leads to meshes with a total
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of 18, 400, 41, 400, and 92, 880 cells for the coarse, the standard and the fine mesh,

respectively. The smallest cells are the uniform cells in the block that contains the

liquid mass, and the smallest cell sizes for each mesh, together with the total number

of cells, are listed in Table 3.1.

Table 3.1
Meshes used in the axisymmetric simulations

Mesh Number of cells Smallest cell size [mm]
Coarse 18400 0.0250× 0.0250
Standard 41400 0.0167× 0.0167
Fine 92880 0.0111× 0.0111

The mesh independence investigation has been conducted for the case with 20 m/s

inlet velocity corresponding to We = 6.56 and no breakup. The criteria for judging

the mesh independence are the velocity x-component, Ux, and the pressure, p, along

the y-direction at 1.5 mm in front of and behind the drop at the simulation time

of t = 1.8 ms when the deformation is largest. As is seen in Figs. 3.7 and 3.8, the

curves corresponding to the standard and the fine mesh are closer than the curves

between the coarse and the standard mesh. From these figures we can conclude that

sufficient mesh independence has been achieved with the standard mesh. Therefore,

all subsequent simulations have been performed with the standard mesh.
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Figure 3.7: (a) Velocity x-component, (b) pressure along the line x =
−1.5 mm for the We = 6.56 case at t = 1.8 ms.
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Figure 3.8: (a) Velocity x-component, (b) pressure along the line x =
1.5 mm for the We = 6.56 case at t = 1.8 ms.
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3.1.6.3 Drop Deformation Compared with Taylor Oscillator

The performance of the TAB model and the modified TAB model has been evalu-

ated using detailed CFD simulations. More specifically, axisymmetric CFD simula-

tions have been performed for the case with 20 m/s inlet velocity (corresponding to

We = 6.56 and no breakup) and compared with the behavior of the TAB model (see

Eq. (3.6)) and the modified TAB model (see Eq. (3.10)). Note that the results of the

two TAB models were obtained by means of Mathematica® [93]. The quantities that

have been compared are the maximum amplitude of the deformation (measured from

the centerline) and the period of the first oscillation starting with the undeformed

drop. These values are listed in Table 3.2. Clearly, the modified TAB model is in bet-

ter agreement with the axisymmetric CFD simulations than the original TAB model.

This indicates that Taylor Oscillators with appropriate modifications are accurate

one dimensional breakup models to predict drop deformation.

Table 3.2
Drop deformation, normalized drop deformation y, and first period for the

We = 6.56 case

Model Deformation [mm] y [-] Period [ms]
TAB 0.635 0.54 2.9
Modified TAB 0.700 0.80 3.5
CFD 0.710 0.84 3.4

53



3.1.6.4 Drop Breakup Compared with Taylor Oscillator

In this section, the breakup initiation times (defined below) and the associated drop

deformations obtained from the axisymmetric CFD simulations are compared with

the corresponding quantities of the TAB and the modified TAB models for the three

Weber numbers We = 10.33, We = 20.09 and We = 81.04. Two dimensionless

breakup times are typically measured in experiments: the initiation time Tini and

the total breakup time Ttot. According to Guildenbecher et al. [30] the initiation

time is defined as the moment when the intact but deformed drop resembles an

oblate spheroid, while the total breakup time is defined as the moment when the

disintegrated drop and all its fragments have reached a stable state and no further

breakup occurs. Time is nondimensionalized according to Ranger and Nicholls [70]

by

T = t
v

ε0.5d0

, (3.15)

where T is the dimensionless time, t is the dimensional time, ε is the drop to ambient

density ratio, v is the relative velocity between the drop and the ambient air, and d0

is the diameter of the initially spherical drop. The dimensional and dimensionless ini-

tiation times are determined for the CFD simulations and are listed in Table 3.3. The

numerical results are compared with the experimental observations of Guildenbecher

et al. [30] where Tini ≈ 1.5. This value has been obtained under the assumption that
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the dimensionless initiation time is independent of We and Oh when Oh < 0.1. It

can be seen from Table 3.3 that the dimensionless initiation time is slightly decreas-

ing with increasing Weber numbers. However, given the uncertainty of determining

tini for the CFD simulations as well as in the experiments, the agreement with the

experimental value of Tini = 1.5 can be considered good. Note that the initiation

and breakup times do not make sense for the Taylor oscillators because they cannot

predict breakup by themselves. In fact, as is discussed in the TAB model descrip-

tion above, breakup is determined artificially by specifying a normalized breakup

deformation criterion.

Table 3.3
Dimensional and dimensionless initiation times for the CFD simulations
and normalized drop deformations y for the TAB, the modified TAB and

the CFD simulations

Times Normalized deformations y
We tini [ms] Tini [−] TAB Modified TAB CFD
10.33 1.6 1.39 0.83 1.54 1.69
20.09 1.1 1.34 1.44 2.42 2.83
81.04 0.5 1.22 1.78 2.64 3.00

At the initiation time t = tini, the normalized drop deformations, y, are calculated for

the TAB model, the modified TAB model and the CFD simulations. The results are

listed in Table 3.3. Clearly, the modified TAB model is in better agreement with the

CFD simulation than the original TAB model, which indicates that the modified TAB

model is better suited to predict drop deformations and the onset of drop breakup.

One of the reasons for the discrepancy between the results from the TAB models
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and CFD simulations is that the TAB models only represent one oscillation mode,

and in reality there are many such modes [3]. It is discussed that the TAB models

only keep track of the fundamental mode corresponding to the lowest order spherical

zonal harmonic whose axis is aligned with the relative velocity vector between the

drop and the ambient air. For larger Weber numbers, higher order modes become

more significant for the breakup process, thus the discrepancy becomes larger, as is

seen in Table 3.3.

3.1.6.5 Drop Breakup Simulations

The drop breakup simulations have been performed at different inlet air velocities of

25 m/s, 35 m/s and 70 m/s. This results in respective Weber numbers of We =

10.33, We = 20.09 and We = 81.04, which are associated with the bag breakup,

the stamen breakup and the stripping breakup regimes, respectively. The results of

these simulations are shown in Figs. 3.9, 3.10 and 3.11 at different times. In all three

cases, the drop is first flattened before it starts its characteristic breakup. Measuring

the radial extent of this deformation from the centerline, it turns out that the drop

breakup criterion of the TAB model, y > 1, is satisfied. In fact, the maximum

drop deformation before the onset of breakup is determined to be y = 1.8 for the

We = 10.33 case, y = 3.6 for the We = 20.09 case, and y = 2.4 for the We = 81.04

case. Therefore, the breakup criterion depends on the Weber number and should be
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adjusted accordingly in the TAB models.

Because these are axisymmetric simulations, the cross-sections of the liquid after

breakup shown in Figs. 3.9, 3.10 and 3.11 have to be interpreted as toroidal-shaped

rings. This is of course not realistic, but it is interesting to note that there is qualita-

tive agreement of these ring-structures with experimentally observed product drops.

Figure 3.9 shows the bag breakup, where the bag starts forming at t = 1.8 ms and

is held together with the belt. The bag then breaks up at t = 2.1 ms and only the

belt is left. The stamen breakup is shown in Fig. 3.10. At t = 1.4 ms a bag is formed

between the stem in the center and the outside belt. The last frame in this figure

illustrates the breakup of the bag and the remaining center stem together with the

outside belt.

Finally, the stripping breakup is illustrated in Fig. 3.11. At t = 0.6 ms, the thin

sheet starts to shed off droplets at the periphery. This droplet shedding is nicely

illustrated at t = 0.7 ms. Actually, because these are axisymmetric simulations, the

“droplets” are cross-sections of toroidal-shaped rings. This is of course not realistic,

but it is interesting to note that there is good agreement of these ring cross-sections

with experimentally observed product drops, as reported in the literature, e.g., Pilch

and Erdman [67], Faeth et al. [23] and Guildenbecher et al. [30].
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(a) t = 0ms

(b) t = 1.2ms

(c) t = 1.8ms

(d) t = 2.1ms

Figure 3.9: Time sequence of bag breakup for We = 10.33.

3.1.7 Summary and Conclusions

Axisymmetric CFD simulations have been conducted to verify the deformation and

breakup behavior of a drop in an air stream as predicted by the TAB model and as

observed in experiments. In order to justify the axisymmetry assumption, a three

dimensional simulation has been performed for a non-breaking drop at We = 6.56
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(a) t = 0ms

(b) t = 1.0ms

(c) t = 1.4ms

(d) t = 1.5ms

Figure 3.10: Time sequence of stamen breakup for We = 20.09.

and compared with a corresponding axisymmetric computation. Comparison be-

tween the drop deformation contours from the two simulations, and the fact that the

three dimensional flow field was highly symmetric, indicates that the axisymmetry as-

sumption is justified. This greatly decreased the computational cost of the remaining

computations.

For the axisymmetric CFD simulations, a domain independence study has been con-

ducted for the We = 6.56 case, where no breakup occurs, to determine the minimum
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(a) t = 0ms

(b) t = 0.4ms

(c) t = 0.6ms

(d) t = 0.7ms

Figure 3.11: Time sequence of sheet-thinning breakup for We = 81.04.

acceptable height of the domain such that the far-field boundary conditions do not

influence the drop deformation behavior. Then a mesh independence study has been

performed for the same case by comparing the velocity x-component and the pressure

along the y-direction at 1.5 mm in front of and behind the drop when the deformation

is largest.

The original TAB model has been modified to account for the change in the aero-

dynamic drag due to the drop deformation. It is assumed that the cross-section is
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a disk whose radius is changing according to the drop deformation, while the drag

coefficient is kept constant. These TAB models have been compared with axisym-

metric CFD simulations for a non-breaking drop at We = 6.56. It was found that

the amplitude of the drop deformation and the period of the first drop oscillation

are in good agreement with the modified TAB model. Further, these TAB models

have been compared with axisymmetric CFD simulations for the bag breakup, the

stamen breakup and the stripping breakup regimes at We = 10.33, We = 20.09 and

We = 81.04, respectively. It was found that the initiation time for each breakup

mode is comparable with experimental observations, and the drop deformation at the

initiation time is in good agreement with the modified TAB model. By comparing

results from these TAB models and those from axisymmetric CFD simulations, one

can conclude that Taylor Oscillators are accurate one dimensional drop deformation

models which can predict the onset of drop breakup.

Drop breakup has been studied by means of axisymmetric simulations at Weber num-

bers associated with the bag breakup, the stamen breakup and the stripping breakup

regimes. These simulations show good qualitative agreement with the breakup be-

havior reported from experiments.
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3.2 Deformation and Breakup Computations of

Drops in Three Dimensional Symmetric Flows

and Comparisons with Experimental Observa-

tions

This section is organized as follows. First, the problem description and solution

approach is presented. This is followed by a fully three dimensional simulation at

We = 6.56 for a deforming drop without breakup. The purpose of this simulation is to

demonstrate that there is a high degree of symmetry in the flow and that a symmetry

assumption can be made in order to reduce computational costs. The subsequent

simulations are then performed for a one-quarter cross-section of the three dimensional

domain, assuming an appropriate symmetric flow field. The symmetric simulations

are performed for different Weber numbers which correspond to the bag breakup, the

stamen breakup and the stripping breakup regimes, and the computational results are

compared with experimental observations. Finally, the drop size distributions of each

simulated breakup are fitted by different statistical distributions and the statistics

of drops after breakup is analyzed and discussed. The analysis of product drop size

distributions can be used to further develop breakup models together with product

drop size distribution models.
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3.2.1 Problem Description and Solution Approach

The problem considered here is the same as that described in Section 3.1.3, except

for the computational domain. Specifically, the problem of droplet deformation and

breakup is studied by simulating a water droplet of 1 mm diameter in airflow. The

transport properties at room temperature for water are the kinematic viscosity νl =

1.004 × 10−6 m2/s and the density ρl = 998.2 kg/m3 while the transport properties

at room temperature for air are νg = 1.511 × 10−5 m2/s and ρg = 1.205 kg/m3.

The surface tension between water and air is σ = 0.07286 kg/s2. The computational

domain is illustrated in Fig. 3.12. This domain resembles a one-quarter cross-section

(when viewed in the main flow direction) of a flow over a sphere, with symmetry

planes at the back and the bottom. The one-quarter droplet is located in the center

between inlet and outlet.

Initially, the water droplet is at rest and the airflow is set at a constant velocity vg.

On the inlet boundary the velocity is set to vg and the pressure has zero normal

gradient. On the outlet boundary, the velocity is set to zero normal gradient and the

pressure is fixed to zero. On the far-field boundaries the velocities are set to vg and

the normal pressure gradient is zero. Symmetry boundary conditions are applied on

the symmetry planes.
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Figure 3.12: Three dimensional symmetric, one-quarter cross-section com-
putational domain (top: front view, bottom: cross-sectional view).

The modified VOF solver, interSEAFoam, described in Section 3.1.4 is used to solve

the current two-phase flow problem. This solver is a modified version of OpenFOAM’s

interFoam solver in which the Shifted Eulerian Adaption (SEA) method was incor-

porated (see Section 3.1.4 for details).

3.2.2 Symmetry Assumption Justification

In this section, we justify the reduction of the computational domain to one quarter

of the full three dimensional domain. A simulation was performed on the full three
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dimensional domain and on the quarter three dimensional domain, each for an air-

speed vg = 20 m/s, corresponding to We = 6.56 and no breakup. The same mesh

resolution was used for both simulations. Figure 3.13 shows that the drop deforma-

tion contours agree well between the three dimensional and the three dimensional

symmetric simulations near the maximal deformation at t = 1.8 ms. Figure 3.14

shows that the velocity and pressure fields of the three dimensional simulation are

fully symmetric about both the plane z = 0 mm and the plane y = 0 mm. As dis-

cussed in Section 3.1.5, asymmetries in the flow fields, for example the von Karman

vortex street, do not have time to evolve in the time frame under consideration, since

the drop is deforming. Therefore, the flow remains symmetric.

Figure 3.13: Drop deformation contours for We = 6.56 at t = 1.8 ms; red:
three dimensional symmetric, blue: three dimensional.

In summary, the difference between the fully three dimensional and the three dimen-

sional symmetric simulations are negligible, and the flow field remains symmetric.
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(a) (b)

(c) (d)

Figure 3.14: (a) Velocity magnitude on the plane z = 0 mm, (b) pressure
on the plane z = 0 mm, (c) velocity magnitude on the plane y = 0 mm, (d)
pressure on the plane y = 0 mm for the three dimensional We = 6.56 case
at t = 1.8 ms.

Therefore, it is justified to continue the further investigations using three dimen-

sional symmetric simulations. This greatly decreases the computational costs. The

relative CPU times for the fully three dimensional and the three dimensional sym-

metric simulations are listed in Table 3.4.

Table 3.4
Relative CPU times for the fully three dimensional and the three

dimensional symmetric simulations for We = 6.56 from t = 0 ms to
t = 1.8 ms

Simulation Relative CPU time
fully three dimensional 9.78

three dimensional symmetric 1
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3.2.3 Three Dimensional Symmetric Simulations

As discussed in Section 3.1.6.1, the minimum acceptable height of the computational

domain is 3 mm. Because after breakup the product droplets tend to spread out

over a large cross-section, the larger domain height of 4.5 mm has been chosen for all

subsequent three dimensional symmetric computations.

3.2.3.1 Mesh Independence Study

The computational mesh consists of three blocks arranged consecutively in the main

flow direction, as shown in Fig. 3.15. All three blocks have cells of uniform width

(z-direction) and height (y-direction). The middle block has cells of uniform length

(x-direction). The uniform cell size of the middle block is important to guarantee

mass conservation of the liquid when using the SEA method to compensate for the

drop movement. The cell length of the outer blocks are graded geometrically by a

factor of eight such that the largest cells are located at the boundaries. This enables

a finer grid near the drop(s) where the velocity and pressure gradients are larger, and

still yields sufficient mesh resolution at the boundaries.

Three meshes have been considered for the mesh independence study. In each mesh

the number of cells in each direction is changed by a factor of 1.5. This leads to meshes
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Figure 3.15: Three dimensional symmetric computational mesh (front
view, length = 10 mm, height = 4.5 mm, the horizontal direction is the
x-axis, the vertical direction is the y-axis, and the outward direction is the
z-axis).

with a total of 3,004,800, 10,141,200 and 34,226,550 cells for the coarse, the standard

and the fine mesh, respectively. The smallest cells are in the middle block and the

smallest cell sizes for each mesh, together with the total number of cells, are listed in

Table 3.5. The mesh independence investigation has been conducted for the case with

20 m/s inlet velocity corresponding to We = 6.56 and no breakup. The criteria for

judging the mesh independence are the velocity x-component, Ux, and the pressure,

p, along the y-direction at 0.5 mm in front of and behind the drop on the symmetry

plane z = 0 mm at the simulation time t = 1.8 ms when the deformation is largest.

As is seen in Figs. 3.16 and 3.17, the curves corresponding to the standard and the

fine mesh are closer than the curves corresponding to the coarse and the standard

mesh. From these figures we can conclude that sufficient mesh independence has been

achieved with the standard mesh. Therefore, all subsequent simulations have been

performed with the standard mesh.
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Table 3.5
Meshes used in the three dimensional symmetric simulations

Mesh Number of cells Smallest cell size [mm]
Coarse 3,004,800 0.0375× 0.0375× 0.0375

Standard 10,141,200 0.0250× 0.0250× 0.0250
Fine 34,226,550 0.0167× 0.0167× 0.0167
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Figure 3.16: (a) Velocity x-component, (b) pressure along the line x =
−0.5 mm on the plane z = 0 mm for We = 6.56 at t = 1.8 ms.

Three dimensional symmetric simulations have been performed for different Weber

numbers by adjusting the inlet airspeed to 30 m/s, 35 m/s and 70 m/s. This results

in respective Weber numbers of 14.87, 20.09 and 81.04, which are associated with the

bag breakup, the stamen breakup and the stripping breakup regimes, respectively.

The numerical results of different regimes agree well with experimental observations,

as is discussed in more detail below. All subsequent visualizations of the drop(s) are

represented by reflecting the three dimensional symmetric simulation results around

the symmetry planes z = 0 mm and y = 0 mm into fully three dimensional drop(s).
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Figure 3.17: (a) Velocity x-component, (b) pressure along the line x =
0.5 mm on the plane z = 0 mm for We = 6.56 at t = 1.8 ms.

The CPU times for the three dimensional symmetric simulations for the bag, the sta-

men and the stripping breakup regimes are listed in Table 3.6. These CPU times have

been obtained by multiplying the CPU times reported by the computations with the

number of cores used. Therefore, these CPU times reflect non-parallel computations.

Table 3.6
CPU times for the three dimensional symmetric simulations for the bag,

the stamen and the stripping breakup regimes

We Simulation time [ms] CPU time [hr]
14.87 3.9 2081
20.09 2.6 2120
81.04 1.2 2226

3.2.3.2 Bag Breakup (We = 14.87)

Chou and Faeth [13] show that the bag breakup regime of a drop consists of four
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stages. In the first stage, the initially spherical drop deforms into an oblate spheroid

with a disc shape. In the second stage, a hollow bag is formed and attached to a

toroidal rim (also referred to as the belt). In the third stage, the bag breaks up into

drops leaving behind the rim. In the fourth stage, the rim breaks up into drops caused

by Rayleigh-Plateau instability. All four stages of the bag breakup regime are well

captured in the simulation and are shown in Fig. 3.18. The flattening of the initially

spherical drop is shown in Figs. 3.18(a) - 3.18(c), the formation of the bag is shown

in Fig. 3.18(d), the breakup of the bag is shown in Figs. 3.18(e) and 3.18(f), and the

breakup of the rim is shown in Figs. 3.18(g) and 3.18(h). The temporal evolution

of the bag breakup is in good agreement with the experimental observations of Dai

and Faeth [14] (see Fig. 3.19, where t/t∗ is the dimensionless time calculated using

Eq. (3.16)). Note that symmetry is not maintained in the experiments, especially after

breakup. This is to be expected due to the random nature of the true phenomena

and imperfect experimental conditions. Similar experimental observations have been

reported by other authors including Gelfand [28], Chou and Faeth [13], Josephand

et al. [43], Park et al. [65].

3.2.3.3 Stamen Breakup (We = 20.09)

The stamen breakup is simulated for a relative liquid-gas velocity of 35 m/s which cor-

responds to We = 20.09. As for the bag breakup regime, the initially spherical drop
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flattens due to the high speed airstream (see Figs. 3.20(a) - 3.20(d)). Subsequently

a bag with a stamen forms, as is shown in Fig. 3.20(e). Then rupture occurs at the

bag membrane (see Fig. 3.20(f)). As the rupture widens, the bag membrane around

the rupture splits up and the bag breaks up into drops, leaving behind a toroidal

rim which is connected to the stamen by thread-like structures (see Fig. 3.20(g)).

The stamen, the rim and the thread-like structures are elongated while bigger nodes

form at the stamen and at the tips of the rim (see Fig. 3.20(h)). As the breakup

proceeds (caused by Rayleigh-Plateau instabilities), the nodes from the stamen and

the rim get pinched off (see Fig. 3.20(i)). Subsequently, both the stamen and the rim

break up into drops (see Fig. 3.20(j)). The temporal evolution of the stamen breakup

is in good agreement with the experimental observations of Dai and Faeth [14] (see

Fig. 3.21, where t/t∗ is the dimensionless time calculated using Eq. (3.16)). Similar

experimental observations have been reported by other authors including Hirahara

and Kawahashi [37], Gelfand [28], Josephand et al. [43].

3.2.3.4 Stripping Breakup (We = 81.04)

The stripping breakup is simulated for a relative liquid-gas velocity of 70 m/s which

corresponds to We = 81.04. The high speed airflow induces large inertial forces to

overcome the restoring effect of surface tension, which results in a backward-facing

shell (see Figs. 3.22(a) - 3.22(c)). Rupture occurs at the periphery of the shell and
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causes the breakup of the shell (see Fig. 3.22(d)). The high shear initiates the forma-

tion of ligaments due to Kelvin-Helmholtz instabilities at the periphery of the shell

before the drop is flattened completely (see Fig. 3.22(e)). The ligaments are then

stretched in the flow direction and smaller drops are pinched off from the free ends of

the ligaments due to Rayleigh-Plateau instabilities (see Fig. 3.22(f)). After the outer

layers of the drop have been stripped away, the stripping mechanism continues to

shed off droplets from the remaining bulk drop, as is seen in Fig. 3.22(g). The tem-

poral evolution of the stripping breakup is in good agreement with the experimental

observations of Dai and Faeth [14] (see Fig. 3.23, where t/t∗ is the dimensionless time

calculated using Eq. (3.16)). Similar experimental observations have been reported

by other authors including Gelfand [28], Josephand et al. [43].

3.2.3.5 Drop Breakup Time

Two dimensionless breakup times are typically measured: the initiation time Tini and

the total breakup time Ttot. According to Guildenbecher et al. [30] the initiation

time is defined as the moment when the intact but deformed drop resembles an

oblate spheroid, while the total breakup time is defined as the moment when the

disintegrated drop and all its fragments have reached a stable state and no further

breakup occurs. Time is nondimensionalized according to Ranger and Nicholls [70]

73



by

T = t
v

ε0.5d0

, (3.16)

where T is the dimensionless time, t is the dimensional time, ε is the drop to ambient

density ratio, v is the relative velocity between the drop and the ambient air and d0

is the diameter of the initially spherical drop. The dimensional and dimensionless

initiation and total breakup times are determined for the CFD simulations and are

listed in Table 3.7. The numerical results are compared with the experimental obser-

vations of Guildenbecher et al. [30], namely, that Tini ≈ 1.5 and Ttot ≈ 5.0, assuming

the dimensionless times are independent of We and Oh when Oh < 0.1. It can be

seen from Table 3.7 that Tini and Ttot are decreasing with increasing Weber numbers.

However, given the uncertainty in determining tini and ttot for the CFD simulations

as well as in the experiments, the agreement of the dimensionless initiation times can

be considered as good, and the agreement of the total breakup time as reasonable.

Table 3.7
Initiation and total breakup times for the bag, the stamen and the

stripping breakup regimes

We tini [ms] Tini ttot [ms] Ttot
14.87 1.4 1.46 3.9 4.07
20.09 1.1 1.34 2.6 3.16
81.04 0.5 1.22 1.2 2.92

74



3.2.3.6 Drop Size Distributions

The drop sizes have been sampled in two stages using a modified version of the post-

processing tool of Case et al. [12]. The modifications include a mechanism which

allows the tracking of droplets in symmetric simulations.

One limitation of the VOF method is that not every drop can be resolved by the

computational mesh, especially the tiny (unresolved) drops produced after breakup.

Drop size distributions are determined in two stages because product droplets tend

to leave the domain. In the first stage, the sampling time is chosen after the onset of

breakup but before any of the resolved drops have left the domain. At this moment,

the droplet statistics is performed for all the stable resolved drops, i.e., drops whose

(local) Weber numbers are subcritical, and therefore, do not undergo further breakup.

These drops are then marked and, if they are still in the domain, are ignored in the

second sampling. The second sampling is performed at the end of the computation

when all the drops’ (local) Weber numbers are subcritical.

More formally, the droplet sampling can be expressed by the two equations

mtot = m(1)
ur +m(1)

sr +m
(1)
t , (3.17)

m(1)
ur = m(2)

sr +m
(2)
t . (3.18)
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In these equations, the superscripts (1) and (2) indicate the times of droplet sampling

at the first and second stage, respectively. mtot is the total mass of the initially

spherical drop, m
(1)
ur is the mass of the unstable resolved drops in the first stage, m

(1)
sr

is the mass of the stable resolved drops in the first stage and m
(1)
t is the mass of the

tiny (stable unresolved) drops in the first stage. m
(2)
sr is the mass of the stable resolved

drops in the second stage and m
(2)
t is the mass of the tiny drops in the second stage.

The mass of the tiny drops that cannot be resolved by the computational mesh is

calculated in each stage. At the first sampling time, the mass of the tiny drops in the

first stage, m
(1)
t , is obtained using Eq. (3.17) by subtracting the mass of the resolved

drops including stable and unstable ones in the first stage, m
(1)
ur +m

(1)
sr , from the total

mass of the initially spherical drop, mtot. At the second sampling time, the mass of

the tiny drops in the second stage, m
(2)
t , is obtained using Eq. (3.18) by subtracting

the mass of the stable resolved drops in the second stage, m
(2)
sr , from the mass of

the unstable resolved drops in the first stage, m
(1)
ur . The number of tiny drops is

estimated by the mass of all these tiny drops divided by the mass of a spherical drop

of 0.00625 mm radius, i.e., a quarter of the size of the cell in the middle block of the

computational mesh, which is assumed to be the mean radius of the tiny drops.

For the bag breakup case, the product drop sizes are first calculated at t = 2.3 ms

when the breakup of the bag has finished and are then calculated at t = 3.9 ms when

the breakup of the rim is complete. The final product drop size distribution of the
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resolved drops for the bag breakup, shown in Fig. 3.24, is calculated by combining

these two drop size data and is in good agreement with the experimental observations

of Yao et al. [95]. As is seen in Table 3.8, there are 162 resolved drops, and the mean

radius of these drops is 0.0528 mm. There are 66357 unresolved drops of 0.00625 mm

radius. These numbers reflect the number of drops in the whole three dimensional

domain, not just in the one-quarter domain used for the computations.

Table 3.8
Statistics of drops after breakup

Resolved drops Unresolved drops
We Number Mean radius [mm] Number Mean radius [mm] Percentage of mass

14.87 162 0.0528 66,357 0.00625 12%
20.09 257 0.0385 83,863 0.00625 16%
81.04 654 0.0341 117,295 0.00625 22%

For the stamen breakup case, the product drop sizes are first calculated at t = 1.6 ms

when the breakup of the bag has finished and are then calculated at t = 2.6 ms when

the breakup of the stamen and its surrounding rim is complete. The final product

drop size distribution of the resolved drops for the stamen breakup, shown in Fig. 3.25,

is calculated by combing these two drop size data. As is seen in Table 3.8, there are

257 resolved drops, and the mean radius of these drops is 0.0385 mm. There are

83863 unresolved drops of 0.00625 mm radius.

For the stripping breakup case, the product drop sizes are first calculated at t = 0.8ms

when the stripping of ligaments stretched from the rim around the middle bulk drop

has finished and are then calculated at t = 1.2 ms when the stripping of the middle
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bulk drop is complete. The final product drop size distribution of the resolved drops

for the stripping breakup, shown in Fig. 3.26, is calculated by combining these two

drop size data. As is seen in Table 3.8, there are 654 resolved drops, and the mean

radius of these drops is 0.0341 mm. There are 117295 unresolved drops of 0.00625 mm

radius.

Figures 3.24, 3.25 and 3.26 only show drops that are resolved by the computational

mesh. Both lognormal and volume-weighted χ2 distributions are used to fit the prod-

uct drop size distribution data. The probability density function (PDF) of the log-

normal distribution is

f(x) =
1

xσ
√

2π
e−

(ln x−µ)2

2σ2 , (3.19)

where x = d/d0, normalized diameter of the product drop by the diameter of the

initially spherical drop, d0, µ is the mean of ln x, and σ is the standard deviation of

lnx. The PDF of the volume-weighted χ2 distribution is

f(r) =
1

6r̄

(r
r̄

)3

e−
r
r̄ , (3.20)

where r is the radius of the product drop, r̄ is the mean of r. The fits are in good

agreement with the only available experimental data from Yao et al. [95] which is

limited to the bag breakup regime. By calculating the sum of squared errors (SSE),

i.e., the sum of the squares of difference between the observed value and the estimated

value from a fit, Table 3.9 shows that the volume-weighted χ2 fit is a little bit better
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than the lognormal fit for the bag breakup, the lognormal fit is much better than the

volume-weighted χ2 fit for the stamen breakup, and both fits perform equally well for

the stripping breakup.

Table 3.9
Sum of Squared Error (SSE) of fittings

Weber number lognormal vol.-weighted χ2

14.87 714.98 634.03
20.09 1059.31 1526.87
81.04 3155.58 3146.79

3.2.4 Summary and Conclusions

In this section, volume of fluid based multiphase flow simulations have been performed

for water drops in air flows of different Weber numbers, corresponding to different

breakup regimes. In order to keep the drop within the fixed computational domain,

the location of the drop is adjusted using the SEA method developed in this research.

The computational domain was reduced to one-quarter of the full three dimensional

domain by assuming symmetry. To justify the symmetry assumption, a fully three

dimensional simulation has been carried out for a non-breaking drop for We = 6.56.

From the fact that the three dimensional velocity and pressure fields are highly sym-

metric, the symmetry assumption is taken to be justified.

Drop breakup has been studied by means of three dimensional symmetric simulations
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for Weber numbers associated with the bag breakup, the stamen breakup, and the

stripping breakup regimes. These breakup modes are well captured in the present

simulations, and the temporal evolution of the breakup processes as well as the initi-

ation and total breakup times are in good agreement with experimental observations.

For each breakup mode in the simulations, the product drop sizes follow lognormal

distribution and volume-weighted χ2 distribution, and there are much more tiny drops

than resolved drops. The statistics of drops for each breakup mode in the simulations

indicates that atomizations for larger Weber numbers produce more drops of smaller

size. All this is in good agreement with experimental observations.
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(a) t = 0 ms (b) t = 0.3 ms

(c) t = 0.9 ms (d) t = 1.6 ms

(e) t = 1.7 ms (f) t = 2.3 ms

(g) t = 3.3 ms (h) t = 3.9 ms

Figure 3.18: Time sequence of bag breakup for We = 14.87.
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Figure 3.19: Pulse shadowgraphs of secondary breakup in the bag breakup
regime (water, We = 15, Oh = 0.0045). Reprinted from International
Journal of Multiphase Flow, 27(2), Dai and Faeth, Temporal properties
of secondary drop breakup in the multimode breakup regime, p. 221,
Copyright(2001), with permission from Elsevier. See documentation in Ap-
pendix B.
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(a) t = 0 ms (b) t = 0.3 ms

(c) t = 0.9 ms (d) t = 1.1 ms

(e) t = 1.3 ms (f) t = 1.4 ms

(g) t = 1.6 ms (h) t = 1.9 ms

(i) t = 2.4 ms (j) t = 2.6 ms

Figure 3.20: Time sequence of stamen breakup for We = 20.09.
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Figure 3.21: Pulse shadowgraphs of secondary breakup in the stamen
breakup regime (water, We = 20, Oh = 0.0045). Reprinted from Interna-
tional Journal of Multiphase Flow, 27(2), Dai and Faeth, Temporal proper-
ties of secondary drop breakup in the multimode breakup regime, p. 222,
Copyright(2001), with permission from Elsevier. See documentation in Ap-
pendix B.
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(a) t = 0 ms (b) t = 0.2 ms

(c) t = 0.4 ms (d) t = 0.5 ms

(e) t = 0.6 ms (f) t = 0.8 ms

(g) t = 1.2 ms

Figure 3.22: Time sequence of stripping breakup for We = 81.04.
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Figure 3.23: Pulse shadowgraphs of secondary breakup in the stripping
breakup regime (ethyl alcohol, We = 81, Oh = 0.0126). Reprinted from
International Journal of Multiphase Flow, 27(2), Dai and Faeth, Temporal
properties of secondary drop breakup in the multimode breakup regime, p.
227, Copyright(2001), with permission from Elsevier. See documentation in
Appendix B.
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χ

Figure 3.24: Drop size distribution for the bag breakup
(We = 14.87). Corresponding curves drawn are the lognormal fit
1/(xσ

√
2π)e−(lnx−μ)2/(2σ2), where x = d/d0, normalized diameter by the

initial diameter d0 = 1 mm, with parameters μ = −2.49575, σ = 0.67368
and the volume-weighted χ2 fit 1/(6r̄)(r/r̄)3e−r/r̄ with parameter mean of
radius r̄ = 0.0528 mm.
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χ

Figure 3.25: Drop size distribution for the stamen breakup
(We = 20.09). Corresponding curves drawn are the lognormal fit
1/(xσ

√
2π)e−(lnx−μ)2/(2σ2), where x = d/d0, normalized diameter by the

initial diameter d0 = 1 mm, with parameters μ = −2.85274, σ = 0.71275
and the volume-weighted χ2 fit 1/(6r̄)(r/r̄)3e−r/r̄ with parameter mean of
radius r̄ = 0.0385 mm.
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χ

Figure 3.26: Drop size distribution for the stripping breakup
(We = 81.04). Corresponding curves drawn are the lognormal fit
1/(xσ

√
2π)e−(lnx−μ)2/(2σ2), where x = d/d0, normalized diameter by the

initial diameter d0 = 1 mm, with parameters μ = −2.86721, σ = 0.59358
and the volume-weighted χ2 fit 1/(6r̄)(r/r̄)3e−r/r̄ with parameter mean of
radius r̄ = 0.0341 mm.
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Chapter 4

Convective Heat Transfer

Coefficient Calculation

Convective heat transfer between two substances can be described by Newton’s law

of cooling

qh = hc(Ts − Tf ), (4.1)

where qh is the heat flux, hc is the convective heat transfer coefficient, Ts is the surface

temperature, and Tf is the fluid reference temperature. If hc is known, then Eq. (4.1)

provides a computationally inexpensive way of determining heat transfer in complex

multiphase flows such as sprays. In sprays, the heat transfer between the liquid and

gas phase, including phase change such as solidification or evaporation, has to be
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computed for millions of droplets. The only way such tasks can be handled with

present-day computing technology is by relying on relatively simple models which

utilize Eq. (4.1), and, therefore, use the correct values of hc.

The heat transfer coefficient depends on the physical properties of the fluid, the type of

flow, and the geometric configuration in which convection occurs. Therefore, in order

to use Eq. (4.1), hc has to be known for the specific problem under consideration. Heat

transfer coefficients can be determined from theoretical considerations or by means

of experiments. Another method is the use of CFD, as is employed in this thesis. In

this approach, the heat transfer of the specific flow problem is simulated by resolving

all the necessary time and length scales. Under these conditions, the convective heat

transfer is in fact a macroscopic manifestation of the local heat conduction between

the two media. In other words, when all the necessary scales are resolved, one can use

Fourier’s law of heat conduction to compute the heat transfer. Once the transferred

heat, together with the temperatures Ts and Tf , is known, then hc can be determined

from Eq. (4.1).

4.1 Mathematical Model and Numerical Methods

For describing heat transfer in an incompressible Newtonian fluid in the laminar flow

regime, the following governing equations are solved:
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Conservation of mass

∇ · v = 0, (4.2)

Conservation of momentum

∂v

∂t
+ v · ∇v = ∇ · (ν∇v)− 1

ρ0

∇p, (4.3)

Conservation of energy

∂T

∂t
+∇ · (v T )−∇ · ( k

ρ0cp
∇T ) = 0, (4.4)

where T is the temperature, ρ0 is the density, v is the velocity, ν is the kinematic

viscosity, p is the pressure, k is the thermal conductivity and cp is the specific heat

capacity.

Continuum (CFD) methods are used to compute the heat transfer between two en-

tities by resolving all the necessary length and time scales. This requires the energy

conservation equation, Eq. (4.4), which utilizes Fourier’s law of heat conduction,

qh = −k∇T. (4.5)
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From post-processing of the CFD solution, the surface temperature Ts and the refer-

ence temperature Tf are computed. The determination of Tf depends on the geometry

configuration. There are different choices of the reference temperature used in differ-

ent geometries. From Fourier’s law of heat conduction, Eq. (4.5), the heat flux qh is

computed from post-processing of CFD data. The convective heat transfer coefficient,

hc, is then calculated using Eq. (4.1).

The convective heat transfer coefficient can also be expressed in terms of the Nusselt

number,

Nu =
hcDh

k
, (4.6)

where Dh is the hydraulic diameter,

Dh =
4A

P
, (4.7)

where A is the cross-sectional area, and P is the wetted perimeter of the cross-section.

The feasibility and accuracy of calculating convective heat transfer coefficients using

CFD has been investigated using OpenFOAM® for heat transfer in the laminar flow

regime in the following two dimensional cases: (1) flow between parallel flat plates

with constant plate wall temperature and with constant heat flux, respectively; (2)

flow past a cylinder with constant cylinder wall temperature and with constant heat

flux, respectively. The numerical results are then compared with experimental results.
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4.2 Flow Between Parallel Flat Plates

4.2.1 Problem Description

The material properties used in the simulations are shown in Table 4.1.

Table 4.1
Material properties for air

Density ρ 1.225 kg/m3

Dynamic viscosity µ 1.7894× 10−5 kg/m · s
Thermal conductivity k 0.0242W/mK
Specific heat capacity cp 1006.43J/kgK

Two cases will be simulated using OpenFOAM®: (1) parallel flat plates with constant

heat flux; (2) parallel flat plates with constant wall temperature. Both cases are

illustrated below in Fig. 4.1.

Different reference temperatures are used to show their effects on the calculation of

hc: the constant reference temperature, Tref , the centerline temperature, Tc, taken

at the middle horizontal line in Figure 4.1, and the bulk temperature, Tb, which is

defined as [51]

Tb =

∫
y
ρcpuT dy

ṁcp
, (4.8)
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T0 = 283 K

qw = 10 W/m2

3.0 m

qw = 10 W/m2

Umax = 0.15 m/s
T∞ = 283 K 0.05 m

(a)

T0 = 283 K

3.0 m

Umax = 0.15 m/s
T∞ = 283 K 0.05 m

Tw = 293 K

Tw = 293 K

(b)

Figure 4.1: Schematic representation of the two case studies with (a) con-
stant heat flux; (b) constant wall temperature.

where ρ is the fluid density, cp is the specific heat capacity, u is the horizontal com-

ponent of velocity, T is the temperature, and ṁ is the mass flow rate. In this case,

the material properties are considered constant, and Eq.(4.8) can be simplified to the

following form:

Tb =

∑n
i=1(uibiTi)

Uavb
, (4.9)

where ui is the horizontal component of velocity in a control volume (CV), bi is the

height of the CV, Ti is the temperature in the CV, Uav is the horizontal component

of velocity averaged over the distance between plates (the height of the domain), and

b is the height of the domain.
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According to Lienhard [51],

Nu =


7.541 for fixed plate wall temperature

8.235 for fixed plate wall heat flux

(4.10)

for this geometry, Dh is twice the distance between parallel plates,

hc =
Nuk

Dh

=


1.825 W/m2K for fixed plate wall temperature

1.993 W/m2K for fixed plate wall heat flux

. (4.11)

A solver for transient, incompressible, Newtonian fluids with temperature transport

using an adaptive time step, icoTempFoamVarDt, has been developed and used to

perform the CFD simulations. From numerical experiments, it was determined that

the simulation time of 70 s is sufficient for the thermal flow to reach steady state.

4.2.2 Mesh Independence Study

The geometry shown in Figure 4.1 is equipped with a computational mesh with uni-

form cell size along the flow direction and non-uniform cell size towards the wall

surfaces. The initial mesh used for the constant heat flux (CHF) and constant wall

temperature (CWT) cases has a total of 4800 cells (16 in the vertical direction and

97



300 in the horizontal direction). The height of the smallest cell is 4.3745 × 10−4 m

and it occurs at the wall boundary. A portion of the mesh is shown in Figure 4.2.

Figure 4.2: Initial mesh used for the CFD simulations.

The initial conditions for the velocity, U , the pressure, p, and the temperature, T ,

are given in Table 4.2.

Table 4.2
Initial conditions

U (0, 0, 0) m/s
p 0 m2/s2

T 283 K

The boundary conditions for the CHF case are shown in Table 4.3.
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Table 4.3
Boundary conditions for the CHF case

Inlet U parabolicVelocity
Inlet p zeroGradient
Inlet T fixedValue, 283 K
Outlet U zeroGradient
Outlet p fixedValue, 0 m2/s2

Outlet T zeroGradient
Wall U fixedValue, (0, 0, 0) m/s
Wall p zeroGradient
Wall T fixedGradient, 413.2231404958678 K/m

The boundary conditions for the CWT case are shown in Table 4.4.

Table 4.4
Boundary conditions for the CWT case

Inlet U parabolicVelocity
Inlet p zeroGradient
Inlet T fixedValue, 283 K
Outlet U zeroGradient
Outlet p fixedValue, 0 m2/s2

Outlet T zeroGradient
Wall U fixedValue, (0, 0, 0) m/s
Wall p zeroGradient
Wall T fixedValue, 293 K

The inlet velocity profile for both cases is a parabolic profile, which is used to speed

up the computations in order to reach steady state more quickly, as is seen in Fig. 4.3

and 4.4.
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Figure 4.3: Parabolic velocity profile at the inlet.

Figure 4.4: Parabolic velocity vector field at the inlet.

The bulk temperature is calculated through Eq.(4.9) using the temperature and ve-

locity data in each cell. The convective heat transfer coefficient, hcx, is calculated
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through Eq.(4.1) using the three different fluid reference temperatures. The param-

eters used to solve Eq.(4.1) are outlined in Table 4.5, where Tref is a constant value

that needs to be specified, Tc(x) is the horizontal temperature profile along the center

line of the flow, Tb(x) is the bulk temperature at different x, and Tb(x) is calculated

through Eq.(4.9) by post-processing of CFD data.

Table 4.5
Parameters used to calculate the convective heat transfer coefficient

CHF CWT
qw(x) qw = 10 W/m2 To be calculated
Tw(x) To be calculated Tw = 293 K

Tf (x) hcx = qw(x)
Tw(x)−Tf (x)

hcx = qw(x)
Tw(x)−Tf (x)

Tf (x) = Tref = 283 K hcRef (x) = 10
Tw(x)−283

hcRef (x) = qw(x)
293−283

Tf (x) = Tc(x) hcc(x) = 10
Tw(x)−Tc(x)

hcc(x) = qw(x)
293−Tc(x)

Tf (x) = Tb(x) hcb(x) = 10
Tw(x)−Tb(x)

hcb(x) = qw(x)
293−Tb(x)

The results for the convective heat transfer coefficient indicate that the reference

temperature, Tf in Eq. (4.1), has a significant effect on the value of the convective

heat transfer coefficient. According to Neale et al. [59], the bulk temperature Tb(x)

yields the best solution for the convective heat transfer coefficient calculations. The

mesh independence study is presented in the following.

The convective heat transfer coefficients calculated are compared along the x direction

for different meshes for both the CHF case and the CWT case. The coefficients

calculated using the constant reference temperature, Tref , the centerline temperature,

Tc(x), and the bulk temperature, Tb(x), are part of this comparison.
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The standard mesh has a total of 20400 cells. The coarse and the fine mesh are

obtained from the standard mesh by reducing and increasing the number of cells

along each direction by a factor of 2, respectively. The dimensions of the different

meshes are listed in Table 4.6.

Table 4.6
Mesh dimensions

Fine mesh Standard mesh Coarse mesh
Number of cells in y direction 64 32 16
Number of cells in x direction 1200 600 300
Total number of cells 76800 19200 4800

From Figs. 4.5 - 4.7, we can conclude that sufficient mesh independence has been

achieved with the standard mesh.
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Figure 4.5: hc using the constant reference temperature (a) for the CHF
case, (b) for the CWT case.
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Figure 4.6: hc using the centerline reference temperature (a) for the CHF
case, (b) for the CWT case.
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Figure 4.7: hc using the bulk reference temperature (a) for the CHF case,
(b) for the CWT case.
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4.2.3 Validation of Numerical Results

4.2.3.0.1 Local Convective Heat Transfer Coefficient To validate the sim-

ulation results, the convective heat transfer coefficients calculated using the constant

temperature, the centerline temperature and the bulk temperature as the reference

temperature, are compared with those calculated by Neale et al. [59] using FLUENT®

for both the CHF case (see Fig. 4.8) and the CWT case (see Fig. 4.9), respectively.

0 0.5 1 1.5 2 2.5 3
x[m]

0

0.5

1

1.5

2

2.5

3

3.5

4
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/m

2 K
]

hcRef (OpenFOAM)
hcc (OpenFOAM)
hcb (OpenFOAM)
hcRef (Fluent)
hcc (Fluent)
hcb (Fluent)

Figure 4.8: hc for the CHF case: hcRef calculated using the constant refer-
ence temperature; hcc calculated using the centerline reference temperature;
hcb calculated using the bulk reference temperature.
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Figure 4.9: hc for the CWT case: hcRef calculated using the constant refer-
ence temperature; hcc calculated using the centerline reference temperature;
hcb calculated using the bulk reference temperature

4.2.3.0.2 Average Convective Heat Transfer Coefficient The average con-

vective heat transfer coefficient is obtained by averaging the local convective heat

transfer coefficient over the plate surface from x = 0.5 m to x = 2.5 m to avoid inlet

and outlet effects, i.e.,

h̄c =
1

2.5− 0.5

∫ 2.5

0.5

hc(x) dx. (4.12)

The average convective heat transfer coefficient calculated in this study has good

agreement with the analytical value in Eq. (4.11), as is seen in Table 4.7.
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Table 4.7
Comparison of the average convective heat transfer coefficients with the

analytical values

CWT CHF
Analytical value (W/m2K) 1.825 1.849
Calculated value (W/m2K) 1.935 2.026

4.3 Flow Past a Cylinder

4.3.1 Problem Description

A two dimensional airflow of uniform velocity of U∞ = 0.137402 m/s (Re = 10),

U∞ = 0.274804 m/s (Re = 20), U∞ = 0.549608 m/s (Re = 40), U∞ = 0.618309 m/s

(Re = 45), respectively, and temperature T∞ = 283 K pasts over a circular cylinder

of 1 mm diameter. The problem is simulated by considering the flow in a channel with

a cylinder placed symmetrically between two parallel walls of distance 2Ly = 61 mm

with slip boundary conditions on the walls, as is seen in Fig. 4.10. The center of the

cylinder is placed at a distance of Lu = 30.5 mm from the inlet and at a distance of

Ld = 30.5 mm from the outlet, as is seen in Fig. 4.10. The surface of the cylinder is

taken to be either at a constant wall temperature Tw = 293 K, or at a uniform heat

flux qw = 10 W/m2. The physical properties of air are assumed to be temperature

independent, as is seen in Table 4.8.
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Lx

Lu Ld

Tw or qw 2Ly

D

Figure 4.10: Schematic representation of a flow past a circular cylinder.

Table 4.8
Physical properties of air

Density ρ 1.225 kg/m3

Kinematic viscosity ν 1.37402× 10−5 m2/s
Thermal conductivity k 0.0242W/mK
Specific heat capacity cp 1006.43J/kgK

The local Nusselt number is averaged over the surface of the cylinder to obtain the

average Nusselt number:

Nu =
1

π

∫ π

0

NuLocal dθ, (4.13)

where θ is the angular displacement from the front stagnation point. The average

Nusselt number can be used in process engineering design calculations, e.g., to esti-

mate the rate of heat transfer from the cylinder in the CWT case, or to estimate the

average surface temperature of the cylinder for the UHF case.
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4.3.2 Mesh Independence Study

As discussed in Section 4.2.1, icoTempFoamVarDt was developed to perform the CFD

simulations. From numerical experiments, it was determined that the simulation time

of 200 s is sufficient for the thermal flow to reach steady state.

The geometry in Fig. 4.10 is equipped with a non-uniform mesh with a finer grid near

the cylinder wall, as is seen in Fig. 4.11 and 4.12.

Figure 4.11: Computational Mesh.

The boundary conditions for the CWT case are shown in Table 4.9, and the boundary

conditions for the UHF case are shown in Table 4.10.
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Figure 4.12: Enlargement of the computational mesh near the cylinder
wall.

Table 4.9
Boundary conditions for the CWT case, Re = 45

Inlet U fixedValue, 0.618309 m/s
Inlet p zeroGradient
Inlet T fixedValue, 283 K
Outlet U zeroGradient
Outlet p fixedValue, 0 m2/s2

Outlet T zeroGradient
Cylinder wall surface U fixedValue, 0 m/s
Cylinder wall surface p zeroGradient
Cylinder wall surface T fixedValue, 293 K
Top and bottom boundary U slip
Top and bottom boundary p slip
Top and bottom boundary T slip

The local Nusselt numbers over the circular cylinder wall are compared for different

meshes for both the CWT and the UHF cases, respectively. The standard mesh has

a total of 19248 cells. The smallest cell is of size 8.562 × 10−14 m3 and it occurs at

the cylinder wall. The coarse and the fine mesh are obtained from the standard mesh

by reducing and increasing the number of cells in each direction by a factor of 1.5,
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Table 4.10
Boundary conditions for the UHF case, Re = 45

Inlet U fixedValue, 0.618309 m/s
Inlet p zeroGradient
Inlet T fixedValue, 283 K
Outlet U zeroGradient
Outlet p fixedValue, 0 m2/s2

Outlet T zeroGradient
Cylinder wall surface U fixedValue, 0 m/s
Cylinder wall surface p zeroGradient
Cylinder wall surface T fixedGradient, 413.223 K/m
Top and bottom boundary U slip
Top and bottom boundary p slip
Top and bottom boundary T slip

respectively. The total number of cells of the different meshes are listed in Table 4.11.

Table 4.11
Mesh dimensions

Fine mesh Standard mesh Coarse mesh
Total number of cells 43344 19248 8544

From Figs. 4.13 - 4.15, we can conclude that sufficient mesh independence has been

achieved with the standard mesh.

4.3.3 Validation of Numerical Results

To validate the numerical results, the local Nusselt numbers and the average Nusselt

number are compared with those calculated by Bharti et al. [7] for the CWT case
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(a)
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Figure 4.13: Local Nusselt number on the cylinder wall at Re = 10, Pr =
0.7 (a) for the CWT case, (b) for the UHF case.

θ

(a)

θ

(b)

Figure 4.14: Local Nusselt number on the cylinder wall at Re = 20, Pr =
0.7 (a) for the CWT case, (b) for the UHF case.

and the UHF case, respectively.
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Figure 4.15: Local Nusselt number on the cylinder wall at Re = 45, Pr =
0.7 (a) for the CWT case, (b) for the UHF case.

4.3.3.0.3 Local Nusselt Number The local Nusselt numbers calculated in this

study have good agreement with those calculated by Bharti et al. [7] at different

Reynolds numbers for the CWT case (see Figs. 4.16 - 4.18) and for the UHF case (see

Figs. 4.19 - 4.21). In these figures the angle, θ, 0 ≤ θ ≤ π, is the azimuthal angle of

the disk starting at the stagnation point. The reference values denoted by circles are

from Bharti et al. [7].

For both cases, the Nusselt number increases with an increase in the Reynolds number.

These figures show that relatively large values of the Nusselt number are near the front

stagnation point (θ = 0), and the Nusselt number decreases along the cylinder wall to

the minimum value near the point of separation due to the thickening of the thermal

boundary layer. A gradual increase in values of the Nusselt number can be seen
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θ

Figure 4.16: Local Nusselt numbers on the cylinder wall at Re = 10,
Pr = 0.7 for the CWT case

with an increase in the Reynolds number from the point of separation to the rear

stagnation point (θ = π).

4.3.3.0.4 Average Nusselt Number The average Nusselt number is obtained

by averaging the local Nusselt numbers over the cylinder wall through Eq. (4.13).

The calculated average Nusselt number is in good agreement with the literature, as

is seen in Table 4.12 for the CWT case, and Table 4.13 for the UHF case.
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Figure 4.17: Local Nusselt numbers on the cylinder wall at Re = 20,
Pr = 0.7 for the CWT case

4.4 Summary and Conclusions

In this chapter, CFD is used to calculate the convective heat transfer coefficients for

the CWT case and the UHF case for two problems: flow between parallel flat plates

and flow past a cylinder. The numerical results are in good agreement with the values

reported in the literature.
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Figure 4.18: Local Nusselt numbers on the cylinder wall at Re = 45,
Pr = 0.7 for the CWT case

Table 4.12
Comparison of the average Nusselt number (Pr = 0.7) with values from the

literature for the CWT case

Source Re = 10 Re = 20 Re = 40
Present results 1.8512 2.4481 3.2573

Bharti et al. [7] 1.8623 2.4653 3.2825
Badr [5] - 2.5400 3.4800
Dennis et al. [17] 1.8673 2.5216 3.4317
Lange et al. [46]a 1.8101 2.4087 3.2805
Soares et al. [77] 1.8600 2.4300 3.2000
Sparrow et al. [80]b 1.6026 2.2051 3.0821

Nu = 0.911Re0.385Pr1/3 [54] 1.9628 2.5632 3.3472
aEvaluated from their equation
bExperimental correlation
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θ

Figure 4.19: Local Nusselt numbers on the cylinder wall at Re = 10,
Pr = 0.7 for the UHF case

Table 4.13
Comparison of the average Nusselt number (Pr = 0.7) with values from the

literature for the UHF case

Source Re = 10 Re = 20 Re = 40
Present results 2.0283 2.7695 3.7630

Bharti et al. [7] 2.0400 2.7788 3.7755
Ahmad et al. [1] 2.0410 2.6620 3.4720
Dhiman et al. [19] 2.1463 2.8630 3.7930
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Figure 4.20: Local Nusselt numbers on the cylinder wall at Re = 20,
Pr = 0.7 for the UHF case
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Figure 4.21: Local Nusselt numbers on the cylinder wall at Re = 45,
Pr = 0.7 for the UHF case
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Chapter 5

Droplet Solidification in Cold

Airflow

Spray freezing processes involve solidification of millions of droplets in cold airflows.

However, the present-day computational technology does not have the capacity to

resolve these millions of droplets. One of the limitations of the heat transfer calcula-

tions in Chapter 4 is that the droplet is treated as a solid. In this chapter, the drop is

treated as a liquid (water) but still undeformed with zero velocity on the boundary.

The solidification inside the drop is simulated using an enhanced enthalpy-porosity

model [6] (see Appendix A for the development and validation of the code), and

the density change of water is accounted for by using the fourth-order temperature

polynomial [45]. The modeling and simulations presented in this chapter give insight
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and information that can be used for the development and improvement of simpler

solidification models, as are, for example, used in sprays (see [84] for details).

5.1 Problem Description

The problem of droplet solidification in cold airflow is studied by simulating the

solidification of a stationary spherical water droplet of 1 mm diameter in an external

cold airflow. The physical properties of water, ice and air used in the simulations are

shown in Table 5.1.

Table 5.1
Properties of water, ice and air used in the simulations

Material properties value Unit
ρl denity of water 999.8 kg/m3

ρs denity of ice 916.8 kg/m3

µl dynamic viscosity of water 0.001003 kg/ms
ν0 kinematic viscosity of air 1.46e-5 m2/s

kl thermal conductivity of water 0.6 W/mK
ks thermal conductivity of ice 2.26 W/mK
k0 thermal conductivity of air 0.0242 W/mK
cl specific heat capacity of water 4182.0 J/kgK
cs specific heat capacity of ice 2116.0 J/kgK
α0 thermal diffusivity of air 1.96e-5 m2/s
Lf latent heat of fusion 335000 m2/s2

Tl liquid temperature 273.30 K
Ts solid temperature 273.00 K

g gravitational acceleration 9.81 m/s2

The computational setup is shown schematically in Fig. 5.1 for the axisymmetric
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simulation.

inlet outlet1mm
centerline

top

g

3m
m

5mm5mm

Figure 5.1: Axisymmetric computational domain.

Initially, the water droplet has a temperature of 274 K and the airflow has a tem-

perature of 256 K with velocity 0.146 m/s corresponding to Re = 10. We apply the

constant velocity 0.146 m/s, constant temperature 256 K and a zero normal gradient

of pressure at the inlet, and we apply the constant pressure of 0 and a zero normal

gradient of velocity and temperature at the outlet. The slip boundary condition is

applied at the top.

5.2 Mathematical Model and Numerical Methods

The droplet solidification in the cold airflow is a multi-physics problem. Before the

droplet starts to solidify, it is a liquid-gas two phase flow problem. Then the droplet

starts to solidify from the outer surface of the drop. Once it is fully solidified on

the outer surface of the drop, it becomes a conjugate heat transfer-type problem, in
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which conduction in the solid and convection in the fluid must both be considered.

The difference between this problem and a typical conjugate heat transfer problem

is that instead of pure solid, it contains another liquid-solid phase change problem

inside the drop. We assume that the drop is fixed in the computational domain with

no drop deformation, and that the outer surface of the drop is solid, i.e., the velocity

is zero on the outer surface of the drop.

For the air, since the Mach number is very small, incompressible Newtonian fluid

model is used:

Conservation of mass

∇ · v = 0, (5.1)

Conservation of momentum

∂v

∂t
+ v · ∇v = ∇ · (ν0∇v)− 1

ρ0

∇p+ g, (5.2)

Conservation of energy

∂T

∂t
+∇ · (v T )−∇ · (α0∇T ) = 0, (5.3)

where ρ0 is the density of air, ν0 is the kinematic viscosity of air, and α0 is the thermal
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diffusivity of air.

For the droplet, the enhanced enthalpy-porosity model (see Appendix A and [6] for

details) is used to simulate the solidification of the water droplet:

Conservation of mass

∇ · v = 0, (5.4)

Conservation of momentum

ρl
∂v

∂t
+ ρlv · ∇v = ∇ · (µ∇v)−∇p+ S + (ρ(T )− ρl)g, (5.5)

Conservation of energy

cmix
∂T

∂t
+ cmix(v · ∇T ) + ρlLf

∂α

∂t
+ ρlLf (v · ∇α)−∇ · (kmix∇T ) = 0, (5.6)

where

ρ(T ) = αρl(T ) + (1− α)ρs, (5.7)

and ρl(T ) is the density of water, a fourth-order temperature polynomial given by
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Kowalewski and Rebow [45]:

ρl(T ) = 999.840281167 + 0.0673268037314 · T − 0.00894484552601 · T 2

+ 8.78462866500 · 10−5 · T 3 + 6.62139792627 · 10−7 · T 4, (5.8)

where the temperature T is in degrees Celsius. Equation (5.8) is graphically repre-

sented in Fig. 5.2.

ρ

Figure 5.2: Plot of Eq. (5.8).

cmix = αρlcl + (1− α)ρscs, (5.9)
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kmix = αkl + (1− α)ks. (5.10)

S is the Darcy source term, and is defined as

S = −C (1− α)2

α3 + ε
v, (5.11)

where C = 108, ε = 10−8 in our simulations, and α is the liquid fraction defined by

α =



0 if T < Ts

T−Ts
Tl−Ts

if Ts < T < Tl

1 if T > Tl

, (5.12)

where Ts and Tl are solid and liquid temperatures of water, respectively. The other

physical properties are constant and given in Table 5.1.

The coupling between the airflow and the droplet is ensured at the interface using a

Flux Forward Temperature Backward (FFTB) method. The method is as follows: At

the interface, the heat flux and the temperature must be conserved. This is achieved

by introducing an inner loop which iterates the said quantities in the two domains on

either side of the interface. The boundary heat flux at the interface in Domain 2 is

prescribed equal to the calculated heat flux in Domain 1 (Flux Forward), i.e.,

qn+1
2 = qn1 . (5.13)
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With this Neumann boundary condition, the temperature at the interface in Domain

2 can be calculated and is then used in Domain 1 as a Dirichlet boundary condition

(Temperature Back), i.e.,

T n+1
1 = T n2 . (5.14)

The temperature and the heat flux are then calculated in Domain 1 and the loop is

iterated till the temperature and the heat flux differences at the interface between

the two domains are below a desired tolerance. When the convergence is reached, the

physical time step is incremented.

5.3 Mesh Independence Study

We run the simulation to time t = 1 s. The standard mesh is shown in Figs. 5.3 and

5.4. The cells in the air region are graded geometrically by a factor of four such that

the smallest cells are located near the droplet. This enables a finer grid near the drop

where the velocity and pressure gradients are the largest.

Three meshes have been considered for the mesh independence study. In each mesh

the number of cells are changed by a factor of 1.5 in each direction, resulting in a

change of total number of cells by a factor of 2.25. The smallest cell sizes for each

mesh, together with the total number of cells, are listed in Table 5.2.
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Figure 5.3: Axisymmetric computational mesh.

Figure 5.4: Enlargement of the axisymmetric computational mesh near the
droplet.

The criteria for judging the mesh independence are the temperature, T , the velocity

x-component, Ux, and the pressure, p, in the y-direction at 1 mm in front of and

behind the drop, as well as the temperature, T , the velocity x-component, Ux, in the

y-direction in the middle of the drop at the simulation time t = 0.2 s. As is seen in

Figs. 5.5 - 5.9, the curves corresponding to the standard and the fine mesh are closer
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Table 5.2
Meshes used in the axisymmetric simulations

Mesh Number of cells Smallest cell size [mm]
Coarse 15, 108 0.0133× 0.0133
Standard 33, 900 0.0089× 0.0089
Fine 76, 048 0.0059× 0.0059

than the curves between the coarse and the standard mesh. From these figures we

can conclude that sufficient mesh independence has been achieved with the standard

mesh.

0 0.0005 0.001 0.0015 0.002 0.0025 0.003
y[m]

256

256.2

256.4

256.6

256.8

T[
K

]

coarse mesh
standard mesh
fine mesh

(a)

0 0.0005 0.001 0.0015 0.002 0.0025 0.003
y[m]

256

258

260

262

264
T[

K
]

coarse mesh
standard mesh
fine mesh

(b)

Figure 5.5: Temperature (a) along the line x = −1 mm at t = 0.2 s; (b)
along the line x = 1 mm at t = 0.2 s.

5.4 Results and Discussion

The water-ice interface is shown in Fig. 5.10 for the simulation times of 0.2 s, 0.4 s

and 0.6 s. The solidification starts inward from the surface of the spherical water
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Figure 5.6: Velocity x-component (a) along the line x = −1 mm at t =
0.2 s; (b) along the line x = 1 mm at t = 0.2 s.
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Figure 5.7: Pressure (a) along the line x = −1 mm at t = 0.2 s; (b) along
the line x = 1 mm at t = 0.2 s.

droplet because of the cold airflow around the drop. The water-ice interface is not

symmetric along the line x = 0 mm, i.e., the solidification rate is decreasing from the

front stagnation point to the rear stagnation point along the surface of the spherical

drop. This is because there is the largest heat transfer at the front stagnation point
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Figure 5.8: Temperature along the line x = 0 mm at t = 0.2 s.
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Figure 5.9: Velocity x-component along the line x = 0 mm at t = 0.2 s.

and the rate of heat transfer decreases as the air is heated when it passes around the

droplet.
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The velocity field inside the drop is shown in Fig. 5.11. Because the density of water is

decreasing with decreasing temperature (for temperatures below 277.15 K), the water

near the front stagnation point becomes less dense. It then starts to flow from the

front stagnation point to the rear stagnation point along the phase-dividing interface

of the drop, and then forms a circulation.

Some other information can also be extracted from the numerical results. For exam-

ple, it needs around 0.9 s for the entire solidification. At t = 0.1 s, the thickness of

the ice shell is between 0.023 mm and 0.047 mm, which indicates that after 0.1 s, the

drop can be treated as a solid when calculating the convective heat transfer coefficient

on the interface between the drop and airflow.

Qualitatively, the numerical results are physically reasonable. In order to obtain a

more realistic behavior of the solidification process of a drop in a free stream, the

current assumptions need to be adapted to a more general flow situation. More

specifically, the original liquid-gas interface cannot be assumed to be fixed and the

drop deformation, as investigated in Chapter 3, has to be taken into account. This,

however, is the subject of a future study.
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(a)

(b)

(c)

Figure 5.10: water (red) and ice (blue) inside the droplet at (a) t = 0.2 s;
(b) t = 0.4 s; (c) t = 0.6 s.
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Figure 5.11: Velocity field inside the drop at t = 0.2 s (red: water, blue:
ice).
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Chapter 6

Summary and Future Work

This research focused on computational methods for the investigation of liquid drop

phenomena in external gas flows. These phenomena include droplet deformation

and breakup, convective heat transfer between liquid drop and gas flow, and droplet

solidification in cold airflow. Computational solvers were developed or modified within

the OpenFOAM® environment to study each of these phenomena.

First, to study droplet deformation and breakup, a two-phase flow solver,

interSEAFoam, has been implemented into OpenFOAM®. This solver is based on

the standard two-phase flow solver interFoam. It utilizes the Shifted Eulerian Adap-

tation (SEA) method which adjusts the location of the drop every N time steps, and
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thus ensures that the drop remains within the fixed computational domain. Axisym-

metric CFD simulations have been conducted to verify the deformation and breakup

behavior of a drop in an air stream as predicted by the TAB model and as observed

in experiments. The original TAB model has been modified to account for the change

in the aerodynamic drag due to the drop deformation. It is found that the initiation

time and the drop deformation at the initiation time for the bag breakup, the stamen

breakup, and the stripping breakup regimes are in good agreement with the modified

TAB model.

Three dimensional symmetric simulations have also been performed to study breakup

behavior of a drop in an air stream for the bag, the stamen, and the stripping breakup

regimes. The temporal evolution of each breakup mode is in good agreement with

the experimental observations. The product drop size distribution of each breakup

regime is quantified and is found to be consistent with the experimental observations.

Second, a solver for transient, incompressible, Newtonian fluids with temperature

transport using an adaptive time step, icoTempFoamVarDt, was developed to test

the accuracy and feasibility of using CFD to calculate convective heat transfer co-

efficients for constant wall temperature and constant heat flux boundary conditions,

respectively, in two cases: flow between parallel flat plates and flow past a cylinder.

The numerical results show good agreement with the literature and indicate good

performance of using CFD to calculate convective heat transfer coefficients.
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Finally, a solidification solver, modPolyMeltFoam, has been implemented into

OpenFOAM®. This solver is based on an enhanced enthalpy-porosity model for

phase change with natural convection [6]. In this model, the different thermophysical

properties of the liquid and solid phases are taken into consideration. The code has

been tested for pure natural convection of water in a cavity and solidification of water

in a cavity. The results are in good agreement with the existing numerical results

and experimental observations from the literature.

A fluid-fluid conjugate heat transfer solver with the assumption of zero veloc-

ity interface condition, modFluidFluidChtMultiRegionFoam, has been implemented

into OpenFOAM®. This solver is based on icoFoam, chtMultiRegionFoam and

modPolyMeltFoam. This solver has been used to simulate the solidification of a water

droplet in a cold airflow. Qualitatively, the numerical results are physically reason-

able.

Future Work

The computational solvers developed within the course of this research represent a

significant step toward allowing the detailed computational investigation of liquid

drop phenomena in external gas flows. To better analyze and understand these phe-

nomena, further work is needed. Future work may include, but is not limited to:

† Further develop the modified TAB model with varying drag coefficient.
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† Perform fully three dimensional simulations of drop deformation and breakup.

† Calculate convective heat transfer coefficients along the interface between the

water drop and the surrounding air to build correlations.

† Further develop the fluid-fluid conjugate heat transfer solver to incorporate

additional physics, e.g., drop deformation and interfacial velocities, and use it

to study the solidification of a water drop in a cold airflow.
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Characterization of Atomization and Breakup of Acoustically Levitated Drops

with Digital Holography, Applied Optics, vol. 54(1), pp. A23–A31, 2015.

[96] Zaleski, S., Li, J., and Succi, S., Two-dimensional Navier-Stokes Simulation of

Deformation and Breakup of Liquid Patches, Physical Review Letters, vol. 2,

p. 75, 1995.

153





Appendix A

Solidification under Natural

Convection

Phase change problems are important in many engineering and industrial applica-

tions. Solidification of water is an example that has received a lot of experimental

and numerical attention. Unlike metal or alloys, there is a big difference between

thermophysical properties of water and ice, especially the specific heat capacities.

The specific heat capacity of water is about 4202 J/kgK while the specific heat ca-

pacity of ice is around 2116 J/kgK. It is important and necessary to be able to

simulate water freezing process with different thermophysical properties taken into

account. The enthalpy-porosity model developed by Voller and Prakash [91] is a

widely used model to describe the solidification processes. This model is, however,
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limited to situations where the liquid and solid thermophysical properties are equal

[21, 22, 34, 35]. Recently, Belhamadia et al. [6] presented an enhanced enthalpy-

porosity model that allows to consider the case where liquid and solid thermophysical

properties differ. This model has been implemented into OpenFOAM® to form a

new solver modPolyMeltFoam. Two numerical benchmarks [57] and one experimental

benchmark [45] are used to validate the model and its implementation.

A.1 Natural Convection of Water in a Cavity

A.1.1 Problem Description

We consider the natural convection of water in a two dimensional heated cavity with

side L = 38 mm shown in Fig. A.1. Two vertical walls are isothermal and kept at

temperatures TH = 283 K and TC = 273 K, respectively. The top and bottom walls

are assumed to be adiabatic. The initial temperature of water is T0 = 278 K.

A.1.2 Mathematical Model and Numerical Methods

For describing the heat transfer in an incompressible Newtonian fluid in the laminar

flow regime, the following governing equations are used:
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TCTH L

Figure A.1: Schematic of cavity.

Conservation of mass

∇ · v = 0, (A.1)

Conservation of momentum

ρ0
∂v

∂t
+ ρ0v · ∇v = ∇ · (µ∇v)−∇p+ (ρ(T )− ρ0)g, (A.2)

Conservation of energy

cp
∂T

∂t
+∇ · (v cpT )−∇ · ( k

ρ0

∇T ) = 0, (A.3)

where T is the temperature, ρ(T ) is the density of water which depends on the

temperature. ρ0 is the water reference density, v is the velocity, µ is the dynamic

viscosity, p is the pressure, k is the thermal conductivity and cp is the specific heat

capacity at constant pressure. Instead of using a linear variation of density, we use
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a non-linear variation due to the strong non-linearity of water density around 277 K

(see Fig. 5.2). The fourth-order temperature polynomial, ρ(T ), given by Kowalewski

and Rebow [45] is used,

ρ(T ) = 999.840281167 + 0.0673268037314 · T − 0.00894484552601 · T 2

+ 8.78462866500 · 10−5 · T 3 + 6.62139792627 · 10−7 · T 4, (A.4)

where the temperature T is given in degrees Celsius. The other physical parameters

are kept constant and are given in Table A.1.

Table A.1
Properties of water used in the simulation

Material properties of water Value Unit
ρ0 999.8 kg/m3

µ 0.001003 kg/ms
ν = µ/ρ0 1.0032e−6 m2/s

k 0.6 W/mK
cp 4182.0 J/kgK
g 9.81 m/s2
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A.1.3 Mesh Independence Study

A mesh independence study has been conducted using the three meshes with 100×100

cells, 150 × 150 cells and 225 × 225 cells. The simulations are run for 800 seconds

when steady state has been reached. Figures A.2 - A.4 show the temperature, T ,

the velocity x-component, Ux, and the velocity y-component, Uy, along the center

horizontal line y = 19 mm and the center vertical line x = 19 mm, respectively. From

these figures, we can conclude that sufficient mesh independence has been achieved

with the standard mesh. Therefore, all subsequent simulations have been performed

with the standard mesh.
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Figure A.2: Temperature (a) along center horizontal line; (b) along center
vertical line.
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Figure A.3: Velocity x-component (a) along center horizontal line; (b)
along center vertical line.
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Figure A.4: Velocity y-component (a) along center horizontal line; (b)
along center vertical line.

160



A.1.4 Validation of Numerical Results

The simulation results are compared with computations performed by means of the

commercial software packet FLUENT® [25] as reported in [57]. The temperature

and velocity fields are shown in Figs. A.5 - A.7.

Qualitatively, there is good agreement between the OpenFOAM® and FLUENT®

simulation results. These figures show that the flow pattern consists of two competing

circulations. In the vicinity of the cold wall, two convection streams collide forming

a clearly visible saddle point.

More detailed quantitative comparisons of the temperature and velocity are given in

Figs. A.8 - A.10. As is seen in these figures, there is good quantitative agreement

between the OpenFOAM® and the FLUENT® results. Since the same models are

used here, the models and their implementations are validated.
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(a)

(b)

Figure A.5: Temperature field (a) FLUENT®, source: [57]; reprinted
from TASK Quarterly, 7(3), Michalek and Kowalewski, Simulations of the
water freezing process numerical benchmarks, p. 394, Copyright(2003),
with permission from CI TASK. See documentation in Appendix C. (b)
OpenFOAM®.
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(a)

(b)

Figure A.6: Magnitude of velocity field (a) FLUENT®, source: [57];
reprinted from TASK Quarterly, 7(3), Michalek and Kowalewski, Simula-
tions of the water freezing process numerical benchmarks, p. 394, Copy-
right(2003), with permission from CI TASK. See documentation in Ap-
pendix C. (b) OpenFOAM®.
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(a)

(b)

Figure A.7: Velocity vectors imposed on the temperature field (a)
FLUENT®, source: [57]; reprinted from TASK Quarterly, 7(3), Michalek
and Kowalewski, Simulations of the water freezing process numerical bench-
marks, p. 394, Copyright(2003), with permission from CI TASK. See docu-
mentation in Appendix C. (b) OpenFOAM®.
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Figure A.8: Temperature (a) along center horizontal line; (b) along center
vertical line. Source of FLUENT® results: Michalek and Kowalewski [57].
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Figure A.9: Velocity x-component (a) along center horizontal line; (b)
along center vertical line. Source of FLUENT® results: Michalek and
Kowalewski [57].
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A.2 Solidification of Water in a Cavity

A.2.1 Problem Description

The second numerical benchmark problem is water freezing in the same cavity as in

Section A.1. We consider freezing of water after the thermal boundary condition is

abruptly changed from TC = 273 K to TC = 263 K at the cold wall. The steady

state solution obtained in Section A.1 becomes the initial condition in this section.

A.2.2 Mathematical Model and Numerical Methods

Brent et al. [10] noticed that a possible model that mimics the velocity behavior

between liquid and solid phases would be that of a porous medium with the liquid

flowing through a solid matrix. In a non-isothermal phase change process, this model

has physical significance, whereas for an isothermal phase change process, the model

is the result of numerical discretization. This model, together with the enthalpy

method, is often called enthalpy-porosity model, developed by Voller and Prakash

[91] to describe melting and solidification processes. This model has been widely

used in many CFD software, e.g., FLUENT®.
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Recently, Belhamadia et al. [6] developed an enhanced enthalpy-porosity model. This

model allows to take different liquid and solid thermophysical properties into account.

The governing equations are as follows:

Conservation of mass

∇ · v = 0, (A.5)

Conservation of momentum

ρl
∂v

∂t
+ ρlv · ∇v = ∇ · (µ∇v)−∇p+ S + (ρ(T )− ρl)g, (A.6)

Conservation of energy

cmix
∂T

∂t
+ cmix(v · ∇T ) + ρlLf

∂α

∂t
+ ρlLf (v · ∇α)−∇ · (kmix∇T ) = 0, (A.7)

where

ρ(T ) = αρl(T ) + (1− α)ρs, (A.8)

ρl(T ) is the density of water, a fourth-order temperature polynomial (see Eq. (A.4)),

cmix = αρlcl + (1− α)ρscs, (A.9)

kmix = αkl + (1− α)ks. (A.10)
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S is the Darcy source term, and is defined as

S = −C (1− α)2

α3 + ε
v, (A.11)

where C = 108, ε = 10−8 in our simulation, and α is the liquid fraction defined by

α =



0 if T < Ts

T−Ts
Tl−Ts

if Ts < T < Tl

1 if T > Tl

, (A.12)

where Ts and Tl are the solid and liquid temperatures of water, respectively. The

other physical properties are constant and given in Table A.2. Note that the specific

heat capacity of ice, cs, is chosen to be the same as that of water, cl, because of the

same set up from the numerical benchmark problem [57].

A.2.3 Mesh Independence Study

A mesh independence study has been conducted using the three meshes with 100×100

cells, 150 × 150 cells and 225 × 225 cells, respectively. The simulations are run for

500 seconds when steady state has been reached. Figures A.11 - A.13 show the

temperature, T , the velocity x-component, Ux, and the velocity y-component, Uy,

along the center horizontal line y = 19 mm and the center vertical line x = 19 mm,
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Table A.2
Properties of water and ice used in the simulation

Material properties of water and ice value Unit
ρl denity of water 999.8 kg/m3

ρs denity of ice 916.8 kg/m3

µ dynamic viscosity 0.001003 kg/ms
kl thermal conductivity of water 0.6 W/mK
ks thermal conductivity of ice 2.26 W/mK
cl specific heat capacity of water 4182.0 J/kgK
cs specific heat capacity of ice 4182.0 J/kgK

Lf latent heat of fusion 335000 m2/s2

Tl liquid temperature of water 273.30 K
Ts solid temperature of water 273.00 K
g gravitational acceleration 9.81 m/s2

respectively. From these figures, we can conclude that sufficient mesh independence

has been achieved with the standard mesh. Therefore, all subsequent simulations

have been performed with the standard mesh.

A.2.4 Validation of Numerical Results

Results from OpenFOAM® and FLUENT® [57] for the temperature and velocity

fields are presented in Figs. A.14 and A.16.

During the first 100 s, the thickness of the ice layer is rather uniform, whereas after

100 s the main flow recirculation decreases the solidification rate in the upper part

of the cavity and a characteristic belly-like shape of the ice front becomes evident.
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More detailed quantitative comparisons of the temperature and velocity are given in

Figs. A.17 - A.19. As is seen in these figures, there is good quantitative agreement

between the OpenFOAM® and the FLUENT® results. Note that although the en-

hanced enthalpy-porosity model is used, it is used with the specific heat capacity of

ice taken to be the same as the specific heat capacity of water, as used in [57]. The

enhanced enthalpy-porosity model is validated under the same condition needed in

the original enthalpy-porosity model.

An experimental benchmark of water freezing in a differentially heated cavity is con-

sidered. The cavity is a cube with side length of 38 mm. Two vertical black anodised

walls are isothermal, kept at temperatures TH = 283 K and TC = 263 K, respectively.

The other four walls are made of 6 mm plexiglas, which have low thermal conductivity

to ensure the entry of heat from the external laminar air stream at room temperature

is neglected. The initial temperature of water and of all six walls is 273.5 K, i.e., just

above the freezing point of water. The null initial velocity flow field is assumed.

In our two dimensional simulation, the same governing equations are solved as in the

previous case. For the thermal boundary conditions, without loss of much accuracy,

idealized adiabatic boundary condition is assumed for the non-isothermal walls [45].

The same physical properties of water and ice are used as in the previous case except

that the specific heat capacity of ice is the real one, i.e., cs = 2116.0 J/kgK.

We run the simulation to time t = 2340 s. The ice front and velocity field from the
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experiment and from OpenFOAM® are presented in Fig. A.20. It can be seen that

the positions of the ice layers are almost identical, and both are almost perpendicular

to the bottom of the cavity. Both of the flow fields have the same circulation flow

pattern. Qualitatively, there is good agreement between the numerical results and

the experiment.

A.3 Summary and Conclusions

In this appendix, an enhanced enthalpy-porosity model for phase change under nat-

ural convection is presented and implemented into OpenFOAM®. In this model,

different thermophysical properties of liquid and solid phases are taken into consid-

eration. This model has been tested for pure natural convection of water in a cavity

and solidification of water in a cavity. The simulation results are in good agreement

with both the numerical and the experimental results from the literature.
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Figure A.10: y-component of velocity (a) along center horizontal line;
(b) along center vertical line. Source of FLUENT® results: Michalek and
Kowalewski [57].
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Figure A.11: Temperature (a) along center horizontal line; (b) along center
vertical line.
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Figure A.12: Velocity x-component (a) along center horizontal line; (b)
along center vertical line.
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Figure A.13: Velocity y-component (a) along center horizontal line; (b)
along center vertical line.
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(a)

(b)

Figure A.14: Temperature contour at time t = 100s (a) FLUENT®,
source: [57]; reprinted from TASK Quarterly, 7(3), Michalek and
Kowalewski, Simulations of the water freezing process numerical bench-
marks, p. 400, Copyright(2003), with permission from CI TASK. See docu-
mentation in Appendix C. (b) OpenFOAM®.
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(a)

(b)

Figure A.15: Temperature contour at time t = 300s (a) FLUENT®,
source: [57]; reprinted from TASK Quarterly, 7(3), Michalek and
Kowalewski, Simulations of the water freezing process numerical bench-
marks, p. 400, Copyright(2003), with permission from CI TASK. See docu-
mentation in Appendix C. (b) OpenFOAM®.
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(a)

(b)

Figure A.16: Temperature contour at time t = 500s (a) FLUENT®,
source: [57]; reprinted from TASK Quarterly, 7(3), Michalek and
Kowalewski, Simulations of the water freezing process numerical bench-
marks, p. 400, Copyright(2003), with permission from CI TASK. See docu-
mentation in Appendix C. (b) OpenFOAM®.
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Figure A.17: Temperature (a) along center horizontal line; (b) along center
vertical line. Source of FLUENT® results: Michalek and Kowalewski [57].
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Figure A.18: Velocity x-component (a) along center horizontal line; (b)
along center vertical line. Source of FLUENT® results: Michalek and
Kowalewski [57].
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Figure A.19: y-component of velocity (a) along center horizontal line;
(b) along center vertical line. Source of FLUENT® results: Michalek and
Kowalewski [57].
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(a) (b)

Figure A.20: Ice front and velocity field at t = 2340 s. (a) experiment,
source: Kowalewski and Rebow [44], republished with permission of Begell
House Publishers, from An experimental benchmark for freezing water in
the cubic cavity, T. A. Kowalewski and R. Marek, 1997; permission con-
veyed through Copyright Clearance Center, Inc. See documentation in Ap-
pendix D. (b) OpenFOAM®.
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Appendix B

Letter for Figs. 3.19, 3.21, 3.23
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Appendix D
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issuance of the Order Confirmation, the license is automatically revoked
and is null and void, as if it had never been issued, if complete payment
for the license is not received on a timely basis either from User directly
or through a payment agent, such as a credit card company.
3.3 Unless otherwise provided in the Order Confirmation, any grant of
rights to User (i) is “one-time” (including the editions and product family
specified in the license), (ii) is non-exclusive and non-transferable and
(iii) is subject to any and all limitations and restrictions (such as, but not
limited to, limitations on duration of use or circulation) included in the
Order Confirmation or invoice and/or in these terms and conditions.
Upon completion of the licensed use, User shall either secure a new
permission for further use of the Work(s) or immediately cease any new
use of the Work(s) and shall render inaccessible (such as by deleting or
by removing or severing links or other locators) any further copies of the
Work (except for copies printed on paper in accordance with this license
and still in User's stock at the end of such period).
3.4 In the event that the material for which a republication license is
sought includes third party materials (such as photographs, illustrations,
graphs, inserts and similar materials) which are identified in such
material as having been used by permission, User is responsible for
identifying, and seeking separate licenses (under this Service or
otherwise) for, any of such third party materials; without a separate
license, such third party materials may not be used.
3.5 Use of proper copyright notice for a Work is required as a condition
of any license granted under the Service. Unless otherwise provided in
the Order Confirmation, a proper copyright notice will read substantially
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as follows: “Republished with permission of [Rightsholder’s name], from
[Work's title, author, volume, edition number and year of copyright];
permission conveyed through Copyright Clearance Center, Inc. ” Such
notice must be provided in a reasonably legible font size and must be
placed either immediately adjacent to the Work as used (for example, as
part of a by-line or footnote but not as a separate electronic link) or in
the place where substantially all other credits or notices for the new
work containing the republished Work are located. Failure to include the
required notice results in loss to the Rightsholder and CCC, and the
User shall be liable to pay liquidated damages for each such failure
equal to twice the use fee specified in the Order Confirmation, in
addition to the use fee itself and any other fees and charges specified.
3.6 User may only make alterations to the Work if and as expressly set
forth in the Order Confirmation. No Work may be used in any way that is
defamatory, violates the rights of third parties (including such third
parties' rights of copyright, privacy, publicity, or other tangible or
intangible property), or is otherwise illegal, sexually explicit or obscene.
In addition, User may not conjoin a Work with any other material that
may result in damage to the reputation of the Rightsholder. User agrees
to inform CCC if it becomes aware of any infringement of any rights in a
Work and to cooperate with any reasonable request of CCC or the
Rightsholder in connection therewith.
4. Indemnity. User hereby indemnifies and agrees to defend the
Rightsholder and CCC, and their respective employees and directors,
against all claims, liability, damages, costs and expenses, including legal
fees and expenses, arising out of any use of a Work beyond the scope of
the rights granted herein, or any use of a Work which has been altered
in any unauthorized way by User, including claims of defamation or
infringement of rights of copyright, publicity, privacy or other tangible or
intangible property.
5. Limitation of Liability. UNDER NO CIRCUMSTANCES WILL CCC OR
THE RIGHTSHOLDER BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL OR INCIDENTAL DAMAGES (INCLUDING WITHOUT
LIMITATION DAMAGES FOR LOSS OF BUSINESS PROFITS OR
INFORMATION, OR FOR BUSINESS INTERRUPTION) ARISING OUT OF
THE USE OR INABILITY TO USE A WORK, EVEN IF ONE OF THEM
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. In any
event, the total liability of the Rightsholder and CCC (including their
respective employees and directors) shall not exceed the total amount
actually paid by User for this license. User assumes full liability for the
actions and omissions of its principals, employees, agents, affiliates,
successors and assigns.
6. Limited Warranties. THE WORK(S) AND RIGHT(S) ARE PROVIDED
“AS IS”. CCC HAS THE RIGHT TO GRANT TO USER THE RIGHTS
GRANTED IN THE ORDER CONFIRMATION DOCUMENT. CCC AND
THE RIGHTSHOLDER DISCLAIM ALL OTHER WARRANTIES RELATING
TO THE WORK(S) AND RIGHT(S), EITHER EXPRESS OR IMPLIED,
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INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
ADDITIONAL RIGHTS MAY BE REQUIRED TO USE ILLUSTRATIONS,
GRAPHS, PHOTOGRAPHS, ABSTRACTS, INSERTS OR OTHER
PORTIONS OF THE WORK (AS OPPOSED TO THE ENTIRE WORK) IN A
MANNER CONTEMPLATED BY USER; USER UNDERSTANDS AND
AGREES THAT NEITHER CCC NOR THE RIGHTSHOLDER MAY HAVE
SUCH ADDITIONAL RIGHTS TO GRANT.
7. Effect of Breach. Any failure by User to pay any amount when due, or
any use by User of a Work beyond the scope of the license set forth in
the Order Confirmation and/or these terms and conditions, shall be a
material breach of the license created by the Order Confirmation and
these terms and conditions. Any breach not cured within 30 days of
written notice thereof shall result in immediate termination of such
license without further notice. Any unauthorized (but licensable) use of a
Work that is terminated immediately upon notice thereof may be
liquidated by payment of the Rightsholder's ordinary license price
therefor; any unauthorized (and unlicensable) use that is not terminated
immediately for any reason (including, for example, because materials
containing the Work cannot reasonably be recalled) will be subject to all
remedies available at law or in equity, but in no event to a payment of
less than three times the Rightsholder's ordinary license price for the
most closely analogous licensable use plus Rightsholder's and/or CCC's
costs and expenses incurred in collecting such payment.
8. Miscellaneous.
8.1 User acknowledges that CCC may, from time to time, make changes
or additions to the Service or to these terms and conditions, and CCC
reserves the right to send notice to the User by electronic mail or
otherwise for the purposes of notifying User of such changes or
additions; provided that any such changes or additions shall not apply to
permissions already secured and paid for.
8.2 Use of User-related information collected through the Service is
governed by CCC’s privacy policy, available online here:
http://www.copyright.com/content/cc3/en/tools/footer/privacypolicy.html.
8.3 The licensing transaction described in the Order Confirmation is
personal to User. Therefore, User may not assign or transfer to any
other person (whether a natural person or an organization of any kind)
the license created by the Order Confirmation and these terms and
conditions or any rights granted hereunder; provided, however, that
User may assign such license in its entirety on written notice to CCC in
the event of a transfer of all or substantially all of User’s rights in the
new material which includes the Work(s) licensed under this Service.
8.4 No amendment or waiver of any terms is binding unless set forth in
writing and signed by the parties. The Rightsholder and CCC hereby
object to any terms contained in any writing prepared by the User or its
principals, employees, agents or affiliates and purporting to govern or
otherwise relate to the licensing transaction described in the Order
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Confirmation, which terms are in any way inconsistent with any terms
set forth in the Order Confirmation and/or in these terms and conditions
or CCC's standard operating procedures, whether such writing is
prepared prior to, simultaneously with or subsequent to the Order
Confirmation, and whether such writing appears on a copy of the Order
Confirmation or in a separate instrument.
8.5 The licensing transaction described in the Order Confirmation
document shall be governed by and construed under the law of the State
of New York, USA, without regard to the principles thereof of conflicts of
law. Any case, controversy, suit, action, or proceeding arising out of, in
connection with, or related to such licensing transaction shall be
brought, at CCC's sole discretion, in any federal or state court located in
the County of New York, State of New York, USA, or in any federal or
state court whose geographical jurisdiction covers the location of the
Rightsholder set forth in the Order Confirmation. The parties expressly
submit to the personal jurisdiction and venue of each such federal or
state court.If you have any comments or questions about the Service or
Copyright Clearance Center, please contact us at 978-750-8400 or send
an e-mail to info@copyright.com.
v 1.1

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.
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Appendix E

interSEAFoam Code

interSEAFoam.C

#include "fvCFD.H"
#include "MULES.H"
#include "subCycle.H"
#include "interfaceProperties.H"
#include "twoPhaseMixture.H"
#include "turbulenceModel.H"
#include "interpolationTable.H"
#include "pimpleControl.H"
#include "dropFromAlpha.H" //chao

int main(int argc , char *argv [])
{

#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"

pimpleControl pimple(mesh);

#include "initContinuityErrs.H"
#include "createFields.H"
#include "readTimeControls.H"
#include "correctPhi.H"
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#include "CourantNo.H"
#include "setInitialDeltaT.H"

Info << "\nStarting time loop\n" << endl;

int time_count = 0; //chao

Vector <double > centroid_old , centroid , ←↩
totalCentroid_; //chao

double nCells_x_real , nCells_y_real , nCells_z_real; ←↩
//chao

int nCells_x , nCells_y , nCells_z; //chao

#include "calcCOM.H" //chao
centroid_old = totalCentroid_; //chao

while (runTime.run())
{

#include "readTimeControls.H"
#include "CourantNo.H"
#include "alphaCourantNo.H"
#include "setDeltaT.H"

runTime ++;
time_count ++; //chao

Info << "Time = " << runTime.timeName () << nl << ←↩
endl;

twoPhaseProperties .correct ();

#include "alphaEqnSubCycle.H"

// --- Pressure -velocity PIMPLE corrector loop

while (pimple.loop())
{

#include "UEqn.H"

// --- Pressure corrector loop
while (pimple.correct ())
{

#include "pEqn.H"
}

if (pimple.turbCorr ())
{

turbulence ->correct ();
}

}

if (time_count == every_time_steps .value ()) //←↩
chao

{
#include "dragBackIfNeeded.H" //chao
time_count = 0;

}
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if (runTime.outputTime ()) //chao
{

#include "dragBackIfNeeded.H" //chao
time_count = 0;

}

runTime.write ();

Info << "ExecutionTime = " << runTime.←↩
elapsedCpuTime () << " s"
<< " ClockTime = " << runTime.←↩

elapsedClockTime () << " s"
<< nl << endl;

}

Info << "End\n" << endl;

return 0;
}

calcCOM.H

{

// calculate the center of mass of liquid phase in ←↩
the entire computational domain

scalar totalVolume_ = 0.0;

totalCentroid_ = Vector <scalar >:: zero;

scalar cellVolume = 0.0;

forAll(mesh.C(), cellID)

{

cellVolume = mesh.cellVolumes ()[cellID] * alpha1←↩
[cellID ];

totalVolume_ += cellVolume;

totalCentroid_ += mesh.cellCentres ()[cellID] *←↩
cellVolume;

}

// parallel version start

if (Pstream :: parRun ())

{

reduce(totalVolume_ , sumOp <scalar >());

reduce(totalCentroid_ , sumOp <vector >());
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}

// parallel version end

totalCentroid_ /= totalVolume_;

}

dragBackIfNeeded.H

#include "calcCOM.H"

centroid = totalCentroid_;

Info << "Now alpha centroid: " << centroid.x() << " " <<←↩
centroid.y() << " " << centroid.z() << endl;

Info << "centroid_old: " << centroid_old.x() << " " << ←↩
centroid_old.y() << " " << centroid_old.z() << endl;

nCells_x_real = (centroid.x() - centroid_old.x())/dx.←↩
value ();

nCells_y_real = (centroid.y() - centroid_old.y())/dy.←↩
value ();

nCells_z_real = (centroid.z() - centroid_old.z())/dz.←↩
value ();

Info << "move along x dir by " << nCells_x_real << "←↩
cells" << endl;

Info << "move along y dir by " << nCells_y_real << "←↩
cells" << endl;

Info << "move along z dir by " << nCells_z_real << "←↩
cells" << endl;

nCells_x = (int)nCells_x_real;

nCells_y = (int)nCells_y_real;

nCells_z = (int)nCells_z_real;

bool drag = false;

if (xMove.value () == 1)

{

if (nCells_x > 0)
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{

drag = true;

Info << "Drag back left " << nCells_x << " cells." << ←↩
endl;

for (int i = 0; i < nCells_x; i++)

{

if (Pstream :: parRun () && nx > 1)

{

#include "dragLeftComm.H"

}

else

{

for (int cellI = 0; cellI < mesh.cells ().size(); ←↩
cellI ++)

{

labelList neighbors = mesh.cellCells ()[cellI ];

for (int itr =0; itr <neighbors.size(); itr ++)

{

if (mesh.C()[neighbors[itr ]].x() - mesh.C()[cellI←↩
].x() > 1e-10)

{

alpha1[cellI] = alpha1[neighbors[itr ]]; //drag back ←↩
1 cell

p_rgh[cellI] = p_rgh[neighbors[itr ]]; //drag back 1 ←↩
cell

U[cellI] = U[neighbors[itr ]]; //drag back 1 cell

}

}

}

}

}

}

else if (nCells_x < 0)

{

drag = true;
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Info << "Drag back right " << nCells_x << " cells." ←↩
<< endl;

for (int i = 0; i < (-1)*nCells_x; i++)

{

if (Pstream :: parRun () && nx > 1)

{

#include "dragRightComm.H"

}

else

{

for (int cellI = mesh.cells ().size() -1; cellI >=0; ←↩
cellI --)

{

labelList neighbors = mesh.cellCells ()[cellI ];

for (int itr =0; itr <neighbors.size(); itr ++)

{

if (mesh.C()[cellI ].x() - mesh.C()[neighbors[itr←↩
]].x() > 1e-10)

{

alpha1[cellI] = alpha1[neighbors[itr ]]; //drag back ←↩
1 cell

p_rgh[cellI] = p_rgh[neighbors[itr ]]; //drag back 1 ←↩
cell

U[cellI] = U[neighbors[itr ]]; //drag back 1 cell

}

}

}

}

}

}

}

if (yMove.value () == 1)

{

if (nCells_y > 0)

{

drag = true;

Info << "Drag back down " << nCells_y << " cells." ←↩
<< endl;
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for (int i = 0; i < nCells_y; i++)

{

if (Pstream :: parRun () && ny > 1)

{

#include "dragDownComm.H"

}

else

{

for (int cellI = 0; cellI < mesh.cells ().size(); ←↩
cellI ++)

{

labelList neighbors = mesh.cellCells ()[cellI ];

for (int itr =0; itr <neighbors.size(); itr ++)

{

if (mesh.C()[neighbors[itr ]].y() - mesh.C()[cellI←↩
].y() > 1e-10)

{

alpha1[cellI] = alpha1[neighbors[itr ]]; //drag back ←↩
1 cell

p_rgh[cellI] = p_rgh[neighbors[itr ]]; //drag back 1 ←↩
cell

U[cellI] = U[neighbors[itr ]]; //drag back 1 cell

}

}

}

}

}

}

else if (nCells_y < 0)

{

drag = true;

Info << "Drag back up " << nCells_y << " cells." << ←↩
endl;

for (int i = 0; i < (-1)*nCells_y; i++)

{

if (Pstream :: parRun () && ny > 1)

{

#include "dragUpComm.H"
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}

else

{

for (int cellI = mesh.cells ().size() -1; cellI >=0; ←↩
cellI --)

{

labelList neighbors = mesh.cellCells ()[cellI ];

for (int itr =0; itr <neighbors.size(); itr ++)

{

if (mesh.C()[cellI ].y() - mesh.C()[neighbors[itr←↩
]].y() > 1e-10)

{

alpha1[cellI] = alpha1[neighbors[itr ]]; //drag back ←↩
1 cell

p_rgh[cellI] = p_rgh[neighbors[itr ]]; //drag back 1 ←↩
cell

U[cellI] = U[neighbors[itr ]]; //drag back 1 cell

}

}

}

}

}

}

}

if (zMove.value () == 1)

{

if (nCells_z > 0)

{

drag = true;

Info << "Drag back back " << nCells_z << " cells." ←↩
<< endl;

for (int i = 0; i < nCells_z; i++)

{

if (Pstream :: parRun () && nz > 1)

{

#include "dragBackComm.H"

}

else

{
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for (int cellI = 0; cellI < mesh.cells ().size(); ←↩
cellI ++)

{

labelList neighbors = mesh.cellCells ()[cellI ];

for (int itr =0; itr <neighbors.size(); itr ++)

{

if (mesh.C()[neighbors[itr ]].z() - mesh.C()[cellI←↩
].z() > 1e-10)

{

alpha1[cellI] = alpha1[neighbors[itr ]]; //drag back ←↩
1 cell

p_rgh[cellI] = p_rgh[neighbors[itr ]]; //drag back 1 ←↩
cell

U[cellI] = U[neighbors[itr ]]; //drag back 1 cell

}

}

}

}

}

}

else if (nCells_z < 0)

{

drag = true;

Info << "Drag back front " << nCells_z << " cells." ←↩
<< endl;

for (int i = 0; i < (-1)*nCells_z; i++)

{

if (Pstream :: parRun () && nz > 1)

{

#include "dragFrontComm.H"

}

else

{

for (int cellI = mesh.cells ().size() -1; cellI >=0; ←↩
cellI --)

{

labelList neighbors = mesh.cellCells ()[cellI ];

for (int itr =0; itr <neighbors.size(); itr ++)

{
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if (mesh.C()[cellI ].z() - mesh.C()[neighbors[itr←↩
]].z() > 1e-10)

{

alpha1[cellI] = alpha1[neighbors[itr ]]; //drag back ←↩
1 cell

p_rgh[cellI] = p_rgh[neighbors[itr ]]; //drag back 1 ←↩
cell

U[cellI] = U[neighbors[itr ]]; //drag back 1 cell

}

}

}

}

}

}

}

if (drag)

{

phi = linearInterpolate (U) & mesh.Sf();

#include "correctPhi.H"

rhoPhi = rho1*phi;

interface.correct ();

rho = alpha1*rho1 + (scalar (1.0) -alpha1)*rho2;

}

dragBackComm.H

{

//Loop over processor patches

Info << "Sending stuff" << endl;

forAll (mesh.boundaryMesh (),patchInd)

{

const polyPatch& patch = mesh.boundaryMesh ()[patchInd←↩
];

if (typeid(patch) == typeid(processorPolyPatch ))

{
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const processorPolyPatch & procpatch = dynamic_cast <←↩
const processorPolyPatch &>(patch);

//only for master chunk

for (int i = 0; i < senderBack.size(); i++)

{

if (procpatch.myProcNo () == senderBack[i] && ←↩
procpatch.neighbProcNo () == receiverBack[i])

{

//Make buffers

Field <scalar > mybuffer_alpha1(patch.size());

Field <scalar > mybuffer_p_rgh(patch.size());

Field <vector > mybuffer_U(patch.size());

const labelList& internalcells = patch.faceCells ();

forAll(internalcells , ind)

{

label curcell = internalcells[ind];

mybuffer_alpha1[ind] = alpha1[curcell ];

mybuffer_p_rgh[ind] = p_rgh[curcell ];

mybuffer_U[ind] = U[curcell ];

}

//Send buffer to neighbor

OPstream tNP(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8,0);

tNP << mybuffer_alpha1 << endl;

OPstream tNP2(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8,1);

tNP2 << mybuffer_p_rgh << endl;

OPstream tNP3(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8*3 ,2);

tNP3 << mybuffer_U << endl;

//drag back in subdomain start

for (int cellI = 0; cellI < mesh.cells ().size(); ←↩
cellI ++)

{

labelList neighbors = mesh.cellCells ()[cellI ];

for (int itr =0; itr <neighbors.size(); itr ++)

{

if (mesh.C()[neighbors[itr ]].z() - mesh.C()[cellI←↩
].z() > 1e-10)
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{

alpha1[cellI] = alpha1[neighbors[itr ]]; //drag back ←↩
1 cell

p_rgh[cellI] = p_rgh[neighbors[itr ]]; //drag back 1 ←↩
cell

U[cellI] = U[neighbors[itr ]]; //drag back 1 cell

}

}

}

//drag back in subdomain end

break;

}

}

}

}

forAll (mesh.boundaryMesh (),patchInd)

{

const polyPatch& patch = mesh.boundaryMesh ()[patchInd←↩
];

if (typeid(patch) == typeid(processorPolyPatch ))

{

const processorPolyPatch & procpatch = dynamic_cast <←↩
const processorPolyPatch &>(patch);

for (int i = 0; i < receiverBack.size(); i++)

{

if (procpatch.myProcNo () == receiverBack[i] && ←↩
procpatch.neighbProcNo () == senderBack[i])

{

for (int j = 0; j < receiverOnlyBack .size(); j++)

{

if (procpatch.myProcNo () == receiverOnlyBack [j])

{

//drag back in subdomain start

for (int cellI = 0; cellI < mesh.cells ().size(); ←↩
cellI ++)

{

labelList neighbors = mesh.cellCells ()[cellI ];

for (int itr =0; itr <neighbors.size(); itr ++)

{

214



if (mesh.C()[neighbors[itr ]].z() - mesh.C()[cellI←↩
].z() > 1e-10)

{

alpha1[cellI] = alpha1[neighbors[itr ]]; //drag back ←↩
1 cell

p_rgh[cellI] = p_rgh[neighbors[itr ]]; //drag back 1 ←↩
cell

U[cellI] = U[neighbors[itr ]]; //drag back 1 cell

}

}

}

//drag back in subdomain end

break;

}

}

//only for slave chunk

//Make buffer

Field <scalar > yourbuffer_alpha1 (patch.size());

IPstream fNP(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8,0);

fNP >> yourbuffer_alpha1 ;

Field <scalar > yourbuffer_p_rgh (patch.size());

IPstream fNP2(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8,1);

fNP2 >> yourbuffer_p_rgh ;

Field <vector > yourbuffer_U(patch.size());

IPstream fNP3(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8*3 ,2);

fNP3 >> yourbuffer_U;

{

const labelList& internalcells = patch.faceCells ();

forAll(internalcells , ind)

{

label curcell = internalcells[ind];

alpha1[curcell] = yourbuffer_alpha1 [ind];

p_rgh[curcell] = yourbuffer_p_rgh [ind];

U[curcell] = yourbuffer_U[ind];

}

}

break;
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}

}

}

}

}

dragFrontComm.H

{

//Loop over processor patches

Info << "Sending stuff" << endl;

forAll (mesh.boundaryMesh (),patchInd)

{

const polyPatch& patch = mesh.boundaryMesh ()[patchInd←↩
];

if (typeid(patch) == typeid(processorPolyPatch ))

{

const processorPolyPatch & procpatch = dynamic_cast <←↩
const processorPolyPatch &>(patch);

//only for master chunk -> cut work in half

for (int i = 0; i < senderFront.size(); i++)

{

if (procpatch.myProcNo () == senderFront[i] && ←↩
procpatch.neighbProcNo () == receiverFront[i])

{

//Make buffers

Field <scalar > mybuffer_alpha1(patch.size());

Field <scalar > mybuffer_p_rgh(patch.size());

Field <vector > mybuffer_U(patch.size());

const labelList& internalcells = patch.faceCells ();

forAll(internalcells , ind)

{

label curcell = internalcells[ind];

mybuffer_alpha1[ind] = alpha1[curcell ];

mybuffer_p_rgh[ind] = p_rgh[curcell ];

mybuffer_U[ind] = U[curcell ];

}
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//Send buffer to neighbor

OPstream tNP(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8,0);

tNP << mybuffer_alpha1 << endl;

OPstream tNP2(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8,1);

tNP2 << mybuffer_p_rgh << endl;

OPstream tNP3(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8*3 ,2);

tNP3 << mybuffer_U << endl;

//drag back in subdomain start

for (int cellI = mesh.cells ().size() -1; cellI >=0; ←↩
cellI --)

{

labelList neighbors = mesh.cellCells ()[cellI ];

for (int itr =0; itr <neighbors.size(); itr ++)

{

if (mesh.C()[cellI ].z() - mesh.C()[neighbors[itr←↩
]].z() > 1e-10)

{

alpha1[cellI] = alpha1[neighbors[itr ]]; //drag back ←↩
1 cell

p_rgh[cellI] = p_rgh[neighbors[itr ]]; //drag back 1 ←↩
cell

U[cellI] = U[neighbors[itr ]]; //drag back 1 cell

}

}

}

//drag back in subdomain end

break;

}

}

}

}

forAll (mesh.boundaryMesh (),patchInd)

{

const polyPatch& patch = mesh.boundaryMesh ()[patchInd←↩
];

if (typeid(patch) == typeid(processorPolyPatch ))
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{

const processorPolyPatch & procpatch = dynamic_cast <←↩
const processorPolyPatch &>(patch);

for (int i = 0; i < receiverFront.size(); i++)

{

if (procpatch.myProcNo () == receiverFront[i] && ←↩
procpatch.neighbProcNo () == senderFront[i])

{

for (int j = 0; j < receiverOnlyFront .size(); j++)

{

if (procpatch.myProcNo () == receiverOnlyFront [j])

{

//drag back in subdomain start

for (int cellI = mesh.cells ().size() -1; cellI >=0; ←↩
cellI --)

{

labelList neighbors = mesh.cellCells ()[cellI ];

for (int itr =0; itr <neighbors.size(); itr ++)

{

if (mesh.C()[cellI ].z() - mesh.C()[neighbors[itr←↩
]].z() > 1e-10)

{

alpha1[cellI] = alpha1[neighbors[itr ]]; //drag back ←↩
1 cell

p_rgh[cellI] = p_rgh[neighbors[itr ]]; //drag back 1 ←↩
cell

U[cellI] = U[neighbors[itr ]]; //drag back 1 cell

}

}

}

//drag back in subdomain end

break;

}

}

//only for slave chunk

//Make buffer

Field <scalar > yourbuffer_alpha1 (patch.size());

IPstream fNP(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8,0);
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fNP >> yourbuffer_alpha1 ;

Field <scalar > yourbuffer_p_rgh (patch.size());

IPstream fNP2(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8,1);

fNP2 >> yourbuffer_p_rgh ;

Field <vector > yourbuffer_U(patch.size());

IPstream fNP3(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8*3 ,2);

fNP3 >> yourbuffer_U;

{

const labelList& internalcells = patch.faceCells ();

forAll(internalcells , ind)

{

label curcell = internalcells[ind];

alpha1[curcell] = yourbuffer_alpha1 [ind];

p_rgh[curcell] = yourbuffer_p_rgh [ind];

U[curcell] = yourbuffer_U[ind];

}

}

break;

}

}

}

}

}

dragDownComm.H

{

//Loop over processor patches

Info << "Sending stuff" << endl;

forAll (mesh.boundaryMesh (),patchInd)

{

const polyPatch& patch = mesh.boundaryMesh ()[patchInd←↩
];

if (typeid(patch) == typeid(processorPolyPatch ))
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{

const processorPolyPatch & procpatch = dynamic_cast <←↩
const processorPolyPatch &>(patch);

//only for master chunk -> cut work in half

for (int i = 0; i < senderDown.size(); i++)

{

if (procpatch.myProcNo () == senderDown[i] && ←↩
procpatch.neighbProcNo () == receiverDown[i])

{

//Make buffers

Field <scalar > mybuffer_alpha1(patch.size());

Field <scalar > mybuffer_p_rgh(patch.size());

Field <vector > mybuffer_U(patch.size());

const labelList& internalcells = patch.faceCells ();

forAll(internalcells , ind)

{

label curcell = internalcells[ind];

mybuffer_alpha1[ind] = alpha1[curcell ];

mybuffer_p_rgh[ind] = p_rgh[curcell ];

mybuffer_U[ind] = U[curcell ];

}

//Send buffer to neighbor

OPstream tNP(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8,0);

tNP << mybuffer_alpha1 << endl;

OPstream tNP2(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8,1);

tNP2 << mybuffer_p_rgh << endl;

OPstream tNP3(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8*3 ,2);

tNP3 << mybuffer_U << endl;

//drag back in subdomain start

for (int cellI = 0; cellI < mesh.cells ().size(); ←↩
cellI ++)

{

labelList neighbors = mesh.cellCells ()[cellI ];

for (int itr =0; itr <neighbors.size(); itr ++)

{

if (mesh.C()[neighbors[itr ]].y() - mesh.C()[cellI←↩
].y() > 1e-10)
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{

alpha1[cellI] = alpha1[neighbors[itr ]]; //drag back ←↩
1 cell

p_rgh[cellI] = p_rgh[neighbors[itr ]]; //drag back 1 ←↩
cell

U[cellI] = U[neighbors[itr ]]; //drag back 1 cell

}

}

}

//drag back in subdomain end

break;

}

}

}

}

forAll (mesh.boundaryMesh (),patchInd)

{

const polyPatch& patch = mesh.boundaryMesh ()[patchInd←↩
];

if (typeid(patch) == typeid(processorPolyPatch ))

{

const processorPolyPatch & procpatch = dynamic_cast <←↩
const processorPolyPatch &>(patch);

for (int i = 0; i < receiverDown.size(); i++)

{

if (procpatch.myProcNo () == receiverDown[i] && ←↩
procpatch.neighbProcNo () == senderDown[i])

{

for (int j = 0; j < receiverOnlyDown .size(); j++)

{

if (procpatch.myProcNo () == receiverOnlyDown [j])

{

//drag back in subdomain start

for (int cellI = 0; cellI < mesh.cells ().size(); ←↩
cellI ++)

{

labelList neighbors = mesh.cellCells ()[cellI ];

for (int itr =0; itr <neighbors.size(); itr ++)

{
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if (mesh.C()[neighbors[itr ]].y() - mesh.C()[cellI←↩
].y() > 1e-10)

{

alpha1[cellI] = alpha1[neighbors[itr ]]; //drag back ←↩
1 cell

p_rgh[cellI] = p_rgh[neighbors[itr ]]; //drag back 1 ←↩
cell

U[cellI] = U[neighbors[itr ]]; //drag back 1 cell

}

}

}

//drag back in subdomain end

break;

}

}

//only for slave chunk

//Make buffer

Field <scalar > yourbuffer_alpha1 (patch.size());

IPstream fNP(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8,0);

fNP >> yourbuffer_alpha1 ;

Field <scalar > yourbuffer_p_rgh (patch.size());

IPstream fNP2(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8,1);

fNP2 >> yourbuffer_p_rgh ;

Field <vector > yourbuffer_U(patch.size());

IPstream fNP3(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8*3 ,2);

fNP3 >> yourbuffer_U;

{

const labelList& internalcells = patch.faceCells ();

forAll(internalcells , ind)

{

label curcell = internalcells[ind];

alpha1[curcell] = yourbuffer_alpha1 [ind];

p_rgh[curcell] = yourbuffer_p_rgh [ind];

U[curcell] = yourbuffer_U[ind];

}

}

break;

}
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}

}

}

}

dragUpComm.H

{

//Loop over processor patches

Info << "Sending stuff" << endl;

forAll (mesh.boundaryMesh (),patchInd)

{

const polyPatch& patch = mesh.boundaryMesh ()[patchInd←↩
];

if (typeid(patch) == typeid(processorPolyPatch ))

{

const processorPolyPatch & procpatch = dynamic_cast <←↩
const processorPolyPatch &>(patch);

//only for master chunk -> cut work in half

for (int i = 0; i < senderUp.size(); i++)

{

if (procpatch.myProcNo () == senderUp[i] && procpatch.←↩
neighbProcNo () == receiverUp[i])

{

//Make buffers

Field <scalar > mybuffer_alpha1(patch.size());

Field <scalar > mybuffer_p_rgh(patch.size());

Field <vector > mybuffer_U(patch.size());

const labelList& internalcells = patch.faceCells ();

forAll(internalcells , ind)

{

label curcell = internalcells[ind];

mybuffer_alpha1[ind] = alpha1[curcell ];

mybuffer_p_rgh[ind] = p_rgh[curcell ];

mybuffer_U[ind] = U[curcell ];

}
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//Send buffer to neighbor

OPstream tNP(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8,0);

tNP << mybuffer_alpha1 << endl;

OPstream tNP2(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8,1);

tNP2 << mybuffer_p_rgh << endl;

OPstream tNP3(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8*3 ,2);

tNP3 << mybuffer_U << endl;

//drag back in subdomain start

for (int cellI = mesh.cells ().size() -1; cellI >=0; ←↩
cellI --)

{

labelList neighbors = mesh.cellCells ()[cellI ];

for (int itr =0; itr <neighbors.size(); itr ++)

{

if (mesh.C()[cellI ].y() - mesh.C()[neighbors[itr←↩
]].y() > 1e-10)

{

alpha1[cellI] = alpha1[neighbors[itr ]]; //drag back ←↩
1 cell

p_rgh[cellI] = p_rgh[neighbors[itr ]]; //drag back 1 ←↩
cell

U[cellI] = U[neighbors[itr ]]; //drag back 1 cell

}

}

}

//drag back in subdomain end

break;

}

}

}

}

forAll (mesh.boundaryMesh (),patchInd)

{

const polyPatch& patch = mesh.boundaryMesh ()[patchInd←↩
];

if (typeid(patch) == typeid(processorPolyPatch ))

{
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const processorPolyPatch & procpatch = dynamic_cast <←↩
const processorPolyPatch &>(patch);

for (int i = 0; i < receiverUp.size(); i++)

{

if (procpatch.myProcNo () == receiverUp[i] && ←↩
procpatch.neighbProcNo () == senderUp[i])

{

for (int j = 0; j < receiverOnlyUp.size(); j++)

{

if (procpatch.myProcNo () == receiverOnlyUp[j])

{

//drag back in subdomain start

for (int cellI = mesh.cells ().size() -1; cellI >=0; ←↩
cellI --)

{

labelList neighbors = mesh.cellCells ()[cellI ];

for (int itr =0; itr <neighbors.size(); itr ++)

{

if (mesh.C()[cellI ].y() - mesh.C()[neighbors[itr←↩
]].y() > 1e-10)

{

alpha1[cellI] = alpha1[neighbors[itr ]]; //drag back ←↩
1 cell

p_rgh[cellI] = p_rgh[neighbors[itr ]]; //drag back 1 ←↩
cell

U[cellI] = U[neighbors[itr ]]; //drag back 1 cell

}

}

}

//drag back in subdomain end

break;

}

}

//only for slave chunk

//Make buffer

Field <scalar > yourbuffer_alpha1 (patch.size());

IPstream fNP(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8,0);

fNP >> yourbuffer_alpha1 ;
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Field <scalar > yourbuffer_p_rgh (patch.size());

IPstream fNP2(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8,1);

fNP2 >> yourbuffer_p_rgh ;

Field <vector > yourbuffer_U(patch.size());

IPstream fNP3(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8*3 ,2);

fNP3 >> yourbuffer_U;

{

const labelList& internalcells = patch.faceCells ();

forAll(internalcells , ind)

{

label curcell = internalcells[ind];

alpha1[curcell] = yourbuffer_alpha1 [ind];

p_rgh[curcell] = yourbuffer_p_rgh [ind];

U[curcell] = yourbuffer_U[ind];

}

}

break;

}

}

}

}

}

dragLeftComm.H

{

//Loop over processor patches

forAll (mesh.boundaryMesh (),patchInd)

{

const polyPatch& patch = mesh.boundaryMesh ()[patchInd←↩
];

if (typeid(patch) == typeid(processorPolyPatch ))

{

226



const processorPolyPatch & procpatch = dynamic_cast <←↩
const processorPolyPatch &>(patch);

for (int i = 0; i < senderLeft.size(); i++)

{

if (procpatch.myProcNo () == senderLeft[i] && ←↩
procpatch.neighbProcNo () == receiverLeft[i])

{

//Make buffers

Field <scalar > mybuffer_alpha1(patch.size());

Field <scalar > mybuffer_p_rgh(patch.size());

Field <vector > mybuffer_U(patch.size());

const labelList& internalcells = patch.faceCells ();

forAll(internalcells , ind)

{

label curcell = internalcells[ind];

mybuffer_alpha1[ind] = alpha1[curcell ];

mybuffer_p_rgh[ind] = p_rgh[curcell ];

mybuffer_U[ind] = U[curcell ];

}

//Send buffer to neighbor

OPstream tNP(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8,0);

tNP << mybuffer_alpha1 << endl;

OPstream tNP2(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8,1);

tNP2 << mybuffer_p_rgh << endl;

OPstream tNP3(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8*3 ,2);

tNP3 << mybuffer_U << endl;

//drag back in subdomain start

for (int cellI = 0; cellI < mesh.cells ().size(); ←↩
cellI ++)

{

labelList neighbors = mesh.cellCells ()[cellI ];

for (int itr =0; itr <neighbors.size(); itr ++)

{
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if (mesh.C()[neighbors[itr ]].x() - mesh.C()[cellI←↩
].x() > 1e-10)

{

alpha1[cellI] = alpha1[neighbors[itr ]]; //drag back ←↩
1 cell

p_rgh[cellI] = p_rgh[neighbors[itr ]]; //drag back 1 ←↩
cell

U[cellI] = U[neighbors[itr ]]; //drag back 1 cell

}

}

}

//drag back in subdomain end

break;

}

}

}

}

forAll (mesh.boundaryMesh (),patchInd)

{

const polyPatch& patch = mesh.boundaryMesh ()[patchInd←↩
];

if (typeid(patch) == typeid(processorPolyPatch ))

{

const processorPolyPatch & procpatch = dynamic_cast <←↩
const processorPolyPatch &>(patch);

for (int i = 0; i < receiverLeft.size(); i++)

{

if (procpatch.myProcNo () == receiverLeft[i] && ←↩
procpatch.neighbProcNo () == senderLeft[i])

{

for (int j = 0; j < receiverOnlyLeft .size(); j++)

{

if (procpatch.myProcNo () == receiverOnlyLeft [j])

{

//drag back in subdomain start

for (int cellI = 0; cellI < mesh.cells ().size(); ←↩
cellI ++)

{

labelList neighbors = mesh.cellCells ()[cellI ];

for (int itr =0; itr <neighbors.size(); itr ++)

228



{

if (mesh.C()[neighbors[itr ]].x() - mesh.C()[cellI←↩
].x() > 1e-10)

{

alpha1[cellI] = alpha1[neighbors[itr ]]; //drag back ←↩
1 cell

p_rgh[cellI] = p_rgh[neighbors[itr ]]; //drag back 1 ←↩
cell

U[cellI] = U[neighbors[itr ]]; //drag back 1 cell

}

}

}

break;

}

}

//drag back in subdomain end

//only for slave chunk

//Make buffer

Field <scalar > yourbuffer_alpha1 (patch.size());

IPstream fNP(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8,0);

fNP >> yourbuffer_alpha1 ;

Field <scalar > yourbuffer_p_rgh (patch.size());

IPstream fNP2(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8,1);

fNP2 >> yourbuffer_p_rgh ;

Field <vector > yourbuffer_U(patch.size());

IPstream fNP3(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8*3 ,2);

fNP3 >> yourbuffer_U;

{

const labelList& internalcells = patch.faceCells ();

forAll(internalcells , ind)

{

label curcell = internalcells[ind];

alpha1[curcell] = yourbuffer_alpha1 [ind];
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p_rgh[curcell] = yourbuffer_p_rgh [ind];

U[curcell] = yourbuffer_U[ind];

}

}

break;

}

}

}

}

}

dragRightComm.H

{

//Loop over processor patches

forAll (mesh.boundaryMesh (),patchInd)

{

const polyPatch& patch = mesh.boundaryMesh ()[patchInd←↩
];

if (typeid(patch) == typeid(processorPolyPatch ))

{

const processorPolyPatch & procpatch = dynamic_cast <←↩
const processorPolyPatch &>(patch);

for (int i = 0; i < senderRight.size(); i++)

{

if (procpatch.myProcNo () == senderRight[i] && ←↩
procpatch.neighbProcNo () == receiverRight[i])

{

//Make buffers

Field <scalar > mybuffer_alpha1(patch.size());

Field <scalar > mybuffer_p_rgh(patch.size());

Field <vector > mybuffer_U(patch.size());
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const labelList& internalcells = patch.faceCells ();

forAll(internalcells , ind)

{

label curcell = internalcells[ind];

mybuffer_alpha1[ind] = alpha1[curcell ];

mybuffer_p_rgh[ind] = p_rgh[curcell ];

mybuffer_U[ind] = U[curcell ];

}

//Send buffer to neighbor

OPstream tNP(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8,0);

tNP << mybuffer_alpha1 << endl;

OPstream tNP2(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8,1);

tNP2 << mybuffer_p_rgh << endl;

OPstream tNP3(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8*3 ,2);

tNP3 << mybuffer_U << endl;

//drag back in subdomain start

for (int cellI = mesh.cells ().size() -1; cellI >=0; ←↩
cellI --)

{

labelList neighbors = mesh.cellCells ()[cellI ];

for (int itr =0; itr <neighbors.size(); itr ++)

{

if (mesh.C()[cellI ].x() - mesh.C()[neighbors[itr←↩
]].x() > 1e-10)

{

alpha1[cellI] = alpha1[neighbors[itr ]]; //drag back ←↩
1 cell

p_rgh[cellI] = p_rgh[neighbors[itr ]]; //drag back 1 ←↩
cell

U[cellI] = U[neighbors[itr ]]; //drag back 1 cell

}

}

}

//drag back in subdomain end

break;

}
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}

}

}

forAll (mesh.boundaryMesh (),patchInd)

{

const polyPatch& patch = mesh.boundaryMesh ()[patchInd←↩
];

if (typeid(patch) == typeid(processorPolyPatch ))

{

const processorPolyPatch & procpatch = dynamic_cast <←↩
const processorPolyPatch &>(patch);

for (int i = 0; i < receiverRight.size(); i++)

{

if (procpatch.myProcNo () == receiverRight[i] && ←↩
procpatch.neighbProcNo () == senderRight[i])

{

for (int j = 0; j < receiverOnlyRight .size(); j++)

{

if (procpatch.myProcNo () == receiverOnlyRight [j])

{

//drag back in subdomain start

for (int cellI = mesh.cells ().size() -1; cellI >=0; ←↩
cellI --)

{

labelList neighbors = mesh.cellCells ()[cellI ];

for (int itr =0; itr <neighbors.size(); itr ++)

{

if (mesh.C()[cellI ].x() - mesh.C()[neighbors[itr←↩
]].x() > 1e-10)

{

alpha1[cellI] = alpha1[neighbors[itr ]]; //drag back ←↩
1 cell

p_rgh[cellI] = p_rgh[neighbors[itr ]]; //drag back 1 ←↩
cell

U[cellI] = U[neighbors[itr ]]; //drag back 1 cell

}

}

}

//drag back in subdomain end

break;
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}

}

//only for slave chunk

//Make buffer

Field <scalar > yourbuffer_alpha1 (patch.size());

IPstream fNP(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8,0);

fNP >> yourbuffer_alpha1 ;

Field <scalar > yourbuffer_p_rgh (patch.size());

IPstream fNP2(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8,1);

fNP2 >> yourbuffer_p_rgh ;

Field <vector > yourbuffer_U(patch.size());

IPstream fNP3(Pstream ::blocking ,procpatch.←↩
neighbProcNo (),patch.size()*8*3 ,2);

fNP3 >> yourbuffer_U;

{

const labelList& internalcells = patch.faceCells ();

forAll(internalcells , ind)

{

label curcell = internalcells[ind];

alpha1[curcell] = yourbuffer_alpha1 [ind];

p_rgh[curcell] = yourbuffer_p_rgh [ind];

U[curcell] = yourbuffer_U[ind];

}

}

break;

}

}

}

}

}
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Appendix F

modPolyMeltFoam Code

modPolyMeltFoam.C

#include "fvCFD.H"
#include "mathematicalConstants.H"
#include "pimpleControl.H"

int main(int argc , char *argv [])
{

#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "readGravitationalAcceleration.H"
#include "createFields.H"
#include "initContinuityErrs.H"
#include "readTimeControls.H"
#include "CourantNo.H"
#include "setInitialDeltaT.H"

pimpleControl pimple(mesh);

Info << "\nStarting time loop\n" << endl;

while (runTime.loop())
{
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Info << "Time = " << runTime.timeName () << nl << ←↩
endl;

#include "readTimeControls.H"
#include "CourantNo.H"
#include "setDeltaT.H"

// --- Pressure -velocity PIMPLE corrector loop
while (pimple.loop())
{

#include "UEqn.H"
#include "TEqn.H"

// --- Pressure corrector loop
while (pimple.correct ())
{

#include "pEqn.H"
}

}

runTime.write ();

Info << "ExecutionTime = " << runTime.←↩
elapsedCpuTime () << " s"
<< " ClockTime = " << runTime.←↩

elapsedClockTime () << " s"
<< nl << endl;

}

Info << "End\n" << endl;

return 0;
}

createFields.H

// Reading fields
Info << "Reading field T\n" << endl;
volScalarField T
(

IOobject
(

"T",
runTime.timeName (),
mesh ,
IOobject ::MUST_READ ,
IOobject :: AUTO_WRITE

),
mesh
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);

Info << "Reading field alpha\n" << endl;
volScalarField alpha
(

IOobject
(

"alpha",
runTime.timeName (),
mesh ,
IOobject ::MUST_READ ,
IOobject :: AUTO_WRITE

),
mesh

);

Info << "Reading field p_rgh\n" << endl;
volScalarField p_rgh
(

IOobject
(

"p_rgh",
runTime.timeName (),
mesh ,
IOobject ::MUST_READ ,
IOobject :: AUTO_WRITE

),
mesh

);

Info << "Reading field U\n" << endl;
volVectorField U
(

IOobject
(

"U",
runTime.timeName (),
mesh ,
IOobject ::MUST_READ ,
IOobject :: AUTO_WRITE

),
mesh

);

#include "createPhi.H"

// Reading transport properties
Info << "Reading thermophysical properties\n" << endl←↩

;
#include "readTransportProperties.H"

// Calculating fit -parameters for phase change ←↩
function

Info << "Calculating phase change properties\n" << ←↩
endl;

dimensionedScalar Tmelt

237



(
"Tmelt",

(Tl+Ts)/2.0
);

// Kinematic density for buoyancy force

//set T, rhoS , rho to be dimensionless starts
T.dimensions ().reset(dimless);
rhoS.dimensions ().reset(dimless);
rho.dimensions ().reset(dimless);
//set T, rhoS , rho to be dimensionless ends

volScalarField rhok
(

IOobject
(

"rhok",
runTime.timeName (),
mesh

),

(alpha *(2205.355538389409+ T*( -29.29618917818346
+T*(0.21520074533582612+ T←↩

*( -0.0006352103668986839
+T*6.62139792627e-7))))
+ (1.0- alpha)*rhoS
)/rho

);

//reset back T, rhoS , rho to be dimensional starts
T.dimensions ().reset(dimensionSet (0,0,0,1,0,0,0));
rhoS.dimensions ().reset(dimensionSet (1,-3,0,0,0,0,0)←↩

);
rho.dimensions ().reset(dimensionSet (1,-3,0,0,0,0,0))←↩

;
//reset back T, rhoS , rho to be dimensional ends

// D'arcy -type source term field
volScalarField DC
(

IOobject
(

"DC",
runTime.timeName (),
mesh

),
DCl*Foam::pow(1.0-alpha ,2)/(Foam::pow(alpha ,3)+←↩

DCs)
);

// Thermal conductivity field
volScalarField lambda
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(
IOobject
(

"lambda",
runTime.timeName (),
mesh

),
alpha*lambdaL +(1.0- alpha)*lambdaS

);

// Heat capacity field
volScalarField cp
(

IOobject
(

"cp",
runTime.timeName (),
mesh

),
alpha*cpL +(1.0 - alpha)*cpS

);

// Kinematic viscosity field
volScalarField nu
(

IOobject
(

"nu",
runTime.timeName (),
mesh

),
alpha*nuL +(1.0 - alpha)*nuS

);

Info << "Calculating field g.h\n" << endl;
volScalarField gh("gh", g & mesh.C());
surfaceScalarField ghf("ghf", g & mesh.Cf());

volScalarField p
(

IOobject
(

"p",
runTime.timeName (),
mesh ,
IOobject ::NO_READ ,
IOobject :: AUTO_WRITE

),
p_rgh + rhok*gh

);

label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell
(

p,
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p_rgh ,
mesh.solutionDict ().subDict("PIMPLE"),
pRefCell ,
pRefValue

);

if (p_rgh.needReference ())
{

p += dimensionedScalar
(

"p",
p.dimensions (),
pRefValue - getRefCellValue(p, pRefCell)

);
}

readTransportProperties.H

IOdictionary transportProperties
(

IOobject
(

"transportProperties",
runTime.constant (),
mesh ,
IOobject ::MUST_READ ,
IOobject :: NO_WRITE

)
);

dimensionedScalar pi = constant :: mathematical ::pi;

// solid -> phase 1
// liquid -> phase 2

// Reading density rho
dimensionedScalar rho(transportProperties .lookup("←↩

rho"));

// Reading density rhoS
dimensionedScalar rhoS(transportProperties .lookup("←↩

rhoS"));

// Reading thermal conductivity lambda
dimensionedScalar lambdaS(transportProperties .lookup←↩

("lambdaS"));
dimensionedScalar lambdaL(transportProperties .lookup←↩

("lambdaL"));
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// Reading heat capacity cp
dimensionedScalar cpS(transportProperties .lookup("←↩

cpS"));
dimensionedScalar cpL(transportProperties .lookup("←↩

cpL"));

// Reading kinematic viscosity
dimensionedScalar nuS(transportProperties .lookup("←↩

nuS"));
dimensionedScalar nuL(transportProperties .lookup("←↩

nuL"));

// Reading latent heat of fusion hs
dimensionedScalar hs(transportProperties .lookup("hs"←↩

));

// Reading solid bound of melting temperature Ts
dimensionedScalar Ts(transportProperties .lookup("Ts"←↩

));

// Reading liquid bound of melting temperature Tl
dimensionedScalar Tl(transportProperties .lookup("Tl"←↩

));

// Reading volume expansion factor beta
dimensionedScalar beta(transportProperties .lookup("←↩

beta"));

// Reading large D'arcy -type source term constant ←↩
DCl

dimensionedScalar DCl(transportProperties .lookup("←↩
DCl"));

// Reading small D'arcy -type source term constant ←↩
DCs

dimensionedScalar DCs(transportProperties .lookup("←↩
DCs"));

UEqn.H

// Solve the momentum equation

fvVectorMatrix UEqn
(

fvm::ddt(U)
+ fvm::div(phi , U)
- fvm:: laplacian(nu , U)

241



+ fvm::SuSp(DC , U)
);

UEqn.relax ();

if (pimple.momentumPredictor ())
{

solve
(

UEqn
==

fvc:: reconstruct
(

(
- ghf*fvc:: snGrad(rhok)
- fvc:: snGrad(p_rgh)

)*mesh.magSf ()
)

);
}

pEqn.H

{
volScalarField rAU("rAU", 1.0/ UEqn.A());
surfaceScalarField rAUf("(1|A(U))", fvc:: interpolate←↩

(rAU));

U = rAU*UEqn.H();

phi = (fvc:: interpolate(U) & mesh.Sf())
+ fvc:: ddtPhiCorr(rAU , U, phi);

surfaceScalarField buoyancyPhi (rAUf*ghf*fvc:: snGrad(←↩
rhok)*mesh.magSf ());

phi -= buoyancyPhi;

while (pimple.correctNonOrthogonal ())
{

fvScalarMatrix p_rghEqn
(

fvm:: laplacian(rAUf , p_rgh) == fvc::div(phi)
);

p_rghEqn.setReference(pRefCell , getRefCellValue(←↩
p_rgh , pRefCell));
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p_rghEqn.solve(mesh.solver(p_rgh.select(pimple.←↩
finalInnerIter ())));

if (pimple.finalNonOrthogonalIter ())
{

// Calculate the conservative fluxes
phi -= p_rghEqn.flux();

// Explicitly relax pressure for momentum ←↩
corrector

p_rgh.relax ();

// Correct the momentum source with the ←↩
pressure gradient flux

// calculated from the relaxed pressure
U -= rAU*fvc:: reconstruct (( buoyancyPhi + ←↩

p_rghEqn.flux())/rAUf);
U.correctBoundaryConditions ();

}
}

#include "continuityErrs.H"

p = p_rgh + rhok*gh;

if (p_rgh.needReference ())
{

p += dimensionedScalar
(

"p",
p.dimensions (),
pRefValue - getRefCellValue(p, pRefCell)

);
p_rgh = p - rhok*gh;

}
}

TEqn.H

// Solving the energy equation
{

volScalarField coeff
(

IOobject
(

"coeff",
runTime.timeName (),
mesh
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),
4.0* exp(-pow (4.0*(T-Tmelt)/(Tl -Ts) ,2))/Foam::←↩

sqrt(pi)/(Tl -Ts)

);

fvScalarMatrix TEqn
(

cp*fvm::ddt(T)
+ hs*coeff*fvm::ddt(T)
+ (U & (cp*fvc::grad(T)+hs*coeff*fvc::grad(T)))
- fvm:: laplacian(lambda/rho , T)

);

TEqn.relax ();
TEqn.solve ();

alpha = 0.5* Foam::erf (4.0*(T-Tmelt)/(Tl -Ts))+scalar←↩
(0.5);

T.dimensions ().reset(dimless);
rhoS.dimensions ().reset(dimless);
rho.dimensions ().reset(dimless);

rhok = (alpha *(2205.355538389409+ T←↩
*( -29.29618917818346

+T*(0.21520074533582612+ T←↩
*( -0.0006352103668986839

+T*6.62139792627e-7))))
+ (1.0- alpha)*rhoS

)/rho;

T.dimensions ().reset(dimensionSet (0,0,0,1,0,0,0));
rhoS.dimensions ().reset(dimensionSet (1,-3,0,0,0,0,0)←↩

);
rho.dimensions ().reset(dimensionSet (1,-3,0,0,0,0,0))←↩

;

cp = alpha*cpL +(1.0- alpha)*cpS;
lambda = alpha*lambdaL +(1.0- alpha)*lambdaS;
nu = alpha*nuL +(1.0- alpha)*nuS;
DC = DCl*Foam::pow(1.0-alpha ,2)/(Foam::pow(alpha ,3)+←↩

DCs);

}
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Appendix G

modFluidFluidChtMultiRegionFoam

Code

modFluidFluidChtMultiRegionFoam.C

#include "fvCFD.H"
#include "singlePhaseTransportModel.H"
#include "turbulenceModel.H"
#include "fixedGradientFvPatchFields.H"
#include "regionProperties.H"
#include "icoCourantNo.H"
#include "solidCourantNo.H"

int main(int argc , char *argv [])
{

#include "setRootCase.H"
#include "createTime.H"

regionProperties rp(runTime);

#include "createFluidMeshes.H"
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#include "createSolidMeshes.H"

#include "createFluidFields.H"
#include "createSolidFields.H"

#include "initContinuityErrs.H"
#include "readTimeControls.H"
#include "icoMultiRegionCourantNo.H"
#include "solidMultiRegionCourantNo.H"
#include "setInitialMultiRegionDeltaT.H"

while (runTime.run())
{

#include "readTimeControls.H"
#include "readPIMPLEControls.H"
#include "icoMultiRegionCourantNo.H"
#include "solidMultiRegionCourantNo.H"
#include "setMultiRegionDeltaT.H"

runTime ++;

Info << "Time = " << runTime.timeName () << nl << ←↩
endl;

if (nOuterCorr != 1)
{

forAll(fluidRegions , i)
{

#include "setRegionFluidFields.H"
#include "storeOldFluidFields.H"

}

forAll(solidRegions , i)
{

#include "setRegionSolidFields.H"
#include "storeOldSolidFields.H"

}
}

// --- PIMPLE loop
for (int oCorr =0; oCorr <nOuterCorr; oCorr ++)
{

bool finalIter = oCorr == nOuterCorr -1;

forAll(fluidRegions , i)
{

Info << "\nSolving for fluid region "
<< fluidRegions[i].name() << endl;

#include "setRegionFluidFields.H"
#include "←↩

readFluidMultiRegionPIMPLEControls.H"
#include "solveFluid.H"

}

forAll(solidRegions , i)
{

Info << "\nSolving for solid region "
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<< solidRegions[i].name() << endl;
#include "setRegionSolidFields.H"
#include "←↩

readSolidMultiRegionPIMPLEControls.H"
#include "solveSolid.H"

}
}

runTime.write ();

Info << "ExecutionTime = " << runTime.←↩
elapsedCpuTime () << " s"
<< " ClockTime = " << runTime.←↩

elapsedClockTime () << " s"
<< nl << endl;

}

Info << "End\n" << endl;

return 0;
}

fluid/solveFluid.H

// Solve the Momentum equation
#include "UEqn.H"
// Solve temperature field
#include "TEqn.H"
//PISO Loop
for (int corr =0; corr <nCorr; corr ++)
{

#include "pEqn.H"
}

turb.correct ();

// Calculate continuity errors for multiregion ←↩
incompressible flow

{
volScalarField contErr = fvc::div(phi);
scalar sumLocalContErr = runTime.deltaT ().value ()*←↩

mag(contErr)().weightedAverage(mesh.V()).value ();
scalar globalContErr = runTime.deltaT ().value ()*←↩

contErr.weightedAverage(mesh.V()).value ();
cumulativeContErr [i] += globalContErr;

Info << "time step continuity errors : sum local = "←↩
<< sumLocalContErr
<< ", global = " << globalContErr
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<< ", cumulative = " << cumulativeContErr [i]
<< endl;

}
// Explicitly relax pressure for momentum corrector ←↩

except for last corrector
if (oCorr != nOuterCorr -1)
{

p.relax ();
}

U -= rUA*fvc::grad(p);
U.correctBoundaryConditions ();

}

fluid/UEqn.H

// Solve the Momentum equation

tmp <fvVectorMatrix > UEqn
(

fvm::ddt(U)
+ fvm::div(phi , U)
- fvm:: laplacian(nu , U)
+ turb.divDevReff(U)

);

if (oCorr == nOuterCorr -1)
{

UEqn().relax (1);
}
else
{

UEqn().relax ();
}

volScalarField rUA = 1.0/ UEqn().A();

if (momentumPredictor )
{

if (oCorr == nOuterCorr -1)
{

solve(UEqn() == -fvc::grad(p), mesh.solver("←↩
UFinal"));

}
else
{

solve(UEqn() == -fvc::grad(p));
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}
}
else
{

U = rUA*(UEqn().H() - fvc::grad(p));
U.correctBoundaryConditions ();

}

fluid/pEqn.H

{
U = rUA*UEqn().H();

if (nCorr <= 1)
{

UEqn.clear ();
}

phi = (fvc:: interpolate(U) & mesh.Sf())
+ fvc:: ddtPhiCorr(rUA , U, phi);

adjustPhi(phi , U, p);

// Non -orthogonal pressure corrector loop
for (int nonOrth =0; nonOrth <= nNonOrthCorr; nonOrth←↩

++)
{

// Pressure corrector
fvScalarMatrix pEqn
(

fvm:: laplacian(rUA , p) == fvc::div(phi)
);

pEqn.setReference(pRefCell , getRefCellValue(p, ←↩
pRefCell));

if
(

oCorr == nOuterCorr -1
&& corr == nCorr -1
&& nonOrth == nNonOrthCorr

)
{

pEqn.solve(mesh.solver("pFinal"));
}
else
{

pEqn.solve ();
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}

if (nonOrth == nNonOrthCorr)
{

phi -= pEqn.flux();
}

}

fluid/TEqn.H

{
fvScalarMatrix TEqn
(

fvm::ddt(T)
+ fvm::div(phi , T)
- fvm:: laplacian(DT , T)

);

if (oCorr == nOuterCorr -1)
{

TEqn.relax ();
TEqn.solve(mesh.solver("TFinal"));

}
else
{

TEqn.relax ();
TEqn.solve ();

}
Info << "fluid region: " << max(T) << endl;
Info << min(T) << endl;

}

solid/solveSolid.H

if (finalIter)
{

mesh.data::add("finalIteration", true);
}
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#include "UEqn.H"

#include "TEqn.H"

// --- PISO loop
for (int corr =0; corr <nCorr; corr ++)
{

#include "pEqn.H"
}

if (finalIter)
{

mesh.data:: remove("finalIteration");
}

solid/UEqn.H

// Solve the momentum equation

fvVectorMatrix UEqn
(

fvm::ddt(U)
+ fvm::div(phi , U)
- fvm:: laplacian(nu , U)
+ fvm::SuSp(DC , U)

);

UEqn.relax ();

if (momentumPredictor )
{

solve
(

UEqn
==

fvc:: reconstruct
(

(
- ghf*fvc:: snGrad(rhok)
- fvc:: snGrad(p_rgh)

)*mesh.magSf ()
),
mesh.solver(U.select(finalIter))

);
}
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solid/pEqn.H

{
volScalarField rAU("rAU", 1.0/ UEqn.A());
surfaceScalarField rAUf("(1|A(U))", fvc:: interpolate←↩

(rAU));

U = rAU*UEqn.H();

phi = (fvc:: interpolate(U) & mesh.Sf())
+ fvc:: ddtPhiCorr(rAU , U, phi);

surfaceScalarField buoyancyPhi (rAUf*ghf*fvc:: snGrad(←↩
rhok)*mesh.magSf ());

phi -= buoyancyPhi;

for (int nonOrth =0; nonOrth <= nNonOrthCorr; nonOrth←↩
++)

{
fvScalarMatrix p_rghEqn
(

fvm:: laplacian(rAUf , p_rgh) == fvc::div(phi)
);

p_rghEqn.setReference(pRefCell , getRefCellValue(←↩
p_rgh , pRefCell));

p_rghEqn.solve(mesh.solver(p_rgh.select( oCorr ←↩
== nOuterCorr -1

&& corr == nCorr -1 && nonOrth == ←↩
nNonOrthCorr)));

if (nonOrth == nNonOrthCorr)
{

// Calculate the conservative fluxes
phi -= p_rghEqn.flux();

// Explicitly relax pressure for momentum ←↩
corrector

p_rgh.relax ();

// Correct the momentum source with the ←↩
pressure gradient flux

// calculated from the relaxed pressure
U -= rAU*fvc:: reconstruct (( buoyancyPhi + ←↩

p_rghEqn.flux())/rAUf);
U.correctBoundaryConditions ();

}
}
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#include "solidContinuityErrs.H"

p = p_rgh + rhok*gh;

if (p_rgh.needReference ())
{

p += dimensionedScalar
(

"p",
p.dimensions (),
pRefValue - getRefCellValue(p, pRefCell)

);
p_rgh = p - rhok*gh;

}
}

solid/TEqn.H

// Solving the energy equation
{

volScalarField coeff
(

IOobject
(

"coeff",
runTime.timeName (),
mesh

),
4.0* exp(-pow (4.0*(T-Tmelt)/(Tl -Ts) ,2))/Foam::←↩

sqrt(pi)/(Tl -Ts)

);

fvScalarMatrix TEqn
(

cp*fvm::ddt(T)
+ hs*coeff*fvm::ddt(T)
+ (U & (cp*fvc::grad(T)+hs*coeff*fvc::grad(T)))
- fvm:: laplacian(lambda/rho , T)

);

TEqn.relax ();
TEqn.solve ();

Info << "solid region: " << max(T) << endl;
Info << min(T) << endl;
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alpha = 0.5* Foam::erf (4.0*(T-Tmelt)/(Tl -Ts))+scalar←↩
(0.5);

T.dimensions ().reset(dimless);
rhoS.dimensions ().reset(dimless);
rho.dimensions ().reset(dimless);

rhok = (alpha *(2205.355538389409+ T←↩
*( -29.29618917818346

+T*(0.21520074533582612+ T←↩
*( -0.0006352103668986839

+T*6.62139792627e-7))))
+ (1.0- alpha)*rhoS

)/rho;

T.dimensions ().reset(dimensionSet (0,0,0,1,0,0,0));
rhoS.dimensions ().reset(dimensionSet (1,-3,0,0,0,0,0)←↩

);
rho.dimensions ().reset(dimensionSet (1,-3,0,0,0,0,0))←↩

;

cp = alpha*cpL +(1.0- alpha)*cpS;
lambda = alpha*lambdaL +(1.0- alpha)*lambdaS;
nu = alpha*nuL +(1.0- alpha)*nuS;
DC = DCl*Foam::pow(1.0-alpha ,2)/(Foam::pow(alpha ,3)+←↩

DCs);

}
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