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Abstract 
 

Approximately 1.2 billion people in the world live in an area facing physical, or absolute, 
water scarcity (defined as access to less than 1,000 cubic meters of water).  This number is 
projected to increase to 1.8 billion by the year 2025 [1].  Thirty-eight percent of the world’s 
population lives in arid, semi-arid or dry subhumid regions [2], which translates to a high 
dependence on the 30% of the world’s freshwater present in the ground [3].  Further, the rate 
of water use is increasing rapidly – between two and two and a half times that of population 
growth, over the last century [4]. 

In regions such as Kaolack, Senegal, known locally as the Saloum and located in the Sahel, 
the vulnerability of the local population to water scarcity is well known.  Compounding this 
precariousness are precipitation irregularities introduced by a changing climate, making 
reliance on historical trends for prediction of future patterns increasingly difficult.  In addition, 
deforestation and over-grazing are reinforcing the damage caused by climate change and 
threatening the integrity of the hydrologic cycle. 

To ensure the continued access to safe and plentiful water to those who rely on 
groundwater for domestic use, an improved understanding of the factors controlling supply to 
aquifers in the form of recharge is paramount.  An in-depth look at each of the mechanisms 
contributing to recharge (precipitation, evapotranspiration, and runoff) is essential.  When the 
relative contributions of assorted processes and variables to groundwater recharge are better 
understood, efforts can be more successfully directed to counter the antagonizing mechanisms 
compromising the health of the hydrologic system. 

In this study, three established methods for estimating groundwater recharge were 
explored, all of which approached this phenomenon with different assumptions and data 
requirements.  These were compared against a hydrologic simulation model developed over the 
course of this study which offers the possibility of a more detailed estimate of recharge; this 
new model provides recharge estimates comparable with the established methods.  It can also 
evaluate changes in the system, such as vegetation and soil type, while also having the 
potential to directly account for the effects of daily rainfall patterns.  Despite challenges in 
calibration and verification with limited data, the simulation model has the advantage of 
indicating which features control recharge, as well as providing the opportunity to explore 
changes in land management and climate change into the future, and their attending effects 
on recharge. 
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1. Introduction 
1.1. Site Background 
Senegal is located in Francophone West Africa and is the most western country in Africa 

(Figure 1.1).  The region of Kaolack is located in west-central Senegal, bordered to the south 
by the Gambia (Figure 1.2).  The Sahel, a transition zone between the Sahara desert to the 
north and more tropical biomes to the south, cuts right across much of Senegal, including 
Kaolack.  The region is considered Sudano-Sahelian, with annual potential evapotranspiration 
ranging from 1500-2500 mm/yr, and rainfall varying from 600-800 mm/yr, with greater rainfall 
in the south [5].  Like most of Senegal, the local population is highly dependent on 
groundwater.  This is despite the fact that the regional capital of Kaolack is located on the 
banks of an estuary of notable size, known as the Saloum Estuary (Saloum, meaning ‘south’ in 
Wolof, was the name of the kingdom located in the present-day Kaolack region, and is still 
used to refer to the region in day-to-day life).  However, this estuary is highly prone to 
saltwater intrusion from the ocean.  Partially as a result of this intrusion, much of the 
groundwater surrounding the Saloum is contaminated with salt.  For more information on the 
interaction of the aquifer with the hypersaline Saloum estuary, Pages and Citeau [6] and Faye, 
et al. [5] provide an excellent discussion on the topic. 

 

Figure 1.1 Senegal and Neighboring Countries in West Africa. Modified (country labels added) from 
[7]. Used under Creative Commons 3.0 (for permission, see Appendix 7.4.). 
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Figure 1.2 Administrative Regions of Senegal. Kaolack is highlighted in red [8]. Used under Creative 
Commons 3.0 (for permission, see Appendix 7.5). 

The department, or sub-region, where the author served as a Peace Corps Volunteer is 
home to people of various ethnic groups and as such is an ethnic microcosm of Senegal as a 
whole.  Wolof, Serere, Pulaar and Bambara communities dot the landscape.  Each village has at 
least one hand-dug well, in addition to access to one of a handful of deeper boreholes, often 
dug with the assistance of foreign countries.  There are three or four surface water bodies in 
the area, but these are only present during the rainy season and up to a couple months after its 
conclusion.  While they are used occasionally for washing and watering livestock, they are not 
used for other purposes, so wells are the sole source of water for most people in the area. 

The livelihood of the overwhelming majority of people in this region is agriculture.  Millet 
and peanuts are the most common, with corn, sorghum, beans, rice, watermelon and cassava 
also playing an important role.  Peanut cultivation was encouraged by the French colonizers 
who also brought with them modern agriculture [9].  This dynamic is responsible in many ways 
for deforestation of the area.  With this reliance on agriculture comes an increased 
vulnerability to climate change.  Efforts have been made at promoting dry-season gardening, 
but these rely on groundwater supplies for their feasibility, not to mention other substantial 
material inputs, such as pumps and fuel, seeds, tools and fertilizer. 

1.2. Project Motivation 
Climate change is a widely acknowledged feature of modern society, affecting basic needs, 

economic well-being, and even safety and security.  However, the effects of climate change 
are not felt proportionately by those societies most responsible for it (on account of 
greenhouse gas emissions), nor are its effects even felt uniformly across the global community.  
In fact, those populations which are least developed economically face the harshest of ironies: 
they are both least to blame for the causes of climate change, and most vulnerable to its 
effects [10]. 

The people of the Sahel face another obstacle in addition to that of climate change.  The 
Sahel itself is prone to erratic and highly variable rainfall patterns [11].  A drought lasting from 
1972 to 1984 resulted in the deaths of over 100,000 people; in 1974, three-quarters of a million 
people were completely reliant on food aid [12].  The variability of Sahel rainfall patterns 
combined with the influence of climate change makes evaluating the availability of 
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groundwater resources especially difficult, and because of the reliance of the local population 
on such resources, all the more necessary. 

Declining groundwater tables can have numerous effects.  Lack of readily-available water 
carries with it the obvious risk posed to health and livelihoods, including farming which 
provides the vast majority of residents with income.  Additionally, declining water tables can 
dramatically affect surface water features.  These features which were previously fed by 
groundwater supplies, known as gaining reaches, may ‘flip’ and become losing reaches.  This 
would be especially hazardous given the inflow of salt water intrusion from the Saloum estuary.  
Because of a hydraulic gradient between the Saloum and the aquifer to the south, salt water is 
able to migrate several kilometers inland and contaminate the groundwater there [5].  The 
farther water levels drop, the more susceptible those resources will be to saltwater intrusion.  
Thus, water quality and quantity are intimately connected. 

In order to resolve these tensions, a method is needed that can estimate recharge with a 
reasonable level of confidence, and account explicitly for the myriad factors that affect it, 
such as soil characteristics and vegetation, and so make up for the limitations of established 
methods. 

1.3. Objectives 
The overarching goal of this project is to estimate recharge through a variety of 

approaches, as well as to provide a way to explore how soil and vegetation type affect 
groundwater recharge in the region of Kaolack, Senegal.  The objectives supporting this goal 
are as follows: 

1. Use three existing methods to estimate recharge in the study site: 
a. Water Table Fluctuation Method (WTF Method) 
b. Thornthwaite Mather Water Balance (TMWB) 
c. GMS MODFLOW Groundwater Model (GMS) 

2. Develop an alternate model in a MATLAB environment to calculate components of the 
water budget at high resolution, both temporally and spatially, using the NRCS Curve 
Number Method [13], and the FAO-56 Penman Monteith method for calculating 
evapotranspiration and the water balance [14], as modified for remote sensing by 
González-Dugo and Mateos [15]. 

The rest of Section 1 will provide a brief review of climate change as it relates to West 
Africa, as well as groundwater recharge models, some of which are similar in many respects to 
the alternative hydrologic simulation model developed herein. Section 2 will review three 
established methods for estimating groundwater recharge, as well as present their estimates of 
recharge in the area.  Section 3 will explore the development and application of a new 
recharge model in a MATLAB environment.  Section 4 will compare these four models and their 
estimates.  Section 5 will present opportunities for future work and discuss conclusions. 

1.4. Background 

1.4.1. Climate Change and Variability 
There is substantial evidence in the field of climate science, as well as consensus among 

the scientific community, that the earth is experiencing dramatic changes in its climate [10].  
Numerous factors have led to this paradigm shift, most of which are anthropogenically based.  
Increasing emissions, deforestation, expansion of livestock production and population growth, 
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among others, have contributed to rising CO2 levels and the attending effects on the earth’s 
climate system. 

Climatic cycles relating to ocean temperatures and pressures, such as the El Niño-Southern 
Oscillation (ENSO), have wide-ranging impacts on the earth as a whole and are gradually 
becoming better understood.  Their effects on climate around the world, or teleconnections, 
are an object of increasing scrutiny.  Different cycles exhibit variations in magnitude, as well 
as in frequency, having periods on the order of years, decades or longer.  Individual cycles can 
also manifest changes in frequency and magnitude (usually either normalized temperature or 
pressure differences) over time.  Understanding the significance of each of these cycles and 
their variability over time, as well as any possible interaction effects, is crucial to interpreting 
changes in weather patterns. 

The Intergovernmental Panel on Climate Change (IPCC) has explored possible radiative 
forcing scenarios based on greenhouse gas emissions, land use changes and population growth.  
From these simulation runs, they have established outcomes for various regions of the world 
with regard to changes in climate.  For the Sahel, a decrease in annual precipitation, along 
with an increase in the number of extreme rainfall days, is predicted, coinciding with 
increasing temperatures.  A decline in groundwater recharge for the Sahel (for those areas with 
200-500 mm of annual rainfall) is predicted, whereas little change is anticipated for areas 
receiving greater than 500 mm annual rainfall.  Greater sensitivity to this change is expected 
for areas reliant on shallow aquifers as opposed to deeper groundwater reserves.  The Sahel 
and tropical West Africa are identified to be among the first regions to experience major 
climate changes in the late 2030s to early 2040s [10]. 

The Sahel is located at the northern extent of the tropical rain belt, known as the Inter-
Tropical Convergence Zone (ITCZ) [16].  This explains its status as a transition zone and the 
associated steep decrease in rainfall from south to north, as well as its variable climate [11].  
Variations in sea-surface temperatures (SST) have been noted as key factors in the movement 
of the ITCZ, with warmer temperatures in the southern oceans, relative to the northern 
oceans, shifting the ITCZ south and thereby restricting rainfall in the Sahel [16].  In the work of 
Held, et al. [16], the drying trend in the Sahel appeared to be the result of aerosols and 
greenhouse gas emissions, in combination with internal variability.  Giannini, et al. [17] found 
that variations in SST control the sign of rainfall anomalies, while interaction between the land 
and atmosphere reinforces these anomalies, indicating land use changes are not as significant 
as SST in affecting rainfall in the Sahel.   

1.4.2. Groundwater Recharge Estimation 
Numerous methods have been developed for estimating groundwater recharge, ranging 

from physical methods to modelling approaches.  A few approaches will be briefly examined 
here, and their merits and drawbacks discussed. 

Lysimeters are tools that are able to represent the actual water drained from the soil 
column.  This makes it possible to examine an explicit relationship between recharge and other 
components of the water balance.  However, they are large and costly to install, and are not 
appropriate in many developing contexts.  Furthermore, as an unsaturated-zone technique, 
recharge values obtained with lysimeters are better considered as point estimates [18], owing 
to the heterogeneity of soil and vegetation. 

The water table fluctuation (WTF) method has been used in a number of studies to relate 
rises in well levels to recharge, via specific yield [19, 20].  Annual or seasonal estimates can be 
made based on periodic well-level measurements, but the approach is intended for evaluating 
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short-term fluctuations in the water table in response to precipitation events.  Thus, frequent 
measurements of well levels, as well as specific yield estimates, are recommended.  Estimates 
for the spatial validity of this approach vary, from a lower estimate of several square meters 
according to Healy and Cook [21], to an upper limit of one thousand square meters according to 
Scanlon, et al. [18].  Ideally, numerous wells should be surveyed in ordered to produce reliable 
areal estimates.  Such monitoring may rarely be undertaken in developing contexts, however, 
again limiting the use of this method. 

Groundwater modeling provides numerous advantages for the investigation of groundwater 
recharge.  The ability to synthesize a wide variety of data into a coherent model is a 
tremendous advantage of programs such as GMS MODFLOW [22].  However, without flow 
values, multiple possible solutions can be produced without a sense of which is the best fit, 
owing to the non-uniqueness problem of modeling systems.  In addition, head values must be 
continually measured in order to capture the variation in the system, which may be of concern 
in developing contexts where such information is limited.  Where factors such as rainfall are 
not incorporated directly, it may be difficult to achieve an explicit relationship between 
rainfall and recharge.  Once the relevant parameters (for instance, recharge and hydraulic 
conductivity) are established, exploration of alternative scenarios by altering parameter values 
is straightforward, allowing for consideration of multiple outcomes. 

Soil water balance approaches are desirable for a number of reasons, but also have 
drawbacks.  There are many terms in a typical water balance equation (evapotranspiration, 
runoff, groundwater flows in and out, withdrawals and storage), most of which are easier to 
calculate or estimate directly than recharge.  Thus, recharge is calculated as the residual, and 
uncertainties associated with all other terms are lumped together with the recharge estimate 
[18].  The only way to reduce this uncertainty is to improve estimates of all other factors in the 
equation; one way of doing this is to increase temporal resolution of the accounting procedure 
[18]. 

One commonly used tool among water balance accounting procedures is the Thornthwaite-
Mather Water Balance.  Calculated on a monthly basis, it requires values of precipitation, 
temperature, field capacity and rooting depth.  Without supplementary flow data, it is unable 
to separate recharge and runoff predictions.  Despite its simplicity, it has been found to 
produce good estimates of monthly runoff, indicating that actual evapotranspiration is also 
estimated accurately [23]. 

Many studies have incorporated the FAO-56 Penman Monteith methodology in order to 
calculate actual evapotranspiration, generally for managing irrigated fields with substantial 
resources at their disposal [24, 25].  However, successful application of this method often 
requires extensive knowledge of the crops grown in a given area and their stage of 
development.  González-Dugo, et al. [26] incorporated remote sensing into their work, allowing 
this methodology to be utilized over a larger area. 

 Eilers, et al. [27] applied the FAO-56 Penman Monteith methodology to agricultural 
land in Nigeria to estimate recharge on an annual basis.  Results were lumped recharge 
estimates, assuming constant soil and crop type for two study sites, roughly 300 km apart.  This 
is an indication of the difficulties of gathering suitable data in a developing context.  One 
unique aspect of their study is the consideration of near-surface storage (NSS), which 
represents soil moisture near the surface for supporting germination and the growth of 
shallower roots. 

 Kendy, et al. [28] developed a multi-layer soil water balance model for estimating 
groundwater recharge in an agricultural area in northern China.  The model operates on a daily 
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basis, and while data requirements are relatively high, there is potential to have a more 
accurate understanding of deep percolation processes in the subsurface.  The subsurface is 
divided into layers corresponding to soil horizons, each with properties of field capacity, 
saturation and saturated hydraulic conductivity that govern flow from one layer to another.  
Once one layer is filled to saturation with infiltrating water, the excess is automatically 
transferred downward to the next layer.  Water present below saturation flows down according 
to an exponential relationship between hydraulic conductivity and moisture content.  The 
model was applied to the top two meters of the subsurface, but could in theory be extended 
for the entire vadose zone, to better capture dynamics of recharge and soil moisture storage.  
This method calculated recharge at several discrete locations in the study area.  Runoff was 
neglected in this study, but the model could be easily modified to account for this. 

High spatial variability often confounds the estimation of recharge [29].  Soil types, 
vegetation characteristics and, to a lesser extent, climate, can vary significantly over small 
areas.  Thus, point-based or lumped models offer an important but incomplete look at 
recharge.  The effect of temporal distribution on recharge is also becoming more widely 
appreciated.  As Carter and Parker [30] have noted, rainfall depth affects its allocation into the 
various components of the water cycle.  Low rainfall depths will contribute to 
evapotranspiration; rain falling at higher depths will be preferentially allotted as runoff.  
Studies in Uganda found that annual recharge correlated more strongly with the number of 
rainfall events exceeding 10 millimeters [31] or the total rainfall in these events [32], than 
annual rainfall.  However, work remains to be done to evaluate the effects of other 
characteristics of rainy season patterns on recharge.  
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2. Established Recharge Estimation Methods 
The three methods in this study used to determine recharge are the Water-Table 

Fluctuation (WTF) Method, the Thornthwaite-Mather Water Balance (TMWB), and GMS 
MODFLOW Groundwater Model.  These methods were selected because they are practical given 
available data and resources.  The WTF method relies on estimates of specific yield and water 
level data to relate changes in water table elevation with recharge.  The TMWB uses soil and 
weather data to execute a monthly water balance.  MODFLOW is a three-dimensional finite-
difference groundwater model, developed by the USGS [22], for which GMS is an interface 
combining MODFLOW’s functionality with data types and models.  Various sources were 
explored in order to obtain the necessary data, either directly by the author or members of the 
community or from government offices. 

2.1. Water-Table Fluctuation Method 
The water-table fluctuation (WTF) method has been used in many studies [21, 33, 34] to 

estimate recharge to aquifers using well hydrographs.  This technique is generally preferred for 
systems with shallower water tables (less than 10 meters according to Sophocleous [33]) and 
thus a quicker response to precipitation, as well as monitoring of changes over intervals of a 
few days or less.  However, this method has also been applied in deeper groundwater tables 
with a longer monitoring interval [34].  While minor rises and falls are neglected in this latter 
approach, the method still gives a helpful estimate of recharge over a longer time span, on the 
order of months to a year.  The two components required are a well hydrograph of the well, or 
wells, in question and an estimate of specific yield. 

2.1.1. Well Data 
Within the study area, numerous hand-dug wells are used for drinking, hygiene and dry-

season gardening.  Twenty-nine of these wells were surveyed regularly over the course of a 
year, from October 2013 to October 2014.  The start and end dates coincide roughly with the 
end of the preceding rainy season.  A handful of these wells were not used, either because of 
structural instability or contamination with salt or trash.  All salty wells were described by 
community members to have always been salty.  In order to construct a well hydrograph, 
periodic well level measurements were taken at each well.  Well level measurements were 
critical to establishing the height of the water table, and to provide a reference against which 
changes in well levels, either due to extractions or recharge, could be determined.  Prior to 
surveying, each well’s position was recorded on a handheld GPS unit (eTrex® 20, Garmin, 
Olathe, KS).  The height of the casing for each well was also measured.  Whether the well 
water was salty or not, or in use or not, was determined in conversations with community 
members.  Surveying took place early in the morning, before any community members began 
drawing water.  It was assumed that the water levels were at static conditions at this time, 
having had enough time to recover fully from pumping the evening before (roughly 8 to 9 
hours). 

Surveying took place in the following manner.  Approximately every three weeks, the depth 
in each of the readily accessible wells was measured with a measuring tape.  Initially, the tape 
was simply lowered into the well, with perturbations of the water (seen by reflections from the 
author’s headlamp) indicating at what depth the tape reached the water table.  The depth and 
time of the reading was then recorded.  The lack of tension in the flexible tape and the 
construction of some of the wells led to some erroneous readings, which were discarded.  
Because of this, and to increase confidence in measurements, a small wooden float was 
attached to the tape after the first two rounds of readings.  The tape was lowered into the 
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wells until the float reached the water table.  It was then moved up and down vertically in 
order to ascertain the moment when the surface tension of the water had the greatest pull on 
the float, indicating that the line was relatively taut.  This depth was recorded, along with the 
date and time of measurement. 

When determining true depth to water table, the casing height above the ground surface 
was subtracted from the value recorded.  Any additional length from the float, or from the end 
of the measuring tape to 0 cm, was added, giving a true depth to water table.  The elevation 
at each point was determined from Shuttle Radar Topography Mission (SRTM) Digital Elevation 
Model (DEM) data, available at 30-m spatial resolution.  Finally, the actual height of the 
groundwater table was determined by subtracting depth from the elevation at each well. 

Once hydrographs were constructed for each well, these were arranged according to 
relative geographic location and visually analyzed.  Four general trends were classified for the 
wells in the study area: 

Class A: Consistently increasing throughout the recording period 

Class B: Slight rise in water table, followed by a steep decline and a second, steep rise 
at the end of the recording period 

Class C: Generally flat at the beginning of the recording period, with a strong rise in 
the last couple months of recording 

Class D: A modest rise, followed by a plateau, succeeded by a second rise 

 
Figure 2.1 Areal distribution of classes of wells, based on hydrograph.  Numbers next to markers are 

average depth to water table from ground surface in meters. 
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Figure 2.2 Sample Class A Well Hydrograph. masl = meters above sea level. 

 

 
Figure 2.3 Sample Class B Well Hydrograph 
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Figure 2.4 Sample Class C Well Hydrograph 

 
Figure 2.5 Sample Class D Well Hydrograph 

Each well class corresponds to a water depth range and geographic location in the study 
area (Figure 2.1).  Figure 2.2 through Figure 2.5 are actual well hydrographs from each class, 
selected because they tended to best represent the general behavior of each class.  Class A 
was in the central and southern region of the wells studied, and tended to have the deepest 
water tables (ranging from 11 to 15 meters).  The constant increase in water level could be due 
to the lag of transmitting water from the surface or root zone to the water table.  For these, it 
was difficult to distinguish recharge from the previous rainy season from that of the more 
recent season. 

Class B was in the west-central portion of the region, with mid-range water table depths, 
varying from 8 to 11 meters.  It is hypothesized that this area has a higher hydraulic 
conductivity, which could explain why little recharge from the 2013 season appeared on the 
graph.  It had likely already reached the aquifer and, as can be seen on the hydrograph, begun 
to rapidly discharge according to the hydraulic gradient. 

Class C is characterized by a shallow water table (8 meters) and location in the northeast 
region of the study area.  Class C is located near a fairly large seasonal water body which dries 
up around December (two months after completion of the rainy season).  It may also have a 
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fairly high permeability, allowing for negligible recharge after the end of the rainy season.  The 
water body may have been discharging into the aquifer, enabling its water level to remain 
fairly consistent, until recharge began again for the 2014 rainy season. 

Class D is located in the northwest portion of the study area, and is characterized by 
moderate water table depths (8 to 11 meters).  It is surmised, as for Class B and C, that this 
area had higher hydraulic conductivity, allowing for the rapid response of the water table. 

The water table fluctuation method can be a powerful tool for estimating total recharge to 
aquifers by using specific yield values and water level information.  However, there are 
important restrictions on its use.  To better observe minor fluctuations in the groundwater 
table, water level data is preferably collected on a daily basis.  The WTF method also assumes 
that all recharge is happening naturally, i.e., no water is being artificially recharged to or 
removed from the aquifers (by evapotranspiration, pumping, etc.) [21]. 

The above assumptions were addressed as follows.  The wells were used for consumption 
and not artificial recharge; to approximate water usage by the community, the number of 
vessels carried away from the well were counted and multiplied by the approximate volume of 
the vessel (Table 2.1).  For most wells surveyed, withdrawals took place both in the morning 
and afternoon.  The results of the water abstraction observations are displayed below.  The 
three seasons in Senegal comprise the rainy season (June to October), where nearly all rainfall 
takes place; the cool dry season which follows directly after (November to February), 
characterized by relatively cool temperatures; and the hot dry season (March to May). 

Table 2.1 Summary of Well Usage for Surveyed Wells 

 
Total Withdrawal (m3/day) 

Well Hot Dry Rainy Cool Dry Average 

1 - - 1.779 1.779 

2 - - 0.900 0.900 

3 - - 0.863 0.863 

4 0.874 0.105 0.874 0.618 

5 8.311 6.768 - 7.539 

6 - 2.779 - 2.779 

7 - - 2.826 2.826 

8 - 0.851 - 0.851 

9 - 2.304 - 2.304 

10 - - 5.947 5.947 

11 - - 4.763 4.763 

12 5.884 1.874 1.295 3.018 

13 - - 1.442 1.442 

14 - - 0.526 0.526 

15 - - 0.837 0.837 

Grand Mean 2.466 

Standard Deviation 2.044 

Coefficient of Variation 0.829 
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Seven wells were not used for water withdrawals, due to poor construction or 
contamination with salt or trash.  The area encompassing the wells that were surveyed 
comprises roughly 30 square kilometers.  Using an average water usage for each well of 2.47 
m3/day, an equivalent depth of water for the study area can be determined.   

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝑐𝑐𝑐𝑐 𝑐𝑐𝑝𝑝𝑝𝑝 𝑤𝑤𝑝𝑝𝐷𝐷𝐷𝐷 � 𝑐𝑐3

𝑑𝑑𝐷𝐷𝐷𝐷 ∙ 𝑤𝑤𝑝𝑝𝐷𝐷𝐷𝐷�  × 𝑁𝑁𝑐𝑐𝑐𝑐𝑁𝑁𝑝𝑝𝑝𝑝 𝑐𝑐𝑜𝑜 𝑊𝑊𝑝𝑝𝐷𝐷𝐷𝐷𝑐𝑐 × 365 𝑑𝑑𝐷𝐷𝐷𝐷𝑐𝑐𝐷𝐷𝑝𝑝𝐷𝐷𝑝𝑝 × 1000 𝑐𝑐𝑐𝑐𝑐𝑐
𝐴𝐴𝑝𝑝𝑝𝑝𝐷𝐷 (𝑐𝑐2)

 

= 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷 𝐸𝐸𝐸𝐸𝑐𝑐𝐷𝐷𝐸𝐸𝐷𝐷𝐷𝐷𝑝𝑝𝑐𝑐𝑐𝑐 𝐷𝐷𝑝𝑝𝑐𝑐𝑐𝑐ℎ �
𝑐𝑐𝑐𝑐
𝐷𝐷𝑝𝑝𝐷𝐷𝑝𝑝

� 

The calculations based upon field observations result in an equivalent depth of withdrawal 
of 0.66 mm per year across the study site.  Thus, water abstraction from hand dug wells is an 
insignificant part of the water budget for the area (0.094% of the average annual rainfall, 704 
mm), and can be reasonably neglected in calculations with the WTF method.  However, it is 
possible that withdrawals from the night before may have affected morning readings at several 
wells; this is an effect that is neglected in the current study.  Water was also supplied to 
villages via five freshwater boreholes (see Figure 2.6).  The borehole logs for these were 
analyzed, and it was observed that most well screens were situated beneath a sandy clay layer.  
This is an indication that this layer is restricting flow to an appreciable extent, and can be 
considered a semi-confining layer.  Figure 2.6 shows the average elevation of water in meters 
of the hand dug wells (blue circles) and the static water elevation in meters of boreholes 
(black squares).  From the figure, it is clear there is a significant difference in elevation 
between the water abstracted via hand dug wells and boreholes.  Elevation data was retrieved 
from the Shuttle Radar Topography Mission (SRTM), and was available at 30-m resolution from 
the US Geological Survey.  Thus, the aquifers into which the hand dug wells and boreholes 
tapped are regarded as separate and not hydrologically connected for the purposes of this 
study. 
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Figure 2.6 Hand dug wells and freshwater boreholes. Numbers next to hand dug wells indicate 
average elevation of water over surveying record, in meters above sea level.  Numbers next to boreholes 

indicate static water level in meters above sea level. 

Given that the water table was 8-16 meters below ground surface, it was assumed that no 
significant evapotranspiration (ET) occurred directly from the water table, which is consistent 
with other studies, such as Shah, et al. [35]. 

Because 22 of the 29 wells were used for consumption, level readings needed to be made 
before pumping began, typically soon after dawn.  These wells were also spread out over a 
large area (30 square kilometers), and bicycle was the only available mode of transport.  For 
this reason, level readings were made every 3 weeks on average, as opposed to daily.  Well 
hydrograph information was collected beginning at the end of the 2013 rainy season (October) 
and concluding after the 2014 rainy season (October).  Most well hydrographs did not exhibit a 
complete recharge/recession cycle in this time frame.  Many deep wells displayed more drawn-
out recharge patterns, owing to a thicker unsaturated zone, so recharge occurring after 
measurements stopped in 2014 is not accounted for.  It is likely shallow wells would display 
significant recharge during the rainy season, which was not captured with respect to the 2013 
season.  For this reason, it was important to find a well hydrograph which seemed to have a 
complete recharge cycle contained within its hydrograph.  Two wells, one each from Class A 
and Class B, exhibited these characteristics.  For Well A, located in Class A, water levels began 
increasing several weeks after rains ended in 2013, and continued increasing throughout the 
recording period (see Figure 2.7).  For Well B, located in group B, well levels increased slightly 
after the rainy season, then declined for the next several months, then increased again during 
the 2014 rainy season (see Figure 2.8).  These are discussed in more detail in the following 
pages. 
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Figure 2.7 Well Hydrograph for Well A, Oct 2013 – Oct 2014 

Figure 2.7 illustrates that that the period immediately following the rainy season saw small 
fluctuations in the water table, amounting to negligible recharge.  Not until three or four 
months after the rainy season did the water table increase noticeably, and from this point it 
continued to increase through the surveying period.  It is assumed that the water table would 
cease rising at about the same time every year, so the water table could be expected to cease 
rising shortly after surveying ended.  Thus, all of the water table rise observed in this 
hydrograph is considered the result of the 2013 rainy season. 
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Figure 2.8 Well Hydrograph for Well B, Oct 2013 – Oct 2014 

In Figure 2.8, a slight rise follows the end of the rainy season, with a subsequent and 
sustained decline, followed by a second, significant rise.  Because the peak of the recharge 
owing to the 2013 rainy season occurred in mid-November, it is assumed the peak of the 
recharge owing to the 2014 rainy season would also occur in mid-November. Rainfall in 2013 
and 2014 was 955 mm and 526 mm, respectively.  Furthermore, rainfall in October 2013 was 
almost twice as much as in October 2014, and occurred later as well (see Table 2.2).  This 
could explain the slight rise in the well hydrograph after the November 12th peak in 2013, as 
well as demonstrate that a similar such rise would be unlikely to occur in 2014 after surveying 
ceased. 
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Table 2.2 Daily Rainfall, October, 2013 and 2014. 

Calendar 
Date 

Rainfall (mm) 
2013 2014 

10/1 0 0 
10/2 0 0 
10/3 0 0 
10/4 0 0 
10/5 0 0 
10/6 45 15 
10/7 0 12.5 
10/8 0 0 
10/9 0 25 

10/10 5.5 0 
10/11 0 0 
10/12 0 0 
10/13 48 0 

Total 98.5 52.5 

 

Lastly, the rate of change for the well hydrograph dropped noticeably at the end of the 
surveying period (Figure 2.9).  Rate of change is defined as the change in water table elevation 
from one survey date to the next, divided by the number of days in between surveying dates.  
Comparing the rate of change at the first and final survey dates further demonstrates that 
additional recharge was unlikely to occur. 

 
Figure 2.9 Rate of Water Table Change over surveying period, Well B. Note that the rate of change 

of the first point and the last are nearly equal. 
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2.1.2. Specific Yield Data 
Soil samples were taken throughout the study area, and while these were primarily from 

shallow strata (40 cm or less), one such sample site was in close proximity to Well A.  At one 
additional site, less than a mile from Well B, another well had been recently dug.  Soil samples 
were secured for each layer or stratum from ground surface to the water table.  The thickness 
of each strata and representative soil samples for each were identified by the well digger, soon 
after its completion.  The National Pedology Institute in Dakar, Senegal, provided a texture 
analysis of both the surficial soil samples as well as those from the well.  Surface-level soil 
samples were analyzed for Well A, and deep soil samples were analyzed for Well B, based on 
their relative locations.  Results from this texture analysis are presented in Table 2.3. 

Table 2.3 Soil Texture Characteristics 

 
Texture Class 

Location Coarse 
Sand 

Medium 
Sand Fine Sand Silt Clay 

Well A, % by weight 1.04 19.36 28.09 19.01 32.5 
Well B, % by weight 0.63 13.63 9.655 51.835 24.25 
Avg Specific Yield [36] 0.27 0.26 0.21 0.08 0.02 

The samples near Well A and Well B are classified as a sandy clay loam and a silty loam, 
respectively, by the USDA soil classification system [37].  Using average specific yield values for 
coarse, medium and fine sand, silt and clay from Johnson [36] and finding the weighted 
average resulted in a specific yield of 13.38% and 5.74% for Well A and B (Table 2.3).  Healy 
and Cook [21] reference a study by Duke [38] which found a specific yield of 34% for silt loam 
at 1.6 meters below the water table.  Lastly, values of 30% are often assumed for unconfined 
aquifers, but this would apply to the entire aquifer, not just the layer closest to the water 
table, as it is applied here in the case of Well B.  Clearly there is tremendous uncertainty in 
the value of specific yield; however, values of 13.5% and 6% will be used moving forward for 
Well A and B, respectively. 

2.1.3. Master Recession Curve Approach 
Once a well hydrograph has been constructed and specific yield estimated, it is important 

to estimate the recession curve that occurs before recharge takes place.  Water table 
elevations will decrease according to the hydraulic gradient, and will theoretically decrease 
more rapidly for a steeper gradient, indicating a relationship between water table elevations 
and water table decline rates.  Since recession is theoretically constantly occurring, any 
recharge observed is also making up for that water lost to recession.  Thus, the water table rise 
must be calculated with reference to the level at which the water table would have been in 
the absence of recharge.  A few methods exist for calculating the recession, including a 
graphical approach, and a Master Recession Curve (MRC).  A MRC takes into account the fact 
that the rate of water table decline will change according to water table elevation, owing to 
the difference in hydraulic gradient that causes the recession.  Heppner and Nimmo [39] 
developed a MATLAB code, known as MRCR, in order to determine the MRC, as well as total 
recharge. 

Well hydrograph data for each of the two wells selected for further analysis, including day 
and water table elevation, were read into the MATLAB program.  The MRCR program offers four 
options for calculating recharge using water table information: linear, power, bin-averaged, 
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and user-defined tabulated.  Only the linear and bin-averaged options were explored.  The 
linear approach relies on a linear fit to water-table decline rate vs water-table elevation data.  
The bin-averaged option breaks the water-table elevation data into a user-specified number of 
bins, into which elevation data is evenly separated.  Water-level decline information is 
assigned to the corresponding bin.  The user selects whether to use the mean or median 
decline rates from the binned data.  The program then interpolates between these average 
points to calculate the decline rate. 

The linear approach relies on selecting coefficients that give a best fit to the data 
according to the equation: 

𝐷𝐷𝑝𝑝𝑐𝑐𝐷𝐷𝐷𝐷𝑐𝑐𝑝𝑝 𝑝𝑝𝐷𝐷𝑐𝑐𝑝𝑝 =
𝑑𝑑𝑍𝑍𝑊𝑊𝑊𝑊

𝑑𝑑𝑐𝑐
= 𝐷𝐷𝑍𝑍𝑊𝑊𝑊𝑊 + 𝑁𝑁 

 

 
Figure 2.10 Water Table decline rate vs WTE with trendline for Well A 
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Figure 2.11 Water Table decline rate vs WTE with trendline for Well B 

Figure 2.10 and Figure 2.11 were used to calculate the slope and intercept using a best-fit 
linear regression for each well.  The MRCR program also requires information regarding the 
minimum and maximum rate of water table decline.  These were found from the 2013-2014 
hydrograph data, and were -0.00119 m/d and -0.003333 m/d for Well A, and -0.00067 m/d and 
-0.005 m/d for Well B.  Negatively valued recharge estimates can be included, but as they are 
primarily used when working with high frequency hydrographs, they were not used in this 
approach.  The relationships presented here were used to determine a decline rate at each 
data point on the corresponding well hydrograph.  This resulted in a recession curve, indicating 
the decline of the water table according to the hydraulic gradient, presented in Figure 2.12 for 
Well B.  If subsequent data points had higher well levels, then the change in water level was 
calculated as the difference between the observed water level, and the projected water level 
according to the recession curve.  Thus, individual recharge events were determined on a 
point-by-point basis, and summed to find total recharge. 

y = -0.0064x + 0.0367
R² = 0.4988
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Figure 2.12 Recession Curve for Well B, demonstrating decline of water table due to the hydraulic 

gradient. 

 

The bin-averaged approach was also explored.  The elevation information of the well, 
including rate of decline of the water table at a given depth, was divided into 4, 5 and 6 bins 
to evaluate the sensitivity of this to the number of bins used. 

Results from these runs are summarized in Table 2.4.  Recharge for Well B was considered 
only after June 2014, to reflect only recharge corresponding to the 2014 rainy season. 

Table 2.4 Recharge estimates 

  
Recharge Estimate by 

Method (mm) 
  

Linear 
Bin 

  Number of Bins 

Well 4 5 6 

Well A 158 150 150 150 

Well B 33 33.7 32.2 33.6 
 

For the sake of comparison, simply taking the difference between low and high water table 
elevations over the period studied (ignoring the recession curve) gives results of 93.2 and 20.4 
mm for Well A and Well B, respectively.  Heppner and Nimmo [39] note that linear or power 
methods may be more suitable when less data is available and the data have a clear trend.  
Additionally, there is good agreement between linear and bin estimations.  Thus, the estimates 
of 158 mm for 2013 and 33 mm for 2014 will be used hereafter in this work to compare with 
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other model estimates.  Again, the spatial applicability of this method is highly variable as 
noted in Section 1, but these estimates will be considered applicable to the entire study area. 

2.2. Thornthwaite-Mather Water Balance 
The Thornthwaite-Mather Water Balance (TMWB) is an accounting procedure used for 

determining climatic trends in the water budget on a monthly basis.  Its data requirements are 
fairly modest, and thus lends itself to easy application to many locations around the world. 

2.2.1. Weather Data Sources 
The TMWB can be conducted with just temperature and precipitation data (using the 

Hamon method of calculating ET, for instance [40]); however, for consistency with the MATLAB 
model in calculating ET, the FAO 56 Penman-Monteith method was used, which requires 
humidity, wind speed and solar radiation data as well.  Daily data compiled from the National 
Oceanic and Atmospheric Administration, the Norwegian Meteorological Institute, and World 
Weather Online was utilized.  Weather data was available for the Kaolack weather station, 
located roughly 15 km northeast of the study site, and was utilized for subsequent calculations.  
Weather parameters collected are summarized in Table 2.5. 

Table 2.5 Weather Parameters and Units used in determination of evapotranspiration 

Weather Parameter Units 

Cloud cover fraction  - 

Minimum and maximum dew point  Degrees Celsius 

Minimum, maximum and average relative humidity Percent 

Minimum and maximum temperature  Degrees Celsius 

Average wind speed  m/s 

 

Additional parameters were available (pressure, minimum and maximum wind speed, wind 
direction) but these were not used in the following calculations.  Additionally, rainfall data at 
the same site as that where climate data were gathered for 2013 and 2014 were not available, 
and were drawn from that gathered by local rain gauges close to the study area. 

2.2.2. FAO 56 Penman-Monteith Method 
The Penman-Monteith method is the most extensively used methodology for assessing ET 

from terrestrial surfaces, and is preferred when the requisite data are available [23].  The Food 
and Agriculture Organization of the United Nations, in the 56th Crop and Irrigation paper, 
developed a modified form of this equation that can be modified for use with most vegetation 
[14].  The base form of the Penman-Monteith equation is: 

𝜆𝜆𝐸𝐸𝜆𝜆 =  
∆(𝑅𝑅𝑛𝑛 − 𝐺𝐺) + 𝜌𝜌𝑎𝑎𝑐𝑐𝑝𝑝

(𝑝𝑝𝑠𝑠 − 𝑝𝑝𝑎𝑎)
𝑝𝑝𝑎𝑎

∆ + 𝛾𝛾 �1 + 𝑝𝑝𝑠𝑠
𝑝𝑝𝑎𝑎
�

 

where 

λET = Latent heat flux 

Rn = net radiation 

G = soil heat flux 
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(es – ea) = vapor pressure deficit of the air 

ρa = Mean air density at constant pressure 

cp = specific heat of the air 

Δ = slope of the saturation vapor pressure temperature relationship 

γ = the psychrometric constant 

rs = bulk surface resistance 

ra = bulk aerodynamic resistance 

This equation was then simplified assuming a reference grass crop that is 0.12 m in height, 
with a surface resistance of 70 s m-1 and an albedo of 0.23.  These assumptions result in 
reference ET (RET or ET0), which describes the depth of water that would be transpired by this 
reference grass crop, assuming it is actively growing, covers the ground, and has plentiful 
water.  It is calculated in the following equation: 

𝐸𝐸𝜆𝜆0 =
. 408∆(𝑅𝑅𝑛𝑛 − 𝐺𝐺) + 𝛾𝛾 900

𝜆𝜆 + 273𝑐𝑐2(𝑝𝑝𝑠𝑠 − 𝑝𝑝𝑎𝑎)
Δ + 𝛾𝛾(1 + 0.34𝑐𝑐2)

 

where: 

ET0 = reference evapotranspiration (mm day-1) 

Rn = net radiation at the crop surface (MJ m-2 day-1) 

G = soil heat flux density (MJ m-2 day-1) 

T = mean daily air temperature at 2 m height (oC) 

u2 = wind speed at 2 m height (m s-1) 

es = Saturation vapor pressure (kPa) 

ea = Actual vapor pressure (kPa) 

es – ea = saturation vapor pressure deficit (kPa) 

Δ = slope of the vapor pressure curve (kPa oC-1) 

γ = psychrometric constant (kPa oC-1) 

Calculation of net radiation at the crop surface, Rn, begins with calculating extraterrestrial 
radiation, Ra: 

𝑅𝑅𝑎𝑎 =
24(60)
𝜋𝜋

𝐺𝐺𝑆𝑆𝑆𝑆𝑑𝑑𝑟𝑟[𝜔𝜔𝑠𝑠 sin(𝜑𝜑) sin(𝛿𝛿) + cos(𝜑𝜑) cos(𝛿𝛿) sin(𝜔𝜔𝑠𝑠)] 

where 

Ra is extraterrestrial radiation (MJ/m2 d) 

GSC is the solar constant = 0.082 MJ/m2 min 

dr is the inverse relative distance from Earth to the Sun 

ωS is the sunset hour angle (rad) 

φ is latitude (rad) 

δ is solar declination (rad) 

The inverse relative distance Earth-Sun is: 
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𝑑𝑑𝑟𝑟 = 1 + 0.033 cos �
2𝜋𝜋

365
𝐽𝐽� 

where 

J is the Julian day. 

Solar declination is given by: 

𝛿𝛿 = 0.409 sin �
2𝜋𝜋

365
𝐽𝐽 − 1.39� 

The sunset hour angle is calculated as: 

𝜔𝜔𝑆𝑆 = cos−1[− tan(𝜑𝜑) tan(𝛿𝛿)] 

Daylight hours are calculated by: 

𝑁𝑁 =
24
𝜋𝜋
𝜔𝜔𝑆𝑆 

Solar radiation can be calculated with the Angstrom formula: 

𝑅𝑅𝑆𝑆 = �𝐷𝐷𝑠𝑠 + 𝑁𝑁𝑠𝑠
𝑐𝑐
𝑁𝑁
�𝑅𝑅𝑎𝑎 

where 

Rs is solar or shortwave radiation (MJ/m2 d) 

n is the actual duration of sunshine (hr) 

N is the maximum possible duration of sunshine or daylight hours (hr) 

n/N is relative sunshine duration 

Ra is extraterrestrial radiation (MJ/m2 d) 

as is a regression constant, expressing the fraction of extraterrestrial radiation reaching the 
earth on overcast days (n=0) 

as+bs is the fraction of extraterrestrial radiation reaching the earth on clear days (n = N) 

Recommended values for as and bs where no calibration has been carried out, and no actual 
solar radiation data are available, are 0.25 and 0.5, respectively. 

Clear-sky solar radiation is calculated as: 

𝑅𝑅𝑠𝑠𝑠𝑠 = (0.75 + 2 × 10−5𝑧𝑧)𝑅𝑅𝑎𝑎 

where 

z is station elevation above sea level (m) 

The station elevation is 14 m. 

Net shortwave radiation is given by: 

𝑅𝑅𝑛𝑛𝑠𝑠 = (1 − 𝛼𝛼)𝑅𝑅𝑠𝑠 

where 

Rns is the net solar or shortwave radiation (MJ/m2 d) 

α is albedo or the canopy reflection coefficient. This is .23 for the hypothetical grass 
reference crop (dimensionless). 

Net longwave radiation is  
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𝑅𝑅𝑛𝑛𝑛𝑛 = 𝜎𝜎 �
𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚,𝐾𝐾
4 + 𝜆𝜆𝑚𝑚𝑚𝑚𝑛𝑛,𝐾𝐾

4

2
� �0.34 − 0.14�𝑝𝑝𝑎𝑎� �1.35

𝑅𝑅𝑠𝑠
𝑅𝑅𝑠𝑠𝑠𝑠

− 0.35� 

where 

Rnl is net outgoing longwave radiation (MJ/m2 d) 

σ is the Stefan-Boltzmann constant (4.903x10-9 MJ/K4 m2 d) 

Tmax,K is the maximum absolute temperature during the 24-hour period (K) 

Tmin,K is the minimum absolute temperature during the 24-hour period (K) 

ea is the actual vapor pressure (kPa) 

Net radiation, finally, is 

𝑅𝑅𝑛𝑛 = 𝑅𝑅𝑛𝑛𝑠𝑠 − 𝑅𝑅𝑛𝑛𝑛𝑛 

The calculation for wind speed at 2 m above ground is as follows: 

𝑐𝑐2 = 𝑐𝑐𝑧𝑧
4.87

ln (67.8𝑧𝑧 − 5.42)
 

where 

u2 is the wind speed at 2 m above ground surface (m/s) 

uz is the measured wind speed at z m above ground surface (m/s) 

z is the height of measurement above ground surface (m) 

The height of measurements at the Kaolack weather station was estimated to be 10 m, in 
line with standard practice for recording wind speed. 

Atmospheric pressure is calculated according to: 

𝑃𝑃 = 101.3 �
293 − 0.0065𝑧𝑧

293
�
5.26

 

where 

P is atmospheric pressure (kPa) 

z is elevation above sea level (m) 

Pressure was also provided, but since it varied minimally over the course of measurement, 
a constant pressure value, calculated here, was used instead. 

The psychrometric constant is given by: 

𝛾𝛾 =
𝑐𝑐𝑝𝑝𝑃𝑃
𝜀𝜀𝜆𝜆

= 0.665 × 10−3𝑃𝑃 

where 

γ is the psychrometric constant (kPa/oC) 

cp is the specific heat of air at constant pressure, 1.013x10-3 (MJ/kg oC) 

ε is the ratio of molecular weight of water vapor to dry air = 0.622 

The latent heat of vaporization, λ, is assumed constant at 2.45 MJ/kg due to the fact that 
it varies minimally over a normal range of temperatures. 

The average temperature of a 24-hour period is 
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𝜆𝜆𝑚𝑚𝑚𝑚𝑎𝑎𝑛𝑛 =
𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚 + 𝜆𝜆𝑚𝑚𝑚𝑚𝑛𝑛

2
 

The saturation vapor pressure is calculated as: 

𝑝𝑝𝑠𝑠(𝜆𝜆) = 0.6108𝑝𝑝𝑒𝑒𝑐𝑐 �
17.27𝜆𝜆
𝜆𝜆 + 237.3

� 

where 

eo(T) is the saturation vapor pressure at the air temperature T (kPa) 

T is the air temperature (oC) 

exp[..] is 2.7183 (base of the natural logarithm) raised to the power [..] 

The mean saturation vapor pressure is calculated as: 

𝑝𝑝𝑠𝑠 =
𝑝𝑝𝑠𝑠(𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚) + 𝑝𝑝𝑠𝑠(𝜆𝜆𝑚𝑚𝑚𝑚𝑛𝑛)

2
 

The slope of the saturation vapor pressure curve is: 

∆=
4098 �0.6108𝑝𝑝𝑒𝑒𝑐𝑐 � 17.27𝜆𝜆

𝜆𝜆 + 237.3��
(𝜆𝜆 + 237.3)2  

where 

Δ is the slope of the saturation vapor pressure curve at air temperature T (kPa/oC) 

In the FAO Penman-Monteith equation, the slope is calculated at mean temperature. 

Actual vapor pressure can be calculated using psychrometric data, as follows: 

𝑝𝑝𝑎𝑎 = 𝑝𝑝𝑠𝑠(𝜆𝜆𝑑𝑑𝑚𝑚𝑑𝑑) = 0.6108𝑝𝑝𝑒𝑒𝑐𝑐 �
17.27𝜆𝜆𝑑𝑑𝑚𝑚𝑑𝑑
𝜆𝜆𝑑𝑑𝑚𝑚𝑑𝑑 + 237.3

� 

where 

ea is actual vapor pressure (kPa) 

Tdew is dew point temperature 

Actual vapor pressure can also be calculated using relative humidity data: 

𝑝𝑝𝑎𝑎 =
𝑝𝑝𝑠𝑠(𝜆𝜆𝑚𝑚𝑚𝑚𝑛𝑛)𝑅𝑅𝑅𝑅𝑚𝑚𝑎𝑎𝑚𝑚100 + 𝑝𝑝𝑠𝑠(𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚)𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑛𝑛100

2
 

where 

eo(Tmin) and eo(Tmax) are saturation vapor pressure daily minimum and maximum 
temperatures, respectively (kPa) 

RHmax and RHmin are maximum and minimum relative humidity, respectively 

ea was calculated as the average of both of the preceding calculations, since both dew 
point temperature and relative humidity were available.  Reference ET (RET) was calculated on 
a daily basis according to the above calculations, and summed on a monthly basis for the 
calculations in the TMWB. 

2.2.3. Water Balance Methodology 
The equations that provide the baseline for computing the water balance follow.  These 

are adapted from Shonsey [40]. 



 

35 

𝐼𝐼𝑜𝑜 𝑃𝑃𝑚𝑚  ≥  𝑃𝑃𝐸𝐸𝜆𝜆𝑚𝑚, 𝑐𝑐ℎ𝑝𝑝𝑐𝑐 𝐸𝐸𝜆𝜆𝑚𝑚  =  𝑃𝑃𝐸𝐸𝜆𝜆𝑚𝑚 

𝐼𝐼𝑜𝑜 𝑃𝑃𝑚𝑚  <  𝑃𝑃𝐸𝐸𝜆𝜆𝑚𝑚 , 𝑐𝑐ℎ𝑝𝑝𝑐𝑐 𝐸𝐸𝜆𝜆𝑚𝑚  =  𝑃𝑃𝑚𝑚  –  𝛥𝛥𝛥𝛥𝑐𝑐𝐷𝐷𝐷𝐷𝑚𝑚 

𝛥𝛥𝛥𝛥𝑐𝑐𝐷𝐷𝐷𝐷𝑚𝑚  =  𝛥𝛥𝑐𝑐𝐷𝐷𝐷𝐷𝑚𝑚  – 𝛥𝛥𝑐𝑐𝐷𝐷𝐷𝐷𝑚𝑚−1 

𝛥𝛥𝑐𝑐𝐷𝐷𝐷𝐷𝑚𝑚  =  𝛥𝛥𝑐𝑐𝐷𝐷𝐷𝐷𝑚𝑚−1 �𝑝𝑝𝑒𝑒𝑐𝑐 �
−𝑃𝑃𝐸𝐸𝜆𝜆𝑚𝑚 − 𝑃𝑃𝑚𝑚
𝛥𝛥𝑐𝑐𝐷𝐷𝐷𝐷𝑚𝑚𝑎𝑎𝑚𝑚

�� 

𝛥𝛥𝑐𝑐𝐷𝐷𝐷𝐷𝑚𝑚𝑎𝑎𝑚𝑚 = 𝜃𝜃𝑓𝑓𝑓𝑓𝑍𝑍𝑓𝑓𝑓𝑓 

where: 

Pm = Monthly Precipitation (mm) 

PETm = Monthly potential evapotranspiration (mm) 

ETm = Monthly actual evapotranspiration (mm) 

ΔSoil = Monthly change in soil moisture (mm) 

Soilm = Estimated soil moisture of current month (mm) 

Soilm-1 = Estimated soil moisture of previous month (mm) 

Soilmax = Maximum possible soil moisture (mm) 

θfc = Field capacity of the soil (cm3/cm3) 

Zfc = Vertical extent of the root zone (mm) 

When starting calculations, Soilm-1 is equal to Soilmax. 

Field capacity was estimated from soil samples retrieved from throughout the study area.  
Most of these samples were analyzed by the National Pedology Institute (INP) in Dakar.  Using 
the texture analysis provided by the INP, the values for field capacity were calculated 
according to a program developed Saxton and Rawls [37].  The averaged results for varying 
locations throughout the study area are summarized below in Table 2.6, and displayed 
according to geographical location in Figure 2.13. 

Table 2.6 Soil Sample Data 

Location 
Number Land Use Soil Type 

Total Depth 
(cm) 

Average Field 
Capacity (cm3/cm3) 

1 Field Sandy loam 40 0.217 

2 Forest Sandy clay loam 40 0.249 

3 Field Sandy loam 40 0.162 

4 Shrubland Sandy loam 40 0.120 

5 Forest Loam 40 0.288 

6 Field Sandy clay Loam 40 0.287 

7 Shrubland Loam 40 0.231 

8 Field Silty loam 40 0.314 

9 Field Sandy loam 40 0.234 

10 Farmstead Sandy clay loam 227 0.276 

      Mean 0.238 
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Figure 2.13 Relative location of soil samples within study area. Numbers correspond to location 

number, as in Table 2.6 

The average for this set of soil samples is 0.238 cm3/cm3.  The standard deviation was 
found to be about 0.057.  Thus, three values were used for the Thornthwaite-Mather water 
balance incorporating this, to test the sensitivity of the model to field capacity: 0.18, 0.24, 
and 0.3 cm3/cm3. 

Root depth was estimated to be an average of 1800 mm throughout the study area.  This 
comes from values for tree and crop rooting depth in the literature, which provided values of 4 
meters for Acacia seyal (representative of forested areas in the study site, [41]) and a 
maximum crop root depth of 1.05 m [14].  Based on analysis of the area after image 
classification, forested areas comprise approximately one-quarter of the area in question, and 
agriculture composes the remaining three quarters, resulting in an average root zone of 1800 
mm for the whole study area.  The effect of this parameter on the model was also tested by 
exploring a second depth of 1500 mm. 

Using weather data from the nearby regional capital of Kaolack, RET was calculated on a 
daily basis and then aggregated on a monthly basis.  A similar procedure was followed for 
precipitation data from the 2013 and 2014 rainy seasons, collected from a rain gauge in the 
nearby town of Keur Soce.  The weather data used are summarized on a monthly basis in Table 
2.7 and Table 2.8. 
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Table 2.7 2013 Monthly Rainfall and RET 

2013  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Sum 

P (mm) 0 0 0 0 20 28 139 399 271 99 0 0 955 

RET (mm) 193 229 278 257 251 197 156 118 121 144 168 176 2288 

 

Table 2.8 2014 Monthly Rainfall and RET 

2014  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Sum 

P (mm) 0 0 0 0 0 42 43 285 104 53 0 0 526 

RET (mm) 196 206 243 250 235 198 173 139 121 155 161 165 2240 

 

Compared with long term (91 years of record) rainfall data from the regional capital of 
Kaolack, rainfall in 2013 and 2014 was in the 87th and 21st percentile, respectively.  Average 
rainfall for the entire period of record was 704 mm.  Rainfall statistics and patterns are 
explored more in the appendix. 

In TMWB calculations, the first month’s soil moisture is typically assumed to be equivalent 
to maximum soil moisture.  However, this was unlikely to occur in reality, given that January is 
three months after the end of the rainy season, and negligible precipitation occurs between 
the end of the rainy season and the beginning of the next.  Thus, the calculated soil moisture 
from December was input as the soil moisture for January.  The next calculation of December 
soil moisture was input as January soil moisture, until the difference was negligible.  With the 
preceding inputs to the model, water balance information was obtained. 

Table 2.9 2013 Annual Water Balance Summary 

Root Zone (mm) 1500  1500  1500  1800  1800  1800  

Average Standard 
Deviation 

Field Capacity 
(cm3/cm3) 0.18  0.24  0.3  0.18  0.24  0.3  

Soil Moisture max 
(mm) 270  360  450  324  432  540  

Avg Soil Moisture 
(mm) 89 126 169 112 163 189 141 35 

Total AET (mm) 794 878 955 847 946 955 896 61 
Total Runoff + 
Recharge (mm) 161 77 0 109 9 0 59 61 
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Table 2.10 2014 Annual Water Balance Summary 

Root Zone (mm) 1500  1500  1500  1800  1800  1800  

Average Standard 
Deviation 

Field Capacity 
(cm3/cm3) 0.18  0.24  0.3  0.18  0.24  0.3  

Soil Moisture max 
(mm) 270  360  450  324  432  540  

Avg Soil Moisture 
(mm) 42 49 56 47 55 63 52 7 

Total AET (mm) 526  526  526  526  526  526  526  0 
Total Runoff + 
Recharge (mm) 0  0  0  0  0  0  0  0 

 

Results from these model runs are summarized in Table 2.9 and Table 2.10.  The conditions 
in bold reflect the base case, or most likely combination of variables.  The TMWB does not 
distinguish between recharge and runoff.  Predictably, these charts demonstrate that the 
increase of maximum soil moisture (product of field capacity and root zone) lead to an increase 
in soil moisture and AET, and a corresponding decrease in water available for runoff and 
recharge.  Figure 2.14 and Figure 2.15 demonstrate the variability in the above statistics.  The 
lines plotted are actual data for P and RET (dotted), and average values for each year of the 6 
scenarios tested for soil moisture, actual evapotranspiration (AET) and runoff plus recharge 
(RO+RCH, solid lines).  Error bars represent the standard deviation of soil moisture, AET, and 
RO+RCH for each month. 
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Figure 2.14 2013 Water Balance Summary 

In 2013, recharge and runoff are mainly predicted to occur in September, with a negligible 
amount in August (Figure 2.14).  Even so, there is high variability in this amount, owing to high 
dependence on the field capacity and rooting depth values.  Recharge and runoff thus occurs 
only once the demands of RET and soil moisture have been met.  Soil moisture is also highly 
variable, with most variability occurring in the first months of the balance, and the first couple 
of months after the peak amount of rain has fallen.  AET shows very little variability between 
model runs. 
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Figure 2.15 2014 Water Balance Summary 

In 2014, all precipitation, after meeting the demands of RET, serves simply to replenish soil 
moisture (Figure 2.15).  Soil moisture demonstrated moderate variability in the first two 
months of the model, but was consistent after that among model runs, owing in large part to 
the low rainfall input.  AET was also consistent across model runs.  2014 had an unusually low 
amount of rainfall.  In both cases, RET shows a trend of peaking during the hot dry season 
(March through May), and decreasing during the rainy season owing to an increase in humidity 
and cloud cover, and lower temperatures. 

2.3. GMS MODFLOW Groundwater Model 
GMS MODFLOW uses the finite difference method to evaluate groundwater flow in three 

dimensions, incorporating boundary conditions (such as head values), as well as properties of 
the subsurface (such as hydraulic conductivity) [22].  It is one of the most widely used 
groundwater modeling programs in the world, used by government agencies, researchers and 
companies. 

2.3.1. Regional Model Setup and Calibration 
In order to create a meaningful hydrologic model, boundary conditions must first be 

specified.  However, the project site, outlined by the blue box shown in Figure 2.16, was not 
located near major topographic features that could be treated as boundary conditions, as the 
study area is predominantly flat.  For this reason, a regional model was created that 
encompassed a much larger area, including several features that could be considered boundary 
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conditions.  These are outlined in Figure 2.16.  The map projection used was Universal 
Transverse Mercator 28-N. 

 
Figure 2.16 Outline of Regional Groundwater Model 

The northern and western boundaries (blue) are concurrent with the Saloum Estuary and 
Diomboss River, respectively.  The southern boundary was assigned a no-flow boundary (black), 
consistent with its demarcation as a groundwater divide, as in Faye, et al. [5].  The Bao Bolon 
River, a tributary of the Gambia River, formed the southeast boundary.  The eastern boundary, 
finally, was modeled as a drain in initial models, but was later changed to a simple no-flow 
boundary (black).  A chain of ephemeral ponds linked with the Saloum estuary extended far 
inland, and was modeled as a drain (green). 

For each of the rivers and the chain of ponds, SRTM data was used to model the stage.  A 
second elevation data set, offset below the SRTM data by 1.5 m, was used as the river bed.  
Head values were also needed to create a target for calibration.  These were selected from 
Faye, et al. [5] and digitally imported into MODFLOW.  A recharge value of 17.1 mm/yr, as 
determined by a British Geological Survey report [42], was used.  This report included four 
estimates in the Kaolack region, located 60 km south of the study site: 11.7, 108, 18.1 and 21.6 
mm/yr.  Treating the 108 mm/yr estimate as an outlier, the average of the remaining results 
provides 17.1 mm/yr.  It should be noted that the 108 mm/yr estimate was for an area of 
cleared vegetation.  Further, these estimates were within a subset of the broader region of 
Kaolack, itself smaller than the extent of the regional model considered here.  Therefore, 
additional variability beyond the values used for input to the model should be expected. 

Borehole logs for each of the freshwater boreholes in the area were analyzed.  Some 
provided values of transmissivity, according to the Cooper-Jacob and Jacob solutions.  All logs 
were analyzed in AQTESOLV, using the Theis solution for a confined aquifer.  These are 
summarized in Table 2.11. 
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Table 2.11 Summary of Hydraulic Conductivity Estimates 

 
Hydraulic Conductivity (m/d) 

Borehole AQTESOLV Borehole Log 

Darou Mbiteyen 19.093 - 

Keur Soce (New) 10.017 43.531 

Lamaram Badiane 18.015 - 

Ndiedieng 7.828 47.697 

Taiba Niangene 9.403 - 
 

No attempt was made to conduct a formal pumping test in the hand dug wells in the area, 
as relatively few wells in each community were available for pumping.  A pumping test would 
require closing off access to a well, which would increase wait times at other wells, potentially 
severely affecting the ability of community members to draw the water needed for their daily 
tasks.   

With these conditions set up, the conductance of each river and the ponds were varied 
manually, as well as hydraulic conductivity and horizontal anisotropy.  Conductance is a 
measure of how quickly water flows through rivers or drains.  As a finite-difference 
approximation method, GMS MODFLOW requires the area under study to be subdivided into 
three dimensional cells, the size of which are determined by the user.  Within a MODFLOW 
model, cells are assigned values for head, conductance, hydraulic conductivity and other 
properties, based on available data and associated boundary conditions.  Hydraulic conductivity 
was initially assumed constant for the whole region.  Varying the conductance parameters for 
the rivers and drains had little effect on the agreement with observed head values, given that 
they predominantly controlled head values close to the boundary of the model.  A series of 
forward runs were conducted with various values for each of the following parameters.  The 
final modeled values for each boundary condition are presented in Table 2.12. 

Table 2.12 Summary of GMS Boundary Conditions 

Boundary Location 
Boundary 
Condition 

Conductance 
(m2/d/m) 

Saloum River North River 200 
Bao Bolon River Southeast River 25 
Diomboss River West River 25 
Ephemeral Ponds Central Drain 500 

 

These runs gave poor agreement with the data set forth by Faye, et al. [5], given that one 
value for each hydraulic conductivity, horizontal anisotropy and recharge was chosen for the 
whole region.  A value of 200 m/d for hydraulic conductivity and 10 for horizontal anisotropy 
returned a root-mean square error (RMSE) of 7.54 m. 

The RMSE was calculated according to the following equation: 

𝑅𝑅𝑅𝑅𝛥𝛥𝐸𝐸 = �
1
𝑁𝑁
��𝑌𝑌𝑚𝑚 − 𝑌𝑌𝚤𝚤��

2
𝑁𝑁

𝑚𝑚=1
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where 

N is the number of measurements 

Yi is the ith observed value 

Ŷi is the ith calculated value 

Next, the entire region was broken up into 11 separate sub-regions to be calibrated by 
Automated Parameter Estimation (PEST) (see Figure 2.17).  To use PEST, the user first specifies 
starting values, as well as maximum and minimum values for each parameter to be estimated.  
PEST then automatically varies the parameters specified by the user in order to best match 
observations.  After 3 iterations with no reduction in error, calibration stops.  Sub-region 
boundaries were chosen according to proximity to regional features, such as rivers.  Remaining 
sub-regions which were not close to major features were divided arbitrarily to keep sub-regions 
of relatively uniform size.  Each sub-region was independently calibrated by varying hydraulic 
conductivity; while hydraulic conductivity was constant within each sub-region, recharge and 
horizontal anisotropy were held constant throughout the study area. 

 
Figure 2.17 Regional Study Site, with 11 sub-regional partitions 

For each sub-region, the starting value, minimum and maximum were the same: 50, 0.01, 
and 10,000 m/d.  Recharge was set at a constant value of 0.00004685 m/d, or 17.1 mm/yr, as 
before.  Horizontal anisotropy was set to 5.  However, the calibration results were still poor.  
The RMSE was 6.12 m. 

Finally, a method called pilot points was explored.  Pilot points are used in conjunction 
with PEST.  Pilot points are placed by the user throughout the region of interest.  Each pilot 
point is then varied independently of other pilot points, and a surface is fit to the set of pilot 
points by interpolation.  The calibration targets can then be compared with interpolated values 
at the same geographical location.  Kriging was the method chosen for interpolation of the 
pilot point results.  In contrast with previous runs, both hydraulic conductivity and recharge 
were varied by calibration throughout the area to best match the data. 
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In order to assist and improve the effectiveness of calibration, the author’s own collected 
data regarding well levels in the study area were incorporated, along with well level 
information from Faye, et al. [5].  The average well level for each well surveyed was used.  In 
addition, well data from Faye, et al. [5] sometimes produced water level elevations below sea 
level, which is unlikely.  While this is likely attributable to the coarseness of SRTM data, in 
pilot point runs, these were eliminated to assist in convergence. 

According to GMS guidelines [43], the following should be considered when placing pilot 
points: 

1. Place points between observations, as opposed to collocated with observations 
2. More observations should have more pilot points associated with them 
3. Steep head gradients should be accompanied by more pilot points 
4. Separate head-dependent boundaries and observation wells by a row of pilot points 
5. Fill in the gaps 

These points were placed according to the above suggestions (Figure 2.18).  Furthermore, 
Tikhonov regularization was explored to relax the homogeneity constraint on the pilot points.  
The first option within Tikhonov regularization in MODFLOW is preferred homogeneous 
regularization.  This in effect constrains pilot points to be similar to each other, in absence of 
other information.  A prior information power factor controls this homogeneity constraint.  
Increasing this factor from its base value of 1 relaxes the homogeneity constraint; the reverse 
strengthens it [44].  In this case, the prior information power factor was set to 1.5. 

 
Figure 2.18 Location of observation points (black circles) and pilot points (green squares).  The black 

box outlines the study area; note the concentration of observations within the study area compared to 
the rest of the model. 

Kriging was chosen as the interpolation method for creating a surface from the pilot points. 
Ordinary kriging was used.  Since all pilot point values were equal initially, an experimental 
variogram could not be computed.  The range of values for hydraulic conductivity were 0.01 to 
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2000 m/d with a starting value of 200 m/d, and 1e-8 to 0.0002 m/d for recharge (0.00365 
mm/yr to 73 mm/yr).  The starting values for recharge varied among the pilot points. 

Following this run, the results gave a good fit to the calibration targets.  The Root Mean 
Square Error (RMSE) was calculated within GMS for the entire region, producing a RMSE of 2.315 
m.  Considering only the study site observations, the RMSE was 1.71 m.  At this point, the 
model was considered sufficiently calibrated.  Results for recharge and hydraulic conductivity 
are presented below. 

  
Figure 2.19 Distribution of Recharge (mm/yr) in Study Site, overlain on top of Landsat 8 scene 

Values for recharge are quite variable, ranging from 16.22 to 102.06 mm/yr, with a 
standard deviation of 27.18 mm/yr (Figure 2.19).  The mean value of 53.64 mm/yr is 
significantly higher than the mean value predicted by the British Geological Survey (BGS) 
report.  However, this report also included an estimate of 108 mm/yr, as noted above, which 
would be characteristic of cleared vegetation, and consistent with the maximum value 
calibrated in GMS.  A further note is that the BGS report was published in 1990.  Since clearing 
of forested areas can result in increased recharge, owing to a shallower average root zone, the 
historic trend of deforestation may explain some of this difference.  Furthermore, the values 
presented in the report are for a governmental department located some 60 kilometers 
southeast of the study site, which tends to have somewhat higher rainfall, but also more 
vegetation. 
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Figure 2.20 Distribution of Hydraulic Conductivity (m/d) in Study Area, overlain on Landsat 8 

composite image of area 

Values for hydraulic conductivity showed a much higher variability in the study site.  
Conductivity ranged from .691 m/d to 121.34 m/d, with a mean and standard deviation of 
39.89 and 28.44 m/d (Figure 2.20).  Faye, et al. [45] reported values of hydraulic conductivity 
ranging from 1.47 m/d to 197 m/d from Diluca [46].  To evaluate these hydraulic conductivity 
values further, the well level data collected was used to create monthly contour maps.  First, 
the well level time series was interpolated to return values at the end of each month.  These 
concurrent monthly well levels were then used to create monthly contour maps through kriging 
(Figure 2.21).  It was assumed that annual recharge, applied to the area covered by the 
contour maps, would be equivalent to flow predicted by Darcy’s law, in the direction of the 
largest gradient: 

𝑅𝑅𝑝𝑝𝑐𝑐ℎ𝐷𝐷𝑝𝑝𝑎𝑎𝑝𝑝 × 𝑊𝑊 × 𝐿𝐿 = 𝐾𝐾 × 𝑊𝑊 × 𝑁𝑁 × 𝐷𝐷 

where 

Recharge is annual recharge (mm/yr) 

W and L are the width of the study area (4.7 and 6.4 km, respectively) 

K is hydraulic conductivity (m/d) 

b is saturated thickness (10 m) 

i is the gradient parallel to flow (dimensionless) 

The saturated thickness of the aquifer was assumed to be constant at 10 m.  Recharge was 
taken as the average of the two values returned by the WTF method (95.5 mm/yr).  The 
gradient was calculated for each month by dividing the drop in head by the distance over which 
the drop occurred.  The average gradient for the time series was taken, and considered 
applicable to the whole area.  Solving the above equation for hydraulic conductivity returned a 
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value of 94.3 m/d, which gives good agreement with both the MODFLOW model and the 
estimates by Diluca [46].   

It should also be noted that persistently salty wells were located in the northeastern region 
of the study area, and had been salty as far back as community members could remember.  
The reason the salt water has not intruded further south seems to be on account of a persistent 
hydraulic gradient, originating in the west-central region of the study area, and oriented in a 
northeasterly direction (Figure 2.21).  This gradient was persistent both in geographical extent 
and magnitude over the time frame where water levels were monitored. 

 
Figure 2.21 Contour map, November 2013 well levels, meters above sea level 

The preceding models each have benefits and detriments, and have been utilized owing to 
their relative facility and compatibility with data requirements.  A fourth model was developed 
in order to more explicitly account for various factors, and is discussed in the following section. 
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3. Distributed High-Resolution  
Recharge Estimation Model (DH-REM) 

An important component that is not present in any of the preceding methods is an explicit 
relationship between recharge and rainfall that could be evaluated on short time scales (on the 
order of days).  As noted in Section 1, Carter and Parker [30] have suggested that temporal 
distribution of rainfall is more important than annual rainfall with regards to quantifying 
recharge.  Thus, a MATLAB model was developed that could explore this relationship further.  
This model uses the NRCS Curve Number Method to determine runoff [13], the FAO-56 Penman-
Monteith equation to determine ET [14], and the water balance outlined in the FAO-56 
document to determine recharge, including modifications for use with remote sensing by 
González-Dugo and Mateos [15].  The model was developed as an alternative to other methods 
that calculate point or lumped estimates of recharge, as well as those operating on a coarse 
resolution.  This model will be referred to as the Distributed High-resolution Recharge 
Estimation Model, or DH-REM for short. 

One anticipated advantage of this model, which can incorporate the effects of vegetation 
and soil type, is the ability to evaluate their impact on recharge.  Contingent upon successful 
model calibration, possible changes in land use and land cover, such as deforestation or 
alternative farming practices, can also be explored.  When using daily rainfall data, the 
relationship between short-term rainfall patterns and recharge can be explored.  Once this 
relationship has been established, changes in rainfall patterns can be tested for their effect on 
recharge, enabling consideration of climate change. 

3.1.  Soil Data 
The National Pedology Institute of Senegal, provided a soils type map of the area under 

study [47].  Soils were generally classified as either leached tropical ferruginous soils, or 
waterlogged and vertic soils.  There were also two prevailing land cover types in the area – 
agricultural and forest or shrubland (villages made up a small part of the area under 
consideration, about 2%).  In order to cover the range of soil combinations and land cover 
types, infiltration tests were conducted on each combination of soil type and land cover.  
Within the NRCS Curve Number Method, a key factor determining curve numbers is infiltration 
rate [13], which was analyzed using a constant head permeameter, or amoozemeter. 

The general procedure was as follows [48].  A hole was dug to 40 cm, typically 10-12 cm in 
diameter.  The permeameter was filled with water and quickly inverted into the hole.  Time 
was kept, and volume of water in the permeameter and the height of the water in the hole 
were recorded every 5 minutes.  The volume change from one reading to the next was divided 
by the time difference to calculate a flowrate, Q.  Once three flowrate readings in a row 
returned the same value, the soil was assumed to be saturated, and the test was stopped.  The 
height (H) of the water in the hole, the radius of the hole (r), and the flowrate (Q) of the water 
are needed to calculate the saturated hydraulic conductivity of the site.  The Glover solution 
[49] is applied in the following way: 

𝐾𝐾𝑠𝑠𝑎𝑎𝑠𝑠 =
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where Ksat is the saturated hydraulic conductivity (cm/d), 
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Q is the flowrate at steady state (cm3/day), 

H is the height of water in the hole (cm) and 

r is the radius of the hole (cm). 

For most cases, three tests were performed, and the average taken.  Lack of readily 
accessible water made it difficult to transport sufficient water for some tests.  For some tests, 
only one or two results are available.  Eighteen tests converged and produced a valid result, 
out of a total of 34 trials.  The remaining results provided no information and were neglected.  
Results from the 19 successful tests are summarized in Table 3.1.  Seasonal water bodies, such 
as that evaluated at Site 1, were not extensive in the study area; therefore, all soil was 
assumed to fall under hydrologic soil group A. 

Table 3.1 Amoozemeter Test Results. Hydrologic Soil Group from USDA [13] 

   
Ksat (cm/d) 

  
Site Land Use/Land 

Type 

Number 
of 
Trials 

Min Max Avg Soil Description Hydrologic 
Soil Group 

1 Seasonal Water 
Body 1 - - 10.1 Leached soil B 

2 Farmstead 6 12.9 51.0 24.0 Leached soil A 

3 Row Crops, 
Straight Row 3 14.8 35.1 27.0 Vertic and 

waterlogged soil A 

4 Row Crops, 
Straight Row 3 30.7 36.9 34.5 Leached soil A 

5 Forest 3 30.3 41.9 37.1 Leached soil A 

6 Forest 2 41.6 45.4 43.5 Vertic and 
waterlogged soil A 

7 Forest 1 - - 53.6 Leached soil A 

 

While digging holes for the permeameter, soil samples were collected for the following 
strata: 0-15 cm, 15-30 cm, and 30-40 cm.  Soil samples were collected at other locations in the 
study area, in addition to those sites where infiltration tests were conducted.  The same 
protocol was followed for these sites, regarding depth of hole and stratum thickness.  Soils 
were taken to the National Institute of Pedology in Dakar for a texture analysis. 

One additional site provided soil data.  One well, dug to about 10 m, had soil layers 
relatively organized around the well.  In conversations with the well-digger, the order and 
thickness of each soil type was established.  As noted in Section 3, the average field capacity 
for each site (Table 2.6), as well as average wilting point were determined from [37].  The 
difference between these, or available water, was calculated.  This information was 
interpolated for the study area using inverse distance weighting (Figure 3.1). 
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Figure 3.1 Available Water in study site, defined by inverse distance weighting in ArcGIS, and 

overlaid by Landsat 8 image 

3.2. Remote Sensing Data 
Remote sensing data were used to establish AET rates, according to crop type and 

vegetative cover, as well as land type for use in determining curve numbers for the NRCS 
method of runoff calculation [13]. 

3.2.1. Selection of Satellite Data 
NASA’s Landsat mission has been going on continuously since July 23rd, 1972, with the 

launch of the first Landsat satellite, Landsat 1.  Landsat 7 and 8 are currently in orbit.  Landsat 
7 has been in orbit since April 15th, 1999, but in 2003 experienced a malfunction in the scan 
line corrector that led to severe striping on the left and right thirds of the image [50].  The 
study area falls directly in the region affected by striping, so Landsat 7 was not usable for the 
purposes of this study. 

 Landsat 8 was launched on February 11th, 2013, and has 30 m spatial resolution for 
most of its color bands, which is appropriate given the relatively large size of the study area 
(roughly 50 km2).  It also circles the earth every 16 days, which was considered sufficient to 
capture changes in land cover and crop growth to accurately portray evapotranspiration rates 
throughout the year. The study site is covered fully by scenes in Path 205 and partially by 
scenes in Path 204.  These scenes were collected roughly eight days apart over the time period 
Landsat 8 has been in orbit until the present, and are available from the US Geological Survey.  
Furthermore, while the spatial resolution of Landsat 7 and Landsat 8 are the same, Landsat 8 
has improved radiometric resolution over Landsat 7 (12-bit resolution vs 8-bit).  It also features 
a 15-m panchromatic band which can be used to improve the resolution of color images.  Band 
properties are given in Table 3.2. 
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Table 3.2 Band Properties for Landsat 8 [51] 

Bands Wavelength 
(micrometers) 

Resolution 
(meters) 

Band 1 - Coastal aerosol 0.43 - 0.45 30 
Band 2 - Blue 0.45 - 0.51 30 
Band 3 - Green 0.53 - 0.59 30 
Band 4 - Red 0.64 - 0.67 30 
Band 5 - Near Infrared (NIR) 0.85 - 0.88 30 
Band 6 - SWIR 1 1.57 - 1.65 30 
Band 7 - SWIR 2 2.11 - 2.29 30 
Band 8 - Panchromatic 0.50 - 0.68 15 
Band 9 - Cirrus 1.36 - 1.38 30 
Band 10 - Thermal Infrared (TIRS) 1 10.60 - 11.19 100 * (30) 
Band 11 - Thermal Infrared (TIRS) 2 11.50 - 12.51 100 * (30) 

 

3.2.2. Classification of Imagery 
In remote sensing studies, image classification is an important step in identifying different 

vegetation types, land use/land cover types, or other terrestrial phenomena.  For this study, 
classification was essential for two reasons.  First, since evapotranspiration rates vary 
according to the type and relative health of vegetation, accurately understanding the range of 
vegetative types and their geographical extent in the study area was critical.  Second, the use 
of the NRCS Curve Number Method necessitates determination of land cover types in order to 
assign a curve number for runoff estimation. 

The area was assumed to be made up of three separate land use classes – forest, 
agriculture and village.  Villages were marked out manually in Google Earth, given the 
difficulty of distinguishing villages from forest and agriculture in remote sensing imagery.  One 
Landsat scene from April 24th, 2013 (DOY 114), during the height of the dry season, was 
analyzed to delineate forested and agricultural land for 2013.  For 2014, this date was February 
22, 2014 (DOY 53).  During the dry season, agricultural land was typically brown and barren 
with only scattered trees.  However, shrub land and forested areas tended to be relatively 
green, though in a state of dormancy.  For this reason, it was more straightforward to 
distinguish these areas using satellite imagery at this time. 

An unsupervised image classification was run in ERDAS IMAGINE digital image processing 
software, creating 36 classes with a standard deviation of 3 in 12 iterations.  During the 
classification, means were initialized along the diagonal axis.  The classified image was 
overlaid on a false color Landsat image to better aid in distinction of the two classes.  Once 
this was completed, this information was merged with village extent (delineated in Google 
Earth) to create a land use-land cover map. 

Additional imagery was needed to depict the changing land conditions during the rainy 
season.  Imagery was selected for the months of May through November.  Excessively cloudy 
images were excluded from the study.  The remaining images, if clouds were present, were 
subject to an unsupervised classification to distinguish between cloud, cloud shadow, 
agricultural land and forest.  In reality, the separation between agricultural land and forest in 
these images was not of great importance, given that these had already been delineated using 
an image that more clearly showed the dividing lines between these areas.  Furthermore, it 
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was assumed that no land changed classes during the time of study, i.e., forested land was not 
converted to agriculture, and vice versa.  Once the images were classified, they were recoded, 
using a value of 0 to assign to those areas affected by cloud or cloud shadow, 1 for forest, and 
2 for agriculture.  Once all the images were classified and recoded, they were imported into 
MATLAB. 

3.2.3. The Modified Soil-Adjusted Vegetation Index (MSAVI) 
Vegetation indices are used in the field of remote sensing to gain information about 

vegetated surfaces, relating remote sensing information (namely, surface reflectance) to 
vegetation parameters such as leaf area index (LAI), fractional cover, and biomass.  Hundreds 
of vegetation indices (VIs) exist, each with its own benefits and drawbacks [50].  One of the 
first to be developed was the Normalized Difference Vegetation Index, or NDVI [52].  This VI 
relies on the principle that healthy vegetation absorbs red light due to chlorophyll in its leaves, 
and it reflects energy in the near-infrared (NIR) wavelengths due to the high energy those 
wavelengths contain.  If leaves absorbed energy in the NIR wavelengths, they would overheat 
and become damaged [50].  The equation for calculating NDVI is 

𝑁𝑁𝐷𝐷𝑁𝑁𝐼𝐼 =  
𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 − 𝜌𝜌𝑁𝑁𝑅𝑅𝑅𝑅
𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 + 𝜌𝜌𝑁𝑁𝑅𝑅𝑅𝑅

 

Equation 3.2 

where ρNIR is the reflectance of light in the near-infrared band and 

ρRED is the reflectance of light in the red band. 

The NDVI has some shortcomings, including susceptibility to saturation at high vegetation 
content (i.e., change in leaf density or canopy cover is not well detected past a certain 
threshold).  Additionally, the signal is also affected by soil background (i.e., light or dry soil 
can alter the signal, as well as dark or wet soil) [53]. 

An improved form of the NDVI was developed by Huete [54], called the Soil Adjusted 
Vegetation Index (SAVI).  The SAVI attempts to minimize the soil background effect by 
incorporating an L factor that was originally intended to scale according to vegetation density, 
but was initially set equal to 0.5 to cover a range of vegetation types.  The formula for SAVI is 

𝛥𝛥𝐴𝐴𝑁𝑁𝐼𝐼 = (1 + 𝐿𝐿)
𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 − 𝜌𝜌𝑁𝑁𝑅𝑅𝑅𝑅

𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 + 𝜌𝜌𝑁𝑁𝑅𝑅𝑅𝑅 + 𝐿𝐿
 

Equation 3.3 

where L is a correction factor for the vegetation density.  Note that when L = 0, SAVI = 
NDVI. 

Finally, the Modified Soil Adjusted Vegetation Index (MSAVI) was developed by Qi, et al. 
[55].  The MSAVI incorporates the L factor from the SAVI, but adjusts it automatically based on 
vegetation density.  This VI formula is arrived at by induction, with the result that the L factor 
does not appear explicitly in the equation.  That is, the L factor is calculated as the residual of 
unity minus the original MSAVI (1-MSAVI1).  This L factor is then incorporated into a second 
MSAVI function, and the process is repeated until no improvement is attained (MSAVIN = MSAVIN-

1).  The final equation is  

𝑅𝑅𝛥𝛥𝐴𝐴𝑁𝑁𝐼𝐼𝑁𝑁 =
𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 − 𝜌𝜌𝑁𝑁𝑅𝑅𝑅𝑅

𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 + 𝜌𝜌𝑁𝑁𝑅𝑅𝑅𝑅 + 1 −𝑅𝑅𝛥𝛥𝐴𝐴𝑁𝑁𝐼𝐼𝑁𝑁
(2 −𝑅𝑅𝛥𝛥𝐴𝐴𝑁𝑁𝐼𝐼𝑁𝑁) 

Equation 3.4 

This is then solved for MSAVIN, which results in the inductive form of the MSAVI: 
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𝑅𝑅𝛥𝛥𝐴𝐴𝑁𝑁𝐼𝐼 =
�2 × 𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 + 1 − �(2 × 𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 + 1)2 − 8 × (𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 − 𝜌𝜌𝑁𝑁𝑅𝑅𝑅𝑅)�

2
 

Equation 3.5 

In MATLAB, the MSAVI was calculated for each pixel that was not subject to cloud cover or 
cloud shadow.  In order to fill in the gaps resulting from cloud cover and cloud shadow, another 
routine was run in which the average MSAVI value for all agricultural land that was not 
obstructed by cloud cover or cloud shadow was applied to agricultural land which had been 
obstructed.  The same process was applied to forested land and villages. 

Lastly, composite images were made, for each month.  This was done by averaging the 
MSAVI values at each pixel, using scenes from the same month.  For example, for the month of 
May, a given pixel in the final composite image was the result of averaging the corresponding 
pixel value in all scenes that were collected during May. It was assumed that little benefit 
would be gained by creating a new land cover map for each day, or even each week, of the 
study period, since relative change from day to day or week to week would be small.  Using a 
monthly composite image, on the other hand, would be suitable for the purpose of the study. 

This process produced a series of monthly images with MSAVI values for both 2013 and 
2014, as well as a land use-land cover (LULC) map for each year that would be critical in 
determining ET and runoff, as outlined below. 

3.3. Evapotranspiration and Runoff Methods 
Semi-arid areas are commonly described in terms of an aridity index, which compares 

annual PET with annual rainfall [23].  In these areas, PET exceeds rainfall: for the study site in 
2013 and 2014, this was by a factor of two and four, respectively.  Thus PET is often the 
second-largest component of the hydrologic cycle in arid and semi-arid areas, after 
precipitation.  It is also prone to high levels of uncertainty, owing to the wide array of factors 
that affect it.  Due to its widespread acceptance as a standard method for calculating ET in 
cropland [15, 24, 25, 56, 57], the approach described in the Food and Agriculture 
Organization’s 56th Irrigation and drainage paper is utilized in the present study.  This approach 
is commonly known as the FAO-56 Penman-Monteith method, and is detailed in the appendix. 

The Soil Conservation Service, now known as the National Resource Conservation Service, 
developed the Curve Number method as a way to estimate runoff from specific storm events in 
a watershed with known hydrologic properties [13].  As in the case of estimating 
evapotranspiration, alternate methods exist for calculating runoff.  The NRCS method is one of 
the most well-known runoff estimation methods, owing to its widespread applicability and 
relative ease of use.  This method is also detailed in the appendix. 

3.4. Application to the Study Site and Site-Specific Conditions 
The area as a whole, while predominantly agricultural, has a few large forested areas, 

most of which surround seasonal water bodies.  The agricultural area has generally 8 different 
types of crops: millet, sorghum, corn, cassava, beans, rice, peanuts and watermelon.  The 
forested areas have a wide range of shrubs and trees, predominantly acacia trees (Acacia 
nilotica (Egyptian thorn) and A. seyal (Red acacia) primarily) with Piliostigma reticulatum 
(Camel’s foot), Combretum glutinosum and other species of shrub.  There are also numerous 
small villages and a handful of larger towns.  For simplicity, the study area was assumed to 
comprise three distinct LULC classes – forest, agriculture and village.  Agricultural areas did 
have occasional interspersed trees, namely Faidherbia albida (Winter thorn), Cordyla pinnata 
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(Bush mango), and Adansonia digitata (Baobab), but in practice these were assumed to have 
minimal effect, and fields were assumed to be treeless.  

Permeameter tests (see Section 3.1) were conducted at multiple points throughout the 
study area.  With the exception of those conducted at the sites of seasonal water bodies (which 
covered a small portion of the total study area), tests showed that the hydrologic soil group 
was Group A, according to the NRCS methodology, having the following characteristics: “…low 
runoff potential and high infiltration rates even when thoroughly wetted. They consist chiefly 
of deep, well to excessively drained sand or gravel and have a high rate of water transmission 
(greater than 0.30 in/hr).” [13].  Villages were considered a farmstead and thus assigned a 
base curve number of 59.  While farmers knew that planting on contour was beneficial, they 
planted taller crops (millet, corn, sorghum, cassava) in straight rows parallel to the direction of 
prevailing wind owing to the risk of wind damage to their crops if they planted in rows 
perpendicular to the wind.  While shorter crops were planted on contour, the entire 
agricultural area was considered row crops planted in straight rows for simplicity.  During the 
first part of the growing season, that is, until the fractional cover of the area exceeded roughly 
50%, the hydrologic condition was considered poor and assigned a CN of 72; whereas upon 
exceedance of 50% ground cover, it was considered good and assigned a CN of 67.  Wooded 
areas, including shrub land, were not regularly burned and had some leaf litter covering the 
soil, but were not protected from grazing.  Thus, these areas were considered to have a fair 
hydrologic condition, and assigned a base curve number of 36. 

The code for DH-REM can be found in the appendix.  DH-REM runs in the following steps 
(Figure 3.2): 

1. Read in composite MSAVI and land use-land cover maps 
2. Read in daily rainfall data and calculate daily runoff 
3. Read in reference evapotranspiration rates (calculated as in Section 3.2.2) and 
calculate daily actual evapotranspiration and deep percolation 
4. Compile statistics on a monthly and annual basis for each component of the water 
budget (minimum, maximum and average) 
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Figure 3.2 DH-REM Flowchart 

Some parameters in DH-REM were not precisely known and needed to be estimated from 
the literature: 

• Zforest for forest rooting depth.  This was assumed constant over time, and uniform over the 
study area.  A higher value leads to more AET and less recharge.  A value of 4 m was 
selected (characteristic of Acacia seyal, which was common in the area) and assumed 
representative of the site as a whole [41]. 

• Zcrop for agricultural rooting depth.  This defined the maximum rooting depth of agricultural 
crops, corresponding with full cover.  Rooting depth scaled linearly with fractional cover.  
Higher values lead to higher AET values and lower recharge values.  1.05 m was the 
average of rooting depth values from Allen, et al. [14] for the eight crops in the area. 

• p, the fraction of TAW that can be transpired before water stress occurs.  A higher value of 
p entailed a greater ability to transpire water before water stress occurred, which would in 
return lead to decreased rates of ET.  Thus, higher p led to higher AET values, and lower 
recharge values. 0.8 was selected for forested areas, and 0.45 for crops.  0.45 was the 
average of values from Allen, et al. [14] for the eight crops in the area. 

• MSAVImin, the value of MSAVI corresponding to minimal fractional cover.  This was 
important in calculating fractional cover, which in turn helped determine the crop 
coefficient (Kcb) and rooting depth (Zr crop).  This was selected as 0.2. 
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The model was run for both years with the above parameters.  Results are presented and 
discussed below. 

 

 
Figure 3.3 DH-REM Water Budget, May-October 2013 

In 2013, AET is the dominant output in the water budget, followed by runoff and recharge 
(Figure 3.3).  RET declines from May to August on account of decreasing temperatures and 
increasing cloud cover and humidity.  AET increases monotonically through August, then levels 
off and begins to decrease.  Water stored as soil moisture accumulates with the first rains and 
continues to increase, providing a reserve from which AET demand can be met.  Recharge is 
focused in August and September.  One aspect to note is that on a monthly basis AET 
sometimes exceeds RET slightly.  This is due to the crop coefficient that scales the actual ET 
rate from that for grass to that for crops and trees, which has a maximum value of 1.15, 
coinciding with zero water stress.  AET also exceeds P in June and October (Table 3.3), but this 
can be accounted for by soil storage.  Average recharge for 2013 was calculated as 195.1 mm. 

 

 

 

 

 

 

 

 

0

50

100

150

200

250

300

350

400

450

May June July August September October

De
pt

h 
(m

m
)

Month

P RET AET Runoff Recharge



 

57 

Table 3.3 DH-REM Water Budget, May-October 2013 

Water Budget, May-Oct 2013 
Month P (mm) RET (mm) AET (mm) Runoff (mm) Recharge (mm) 
May 20 250.9 6.7 0.0 0.0 
June 27.5 197.3 35.3 0.0 0.0 
July 139.3 156.3 79.4 30.9 11.6 
August 399 118.1 128.8 88.7 109.9 
September 270.5 121.4 128.4 68.2 69.7 
October 99 144.1 105.5 16.1 3.9 

 

 
Figure 3.4 DH-REM Water Budget, May-October 2014 

Runoff and recharge both occur almost entirely in August, instead of taking place over 
several months as in 2013 (Figure 3.4, Table 3.4).  AET also increases monotonically through 
September, then decreases.  AET in excess of RET only occurs in September, again on account 
of the crop coefficient which scales reference ET for grass to actual ET for crops and trees.  
Finally, AET exceeds P in September and October on account of soil water storage.  Average 
recharge in 2014 was calculated as 64.4 mm. 
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Table 3.4 DH-REM Water Budget, May-October 2014 

Water Budget, May-Oct 2014 
Month P (mm) RET (mm) AET (mm) Runoff (mm) Recharge (mm) 
May 0 235 0.0 0.0 0.0 
June 41.5 198.4 24.4 4.8 6.5 
July 43 172.6 37.7 0.0 0.0 
August 284.5 138.9 110.9 76.1 57.7 
September 104 120.9 133.0 0.1 0.0 
October 52.5 154.9 74.7 0.8 0.2 

 

The distributed nature of these results was explored.  A map showing annual recharge 
values was constructed (Figure 3.5).  Lowest values of recharge coincide with forested areas, 
owing to their deeper rooting depth.  Highest values coincide with the 2% of the study area 
made up of villages.  Of the remaining area, comprised of agricultural land, recharge varied 
strongly with available water, which was lower in the eastern side of the study area, and 
higher in the west.  While these results indicate a good deal of spatial variability in recharge, it 
should be noted that as the water percolates through the subsurface, it will likely distribute 
itself more evenly by the time it reaches the water table.  ET and runoff maps (not shown) also 
indicate a high degree of spatial variability.  Runoff variability was dominated by land cover 
class, while both land cover type and soil type contributed to this variability for ET. 

 
Figure 3.5 2013 Annual Recharge (mm) 
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Some parameters within DH-REM were adjusted to explore the sensitivity of the model.  
These are summarized below, and highlight a possible application of DH-REM. 

 

 

Figure 3.6 Sensitivity Analysis of 2013 Recharge to various parameters. Percent change in recharge 
measured relative to average recharge predicted by DH-REM. 

Each of four parameters (crop water stress tolerance, maximum crop rooting depth, forest 
rooting depth, and soil water) were adjusted independently between -50% and +50% of their 
original values to evaluate the effects on 2013 simulated recharge (Figure 3.6).  Soil water 
clearly has the greatest effect on recharge, whereas the sensitivity of recharge to the other 
three parameters is much more muted.  It is interesting to note that decreasing a parameter by 
a given percentage has a larger effect on recharge than by increasing it the same percentage.  
For instance, the change in recharge as a function of increasing forest rooting depth levels out 
around 20% to 30% increase in rooting depth.  This indicates diminishing returns, as there 
simply is not enough rainfall available to fill up the additional soil moisture reservoir provided 
by deeper rooting depth. 
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Figure 3.7 Sensitivity Analysis of 2014 Recharge to various parameters. Percent change in recharge 
measured relative to average recharge predicted by DH-REM. 

Similar to 2013, simulated 2014 recharge sensitivity is greatest with regards to soil water 
(Figure 3.7).  Effectively no change in recharge occurs as a result of changing forest rooting 
depth over the entire range of tested values; this again indicates, as in 2013, that insufficient 
rain was present to fill up the soil moisture reservoir calculated as a function of forest rooting 
depth.  Maximum crop rooting depth and crop water stress tolerance have similar effects on 
simulated recharge in 2014. 

The above figures indicate that the greatest improvement in model reliability would come 
from a greater confidence in soil water (available water, total evaporable water and readily 
evaporable water).  Additional scenarios could be explored to simulate changes in land use and 
land cover, and their effect on recharge. 

DH-REM, in its current iteration, has a number of limitations that should be considered 
thoroughly when assessing its results.  It has intensive data requirements, as discussed below, 
which would make similar attempts in data-poor regions very difficult.  DH-REM includes 
information about rooting depth, but neglects other subsurface conditions, such as the water 
table and hydraulic conductivity.  Evapotranspiration, runoff and water balance methods were 
selected based on their widespread acceptance by the scientific community and relative ease 
of use; alternative methods may be more appropriate for this area.  It also assumes that the 
top 40 cm of soil, corresponding to data collected, is representative of the following several 
meters of soil. 

 Required data include soil texture, surface permeability, general vegetation 
properties, surface reflectance and elevation, weather parameters (temperature, wind speed, 
humidity, solar radiation and cloud cover) and rainfall on a daily basis.  Of these, soil and 
vegetation data are only available as a result of extensive field work in the study area.  
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Weather data were available from government offices in Senegal, and surface reflectance data 
and elevation were available freely from the USGS.  Climate data was available for the regional 
capital of Kaolack, located about 20 kilometers from the study site.  Rainfall for 2013 and 2014 
were available from a rain gauge about 4 kilometers from the study site.  Additionally, climate 
and rainfall data were assumed uniform over the study area.  Re-creation of this model in other 
areas, even within Senegal, would be difficult without comparable field work and observational 
data. 

These results indicate that DH-REM can provide a distributed estimate of recharge, on a 
daily basis, for pixels or cells corresponding to remote sensing data (in this case, 30 meters).  It 
can also be utilized to explore the dependency of recharge on different soil, vegetation and 
land use/land cover parameters.  Section 4 will compare results of this model with those of 
other existing methods.  The appendix includes application of DH-REM to modeling the 
relationship between rainfall and recharge, as well as the relationship to climate cycles and 
change. 
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4. Comparison of Recharge Estimates 
4.1. Review and Comparison of Methods 
In any comparison of methods, it is important to consider the benefits and restrictions of 

each method.  While natural systems are complex, models must balance complexity and 
simplicity to be reliable.  Complexity comes at a cost: additional data requirements, 
computational time, and a deeper understanding of the relevant processes and variables.  
Models should be as simple as possible, provided they present a reasonably accurate view of 
reality relative to the question asked. 

It is one of the key hypotheses of this thesis that the temporal distribution of rainfall has 
an important effect on recharge in the Saloum Region.  Models without this sensitivity are 
insufficient to determine the relationship between rainfall and recharge accurately. 

The Water Table Fluctuation method (WTF) relies on the principle that any rise in water 
table level can be related to recharge based on estimates of specific yield.  As discussed in 
Section 3.1.2, this method makes several assumptions about the system, including the absence 
of injection into the wells, negligible effect of pumping and atmospheric conditions on 
recharge, and a constant specific yield.  This method has often been suggested for shallow 
water tables experiencing dramatic rises in response to rainfall, but can be applied to deeper 
water tables with more gradual responses.  Estimates of recharge can be made on a basis 
concordant with measurements.  Such estimates should be considered representative of an 
area on the order of several square meters, up to one thousand square meters [18, 21].  Thus, 
while the WTF method has the benefit of fine temporal resolution (contingent on frequency of 
measurements), the extent of its spatial applicability is somewhat limited.  As a recharge 
estimation method, it ignores any environmental or agronomic factors.  While this dispenses 
with some data constraints often faced by other methods, obtaining reliable well level data 
can be difficult and time-consuming, and is not regularly recorded by government agencies, as 
compared to weather data.  It also eliminates the possibility of developing an explicit 
relationship between environmental or agronomic factors and recharge. 

The Thornthwaite-Mather Water Balance (TMWB) is a simple, accounting-style method for 
determining components of the hydrologic cycle on a monthly basis.  One drawback of the 
monthly time step is that all precipitation that falls in a given month is subject to the total 
monthly demand of evapotranspiration and the root zone.  Thus, total precipitation needs to 
exceed both of these in order for any recharge or runoff to be predicted.  Evapotranspiration 
rates rarely if ever exceed about 10 mm/day, whereas rainfall events in excess of 10 mm are 
very likely.  Monthly rainfall amounts are used to determine monthly ET depths.  Therefore, 
the TMWB could be reasonably expected to overestimate evapotranspiration, at least in semi-
arid sites like the one considered in this study, as it attenuates high rainfall events most likely 
to cause recharge [18].  The TMWB presents one estimate for an area, assuming the area is 
subject to the same precipitation and ET rates, and has homogeneous characteristics of field 
capacity and rooting depth.  Finally, the TMWB does not distinguish between runoff and 
recharge; additional stream flow measurements are required to separate estimates of recharge 
and runoff. 

GMS MODFLOW has numerous advantages, including its ability to model large areas on a 
steady-state or transient basis, as well as lumped or distributed approximations.  It can 
incorporate subsurface geology and groundwater flow, factors that can significantly affect 
recharge.  Ease of calibration within GMS means that improved estimates of various parameters 
can be made, remedying some of the uncertainty inherent in these approaches.  However, 
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without flow values, results from the model are non-unique, so it is difficult to determine 
whether another set of results that also fits the data would be more appropriate, or if a 
different set of parameters would give the same result.  Recharge is treated like another 
parameter that is adjusted to match calibration targets (head or flow values, or both), so any 
connection to climatic parameters is not considered.  When recharge is unknown, or when 
estimates are subject to great uncertainty, initial estimates for calibration may have a wide 
range, and final results may be difficult to verify without additional estimates of recharge from 
other methods.  In large models spanning tens or hundreds of kilometers, GMS may also be less 
capable of calibrating to very precise targets. 

The MODFLOW model calibrates hydraulic conductivity and recharge by minimizing the 
error between computed and observed head values.  These head values come from two 
different sources and were measured several years apart.  Head values within the bounds of 
the study site were for a one year time period, so recharge values could be considered 
equivalent to an average value for 2013 and 2014. 

DH-REM, described in Section 3, has the potential to overcome some of these shortcomings.  
It estimates recharge on a transient and distributed basis, and operates with very fine 
resolution both spatially and temporally (30 meters and daily).  Recharge estimates are based 
on an explicit relationship between rainfall, ET rates, and soil and land cover/land use data.  
High resolution data and explicit incorporation of rainfall in the model permit exploration of 
the relationship between temporal distribution of rainfall and recharge, a prime driver for 
development of this model.  Empirical data and remotely sensed land use/land cover 
information are required.  Various parameters can be adjusted to permit exploration of their 
effect on recharge estimates. 

A further point of difference between the TMWB and DH-REM is the order of calculation.  In 
DH-REM, runoff is calculated first, followed by AET, deep percolation and soil moisture 
depletion.  This “ensures” that water is available for runoff.  In the TMWB, AET is calculated 
first, followed by soil moisture, and runoff and recharge are the residual. 

It is also important to acknowledge the effect of results produced by one model with the 
development of another.  Two of the parameters adjusted during calibration of DH-REM, crop 
rooting depth and forest rooting depth, were combined and applied to the TMWB as an overall 
average root depth.  This was done to ensure consistency between the TMWB and DH-REM 
approaches. 

The terms deep percolation and recharge are used interchangeably, though there are some 
important differences.  The WTF and GMS models calculate recharge, i.e., the depth of water 
that reaches the water table.  DH-REM estimates deep percolation – the residual of 
precipitation after the demands of evapotranspiration, runoff and soil moisture have all been 
accounted for.  This is the water that will percolate past the root zone into the intermediate 
zone, and is assumed to eventually make its way to the water table, instead of replenishing soil 
moisture storage deficits in the intermediate zone.  The TMWB model, as noted previously, 
combines estimates of runoff and recharge into one value.  This recharge value is also the 
water that percolates past the root zone and is assumed to replenish the water table.  Moving 
forward, however, deep percolation and recharge will be considered equivalent. 

4.2. Comparison of Estimates 
Model estimates will be compared in two ways: on a monthly basis and on an annual basis.  

The WTF estimates were only available from mid-October 2013 to late October 2014.  Further, 
the GMS results were developed assuming a recharge “season” coinciding with the rainy season 
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(June through September) when most rainfall occurs.  The GMS results were also calibrated 
based on an average of head levels collected from area wells in the study site – the same used 
for the WTF method – in addition to other well levels collected in November 2003 [5], spread 
throughout the larger region.  Thus, the results from GMS should be considered as average 
recharge for both years.  TMWB results are the average of the six parameter combinations 
explored in Section 2.2.3. 

A summary of monthly average values predicted for recharge from each model is shown in 
Figure 4.1. Recharge predicted by the DH-REM and TMWB models is much more concentrated in 
time than the WTF and GMS recharge predictions, on account of the fact that these models 
predict the occurrence of deep percolation (i.e., excess water percolating past the root zone), 
as opposed to actual recharge (water reaching the water table).  The GMS results reflect the 
assumption of a recharge season coinciding with a rainy season. 

 

 
Figure 4.1 Monthly Comparison of Recharge Values from Different Methods 

The WTF method could be considered the most accurate estimate of recharge timing, 
despite the limited range of applicability.  Recharge times between the two WTF estimates 
vary: Well A has a prolonged recharge season, beginning after the end of the rainy season and 
extending for roughly a year.  Well B, on the other hand, has pronounced and easily 
distinguishable recharge periods beginning with the latter half of the rainy season and ending a 
few weeks after its conclusion.  These two wells are several kilometers away from each other, 
reinforcing that one well cannot be considered representative of other wells in the area. 

Finally, areal and point estimates were compared for each model.  DH-REM had the highest 
areal estimate for both years (Table 4.1).  Point estimates for comparison were made by 
selecting the recharge value predicted by GMS and DH-REM that corresponded geographically 
with the wells used for the WTF method.  DH-REM has an extremely high value for recharge in 
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2013, though this is the result of its location in a village which, because of minimal vegetation, 
has much higher recharge than other land use types.  The GMS estimate for 2013 was on the 
opposite end of the spectrum, predicting much less recharge than the WTF method.  In 2014, 
these trends are reversed, with DH-REM giving a more reasonable estimate of point recharge 
than GMS. 

Table 4.1 Comparison of Areal and Point Estimates 

  Areal Estimate 

Year WTF TMWB GMS DH-REM 

2013 N/A 59 53.6 195 

2014 N/A 0 53.6 66 

Year Point Estimate 

2013 158 N/A 37.2 346 

2014 33 N/A 74.3 51.5 
 

Since the TMWB calculates the water balance on a monthly basis, it may over-predict AET, 
as compared to DH-REM, which would explain the lower recharge values.  To explore this 
aspect further, annual average estimates of AET for each method were compared (Table 4.2). 

Table 4.2 Total AET Predicted by Each Model, in Each Year, May to October 

Model DH-REM TMWB 
Year 2013 2014 2013 2014 

AET (May - Oct, mm) 484.2 381.7 588.0 423.4 

 

TMWB predicted more AET in both years (Table 4.2).  This may be due to differences in soil 
moisture estimation in the two methods.  The maximum soil moisture available in the TMWB 
model is the product of rooting depth and field capacity.  In the FAO-56 method, upon which 
DH-REM is based, the equivalent soil water storage parameter, total available water (TAW), is 
the product of rooting depth and available water (the difference between field capacity and 
wilting point).  Average available water was calculated according to Saxton and Rawls [37] as 
0.117 cm3/cm3, whereas an average field capacity of 0.238 cm3/cm3 was used with TMWB.  
Assuming rooting depths are approximately equal, the soil water storage component is twice as 
large as in DH-REM.  In addition, the TMWB model allows soil moisture to decrease below 
wilting point, which is unlikely to happen on account of transpiration alone.  Wilting point 
defines the suction pressure with which soil particles hold water by capillary forces to the 
extent that plant roots cannot extract water for transpiration and wilt [23].  This decreases 
TMWB AET and recharge estimates compared with DH-REM, which does not incorporate stocks 
or flows of water present at or below the wilting point.  Furthermore, there is an exponential 
relationship between ET and soil moisture in the TMWB model, whereas in DH-REM, a linear 
model approximates the decrease in ET with decreasing soil moisture.  It is possible for crops 
to transpire more than the amount prescribed by RET, due to crop surface roughness and 
albedo values that differ from grass.  The maximum crop coefficient (or ratio of maximum 
plant AET to RET) is 1.15, indicating that AET in DH-REM could exceed the reference ET by 15%.  
TMWB treats the reference ET as absolute maximum PET.  The monthly time step in TMWB 
explains why TMWB ET is sometimes greater than DH-REM ET.  Since TMWB simulates the soil 
moisture reservoir in this way (namely, including water present below wilting point in ET 
calculations), it is unlikely to provide reasonable estimates of recharge in semi-arid areas. 
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No observations can be made about a climatological average of recharge, given that only 
two years of data are available.  However, the average recharge estimates presented here 
seem to exceed by a factor of at least 2 that estimated by the BGS report published in 1990.  
This could be due to deforestation, driven by expansion of agriculture and gathering of fuel 
wood.  Deeper-rooted plants have a greater soil moisture storage capacity; thus, a reduction in 
the area of trees could increase recharge. 
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5. Future Work and Conclusions 
5.1. Future Work 
The model presented herein, DH-REM, offers some advantages over previously-developed 

approaches.  It incorporates current, high-resolution data, both spatially and temporally, 
enabling consideration of the effects of short-term precipitation variability on recharge.  While 
only briefly considered here, the results from such a model could be analyzed to better 
quantify the effect of soil and crop type on recharge, as well as the effects of precipitation 
patterns on runoff and AET. 

Much more work could be undertaken to improve the accuracy of the model.  Since DH-REM 
consistently provided the highest estimates of recharge, it should not be viewed as a reliable 
recharge estimation tool.  Additional data sources should be explored to refine its approach 
and provide independent calibration targets.  Directly measuring recharge, for instance with a 
lysimeter, would provide reliable values with which DH-REM could be calibrated.  Monitoring of 
wells in rural areas should be continued and expanded to provide further information on 
recharge rates using the WTF method, which is a scientifically valid, inexpensive and 
straightforward (albeit labor-intensive), technique that could offer significant data on recharge 
in the area and possibly throughout Senegal.   

Additional soils data should be gathered so that the subsurface can be better 
characterized, from the surface to the water table.  Moisture measurements should also be 
taken at various near-surface depths to better understand the dynamics of soil moisture and its 
relationship to cropping patterns and climate.  Supplementary work ought to be done to 
include the effects of evapotranspiration and land use-land cover aspects to estimate historical 
recharge rates with a greater degree of certainty.  AET could be estimated either using 
temperature, or a suite of weather parameters as described by the Penman-Monteith equation.  
Efforts should also be directed towards consideration of how those factors are likely to change 
in the future, and their corresponding impacts on recharge.  Kendy, et al. [28] developed a 
recharge model which described the subsurface as a series of discrete soil layers with different 
characteristics, which would provide more accurate estimates of total recharge, including its 
temporal distribution.  Combining this with rooting depth information, including the portioning 
of water demand to different levels of the root zone, could lead to better estimates of 
evapotranspiration. 

5.2. Conclusions 
Each of the models discussed herein have their benefits and shortcomings.  While the WTF 

method can provide accurate information about local recharge, including its temporal 
distribution, such estimates have limited spatial application and no connection to climatic 
factors.  The TMWB, while easy to use, is better at providing long-term estimates of water 
budget interactions than precise, short-term estimates.  In this study, it was shown to 
overestimate soil moisture and evapotranspiration and underestimate recharge and runoff, and 
thus may not be suitable for semi-arid environments.  GMS is able to provide large-scale 
estimates of recharge, incorporating the flow of groundwater in the system, given observed 
head values and hydraulic conductivity estimates.  By comparison, DH-REM has quite extensive 
data requirements, but it is able to form an explicit link between rainfall and recharge, and 
the dependence of the model on soil and vegetation characteristics. 

It is also important to consider how these results may impact those living in Kaolack.  
Currently, it appears that there is sufficient recharge on an annual basis to provide for 
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drinking, hygiene and washing, assuming no dramatic changes in land use and land cover or 
population.  Provided this influx of recharge is consistent, it should be sufficient to maintain 
the head gradient which appears to be slowing intrusion of saltwater into aquifers in the area 
(see Section 3.3.1).  Further study should be directed towards the interaction between the 
various aquifers in the area, to understand how recharge to upper aquifers may interact with 
lower aquifers, if at all. 

To encourage resiliency to climate change in dryland areas, a variety of rainwater 
harvesting methods have been developed, such as check dams and contour bunds.  Garg and 
Wani [34] investigated possible effects on improving aquifer recharge using such methods in 
India.  These technologies have the potential to provide threefold benefits: reducing the 
impacts of low-rainfall years, improving agricultural productivity in the area by harvesting 
runoff, and safeguarding groundwater reserves by avoiding the need for pumping for irrigation.  
Other adaptation strategies include drought-resistant crops, seasonal climate forecasts (which 
may be aided by investigating correlations between climatic cycles and weather patterns), and 
index insurance. 

The preceding work has demonstrated that much can be gained by comparing different 
recharge models, by exploring their approaches, advantages, limitations and ultimate 
estimates.  Incorporating additional data into more complex recharge models also has an 
advantage.  The distribution of recharge in an area can be better elucidated, along with the 
impacts of vegetation, soil type, and management practices.  Recharge can vary significantly 
over a small area, owing to variations in soil type and vegetation. 

It is hoped that the foregoing analysis can offer an alternative viewpoint on the local 
hydrological system, one that will help ensure even a small improvement in the livelihoods of 
those influenced by climate change and dependent on groundwater in semi-arid regions.  
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7. Appendix 
7.1. DH-REM Calculation Procedure 
7.1.1. FAO-56 Penman-Monteith Method: AET and Soil Water Balance 

Procedure 
Recognizing the need for a uniform approach to calculating evapotranspiration (ET), due to 

variability among other calculation methods, the FAO developed this methodology [14].  It 
relies on a specialized form of the Penman-Monteith method, which is a physically based 
approach to calculating ET.  The Penman-Monteith method is the most extensively used 
methodology for assessing ET from terrestrial surfaces [23], but due to the considerable data 
requirements, other methods are often used in its place.  The regional capital of Kaolack, 
located near the study site, has a weather station that collects all of the required data. 

 The FAO-56 method modifies the Penman-Monteith method in the following way.  The 
Penman-Monteith method allows for variation of albedo and other characteristics of the plant 
under study relating to surface roughness that affect moisture transfer [14].  The FAO-56 
method assumes values for a grass reference crop with a set height of 12 cm, actively growing, 
completely covering the ground and not short of water (i.e., under no water stress).  The 
evapotranspiration that occurs at this rate is known as the Reference ET, or ET0.  The process 
for calculating ET0 was outlined in Section 2.2.2.  To calculate the ET of other plants, a crop 
coefficient is introduced, which effectively scales the reference ET to match the actual ET of 
the plant in question, based on its stage of development.  It also divides total ET into 
evaporation from bare soil, and transpiration from plants. 

𝐸𝐸𝜆𝜆𝑓𝑓 𝑎𝑎𝑑𝑑𝑎𝑎 = (𝐾𝐾𝑠𝑠𝐾𝐾𝑓𝑓𝑐𝑐 + 𝐾𝐾𝑚𝑚)𝐸𝐸𝜆𝜆0 

Equation 7.1 

where 

ETc adj is the actual ET (mm/d) 

Ks is a water stress factor (-) 

Kcb is the crop coefficient (-) 

Ke is the soil evaporation coefficient (-) 

ET0 is the reference ET (mm/d) 

Ke is calculated as: 

𝐾𝐾𝑚𝑚 = 𝐾𝐾𝑟𝑟(𝐾𝐾𝑓𝑓 𝑚𝑚𝑎𝑎𝑚𝑚 − 𝐾𝐾𝑓𝑓𝑐𝑐) ≤ 𝑜𝑜𝑚𝑚𝑑𝑑𝐾𝐾𝑓𝑓 𝑚𝑚𝑎𝑎𝑚𝑚 

Equation 7.2 

where 

Kr is the evaporation reduction coefficient (-) 

few is the fraction of soil both exposed and wetted; here it is equal to (1-fc), where fc is 
fractional cover. 

Kcmax is the maximum value of Kc (= Kcb + Ke), following rain or irrigation. This was set to 
1.15, after González-Dugo and Mateos [15]. 

Fractional cover, fc, is calculated following the method of González-Dugo and Mateos [15] 
(replacing SAVI with MSAVI): 
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𝑜𝑜𝑓𝑓 =
𝑅𝑅𝛥𝛥𝐴𝐴𝑁𝑁𝐼𝐼 − 𝑅𝑅𝛥𝛥𝐴𝐴𝑁𝑁𝐼𝐼𝑚𝑚𝑚𝑚𝑛𝑛

𝑅𝑅𝛥𝛥𝐴𝐴𝑁𝑁𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚 − 𝑅𝑅𝛥𝛥𝐴𝐴𝑁𝑁𝐼𝐼𝑚𝑚𝑚𝑚𝑛𝑛
 

Equation 7.3 

where 

MSAVImin is the smallest MSAVI value in the study area over the timeframe under 
consideration 

MSAVImax is the largest MSAVI value in the study area 

The evaporation reduction coefficient, Kr, is a measure of the effectiveness of evaporation 
from the soil layer.  Initially, with Kr = 1, water is depleted at the potential rate, until a 
threshold, REW, is reached:   

𝐷𝐷𝑜𝑜 𝐷𝐷𝑚𝑚,𝑚𝑚−1 ≤ 𝑅𝑅𝐸𝐸𝑊𝑊,𝐾𝐾𝑟𝑟 = 1 

REW, or Readily Evaporable Water, is the depth of water that can be evaporated at the 
potential rate.  Once this threshold has been crossed, Kr begins to decline linearly, and is 
calculated according to the following equation (see also Figure 7.1): 

𝐷𝐷𝑜𝑜 𝐷𝐷𝑚𝑚,𝑚𝑚−1 ≥ 𝑅𝑅𝐸𝐸𝑊𝑊,𝐾𝐾𝑟𝑟 =
𝜆𝜆𝐸𝐸𝑊𝑊 − 𝐷𝐷𝑚𝑚,𝑚𝑚−1

𝜆𝜆𝐸𝐸𝑊𝑊 − 𝑅𝑅𝐸𝐸𝑊𝑊
 

Equation 7.4 

where 

TEW is the maximum cumulative depth of evaporation from the soil surface layer (Total 
Evaporable Water, mm) 

REW is the readily evaporable water (mm) 

De,i-1 is the previous day’s soil moisture depletion from the soil layer (mm). 

 
Figure 7.1 Soil Evaporation Reduction Coefficient as a Function of Evaporated Depth of Water. Graph 

created with data from [14] 

TEW is calculated as 
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𝜆𝜆𝐸𝐸𝑊𝑊 = 1000(𝜃𝜃𝐹𝐹𝑆𝑆 − 0.5𝜃𝜃𝑊𝑊𝑊𝑊)𝑍𝑍𝑚𝑚 
Equation 7.5 

where 

θFC is the soil water content at field capacity (m3/m3) 

θWP is the soil water content at wilting point (m3/m3) 

Ze is the depth of the soil surface layer that is affected by evaporation (0.1 to 0.15 m, here 
selected as .15 m) 

REW was calculated using the following equation [58]: 

𝑅𝑅𝐸𝐸𝑊𝑊 = (3.121𝜆𝜆𝐸𝐸𝑊𝑊 + 22.896)𝑍𝑍𝑚𝑚 
Equation 7.6 

González-Dugo and Mateos [15] assumed no water stress occurred in their study area, 
which was predominately irrigated cropland.  However, in the present study area, where 
effectively no irrigation was applied during the rainy season to field crops, water stress was 
considered an essential part of the water budget calculation.  As such, the full procedure 
outlined in the FAO-56 document was followed.  Ks, the water stress coefficient, is analogous 
to the evaporation reduction coefficient, and is calculated as: 

𝐾𝐾𝑠𝑠 =
𝜆𝜆𝐴𝐴𝑊𝑊 − 𝐷𝐷𝑟𝑟
𝜆𝜆𝐴𝐴𝑊𝑊 − 𝑅𝑅𝐴𝐴𝑊𝑊

 

Equation 7.7 

where 

TAW is the total available water in the root zone (mm) 

RAW is the readily available water in the root zone (mm) 

Dr is the depletion of soil moisture in the root zone (mm) 

As for Kr, if Dr is less than RAW, Ks is equal to one, and transpiration proceeds at the 
maximum rate. 

TAW, analogous to TEW, is calculated as: 

𝜆𝜆𝐴𝐴𝑊𝑊 = 1000(𝜃𝜃𝐹𝐹𝑆𝑆 − 𝜃𝜃𝑊𝑊𝑊𝑊)𝑍𝑍𝑟𝑟 
Equation 7.8 

𝑍𝑍𝑟𝑟 = 𝑍𝑍𝑟𝑟 𝑚𝑚𝑚𝑚𝑛𝑛 + (𝑍𝑍𝑟𝑟 𝑚𝑚𝑎𝑎𝑚𝑚 − 𝑍𝑍𝑟𝑟 𝑚𝑚𝑚𝑚𝑛𝑛)
𝐾𝐾𝑓𝑓𝑐𝑐

𝐾𝐾𝑓𝑓𝑐𝑐,𝑚𝑚𝑎𝑎𝑚𝑚
 

Equation 7.9 

𝑅𝑅𝐴𝐴𝑊𝑊 = 𝑐𝑐𝜆𝜆𝐴𝐴𝑊𝑊 

Equation 7.10 

𝐾𝐾𝑓𝑓𝑐𝑐 = 𝐾𝐾𝑓𝑓𝑐𝑐,𝑚𝑚𝑎𝑎𝑚𝑚𝑜𝑜𝑓𝑓 

Equation 7.11 

where 

Zr is the rooting depth of the plant (m) 

Zr min and Zr max are the minimum and maximum rooting depths of the plant (m). Zr min was 
taken to be .1 m, as recommended in [14]). 
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p is the fraction of TAW that can be depleted via transpiration prior to water stress (-) 

The procedure to calculate Kcb as the product of the maximum crop factor, Kcb,max, and 
fractional cover, fc (Equation 0.11), follows that of González-Dugo and Mateos [15]. 

Values for REW, TEW, field capacity, wilting point and available water were spatially 
variable throughout the study area, according to Thiessen polygons as developed in ArcGIS 
(Figure 3.1). 

The soil water depletion in the evaporative layer (that is, only bare soil) on a given day is 
calculated as follows: 

𝐷𝐷𝑚𝑚,𝑚𝑚 = 𝐷𝐷𝑚𝑚,𝑚𝑚−1 − (𝑃𝑃𝑚𝑚 − 𝑅𝑅𝑅𝑅𝑚𝑚) +
𝐸𝐸𝑚𝑚
𝑜𝑜𝑚𝑚𝑑𝑑

+ 𝐷𝐷𝑃𝑃𝑚𝑚,𝑚𝑚 

Equation 7.12 

where 

De,i and De,i-1 are the soil water depletion on day i and day i-1, respectively 

Pi is the rainfall on day i 

ROi is the runoff on day i 

Ei is the evaporation on day i 

DPe,i is deep percolation from the soil layer on day i 

De,i is constrained by: 

0 ≤ 𝐷𝐷𝑚𝑚,𝑚𝑚 ≤ 𝜆𝜆𝐸𝐸𝑊𝑊 

Equation 7.13 

The soil water depletion in the root zone is calculated by: 

𝐷𝐷𝑟𝑟,𝑚𝑚 = 𝐷𝐷𝑟𝑟,𝑚𝑚−1 − (𝑃𝑃 − 𝑅𝑅𝑅𝑅)𝑚𝑚 + 𝐸𝐸𝜆𝜆𝑓𝑓 𝑎𝑎𝑑𝑑𝑎𝑎 + 𝐷𝐷𝑃𝑃𝑚𝑚  

Equation 7.14 

where 

Dr,i and Dr,i-1 are root zone depletion on day i and i-1, respectively (mm) 

DPi is the water loss from the root zone by deep percolation (mm) 

Dr,i is constrained by: 

0 ≤ 𝐷𝐷𝑟𝑟,𝑚𝑚 ≤ 𝜆𝜆𝐴𝐴𝑊𝑊 

Equation 7.15 

To initiate the soil water balance, both Dr and De were set to zero at the start of each 
model run. 

7.1.2. Runoff Estimation – The NRCS Curve Number Method 
The Soil Conservation Service, now known as the National Resource Conservation Service, 

developed the Curve Number method as a way to estimate runoff from specific storm events in 
a watershed with known hydrologic properties [13].  As in the case of estimating 
evapotranspiration, alternate methods exist for calculating runoff.  The NRCS method is one of 
the most well-known runoff estimation methods, owing to its widespread applicability and 
relative ease of use. 

Total storm runoff, Q, is calculated as 
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𝑄𝑄 =  
(𝑃𝑃 − 𝐼𝐼𝑎𝑎)2

(𝑃𝑃 − 𝐼𝐼𝑎𝑎) + 𝛥𝛥
 

Equation 7.16 

Where 
P is rainfall (in) 
S is potential maximum retention after runoff begins (in) 
Ia is initial abstraction (in) 

Initial abstraction is made up of interception (as by plant canopies), infiltration, and 
storage contributed by surface depressions.  The original formulation of this method uses the 
following relationship between initial abstraction and storage: 

𝐼𝐼𝑎𝑎 = .2𝛥𝛥 

Equation 7.17 

Substituting Equation 7.16 back into Equation 7.17 results in 

𝑄𝑄 =  
(𝑃𝑃 − 0.2𝛥𝛥)2

𝑃𝑃 + 0.8𝛥𝛥
,𝑃𝑃 > 𝐼𝐼𝑎𝑎 

Equation 7.18 

The storage term is transformed into the curve number, CN, by the following relation (S in 
inches): 

𝐶𝐶𝑁𝑁 =
1000

10 + 𝛥𝛥
 

Equation 7.19 

In practice, the CN is selected according to a set of factors relating to soil type, land use, 
treatment and hydrologic condition.  Soil type is generally indicative of infiltration rate, and 
different types of land uses include agriculture, developed land, pasture, woods and others.  
Treatment is a more specific description of management practices.  Agricultural land can have 
different treatments ranging from straight row crops, to contoured planting, to incorporation 
of crop residue as mulch and others.  Hydrologic condition refers to factors such as ground 
cover, frequency of burning and presence of mulch.   

In addition to these factors, what is variably known as the antecedent moisture condition 
(AMC) or the antecedent runoff condition (ARC) also affects runoff calculation.  Theoretically, 
if a given basin has had very little rain in the recent past (5 days for the purposes of this 
method), it has greater retention capacity, and will produce less runoff.  Alternatively, if it has 
received a great deal of rain in the previous 5 days, it has correspondingly less retention 
capacity, and will tend to produce more runoff.  This information can be used to adjust the 
Curve Number according to the following equations (Chin [59], referencing Hawkins, et al. 
[60]). 

For rainfall in the growing season, if the sum of rainfall in the previous 5 days is less than 
1.4 inches, or 35 mm: 

𝐶𝐶𝑁𝑁𝐴𝐴𝐴𝐴𝑆𝑆 𝑁𝑁 =
𝐶𝐶𝑁𝑁𝐴𝐴𝐴𝐴𝑆𝑆 𝑁𝑁𝑁𝑁

(2.3 − 0.013𝐶𝐶𝑁𝑁𝐴𝐴𝐴𝐴𝑆𝑆 𝑁𝑁𝑁𝑁)
 

Equation 7.20 

If the sum of rainfall in the previous 5 days is greater than 2.1 inches, or 53 mm: 
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𝐶𝐶𝑁𝑁𝐴𝐴𝐴𝐴𝑆𝑆 𝑁𝑁𝑁𝑁𝑁𝑁 =
𝐶𝐶𝑁𝑁𝐴𝐴𝐴𝐴𝑆𝑆 𝑁𝑁𝑁𝑁

(. 43 + .0057𝐶𝐶𝑁𝑁𝐴𝐴𝐴𝐴𝑆𝑆 𝑁𝑁𝑁𝑁)
 

Equation 7.21 

Potential retention, S, is then calculated according to the following equation: 

𝛥𝛥 = �
1000
𝐶𝐶𝑁𝑁

− 10� 

Equation 7.22 

The thresholds for these dry and wet periods are supplied in SCS [61].  The NRCS Curve 
Number method, as stated above, assumes a ratio of Ia to S of 0.2.  However, Woodward, et al. 
[62] found that this ratio is actually quite high for most cases, based on experiments in the 
continental US.  In fact, in over 90% of cases, 0.2 was too high.  According to their work, a 
ratio of 0.05 was more acceptable, although this ratio varies from storm to storm and between 
watersheds.  This recommendation – using a ratio of Ia to S of 0.05 – was used in DH-REM. 

Calculating storage from the curve number then requires a different expression, as follows: 

 𝛥𝛥 = 1.33 �
1000
𝐶𝐶𝑁𝑁

− 10�
1.15

 

Equation 7.23 

Runoff can then be calculated according to Equation 7.18. 
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7.2. Rainfall Analysis 
7.2.1. Characterization of Rainfall Patterns 
The Sahel is subject to highly variable rainfall patterns, which significantly influences 

recharge.  Rainfall in the early part of the rainy season (May to July) will likely serve primarily 
to satisfy the soil moisture deficit and not contribute to recharge.  Sustained wet spells may 
correlate with lowering the soil moisture deficit, which is an important precursor to recharge.  
If the majority of the rain falls in a few large events on the order of several tens of 
millimeters, much of the precipitation will be lost to runoff, due to the infiltration rate being 
exceeded, and little water will be available for recharge.  On the other hand, if the majority of 
the rain falls in small events roughly equal to the ET demand of that particular day (typically 
less than 10 mm), nearly all rain that has fallen will be lost to ET and, similarly, little to no 
recharge will take place [30].  Because of the anticipated influence of short-term rainfall 
distribution on recharge, annual rainfall alone is not likely to be an adequate predictor of 
annual recharge.  Thus, when anticipating the effects of climate change, even if the overall 
trend of annual precipitation is known, the resulting effect on recharge remains unknown 
because the relationship between rainfall and recharge is not well understood.  Rushton, et al. 
[63] applied a soil-water balance model to semi-arid cropped land in Nigeria.  In that study, 
they qualitatively described rainfall patterns (such as the timing of rain, annual totals and the 
distribution), primarily to compare these patterns and recorded crop yields with model results.  
However, no quantitative analysis of the relationship between rainfall and recharge was 
undertaken. 

An important aspect of this study included the development of a set of characteristics that 
could appropriately describe rainfall patterns apart from the total precipitation.  Further, an 
investigation of the relationship between these characteristics and recharge predicted by a 
model was also conducted. 

The Office for Scientific and Technical Research Overseas (ORSTOM), a French research 
organization, provided daily rainfall data for numerous rain gauges in Senegal from the 
beginning of record-keeping to 1965 [64].  For Kaolack, record-keeping started in 1918.  Daily 
precipitation data, also for the Kaolack weather station, was collected by the meteorological 
office in Dakar (the National Agency of Civil Aviation and Meteorology of Senegal (ANACIM)), 
covering the years 1965 to 2008.  These data sets were combined to create a continuous 91-
year data set. 

With the rainfall data that was available for Kaolack from 1918 to 2008, the following 
rainfall characteristics were calculated for each rainy season (Table 7.1).  These were selected 
because of their anticipated effect on recharge, including depth and timing of rainfall, and 
antecedent moisture conditions. 
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Table 7.1 Rainy season characteristics under consideration 

Parameter Units 
Total annual rainfall mm 
Number of rainy days Days 
Average rain per rainy day mm 
Standard deviation of rainy season events mm 
Coefficient of variance for rainy season events - 

Length of season (defined as number of days from first day with more 
than 5 mm of rainfall to the last day with any rainfall) Days 
Skewness and kurtosis of each rainy season’s rainfall events - 
Total amount of rainfall falling in the following bins:   
0-10 mm mm 
10-20 mm mm 
20-30 mm mm 
30-40 mm mm 
40-60 mm mm 
60-80 mm mm 
More than 80 mm mm 
Kurtosis and skewness of the binned rainfall depths - 
Total amount of rainfall falling in depths greater than:   

10 mm mm 

20 mm mm 

30 mm mm 

40 mm mm 

60 mm mm 
Number of days in a given antecedent moisture condition Days 
Number of dry days (days with <35 mm falling the previous 5 days) Days 

Number of average days (days with >35 mm but <53 mm falling in the 
previous 5 days) Days 
Number of wet days (days with >53 mm falling the previous 5 days) Days 

Number of spells, or series of days, in a given antecedent moisture 
condition (dry, average or wet) Days 

Average length of spells in a given antecedent moisture condition 
(number of dry, average or wet days divided by number of dry, 
average, or wet spells) Days 
Ratio of dry days to wet days - 
Total amount of rainfall falling each month (May through November) mm 
Skewness and kurtosis of the monthly rainfall distribution - 

 

This gave a total of 41 characteristics to analyze.  Limits for dry, average and wet periods 
were taken from the NRCS Curve Number method [61]. 
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7.2.2. Relationship between Rainfall and Recharge 
Once DH-REM had been calibrated, it was forced with daily rainfall from 1918-2008.  Note 

that the parameters used in the simulations explored below are not the same as those 
presented earlier.  For these, maximum crop rooting depth was 2 meters, and the soil water 
depletion factor was 0.8 for both crops and forested land.  ET rates and land use/land cover 
data from 2013 were used for each year, to isolate the effect of rainfall patterns.  Annual 
recharge and rainfall were jointly plotted using the full data set (Figure 7.2), and subsequently 
for 30-year moving windows.  A linear trend line was calculated to fit each data set in order to 
evaluate how the relationship between rainfall and recharge has changed over time.  The 91-
year data set was broken into 30-year windows for several reasons.  First, this time frame 
allowed better data and trend investigation.  The window was long enough to dampen random, 
short-term fluctuations, while still being short enough to enable evaluation of the dataset at 
several discrete intervals.  Furthermore, the US National Weather Service uses 30 years as the 
length of record for determining average precipitation for a given location, and updates this 
every ten years [23].  Subdivision of the longer data set allowed for the evaluation of the 
relationship between rainfall and recharge on a more temporally localized basis, enabling 
consideration of a potentially variable relationship between rainfall and recharge.  An 
additional window, covering 1968-2008, was included owing to the detection of a change point 
occurring in 1968 (see Section 7.2.3.1). 

 
Figure 7.2 Linear Regression of Annual Recharge vs Rainfall, 1918-2008. Rainfall data collected by 

CIEH [64] and the National Agency of Civil Aviation and Meteorology of Senegal (ANACIM) 
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Figure 7.3 Linear Regression of Recharge vs Rainfall. a: 1918-1947, b: 1928-1957, c: 1938-1967, d: 

1948-1977, e: 1958-1987, f: 1968-1997, g: 1978-2007, h: 1968-2008. Rainfall data collected by CIEH [64] 
and the National Agency of Civil Aviation and Meteorology of Senegal (ANACIM) 
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Figure 7.4 Annual Rainfall and Recharge - 1918-2008. Rainfall data collected by CIEH [64] and the 

National Agency of Civil Aviation and Meteorology of Senegal (ANACIM) 

Rainfall has been decreasing markedly, as has recharge (Figure 7.3 and Figure 7.4). The 
relationship between recharge and rainfall has been shifting over the time frame under 
consideration.  In the first three 30-year periods (Figure 7.3), recharge was about 15% of 
rainfall, then 13% and 10% over the next two 30-year periods, and finally dropping to about 8% 
of rainfall in the last three periods considered (1968-1997, 1978-2007, and 1968-2008), 
indicating annual rainfall has become less effective at producing recharge.  The coefficient of 
determination, or variance explainable by annual rainfall alone, was fairly consistent (ranging 
from 0.85 to 0.92) through the period ending in 1987.  Then in the periods after that, the 
coefficient of determination dropped considerably to about 0.7.  Not only is the relationship 
between recharge and rainfall changing, but also the extent to which annual rainfall alone can 
be used to satisfactorily predict annual recharge is decreasing over time.  In Table 7.2 is a 
summary of regression coefficients, the coefficient of determination (R2) and associated t-test 
values for the slope coefficient for the above trials.  Note that in all cases, the slope value is 
statistically significant (tobs is greater than tcrit) at p = 0.05. 
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Table 7.2 Linear Regression Coefficients, Coefficient of Determination, RMSE and t-test values for 
each window of Recharge and Rainfall Relationships 

Window Slope Intercept Coefficient of 
Determination RMSE tcrit tobs 

1918-2008 0.340 -139.898 0.902 24.267 1.987 28.548 

1918-1947 0.364 -157.781 0.915 26.059 2.048 17.355 

1928-1957 0.338 -140.787 0.893 23.545 2.048 15.296 

1938-1967 0.342 -142.919 0.874 24.727 2.048 13.931 

1948-1977 0.339 -138.655 0.906 23.662 2.048 16.410 

1958-1987 0.325 -130.199 0.850 23.903 2.048 12.588 

1968-1997 0.284 -106.476 0.684 21.997 2.048 7.781 

1978-2007 0.250 -88.709 0.688 21.555 2.048 7.860 

1968-2008 0.271 -99.247 0.727 21.036 2.023 10.183 

 

Next, several linear regression analyses were conducted to further explore what factors 
affect recharge.  The square root transformation was applied to recharge values in order for 
them to be normally distributed.  All 41 variables were plotted versus the square root of 
recharge to determine if a linear relationship existed, based on a visual assessment.  This 
assessment was performed twice: once for the period covering 1918-2008, and applied to all 
30-year windows, and a second time for the period covering 1968-2008.  Thirteen variables 
were determined to have a linear relationship with recharge for 1918-2008 (12 for 1968-2008) 
and were analyzed using a stepwise linear regression.  Since some of the variables were likely 
collinear, two statistics regarding collinearity were reviewed after each regression was 
performed.  These are the VIF (the Variance Inflation Factor) and the Condition Index.  If a 
variable had a VIF higher than 10, or a condition index greater than 20 that also coincided with 
a high variance proportion, it was removed, and the regression redone [65, 66].  No final 
regression analysis resulted in a predictor variable with a condition index greater than 18.903, 
and the largest VIF encountered was 3.409.  Both of these factors indicate minimal collinearity 
was present among the 13 variables studied.  Finally, the condition of homoscedasticity was 
evaluated.  The plot of residual versus predicted values was visually inspected, and all 
regressions appeared homoscedastic.  All coefficients in the modeled relationships were 
significant at p < 0.05, and most were significant at p < 0.01.  The parameters used in each 
equation, along with their coefficients and significance levels, are presented in Table 7.3.



 

 

85 

  

Ta
bl

e 
7.

3 
St

at
is

ti
ca

l 
A

sp
ec

ts
 o

f 
M

ul
ti

li
ne

ar
 R

eg
re

ss
io

n 
M

od
el

s 

 
 

Co
ns

ta
nt

 
To

ta
l 

Au
g 

Su
m

 
Se

p 
Su

m
 

St
an

d.
 D

ev
n.

 
10

+ 
# 

W
et

 D
ay

s 
Av

g 
W

et
 S

pe
ll

 

19
18

-
20

08
 

Co
ef

fi
ci

en
t 

-0
.5

54
 

- 
0.

01
5 

0.
01

3 
- 

- 
0.

17
3 

- 

Si
gn

if
ic

an
ce

 
0.

17
45

 
- 

5.
32

E-
14

 
4.

91
E-

10
 

- 
- 

9.
70

E-
12

 
- 

19
18

-
19

47
 

Co
ef

fi
ci

en
t 

1.
01

6 
- 

0.
01

4 
0.

01
1 

- 
- 

0.
14

4 
- 

Si
gn

if
ic

an
ce

 
0.

07
97

 
- 

9.
14

E-
07

 
7.

06
E-

05
 

- 
- 

3.
32

E-
05

 
- 

19
28

-
19

57
 

Co
ef

fi
ci

en
t 

-0
.4

18
 

0.
01

7 
- 

- 
-0

.2
07

 
- 

- 
.2

41
 

Si
gn

if
ic

an
ce

 
0.

62
94

5 
1.

65
E-

13
 

- 
- 

0.
00

56
1 

- 
- 

.0
47

36
 

19
38

-
19

67
 

Co
ef

fi
ci

en
t 

-1
.2

23
 

0.
01

5 
- 

- 
- 

- 
- 

- 

Si
gn

if
ic

an
ce

 
0.

17
21

8 
2.

72
E-

14
 

- 
- 

- 
- 

- 
- 

19
48

-
19

77
 

Co
ef

fi
ci

en
t 

-2
.3

66
 

0.
01

4 
0.

00
6 

- 
- 

- 
- 

- 

Si
gn

if
ic

an
ce

 
0.

00
70

1 
2.

76
E-

10
 

0.
03

16
2 

- 
- 

- 
- 

- 

19
58

-
19

87
 

Co
ef

fi
ci

en
t 

-2
.6

55
 

0.
02

0 
- 

- 
- 

- 
- 

- 

Si
gn

if
ic

an
ce

 
0.

00
78

21
 

2.
64

E-
12

 
- 

- 
- 

- 
- 

- 

19
68

-
19

97
 

Co
ef

fi
ci

en
t 

-2
.8

13
 

- 
.0

13
 

- 
- 

0.
01

0 
.1

42
 

- 

Si
gn

if
ic

an
ce

 
0.

04
02

3 
- 

.0
01

66
 

- 
- 

0.
02

72
0 

.0
26

58
 

- 

19
78

-
20

07
 

Co
ef

fi
ci

en
t 

-2
.0

04
 

- 
0.

01
3 

0.
01

5 
- 

- 
0.

25
7 

- 

Si
gn

if
ic

an
ce

 
0.

01
20

9 
- 

9.
00

E-
05

 
2.

70
E-

04
 

- 
- 

5.
64

E-
07

 
- 

19
68

-
20

08
 

Co
ef

fi
ci

en
t 

-1
.1

06
 

- 
0.

01
5 

0.
01

3 
- 

- 
0.

19
4 

- 

Si
gn

if
ic

an
ce

 
0.

17
60

1 
- 

3.
00

E-
06

 
0.

00
18

9 
- 

- 
1.

60
E-

05
 

- 



 

86 

Table 7.4 Coefficient of Determination and RMSE for Simple and Multilinear Regressions and 
Improvement 

 

Coefficient of 
Determination RMSE 

Window Simple Multi Simple Multi 

1918-2008 0.902 0.907 24.267 21.487 

1918-1947 0.915 0.945 26.059 19.953 
1928-1957 0.893 0.915 23.545 19.603 

1938-1967 0.874 0.878 24.727 24.369 

1948-1977 0.906 0.908 23.662 21.782 

1958-1987 0.850 0.830 23.903 18.561 

1968-1997 0.684 0.811 21.997 14.111 

1978-2007 0.688 0.888 21.555 13.244 

1968-2008 0.727 0.806 21.036 13.084 
Comparing the coefficient of determination and RMSE between the simple regressions 

(using annual rainfall as the independent variable) and the multilinear regressions, the first six 
windows over which multilinear regressions were applied showed little improvement, and once 
a slight decrease, in coefficient of determination, and slight to modest improvement in RMSE 
(Table 7.4).  Regarding the last three time periods, all three demonstrated improvements in 
coefficient of determination, and the largest improvements of any periods under study.  The 
time period with the greatest improvement in coefficient of determination was 1978-2007, 
indicating its analysis benefitted the most from incorporating rainy season characteristics.  
There is a dramatic decrease in RMSE for the last three time periods as well.  The highest R2 
values, that is, the best agreement between the regression-modeled recharge and that 
predicted by DH-REM, occur during two windows: 1918-1947 and 1928-1957. 

The inclusion of additional parameters somewhat improves the accuracy of recharge 
modeled using linear regression for the last three time periods.  Interestingly, in all the 
multilinear regression equations developed, total rainfall was only selected as a predictor for 
the periods covering 1928-1987.  This again confirms the idea that total rainfall is not as 
important a predictor of recharge as it has been in the past.  The sum of rainfall in August was 
the most common predictor, followed by number of wet days, total rainfall and September 
rainfall.  This demonstrates that rainfall later in the rainy season, as well as that occurring 
during a period of sustained rainfall, are the most important characteristics of rainfall that 
produces recharge.  Rain falling in depths greater than 10 mm, the standard deviation of 
rainfall events (negative relationship) and the average length of wet spells were also selected.  
Thus, to a lesser extent, that rainfall which is relatively consistent with regard to depth and in 
excess of a couple days’ ET demand are also important characteristics.  A higher standard 
deviation in rainfall may point to a higher frequency of extreme events, where losses from 
runoff would increase, and minor events, where losses from AET would increase.  While there 
was an important increase in accuracy for the last three time periods under study from 
considering multiple predictors, they also had lower coefficients of determination than most of 
the other subsets.  This could point to the need for exploration of additional variables that 
could explain the variance in recharge. 

7.2.3. Tests for Nonstationarity 
Many approaches to quantifying water resource availability assume the condition of 

stationarity - that is, a time series is representative of long-term or future behavior.  However, 
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considerable evidence from the field of climate science suggests that the climatic system 
which drives patterns of rainfall is changing over time [23].  Thus, an alternative set of tools is 
necessary for evaluating the changing nature of rainfall patterns. 

There are three primary ways of assessing nonstationarity: abrupt shifts (detected herein 
using the Pettitt test), linear trends (either increasing or decreasing, examined in this study 
using the Mann-Kendall trend test), and cyclicity (assessed here using Empirical Mode 
Decomposition) [23]. 

7.2.3.1. Pettitt Test 
Owing to climatic trends, anthropogenic forcing, or land use and land cover changes, 

environmental variables can demonstrate abrupt shifts in the mean, or in the standard 
deviation.  Change points, as well as the time at which this shift is most likely to occur, can be 
identified using the Pettitt test [67]. 

Those rainfall characteristics identified as predictors of annual recharge in the previous 
section were evaluated using the Pettitt test in R.  Five of the seven parameters, with the 
exception of standard deviation and average wet spell length, had statistically significant 
change points (Table 7.5). 

 

Table 7.5 Summary of Pettitt Test Results. CoV is Coefficient of Variance, the standard deviation 
divided by the average 

 
Parameter 

 
Total 10+ August September # Wet Days 

Change Point 1968 1968 1959 1968 1969 
Significance 2.77E-07 3.60E-06 8.35E-04 4.27E-04 4.497E-06 
Mean before 
(mm/Days) 817 698 315 217 24.9 
Mean after 
(mm/Days) 573 478 225 148 14.3 
% Reduction 30% 32% 29% 32% 43% 

Standard Deviation 
before (mm/Days) 46 30 18 24 

9.2 

Standard Deviation 
after (mm/Days) 40 33 19 5 

6.6 
CoV before 0.056 0.042 0.057 0.109 0.369 
CoV after 0.069 0.07 0.086 0.034 0.465 
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Figure 7.5 Annual rainfall, and average rainfall before and after most probable change point (dashed 

lines). Rainfall data collected by CIEH [64] and the National Agency of Civil Aviation and Meteorology of 
Senegal (ANACIM) 

Nearly all change points were most likely to have occurred in 1968 or 1969 (Figure 7.5), 
with the exception of August rainfall (most likely to have occurred in 1959).  This compares 
favorably with a change point in Sahelian rainfall observed between 1969 and 1970 by L'hote, 
et al. [68].  Each parameter also exhibited similar magnitudes in percent reduction of means 
from before the change point to after the change point, on the order of 30-40%.  September 
rainfall demonstrated significant reductions in variability, as evidenced by decreases in both 
standard deviation and coefficient of variance, whereas the number of wet days increased in 
variability.  The remaining parameters expressed no appreciable change in variability.  Since 
the Pettitt test can only detect one change point in a series, additional change points may exist 
in the time series, but they will not be explored here. 

7.2.3.2. Mann-Kendall Trend Test 
Trends were evaluated for each of the rainy season characteristics using the Mann-Kendall 

trend test [69].  Six characteristics were found to have a trend at a significance level p < 0.05 
(Table 7.6). 

Table 7.6 Mann-Kendall Trend Test Results 

 
Parameter 

 
Total 10+ August September # Wet Days Stand. Devn. 

Significance 2.92E-06 5.47E-06 2.50E-03 3.78E-04 5.85E-05 0.00578 
All trends were negative over the historical record.  Trends were also evaluated for each 

characteristic, in the series before and after the change point predicted by the Pettitt test.  
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However, no characteristic had a significant trend either before or after the change point 
detected by the Pettitt test. 

7.2.3.3. Empirical Mode Decomposition 
The Pettitt test can assess abrupt shifts in the mean, but is relegated to finding just one 

such break in a series.  It also assumes series before and after the change point are 
homogeneous.  The Mann-Kendall trend test, on the other hand, is only capable of identifying if 
a trend exists at a given significance level, and if such a trend is positive or negative.  
However, many environmental variables are not monotonic, but exhibit cyclicity, or periodic 
fluctuations, which cannot be evaluated appropriately using either of the aforementioned 
tests. 

The Fast Fourier Transform (FFT), among other signal processing tools, has been applied in 
a variety of contexts where evaluation of recurring cycles at a fixed frequency is important.  
However, its use is predicated on several assumptions, one of which is that of stationarity of 
the system [70].  Alternatively, Empirical Mode Decomposition (EMD) is an important tool for 
evaluating cyclical patterns in geophysical data sets [70].  The Hilbert-Huang Transform, an 
improved version of EMD, has been used in the analysis of earthquakes, wind fields, rainfall 
patterns, and many others.  In essence, EMD decomposes a given signal into component sine 
waves of varying frequency and wavelength, known as Intrinsic Mode Functions (IMFs).  IMFs are 
formed by tracing upper and lower bounds of the base signal using local maxima and minima, 
respectively.  The average of the upper and lower bounds is computed, then subtracted from 
the input signal.  The averaged signal is then treated as the input signal, and the process 
repeated, until the following criteria are met: (a) the number of local extrema and crossings at 
zero differ by at most one, and (b) the mean of the signal at any point is zero.  Once the IMFs 
have been extracted, a trend remains that is either monotonic or has only one extremum [70].  
Each component signal can have varying frequency and wavelength properties over the time 
frame studied.  The sum of all IMFs and the trend is equivalent to the base signal.   

The parameters that were shown to be predictors for any of the multilinear regression 
models were analyzed using EMD.  An example plot demonstrating the decomposition of a base 
signal (here, total annual rainfall) into IMFs and an overall trend is shown below. 
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Figure 7.6 Empirical Mode Decomposition Results, as applied to total annual rainfall. a is annual 

rainfall. b-f are the first through fifth IMFs (Intrinsic Mode Functions). g is the trend. Rainfall data 
collected by CIEH [64] and the National Agency of Civil Aviation and Meteorology of Senegal (ANACIM) 

From Figure 7.6, it is important to note the varying magnitude of the different IMFs.  Some 
may have more persistent behavior, but also minor contributions to the overall signal (such as 
the 5th IMF).  The 2nd IMF, on the other hand, has a fairly short period but also a significant 
magnitude and contribution to overall rainfall.  The trends of regression model predictors, as 
extracted via EMD, were extrapolated 30 years into the future using MATLAB’s interp1 function, 
applying a spline method.  The trend predicted by EMD for number of wet days, however, 
showed a dramatic decrease in the near future when EMD was applied for the whole dataset, 
and a dramatic increase when neglecting the first 30 years of data.  The trend predicted by 
EMD neglecting the first 15 years of data and extrapolated in MATLAB demonstrated a 
reasonable trend into the near future.  Once the relevant trends were compiled, the regression 
model predicted recharge values for the time period covering 1968-2008, including the 95% 
lower and upper confidence limits of the model, was applied using these trends (including base 
and projected trend data).  These produced projections, as well as 95% confidence bounds, of 
annual recharge into the future, taking into account only changing rainfall patterns. 
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Figure 7.7 Trends of relevant regression model predictors, as estimated by EMD (1918-2008, solid 

lines) and projected by extrapolation (2009-2038, dashed lines) 

 
Figure 7.8 Calculated Recharge and Regression Model Projections 

Of those parameters expected to predict recharge, wet days per rainy season appears most 
likely to change significantly in the next couple decades (Figure 7.7).  While not likely to 
change substantially in the near future, August rainfall appears to be decreasing linearly, 
whereas September rainfall seems to be recovering slightly after reaching a local minimum in 
the late 1990s or early 2000s.  When taking into account only rainfall patterns, recharge as 
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modeled by DH-REM has decreased significantly since the early part of the 20th century.  The 
regression model indicates that this decline is levelling off, and the upper bound of this 
estimate points to a rebound in maximum likely recharge as well by 2020 (Figure 7.8).  Modeled 
recharge exceeded the upper bound once, whereas the modeled recharge was less than the 
lower limit on four occasions.  Thus, for 36 out of 41 years, modelled recharge was within the 
95% confidence limits. 

There are a number of other factors that are likely to affect recharge besides rainfall, 
including other climate variables and land use changes; however, these are neglected in the 
present study for two reasons.  First, some climate variables, such as temperature, are much 
more likely to remain fairly steady from one year to the next.  Over 1981-2008 (the years for 
which both temperature and rainfall data were available), average annual temperature, while 
generally increasing, varied from 28 to 30 oC, whereas annual precipitation ranged from roughly 
300 to 900 mm (Figure 7.9).  Second, it is important to quantify the impact of individual factors 
on recharge, in order to discern which factors have the greatest effect. 

 
Figure 7.9 Annual Precipitation and Average Temperature, 1981-2008. Rainfall data collected by 

CIEH [64] and the National Agency of Civil Aviation and Meteorology of Senegal (ANACIM) 

As noted above, one source of nonstationarity is a cyclical change in the climatic system, 
often associated with climatic indices.  Since these would likely affect rainfall pattern 
characteristics, and recharge by extension, correlation of base signals and individual IMFs with 
climatic indices was also investigated.  Four climatic indices were evaluated that are 
calculated based on sea surface temperatures (SST): the Niño 3.4 Index (N3.4, corresponding to 
El Niño and the Southern Oscillation, ENSO), the Pacific Decadal Oscillation (PDO), the Atlantic 
Multidecadal Oscillation (AMO) and a fourth index established by Giannini, et al. [71] (Table 
7.7).  The North Atlantic Index (NAI), as it will be referred to here, relates the difference in 
ocean temperature between the north Atlantic and global tropical SST.  Niño 3.4 was selected 
because of its relatively short period, roughly three to seven years, and its widespread impact 
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on global weather patterns.  PDO and AMO were selected on account of their longer 
wavelengths, on the order of decades. 

Table 7.7 Climate Indices and Respective Data Sources 

Index Data Source 

Niño 3.4 Index 
http://www.cgd.ucar.edu/cas/catalog/climind/TNI_N34/ 
index.html 

Pacific Decadal Oscillation http://research.jisao.washington.edu/pdo/ 

Atlantic Multidecadal Oscillation http://www.esrl.noaa.gov/psd/data/timeseries/AMO/ 

North Atlantic Index http://www.esrl.noaa.gov/psd/data/timeseries/ 
 

These indices were computed on annual basis from monthly data, by taking the average of 
index values for a water year – from November of the previous year to October of the year in 
question, corresponding to the end of the rainy season in the previous year to that of the year 
in question.  The time frames used for calculation included those that were shifted three, six 
and nine months backwards from the end of the rainy season, allowing consideration of lag 
times in investigating the correlation with base signals and IMFs from EMD.  The chart below 
summarizes these results by presenting the highest correlation coefficient calculated among 
the lagged climate indices, relative to the base signal or IMF in question.  Correlations and 
their corresponding two-tailed t-test values were calculated.  Those correlations with 95% or 
99% significance are presented here.  In general, lag times did not play a large role in 
determining correlation, but there were some exceptions to this.  For instance, the second IMF 
of annual rainfall correlated with NAI at a significance level of p = 0.05 for a standard water 
year (November to the following October), but did not correlate significantly with yearly NAI 
signals for time periods August-July, May-April or February-January.  Thus, the strength of 
some of these teleconnections are affected by the time of year over which they operate, 
whereas most are statistically significant year-round. 
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Table 7.8 Correlation Coefficients of Base Signals and IMFs with Four Climatic Patterns. Superscript 
a represents significance at the 99% level; superscript b represents significance at the 95% level. 

 
N3.4 (n = 90) PDO (n = 91) AMO (n = 91) NAI (n = 60) 

 IMF r IMF r IMF r IMF r 

Total 

        3 0.220b Base 0.637a 

        4 0.481a 2 0.266b 

        5 0.410a 4 0.688a 

10+ 

        5 0.697a Base 0.538a 

            3 0.439a 

            4 0.653a 

August 
    5 0.436a     3 0.301b 

            4 0.27b 

September 

        5 0.388a Base 0.414a 

            4 0.549a 

            5 0.672a 

# Wet Days 

        4 0.645a Base 0.611a 
        5 0.410b 3 0.262b 
            4 0.541a 

            5 0.736a 

Avg Wet Spell 3 0.217b             
 

N3.4 only correlates with the third IMF from average wet spell duration (an average period 
of about 12 years), which is surprising given the shorter period of ENSO (roughly three to seven 
years, Table 7.8) [23].  The standard deviation of rainfall does not correlate with any climate 
index.  One significant correlation was observed between the PDO and the fifth IMF of August 
rainfall, despite the shorter period of the PDO (46 years over the record analyzed here, 
whereas this IMF has a period of about 60 years).  The AMO correlated significantly with the 
lower frequency signals (third through fifth IMFs), fitting given its long period (approximately 
50 years in this dataset).  Of the indices evaluated here, the NAI correlated most often with 
climatic parameter base signals and their corresponding IMFs, primarily low frequency signals.  
This supports the thesis of Giannini, et al. [71] that this index can provide insight into rainfall 
patterns over varying time scales.  In their study, they were able to demonstrate that a 
temperature difference between the North Atlantic Ocean and global tropical oceans 
encourages the supply of moisture to the Sahel, resulting in higher rainfall, most notably in 
Senegal.  An extremely high correlation was observed between the 5th IMF of rainfall falling in 
increments greater than 10 mm and the AMO, as well as between the NAI and the 4th IMF of 
both total rainfall, and the 5th IMF of wet days per rainy season.  These correlation analyses 
offer an incomplete but promising look into which aspects of the climatic system affect rainfall 
patterns the most, and the resultant effects on recharge.  While recharge is certainly affected 
by factors apart from rainfall patterns, the ability to quantify this interaction is essential in 
understanding the nature of recharge, as well as its capacity to change in the future. 
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7.3. DH-REM Code (MATLAB Environment): 
 
% read in precip values 
% read in PET values 
% read in land cover map 
% read in one MSAVI tiff at a time 
% using land cover map and fractional cover, calculate base CN 
% from amoozemeter results, all soils are class A 
%     therefore: 
%     crop land, straight row: 
%         Less than 50% cover: 72, >50% 67 
%     Woods 
%         36 
%     Farmsteads 
%         59 
% On a daily basis, cycling through rows and columns: 
%    Calculate Runoff using previous model 
  
% establish parameters 
  
Kc_max = 1.15; 
TEW = imread('TEW_final.tif'); 
REW = imread('REW_final.tif'); 
Avail_water = imread('AW_final.tif'); 
DP_sum = 0; 
Evap_month = 0; 
ET_month = 0; 
Z_min = .1; 
  
% Read in MSAVI composite images 
  
pre_string = 'MSAVI_'; 
post_string = '_2013_final.tif'; 
rows = 277; 
columns = 208; 
scene = zeros(rows,columns); 
scene_compiled = zeros(rows,columns); 
MSAVI = zeros(rows,columns); 
for N = 1:7 
    scene = imread(strcat(pre_string,num2str(N+4),post_string)); 
    MSAVI = cat(3,MSAVI,scene); 
end 
  
% read in LU-LC map 
LULC = imread('LULC_2013_final.tif'); 
% find smallest value of MSAVI for all scenes 
MSAVI_max = max(max(max(MSAVI))); 
  
% Calculate Runoff 
% Read in rainfall from year 2013 
% sheet = 2013; 
% P = 

xlsread('Rainfall_Transposed_III.xlsx',num2str(sheet),'A2:A185'); 
Days = 214; 
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% Pre-allocate matrices as 3D matrix full of zeros for following 
variables (speeds up processing) 

prev_5_day = zeros(rows,columns,Days); 
base_CN = zeros(rows,columns,Days); 
new_CN = zeros(rows,columns,Days); 
S = zeros(rows,columns,Days); 
Runoff_inch = zeros(rows,columns,Days); 
Runoff = zeros(rows,columns,Days); 
P_eff = zeros(rows,columns,Days); 
  
counter = 1; 
% Cycle through years 
for sheet = 2013 
    P = 

xlsread('Rainfall_Transposed_III.xlsx',num2str(sheet),'A2:A215'); 
    % Days = numel(P); 
    % convert rainfall values to inches 
    P_inch = P/25.4; 
    % Cycle through days 
     
    Z_crop = 1.05; 
    Z_forest = 4; 
    p_forest = .8; 
    p_crop = .45; 
     
    abs_min = .2; 
     
    for q = 1:Days 
        if q <= 31 
            N =5; 
        elseif q <= 61 
            N =6; 
        elseif q<=92 
            N=7; 
        elseif q <=123 
            N=8; 
        elseif q<=153 
            N=9; 
        elseif q<= 184 
            N=10; 
        else 
            N=11; 
        end 
        % Cycle through rows 
        for j = 1:rows 
            % Cycle through columns 
            for k = 1:columns 
                if q <= 5 
                    prev_5_day(q) = 0; 
                else prev_5_day(q) = sum(P_inch(q-5:q)); 
                end 
                % Depending on LU-LC values from LU-LC map, assign 
base 
                % Curve Number 
                if LULC(j,k) == 1 
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                    base_CN(j,k,q) = 36; 
                elseif LULC(j,k) == 2 
                    % Adjust CN based on land cover - agricultural 

land 
                    % only 
                    if (MSAVI(j,k,N-3)-abs_min)/(MSAVI_max-abs_min) 

<.5 
                        base_CN(j,k,q) = 72; 
                    else 
                        base_CN(j,k,q) = 67; 
                    end 
                else 
                    base_CN(j,k,q) = 59; 
                end 
                 
                % Conditional statements - if sum of previous 5 days 

of 
                % rain is less than a certain amount (dry spell), 

adjust CN 
                % down (more storage). If more than a certain 

amount, 
                % adjust CN up (less storage). If in between, keep 

base CN 
                % value 
                 
                if prev_5_day(q) <= 1.4 
                    new_CN(j,k,q) = (base_CN(j,k,q)*4.3)/(10-

.058*base_CN(j,k,q)); 
                elseif prev_5_day(q) >= 2.1 
                    new_CN(j,k,q) = 

(base_CN(j,k,q)*23)/(10+.13*base_CN(j,k,q)); 
                else 
                    new_CN(j,k,q) = base_CN(j,k,q); 
                end 
                % Calculate storage based on CN 
                S(j,k,q) = 1.33*((1000/new_CN(j,k,q))-10)^1.15; 
                % If rainfall is below a certain threshold (function 

of 
                % storage, no runoff occurs. Else, runoff occurs. 
                if P_inch(q) < .05*S(j,k,q) 
                    Runoff_inch(j,k,q) = 0; 
                else 
                    Runoff_inch(j,k,q) = (P_inch(q) - 

.05*S(j,k,q)).^2/(P_inch(q)+.95*(S(j,k,q))); 
                end 
                % Convert runoff back into mm 
                Runoff(j,k,q) = Runoff_inch(j,k,q)*25.4; 
                % Find P_eff - Rainfall minus Runoff. This is 

treated as 
                % rainfall for subsequent calculations 
                P_eff(j,k,q) = P(q)-Runoff(j,k,q); 
            end 
        end 
    end 
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    % Read in PET 
    ET_0 = xlsread('ET Data for Combined 

Model.xlsx','2013','A1:A214'); 
     
    % Initiate/pre-allocate ET variables 
    Kcb = ones(rows,columns,Days); 
    F_ew = ones(rows,columns,Days); 
    Z_r = ones(rows,columns,Days); 
    TAW = ones(rows,columns,Days); 
    RAW = ones(rows,columns,Days); 
    K_r = ones(rows,columns,Days); 
    K_r_a = ones(rows,columns,Days); 
    K_s = ones(rows,columns,Days); 
    K_e = ones(rows,columns,Days); 
    Evap = ones(rows,columns,Days); 
    ETc_adj = ones(rows,columns,Days); 
    Trans = ones(rows,columns,Days); 
    DP_e = ones(rows,columns,Days); 
    D_e = ones(rows,columns,Days); 
    DP_r = ones(rows,columns,Days); 
    D_r = ones(rows,columns,Days); 
    frac_cover = ones(rows,columns,Days); 
    Kc_adj = ones(rows,columns,Days); 
     
    % Calculate Evaporation and Transpiration fraction 
    % Cycle through days 
     
    for q = 1:Days 
        if q <= 31 
            N =5; 
        elseif q <= 61 
            N =6; 
        elseif q<=92 
            N=7; 
        elseif q <=123 
            N=8; 
        elseif q<=153 
            N=9; 
        elseif q <= 184 
            N=10; 
        else 
            N=11; 
        end 
        % Cycle through rows 
        for j = 1:rows 
            % Cycle through columns 
            for k = 1:columns 
                % Calculate fractional cover as proportion of local 

MSAVI 
                % to MSAVI_max 
                frac_cover(j,k,q) = (MSAVI(j,k,N-3) - 

abs_min)/(MSAVI_max - abs_min); 
                if frac_cover(j,k,q) > 1 
                    frac_cover(j,k,q) = 1; 
                elseif frac_cover(j,k,q) < 0 
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                    frac_cover(j,k,q) = 0; 
                end 
                % Determine basal crop coefficient as max 
                % crop coefficient times fractional cover 
                Kcb(j,k,q) = Kc_max*frac_cover(j,k,q); % GDM Eq 11 
                % Fraction of surface wetted by precipitation (100%) 
                Fw = 1; 
                % Fraction of soil both exposed and wetted 
                F_ew(j,k,q) = min(1-frac_cover(j,k,q),Fw); % Eq 75 
                % Initiate soil depletion for first day, equivalent 

to 
                % total available water 
                D_e(j,k,1) = TEW(j,k); 
                % If LULC is forest, root zone is constant at ~3m 
                if LULC(j,k) == 1 
                    Z_r(j,k,q) = Z_forest; 
                    % For Ag land, max root zone is 1.5 m, and 

scaled between 
                    % Zmin and Zmax as a function of crop 

coefficient 
                else 
                    Z_max = Z_crop; 
                     
                    if q ==1 
                        Z_r(j,k,q) = Z_min + (Z_max-

Z_min)*(Kcb(j,k,q)/Kc_max); % GDM Eq 12 
                    else 
                        Z_r(j,k,q) = max(Z_min + (Z_max-

Z_min)*(Kcb(j,k,q)/Kc_max),Z_r(j,k,q-1)); 
                        % Maintains rooting depth at max once peak 

development 
                        % has been reached, i.e., roots do not 

shrink with 
                        % diminishing ground cover during senescence 
                    end 
                end 
                % Total and readily available water calculations 
                TAW(j,k,q) = 1000*Avail_water(j,k)*Z_r(j,k,q); % Eq 

82 
                if LULC(j,k) == 1; 
                    RAW(j,k,q) = p_forest*TAW(j,k,q); % Eq 83 
                else 
                    RAW(j,k,q) = p_crop*TAW(j,k,q); % Eq 83 
                end 
                D_r(j,k,1) = TAW(j,k,1); % Initialize Root zone 

depletion as TAW - Eq 87 
                % Initialize K_s and K_r as 0 for day 1 
                if q == 1 
                    % Soil evaporation reduction coefficient 
                    K_r(j,k,q) = 0; 
                    % Water stress coefficient 
                    K_s(j,k,q) = 0; 
                else 
                    if D_e(j,k,q-1) < REW(j,k) 
                        K_r_a(j,k,q) = 1; 
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                    else 
                        K_r_a(j,k,q) = (TEW(j,k) - D_e(j,k,q-

1))/(TEW(j,k) - REW(j,k)); % Eq 74 
                    end 
                    K_r(j,k,q) = K_r_a(j,k,q); 
                    if D_r(j,k,q-1) < RAW(j,k,q) 
                        K_s(j,k,q) = 1; 
                    else 
                        K_s(j,k,q) = (TAW(j,k,q) - D_r(j,k,q-

1))/(RAW(j,k,q)*TAW(j,k,q)); % Eq 84 
                    end 
                end 
                % Calculate soil evaporation coefficient 
                K_e(j,k,q) = min((K_r(j,k,q)*(Kc_max - 

Kcb(j,k,q))),F_ew(j,k,q)*Kc_max); % Eq 71 
                % Calculate actual evaporation 
                Evap(j,k,q) = K_e(j,k,q)*ET_0(q); 
                % Calculate Actual ET using dual crop coefficient 
                Kc_adj(j,k,q) = (K_s(j,k,q)*(Kcb(j,k,q))) + 

K_e(j,k,q); 
                ETc_adj(j,k,q) = (Kc_adj(j,k,q) * ET_0(q)); % Eq 80 
                % Calculate transpiration 
                Trans(j,k,q) = (K_s(j,k,q)*(Kcb(j,k,q)))*ET_0(q); 
                % Calculate Deep Percolation (DP) and Soil Moisture 
                % Depletion (D) for both Evap and Transpiration 
                 
                %%%% Below is Original code 
                if q == 1 
                    % For Day 1, DP is P_eff if rain has fallen, 

else 0 
                    DP_e(j,k,q) = (max(0,P_eff(j,k,q) - 

Evap(j,k,q))); % Eq 79 
                    D_e(j,k,q) = TEW(j,k);% - P_eff(j,k,q) + 

(Evap(j,k,q)/F_ew(j,k,q)) + DP_e(j,k,q); % Eq 77 
                    DP_r(j,k,q) = (max(0,P_eff(j,k,q) - 

ETc_adj(j,k,q) - TAW(j,k,1))); % Eq 88 
                    D_r(j,k,q) = TAW(j,k,1); % Eq 85 
                     
                else 
                    DP_e(j,k,q) = (max(0,P_eff(j,k,q) - D_e(j,k,q-1) 

- Evap(j,k,q))); % Eq 79 
                    D_e(j,k,q) = D_e(j,k,q-1) - P_eff(j,k,q) + 

(Evap(j,k,q)/F_ew(j,k,q)) + DP_e(j,k,q); % Eq 77 
                    % Set limits on evaporative layer moisture 

depletion (min 
                    % is 0, max is TEW(j,k)) 
                    if D_e(j,k,q) < 0 
                        D_e(j,k,q) = 0; 
                    elseif D_e(j,k,q) >= TEW(j,k) 
                        D_e(j,k,q) = TEW(j,k); 
                    end 
                    DP_r(j,k,q) = (max(0,P_eff(j,k,q) - 

ETc_adj(j,k,q) - D_r(j,k,q-1))); % Eq 88 
                    D_r(j,k,q) = D_r(j,k,q-1) - P_eff(j,k,q) + 

ETc_adj(j,k,q) + DP_r(j,k,q); % Eq 85 
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                    % Set limits on root zone moisture depletion 
(min 

                    % is 0, max is TAW) 
                    if D_r(j,k,q) < 0 
                        D_r(j,k,q) = 0; 
                    elseif D_r(j,k,q) >= TAW(j,k,q) 
                        D_r(j,k,q) = TAW(j,k,q); 
                    end 
                end 
            end 
        end 
    end 
     
    % Pre-allocate monthly tallies of Runoff, ET, and DP 
     
    May_runoff = zeros(rows,columns); 
    Jun_runoff = zeros(rows,columns); 
    Jul_runoff = zeros(rows,columns); 
    Aug_runoff = zeros(rows,columns); 
    Sep_runoff = zeros(rows,columns); 
    Oct_runoff = zeros(rows,columns); 
    Nov_runoff = zeros(rows,columns); 
    Annual_Runoff_matrix = zeros(rows,columns); 
     
    May_ET = zeros(rows,columns); 
    Jun_ET = zeros(rows,columns); 
    Jul_ET = zeros(rows,columns); 
    Aug_ET = zeros(rows,columns); 
    Sep_ET = zeros(rows,columns); 
    Oct_ET = zeros(rows,columns); 
    Nov_ET = zeros(rows,columns); 
    Annual_ET_matrix = zeros(rows,columns); 
     
    May_DP = zeros(rows,columns); 
    Jun_DP = zeros(rows,columns); 
    Jul_DP = zeros(rows,columns); 
    Aug_DP = zeros(rows,columns); 
    Sep_DP = zeros(rows,columns); 
    Oct_DP = zeros(rows,columns); 
    Nov_DP = zeros(rows,columns); 
     
    May_DPe = zeros(rows,columns); 
    Jun_DPe = zeros(rows,columns); 
    Jul_DPe = zeros(rows,columns); 
    Aug_DPe = zeros(rows,columns); 
    Sep_DPe = zeros(rows,columns); 
    Oct_DPe = zeros(rows,columns); 
    Nov_DPe = zeros(rows,columns); 
    Annual_DP_matrix = zeros(rows,columns); 
    %Nov_DPe = zeros(rows,columns); 
     
    % Cycle through rows 
    for j = 1:rows 
        % Cycle through columns 
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        for k = 1:columns 
            % Find monthly runoff as sum of runoff values over the 

whole 
            % area for a specified date range 
            May_runoff(j,k) = sum(Runoff(j,k,1:31)); 
            Jun_runoff(j,k) = sum(Runoff(j,k,32:61)); 
            Jul_runoff(j,k) = sum(Runoff(j,k,62:92)); 
            Aug_runoff(j,k) = sum(Runoff(j,k,93:123)); 
            Sep_runoff(j,k) = sum(Runoff(j,k,124:153)); 
            Oct_runoff(j,k) = sum(Runoff(j,k,154:184)); 
            Nov_runoff(j,k) = sum(Runoff(j,k,185:214)); 
            Annual_Runoff_matrix(j,k) = sum(Runoff(j,k,1:214)); 
            % Find monthly ET as sum of ET values over the whole 
            % area for a specified date range. nansum function 

excludes 
            % values NaN 
            May_ET(j,k) = nansum(ETc_adj(j,k,1:31)); 
            Jun_ET(j,k) = nansum(ETc_adj(j,k,32:61)); 
            Jul_ET(j,k) = nansum(ETc_adj(j,k,62:92)); 
            Aug_ET(j,k) = nansum(ETc_adj(j,k,93:123)); 
            Sep_ET(j,k) = nansum(ETc_adj(j,k,124:153)); 
            Oct_ET(j,k) = nansum(ETc_adj(j,k,154:184)); 
            Nov_ET(j,k) = nansum(ETc_adj(j,k,185:214)); 
            Annual_ET_matrix(j,k) = nansum(ETc_adj(j,k,1:214)); 
            % Find monthly DP as sum of DP values over the whole 
            % area for a specified date range 
            May_DP(j,k) = sum(DP_r(j,k,1:31));%+sum(DP_e(j,k,1:31)); 
            Jun_DP(j,k) = 

sum(DP_r(j,k,32:61));%+sum(DP_e(j,k,32:61)); 
            Jul_DP(j,k) = 

sum(DP_r(j,k,62:92));%+sum(DP_e(j,k,62:92)); 
            Aug_DP(j,k) = 

sum(DP_r(j,k,93:123));%+sum(DP_e(j,k,93:123)); 
            Sep_DP(j,k) = 

sum(DP_r(j,k,124:153));%+sum(DP_e(j,k,1241:153)); 
            Oct_DP(j,k) = 

sum(DP_r(j,k,154:184));%+sum(DP_e(j,k,154:184)); 
            Nov_DP(j,k) = sum(DP_r(j,k,185:214)); 
            Annual_DP_matrix(j,k) = sum(DP_r(j,k,1:214)); 
             
            May_DPe(j,k) = sum(DP_e(j,k,1:31)); 
            Jun_DPe(j,k) = sum(DP_e(j,k,32:61)); 
            Jul_DPe(j,k) = sum(DP_e(j,k,62:92)); 
            Aug_DPe(j,k) = sum(DP_e(j,k,93:123)); 
            Sep_DPe(j,k) = sum(DP_e(j,k,124:153)); 
            Oct_DPe(j,k) = sum(DP_e(j,k,154:184)); 
            Nov_DPe(j,k) = sum(DP_e(j,k,185:214)); 
        end 
    end 
     
    % Find avg, max and min of Runoff, ET and DP for all months 
    May_avg_runoff = mean(mean(May_runoff)); 
    May_max_runoff = max(max(May_runoff)); 
    May_min_runoff = min(min(May_runoff)); 
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    Jun_avg_runoff = mean(mean(Jun_runoff)); 
    Jun_max_runoff = max(max(Jun_runoff)); 
    Jun_min_runoff = min(min(Jun_runoff)); 
     
    Jul_avg_runoff = mean(mean(Jul_runoff)); 
    Jul_max_runoff = max(max(Jul_runoff)); 
    Jul_min_runoff = min(min(Jul_runoff)); 
     
    Aug_avg_runoff = mean(mean(Aug_runoff)); 
    Aug_max_runoff = max(max(Aug_runoff)); 
    Aug_min_runoff = min(min(Aug_runoff)); 
     
    Sep_avg_runoff = mean(mean(Sep_runoff)); 
    Sep_max_runoff = max(max(Sep_runoff)); 
    Sep_min_runoff = min(min(Sep_runoff)); 
     
    Oct_avg_runoff = mean(mean(Oct_runoff)); 
    Oct_max_runoff = max(max(Oct_runoff)); 
    Oct_min_runoff = min(min(Oct_runoff)); 
     
    Nov_avg_runoff = mean(mean(Nov_runoff)); 
    Nov_max_runoff = max(max(Nov_runoff)); 
    Nov_min_runoff = min(min(Nov_runoff)); 
     
    %%%%%%%%%%%% 
     
    May_avg_ET = mean(mean(May_ET)); 
    May_max_ET = max(max(May_ET)); 
    May_min_ET = min(min(May_ET)); 
     
    Jun_avg_ET = mean(mean(Jun_ET)); 
    Jun_max_ET = max(max(Jun_ET)); 
    Jun_min_ET = min(min(Jun_ET)); 
     
    Jul_avg_ET = mean(mean(Jul_ET)); 
    Jul_max_ET = max(max(Jul_ET)); 
    Jul_min_ET = min(min(Jul_ET)); 
     
    Aug_avg_ET = mean(mean(Aug_ET)); 
    Aug_max_ET = max(max(Aug_ET)); 
    Aug_min_ET = min(min(Aug_ET)); 
     
    Sep_avg_ET = mean(mean(Sep_ET)); 
    Sep_max_ET = max(max(Sep_ET)); 
    Sep_min_ET = min(min(Sep_ET)); 
     
    Oct_avg_ET = mean(mean(Oct_ET)); 
    Oct_max_ET = max(max(Oct_ET)); 
    Oct_min_ET = min(min(Oct_ET)); 
     
    Nov_avg_ET = mean(mean(Nov_ET)); 
    Nov_max_ET = max(max(Nov_ET)); 
    Nov_min_ET = min(min(Nov_ET)); 
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    %%%%%%%%%%%% 
     
    May_avg_DP = mean(mean(May_DP)); 
    May_max_DP = max(max(May_DP)); 
    May_min_DP = min(min(May_DP)); 
     
    Jun_avg_DP = mean(mean(Jun_DP)); 
    Jun_max_DP = max(max(Jun_DP)); 
    Jun_min_DP = min(min(Jun_DP)); 
     
    Jul_avg_DP = mean(mean(Jul_DP)); 
    Jul_max_DP = max(max(Jul_DP)); 
    Jul_min_DP = min(min(Jul_DP)); 
     
    Aug_avg_DP = mean(mean(Aug_DP)); 
    Aug_max_DP = max(max(Aug_DP)); 
    Aug_min_DP = min(min(Aug_DP)); 
     
    Sep_avg_DP = mean(mean(Sep_DP)); 
    Sep_max_DP = max(max(Sep_DP)); 
    Sep_min_DP = min(min(Sep_DP)); 
     
    Oct_avg_DP = mean(mean(Oct_DP)); 
    Oct_max_DP = max(max(Oct_DP)); 
    Oct_min_DP = min(min(Oct_DP)); 
     
    Nov_avg_DP = mean(mean(Nov_DP)); 
    Nov_max_DP = max(max(Nov_DP)); 
    Nov_min_DP = min(min(Nov_DP)); 
     
    %%%%%%%%%%%%% 
     
    May_avg_DPe = mean(mean(May_DPe)); 
    May_max_DPe = max(max(May_DPe)); 
    May_min_DPe = min(min(May_DPe)); 
     
    Jun_avg_DPe = mean(mean(Jun_DPe)); 
    Jun_max_DPe = max(max(Jun_DPe)); 
    Jun_min_DPe = min(min(Jun_DPe)); 
     
    Jul_avg_DPe = mean(mean(Jul_DPe)); 
    Jul_max_DPe = max(max(Jul_DPe)); 
    Jul_min_DPe = min(min(Jul_DPe)); 
     
    Aug_avg_DPe = mean(mean(Aug_DPe)); 
    Aug_max_DPe = max(max(Aug_DPe)); 
    Aug_min_DPe = min(min(Aug_DPe)); 
     
    Sep_avg_DPe = mean(mean(Sep_DPe)); 
    Sep_max_DPe = max(max(Sep_DPe)); 
    Sep_min_DPe = min(min(Sep_DPe)); 
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    Oct_avg_DPe = mean(mean(Oct_DPe)); 
    Oct_max_DPe = max(max(Oct_DPe)); 
    Oct_min_DPe = min(min(Oct_DPe)); 
     
    Nov_avg_DPe = mean(mean(Nov_DPe)); 
    Nov_max_DPe = max(max(Nov_DPe)); 
    Nov_min_DPe = min(min(Nov_DPe)); 
     
    % Calculate annual DP, ET and Runoff values as sum of monthly 

values 
     
    Annual_DPr = May_avg_DP + Jun_avg_DP + Jul_avg_DP + Aug_avg_DP + 

Sep_avg_DP + Oct_avg_DP + Nov_avg_DP; 
    Annual_DPe = May_avg_DPe + Jun_avg_DPe + Jul_avg_DPe + 

Aug_avg_DPe + Sep_avg_DPe + Oct_avg_DPe + Nov_avg_DPe; 
    Annual_DP = Annual_DPr + Annual_DPe; 
    Annual_ET = May_avg_ET + Jun_avg_ET + Jul_avg_ET + Aug_avg_ET + 

Sep_avg_ET + Oct_avg_ET + Nov_avg_ET; 
    Annual_Runoff = May_avg_runoff + Jun_avg_runoff + Jul_avg_runoff 

+ Aug_avg_runoff + Sep_avg_runoff + Oct_avg_runoff + Nov_avg_runoff; 
    P_sum = sum(P); 
     
    % Combine previous values into one array 
    %                     Z_forest 
    %                     Z_crop; 
    %                     p 
    Error = ((Annual_DPr - 158)/158); 
    Summary_array = horzcat(May_avg_runoff, May_max_runoff, 

May_min_runoff, Jun_avg_runoff, Jun_max_runoff, Jun_min_runoff, 
Jul_avg_runoff, Jul_max_runoff, Jul_min_runoff,... 

        Aug_avg_runoff, Aug_max_runoff, Aug_min_runoff, 
Sep_avg_runoff, Sep_max_runoff, Sep_min_runoff, Oct_avg_runoff, 
Oct_max_runoff, Oct_min_runoff, Nov_avg_runoff, Nov_max_runoff, 
Nov_min_runoff, May_avg_ET, May_max_ET, May_min_ET, Jun_avg_ET, 
Jun_max_ET, Jun_min_ET, Jul_avg_ET, Jul_max_ET, Jul_min_ET, ... 

        Aug_avg_ET, Aug_max_ET, Aug_min_ET, Sep_avg_ET, Sep_max_ET, 
Sep_min_ET, Oct_avg_ET, Oct_max_ET, Oct_min_ET, Nov_avg_ET, Nov_max_ET, 
Nov_min_ET, May_avg_DP, May_max_DP, May_min_DP, Jun_avg_DP, Jun_max_DP, 
Jun_min_DP, Jul_avg_DP, Jul_max_DP, Jul_min_DP, ... 

        Aug_avg_DP, Aug_max_DP, Aug_min_DP, Sep_avg_DP, Sep_max_DP, 
Sep_min_DP, Oct_avg_DP, Oct_max_DP, Oct_min_DP, Nov_avg_DP, Nov_max_DP, 
Nov_min_DP, Annual_Runoff, Annual_ET, Annual_DP, Annual_DPr, 
Annual_DPe, P_sum, Z_crop, Z_forest); 

     
     
    write_number = num2str(counter); 
    write_cell = horzcat('B',num2str(write_number)); 
        % Write 'Summary_array' to Excel sheet 
    xlswrite('Water_Balance_Summary.xlsx',Summary_array,'2013 

Results,write_cell); 
    counter = counter +1; 
end 
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7.4. Permission for Figure 1.1. 

File:Senegal in Africa (mini map rivers).svg 
From Wikimedia Commons, the free media repository Jump to: navigation, search 
Description 
Deutsch: Lage von XY (siehe Dateiname) in Afrika. English: Location of XY (see filename) in 
Africa. 
Date7 April 2011Own work 

This file was uploaded with Commonist. 

AuthorOther versions 

This SVG map is part of a locator map series applying the widespread location map scheme. 
Please see root category to browse for more. 
+more 
+ Locator maps design recommendations 
....corresponding imagemaps 
Licensing[edit] 
I, the copyright holder of this work, hereby publish it under the following licenses: 

You are free: 
to share – to copy, distribute and transmit the work to remix – to adapt the work 
Under the following conditions: 
attribution – You must attribute the work in the manner specified by the author or licensor (but 
not in any way that suggests that they endorse you or your use of the work). 
share alike – If you alter, transform, or build upon this work, you may distribute the resulting 
work only under the same or similar license to this one. 
Permission is granted to copy, distribute and/or modify this document under the terms of the 
GNU Free Documentation License, Version 1.2 or any later version published by the Free 
Software Foundation; with no Invariant Sections, no FrontCover Texts, and no BackCover 
Texts. A copy of the license is included in the section entitled GNU Free Documentation 
License.You may select the license of your choice. 

I'd greatly appreciate, that you attribute this media file to Wikimedia Commons, if used outside 
Wikipedia or Commons. For use in publications such as books, newspapers, blogs, websites, 
please insert here the following line: 
{{published|author= |date= |url= |title= |org= }}and fill the applicable fields. (Example). 
License terms given above still apply. 

https://de.wikipedia.org/wiki/Afrika
https://en.wikipedia.org/wiki/Africa
https://commons.wikimedia.org/wiki/Commonist
https://en.wikipedia.org/wiki/Scalable_Vector_Graphics
https://commons.wikimedia.org/w/index.php?title=File%3ASenegal_in_Africa_(-mini_map_-rivers).svg&amp;action=edit&amp;section=1
https://commons.wikimedia.org/w/index.php?title=File_talk%3ASenegal_in_Africa_(-mini_map_-rivers).svg&amp;action=edit&amp;redlink=1
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7.5. Permission for Figure 1.2. 
 

File:Kaolack in Senegal.svg  Wikimedia Commons 

Deutsch: Lage der Region XY (siehe Dateiname) in Senegal. English: Location 
of region xy (see filename) in Senegal. 
Date23 November 2011Own work 
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AuthorOther versions 
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scheme. Please see root category to browse for more. 

+more 
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You are free: 

to share – to copy, distribute and transmit the work to remix – 
to adapt the work 

Under the following conditions: 

attribution – You must attribute the work in the manner specified by the author or 
licensor (but not in any way that suggests that they endorse you or your use of the work). 
share alike – If you alter, transform, or build upon this work, you may distribute the 
resulting work only under the same or similar license to this one. 

I'd greatly appreciate, that you attribute this media file to Wikimedia Commons, if used 
outside Wikipedia or Commons. For use in publications such as books, newspapers, blogs, 
websites, please insert here the following line: 
{{published|author= |date= |url= |title= |org= }}and fill the applicable fields. (Example). 
License terms given above still apply. 
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