
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's Reports 

2016 

On the Limits and Practice of Automatically Designing Self-On the Limits and Practice of Automatically Designing Self-

Stabilization Stabilization 

Alex Klinkhamer 
Michigan Technological University, apklinkh@mtu.edu 

Copyright 2016 Alex Klinkhamer 

Recommended Citation Recommended Citation 
Klinkhamer, Alex, "On the Limits and Practice of Automatically Designing Self-Stabilization", Open Access 
Dissertation, Michigan Technological University, 2016. 
https://doi.org/10.37099/mtu.dc.etdr/90 

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr 

 Part of the OS and Networks Commons, Software Engineering Commons, and the Theory and Algorithms 
Commons 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/90
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=digitalcommons.mtu.edu%2Fetdr%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.mtu.edu%2Fetdr%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.mtu.edu%2Fetdr%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.mtu.edu%2Fetdr%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages


On the Limits and Practice of

Automatically Designing Self-Stabilization

By

Alex Peter Klinkhamer

A Dissertation

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

In Computer Science

Michigan Technological University

2016

© 2016 Alex P. Klinkhamer





This dissertation has been approved in partial fulfillment of the requirements for the
Degree of Doctor of Philosophy in Computer Science.

Department of Computer Science

Dissertation Advisor: Dr. Ali Ebnenasir

Committee Member: Dr. Melissa Keranen

Committee Member: Dr. Jean Mayo

Committee Member: Dr. Charles Wallace

Department Chair: Dr. Min Song





For Dan and Luci, my loving parents,
whose realism and optimism forever guide me





Contents

List of Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation for Shadow/Puppet Synthesis . . . . . . . . . . . . . . . . 3
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Topology and Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Actions of a Process . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Transitions of a Protocol . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Executions of a Protocol . . . . . . . . . . . . . . . . . . . . . 10

2.2 Convergence and Stabilization . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 To Legitimate States . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 To Silent States . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 To a Shadow Protocol . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 To a Subset of States . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.5 From Transient Faults . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Scheduling Daemon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Execution Semantics . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Probabilistic Processes . . . . . . . . . . . . . . . . . . . . . . 20

3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . 21

vii



3.1.2 Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.1 Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Symbolic Cycle Detection . . . . . . . . . . . . . . . . . . . . 26

3.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Manual Techniques . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.3 Automated Techniques . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Parameterized Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.1 Decidability of Verification . . . . . . . . . . . . . . . . . . . . 29
3.4.2 Decidable Restrictions . . . . . . . . . . . . . . . . . . . . . . 30
3.4.3 Regular Model Checking . . . . . . . . . . . . . . . . . . . . . 31

3.5 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.1 Coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.2 Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.3 Token Passing . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5.4 Leader Election . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 A Backtracking Algorithm for Shadow/Puppet Synthesis . . . . . 37
4.1 Synthesis Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Overview of the Search Algorithm . . . . . . . . . . . . . . . . . . . . 43
4.3 Algorithm Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Optimizing the Decision Tree . . . . . . . . . . . . . . . . . . . . . . 49
4.5 Probabilistic Stabilization . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1 2-State Maximal Matching on Rings . . . . . . . . . . . . . . . . . . . 54
5.2 5-State Token Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 3-State Token Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4 Daisy Chain Orientation . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.5 Specifying Various Topologies . . . . . . . . . . . . . . . . . . . . . . 63

6 Adding Convergence is Hard . . . . . . . . . . . . . . . . . . . . . . . 67
6.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2 Polynomial-Time Mapping . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3 Adding Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.4 Adding Self-Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.5 Adding Nonmasking Fault Tolerance . . . . . . . . . . . . . . . . . . 80

7 Verifying Convergence is Undecidable on Parameterized Unidirec-
tional Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

viii



7.1 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.2 Livelock Characterization . . . . . . . . . . . . . . . . . . . . . . . . 87

7.3 Tiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.3.1 Variants of the Domino Problem . . . . . . . . . . . . . . . . . 91

7.3.2 Equivalence to Livelock Detection . . . . . . . . . . . . . . . . 92

7.3.3 Equivalent Tile Sets . . . . . . . . . . . . . . . . . . . . . . . 96

7.4 Decidability of Verification . . . . . . . . . . . . . . . . . . . . . . . . 97

7.4.1 Verifying Stabilization . . . . . . . . . . . . . . . . . . . . . . 98

7.4.2 Effects of Consistency and Scheduling . . . . . . . . . . . . . . 98

7.5 Decidability of Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 104

8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . 111

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.2.1 Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.2.2 Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.2.3 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

List of Protocols

2.1 3-Coloring on Bidirectional Rings . . . . . . . . . . . . . . . . . . . . 7

2.2 4-State Token Ring (Not Generalizable) . . . . . . . . . . . . . . . . . 15

5.1 2-State Maximal Matching on Bidirectional Rings . . . . . . . . . . . 55

5.2 3-State Maximal Matching on Bidirectional Rings . . . . . . . . . . . 56

5.3 5-State Token Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 6-State Token Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5 Randomized Token Ring . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.6 3-State Token Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

ix



5.7 Daisy Chain Orientation . . . . . . . . . . . . . . . . . . . . . . . . . 62

List of Algorithms
3.1 CycleCheck – Unfair Cycle Detection . . . . . . . . . . . . . . . . . . 26
4.1 AddStabilization – Entry Point for Backtracking . . . . . . . . . . . . 46
4.2 AddStabilizationRec – Backtracking Recursion . . . . . . . . . . . . . 46
4.3 ReviseActions – Update Partial Solution . . . . . . . . . . . . . . . . 47
4.4 PickAction – Pick Candidate Action . . . . . . . . . . . . . . . . . . 50
4.5 SureCycleCheck – Cycle Detection for Randomized Protocols . . . . . 52

List of Figures

2.1 State Machine for Process in 3-Coloring Protocol . . . . . . . . . . . 6
2.2 Transition System for 3-Coloring Protocol . . . . . . . . . . . . . . . 9
2.3 Transition System for 4-State Token Ring . . . . . . . . . . . . . . . 16

4.1 Backtracking Algorithm Overview . . . . . . . . . . . . . . . . . . . . 44

5.1 Synthesis Rentimes for Case Studies . . . . . . . . . . . . . . . . . . . 53
5.2 Comparison of Token Ring Efficiencies . . . . . . . . . . . . . . . . . 59

6.1 Summary of Complexity Results . . . . . . . . . . . . . . . . . . . . . 67
6.2 Reduction from 3-SAT to AddConvergence . . . . . . . . . . . . . . . 70
6.3 Example Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.4 Reduction from 3-SAT to AddStabilization . . . . . . . . . . . . . . . 78
6.5 Reduction from 3-SAT to AddFaultTolerance . . . . . . . . . . . . . . 81
6.6 Ensuring Cycle Freedom via Faults . . . . . . . . . . . . . . . . . . . 82

7.1 Propagation Graph of Sum-Not-2 Protocol . . . . . . . . . . . . . . . 87
7.2 Livelock Characterization . . . . . . . . . . . . . . . . . . . . . . . . 90
7.3 Unidirectional Ring Action Tile . . . . . . . . . . . . . . . . . . . . . 93
7.4 Example Protocol Graph . . . . . . . . . . . . . . . . . . . . . . . . . 93

x



7.5 Example Instance and Solution for Periodic Domino Problem . . . . . 95
7.6 Transform 1 Wang Tile to 4 Action Tiles . . . . . . . . . . . . . . . . 96
7.7 Decidable Unidirectional Ring Synthesis . . . . . . . . . . . . . . . . 105
7.8 Undecidable Bidirectional Ring Synthesis . . . . . . . . . . . . . . . . 107

xi





Preface

The first three chapters present concepts, both old and new, and discuss related
work. Some introductory/summary text is reused from papers co-authored with Ali
Ebnenasir [129,132,133], in paragraphs 2, 3, and 4 of Chapter 1. Roughly 70% of the
original summary content was written by Dr. Ebnenasir, but I have rephrased much
of it to fit the context of this work.

For all other content in this dissertation that is co-authored with Dr. Ebnenasir, I
wrote the text first and he either commented on or revised it. I have rephrased his
heavier revisions simply due to stylistic differences. All protocols, algorithms, and
figures in this work are written by me.

Chapter 4 and Chapter 5 build upon content from a conference paper entitled “Synthe-
sizing Self-Stabilization through Superposition and Backtracking” in the International
Symposium on Stabilization, Safety, and Security of Distributed Systems [130] with
an associated technical report [131], and most of the new content is also published as
“Shadow/Puppet Synthesis: A Stepwise Method for the Design of Self-Stabilization”
in IEEE Transactions on Parallel and Distributed Systems [133]. Specifically, Sec-
tion 4.2, Section 4.3, and Section 4.4 duplicate the content of [133] with minor changes.
These minor changes are due to my reformulation of the shadow/puppet concept as
introduced in Section 2.2.3. I have rewritten the problem introduction (Section 4.1)
and added a discussion of synthesizing probabilistic stabilization (Section 4.5). The
following protocols and their descriptions are reproduced from [133]: Protocol 2.2,
Protocol 5.1, Protocol 5.3, and Protocol 5.6.

Chapter 6 proves NP-completeness of the problem of designing self-stabilization and
nonmasking fault tolerance. The self-stabilization result is based on content from
“On the Complexity of Adding Convergence” in Fundamentals of Software Engineer-
ing [127] and the nonmasking fault tolerance result was published as “On the Hardness
of Adding Nonmasking Fault Tolerance” in IEEE Transactions on Dependable and
Secure Computing [132]. However, I have rewritten this entirely in order to simplify
the proofs and make the results more general.

Chapter 7 proves that verifying stabilization is undecidable on unidirectional rings.
This was published as “Verifying Livelock Freedom on Parameterized Rings and
Chains” in the International Symposium on Stabilization, Safety, and Security of

xiii



Distributed Systems [129] with associated technical report [128]. Since then, I have
simplified the main proof, made the results more general, and added results for syn-
thesis under the guidance of Ali Ebnenasir.

xiv



Acknowledgements

This work owes its mathematical rigor to what I learned from Randy Schwartz and
Mark Huston at Schoolcraft College. Their math and logic courses revealed the beauty
of pairing intuition with proof: to understand the mechanisms at play, and to allow
oneself to be humbled by rigor when intuition fails. Thank you Professor Schwartz
for pushing me to be a tutor, that confidence and the people there had a huge impact
on me.

To complement rigor, I thank Steve Seidel for teaching me when it is safe to spare
the reader from unnecessary details. That said, any hand-waving in this work is my
own misuse of his teachings.

Finally, thanks to Ali Ebnenasir, Aly Farahat, Mitch Johnson, and other friends
from Michigan Tech who have engaged in endless hours of arguments to further our
understanding of this world.

xv





Abstract

A protocol is said to be self-stabilizing when the distributed system executing it is
guaranteed to recover from any fault that does not cause permanent damage. Design-
ing such protocols is hard since they must recover from all possible states, therefore
we investigate how feasible it is to synthesize them automatically. We show that syn-
thesizing stabilization on a fixed topology is NP-complete in the number of system
states. When a solution is found, we further show that verifying its correctness on a
general topology (with any number of processes) is undecidable, even for very sim-
ple unidirectional rings. Despite these negative results, we develop an algorithm to
synthesize a self-stabilizing protocol given its desired topology, legitimate states, and
behavior. By analogy to shadow puppetry, where a puppeteer may design a complex
puppet to cast a desired shadow, a protocol may need to be designed in a complex way
that does not even resemble its specification. Our shadow/puppet synthesis algorithm
addresses this concern and, using a complete backtracking search, has automatically
designed 4 new self-stabilizing protocols with minimal process space requirements:
2-state maximal matching on bidirectional rings, 5-state token passing on unidirec-
tional rings, 3-state token passing on bidirectional chains, and 4-state orientation on
daisy chains.

xvii





Chapter 1:
Introduction

Distributed systems are subject to a variety of faults introduced by bad initialization,
loss of coordination, and environmental factors. Due to the complexity of distributed
systems, it is expected that faults will occur, therefore they must be designed to an-
ticipate, tolerate, and recover from these faults. Since programming such a system
without faults is a difficult task, we look toward automation to design the recov-
ery mechanisms. Particularly, we consider the automatic design of self-stabilization,
which provides recovery from all transient faults; i.e., all variables may be corrupted
by the faults, but faults eventually stop occurring. When a protocol provides recovery
from only certain transient faults, then it is called nonmasking fault-tolerant. Prac-
tically, many types of faults can be detected with timeouts or checksums and can be
corrected with resets and redundancy [177]. However, not all fault classes can be re-
solved in such a way, and they necessarily affect the design of a protocol. If faults are
not a concern, self-stabilization and nonmasking fault tolerance remain useful as they
model distributed algorithms such as token rings [44,64,104], leader election [31,115],
and various graph decomposition schemes [30,57,109,154]. Further, self-stabilization
remains a theoretically interesting problem as it has applications in several fields such
as network protocols , multi-agent systems [94], cloud computing [144], and equilib-
rium in socioeconomic systems [101].

Several researchers have investigated the problem of adding stabilization and non-
masking fault tolerance to protocols [13, 14, 16, 24, 137, 150]. For instance, Liu and
Joseph [150] present a method for the transformation of a fault-intolerant protocol
to a fault-tolerant version thereof by going through a set of refinement steps – where
a fault-intolerant protocol provides no guarantees when faults occur. They model
faults by state perturbation, where protocol actions are executed in an interleaving
with fault actions. Arora and Gouda [13,14] provide a unified theory for the formula-
tion of fault tolerance in terms of closure and convergence, where closure means that,
in the absence of faults, a fault-tolerant protocol remains in a set of legitimate states,
and convergence specifies that the system eventually recovers to the legitimate states
from other states that can be reached due to the occurrence of faults (a.k.a. from the
fault span). Self-stabilization is formalized as a special case where the fault span is
equal to all states of the system. In a shared memory model, Kulkarni and Arora [137]
demonstrate that adding failsafe/nonmasking/masking fault tolerance to high atom-
icity protocols can be done in polynomial time in number of system states, where the

1



processes of a high atomicity protocol can read and write all variables in an atomic
step. Nonetheless, they show that, for distributed systems, adding masking fault tol-
erance is NP-complete (in the number of system states) on an unfair scheduler. The
authors of [137] model distribution in a low atomicity shared memory model, specif-
ically composite atomicity, where each process can atomically read and write only
the variables of neighboring processes. Kulkarni and Ebnenasir [139, 140] show that
adding failsafe fault tolerance to distributed systems is also an NP-complete prob-
lem. However, the complexity of adding nonmasking fault tolerance has remained an
open problem for more than a decade. While this problem is known to be in NP, no
polynomial-time algorithms are known for efficient design of stabilization or nonmask-
ing fault tolerance. Our work solidifies this fact with a proof of NP-completeness.

A common feature of distributed systems is that they consist of a finite but unbounded
number of processes that communicate based on a specific network topology; i.e., pa-
rameterized systems. There are numerous methods [45, 82, 89, 93] for the verification
of safety properties of parameterized systems, where safety requires that nothing bad
happens in system executions (e.g., the system does not reach a deadlock). How-
ever, methods for verifying liveness properties [38,86,92] are often incomplete, where
liveness requires that something good eventually happens (e.g., a waiting process
eventually gets permission to access a shared resource). Apt and Kozen [11] illustrate
that, in general, verifying Linear Temporal Logic (LTL) [77] properties for param-
eterized systems is Π0

1-complete. Suzuki [169] shows that the verification problem
remains Π0

1-complete even for unidirectional rings where all processes have a similar
code that is parameterized in the number of nodes. Our work solidifies this result for
verifying self-stabilization with a proof of Π0

1-completeness.

Faced with the difficult problem of designing stabilization, most existing methods
are either manual [64, 100, 104, 168, 175] or use heuristics [7, 69, 76, 88] that may fail
to generate a solution. Gouda and Multari [104] use a method called convergence
stairs to prove stabilization, where the state space is divided into supersets of the
legitimate states. Stomp [168] provides a method based on ranking functions for
design and verification of self-stabilization. Methods for algorithmic design of conver-
gence [7,69,76,88] are mainly based on sound heuristics that search through the state
space of a non-stabilizing system in order to synthesize recovery actions while en-
suring non-interference with closure. Specifically, Abujarad and Kulkarni [6] present
a method for algorithmic design of self-stabilization in locally-correctable protocols.
Farahat and Ebnenasir [75, 88] present algorithms for the design of self-stabilization
in non-locally correctable systems. They also provide a swarm method [76] to exploit
computing clusters for the synthesis of self-stabilization. Nonetheless, the aforemen-
tioned methods may fail to find a solution while there exists one; i.e., they are sound
but incomplete.

2



1.1 Motivation for Shadow/Puppet Synthesis

The main contribution of this work is the idea of shadow/puppet synthesis, which
has allowed us to automatically design 4 new self-stabilizing protocols that improve
upon the process space requirements of published work: 2-state maximal matching
on bidirectional rings (Section 5.1), 5-state token passing on unidirectional rings (Sec-
tion 5.2), 3-state token passing on bidirectional chains (Section 5.3), and (effectively
4-state) orientation on daisy chains (Section 5.4). This is partially due to an effi-
cient synthesis algorithm, but it is also due to freedom a designer has in specifying
legitimate states and behavior.

In order to illustrate this freedom, consider designing a token passing protocol on a
unidirectional ring of N processes. Such a protocol ptok operates correctly when there
is exactly one token in the ring, and whenever a process πi gets the token (for any
process index i ∈ ZN where ZN ≡ {0, . . . , N − 1}), it passes the token to the next
process πi+1 (whose index is computed modulo N). We can express that one token
exists using a formula Ltok where Ltok ≡ (∃!i ∈ ZN : toki = 1) uses binary variables
tok0, . . . , tokN−1 to indicate which process has a token. Likewise, we can express that
each process πi passes the token to πi+1 using the following action for every πi:

πi : toki = 1 −→ toki := 0; toki+1 := 1;

An action written this way declares a rule for πi such that it may atomically per-
form the assignments (toki := 0 and tok i+1 := 1) when the action’s guard (toki = 1) is
satisfied. This shadow protocol (token ring) is very natural to specify using shadow
variables (tok0, . . . , tokN−1) to establish its legitimate states (one token exists) and
legitimate behavior (pass the token).

Next one would construct a shadow/puppet topology by revoking read access to unre-
alistic shadow variables and adding puppet variables to the system along with their
associated read/write accesses. A shadow/puppet synthesis algorithm would then
try to create a shadow/puppet protocol (p′

tok) that stabilizes to legitimate states (one
token exists) and performs the shadow protocol (pass the token). For example, con-
sider the tok0, . . . , tokN−1 variables to be unrealistic because they are written across
process boundaries. By adding puppet variables x0, . . . , xN−1 ∈ ZN to the system,
we can synthesize protocol p′

tok that could match1 the one originally introduced by
Dijkstra [64]. Such a protocol allows π0 to behave differently than the others, there-
fore for presentation2, we give it the name Bot0 and give each other πi≥1 the name Pi.

1In this work we treat variables as having constant domains that do not vary with number of
processes. Therefore, while we could synthesize Dijkstra’s protocol on any specific ring size, it would
not use the new xi values at larger ring sizes.

2Processes in the specification also need to be given names to enforce symmetry.

3



The actions Dijkstra gives are as follows, with extra assignments to shadow variables.

Bot0 : xN−1 = x0 −→ x0 := x0 + 1; tok0 := 0; tok1 := 1;

Pi : xi−1 6= xi −→ xi := xi−1; toki := 0; toki+1 := 1;

Herein lies the beauty of the shadow/puppet technique: We have the freedom to spec-
ify the shadow protocol ptok using toki variables, and a synthesized shadow/puppet
protocol p′

tok is guaranteed to change each toki in same way without actually using
them because they are not readable!

1.2 Contributions

In this work, we discuss an algorithm for designing stabilization, the new protocols
it has discovered, the hardness of designing stabilization, and the undecidability of
verifying stabilization of protocols that are meant to scale to any number of processes.
First, we give a simple yet powerful backtracking search algorithm that looks to add
self-stabilization to a non-stabilizing protocol. Our search algorithm is an implemen-
tation of what we call shadow/puppet synthesis, which allows a designer to specify
a protocol’s desired behavior without being constrained by implementation details.
This separation of specification (the shadow) from implementation (the puppet) pro-
vides expressive power that other automated methods lack, which is emphasized by
4 newly-discovered protocols that improve upon the space requirements of previously
published work. However, such a backtracking search may take exponential time,
therefore AI search techniques, complete heuristics, and parallelism are used to miti-
gate this cost. Next, we show that this exponential cost is likely unavoidable due to
NP-completeness. We investigate the complexities of adding convergence, stabiliza-
tion, and nonmasking fault tolerance properties to a protocol with a fixed topology
and find that these problems are NP-complete under most fairness assumptions. In
particular, we find that some problems like adding nonmasking fault tolerance are
NP-complete even if global fairness is assumed (i.e., where all continuously reach-
able states are guaranteed to be reached). This sharpens the result of Kulkarni and
Arora [137], whose hardness proof for masking fault tolerance utilizes safety properties
to restrict the recovery paths, whereas we leverage read restrictions of the topology.
Finally, we show that verifying stabilization of very simple unidirectional ring proto-
cols is undecidable. This sharpens the result of Suzuki [169], whose proof relies on
having a fixed initial state.

Outline. Chapter 2 introduces and formally defines the major concepts. Chap-
ter 3 summarizes related work. Chapter 4 presents our shadow/puppet synthesis
algorithm and its heuristics. Chapter 5 highlights the protocols discovered using this
synthesis algorithm. Chapter 6 explores the hardness of adding self-stabilization to
a non-stabilizing protocol. Chapter 7 explores the decidability of cycle detection in
parameterized ring protocols. Chapter 8 describes our future research directions.

4



Chapter 2:
Concepts

In this chapter, we formally define protocols and their semantics (adapted from [137]),
self-stabilization, faults, and fault tolerance (adapted from [14, 64, 67, 99, 100]). We
adopt a shared memory model [145] since reasoning in a shared memory setting
is convenient, and several (correctness-preserving) transformations [60, 155] exist to
refine shared memory fault-tolerant protocols to their message passing versions.

Briefly, a protocol (a.k.a. distributed program) p defines the behavior for a network
N ≥ 1 of processes (finite state machines). Each process πi (i ∈ ZN , where ZN ≡
{0, . . . , N −1}) can read or read & write certain variables determined by the network
topology (e.g., rings). A system is the protocol running on some fixed topology (e.g., a
ring of N = 4 processes). A global state or configuration of the system is characterized
by a value for each variable. A global transition is a change in the system’s state,
which occurs during normal execution when a process reassigns its writable variables.
The state space S of a system is the set of all possible global states. A predicate is a
subset of S, often expressed as a formula over the system variables that evaluates to
true (a.k.a. holds) if and only if (iff ) the state is contained in the set.

2.1 Topology and Protocol

Formally, a protocol p ≡ 〈V , Π, W , R, ∆〉 is a tuple containing its variables (V), its
processes (Π), the variables that processes can write and read (W and R), and its
transitions (∆). Each variable vi ∈_ V (i ∈ Z|V|) has a symbolic name such as xj ≡ vi

and has a finite non-empty domain Dom(vi). Notice that we write ∈_ and ≡ when
referencing the variable itself, allowing us to unambiguously write ∈ and = when using
its value. Each process πi ∈ Π (i ∈ Z|Π|) has a symbolic name such as Pj ≡ πi, a list
of variables that it can write Wi ∈_ W , a list of variables that it can read Ri ∈_ R, and a
transition function δi ∈_ ∆. When there are no write-only variables, the local behavior
of πi is modeled by a semiautomaton with states Γi ≡ Dom(Wi) from read/write
variables, an input alphabet Σi ≡ Dom(Ri \ Wi) from read-only variables, and a
transition function δi : Γi ×Σi → Γi. We also treat ∆ directly as a relation that holds
all global transitions ∆ : S × S that can occur due to some local transition function
δi.

Generalized Topology. Processes with the same name (ignoring the subscripts)

5



are assumed to have the same transition function. In this way, a protocol for a fixed
topology also describes behavior for other instances of the general topology (e.g.,
rings of different numbers of processes). Such a protocol is also called a parameterized
system and is formally defined as pN where N is the number of processes or some
other parameter(s) that can be used to construct a fixed topology. A protocol is
generalizable when it works as desired for all valid instances of a general topology
(e.g., all rings of N ≥ 3 processes).

Example 2.1.1 (3-Coloring). Choosing different color values on a bidirectional ring.

As a running example throughout this section, consider a bidirectional ring pro-
tocol pcolor ≡ 〈Vcolor, Πcolor, Wcolor, Rcolor, ∆color〉 consisting of N processes named
P0, . . . , PN−1, where each process Pi can read & write a variable xi ∈ Z3 and can
also read xi−1 and xi+1, where the indices are computed modulo N . The goal of this
protocol is for each process in the ring to choose a value, or “color” in the problem’s
context, that differs from those of its neighbors. We can represent the global states
that form a valid coloring with the state predicate Lcolor ≡ ∀i ∈ ZN : xi−1 6= xi.

We will use N = 4, therefore the variables are Vcolor ≡ (x0, x1, x2, x3), processes are
Πcolor ≡ (π0, π1, π2, π3) ≡ (P0, P1, P2, P3), writable variables are Wcolor ≡ (W0, W1, W2,
W3) ≡ ((x0), (x1), (x2), (x3)) and readable variables are Rcolor ≡ (R0, R1, R2, R3) ≡
((x0, x3, x1), (x1, x0, x2), (x2, x1, x3), (x3, x2, x0)). The transition functions ∆color ≡
(δ0, δ1, δ2, δ3) must all be identical since each process has the same name.

For this protocol, we define the transition function δi : Γi × Σi → Γi for each process
Pi, where Γi are values of xi and Σi are values of (xi−1, xi+1). The actual δi is as
follows, and Figure 2.1 shows its semiautomaton, where Pi has a transition from
state a to state c with label b = (b0, b1) iff evaluating the transition function yields
c = δi(a, b), which can also be written as (a, b, c) ∈ δi.

δi(xi, (xi−1, xi+1)) ≡







(xi + 1) mod 3 if (xi−1 = xi ∧ xi = xi+1)

(2 · xi − xi+1) mod 3 if (xi−1 = xi ∧ xi 6= xi+1)

0

1

2

(0, 0) | (0, 2)

(0, 1)

(1, 2)

(1
, 0

) |
(1

, 1
)

(2, 1) | (2, 2)

(2
, 0

)

Figure 2.1: Semiautomaton for a process in the example’s 3-coloring protocol.

6



Composition. Protocols are often used in layers to accomplish a complicated task.
One way to express these layers is parallel composition, which is a union [46] between
protocols that simply allows them to act on the same data.

Definition 2.1.2 (Parallel Composition). The parallel composition of two protocols
pA and pB is a protocol pA ‖ pB that preserves the processes of pA and pB (renaming
them if necessary) and merges the variables of pA and pB such that variables with the
same name are not duplicated (and their domains are merged if necessary).

For a simple example, 3-coloring protocol pcolor could be written as a parallel com-
position p1 ‖ p023, where p1 defines actions of process P1 using variables x0, x1, x2,
whereas p023 defines the actions of processes P0, P2, P3 using variables x0, x1, x2, x3.
When the protocols are composed to form pcolor, their processes are simply placed in
the same system.

2.1.1 Actions of a Process

Dijkstra’s guarded command language [65] simplifies the presentation of the transi-
tions δi of a process πi. A guarded command (a.k.a. action) is of the form guard −→
statement, where guard is a predicate over the readable variables Ri of a process πi

and statement assigns values to its writable variables Wi. An action is enabled in a
global state s iff its guard evaluates to true at s. Likewise, a process πi is enabled to
act in global state s iff at least one of its actions is enabled.

For example, Protocol 2.1 shows how the transition function δi of each process Pi in
the example 3-coloring protocol pcolor can be represented by 2 actions, where xi is
assigned modulo its domain size (3).

Protocol 2.1 — 3-Coloring on Bidirectional Rings

Pi : xi−1 = xi ∧ xi = xi+1 −→ xi := xi + 1;

Pi : xi−1 = xi ∧ xi 6= xi+1 −→ xi := 2 · xi − xi+1;

Legitimate States: Lcolor ≡ ∀i ∈ ZN : xi−1 6= xi

Minimal Actions. Actions of a process πi can be decomposed into a set of minimal
actions, where each action is minimal/indivisible in the sense that no other action
can be written to represent a subset of its local transitions (in δi). Such an action
has a guard that tests all readable variables for specific values (one each) and has
a statement that assigns (a subset of) writable variables as specific values. When a
process has no write-only variables, a minimal action of πi can be considered to assign
all writable variables, and such an action corresponds to exactly one local transition in

7



δi. If write-only variables do exist, then the choice to not assign a write-only variable
is significant.

The 2 actions of our example 3-coloring protocol pcolor are not minimal, otherwise we
would have to write 9 of them. For example, the first action (xi−1 = xi ∧xi = xi+1 −→
xi := xi + 1; ) of Pi can be decomposed into 3 minimal actions that correspond with
local transitions shown in Figure 2.1: (xi−1 = 0 ∧ xi = 0 ∧ xi+1 = 0 −→ xi := 1; ),
(xi−1 = 1∧xi = 1∧xi+1 = 1 −→ xi := 2; ), and (xi−1 = 2∧xi = 2∧xi+1 = 2 −→ xi := 0; ).

Since the behavior of any process πi can be represented as a set of minimal actions, we
can represent its possible behavior by enumerating all possible minimal actions. Each
readable variable vj has one of Dom(vj) possible values in an action’s guard and, if it
is writable, can be assigned Dom(vj) different values. Each write-only variable vj has
Dom(vj) + 1 possible ways it can appear in an assignment statement since it has the
extra possibility of not being assigned. Therefore, any process πi has the following
number of (possible) minimal actions:





∑

vj ∈_(Ri\Wi)

Dom(vj)



 ·





∑

vj ∈_(Wi∩Ri)

Dom(vj)
2



 ·
∑

vj ∈_(Wi\Ri)

(Dom(vj) + 1)

Furthermore, if we are given a topology p and are asked to create a protocol p′ by
giving actions to its processes, then we can do so in 2m different ways, where m is the
total number of possible minimal actions of processes with unique names (which can
behave differently).

Deterministic, Self-Disabling Processes. In a later chapter, we argue (Theo-
rem 4.1.4) that the large number of possible ways to design a protocol can be signifi-
cantly reduced (without sacrificing computational power) by restricting processes to
behave deterministically. A process πi is deterministic iff at most one of its actions
can be enabled at any time (formally: no two transitions (w0, a, w1), (w0, a, w2) ∈ δi

exist such that w1 6= w2). Some nondeterminism can also be achieved if a pro-
cess can act multiple times in sequence but chooses to be slow enough for a neigh-
boring process to use one of its intermediate values. A process πi is self-disabling
iff it cannot be enabled immediately after acting (formally: no two transitions
(w0, a, w1), (w1, a, w2) ∈ δi exist).

Write-Only Variables and Self-Loop Removal. We often need to ensure specific
values for write-only variables based on the current values to readable variables. This
can be done using a transition (w0, a, w1) ∈ δi where only write-only variables are
assigned. Logically, adding such a transition also adds a transition (w1, a, w1) to δi

because a process cannot act differently based on unreadable values! Such a transition
to the same state is called a self-loop, which is undesirable because it implies that πi

is not self-disabling. Therefore, we trivially assume that no self-loops are created by
actions that assign write-only variables.

8



0000 0001 0002

0100 0101 0102

0200 0201 0202

0010 0011 0012

0110 0111 0112

0210 0211 0212

0020 0021 0022

0120 0121 0122

0220 0221 0222

1000 1001 1002

1100 1101 1102

1200 1201 1202

1010 1011 1012

1110 1111 1112

1210 1211 1212

1020 1021 1022

1120 1121 1122

1220 1221 1222

2000 2001 2002

2100 2101 2102

2200 2201 2202

2010 2011 2012

2110 2111 2112

2210 2211 2212

2020 2021 2022

2120 2121 2122

2220 2221 2222

abcd State (x0, x1, x2, x3) = (a, b, c, d)
abcd State where predicate L holds

P0 acts
P1 acts
P2 acts
P3 acts

Figure 2.2: Labeled transition system (LTS) ∆color of the 3-coloring protocol on a
ring of size 4. Arcs are drawn with the style associated with a process Pi have label
i.

2.1.2 Transitions of a Protocol

It is also useful to observe that a local transition (of a process) can correspond to
multiple global transitions (of the system). Figure 2.2 depicts the labeled transition
system ∆ for the 3-coloring protocol pcolor on a ring of size 4. For each i ∈ Z4, the
set of global transitions δi of a process Pi are illustrated as arcs with label i (shown
as line styles rather than labels). As such, each process Pi is associated with 27
global transitions. However, as Figure 2.1 shows, each process Pi has only 9 local
transitions. This occurs since a process is unable to read the full system state. To see
this, consider the action (x0 = 0 ∧ x1 = 0 ∧ x2 = 2 −→ x1 := 1; ) that corresponds to a
single transition of P1. When the system has N = 4 processes as shown in Figure 2.2,
then this action corresponds to 3 separate global transitions (0, 0, 2, 0) → (0, 1, 2, 0),

9



(0, 0, 2, 1) → (0, 1, 2, 1), and (0, 0, 2, 2) → (0, 1, 2, 2), where each 4-tuple represents
a global state (x0, x1, x2, x3). These global transitions correspond to the 3 possible
values of x3 that P1 cannot read.

2.1.3 Executions of a Protocol

An execution σ of a protocol p is a finite (〈s0, s1, . . . , sk〉) or infinite (〈s0, s1, . . . 〉)
sequence of global states such that for every two consecutive states si and si+1 cor-
respond to a global transition of p. Thus, an execution of p corresponds to a walk in
the graph of its transition system. A maximal execution is either an infinite execu-
tion or a finite execution 〈s0, s1, . . . , sk〉 such that sk is silent; i.e., it has no outgoing
transitions. An execution 〈s0, s1, . . . , sk〉 need not end at a silent state sk, but we will
not call this a maximal or finite execution. For example, it is valid to say that all
executions of a token ring protocol are infinite, but we can also reason about an exe-
cution 〈s0, s1, s2〉 where the token held by process π0 at state s0 is eventually passed
to π2 at state s2.

Execution within States. We write ∆|Q (or sometimes p|Q for convenience) to
denote the transitions of a protocol within a state predicate Q. That is, ∆|Q ≡
{(s0, s1) ∈ ∆ : (s0 ∈ Q) ∧ (s1 ∈ Q)}. In our 3-coloring protocol pcolor, there
are no transitions within Lcolor, therefore ∆color|Lcolor is empty. However, ∆color 6=
∆color| Lcolor because ∆color| Lcolor excludes transitions from Lcolor to Lcolor.

2.2 Convergence and Stabilization

Distributed systems often run algorithms to reach certain goals, such as electing a
leader or simply agreeing on a value, before they can perform their normal operation.
We call such a goal for a protocol the set of legitimate states [64], commonly denoted
as a state predicate L (e.g., Lcolor forms a coloring in Example 2.1.1). Likewise,
a protocol’s normal or desired operation is called legitimate behavior. A protocol
is called self-stabilizing when, if started in any arbitrary state, it is guaranteed to
eventually reach its legitimate states and behave correctly within those states [67].
Section 2.2.1 introduces stabilization as two components, convergence and closure,
without yet considering the behavior within legitimate states. Section 2.2.2 addresses
a common case where the legitimate behavior is to halt. Section 2.2.3 formalizes the
general case where the legitimate behavior is specified as a protocol. Section 2.2.4
emphasizes that convergence to legitimate behavior implies stabilization to a subset
of legitimate states, but the implication does not hold when convergence is specified
without behavioral constraints. Section 2.2.5 reintroduces stabilization as a form of
fault tolerance.

10



2.2.1 To Legitimate States

Using terms adapted from [13,14,99,100], a protocol p is closed [14] within legitimate
states L iff it has no transition from L to L. As such, L is often called an invariant
of p. A deadlock of p is the existence of a silent state in L; i.e., no process is enabled
to act. A livelock of p is an infinite execution that never reaches L. Protocol p
converges to L iff execution from any state will eventually visit L; i.e., when it is free
of deadlocks and livelocks. Protocol p stabilizes to L iff all executions from all states
eventually visit and remain within L; i.e., p converges to L and is closed within L.

We can show that the 3-coloring protocol pcolor (Protocol 2.1) stabilizes to Lcolor ≡
∀i ∈ ZN : xi−1 6= xi on any ring of size N . Closure holds since no process is enabled to
change its color when Lcolor holds. Convergence holds since the number of instances
where xi−1 = xi (for some i ∈ ZN) holds is decreased each time a process acts,
therefore the system will reach Lcolor within at least N transitions. We can also
visually check these statements for a ring of size N = 4 using Figure 2.2 by observing
that (1) no transition exists from legitimate states, and (2) Lcolor does not contain
silent states (deadlocks) or cycles (livelocks).

Definition 2.2.1 (Closure). A protocol p is closed within states L iff all transitions
from L are to L.

Definition 2.2.2 (Convergence). A protocol p converges to states L iff no deadlocks
or livelocks exist in L.

Definition 2.2.3 (Stabilization). A protocol p stabilizes (a.k.a. self-stabilizes) to
states L iff it converges to L and is closed within L.

Unlike the original definition of convergence [14] to some L, our definition does not
require closure within L. This matches other work [47, 83] and is particularly conve-
nient when using a nuanced version of closure [43, 99, 103, 130] that is incompatible
with the well-established version of closure implied by self-stabilization [14, 44, 64].
Convergence to L may also be specified from a set of states Q, where our definition
again deviates from [14] yet again because Q need not be closed. Stabilization to L
from Q is defined similarly but requires closure within Q.

Definition 2.2.4 (Convergence from States). A protocol p converges to states L from
states Q iff it is deadlock-free and livelock-free within Q \ L and has no transition
from there to Q \L.

Definition 2.2.5 (Stabilization from States). A protocol p stabilizes to states L from
states Q iff it converges to L from Q and is closed within Q and L.

Definition 2.2.4 can be used to reason about the behavior of a protocol p as con-
vergence from Qk to Qk+1 for each Qk in a sequence of state predicates Q0, . . . , Qn.

11



Clearly any execution from a state in Q0∪. . .∪Qn must eventually reach Qn, therefore
we can say that Q0 ∪ . . . ∪ Qn converges to Qn. Gouda and Multari use this concept
of convergence stairs with p closed within Qn in order to prove stabilization [104].

Lemma 2.2.6 (Convergence Stairs). A protocol p converges to states L from states Q
iff some n predicates Q0, . . . , Qn−1 exist such that Q =

⋃n−1
i=0 Qi and for every i ∈ Zn,

p converges from Qi to some Qj where i < j ≤ n, letting Qn = L for convenience.

2.2.2 To Silent States

When we are tasked with constructing a self-stabilizing protocol, its behavior within
the legitimate states L also becomes a constraint. In Example 2.1.1, we implicitly
assumed that no color should change when a valid coloring is reached (Lcolor ≡ ∀i ∈
ZN : xi−1 6= xi). This behavior is reasonable since the particular colors may have a
meaning that should not change. For example, if a higher layer of the system involves
bulk data transfer (and also has a clock), each color xi could indicate a time slice
that process Pi can safely send data in bulk to its neighbors. Furthermore, each Pi

would also know when to listen for incoming data from Pi−1 and Pi+1 based on their
colors xi−1 and xi+1. A bulk transmission may therefore be lost if a color changes
within L, which is clearly illegitimate behavior but is allowed by Definition 2.2.3. We
therefore use the term silent stabilization [68] for stabilizing protocols that should
have no transitions within legitimate states.

Definition 2.2.7 (Silent Stabilization). A protocol p silent-stabilizes to legitimate
states L iff it converges to L and all states in L are silent.

With the problem of coloring still in mind (Lcolor ≡ ∀i ∈ ZN : xi−1 6= xi), suppose we
design a protocol p that silent-stabilizes to L′ ≡ ∀i : (xi = min(Z3 \ {xi−1, xi+1})),
where each color xi is the smallest possible value that differs from xi−1 and xi+1. Is
p a self-stabilizing coloring protocol? Every state in L′ ⊂ Lcolor is a valid coloring,
therefore p is silent-stabilizing to a set of colorings. However, p is not silent-stabilizing
to the set of all colorings because it has transitions within Lcolor. Furthermore, p may
not even be closed within Lcolor, in which case p would not even be stabilizing to Lcolor!
These technicalities are inconsequential when the coloring is used to resolve resource
contention, where we indeed only need to silent-stabilize to a subset of legitimate
states [103,137]. For such protocols, we use the term silent convergence.

Definition 2.2.8 (Silent Convergence). A protocol p silent-converges to states L iff
it converges to some L′ ⊆ L where all states in L′ are silent.

2.2.3 To a Shadow Protocol

In the example of Section 1.1, we saw that the specification of legitimate behavior
can itself be a protocol with some legitimate states where it operates correctly. In

12



that example, we used a token ring ptok for behavior and legitimate states Ltok. For
the synthesized protocol shadow/puppet protocol p′

tok, we removed read access to toki

variables and added xi variables to the system. This section begins by defining in
general how such protocols ptok and p′

tok must be related in order for p′
tok to make

sense as an implementation for ptok. Namely, a projection function H must exist such
that, given a state of p′

tok, it can compute a state of ptok by removing the xi values.
Then, the concepts convergence, closure, and stabilization to behavior (written as
ptok|Ltok) are defined. Lastly, we give an example showing how the shadow vs puppet
idea resembles that of superposition [46], but rather than being a composition where
the shadow is layer of functionality assumed by the puppet, the puppet exists only
to enhance the shadow with stabilization properties.

Definition 2.2.9 (Shadow/Puppet Protocol). A shadow/puppet protocol p′ ≡ 〈V ′, Π′,
W ′, R′, ∆′〉 with projection function H has a topology and actions that are compatible
with a shadow protocol p ≡ 〈V , Π, W , R, ∆〉 that operates within legitimate states L
iff it satisfies the following constraints:

1. Preserve shadow variables (may add puppet variables): V ⊆ V ′

• H maps states of p′ to states of p by removing puppet variables
2. Preserve process names (may add new processes): Π ⊆ Π′

3. Preserve write access to shadow variables: ∀W
′
i ∈ W ′ : ((W′

i ∩ V) = Wi)
4. Limit read access to shadow variables (may revoke): ∀R

′
i ∈ R′ : ((R′

i ∩ V) ⊆ Ri)
5. Respect shadow actions: For each minimal action in p′, either

No write-only shadow variable is assigned
or The same shadow variable assignment is used by the same process of p
or All write-only shadow variables are assigned such that the resulting state

may be a silent state of p in L

The last constraint of Definition 2.2.9 ensures that the relation is clear between actions
of the puppet protocol and actions/states of the shadow protocol. For example,
even though an action (xi−1 = 0 ∧ xi = 1 −→ xi := 0; toki := 0; ) of Pi in p′

tok may
make sense if it is only used when converging to Ltok, we require it to either not
assign write-only shadow variables at all or to match the shadow action (tok i = 0 −→
toki := 0; toki+1 := 1; ) by assigning both toki := 0 and toki+1 := 1 (see Section 5.3
for an example). If the shadow protocol is silent in some legitimate states (usually
it is all or none), then we also allow actions that assign all write-only variables.
Effectively, this gives us a mapping from the readable values to the write-only values
(see Section 5.1 for an example).

13



Definition 2.2.10 (Shadow Convergence). A protocol p′ ≡ 〈V ′, Π′, W ′, R′, ∆′〉 con-
verges to p|L (a.k.a. ∆|L), where p ≡ 〈V , Π, W , R, ∆〉 operates within legitimate
states L and is a shadow protocol for p′ using projection function H, iff p′ satisfies
the following conditions:

1. Recovery: p′ converges to some states L′ ⊆ H−1[L]
2. Progress: ∀s0 ∈ L with n ≥ 1 outgoing transitions (s0, s1), . . . , (s0, sn) ∈ ∆|L :

p′ converges from L′ ∩ H−1[{s0}] to
n

⋃

j=1

(L′ ∩ H−1[{sj}])

3. Fixpoint: ∀s0 ∈ L with no outgoing transition in ∆|L \ {(s0, s0)} :

p′ is closed within L′ ∩ H−1[{s0}]

In short, convergence to shadow behavior p|L provides stabilization to a subset L′ of
H−1[L], where the shadow variables will change as they can in p. Convergence to p|L
also guarantees that within L′, p′ changes shadow variables as they are changed by
transitions of p within L (allowing intermediate self-loops), but there is no guarantee
that all transitions of p are preserved. This has not been an issue in our work be-
cause the shadow protocols we consider either have at most one transition from any
legitimate state (e.g., silent protocols and token rings). The closure property defined
below aims to require this in its behavioral (second) constraint, but since we have
not used shadow protocols where multiple transitions can be taken from a legitimate
state, we give a simple “placeholder” constraint.

Definition 2.2.11 (Shadow Closure). A protocol p′ ≡ 〈V ′, Π′, W ′, R′, ∆′〉 is closed
within p|L (a.k.a. ∆|L), where p ≡ 〈V, Π, W , R, ∆〉 operates within legitimate states
L and is a shadow protocol for p′ using projection function H, iff p′ satisfies the
following conditions:

1. Preserve shadow states: p′ is closed within some states L′ such that L = H[L′]
2. Preserve shadow transitions: ∆|L = {(s0, s1) ∈ H[∆′|L′] : s0 6= s1}

• A stricter version would preserve all execution paths: ∀(s0, s1), (s1, s3) ∈

∆|L : ∀(s′
0, s′

1) ∈ ∆′|L′ :
(

if H(s′
0) = s0 and H(s′

1) = s1, then there exists

a state s′
3 ∈ H−1[{s3}] that can be reached by an execution of p′ from s′

1

such that H(s′
2) = s1 holds for each intermediate state s′

2

)

Definition 2.2.12 (Shadow Stabilization). A protocol p′ ≡ 〈V ′, Π′, W ′, R′, ∆′〉 sta-
bilizes to p|L iff p′ converges to, and is closed within, p|L.

Example 2.2.13 (4-State Token Ring). Constructing a stabilizing 4-state token ring
protocol from a 2-state token ring protocol by adding a binary variable to each process.

The shadow variables of a system do not necessarily need to be write-only. Such a
case may be easier to analyze because the shadow variables are still present, therefore
we do not have to extract the meaning of puppet variables. Since both shadow

14



and puppet variables are present in the system, it more closely matches the idea
of superposition from Chandy and Misra [46]. However, superposition in [46] is a
composition technique that allows a higher protocol layer (our puppet variables) to
be built upon a lower protocol layer (our shadow variables). In our work, the shadow
protocol indeed operates correctly within legitimate states, but we use the puppet
layer to add convergence functionality.

In this example, we specify a token ring using a non-stabilizing 2-state token ring
ptok2. Each process πi owns a binary variable ti and can read ti−1. The first process
π0 is distinguished as Bot0, in that it acts differently from the others, which are named
Pi (for i > 0). Bot0 has a token when tN−1 = t0 and each other process Pi>0 is said
to have a token when ti−1 6= ti. Bot0 has action (tN−1 = t0 −→ t0 := 1 − t0; ), and each
other process Pi>0 has action (ti−1 6= ti −→ ti := ti−1; ).

Bot0 : (xN−1 = x0) −→ x0 := 1 − x0;

Pi : (xi−1 6= xi) −→ xi := 1 − xi;

Let Ltok2 denote the legitimate states where exactly one process has a token:

Ltok2 ≡ ∃!i ∈ ZN : ((i = 0 ∧ ti−1 = ti) ∨ (i 6= 0 ∧ ti−1 6= ti))

To transform this protocol to a self-stabilizing version ptok4, we add a binary puppet
variable xi to each process πi. Each process πi can also read its predecessor’s variable
xi−1. Let Ltok4 ≡ H−1[Ltok2] be the legitimate states of this transformed protocol.
Let ptok4 be defined as Protocol 2.2, which gives the actions for Bot0 and every other
process Pi>0.

Protocol 2.2 — 4-State Token Ring (Not Generalizable)

Bot0 : (xN−1 = x0) ∧ (tN−1 6= t0) −→ x0 := 1 − x0;

Bot0 : (xN−1 = x0) ∧ (tN−1 = t0) −→ x0 := 1 − x0; t0 := xN−1;

Pi : (xi−1 6= xi) ∧ (ti−1 = ti) −→ xi := 1 − xi;

Pi : (xi−1 6= xi) ∧ (ti−1 6= ti) −→ xi := 1 − xi; ti := xi−1;

Shadow Variables: t0 . . . tN−1 ∈ Z2 (read & write)
Puppet Variables: x0 . . . xN−1 ∈ Z2

Legitimate States: Ltok4 ≡ H−1[Ltok2] ≡ ∃!i ∈ ZN : ( i = 0 ∧ ti−1 = ti

∨ i 6= 0 ∧ ti−1 6= ti)

This protocol is self-stabilizing for all rings of size N ∈ {2, . . . , 7} but contains a
livelock when N = 8. In fact, using the complete search algorithm in Chapter 4,
we will find that no such protocol is stabilizing for all N ∈ {2, . . . , 8}. Gouda and

15



ptok2

t0t1t2

000

001

010

011

100

101

110

111

Self-Stabilizing ptok4

x0

x1

x2

∣

∣

∣

∣

∣

∣

∣

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

Legend

legitimate
state

illegitimate
state

closure
transition

convergence
transition

either
transition

Figure 2.3: Transition systems of the non-stabilizing 2-state and self-stabilizing
4-state token rings of size N = 3. © 2016 IEEE [133].

Haddix [102] give a similar token ring protocol that stabilizes for all ring sizes. They
introduce another binary variable readyi to each process.

Let us check that the superposition preserves the 2-state token ring protocol for a
ring of size N = 3. Figure 2.3 shows the transition system of the non-stabilizing 2-
state protocol ptok2 within Ltok2 and the self-stabilizing 4-state protocol ptok4, where
each state is a node and each arc is a transition. Legitimate states are boxed and
reoccurring transitions within these states are black. Recovery transitions are drawn
with dashed gray lines. Solid gray lines denote transitions within our maximal choice
of Ltok4 but would serve as recovery transitions for smaller choices of Ltok4. Verifying
the conditions for closure (Definition 2.2.11), we find: (1) shadow states are preserved
because Ltok4 = H−1[Ltok2] (even though we only really need Ltok2 = H[Ltok4]), and
(2) transitions are preserved because each transition of ptok2 within Ltok2 corresponds
to a (vertical) transition of ptok4 within Ltok4. Verifying the conditions for convergence
(Definition 2.2.10), we find: (1) convergence to Ltok4 holds because there are no
deadlocks or livelocks in Ltok4, (2) progress is preserved within Ltok4 since each boxed
row of ptok4 converges to the boxed row corresponding to the next state of ptok2,
and (3) the fixpoint case is satisfied vacuously since the shadow variables will always
change.

16



2.2.4 To a Subset of States

In the previous two sections, we saw how stabilization to a subset of legitimate states
L could be a useful property. In Section 2.2.2, silent convergence to L is equivalent
to silent stabilization to some subset of L. Likewise in Section 2.2.3, convergence to
shadow behavior p|L is equivalent to stabilization to some subset of transitions of p
within a subset of L (though each non-silent state must retain some transition). We
would like to complete this pattern for Section 2.2.1 by having a property that denotes
stabilization to a subset of states L [99,103] without constraining behavior. In terms
of temporal logic, this type of stabilization is a fundamentally simple property written
as ♦�L; i.e., eventually it is always the case that L holds.

Definition 2.2.14 (Eventually Always). Given a protocol p, a state predicate L
eventually always holds from every state iff p stabilizes to a subset of L.

In Terms of Shadow Convergence. Notice that silent convergence to L can be
rephrased as convergence to ∅2|L, where the projection function H is assumed to not
remove any variables. Likewise, the eventually always property can be rephrased as
convergence to L2|L. Since L2 contains all transitions (including self-loops), con-
vergence to L2|L allows all behavior (including silent states). It may therefore be
convenient to think of convergence to behavior as a general way to express stabiliza-
tion to a subset of legitimate states/behavior. However, for clarity, we will not use
these alternative notations for silent convergence to L or stabilization to a subset of
L.

2.2.5 From Transient Faults

Due to the nature of distributed programs, which have many points of failure, we must
anticipate and tolerate faults that bring the system to these bad states. For example,
consider a compute cluster simulating the temperature of a building throughout a
day, where each process updates values for certain elements on a mesh at each time
step. If one process suddenly crashes and restarts using an old time step, it may be
simulating nighttime while all other processes are simulating the sun shining overhead.
To tolerate this kind of process crash and prevent an abnormally cold spot in the
simulation’s result, a process could occasionally consult its neighbors to ensure that
its time step is consistent. Since this process crash does not cause permanent damage,
it can be modeled as a transient fault, which merely perturbs the state of the system.
Transition systems can model many types of faults by adding fault transitions. Chen
and Kulkarni classify these faults and explore modeling techniques [48].

Fault tolerance is a general framework where the system need only recover from a given
fault class ftrans. For the specific kind of fault tolerance we consider, ftrans represents
the anticipated transient faults, which can be represented as a set of transitions. Like
the transitions of a protocol, a set of faults can be specified with guarded commands.

17



Given legitimate states L and a protocol p with transitions ∆, the fault span for fault
class ftrans is the set of states reachable from L by the transitions ∆ ∪ ftrans.

Definition 2.2.15 (Nonmasking Fault Tolerance). Given a class of faults ftrans, a
protocol p is nonmasking fault-tolerant to legitimate states L iff p stabilizes from its
fault span to L.

Notice that stabilization is a special case of fault tolerance, where the fault class ftrans

is the set of all transitions ftrans ≡ (L × L) and the fault span contains all states.
Stabilization can therefore be harder or impossible to design in some cases, but there
is no risk of unanticipated transient faults.

Fault Tolerance with Safety Constraints. It is often desirable to enforce or check
safety conditions, which are assertions whose counterexamples take the form of a finite
execution. For example, the safety properties of stabilization are deadlock freedom
and closure. In contrast, livelock freedom is a liveness property since a counterexample
is an infinite execution. Many safety properties can be specified by a set of forbidden
transitions [141]. Using this idea, the concept of convergence can be extended to safe
convergence [122], where certain transitions are disallowed during recovery. When
this idea is applied to fault tolerance, it is called masking fault tolerance, since the
safety specification is said to “mask” faults during recovery. Similarly, failsafe fault
tolerance [120, 141] guarantees that a system avoids bad behavior in the presence
of faults, but recovery is not guaranteed. In cases where bad behavior could be
catastrophic, we may just prefer the corrupted process or system to halt/crash [55].

2.3 Scheduling Daemon

As introduced in Section 2.1.3, an execution of a protocol corresponds to a walk in the
graph of the protocol’s transition system. While we can often assume that all walks,
including infinite ones, correspond to valid executions, it is not always realistic. For
example, imagine that a ring protocol pservice relies on a coloring in order to operate
correctly. Composing a coloring protocol pcolor such as the one from Example 2.1.1
should provide such a coloring. However, the transition system of pservice ‖ pcolor may
contain cycles where only processes of pservice execute even though some process of
pcolor is enabled to act. This is an issue of fairness, which is an additional constraint
F of a system. We often assume no fairness (F = unfair), where all infinite walks
are valid, because it simplifies analysis [47].

Theorem 2.3.1 (Unfair Cycle). An infinite execution of a protocol p under no fair-
ness (F = unfair) is characterized by an execution 〈s0, . . . , sk−1, s0〉 that revisits a
state s0 after some k ≥ 1 steps.

Proof. Since we model protocols as a finite number of finite-state processes, p has
a finite number of global states. Thus, an infinite execution must eventually revisit

18



some state s0. The ability to revisit s0 corresponds to a cycle in the transition system
of p, therefore a valid execution under no fairness can repeat such a cycle forever.

2.3.1 Fairness

However, pservice ‖ pcolor requires some (any) amount of fairness to guarantee that pcolor

will eventually assign the color variables as needed. Weak fairness (F = weak) is a
natural assumption that guarantees that if a process is continuously enabled, then it
will eventually act. Local fairness (F = local) guarantees that if a process does not
become continuously disabled, then it will eventually act. In some contexts, weak and
local fairness are applied to actions or local transitions, which weakens weak fairness
and strengthens local fairness. Global fairness (F = global) guarantees that if any
global transition does not become continuously disabled, then it will eventually occur
in the execution. This definition of global fairness corresponds to Gouda’s “strong
fairness” [100]. We make this explicit since some others use the term “strong fairness”
to describe local fairness [123].

Definition 2.3.2 (Weak Fairness). An infinite execution is valid under weak fair-
ness (F = weak) iff every process that becomes enabled eventually acts or becomes
disabled in some future state.

Definition 2.3.3 (Local Fairness). An infinite execution is valid under local fairness
(F = local) iff every process that is enabled infinitely often also acts infinitely often.

Definition 2.3.4 (Global Fairness). An infinite execution is valid under global fair-
ness (F = global) iff every global transition that is enabled infinitely often is executed
infinitely often.

Global fairness ensures that if a global state remains reachable during an execution,
then it will eventually be reached. This can greatly simplify reasoning about con-
vergence and stabilization in particular [47, 88], where illegitimate state need only
provide reachability to a legitimate state. Stabilization under global fairness is called
weak stabilization due to Gouda [100].

2.3.2 Execution Semantics

Unless otherwise specified, each state change corresponds with an action of a single
process. This assumption is called interleaving semantics (a.k.a. execution under
a central daemon). In contrast, synchronous semantics (a.k.a. execution under a
synchronous daemon) forces all enabled processes to act simultaneously. Further,
subset semantics (a.k.a. execution under a distributed daemon) allows any non-empty
subset of processes to simultaneously act.

Since the synchronous case resembles a scheduling policy, we treat it as a type of
“fairness” corresponding to F = sync. As with any other F ∈ {unfair, weak, local}

19



that is not global, if a process has more than one local transition enabled at the
same time under the synchronous scheduler, then it chooses nondeterministically
(i.e., unfairly).

Definition 2.3.5 (Synchronous Scheduler). An execution is valid under a synchronous
scheduler (F = sync) iff every enabled process acts atomically at each step.

2.3.3 Probabilistic Processes

When a process has multiple actions enabled, every fairness model except for global
fairness treat the nondeterministic choice between these actions as the worst possible
choice. However, global fairness is a much stronger assumption [63], therefore we
would like a different way for a process to choose fairly between actions. Probabilistic
stabilization [110] captures this idea by associating each action that is enabled with
a probability to be chosen. Such a protocol is said to almost surely stabilize iff the
probability of stabilization equals 1 as time goes to infinity. Since this idea only affects
fairness within a single process, it can be used with any of the other fairness models
that place no restriction on nondeterministic choice (F ∈ {unfair, weak, local, sync}),
and it is redundant when used with global fairness except when analyzing recovery
time [85].

Most authors treat the concept of random choice as a scheduler extension (a.k.a.
probabilistic daemon), but we do not. Instead, we grant a process πi the ability of
random choice by giving it read-only access to a randomized variable rngi, which we
treat as taking a new (equally likely) random value at every execution step of the
system. In this way, πi can reference this source of entropy in its action’s guards
while essentially remaining deterministic! Section 4.5 gives insight into why we take
this approach.

20



Chapter 3:
Related Work

In this chapter, we first look at the reductions to and from our chosen model of
computation. Then we review work related to the verification and design of self-
stabilizing protocols on fixed topologies. Lastly, we consider the verification and
design of parameterized self-stabilizing protocols.

3.1 System Model

Processes of a system could be threads in a program, programs on a single computer,
computers on the Internet, sensors communicating via an ad-hoc wireless network, or
hardware components communicating via a bus. Our preferred method of modeling
from Chapter 2 is one of many well-studied formalisms [145], and this section shows
how it relates and reduces to other formalisms.

3.1.1 Communication

Processes in Chapter 2 communicate by atomically reading and writing variables.
Specifically, we use the shared-variable (shared memory) communication model under
the central daemon using composite atomicity.

A special case of the shared-variable model is the state-reading model, which provides
a conceptually simpler view of network topologies. In the state-reading model, each
process Pi owns a single variable xi that defines its state, and the topology defines
which other xj variables Pi can read. This distinction from a shared-variable model
is trivial in some cases, but it can force processes to access more information than
necessary. Further, the state-reading model is strictly less powerful than the shared-
variable model since it introduces impossibility for ring orientation [112,117].

Another special case of the shared-variable model is the link-register model that stip-
ulates that any pair of adjacent processes Pi and Pj communicate via a link where Pi

has an output register that can be read by Pj and vice versa. If a process Pi wants to
share a value with two neighbors, it must use two output registers. Contrast this with
the shared-variable model, which allows us to simply grant the adjacent processes of
Pi access to read Pi’s variable.

Contrasting with the central daemon, the distributed daemon loosens the atomic-
ity restrictions on adjacent processes. Rather than one process acting, multiple

21



processes can act simultaneously. However, this daemon makes several determin-
istic self-stabilizing protocols impossible, but this can be remedied with randomiza-
tion [105, 117, 163] or unbounded memory [23, 25]. Goddard, Hedetniemi, Jacobs,
and Srimani [97] show how randomization can be used to convert any self-stabilizing
protocol under the central daemon to a self-stabilizing version under the distributed
daemon.

To model delay, the fully distributed daemon introduces the possibility of delaying a
state change. That is, when a process πi acts, it reads all variables atomically and
writes its variables atomically, but the reads and writes may occur at different steps.
While the write operation of a process is delayed, the process itself is blocked from
performing any further actions. When the updates do occur for the variables of πi,
all values are updated atomically and πi is no longer blocked.

Finally, the most restrictive daemon is the read/write daemon, which chooses a single
processor to read or write exactly one variable. This is also called read/write atom-
icity, as opposed to composite atomicity. This models both delay and inconsistent
viewpoints found in real shared memory systems, but it complicates both automatic
and manual reasoning. Fortunately, we can leverage the methods of Dolev [67] and
Nesterenko and Arora [155] to automatically transform a stabilizing protocol using
composite atomicity into a stabilizing protocol using read/write atomicity.

3.1.1.1 Message Passing

A natural model for communication is message passing, where a process sends mes-
sages to others, but the messages take some time to arrive at their destinations.
Along the way, a message may be lost, take a longer route than others, or have its
contents corrupted. Corrupted messages are always possible, but are avoided with
high probability by using checksums and error correction. The User Datagram Proto-
col (UDP) provides a minimal abstraction to communicate via message passing, but
the programmer must account for message loss and reordering. The Transmission
Control Protocol (TCP) is similar but tolerates these faults using sequence numbers,
acknowledgment packets, and retries, but repeated failures present themselves as
timeouts to the programmer. Faults and system assumptions complicate the analysis
of self-stabilizing protocols built upon message passing. Fortunately, methods exist
to transform a self-stabilizing protocol in the shared memory model to use message
passing without sacrificing stabilization properties [60,114,155].

3.1.1.2 Point-to-Multipoint

Some systems use a shared physical medium or channel for communication such as
Wi-Fi or an internal bus. For generality, let us assume that processes corrupt their
messages if they broadcast to the channel simultaneously (e.g., Ethernet in half-duplex
mode). These collisions can be avoided with the help of clocks and randomization,
where processes can randomly contend for channel access and coordinate access times

22



with each other. Kulkarni and Arumugam [138] give a stabilization-preserving trans-
formation from the read/write atomicity model to this write-all-with-collision model
(shared channel) where processes have some timing mechanism. In other words,
given a self-stabilizing protocol that uses shared memory, we can transform it to use
read/write atomicity (as discussed earlier) and then apply their transformation to ob-
tain and deploy the resulting self-stabilizing protocol on a system in which processes
communicate via a shared physical medium.

3.1.2 Fairness

In a theoretical sense, if we have randomization, the fairness assumption does not
impact our ability to find a self-stabilizing protocol for any given problem. This result
is due to Devismes, Tixeuil, and Yamashita [63] who show how to use randomization
to transform a deterministic weakly stabilizing protocol into a randomized protocol
that is stabilizing under any scheduler. For this method to work without a physical
timing device, the topology must be connected for a phase clock [39, 40]. Practically
however, such a protocol that relies on global fairness may take an unreasonable
amount of time to stabilize.

The algorithms in this work only use no fairness or global fairness. These extremes
make stabilization easier to verify than other assumptions such as weak fairness [47].
We do not lose much in terms of generality by ignoring weak and local fairness since
stabilization-preserving transformations exist. Kosowski and Kuszner [135] show how
to transform a stabilizing protocol under weak fairness into a stabilizing protocol
under no fairness. Karaata [123] gives a similar transformation from local fairness
to weak fairness. These transformations work similarly to the cross-over composition
technique of Beauquier, Gradinariu, and Johnen [26,27], which allows one to impose
a certain type of fairness on a protocol by composing it with another protocol that
simulates the desired type of fairness.

3.1.3 Faults

In this work, we focus on the concepts of closure an convergence to provide recovery
from transient faults [14]. However, our focus on self-stabilization is not motivated
purely by fault recovery; rather, we often expect the system to be initialized randomly.
Transient faults and others can usually be detected with checksums or timeouts and
can be corrected with resets and redundancy [177]. Even so, unless checkpointing or
resets are available, some faults require recovery to be part of the protocol.

Chen and Kulkarni [48] show that 20 out of 31 categories of faults classified by
Avizienis, Laprie, Randell, and Landwehr [22] can be modeled by state perturbation
in a transition system. For example, Liu and Joseph [150] use state perturbation to
model fail-stop failures (process crash).

In the case of a process crash, the fault must be detected (with a timeout) and the

23



process should be removed from the topology. We know that a self-stabilizing protocol
will recover from the topology change if the new topology is valid for the protocol, but
we would also like a fast recovery. Dolev and Herman [70] call this superstabilization.
Superstabilization is particularly useful in peer-to-peer networks where processes are
frequently joining and parting.

Byzantine faults are persistent faults where a process is permanently corrupted or
has become malicious [146]. Such a process may even report different values to its
neighbors. If the process is corrupted rather than malicious, we would prefer to
have it crash [55]. It is straightforward to model a Byzantine process as reporting
arbitrary values, and synthesis procedures have been made to take these faults into
account during stabilization [66]. However, Daliot and Dolev [56] note that Byzantine
fault tolerance and self-stabilization are difficult properties to have simultaneously
in a protocol, which motivates their method to use distributed reset [15] to add
stabilization to existing Byzantine fault-tolerant protocols.

3.2 Verification

Verification, or model checking, is the problem of deciding if a parallel or serial pro-
gram meets its specification. The specification is given in a temporal logic such as
Linear Temporal Logic (LTL) [77,159], Computation Tree Logic (CTL) [78], the com-
bination of the two (CTL∗), or CTL∗ without the next-time operator (CTL∗\X). For
example, convergence to a state predicate L be specified using the Eventually (a.k.a.
Finally) operator ♦ as ♦L, and closure within L can be specified using the Always
(a.k.a. Globally) operator � as �(L =⇒ �L).

3.2.1 Hardness

Verifying whether a temporal formula is true for a given system is a computationally-
intensive task. Sistla and Clarke [165] prove that verification using LTL is PSPACE-
complete in the size of the input (which includes all states of the system). Likewise,
verification of CTL∗ is shown to be PSPACE-complete by Clarke, Emerson, and
Sistla [52]. They, along with Arnold and Crubille [12], prove that CTL verification
is P-complete. Self-stabilization and fault tolerance are such problems that can be
verified in linear time with respect to the size of the transition system.

3.2.2 Implementation

The Spin model checker [113] has been extremely helpful with regard to investigating
protocols. It is an explicit-state model checker that uses a C-like syntax with non-
determinism to express concurrent programs. The temporal properties to be checked
are specified as a formula in linear temporal logic. The complement of the tem-
poral formula compiled to a Büchi automaton, and program verification reduces to

24



checking that the automaton never reaches an accepting state during any program
execution [173].

Meseguer, Palomino, and Martí-Oliet [153] represent actions of processes as rewrite
rules within the Maude tool. Using properties of term rewriting systems, they are
able to automatically prove termination in special cases. Given the generality of
term rewriting systems, Maude can also model and reason about algorithms and data
structures.

Symbolic Representation. A transition system can also be represented as a
boolean formula over unprimed and primed variables. For example, consider the
3-coloring protocol of Example 2.1.1. Particularly, consider the minimal action

(x0 = 0 ∧ x1 = 0 ∧ x2 = 2) −→ x1 := 1;

of P1 on a ring of size 4. This can be represented with the following formula

x0 = 0 ∧ x1 = 1 ∧ x2 = 2 ∧ x′
1 = 1 ∧ x′

0 = x0 ∧ x′
2 = x2 ∧ x′

3 = x3

which uses x′
1 = 1 to represent the assignment x1 := 1 and where x′

0 = x0 ∧ x′
2 = x2 ∧

x′
3 = x3 forbids the x0, x2, x3 variables from changing. The complete transition system

can be built by taking the disjunction of all such formulas of all processes.

Binary decision diagrams (BDDs) [41] and multi-valued decision diagrams (MDDs)
can be used to represent the boolean formula of a transition system. The popular
NuSMV model checker [50] and PVS proof assistant [157] uses this data structure.
The size of a BDD can be exponentially larger than the number of variables, and its
size depends largely on the variable ordering and nature of the function, but they
are much better than explicit state representations in practice. Many MDD and
BDD libraries exist to manipulate transition systems; we use the GLU and CUDD
libraries [166].

BDD-based cycle detection can still be infeasible due to size. Biere, Cimatti, Clarke,
Strichman, and Zhu [29] introduce bounded model checking as a way to avoid using
a data structure to fully represent the transition system. They show that the use
of SAT solvers and abstraction can find counterexamples where BDD-based methods
cannot handle the input model. However, BDD-based verification can also outperform
their SAT-based method. Further, their method is incomplete, therefore one cannot
assume a system is correct if no counterexample is found.

Unbounded Variables. When domains of variables are unbounded, Boigelot and
Wolper [32] show that finite automata can be represent values and constraints.
Borowsky and Edelkamp [36] apply this to the planning problem where variables are
unbounded. They explain the problem representations and algorithms in detail and
discuss which problem conditions can prevent the algorithms from terminating. The
planning problem is similar to verification and can also be solved using the same
techniques [51].

25



3.2.3 Symbolic Cycle Detection

Livelock detection is a fundamental step in model checking self-stabilizing algorithms.
These correspond to cycles in the transition system being checked. Gentilini, Piazza,
and Policriti [96] give a cycle detection algorithm that is linear in the size of the BDD
representing the transition system. In practice, algorithms that compute strongly
connected components (SCCs) outperform explicit algorithms, even though they have
a higher worst-case complexity [91]. Emerson and Lei [80] give on such fixpoint
algorithm for which several variations exist [91].

Algorithm 3.1 shows the version of the Emerson-Lei algorithm that we use for detect-
ing unfair cycles. It is only notable in that we avoid unnecessary computation during
the main fixpoint iteration (Line 5) since we assume that the protocol is closed within
the initial set of states (called span). The algorithm is written using set notation, but
recall that a set of states or transitions is efficiently represented as a BDD (boolean
formula) that evaluates to true for states/transitions in the set.

Algorithm 3.1 Check for unfair cycles in a transition system.

CycleCheck(&span: closed set of initial states (also a return value),
∆: transitions of protocol)

Output: Whether a cycle exists.
1: let next := span

2: {Fixpoint iteration using image}
3: repeat
4: span := next

5: next := ∆[span]
6: until span = next

7: {Fixpoint iteration using preimage to make span resemble the SCCs more closely}
8: repeat
9: span := next

10: next := span ∩ ∆−1[span]
11: until span = next

12: {span is now all states that can be visited after arbitrarily many steps in an
infinite execution, but unlike in an SCC, span may contain some states that
cannot be visited infinitely often}

13: return (span 6= ∅)

Chen, Abujarad, and Kulkarni [47] investigate how fairness impacts the cost of veri-
fying stabilization. Weak fairness is found to substantially increase verification cost,
whereas an assumption of global or no fairness allows faster verification. Particu-
larly, since global fairness alleviates the need for cycle detection, it admits the fastest
verification times.

26



3.3 Design

This section discusses existing work in the design of self-stabilization and fault toler-
ance. We first give an overview of NP-hardness results that are related to the addition
of convergence. Then, we discuss the techniques for adding convergence, both manual
and automatic.

3.3.1 Hardness

Kulkarni and Arora [137] present a family of polynomial-time algorithms for the ad-
dition of different levels of fault tolerance in the high atomicity distribution model,
while demonstrating that adding masking fault tolerance in the low atomicity model
is NP-complete. Lin, Bonakdarpour, and Kulkarni [148] give a similar polynomial-
time result for the high atomicity model under a synchronous scheduler. Kulkarni and
Ebnenasir [140] show that adding failsafe fault tolerance is NP-complete. Bonakdar-
pour and Kulkarni [35] similarly prove the NP-hardness of designing progress from one
state predicate to another. Farahat and Ebnenasir [88] show that weak stabilization
can be added in polynomial time.

3.3.2 Manual Techniques

Manual techniques for designing convergence are mainly based on the approach of
design and verify, where one designs a fault-tolerant system and then verifies the cor-
rectness of (1) functional requirements in the absence of faults, and (2) fault tolerance
requirements in the presence of faults. For example, Liu and Joseph [150] provide a
method for augmenting fault-intolerant systems with a set of new actions that imple-
ment fault tolerance functionalities. Gouda and Herman [103] show how to compose
protocols where one relies on the other for stabilization. They rely on the idea of
stabilization to a subset of states [99], which our work emphasizes quite heavily (Sec-
tion 2.2.4). Katz and Perry [125] present a general method for adding convergence
to non-stabilizing protocols by taking global snapshots and resetting to a legitimate
state when an illegitimate one is detected. Varghese [175] also proposes a counter
flushing method for detection and correction of global predicates. Arora, Gouda, and
Varghese [16] design nonmasking fault tolerance by creating a dependency graph of
the local constraints of program processes, and by illustrating how these constraints
should be satisfied so global recovery is achieved. Arora and Kulkarni [18,136] decom-
pose a system into components that are the fault-intolerant protocol, components that
detect when faults occur, and components that correct the system state after faults
occur. Arora and Kulkarni [17] also give a method to design masking fault tolerance
by first adding nonmasking fault tolerance and then enforcing safety specifications
afterward. Jhumka, Freiling, Fetzer, and Suri [120, 121] investigate the addition of
failsafe fault tolerance while accounting for efficiency.

27



Nesterenkol and Tixeuil [156] employ a mapping to define all system states as legiti-
mate state of an abstract specification. This effectively removes the need for conver-
gence, otherwise known as snap-stabilization [42], but it is not always possible or may
require human ingenuity in the specification. Demirbas and Arora [61] use mappings
as a tool to work from abstract specification to a self-stabilizing implementation. This
is a good manual tool seems too open-ended to fully automate.

3.3.3 Automated Techniques

Kulkarni and Arora [137] consider the high atomicity distribution model where each
process can read all variables. They demonstrate that adding failsafe, masking, or
nonmasking fault tolerance to high atomicity protocols can be done in polynomial time
in the size of the state space. Lin, Bonakdarpour, and Kulkarni [148] give a similar
polynomial-time algorithm for the case of a synchronous scheduler. Ebnenasir [74]
establishes a foundation for the addition of fault tolerance in the composite atomicity
model using efficient heuristics and component-based methods. Attie, Emerson, and
Arora [19,20] tackle the state explosion problem by considering only pairs of processes,
though the resulting protocols impose high atomicity. Attie and Emerson [21] give a
method to practically implement a protocol that assumes high atomicity, where they
only assume the ability to atomically test and set a single variable at any time.

Bonakdarpour and Kulkarni [34] exploit symbolic techniques to increase the scalabil-
ity of the addition of fault tolerance. A similar choice is utilized by Bonakdarpour and
Kulkarni [33], where progress properties are added to distributed protocols. Abujarad
and Kulkarni [7] consider the program invariant as a conjunction of a set of local con-
straints, each representing the set of local legitimate states of a process. Then, they
synthesize convergence actions for correcting the local constraints. Nonetheless, they
do not explicitly address cases where local constraints have cyclic dependencies (e.g.,
maximal matching on a ring), and their case studies include only acyclic topologies.
They are able to improve their algorithm’s efficiency with multi-threading [5]. Fara-
hat and Ebnenasir [87, 88] give a polynomial-time heuristic to add self-stabilization
that essentially (1) finds a weakly stabilizing protocol, (2) ranks illegitimate states by
shortest path to a legitimate state, (3) ranks actions by the ranks of deadlock states
they resolve, and (4) add the actions in order of their rank, discarding those that
create livelocks. They give a parallelized version of this algorithm where independent
tasks shuffle the actions within each rank [76]. This allows the tasks to add actions in
different orders, increasing the probability of finding a self-stabilizing protocol. Zhu
and Kulkarni [179] give a genetic programming approach for the design of fault tol-
erance, using a fitness function to quantify how close a randomly-generated protocol
is to being fault-tolerant.

Faghih and Bonakdarpour [84] formulate stabilization as a set of constraints that
an SMT solver such as Z3 [58] can solve. This yields a complete approach to syn-
thesis that can exploit future advancements in SMT solvers. The authors specify

28



behavioral constraints explicitly as transitions, but there is nothing fundamentally
preventing such a technique from using LTL properties or our shadow/puppet tech-
nique (Definition 2.2.12). For example, the bounded synthesis method Finkbeiner and
Schewe [90] uses a similar SMT encoding and allows behavior to be specified in LTL.
Each process is considered to be a FSM, with some initial state(s), whose current
state can be read by neighboring processes (i.e., the state-reading model). Their
synthesis method has the freedom to add new states to the FSM, though the search
must be given a bound so it eventually terminates. A bound is required since Pnueli
and Rosner [160] have shown that for a given LTL formula and environment process,
synthesis of two FSMs that satisfy a given LTL formula is undecidable. Bounded
synthesis is an elegant idea since it could be seen as our shadow/puppet technique
where the puppet variables are synthesized, rather than having manually-specified
domains. Both works show promise, but for this synthesis problem, SMT solvers do
not yet match the performance of the algorithm used in Chapter 4 since the generic
solver does not optimize its encoding of individual states, whereas we can use MDDs
(Section 3.2.2).

3.4 Parameterized Systems

It is usually desirable for a protocol to give correct behavior for an arbitrary number
of processes. Consider how troublesome it would be to reprogram all of the processes
if one were added or removed! Generally, proving stabilization of a parameterized
protocol is done manually. Gouda and Multari [104] use convergence stairs to prove
stabilization (Lemma 2.2.6). This technique can be used inductively to prove stabi-
lization of a parameterized system, where the number of layers grows with the number
of processes. Stomp [168] provides a method based on ranking functions for design
and verification of self-stabilization.

When global properties can be expressed as constraints local to each process, manual
proof of generalization is simplified. Varghese [174] and Afek, Kutten, and Yung [8]
provide a method based on local checking for global recovery of locally correctable
protocols. Similarly, the Arora, Gouda, and Varghese [16] reason locally about non-
masking fault tolerance by creating a dependency graph of the local constraints of
program processes, and by illustrating how these constraints should be satisfied so
global recovery is achieved.

3.4.1 Decidability of Verification

When problems become unbounded, they often become undecidable; verifying param-
eterized systems is no exception. Over time, increasingly restricted systems have been
shown to be undecidable, or specifically, co-semi-decidable, written as Π0

1-complete
using the arithmetical hierarchy notation of Rogers [161]. Apt and Kozen [11] prove
that verifying an LTL formula holds for a parameterized system is undecidable.

29



Suzuki [169] builds on this result, showing that the problem remains undecidable
on symmetric unidirectional ring protocols where only the number of processes is
parameterized. Emerson and Namjoshi [82] show that the result holds even when a
single token, which can take two different values, is passed around such a ring.

Abello and Dolev [3] show that any Turing machine can be simulated on a bidirectional
chain topology in a self-stabilizing manner. Among other variables in their protocol,
each process has variables to represent an input tape cell, a working tape cell, and
an output. When the Turing machine accepts, rejects, or fails to compute a result
(due to cycles or insufficient tape cells) for the given input, the output value of each
process will eventually be 1, 0, or ⊥ respectively. Once a simulation of the Turing
machine finishes, it begins again in case some fault corrupts an output value or the
input is changed.

3.4.2 Decidable Restrictions

Some classes of parameterized systems can be automatically verified since the kernel
of undecidability is removed.

3.4.2.1 Safety

If the topology allows, safety properties such as deadlock freedom can be checked
completely. Farahat and Ebnenasir [89] show that deadlocks be detected in a param-
eterized ring protocol by observing the states where individual processes are disabled,
constructing a graph, and performing cycle detection in the graph. Fribourg and Ol-
sén [93] represent sets of states in a ring or chain with regular languages (represented
by deterministic finite automata). They can build the sets of silent and invariant
states of a protocol and check for deadlocks by subtracting the invariant from the
silent states and then checking for non-emptiness. This forms a basis for regular
model checking, which we discuss in detail in Section 3.4.3. Clarke, Grumberg, and
Jha [53] similarly use regular languages to represent sets of states within the network
invariant context. Cachera and Morin-Allory [45] use polyhedra (as opposed to DFAs)
to verify safety properties. They are able to classify/identify sufficient conditions for
cases where their verification technique is complete.

3.4.2.2 Global Computations

Some protocols perform a computation over the topology. For example, (1) given two
nodes, find the shortest path between them, or (2) given one node to use as the root,
find a spanning tree. Tel [170] shows how some global computations can be expressed
by defining an infimum operator for processes to apply to the inputs from adjacent
processes. Ducourthial, Tixeuil, and Delaet [59, 71–73] investigate r-operators as an
extension of infimum operators that ensure a global computation is self-stabilizing. It
is interesting to note the CALM (consistency and logical monotonicity) theorem [10]

30



in distributed computing takes a similar approach, where monotonic functions do not
require explicit coordination between processes.

3.4.2.3 Token Ring Systems

Emerson and Namjoshi [82] consider unidirectional rings of symmetric processes that
only communicate by passing a single token (the ability to act) in a fixed direction.
They show that when processes cannot communicate any information, many LTL
(CTL∗\X) properties can be checked by explicitly checking all rings below a certain
size. They further show that if processes are allowed to communicate when passing
the token, then the problem becomes undecidable.

Khalimov, Jacobs, and Bloem [119,126] combine these cutoff theorems with bounded
synthesis [90] to synthesize protocols for token ring systems from an LTL specification.

3.4.2.4 Symmetric Guards

Emerson and Kahlon [79] also give cutoff theorems for protocols involving arbitrarily
many processes of different types. Their model assumes that every action of a process
has a guard that quantifies (using ∀ or ∃) over all other process states using the same
state predicate for all processes of the same type. In other words, a process can
communicate with all or none of the processes of a certain type, and its guards can
only test if a predicate holds for “at least one” or “exactly all” of those processes.
Emerson and Kahlon give cutoff theorems for these systems, where the maximum
cutoff size is dependent on the number of states of each process template.

3.4.3 Regular Model Checking

In regular model checking [2, 37, 178], system states are represented by strings of
arbitrary length, and a protocol is represented by a transducer that can transform the
strings. The topology must permit a finite representation of the states of arbitrarily
many processes. Fribourg and Olsén [93] show how sets of states of a parameterized
ring or chain can be represented by a regular language. Abdulla, Jonsson, Mahata,
and d’Orso [1] show how to use tree automata and transducers to apply regular model
checking to tree topologies. Touili [172] shows how to use regular hedge automata and
transducers to apply regular model checking to arbitrary width tree-like structures.

Early work in regular model checking focused on safety and reachability properties,
which are more straightforward than liveness properties such as cycle detection. No-
tably, Habermehl and Vojnar [108] give an inference method for computing the reach-
able states of a parameterized system, where the reachable states (or an acceptable
over-approximation) for a generalized system are inferred from the reachable states of
small explicit systems. Bouajjani, Legay, and Wolper [38] investigate liveness proper-
ties such as cycle detection and give experimental results. Fisman, Kupferman, and

31



Lustig [92] use regular model checking to verify fault tolerance, where they consider
fail-stop, Byzantine, and transient faults as well as the special case of self-stabilization.

Deadlock Detection. Let L be the legitimate states of a parameterized system, and
let R be the relation of the protocol’s transducer. A deadlock exists iff L\Pre(R) is
non-empty. Note that Pre(R) or its complement can be constructed directly, much
like the continuation relation in [89] is constructed to characterize the silent states in
a ring.

Livelock Detection. Let R be the relation of this transducer and let R+ be its
transitive closure. A cycle can then be detected by checking if R+ maps some string
to itself, or in other words, checking if R+ ∩ Rid is non-empty, where Rid is the
identity relation. Of course no algorithm computes R+ in all cases, therefore heuristic
acceleration techniques are used such as widening [171].

3.5 Protocols

It is useful to see some examples of well-studied problems and the techniques required
to make self-stabilizing protocols possible or yield better behavior. Such techniques
include randomization, large variable domains, variable domains that exactly corre-
spond to the number of processes, restrictions on the number of processes (prime or
odd), synchronous execution, and assumptions about the scheduler. Some of these
techniques are unreasonable or impossible in practice, but the resulting protocols give
insight to the problem nonetheless.

3.5.1 Coloring

For the coloring problem, processes that can communicate with each other wish to se-
lect distinct “colors”. This is useful for breaking symmetry or giving adjacent processes
different priorities. A 3-coloring ring protocol was given in Example 2.1.1, but live-
locks can occur when adjacent processes can act synchronously. Shukla, Rosenkrantz,
and Ravi [163] show that, without randomization, a 3-coloring protocol cannot exist
on a ring of symmetric processes under the distributed daemon. However, using ran-
domization, they show that such a 3-coloring protocol is possible on a unidirectional
(or bidirectional) ring. They give similar results and protocols for other special-
ized graph topologies in [164]. Coloring algorithms exist for general graphs as well.
Hedetniemi, Jacobs, and Srimani [109] give a (D + 1)-coloring protocol that works on
arbitrary graphs of maximum degree D.

3.5.2 Orientation

If anonymous processes have some method of finding each other, it is easy for them to
form a ring topology. However, a problem arises when they must decide on a common
direction around the ring. This is the problem of orientation.

32



3.5.2.1 Rings

Israeli and Jalfon [117] give a randomized ring orientation protocol that is self-
stabilizing under the distributed daemon. Under the central daemon, this protocol
can be deterministic since randomization is only needed for coloring under the dis-
tributed daemon. The orientation works by passing tokens around the ring. All
tokens eventually circulate in the same direction, which gives processes a basis for
a common orientation. There eventually may become no tokens in the system in
order to reach a silent state, but this is not guaranteed. (In Section 5.4, we give an
orientation protocol that is silent but is not known to stabilize under the distributed
daemon.)

A key component of this protocol is the ability for a process Pi to determine which, if
any, of its neighbors Pi−1 and Pi+1 are “pointing” towards it. This is not possible when
using the state-reading model. In fact, Israeli and Jalfon show that no stabilizing ring
orientation protocol exists using the state-reading model, where processes read the
entire state of neighboring processes. This prevents any kind kind of directionality
information from being shared since a process without orientation cannot use a single
value (its state) to communicate that it is pointing to one process and not the other.

3.5.2.2 Rings of Odd Size

Hoepman [112] introduces a simpler orientation protocol in the state-reading model
that is stabilizing when the ring is guaranteed to be of odd size. The protocol arranges
processes in a bidirectional ring and uses token circulation to determine a common
direction around the ring. Whenever a process propagates a token, it sets its chosen
direction as the direction that the token is traveling. The system is free of deadlocks
since number of tokens can be forced to be odd, which is made possible by discarding
rings of even size. Further, all tokens will eventually circulate in the same direction
since any tokens traveling in different directions will eventually collide and cancel
each other.

3.5.3 Token Passing

In a token ring protocol, processes are oriented in a ring topology and circulate single
token. A token can be defined in any way, but a process must know whether it has the
token. For example, a process πi might be defined to have a token when it is enabled
to act. The token itself is used to signify an exclusive privilege that the process has,
which could be access to a lock or some shared resource.

Burns an Pachl [44] show that no stabilizing token ring exists under no fairness where
all processes are symmetric and deterministic, but they give such a protocol for rings
of prime size.

33



3.5.3.1 Dijkstra’s Token Ring

Dijkstra [64] first introduced self-stabilization in the context of a unidirectional token
ring. We saw this protocol defined in Section 1.1 when introducing the separation
shadow vs puppet protocols. In short, each process πi has a variable xi ∈ ZN that
can hold at least as many values as there are processes in the ring, of which we say
there are N . The first process π0 is distinguished as Bot0 since it acts differently from
each other process Pi≥1. The protocol is very simple, where Bot0 increments its x0

value (modulo its domain) when xN−1 has the same value. Each Pi essentially does
the opposite by assigning xi to match xi−1 whenever the values differ. A process in
this protocol is considered to have a token whenever it is enabled to act.

Along with being simple and quick to converge (given that its topology is a ring),
Dijkstra’s protocol is also practical to implement. While we may not know the exact
ring size N when deploying such a system, it is easy to choose a domain size for xi

variables that exceeds any expected ring size (perhaps 232). However, if xi values d
only have a finite state space, livelocks occur. The non-stabilizing 2-state token ring
used in Example 2.2.13 is an extreme example of this, since it matches Dijkstra’s
token ring exactly when xi variables are binary.

3.5.3.2 Token Ring of Three Bits

Gouda and Haddix [102] give a protocol for a token ring using only 3 bits per process,
regardless of the ring size N . Like other token rings, there is a distinguished process
Bot0 and N −1 other processes P1, . . . , PN−1. Each process πi owns 3 binary variables
ti, ei, and readyi and can read 2 of its predecessor’s variables ti−1 and ei−1.

Processes are defined to have tokens under the same conditions as the non-stabilizing
2-state token ring ptok2 introduced in Example 2.2.13. Therefore, the legitimate states
can be written as the state predicate L = ∃!i ∈ ZN : ((i = 0 ∧ tN−1 = t0) ∨ (i 6=
0 ∧ ti−1 6= ti)). Note also that the protocol only changes the ti variables in exactly
the same manner as the non-stabilizing version. Using language from Chandy and
Misra [46], we can call the non-stabilizing token ring of one bit the underlying protocol
(a.k.a.shadow protocol in our terminology) that was transformed to the token ring of
three bits by adding 2 superposed variables ei and readyi to each process.

The token ring of three bits is designed to be run on a synchronous system (e.g., com-
ponents sharing a clock), rather than on a distributed system. Multiple processes can
be enabled without multiple tokens existing. In fact, if e processes act synchronously
each step, then it takes an average of N/(2e) steps for a process to pass a token to its
successor in the ring. When the system is asynchronous like a distributed system, e
is likely to eventually decrease and may decrease to 1, making it very costly to pass
the token on average.

34



3.5.3.3 Bidirectional Token Passing

Dijkstra [64] also provided two protocols that stabilize to passing a single token back
and forth between two end processes (across all other processes). One of these pro-
tocols uses 4 states per process arranged in a linear topology, which we call a chain.
The other protocol uses 3 states per process, but it requires the two end processes to
be able to communicate, making it a bidirectional ring topology. Chernoy et al. [49]
give a similar 3-state ring protocol with an improved worst-case convergence time. In
Section 5.3, we show that a 3-state protocol is also possible when the topology is a
chain.

3.5.4 Leader Election

A distinguished process can greatly simplify a protocol or, as is the case with token
rings, may affect whether a self-stabilizing version exists. As such, another well-
studied problem is that of determining a unique process to distinguish or act as a
leader. In fact, Mayer, Ostrovsky, Ofek, and Yung [151] have shown that a stabi-
lizing token ring protocol is an equivalent to stabilizing leader election on a bidirec-
tional ring. Given the impossibility results of Burns an Pachl [44] for token rings, a
stabilizing leader election protocol cannot exist where processes are symmetric and
deterministic.

3.5.4.1 Rings of Prime Size

Huang [115] gives a leader election protocol that works on bidirectional rings of prime
size. Each process owns a variable whose domain exactly matches the ring size N .
When the protocol is finished, each process’s variable will hold a unique value, and a
process can determine itself as the leader if its value is 0. Desel, Kindler, Vesper, and
Walteret [62] intuitively reformulate this as an agreement protocol on any ring size
between humans sitting around a table with a deck of cards, rather than in terms of
processes in a ring with variables. Even though the reformulated version focuses on
agreement, it is the same protocol and still elects a leader when the ring size is prime.

Itkis, Lin, and Simon [118] give another leader election protocol that also requires a
prime ring size, but processes require only constant space. This protocol relies on a
bidirectional ring topology. In the same work, they also give a protocol that works
on a unidirectional ring of prime size N that requires O(lg N) space per process, and
they prove that no constant-space version exists for unidirectional rings.

3.5.4.2 Ring using Logarithmic Space

Blin and Tixeuil [31] give a deterministic leader election protocol on a bidirectional
ring under weak fairness. This protocol is not silent and requires each of the N
processes in the ring to have O(lg N) states (or in their words, O(lg lg N) bits). Note

35



that even though process domains must grow with the ring size, the processes do not
need to know the ring size. This is in the same spirit as Dijkstra’s token ring [64].

36



Chapter 4:
A Backtracking Algorithm
for Shadow/Puppet Synthesis

Section 2.2.3 introduced the idea of stabilization to a shadow protocol that operates
within some set of legitimate states. Recall that a shadow protocol encapsulates
the desired behavior of a protocol without the constraints associated with a real-
istic topology. For example, in Section 1.1, we described how to specify a token
ring protocol ptok of some N processes, operating within states where exactly one
token exists (∃!i ∈ ZN : toki = 1), where each πi passes the token with an action
(toki = 1 −→ toki := 0; toki+1 := 1; ). Such a token ring is certainly not self-stabilizing,
and it is likely unrealistic because processes write directly to each other’s memories.
Therefore, these toki shadow variables should not be used in a self-stabilizing pro-
tocol, and we instead add puppet variables (named xi in this example) to achieve
behavior in a realistic way. To ensure that a synthesized protocol p′

tok preserves the
behavior of ptok, we look at how the toki variables change, but they are treated as
write-only in p′

tok because they are unrealistic and should not affect decision-making.

This chapter proposes an automated synthesis algorithm that respects this notion of
using a shadow protocol for specification and puppet variables for implementation.
The algorithm itself is a backtracking search [162], which is a class of search algo-
rithms that is easy to implement and can yield very good results. It is also a complete
search, a property that several automated techniques forgo [4,5,76,88,179] due to the
inherent complexity of designing stabilization [64, 100, 132]. Other complete meth-
ods do exist, particularly reducing the problem of synthesis to the language of an
SMT solver [84, 90]. However, we find that backtracking with some (completeness-
preserving) heuristics performs better, primarily because we can guide the search to
make decisions at logical points (choosing actions) rather than getting lost in the
protocol representation (states and transitions).

Contributions. The contributions of this work are multi-fold. First, we devise a
two-step design method that separates the concerns of closure and convergence for
the designer, and enables designers to intuitively specify functional behaviors and

Sections 4.2–4.4 contain material from A. P. Klinkhamer and A. Ebnenasir. Shadow/Puppet
Synthesis: A Stepwise Method for the Design of Self-Stabilization. IEEE Transactions on Parallel

and Distributed Systems, 2016. © 2016 IEEE.

37



systematically include computational redundancy. Second, we propose a parallel and
complete backtracking search that finds an SS solution if one exists. If a solution
does not exist in the current state space of the program, then designers can include
additional puppet variables or alternatively increase the domain size of the existing
puppet variables and rerun the backtracking search. Third, we present three differ-
ent implementations of the proposed method as a software toolset, called Protocon
(http://asd.cs.mtu.edu/projects/protocon/), where we provide a sequential im-
plementation and two parallel implementations; one multi-threaded and the other an
MPI-based implementation. We also demonstrate the power of the proposed method
by synthesizing several new network protocols that all existing heuristics fail to syn-
thesize. These case studies include 2-state maximal matching on bidirectional rings,
5-state token passing on unidirectional rings, 3-state token passing on a bidirectional
chains, and orientation on daisy chains.

Organization. Section 4.1 defines the problem of synthesis and gives the essential
ideas used by our search algorithm. Section 4.2 presents a flowchart overview of
our synthesis algorithm. Section 4.3 gives algorithm details, including pseudocode.
Section 4.4 discusses the optimizations we use to minimize the cost of our backtracking
search, which is exponential in the worst case. Chapter 5 is a continuation of this
chapter that showcases 4 new protocols found using this synthesis algorithm, including
the search time for synthesizing these and other related protocols. It also gives some
insight into the techniques involved in specification and synthesis.

4.1 Synthesis Problem

This section begins with a formal description of the synthesis problem, though most
problem constraints were introduced in Section 2.2.3. We then give a brief explana-
tion of backtracking search, the assumptions made about protocols, and some conse-
quences that simplify the design of self-stabilization.

Synthesis. Let p be a non-stabilizing shadow protocol and L be the legitimate states
of p. We manually expand the state space of p to create a shadow/puppet topology
p′ by adding puppet variables and making unrealistic shadow variables write-only.
A synthesis algorithm then searches for actions to add to processes of p′ in order to
achieve stabilization. Our experience shows that better performance can be achieved
if variables with small domains are included initially. If the synthesis fails, then
designers can incrementally increase variable domains or include additional puppet
variables. This way designers can manage the growth of the state space and keep the
synthesis time/space costs under control. Such an increase in state space could be
trivially automated in order to achieve a similar effect as bounded synthesis [90].

Problem 4.1.1 (Shadow/Puppet Synthesis).
• INPUT: A shadow protocol p, its legitimate states L, a shadow/puppet topol-

ogy, and a projection function H

38

http://asd.cs.mtu.edu/projects/protocon/


– Processes of p are assumed to be deterministic and self-disabling
• OUTPUT: A shadow/puppet protocol p′ that stabilizes to p|L (Definition 2.2.12)

– The scheduler is assumed to be unfair

Backtracking Search. Like any other backtracking search, our algorithm incre-
mentally builds upon a guess, or a partial solution, until it either finds a complete
solution or finds that the guess is inconsistent. We decompose the partial solution
into two pieces: (1) an under-approximation formed by making well-defined deci-
sions about the form of a solution, and (2) an over-approximation that is the set of
remaining possible solutions (given the current under-approximation).

Minimal Actions. Since a protocol’s behavior can be represented as a set of min-
imal actions of different types of processes, our under-approximation is a list named
delegates that contains all minimal actions that will be present in a solution if our
guesses so far are correct. Likewise, an over-approximation is a set of all minimal ac-
tions that could possibly be included in a solution. A list named candidates contains
these “possibly included” actions, but it excludes the already-selected delegates,
therefore delegates ∪ candidates constitutes the over-approximation.

Decision Tree. A backtracking search works by choosing actions from the over-
approximation to definitely include in the under-approximation. Each time a choice
is made to build upon the under-approximation, the current partial solution is saved
at decision level j and a copy that incorporates the new choice is placed at level
j + 1. If the guess at level j + 1 is inconsistent, we move back to level j and discard
the choice that brought us to level j + 1. If the guess at level 0 is found to be
inconsistent, then enough guesses have been tested to determine that no solution
exists. A partial solution is inconsistent when (1) the under-approximation causes
a conflict in the problem constraints, or (2) the over-approximation cannot possibly
contain a solution.

No Fairness. We assume that the scheduler is unfair. This allows us to characterize
the two kinds of inconsistencies as (1) actions in delegates creating a livelock, and
(2) actions in delegates ∪ candidates do not provide enough transitions to provide
stabilization. Notice that under weaker fairnesses, we cannot consider a livelock in
delegates to cause a conflict because some livelocks can be resolved by adding more
actions to the protocol!

Lemma 4.1.2 (Inconsistency). Given delegates and candidates, let states L′

and transitions ∆′|L′ be over-approximations. No subset of actions in delegates ∪
candidates can form a stabilizing protocol if an inconsistency breaks one of the fol-
lowing constraints:

1. The transitions of delegates do not form livelocks in L′ (Constraint 1 in Def-
inition 2.2.10)

2. The transitions of delegates ∪ candidates provide convergence to L′ under
global fairness (Constraint 1 in Definition 2.2.10)

39



3. ∆′|L′ preserve all transitions of the shadow protocol (Constraint 2 in Defini-
tion 2.2.11)

Proof. Since L′ and ∆′|L′ are over-approximations, a stabilizing solution protocol
will use some subset of legitimate states L′ and subset of legitimate transitions ∆′|L′.
Thus, if the under-approximation causes a livelock within L′, this inconsistency can-
not be fixed by adding transitions. Likewise, if the over-approximation does not
provide reachability from L′ to L′, this inconsistency cannot be fixed by removing
transitions. Finally, if the over-approximated ∆′|L′ does not preserve shadow transi-
tions, this inconsistency cannot be fixed by removing transitions.

Lemma 4.1.3 (Legitimate States and Behavior). Given delegates and candidates,
a maximal set of states L′ and transitions ∆′|L′ can be constructed such that the fol-
lowing constraints are satisfied:

• L′ ⊆ H−1[L]
• The transitions of delegates within L′ do not violate progress due to livelocks
• ∆′|L′ is a subset of transitions of delegates ∪ candidates

• ∆′|L′ contains all transitions of delegates that begin in L′

• ∆′|L′ satisfies progress and fixpoint convergence constraints under global fairness

Proof. Perform the following steps.

1. Initialize L′ := H−1[L] using legitimate shadow states of the shadow protocol p
2. For each state s ∈ L from which p requires progress to a different state, if

the transitions of delegates form a cycle within H−1[{s}], then remove H−1[s]
from L′

3. Initialize ∆′|L′ as the set of each (s′
0, s′

1) of delegates ∪ candidates where
s′

0, s′
1 ∈ L′ and either H(s′

0) = H(s′
1) or (H(s′

0), H(s′
1)) is a transition of p|L

4. Iteratively remove any state s′
0 from L′ and ∆′|L′ that satisfies either:

(a) (s′
0, s′

1) is some transition of delegates that does not exist in ∆′|L′

(b) p|L requires progress from H(s′
0) to a different state, and no execution of

∆′|L′ from s′
0 contains a state s′

1 where H(s′
0) 6= H(s′

1)

These steps correspond to the constraints of the lemma in order. Following the
steps, it should be clear that states and transitions are only removed if they violate
a constraint of the lemma, therefore the computed L′ and ∆′|L′ are maximal.

Parameterized Systems. It is usually the case that we want to design a protocol
that is correct/stabilizing for all topologies of a certain class (e.g., rings). Therefore,
we actually consider multiple topologies at the same time (e.g., rings of sizes N ∈
{2, . . . , 7}). This is easy to implement since it just involves checking consistency of
the protocol on each topology, rather than just one specific topology. We omit this
idea of multiple systems from the algorithm pseudocode, but we are explicit about
this aspect in the case studies of Chapter 5.

40



Deterministic, Self-Disabling Processes. Processes are restricted to be de-
terministic and self-disabling. This allows us to remove many possibilities from
candidates, which prunes many unnecessary decision subtrees. Under no fairness
(and also weak fairness), no computational power is lost using this restriction.

Theorem 4.1.4 (Deterministic, Self-Disabling Processes). If some protocol p con-
verges to states L from states Q under fairness F ∈ {unfair, weak} such that no sin-
gle process acting twice can cause an execution 〈s0, s1, s2〉 where s0 ∈ Q \ L, s1 ∈ L,
and s2 ∈ Q \L, then the same can be achieved by a protocol pdet whose processes are
deterministic and self-disabling.

Proof. Assuming p converges to L from Q using the constraints specified, we want to
achieve the same convergence using a protocol pdet whose processes are deterministic
and self-disabling. One such pdet can be constructed in 3 phases of transformations to
the transition function δi of the finite state machine of each process πi of p: (1) While
transitions (w0, a, w1), (w0, a, w2) ∈ δi exist such that w1 6= w2, arbitrarily remove one
of these nondeterministic transitions. (2) While transitions (w0, a, w1), (w1, a, w2) ∈ δi

exists such that w0 6= w1, replace (w0, u, w1) with (w0, u, w2) so that it no longer
enables (w1, a, w2). (3) While a transition (w0, a, w0) ∈ δi exists, remove this self-
loop transition. Phase 1 makes processes of pdet deterministic, and phases 2 & 3
make processes of pdet self-disabling. We are left to show that these transformations
preserve convergence to L from Q under fairness F . By Definition 2.2.4, this means
we want to prove that each transformation phase preserves deadlock and livelock
freedom within Q \ L and does not introduce any transitions from Q \ L directly to
Q \L.

Phase 1. This phase only removes the opportunity for a process to nondeter-
ministically choose between two or more enabled actions. By definition, each fair-
ness F ∈ {unfair, weak} only applies to a process’s ability to act (this is true for
F ∈ {local, sync} as well). That is, if a process has multiple actions enabled, there
is no notion of fairness when choosing between which action to take. Therefore, in
executions of p under F , it is always valid for processes to deterministically choose
which action to take if multiple actions are enabled. This shows that, at this phase
of construction, all maximal executions of pdet correspond to maximal executions of p
that are valid under fairness F . Thus, no deadlocks, livelocks, or invalid transitions
are introduced, proving that phase 1 preserves convergence to L from Q.

Phase 2. This phase makes each process of pdet act in such a way that it skips
intermediate states where it would otherwise be enabled, defaulting to be a self-
loop action if all “intermediate” states cause the process to be enabled. Fairness
F ∈ {unfair, weak} does not guarantee that a process πj will act between any two
actions of another process πi. This shows that, at this phase of construction, all
maximal executions of pdet under F correspond to maximal executions of p under
F , but some intermediate states are skipped. Thus, no deadlocks or livelocks are
introduced.

41



Convergence to L from Q also implies a safety constraint that no transition exists
from Q \ L to Q \L. However, we have assumed that no single process of p can cause
an execution 〈s0, s1, s2〉 where s0 ∈ Q \ L, s1 ∈ L, and s2 ∈ Q \L, therefore phase 2
will not introduce any transitions directly from Q \ L to Q \L. In total, this proves
that phase 2 preserves convergence to L from Q.

Phase 3. Self-loops do not change the state of a system, therefore they can be
removed without affecting convergence to L from Q. Phase 3 does this exactly,
therefore all 3 phases preserve convergence, completing the proof that pdet converges
to L from Q under fairness F using deterministic and self-disabling processes.

Theorem 4.1.5. Let p be a shadow protocol operating within legitimate states L that
uses deterministic and self-disabling processes. If a shadow protocol p′ stabilizes to
p|L under fairness F ∈ {unfair, weak}, then p′ can be modified to have deterministic
and self-disabling processes without sacrificing its stabilization property.

Proof. Let H be the projection function that maps a state of p′ to a state of p.
Let L′ ⊆ L be a set of legitimate states satisfying the behavioral (Definition 2.2.10)
and closure (Definition 2.2.11) properties. Let p′

det be a version of p′ that has been
modified using the technique in Theorem 4.1.4 such that its “phase 1” prefers to
remove actions that do not change shadow variables. We want to show that the
convergence and closure constraints that are satisfied by p′ are also satisfied by p′

det.

Our new p′
det preserves closure within L′ (Constraint 1 in Definition 2.2.11) since any

execution of p′
det is also an execution of p′, possibly skipping some intermittent states.

By the same logic, no execution of p′
det within L′ changes shadow variables unless

they are changed by a similar execution of p′. This satisfies the fixpoint constraint
of convergence (Constraint 3 in Definition 2.2.10). Since L′ is closed, we also know
that p′

det converges to L′ by Theorem 4.1.4. This satisfies the recovery constraint of
convergence (Constraint 1 in Definition 2.2.10).

Since processes of p are deterministic, each transition of p from a state s0 ∈ L corre-
sponds to a different process, implying that each transition of p′ that changes shadow
variables from a state in H−1[{s0}] ∩ L′ corresponds to a different process. Fur-
thermore, since no transitions (s0, s1) and (s1, s2) of p belong to the same process,
no single process of p′ transitions both from H−1[{s0}] ∩ L′ to H−1[{s1}] ∩ L′ and
from H−1[{s1}] ∩ L′ to H−1[{s2}] ∩ L′. Thus, the construction of p′

det preserves such
transitions of p′ within L′ that change shadow variables. This satisfies the transition
closure constraint (Constraint 2 in Definition 2.2.11), though it would not satisfy the
stricter constraint of preserving all execution paths (which we believe may be useful,
but it provides no extra constraints for any of the protocols that we investigate in
this work).

Furthermore, the construction of p′
det preserves convergence from H−1[{s0}] ∩ L′ to

⋃n
i=j(L

′ ∩ H−1[{sj}]) for any such n ≥ 1 transitions (s0, s1), . . . , (s0, . . . , sn) because

42



processes of p′ meet the conditions of Theorem 4.1.4. This satisfies the progress
constraint of convergence (Constraint 2 in Definition 2.2.10). Thus, we have shown
that a p′

det stabilizes to p|L.

4.2 Overview of the Search Algorithm

Figure 4.1 illustrates an abstract flowchart of the proposed backtracking algorithm.
We start with the non-stabilizing protocol p, its legitimate states L, the topology of p′,
and the projection function H−1 that maps states of p′ to states of p. The algorithm
in Figure 4.1 starts by computing all valid candidate actions (in the expanded state
space) that adhere to the read/write permissions of all processes. The initial value
of delegates is often the empty set unless there are specific actions that must be in
the solution (e.g., to ensure the reachability of particular states). The algorithm in
Figure 4.1 then calls ReviseActions to remove self-loops from candidates (since
they violate convergence), and checks for inconsistencies in the partial solution. The
designer may give additional constraints that forbid certain actions.

In general, ReviseActions (see the bottom dashed box in Figure 4.1) is invoked
whenever we strengthen the partial solution by adding to the under-approximation
or removing from the over-approximation. It may further remove from the over-
approximation by enforcing the determinism and self-disablement constraints (see
Theorem 4.1.4). Then ReviseActions computes the largest possible invariant L′

that could be used by the current partial solution. That is, it finds the weakest
predicate L′ for which the constraints of Problem 4.1.1 can be satisfied using some
set of transitions ∆′ permissible by the partial solution. The partial solution requires
∆′ to include all transitions corresponding to actions in delegates. Additionally, ∆′

can include any subset of transitions corresponding to actions in candidates. For
example, the first constraint of convergence to shadow behavior (Definition 2.2.10)
stipulates that the transitions of delegates are cycle-free outside of L′ and that the
transitions of delegates ∪ candidates provide reachability (weak convergence) to
L′. If such an L′ does not exist, then the partial solution is inconsistent.

If our initialized delegates and candidates give a consistent partial solution, then
we invoke the AddStabilizationRec routine. The objective of AddStabiliza-

tionRec (see the top dashed box in Figure 4.1) is to go through all actions in
candidates and check their eligibility for inclusion in the self-stabilizing solution. In
particular, AddStabilizationRec has a loop that iterates through all actions of
candidates until it becomes empty or an inconsistency is found. In each iteration,
AddStabilizationRec picks a candidate action to resolve some remaining dead-
lock at the next decision level. In general, the candidate action can be randomly
selected. However, to limit the possible choices, we use an intelligent method for
picking candidate actions described in Section 4.2. After picking a new action A, we
invoke ReviseActions to add action A to a copy of the current partial solution by

43



Initialize under-approximation as the empty set
and over-approximation as all possible minimal actions

ReviseActions

Remove self-loops from over-approximation

Is under-approximation
equal to over-approximation?

PickAction

Let A be a candidate action that resolves a
deadlock that the fewest candidate actions resolve

ReviseActions

Copy partial solution,
add A to its under-approximation

AddStabilizationRec

Recurse with the copy of the partial solution

ReviseActions

Remove A from over-approximation

Inconsistent
partial solution

No solution exists

Inconsist
ent

Solution found

Okay Yes

No

Okay
In

co
n
si

st
en

t
In

co
n
si

st
en

t

In
co

n
si

st
en

t
Backtrack! B

ac
k
tr

ac
k

fr
om

to
p
m

os
t

d
ec

is
io

n
le

ve
l

Okay

Recurse!

AddStabilizationRec

Add to under-approximation or
remove from over-approximation

Eliminate actions from over-approximation
that violate determinism or self-disablement

Use the partial solution to calculate the weakest
invariant L′ such that the partial solution
and L′ meet the constraints of Definition 2.2.12

Okay

Inconsistent
partial solution

L′ exists

No
L
′ ex

ist
s

ReviseActions

Figure 4.1: Overview of the backtracking algorithm. © 2016 IEEE [133].

44



including A in the copy of delegates and removing it from the copy of candidates.
If the copied partial solution is consistent, then AddStabilizationRec makes a
recursive call to itself, using the copied partial solution for the next decision level. If
the copied partial solution is found to be inconsistent (either by a call to ReviseAc-

tions or by the exhaustive search in the call to AddStabilizationRec), then we
remove action A from candidates using ReviseActions. If after removal of A the
partial solution is consistent, then we continue in the loop. Otherwise, we backtrack
since no stabilizing protocol exists with the current under-approximation.

4.3 Algorithm Details

This section presents the details of the proposed backtracking method. Notice that
we assume that the input to this algorithm is a non-stabilizing shadow protocol al-
ready superposed with some new finite-domain puppet variables. Misusing C/C++
notation, we prefix a function parameter with an ampersand (&) if modifications to
it will affect its value in the caller’s scope (i.e., it is a return parameter).

AddStabilization. Algorithm 4.1 is the entry point of our backtracking algorithm.
The AddStabilization function returns true iff a self-stabilizing protocol is found
which will then be formed by the actions in delegates. Initially, the function deter-
mines all possible candidate minimal actions. Next, the function determines which
actions are explicitly required (Line 2) or disallowed by additional constraints (Line 4).
We invoke ReviseActions to include adds in the under-approximation and remove
dels from the over-approximation on Line 6. If the resulting partial solution is consis-
tent, then the recursive version of this function (AddStabilizationRec) is called.
Otherwise, a solution does not exist.

AddStabilizationRec. Algorithm 4.2 defines the main recursive search. Like
AddStabilization, it returns true iff a self-stabilizing protocol is found that is
formed by the actions in delegates. This function continuously adds candidate
actions to the under-approximation delegates as long as candidate actions exist.
If no candidates remain, then delegates and the over-approximation delegates ∪
candidates of the protocol are identical. If ReviseActions does not find anything
wrong, then delegates is self-stabilizing, hence the successful return on Line 16.

On Line 2 of AddStabilizationRec, a candidate action A is chosen by calling
PickAction (Algorithm 4.4). Any candidate action may be picked without affecting
the search algorithm’s correctness, but the next section explains a heuristic we use to
pick certain candidate actions over others to improve search efficiency. After picking
an action, we copy the current partial solution into delegates′ and candidates′,
and add the action A on Line 6. If the resulting partial solution is consistent, then
we recurse by calling AddStabilizationRec. If that recursive call finds a self-
stabilizing protocol, then it will store its actions in delegates and return successfully.
Otherwise, if action A does not yield a solution, we will remove it from the candidates

45



Algorithm 4.1 Entry point of the backtracking algorithm for solving Problem 4.1.1.

AddStabilization(p: shadow protocol, L: legitimate states,
&p′: shadow/puppet topology, H: mapping S ′ → S,
delegates: forced actions, forbidden: forbidden actions)

Output: Return true when a solution delegates can be found. Otherwise, false.
1: let candidates be all local transitions that are valid for the process types in p′

2: let adds := delegates {Forced actions, if any}
3: delegates := ∅
4: let dels := candidates ∩ forbidden

5: let L′ := ∅
6: if ReviseActions(p, L, H, &delegates, &candidates, &L′, adds, dels) then
7: if AddStabilizationRec(p, L, H, &delegates, candidates, L′) then
8: Modify p′ to use the actions in delegates

9: return true
10: end if
11: end if
12: return false

Algorithm 4.2 Recursive backtracking function to add stabilization.

AddStabilizationRec(p, L, H, &delegates, candidates, L′)

Output: Return true if delegates contains the solution. Otherwise, return false.
1: while candidates 6= ∅ do
2: let A := PickAction(p, H, delegates, candidates, L′)
3: let delegates′ := delegates

4: let candidates′ := candidates

5: let L′′ := ∅
6: if ReviseActions(p, L, H, &delegates′, &candidates′, &L′′, {A}, ∅) then
7: if AddStabilizationRec(p, L, H, &delegates′, candidates′, L′′) then
8: delegates := delegates′ {Assign the actions to be returned}
9: return true

10: end if
11: end if
12: if not ReviseActions(p, L, H, &delegates, &candidates, &L′, ∅, {A})

then
13: return false
14: end if
15: end while
16: return true

on Line 12. If this removal creates a non-stabilizing protocol, then return in failure;
otherwise, continue the loop.

ReviseActions. Algorithm 4.3 is a key component of the backtracking search.

46



Algorithm 4.3 Add adds to the under-approximation and remove dels from the
over-approximation.

ReviseActions(p, L, H, &delegates, &candidates, &L′, adds, dels)

Output: Return true if adds can be added to delegates and dels can be removed
from candidates, and L′ can be revised accordingly. Otherwise, return false.

1: delegates := delegates ∪ adds

2: candidates := candidates \ adds

3: for A ∈ adds do
4: Add each action B ∈ candidates to dels if it belongs to the same process as

A and satisfies one of the following conditions:
• A enables B (enforce self-disabling process)
• B enables A (enforce self-disabling process)
• A and B are enabled at the same time (enforce determinism)
{Find candidate actions that are now trivially unnecessary for stabilization}

5: end for
6: candidates := candidates \ dels

7: Compute the maximal L′ and ∆′|L′ using the method of Lemma 4.1.3
8: Check for inconsistencies as per Lemma 4.1.2
9: if no inconsistency found then

10: adds := ∅
11: dels := ∅
12: if CheckForward(p, L, H, delegates, candidates, L′, &adds, &dels) then
13: if adds 6= ∅ or dels 6= ∅ then
14: return ReviseActions(p, L, H, , &delegates, &candidates,

&L′, adds, dels)
15: end if
16: return true
17: end if
18: end if
19: return false

ReviseActions performs five tasks: (1) Add actions to the under-approximated
protocol by moving the adds set from candidates to delegates. (2) Remove for-
bidden actions from the over-approximated protocol by removing the dels set from
candidates. (3) Enforce self-disablement and determinism (Theorem 4.1.4), which
results in removing more actions from the over-approximated protocol. (4) Compute
the maximal invariant L′ and transitions ∆′|L′ in the expanded state space such that
the shadow behavior may be achieved given the current under/over-approximations.
(5) Check that there are no inconsistencies by ensuring that the under-approximation
is livelock-free within L′, the over-approximation provides reachability to L′ from any
state, and closure properties are preserved.

If the check finds an inconsistency, then ReviseActions returns false. Finally,

47



ReviseActions invokes the CheckForward function to infer actions that must
be added to the under-approximation or removed from the over-approximation, and
will return false only if it infers that the current partial solution cannot be used to
form a self-stabilizing protocol. A trivial version of CheckForward can just return
true.

A good ReviseActions implementation should provide early detection for when
delegates and candidates cannot be used to form a self-stabilizing protocol. At the
same time, since the function is called whenever converting candidates to delegates
or removing candidates, it cannot have a high cost. Thus, we ensure that actions
in delegates do not form a livelock and that actions in delegates ∪ candidates

provide weak stabilization.

A good CheckForward implementation should at least remove candidate actions
that are not needed to resolve deadlocks. This can be performed quickly and al-
lows the AddStabilizationRec function to immediately return a solution when all
deadlocks are resolved.

Theorem 4.3.1 (Completeness). The AddStabilization algorithm is complete.

Proof. Assuming that AddStabilization returns false, we want to prove that no
solution exists. Since each candidate action is minimal and we consider all such ac-
tions as candidates, a subset of the candidate actions form a stabilizing protocol iff
such a protocol exists. Observe that AddStabilizationRec follows the standard
backtracking [134] procedure where we (1) add a candidate action to the under-
approximation in a new decision level, and (2) backtrack and remove that action
from the candidates if an inconsistency (which cannot be fixed due to Lemma 4.1.2)
is discovered by ReviseActions at that new decision level. Even though ReviseAc-

tions removes candidate actions in order to enforce deterministic and self-disabling
processes, we know by Theorem 4.1.5 that this will not affect the existence of a self-
stabilizing protocol. Thus, since we follow the general template of backtracking [134],
the search will test every consistent subset of the initial list of candidate actions where
processes are deterministic and self-disabling. Therefore, if our search fails, then no
solution exists.

Theorem 4.3.2 (Soundness). The AddStabilization algorithm is sound.

Proof. We show that if AddStabilization returns true, then it has found a self-
stabilizing protocol formed by the actions in delegates. Notice that when AddSta-

bilizationRec returns true, the AddStabilization or AddStabilizationRec

function that called it simply returns true with the same delegates list. The only
other case where AddStabilization returns true is when candidates is empty in
AddStabilizationRec (Line 16). Notice that to get to this point, ReviseActions

must have been called and must have returned true after emptying the candidates

48



list. By inspection of Lemma 4.1.3 and Lemma 4.1.2, verifying the constraints of Defi-
nition 2.2.12 is equivalent to building L′ and ∆′|L′ using an empty candidates list and
then finding no inconsistencies equivalent to verifying. Therefore, when AddStabi-

lization returns true the actions of delegates form a self-stabilizing protocol.

4.4 Optimizing the Decision Tree

This section presents the techniques that we use to improve the efficiency of our
backtracking algorithm.

Picking Actions via the Minimum Remaining Values Heuristic. The worst-
case complexity of a depth-first backtracking search is determined by the branching
factor b and depth d of its decision tree, evaluating to O(bd). We can tackle this
complexity by reducing the branching factor. To do this, we use a minimum remaining
values (MRV) method in PickAction. MRV is classically applied to constraint
satisfaction problems [162] by assigning a value to a variable that has the minimal
remaining candidate values. In our setting, we pick an action that resolves a deadlock
with the minimal number of remaining actions available to resolve it.

Algorithm 4.4 shows the details of PickAction that keeps an array deadlock_sets,
where each element deadlock_sets[i] contains all the deadlocks that are resolved
by exactly i candidate actions. We initially start with array size |deadlock_sets| =
1 and with deadlock_sets[0] containing all unresolved deadlocks. We then shift
deadlocks to the next highest element in the array (bubbling up) for each candidate
action that resolves them. After building the array, we find the lowest index i for
which the deadlock set deadlock_sets[i] is nonempty, and then return an action
that can resolve some deadlock in that set. Line 21 can only be reached if either the
remaining deadlocks cannot be resolved (but ReviseActions catches this earlier) or
all deadlocks are resolved (but CheckForward can catch this earlier).

When multiple topologies are being considered, PickAction is performed on all
topologies, each corresponding to its own deadlock_sets array. The check of Line 17
is performed for each topology. In this way, if all deadlocks are resolved by 6 different
actions on a ring of size N = 3, but there is a deadlock that only be resolved by 2
actions on a ring of size N = 5, then we will choose from the 2 actions rather than
the 6.

Conflicts. Every time a new candidate action is included in delegates, ReviseAc-

tions checks for inconsistencies, which involves cycle detection and reachability anal-
ysis. These procedures become very costly as the complexity of the transition system
grows. To mitigate this problem, whenever an inconsistency is found, we record a
minimal set of decisions (subset of delegates) that causes it. We reference these
conflict sets [162] in CheckForward to remove candidate actions that would cause
an inconsistency.

49



Algorithm 4.4 Pick an action using the minimum remaining values (MRV) method.

PickAction(p, H, delegates, candidates, I ′)

Output: Next candidate action to pick.
1: let deadlock_sets be a single-element array, where deadlock_sets[0] holds a

set of deadlocks in L′ ∪H−1[Pre(∆)] that actions in delegates do not resolve
2: for all action ∈ candidates do
3: let i := |deadlock_sets|
4: while i > 0 do
5: i := i − 1
6: let resolved := deadlock_sets[i] ∩ Pre(action)
7: if resolved 6= ∅ then
8: if i = |deadlock_sets| − 1 then
9: let deadlock_sets[i + 1] := ∅ {Grow array by one element}

10: end if
11: deadlock_sets[i] := deadlock_sets[i] \ resolved

12: deadlock_sets[i + 1] := deadlock_sets[i + 1] ∪ resolved

13: end if
14: end while
15: end for
16: for i = 1, . . . , |deadlock_sets| − 1 do
17: if deadlock_sets[i] 6= ∅ then
18: return Any action from candidates that resolves a deadlock in

deadlock_sets[i]
19: end if
20: end for
21: return An action from candidates {Edge case}

Randomization and Restarts. When using the standard control flow of a depth-
first search, a bad choice near the top of the decision tree can lead to infeasible
runtime. This is the case since the bad decision exists in the partial solution until
the search backtracks up the tree sufficiently to change the decision. To limit the
search time in these branches, we employ a method outlined by Gomes et al. [98] that
combines randomization with restarts. In short, we limit the amount of backtracking
to a certain height (we use 3). If the search backtracks past the height limit, it
forgets the current decision tree and restarts from the root. To avoid trying the same
unfruitful decisions after a restart, PickAction randomly selects a candidate action
permissible by the MRV method. This approach remains complete since a conflict is
recorded for any set of decisions that causes a restart.

Parallel Search. In order to increase the chance of finding a solution, we instantiate
several parallel executions of the algorithm in Figure 4.1; i.e., search diversification.
As noted in [98], parallel tasks will generally avoid overlapping computations due
to the randomization used in PickAction. We have observed linear speedup when

50



the search tasks are expected to restart several times before finding a solution [131].
The parallel tasks share conflicts with each other to prevent the re-exploration of
branches that contain no solutions. In our MPI implementation, conflict dissemina-
tion occurs between tasks using a virtual network topology formed by a generalized
Kautz graph [116] of degree 4. This topology has a diameter logarithmic in the num-
ber of nodes and is fault-tolerant in that multiple paths between two nodes ensure
message delivery. That is, even if some nodes are performing costly cycle detection
and do not check for incoming messages, they will not slow the dissemination of new
conflicts.

4.5 Probabilistic Stabilization

It may seem that probabilistic stabilization is fundamentally incompatible with our
synthesis algorithm since we assume processes are deterministic (and self-disabling).
However as discussed in Section 2.3.3, we can grant processes the power of random
choice by granting them access to their own read-only variables that change randomly
whenever any process acts. In this way, a processes can behave deterministically based
on random values they read.

Since a randomized variable can hold a specific value for arbitrarily many steps, we
only consider a process to be involved in a livelock if its actions within that livelock
are fully determined (for all values of its randomized variables). Therefore, we can
say that if a livelock exists, no action can be added to resolve it. This makes our
notion of a partial solution valid in backtracking search.

Cycle Detection. Though we are still using an unfair scheduler, our usual cycle
detection algorithm (Algorithm 3.1) cannot be used. Algorithm 4.5 shows the new
algorithm that respects ability of processes to break cycles based on random choice. It
does not rely on our use of randomized variables because all process nondeterminism
as random choice. However, since our synthesis algorithm enforces deterministic
processes, synthesized protocols limit nondeterminism to changes in random variables.
Such an algorithm is not particularly novel, because symbolic model checkers such
as PRISM exist that can verify probabilistic stabilization [110, 143] and many other
properties, but it may be useful nonetheless due to its simplicity.

The cycle detection algorithm operates on a simple premise, that if every enabled
process in a state can transition out of a livelock, then a livelock will almost surely not
revisit that state infinitely often. This is the idea of the fixpoint iteration starting on
Line 5. During each iteration, we find states for which each process is either disabled
or has a transition to leave span, which is the current set of states that could be
involved in cycles. These resolved states will not be in span in the next iteration.

When no more states can be removed by the preimage fixpoint iteration, we invoke an
image fixpoint iteration on Line 15. This removes the remaining states that cannot be

51



Algorithm 4.5 Check for cycles in a protocol where processes have random choice.

SureCycleCheck(&span: closed set of initial states (also a return value),
δ0,. . . ,δN−1: transitions of each process,
progress: progress transitions)

Output: Whether the protocol contains a cycle.
1: {Note: progress is either (1) transitions that directly recover to the maximal

closed set of legitimate states, or (2) transitions corresponding to the shadow
protocol, but not both}

2: let ∆ :=
⋃N−1

i=0 δi {Global transitions}
3: {Fixpoint iteration using preimage}
4: let next := Pre(∆) {Contains the next value of span, states that could be

involved in cycles, but also includes states outside of span for efficiency (these
states are ultimately ignored)}

5: repeat
6: span := span ∩ next

7: next := ∅
8: for i = 0, . . . , N − 1 do
9: let resolved := Pre(δi ∩ progress) ∪ δ−1

i [span]
10: next := next ∪ (Pre(δi) \ resolved)
11: end for
12: until span ⊆ next

13: {Fixpoint iteration using image to make span resemble the SCCs more closely}
14: next := Img(∆)
15: repeat
16: span := span ∩ next

17: next := ∆[span]
18: until span ⊆ next

19: {span is now all states that can be visited after arbitrarily many steps in an
infinite execution, but unlike in an SCC, span may contain some states that
cannot be visited infinitely often}

20: return (span 6= ∅)

visited after arbitrarily many steps in an infinite execution. Algorithm 3.1 similarly
has two fixpoint iterations, but it performs image before preimage.

52



Chapter 5:
Case Studies

In this chapter, we look for exact lower bounds for constant-space maximal matching
and token passing protocols using shadow/puppet synthesis. Section 5.1 presents an
intuitive way to synthesize maximal matching with shadow variables. Section 5.2

Verified MPI Synthesis
Protocol Procs Procs Procs Time

2-State Ring Matching ⋆† 2–7 8–100 1 0.54 secs
3-State Ring Matching [76] † 2–7 8–30 1 0.40 secs

4-State Token Ring ⋆† 2–8 N/A 4 1.50 hrs
4-State Token Ring ⋆ 2–8 N/A 64 100 hours
5-State Token Ring ⋆† 2–9 10–30 4 23.75 mins
4-State Token Ring 2–8 N/A 4 7.46 mins
6-State Token Ring 2–9 10–30 4 20.30 mins
8-State Token Ring [102] 2–9 10–25 4 17.29 mins

3-State Token Chain ⋆† 2–5 N/A 4 5.29 secs
3-State Token Chain ⋆ 2–5 6–30 4 48.93 secs
4-State Token Chain [64] ⋆† 2–4 5–25 4 10.11 secs
4-State Token Chain [64] ⋆ 2–4 5–15 4 1.14 mins
3-State Token Ring [64] ⋆† 2–5 6–15 4 1.02 mins
3-State Token Ring [64] ⋆ 2–5 6–15 4 5.22 mins

Daisy Chain Orientation † 2–6 7–24 1 2.02 mins
Odd-Sized Ring Orientation [112] 3,5,7 9,11 4 34.09 mins

⋆: Shadow variables are write-only N/A: No solution exists
†: Shadow self-loops are forbidden Others assumed generalizable

Figure 5.1: Synthesis runtimes for case studies.

Discussion of the main 3 protocols in Sections 5.1–5.3 contains material from A. P. Klinkhamer
and A. Ebnenasir. Shadow/Puppet Synthesis: A Stepwise Method for the Design of Self-
Stabilization. IEEE Transactions on Parallel and Distributed Systems, 2016. © 2016 IEEE.

Superior, a high performance computing cluster at Michigan Technological University, was
used in obtaining results presented in this chapter.

53



explores the unidirectional token ring with a distinguished process. Section 5.3 ex-
plores bidirectional token passing protocols. Section 5.4 introduces the problem of
orientation on a topology that could either be a ring or chain. Each section gives a
new self-stabilizing protocol that we conjecture uses the minimal number of states
per process to achieve stabilization.

Figure 5.1 provides the synthesis runtimes of all case studies. Each problem may have
a ⋆ or † symbol. The ⋆ symbol indicates whether shadow variables are write-only,
which allows the specified behavior to be more expressive (e.g., the token ring in
Section 1.1 vs the one in Example 2.2.13). The † symbol indicates whether actions
within the L′ invariant may leave shadow variables unchanged. This is achieved by
modifying Line 7 of Algorithm 4.3 to enforce that (∆′|L′) ⊆ H−1[∆]. Forbidding
these actions makes every action of a token passing protocol actually pass a token.

The Procs column indicates the system sizes (numbers of processes) that are simulta-
neously considered during synthesis. For example, the maximal matching case shows
2–7, which means that we are resolving deadlocks without introducing livelocks for 6
different systems of various sizes. These ranges are chosen to increase the chance of
synthesizing a generalizable protocol. The Verified Procs column shows the system
sizes that were verified after synthesis. We believe that the protocols that we verified
are generalizable. The MPI Procs column indicates the number of MPI processes
used for synthesis.

5.1 2-State Maximal Matching on Rings

A matching for a graph is a set of edges that do not share any common vertices. A
matching is maximal iff adding any new edge would violate the matching property.
In a ring, a set of edges is a matching as long as at least 1 of every 2 consecutive
edges is excluded from the set. For the set to be a maximal matching, at least 1 out
of every 3 consecutive edges must be included. To see that the matching is maximal,
consider selecting another edge to create a new matching. The edge itself cannot be
in the current matching nor can either of the two adjacent edges, but we have already
enforced that one of those three is selected, therefore the new edge cannot be added!

To specify this problem, use a binary shadow variable ei to denote whether the edge
between adjacent processes Pi−1 and Pi is in the matching (ei = 1 means to include
the edge, otherwise exclude the edge). The legitimate states are therefore the states
where at least 1 of every 3 consecutive e values equals 1, but at least 1 of every 2
consecutive e values equals 0.

Lmatch ≡ ∀i ∈ ZN : ((ei−1 = 1 ∨ ei = 1 ∨ ei+1 = 1) ∧ (ei = 0 ∨ ei+1 = 0))

We would like processes to determine whether their neighboring links are included
in a matching, therefore we give each Pi write access to ei and ei+1. Each ei is a

54



shadow variable since it exists only for specification, therefore processes have write-
only access. Since a matching should not change, there are no shadow actions; i.e.,
silent stabilization. We give each process Pi a binary puppet variable xi to read and
write along with read access to the xi−1 and xi+1 variables of its neighbors in the
ring. We only are guessing that an xi domain size of 2 is large enough to achieve
stabilization and represent (ei, ei+1) values with (xi−1, xi, xi+1) values in some way.
Synthesis gives the protocol in Protocol 5.1, which we believe to be generalizable after
verification of rings up to size N = 100. Notice that the e values are fully determined
based on the x values.

Protocol 5.1 — 2-State Maximal Matching on Bidirectional Rings

Pi : xi−1 = 1 ∧ xi = 1 ∧ xi+1 = 1 −→ ei := 1; xi := 0; ei+1 := 0;

Pi : xi−1 = 0 ∧ xi = 1 ∧ xi+1 = 1 −→ ei := 0; xi := 0; ei+1 := 0;

Pi : xi−1 = 0 ∧ xi = 0 ∧ xi+1 = 0 −→ ei := 0; xi := 1; ei+1 := 1;

Pi : xi−1 = 1 ∧ xi = 0 −→ ei := 1; ei+1 := 0;

Pi : xi−1 = 0 ∧ xi = 0 ∧ xi+1 = 1 −→ ei := 0; ei+1 := 0;

Pi : xi−1 = 0 ∧ xi = 1 ∧ xi+1 = 0 −→ ei := 0; ei+1 := 1;

Shadow Variables: e0 . . . eN−1 ∈ Z2 (write-only)
Puppet Variables: x0 . . . xN−1 ∈ Z2

Legitimate Shadow States: Lmatch ≡ ∀i ∈ ZN : ( (ei−1 = 1 ∨ ei = 1 ∨ ei+1 = 1)

∧ (ei = 0 ∨ ei+1 = 0))

Optimization. Since the number of possible protocols is relatively small, this par-
ticular protocol is the result of an exhaustive search that optimizes the worst-case
number of steps to achieve convergence. This exhaustive search only considered rings
of size 2–7 and took less than 30 seconds. We have found that this kind of optimization
can yield protocols that are easier to verify.

Removing Shadow Variables. An implementation of this matching protocol con-
sists only of puppet variables, and therefore discards the e variables. Of the 6 actions
above, only the first 3 modify x values. From these 3, we discard the e variables and
combine the first 2 actions. This leaves us with the puppet protocol that would be
used for implementation, where each Pi has the following actions:

Pi : xi = 1 ∧ xi+1 = 1 −→ xi := 0;

Pi : xi−1 = 0 ∧ xi = 0 ∧ xi+1 = 0 −→ xi := 1;

Further, we can derive the meaning of the puppet variables by observing how the
value of (ei, ei+1) is assigned for each particular value of (xi−1, xi, xi+1). We could

55



do this by observing all 6 actions, but we only need to observe the first 3 since they
subsume the last 3. The last 3 actions respectively assign (1, 0), (0, 0), and (0, 1) to
(ei, ei+1) to denote that Pi is matched with (i) Pi−1, (ii) nothing, and (iii) Pi+1. We
use (xi−1, xi, xi+1) values to represent these cases:

xi−1 = 1 ∧ xi = 0 (Pi matched with Pi−1)

xi−1 = 0 ∧ xi = 0 ∧ xi+1 = 1 (Pi not matched)

xi−1 = 0 ∧ xi = 1 ∧ xi+1 = 0 (Pi matched with Pi+1)

3-State Version

Gouda and Acharya [101] give a stabilizing matching protocol for rings and treat the
legitimate states as a Nash equilibrium, using elements of game theory to reason about
convergence. Their version uses 4 states per process. Ebnenasir and Farahat [76]
automatically synthesize a maximal matching using 3 states per process. Each process
Pi has a variable mi ∈ Z3 whose values indicate whether Pi is matched with Pi−1, not
matched, or matched with Pi+1. Using symbols to indicate these respective scenarios
L = 0, S = 1, and R = 2, the legitimate states are those that satisfy the following for
each Pi:

mi−1 = R ∧ mi = L (Pi matched with Pi−1)

mi−1 = L ∧ mi = S ∧ mi+1 = R (Pi not matched)

mi = R ∧ mi+1 = L (Pi matched with Pi+1)

Using the same specification, we synthesized the protocol in Protocol 5.2 using an
exhaustive search that optimizes worst-case convergence time in the number of asyn-
chronous steps. This exhaustive search only considered rings of size 2–7 and took less
than 10 seconds.

Protocol 5.2 — 3-State Maximal Matching on Bidirectional Rings

Pi : mi−1 6= R ∧ mi 6= R ∧ mi+1 6= R −→ xi := R;

Pi : mi−1 6= R ∧ mi 6= S ∧ mi+1 = R −→ xi := S;

Pi : mi−1 = R ∧ mi 6= L ∧ mi+1 6= L −→ xi := L;

Shadow Variables: m0 . . . mN−1 ∈ Z3 (read & write)
Legitimate States: Lmatch3 ≡ ∀i ∈ ZN : ( mi−1 = R ∧ mi = L

∨ mi−1 = L ∧ mi = S ∧ mi+1 = R

∨ mi = R ∧ mi+1 = L)

56



5.2 5-State Token Ring

In the token ring shadow specification ptok discussed in Section 1.1, each process πi is
given a binary shadow variable toki that denotes whether the process has a token. The
legitimate states are all states where exactly one token exists (∃!i ∈ ZN : toki = 1),
where N is the number of processes, and each process should eventually pass the
token within the legitimate states (toki = 1 −→ toki := 0; toki+1 := 1; ). For synthesis,
we give each πi a puppet variable xi and also let it read xi−1. Like in Dijkstra’s
token ring [64], we distinguish π0 as Bot0 to allow its actions to differ from the
other processes, and every other πi>0 is named Pi. We also force each action in
the legitimate states to pass a token by forbidding shadow self-loops. With this
restriction, we found that no protocol using 4 states per process is stabilizing for
all rings of size N ∈ {2, . . . , 8}. Without this restriction, we also found that in the
general case, no unidirectional token ring exists using 4 states per process.

Protocol 5.3 — 5-State Token Ring

Bot0 : xN−1 = 0 ∧ x0 = 0 −→ x0 := 1; tok0 := 0; tok1 := 1;

Bot0 : xN−1 = 1 ∧ x0 ≤ 1 −→ x0 := 2; tok0 := 0; tok1 := 1;

Bot0 : xN−1 > 1 ∧ x0 > 1 −→ x0 := 0; tok0 := 0; tok1 := 1;

Pi : xi−1 = 0 ∧ xi > 1 −→ xi := ⌊xi/4⌋; toki := 0; toki+1 := 1;

Pi : xi−1 = 1 ∧ xi 6= 1 −→ xi := 1; toki := 0; toki+1 := 1;

Pi : xi−1 = 2 ∧ xi ≤ 1 −→ xi := 2 + xi; toki := 0; toki+1 := 1;

Pi : xi−1 ≥ 3 ∧ xi ≤ 1 −→ xi := 4; toki := 0; toki+1 := 1;

Shadow Variables: tok0 . . . tokN−1 ∈ Z2 (write-only)
Puppet Variables: x0 . . . xN−1 ∈ Z5

Legitimate Shadow States: Ltok ≡ ∃!i ∈ ZN : (toki = 1)

Using 5 states per process (i.e., each xi has domain Z5), the synthesized protocol is
not always generalizable, even when we synthesize for all rings of size N ∈ {2, . . . , 9}.
However, we can increase our chances of finding a generalizable version by allowing
the search to record many solutions and verify correctness for larger ring sizes. Af-
ter sufficient synthesize-and-verify, we are left with Protocol 5.3, which we think is
generalizable after verification of rings up to size N = 30.

6-State Token Ring

As shown by Figure 5.1, we also considered on 4-state, 6-state, and 8-state token rings
designed using superposition rather than using write-only shadow variables. The 4-
state version is from Example 2.2.13, where binary ti variables defines legitimate

57



behavior and binary xi variables help to provide stabilization. Like the other 4-state
token ring considered above, we could not find a version that stabilizes for all rings of
size N ∈ {2, . . . , 8}. The 6-state token ring uses the same specification as the 4-state
version, but the xi variables are ternary rather than binary. One such protocol is
shown in Protocol 5.4, and we believe it is generalizable after verifying it up to rings
of size N = 30. The 8-state token ring again uses the 4-state specification, but rather
than increasing the xi domains, we a third binary variable is added to each process
that no other process can read. Gouda and Haddix [102] such a 3-bit token ring
protocol.

Protocol 5.4 — 6-State Token Ring

Bot0 : xN−1 6= 2 ∧ x0 6= 2 ∧ tN−1 ≤ t0 −→ x0 := 2 − tN−1; t0 := 1 − tN−1;

Bot0 : xN−1 = 2 ∧ x0 = 2 ∧ tN−1 ≤ t0 −→ x0 := 1 + tN−1; t0 := 1 − tN−1;

Pi : xi−1 6= 2 ∧ ti−1 < ti −→ xi := ti−1; ti := ti−1;

Pi : xi−1 6= 2 ∧ xi = 2 ∧ ti−1 ≥ ti −→ xi := ti−1;

Pi : xi−1 = 2 ∧ ti−1 < ti −→ xi := 2; ti := ti−1;

Pi : xi−1 = 2 ∧ xi = 0 ∧ ti−1 ≥ ti −→ xi := 2;

Pi : xi−1 = 2 ∧ xi = 1 ∧ ti−1 ≥ ti −→ xi := 2; ti := ti−1;

Shadow Variables: t0 . . . tN−1 ∈ Z2 (read & write)
Puppet Variables: x0 . . . xN−1 ∈ Z2

Legitimate States: Ltok6 ≡ H−1[Ltok2] ≡ ∃!i ∈ ZN : ( i = 0 ∧ ti−1 = ti

∨ i 6= 0 ∧ ti−1 6= ti)

This 6-state protocol ptok6 preserves the legitimate states of the shadow protocol ptok2

exactly. We saw the same phenomenon in Example 2.2.13 with the 4-state protocol
ptok4. The 8-state (3-bit) protocol ptok8 of Gouda and Haddix [102] also preserves
these legitimate states.

H−1[Ltok2] ≡ Ltok4 ≡ Ltok6 ≡ Ltok8 ≡ ∃!i ∈ ZN : ((i = 0∧ti−1 = ti)∨(i 6= 0∧ti−1 6= ti))

Stabilization Time

In analyzing these token rings, we found an interesting efficiency trade-off between
process memory, convergence speed, and adherence to the shadow protocol. The 6-
state protocol in Protocol 5.4 is a prime example to demonstrate this trade-off since
it actually converges to having one enabled process, but it still contains shadow self-
loops. This means that we can either consider a process to have a token when it
is enabled, or we can continue using the shadow variables (ti) to determine which
processes have tokens. If we choose to consider any enabled process to have a token,

58



then the token is passed with every action within the legitimate states, which makes
normal operation efficient, but it also makes convergence time slower.

Token Ring Number of Processes
Protocol 2 3 4 5 6 7 8 9 10 11 12 13 13⋆

4-State 0 4 12 20 41 54
5-State † 0 2 44 75 111 175 227 315 384 495 581 715 140
6-State † 0 2 45 75 112 175 227 315 384 495 581 715 140
6-State 0 2 10 22 37 64 83 127 153 210 243 313 22
8-State [102] 0 3 12 18 46 55 115 128 212 229 337 358 27
N -State [64] † 0 2 13 24 38 55 75 98 124 153 185 220 23

Worst-Case Number of Steps to Stabilize

†: Enabled iff has token ⋆: Synchronous scheduler

Figure 5.2: Comparison of Token Ring Efficiencies

Figure 5.2 shows how the stabilization times (in number execution steps) changes
between the various token ring protocols we have mentioned. In particular, we see
that the 6-state protocol converges almost exactly as fast as the 5-state version when
every process is considered to have a token. When the 6-state protocol instead uses
the original definition of a token (using ti variables), it converges even faster than the
8-state version. In this case, the 8-state protocol is still arguably better because it can
retain many enabled processes (using a synchronous scheduler), which guarantees that
that a token can be passed every few steps in a legitimate execution (roughly every
N/(2e) synchronous steps where e out of N processes are enabled) [102]. Dijkstra’s
N -state token ring [64] gives the best performance overall since it converges quickly
under any scheduler and passes the token with every step within legitimate states1.

The above analysis gives a strong argument for future work that focuses on synthe-
sizing protocols where processes can have large domains that are “big enough” with
respect to the number of processes. It is a very reasonable assumption that modern
programmers make without question (though not without peril), that various integer
types can hold values that are theoretically unbounded (e.g., IP addresses, memory
locations, or the current time in milliseconds).

Randomized Token Ring

Another practical option to consider when balancing state space, stabilization time,
and performance is to use randomization. Herman [111] gives such a token ring using
3 states per process and allows Bot0 to have random choice.

To design this protocol, start from the shadow protocol ptok with legitimate states
Ltok that were used as a basis for the 5-state token ring. Give each process πi a ternary

1In a practical setting, it might actually be better to minimize token passing during convergence
since those actions could have user code that accesses a shared resource.

59



puppet variable xi ∈ Z3 to read & write, and also let it read xi−1. As before, the
first process π0 is named Bot0 to distinguish its behavior from each other πi>0 named
Pi. To allow Bot0 the ability to make random choice, we give it a binary read-only
variable rng0 ∈ Z2 that is randomized at every execution step. Protocol 5.5 shows a
solution that can be synthesized in roughly 10 seconds using the same parameters as
the 5-state token ring. This version is somewhat different from Herman’s since Bot0

is self-disabling, which more closely matches the version given by Alari [9].

Protocol 5.5 — Randomized Token Ring

Bot0 : xN−1 = x0 −→ x0 := 1 + xN−1 + rng0; tok0 := 0; tok1 := 1;

Pi : xi−1 6= xi −→ xi := xi−1; toki := 0; toki+1 := 1;

Shadow Variables: tok0 . . . tokN−1 ∈ Z2 (write-only)
Puppet Variables: x0 . . . xN−1 ∈ Z3, rng0 ∈ Z2

Legitimate Shadow States: Ltok ≡ ∃!i ∈ ZN : (toki = 1)

5.3 3-State Token Chain

Rather than around a ring, we can also pass a token back-and-forth along a linear
(chain) topology. The end processes π0 and πN−1 of the chain topology are distin-
guished with different names Bot0 and TopN−1, and all middle processes π0<i<N−1

are named Pi. As with the ring, let there be N processes, where each process πi

can read & write a binary shadow variable toki that denotes whether it has a token.
Additionally, processes can read the token variable of its neighbors, meaning that
Bot0 reads tok1, TopN−1 reads tokN−2 and each Pi can read both toki−1 and tok i+1.
Additionally, we add a single binary shadow variable fwd that denotes the direction
the token is moving (1 means up, 0 means down). That is, a process P0<i<N−1 passes
the token to Pi+1 when fwd = 1 and passes it to Pi−1 when fwd = 0. All processes can
read this variable, and the end processes Bot0 and TopN−1 can write it since they of
course change the direction of the token. The full shadow protocol ptokc is given by
the following actions (where 0 < i < N − 1).

Bot0 : tok0 = 1 −→ fwd := 1; tok0 := 0; tok1 := 1;

Pi : toki = 1 ∧ fwd = 1 −→ toki := 0; toki+1 := 1;

Pi : toki = 1 ∧ fwd = 0 −→ toki−1 := 1; toki := 0;

TopN−1 : tokN−1 = 1 −→ tokN−2 := 1; tokN−1 := 0; fwd := 0;

For synthesis, give each process a ternary puppet variable xi. Each P0<i<N−1 can also
read xi−1 and xi+1. Likewise, Bot0 can read x1 and TopN−1 can read xN−2. One of

60



the synthesized protocols ptokc3 is given in Protocol 5.6, which we conjecture to be
generalizable after verification of chains up to size N = 30.

Protocol 5.6 — 3-State Token Chain

Bot0 : x0 6=1 ∧ x1=2 −→ x0:=1; fwd:=1; tok0:=0; tok1:=1;

Bot0 : x0 6=0 ∧ x1 6=2 −→ x0:=0;

Pi : xi−1=1 ∧ xi 6=1 −→ xi:=1; toki:=0; toki+1:=1;

Pi : xi−1=0 ∧ xi=1 ∧ xi+1=1 −→ xi:=0;

Pi : xi−1=0 ∧ xi=0 ∧ xi+1=2 −→ xi:=2; toki−1:=1; toki:=0;

TopN−1 : xN−2=1 ∧ xN−1 6=1 −→ xN−1:=1;

TopN−1 : xN−2 6=1 ∧ xN−1 6=2 −→ xN−1:=2; tokN−2:=1; tokN−1:=0; fwd:=0;

Shadow Variables: tok0 . . . tokN−1 ∈ Z2 (write-only), fwd ∈ Z2 (write-only)
Puppet Variables: x0 . . . xN−1 ∈ Z3

Legitimate Shadow States: Ltok ≡ ∃!i ∈ ZN : (toki = 1)

This protocol does not always pass the token within the invariant, however we found
that no such protocol exists. As shown by Dijkstra [64], we can obtain a stabilizing
protocol with this behavior by either using 4 states per process or allowing Bot0

and TopN−1 to communicate. Using the same shadow specification and the puppet
topologies from [64], we synthesized 4-state token chains and 3-state token rings.
Both cases appear to give generalizable protocols (verified up to N = 15), regardless
of whether we force each action in the invariant to pass a token.

5.4 Daisy Chain Orientation

If anonymous processes have some method of finding each other, it is easy for them
to form a ring or chain topology. This ambiguous topology is called a daisy chain.
When processes do form links, they should agree on a common direction to call “left”
or “right”.

Bidirectional Ring. Let us focus only on ring topologies in order to introduce
the problem. Each process is named Pi and must therefore act the same as other
processes. Each Pi has two neighbors Pj and Pk, which are technically Pi−1 and Pi+1,
but giving symbolic indices helps intuition.

The direction of Pi is held by two binary variables wij and wik that it can read &
write. We assume that wij 6= wik because it is trivial for Pi to enforce, and it allows us
to say that Pi is pointing to Pj iff wij = 1, and in the other direction, Pi is pointing
to Pk iff wik = 1. Each Pi can also read the directions of its neighbors wji and wki.

61



In the overall system, variables wij and wik of Pi have indices w2·i and w2·i+1. We
can phrase the legitimate states as the states where no two processes are pointing at
each other or both pointing away from each other.

Lorient ≡ ∀i ∈ ZN−1 : w2·i+1 6= w2·i+2

For stabilization, we give each Pi a binary variable bi that it can read & write.
Furthermore, a process can read its neighbors’ bj and bk variables.

The processes in our model have an implicit orientation because their readable and
writable variables have an ordering (Section 2.1). Rather than change our formalism
to somehow hide orientation information, we can instead ensure that processes in the
model do not use the information. Such information is rendered useless if we mirror
all actions. That is, for every action of a process Pi:

bj=a0∧wji=a1∧wij=a2∧bi=a3∧wik=a4∧wki=a5∧bk=a6−→wij:=a7; bi:=a8; wik:=a9;

A mirrored action must be included:

bj=a6∧wji=a5∧wij=a4∧bi=a3∧wik=a2∧wki=a1∧bk=a0−→wij:=a9; bi:=a8; wik:=a7;

In this way, processes must negotiate with each other to agree on a common direction.

Daisy Chain. If we allow the topology to be a chain, let end processes π0 and πN−1

not be connected. These two processes read fewer variables, therefore they must act
differently from the others and we call them End0 and EndN−1. Protocol 5.7 is found
by performing synthesis for all rings of sizes N ∈ {2, . . . , 6} and all chains of sizes
N ∈ {2, . . . , 6} simultaneously. We believe it is generalizable after verifying it for
both rings and chains of up to N = 24.

Protocol 5.7 — Daisy Chain Orientation

End i : true 7−→ bi := 1; wij := wji − bj;

Pi : wji = 0 ∧ wki = 0 7−→ bi := 0;

Pi : wji = 1 ∧ wki = 1 ∧ bj = bk 7−→ bi := 1 − bj;

Pi : wji = 1 ∧ wki = 1 ∧ bj 6= bk 7−→ bi := 1; wij := bk; wik := bj;

Pi : wji 6= wki 7−→ bi := bj · bk; wij := wki; wik := wji;

Shadow Variables: w0 . . . w2·N−1 ∈ Z2 (read & write)
Puppet Variables: b0 . . . bN−1 ∈ Z2

Legitimate Shadow States: Lorient ≡ ∀i ∈ ZN−1 : (w2·i+1 6= w2·i+2)

For convenience, the actions are written assuming that self-loops do not exist. To
make this clear, we use the symbol 7−→ rather than −→. The actions can be written

62



without this notation by conjuncting the result each action’s assignment to its guard.
For example, the guard of the End i action could be rewritten as true ∧ ¬(bi = 1 ∧
wij = wji − bj).

Related

Israeli and Jalfon [117] give general solution for the ring protocol, but none have con-
sidered the case of daisy chains. Furthermore, the solution in [117] allows neighboring
processes to act synchronously without causing livelocks. However, their solution is
not guaranteed to be silent within the legitimate states. Another such protocol is due
to Hoepman [112] and only works on odd-sized rings. Hoepman’s protocol uses token
circulation to determine a common direction around the ring. By only considering
rings of odd size, the number of tokens can be forced to be odd. Eventually, tokens
of opposing directions will cancel and leave at least one token circulating.

5.5 Specifying Various Topologies

Thus far, we have focused on fairly simple topologies such as rings and chains. This
section demonstrates more interesting regular topologies can be specified. These
include bands, Möbius ladders, Kautz graphs, trees, and meshes.

The trouble with our current model is that process types have a fixed input alphabet.
That is, processes of the same type must read and write the same number of vari-
ables with the same domain sizes (in the same order). In Protocon, this is enforced
by defining all processes of the same type to read write the same variable names,
differing only by their indices. The parameters of a protocol are used to determine
the number of processes of each type and, along with the process indices, determine
which variables are accessible.

For example, rings are easy to specify based on a process count parameter N . There
is N symmetric processes P0, . . . , PN−1 (or N − 1 of those if the first is distinguished
as Bot0), and each process πi accesses variables indexed by i − 1, i, and i + 1.

Unoriented daisy chains take an additional binary parameter Chain that is 1 iff the
topology should be a chain instead of a ring. In this case, there are 2 ·Chain processes
named End i where i ∈ {0, N−1} when they exist, and there are N−2·Chain processes
named Pi where i ∈ {Chain, . . . , N − 1 − Chain}. The neighboring processes of a Pi

are j = i − 1 and k = i + 1, and the neighbor of a End i is computed conditionally as
j = 1 or j = N − 2 based on whether i = 0 or i = N − 1.

Band

A band is a simple extension of a ring, where essentially copy of a ring is placed above
itself and the nodes above are connected with the nodes below. We can construct
a band of 2 · N processes in the same way, where each process Pi has a variable xi.

63



Two rings are formed by giving each Pi read access to xi−2 and xi+2, making rings of
even-indexed and odd-indexed processes. Processes are then connected pairwise by
giving each Pi read access to xi+1−2·(i mod 2), which connects processes Pi and Pj whose
index divided by 2 are equal (⌊ i

2
⌋ = ⌊ j

2
⌋).

Möbius Ladder

A Möbius ladder [107], much like a Möbius strip, adds a single twist to a band
topology. This twist can be formed by adding special cases for P0, P1, PN−2, and
PN−1 so that P0 and P2·N−1 read from each other and P1 and P2·N−2 read from each
other. This is certainly the most efficient approach since processes are numbered close
to each other (it helps with BDD variable ordering). A simpler and less efficient way
to connect processes is to give each of the 2 ·N processes Pi read access to xi−1, xi+N ,
and xi+1.

Kautz Graph

Kautz graphs have many applications in peer-to-peer networks due to their constant
degree, optimal diameter, and low congestion [147]. In fact, our parallel search al-
gorithm from Chapter 4 uses a generalized Kautz graph of degree 4 to disseminate
conflicting sets of actions. For simplicity, we focus on Kautz graphs of degree 2, where
each process Pi reads from 2 processes and its xi variable is read by 2 other processes.

From [116], a generalized Kautz graph of N vertices with degree d has an arc from
vertex j to vertex i iff i = −(2 · j + q + 1) mod N for some q ∈ Zd. This is easy
to compute in reverse for d = 2, where we let each process Pi read xj and xk where
j = −(2 · i + 1) mod N and k = −(2 · i + 2) mod N .

To compute Kautz graphs of degree 2 in the proper direction, we must compute which
j and k vertices have arcs to each vertex i (for any q values). Let j = ⌊N−1−i

2
⌋ and

let k = N − 1 − ⌊ i
2
⌋. This gives i = −(2 · j + q + 1) mod N for q = (i + 1 + N) mod 2

and gives i = −(2 · k + q + 1) mod N for q = (i + 1) mod 2.

Kautz graphs may contain self-loop arcs, which can be undesirable. We detect such
cases where j = i or k = i and instead use j = k 6= i. This keeps the number of
variables read by each Pi the same, which is important for our model.

Tree

Trees are a common network topology since a lack of cycles in the topology removes
many possibilities for livelocks in a protocol. A complete binary tree of L ≥ 2 levels
(2L − 1 total processes) is easy to specify with 1 root process Root0, 2L−1 − 2 inner
processes P1, . . . , P2L−1−2, and 2L−1 leaf processes Leaf 2L−1−1, . . . , Leaf 2L−2. Each πi

has a variable xi. To form the connections, each process πi with a parent (i ≥ 1) can
read xj where j = ⌊ i−1

2
⌋, and each process πi with children (i ≤ 2L−1 − 2) can read

x2·i+1 and x2·i+2.

64



A more likely scenario is that we have a tree that is not complete and may not even
have a defined root. For this case, we have 3 types of processes End i, Duoi, and
Tri i with 1, 2, and 3 neighbors respectively. It is not easy to enumerate instances of
trees, therefore we explicitly encode the connections using the system’s parameters.
Let 3 parameters NEnds, NDuos, and NTris denote the numbers of each process.
Furthermore, let 3 parameters EndIdcs, DuoIdcs, and TriIdcs be arrays of the indices
that processes can read, where the arrays have NEnds, 2·NDuos, and 3·NTris elements
respectively. It is also probably desirable to use unoriented processes (Duoi and Tri i)
as we did in Section 5.4 so that the order of neighbors does not matter.

65





Chapter 6:
Adding Convergence is Hard

In this chapter, we investigate the complexity of adding actions to a protocol in
order to achieve convergence, and related properties, to a set of legitimate states.
We find that for most fairness assumptions, designing convergence or stabilization is
NP-complete in the number of system states. This is not the case for global fairness,
where convergence and stabilization can be achieved by simply giving all processes
all local transitions that do not break closure [75, 88, 100]. However, we find that
stabilization to a subset of legitimate states is a hard property to add, even under
global fairness. The same complexity holds for adding nonmasking fault tolerance (see
Figure 6.1). Our hardness proofs are based on reductions from the 3-SAT problem [95]
to the various problems that involve adding actions to a protocol in order to achieve
convergence. Since stabilization is a special case of nonmasking fault tolerance, it
follows that, in general, it is unlikely that adding nonmasking fault tolerance to low
atomicity programs can be done efficiently (unless P = NP).

No
Fairness

Weak/Local/Sync
Fairness

Global
Fairness

Convergence NP-complete* NP-complete* P

Eventually Always NP-complete* NP-complete* NP-complete*

Self-Stabilization NP-complete* NP-complete* P

Nonmasking
Fault Tolerance

NP-complete* NP-complete* NP-complete*

Figure 6.1: The complexity of adding convergence and various related problems.
(∗ denotes the contributions of this chapter).

Organization. In the following sections, we define the various problems under con-
sideration (Section 6.1), give a simple mapping from 3-SAT (Section 6.1), prove NP-

To obtain stronger results, this chapter is a completely rewritten version of A. P. Klinkhamer
and A. Ebnenasir. On the Hardness of Adding Nonmasking Fault Tolerance. IEEE Transactions on

Dependable and Secure Computing, 2015.

67



completeness for adding the properties of convergence (Section 6.3), self-stabilization
(Section 6.4), and nonmasking fault tolerance (Section 6.5).

6.1 Problem Statement

In this section, we introduce the various problems discussed in this chapter. The first
problem is 3-SAT, which is a well-known NP-complete problem that asks whether a
given boolean formula φ, having a very simple form, can ever evaluate to true. Our
definition of 3-SAT places a trivial restriction on the problem by forbidding φ from
having a clause that only references one propositional variable.

Problem 6.1.1 (3-SAT Decision Problem).
• INSTANCE: A set V of n propositional variables (v0, · · · , vn−1) and m clauses

(C0, · · · , Cm−1) over V such that each clause Ci is of the form (vq = bi
0 ∨ vr =

bi
1 ∨ vs = bi

2) where bi
0, bi

1, bi
2 ∈ Z2 are binary truth values and q, r, s ∈ Zn are

indices such that ¬(q = r = s).
• QUESTION: Is there a satisfying truth-value assignment for the variables in V

such that each Ci evaluates to true, for all i ∈ Zm?

Below, we define decision problems that ask whether the various properties described
in Section 2.2 can be achieved by adding actions to a protocol: AddConvergence
for convergence to states (Definition 2.2.2), AddEventuallyAlways for stabilization
to some subset of states (Definition 2.2.14), AddStabilization for stabilization to an
exact set of states (Definition 2.2.3), and AddFaultTolerance for nonmasking fault
tolerance (Definition 2.2.15). We also use some related problems but omit their
obvious definitions: AddSilentConvergence (Definition 2.2.8), AddSilentStabilization
(Definition 2.2.8), and AddShadowConvergence (Definition 2.2.10).

Problem 6.1.2 (AddConvergence Decision Problem).
• CONSTANT: A fairness F .
• INSTANCE: A protocol p with no transitions (a.k.a. a topology) and states L.
• QUESTION: Can actions be added to p to create a protocol p′ that converges

to L under fairness F? (Definition 2.2.2)

Problem 6.1.3 (AddEventuallyAlways Decision Problem).
• CONSTANT: A fairness F .
• INSTANCE: A protocol p with no transitions (a.k.a. a topology) and states L.
• QUESTION: Can actions be added to p to create a protocol p′ that stabilizes

to a subset of L under fairness F? (Definition 2.2.14)

Problem 6.1.4 (AddStabilization Decision Problem).
• CONSTANT: A fairness F .
• INSTANCE: A protocol p with no transitions (a.k.a. a topology) and states L.

68



• QUESTION: Can actions be added to p to create a protocol p′ that stabilizes
to L under fairness F? (Definition 2.2.3)

Problem 6.1.5 (AddFaultTolerance Decision Problem).
• CONSTANT: A fairness F .
• INSTANCE: A protocol p with no transitions (a.k.a. a topology), states L, and

transient fault transitions ftrans.
• QUESTION: Can actions be added to p to create a protocol p′ that tolerates

ftrans from L under fairness F? (Definition 2.2.15)

Lemma 6.1.6. All closure, convergence, stabilization, and nonmasking fault toler-
ance properties discussed in Chapter 2 can be verified in polynomial time with respect
to the number of global states.

Proof. These properties can all be verified using standard polynomial-time graph
algorithms such as checking whether edges exist (closure and deadlock freedom), cycle
detection (livelocks under no fairness), and reachability (convergence under global
fairness). Thus, the problems of adding/synthesizing convergence, stabilization, and
nonmasking fault tolerance are in NP [88,137,140].

6.2 Polynomial-Time Mapping

In this section, we present a polynomial-time mapping from an instance of 3-SAT to an
instance of the problem of adding convergence (Problem 6.1.2). That is, given an in-
stance of 3-SAT as a boolean formula φ, we construct an instance of AddConvergence
as a tuple 〈pSAT, LSAT〉, where pSAT ≡ 〈VSAT, ΠSAT, WSAT, RSAT, ∆SAT〉 is a topol-
ogy (i.e., ∆SAT contains no transitions) and LSAT is a set of legitimate states. This
mapping shall be used throughout the rest of this chapter to demonstrate that φ is
satisfiable iff we can add actions to pSAT to create a protocol p′

SAT that converges to
LSAT. Lemma 6.2.2 concludes this section with a formal correctness proof for this
mapping.

Topology. The instance topology pSAT consists of three processes: π0, π1, and
π2. Each process πi (i ∈ Z3) has two variables xi ∈ Zn and yi ∈ Z2 that it can
read, but only yi can be written. The domain of each xi matches the number of
propositional variables (of the 3-SAT instance φ). Thus, the topology has variables
VSAT ≡ {x0, y0, x1, y1, x2, y2}, processes ΠSAT ≡ {π0, π1, π2}, write access Wi ≡ {yi}
for each Wi ∈ WSAT, and read access Ri ≡ {xi, yi} for each Ri ∈ RSAT.

69



π0 π1 π2

For each i ∈ Z3:

πi :







xi ∈ Zn (read-only)

yi ∈ Z2 (read & write)

Legitimate States: LSAT ≡ Iden ∧ Clauses
where Iden ≡ (∀i, j ∈ Z3 : (xi = xj =⇒ yi = yj))
and Clauses ≡ (∀i ∈ Zm : PredC i)

≡ (∀i ∈ Zm : if ith clause of φ uses vx0
, vx1

, and vx2
in order,

then vx0
:=y0, vx1

:=y1, vx2
:=y2 satisfies it)

Figure 6.2: Reduction from 3-SAT (formula φ with n variables and m clauses) to
AddConvergence (topology pSAT and legitimate states LSAT).

Certificate. For every r ∈ Zn, we would like each process πj of a solution protocol
p′

SAT to have exactly one action that changes yj to a binary value ar when xj = r.
Our reduction proofs interpret these a0, . . . , an−1 values as a truth-value assignment
(vr := ar for all r ∈ Zm) that satisfies φ.

Legitimate States. Inspired by the form of the 3-SAT instance, we define a state
predicate LSAT ≡ Iden ∧ Clauses that serves as the legitimate states.

• Iden: Since the value of yj when xj = r should correspond to the binary value
we assign to vr to satisfy φ, we must disallow any processes πi and πj from
choosing different values for yi and yj when xi = xj. Thus, one component of
LSAT is Iden ≡ (∀i, j ∈ Z3 : (xi = xj =⇒ yi = yj)).

• Clauses: Corresponding to each clause Ci = (vq = bi
0 ∨ vr = bi

1 ∨ vs = bi
2), we

construct a state predicate PredC i ≡ (x0 = q =⇒ y0 = bi
0) ∨ (x1 = r =⇒

y1 = bi
1) ∨ (x2 = s =⇒ y2 = bi

2) where true and false values of bi
j are treated

as integers 1 and 0. In other words, we have PredC i = (((x0 = q) ∧ (x1 = r) ∧
(x2 = s)) =⇒ ((y0 = bi

0) ∨ (y1 = bi
1) ∨ (y2 = bi

2))). This way, we construct a state
predicate Clauses ≡ (∀i ∈ Zm : PredC i). Notice that we check the value of each
xj with respect to the index of the variable appearing in position j in Ci, where
j ∈ Z3. This is due to the fact that the domain of xj is equal to the range of
the indices of propositional variables (i.e., Zn).

Polynomial Time. Notice that pSAT has |SSAT| = 2(2n)3 states, which is polynomial
in the size of the 3-SAT instance. Furthermore, we are able to construct LSAT in
polynomial time, therefore we have a polynomial-time mapping.

70



Example 6.2.1. Consider the following instance of 3-SAT:

φ = ( v0 ∨ v1 ∨ v2)

∧ (¬v1 ∨ ¬v1 ∨ ¬v2)

∧ (¬v1 ∨ ¬v1 ∨ v2)

∧ ( v1 ∨ ¬v2 ∨ ¬v0)

Since there are three propositional variables and four clauses, we have n = 3 and
m = 4. Moreover, based on the mapping described before, we have C0 = (v0 ∨v1 ∨v2),
C1 = (¬v1 ∨ ¬v1 ∨ ¬v2), C2 = (¬v1 ∨ ¬v1 ∨ v2), and C3 = (v1 ∨ ¬v2 ∨ ¬v0). Thus, we
have (b0

0, b0
1, b0

2) = (1, 1, 1), (b1
0, b1

1, b1
2) = (0, 0, 0), (b2

0, b2
1, b2

2) = (0, 0, 1), and (b3
0, b3

1, b3
2) =

(1, 0, 0). The predicates PredC i (i ∈ Z4) have the following form:

PredC 0 = ((x0 = 0 ∧ x1 = 1 ∧ x2 = 2) =⇒ (y0 = 1 ∨ y1 = 1 ∨ y2 = 1))

PredC 1 = ((x0 = 1 ∧ x1 = 1 ∧ x2 = 2) =⇒ (y0 = 0 ∨ y1 = 0 ∨ y2 = 0))

PredC 2 = ((x0 = 1 ∧ x1 = 1 ∧ x2 = 2) =⇒ (y0 = 0 ∨ y1 = 0 ∨ y2 = 1))

PredC 3 = ((x0 = 1 ∧ x1 = 2 ∧ x2 = 0) =⇒ (y0 = 1 ∨ y1 = 0 ∨ y2 = 0))

The state predicate Iden is as defined before.

We can satisfy φ by assigning v0 := true, v1 := false, v2 := false. Using this value
assignment, we can construct p′

SAT by giving each process πj the following actions:

πj : xj = 0 ∧ yj = 0 −→ yj := 1;

πj : xj = 1 ∧ yj = 1 −→ yj := 0;

πj : xj = 2 ∧ yj = 1 −→ yj := 0;

Figure 6.3 shows the transitions of p′
SAT for certain fixed values of x0, x1, x2 chosen

to correspond with the clauses of φ. Each state is represented by three bits that
signify the values of y0, y1, and y2. States within LSAT are outlined by rectangles,
and transitions of different processes are drawn differently (π0 has vertical transitions,
π1 has horizontal transitions, and π2 has diagonal transitions). In particular, consider
how Figure 6.3b reflects how clauses C1 and C2 force v1 to be false. In the figure,
where x0 = 1, x1 = 1, and x2 = 2, the predicates PredC 1 and PredC 2 force either y0

or y1 to equal 0. Furthermore, Iden forces y0 = y1 to hold within legitimate states,
therefore L only holds in the two states where y0 and y1 both equal 0.

71



000

100

010

110

001

101

011

111

(a) x0 = 0, x1 = 1, x2 = 2

000

100

010

110

001

101

011

111

(b) x0 = 1, x1 = 1, x2 = 2

000

100

010

110

001

101

011

111

(c) x0 = 1, x1 = 2, x2 = 0

Figure 6.3: Changes to y0, y1, y2 values for fixed x0, x1, x2 values.

Lemma 6.2.2 (Mapping). Given an instance φ of 3-SAT, let pSAT and LSAT be
defined by the mapping in Section 6.2. Let a0, . . . , an−1 be any binary values. Let
protocol p′

SAT be constructed by giving each process πj the following action for each
r ∈ Zn:

xj = r ∧ yj 6= ar −→ yj := ar;

All of the following are true for any fairness F ∈ {unfair, weak, local, global, sync}:

1. This p′
SAT is silent-stabilizing to (∀j ∈ Z3 : ∀r ∈ Zn : (xj = r =⇒ yj = ar))

under fairness F
2. This p′

SAT converges to the Iden component of LSAT under fairness F
3. Formula φ is satisfied by the assigning vr := ar for each r ∈ Zn iff p′

SAT converges
to LSAT under fairness F

Proof. Each of the three claims is proven with a bold heading. The last claim is an
“if and only if”, and therefore is broken up into sufficient and necessary cases.

1. Silent Stabilization. We want to show that this p′
SAT is silent-stabilizing to

L′
SAT ≡ (∀j ∈ Z3 : ∀r ∈ Zn : (xj = r =⇒ yj = ar)) under any fairness F ∈ {unfair,

weak, local, global, sync}. This is obvious because each process πj of p′
SAT is enabled

to assign yj := ar if yj 6= ar for any xj = r. Each process becomes disabled after acting,
and it remains disabled forever because it does not read the variables of any other
process. Therefore, each process will act at most once under any fairness F , reaching
a silent state satisfying L′

SAT:

y0 = ax0
∧ y1 = ax1

∧ y2 = ax2

2. Guaranteed Convergence to Iden. Since we know that p′
SAT silent-stabilizes

to some L′
SAT by assigning each yj := axj

, we can show that p′
SAT converges to Iden

by replacing each yj with axj
. By doing this substitution, Iden ≡ (∀i, j ∈ Z3 :

(xi = xj =⇒ yi = yj)) is satisfied as (∀i, j ∈ Z3 : (xi = xj =⇒ axi
= axj

)) in a silent
state. Therefore, p′

SAT converges to Iden.

3. Satisfiability Implies Convergence. Assuming that φ ≡ (∀i ∈ Zm : Ci) is
satisfied by the given a0, . . . , an−1 values, we want to show that p′

SAT converges to

72



LSAT ≡ Iden ∧ Clauses. Since p′
SAT converges to Iden, we only need to prove that

it converges to Clauses ≡ (∀i ∈ Zm : PredC i). Each such PredC i ≡ ((x0 = q =⇒
y0 = bi

0)∨ (x1 = r =⇒ y1 = bi
1)∨ (x2 = s =⇒ y2 = bi

2)) is defined using the q, r, s ∈ Zn

and bi
0, bi

1, bi
2 ∈ Z2 values from clause Ci ≡ (vq = bi

0 ∨ vr = bi
1 ∨ vs = bi

2) of φ. Such
a PredC i can only be false when x0 = q, x1 = r, and x2 = s, which we know will
silent-stabilize to a state with y0 = aq, y1 = ar, and y2 = as. Thus, p′

SAT converges to
PredC i only if our silent state satisfies (aq = bi

0 ∨ ar = bi
1 ∨ as = bi

2). This is equivalent
to the aq, ar, as values satisfying Ci, which established by the actions of each process,
therefore p′

SAT converges to each PredC i, and it converges to LSAT overall.

3. Convergence Implies Satisfiability. Assuming that p′
SAT converges to LSAT ≡

Iden ∧ Clauses, we want to show that φ is satisfied by the given a0, . . . , an−1 values.
We know that p′

SAT converges to each PredC i ≡ ((x0 = q =⇒ y0 = bi
0) ∨ (x1 = r =⇒

y1 = bi
1) ∨ (x2 = s =⇒ y2 = bi

2)), which is defined using the q, r, s ∈ Zn and bi
0, bi

1, bi
2 ∈

Z2 values from clause Ci ≡ (vq = bi
0 ∨ vr = bi

1 ∨ vs = bi
2) of φ. Since p′

SAT converges to
PredC i when x0 = q, x1 = r, and x2 = s, we know that the silent state with y0 = aq,
y1 = ar, and y2 = as satisfies PredC i. Thus, (aq = bi

0 ∨ ar = bi
1 ∨ as = bi

2) is true, which
implies that assigning vq := aq, vr := ar, and vs := as will also satisfy clause Ci. This
argument holds for every clause Ci, therefore φ is satisfied.

6.3 Adding Convergence

In this section, we prove NP-completeness of various problems relating to protocol
design, where the desired protocol converges to some legitimate states.

Lemma 6.3.1 (No Fairness). Let pSAT and LSAT be defined by the mapping in Sec-
tion 6.2 for any 3-SAT instance. If actions can be added to pSAT to form a protocol
p′

SAT that converges to LSAT under no fairness (F = unfair), then p′
SAT has the same

form as in Lemma 6.2.2.

Proof. Assuming that a protocol p′
SAT converges to LSAT, we want to show that some

a0, . . . , an−1 values exist such that each process πi is defined by having the following
action for each r ∈ Zn:

xi = r ∧ yi 6= ar −→ yi:=ar;

For every value of xi = r ∈ Zn, there exist only 4 possible actions for πi:

1. xi = r ∧ yi = 0 −→ yi := 0;
2. xi = r ∧ yi = 1 −→ yi := 1;
3. xi = r ∧ yi = 0 −→ yi := 1;
4. xi = r ∧ yi = 1 −→ yi := 0;

Consider any state where xi = xj = xk = r, yi = yj, and yi 6= yk where i, j, k are any
indices of different processes ({i, j, k} = Z3). Clearly this state does not satisfy

73



LSAT due to its Iden constraint. One such state exists for yi = 0 and also for yi = 1,
therefore process πi cannot have either of the first 2 self-loop actions, otherwise an
infinite execution would exist in LSAT. Likewise, πi cannot have both of the last 2
actions, otherwise it would cause an infinite execution in LSAT where πi repeatedly
toggles yi between the value of yk and the value of yj. Thus, we can always find some
ar ∈ Zn such that xi = xj = xk = r, yi = yj, yi 6= yk, and yk = ar is a state where πk

is disabled. In order to achieve convergence, πi (and similarly πj) must have an action
(xi = r ∧ yi 6= ar −→ yi := ar; ). We chose r ∈ Zn and i ∈ Z3 arbitrarily, therefore
some a0, . . . , an−1 values exist such that each process πi of p′

SAT has exactly n actions,
being (xi = r ∧ yi 6= ar −→ yi := ar; ) for each r ∈ Zn.

Lemma 6.3.2 (Global Fairness). Let pSAT and LSAT be defined by the mapping in
Section 6.2 for any 3-SAT instance. If actions can be added to pSAT to form a protocol
p′

SAT that stabilizes to a subset of LSAT under global fairness (F = global), then a
protocol with the same form as in Lemma 6.2.2 can be constructed.

Proof. Assuming that a protocol p′
SAT converges to a subset L′

SAT of LSAT under
global fairness, we will show how to transform p′

SAT to have the same form as in
Lemma 6.2.2. This transformation performed by removing self-loop actions from
each process of p′

SAT, which trivially does not affect convergence, therefore let p′
SAT

actually be this transformed version for the sake of simplicity. We want to show that
some a0, . . . , an−1 values exist such that each process πi of the transformed p′

SAT is
defined by having the following action for each r ∈ Zn:

xi = r ∧ yi 6= ar −→ yi := ar;

To see this, consider the behavior of p′
SAT in states where x0 = x1 = x2 = r for any

r ∈ Zn. By the Iden constraint of LSAT, the system must converge to a state where
y0 = y1 = y2. Out of the 2 states that satisfy LSAT, at least 1 of them must satisfy
L′

SAT. Let ar be a binary value such that y0 = y1 = y2 = ar satisfies L′
SAT. Due to read

& write restrictions and our removal of self-loops, there are only 2 possible actions for
each process πi: (xi = r ∧yi = ar −→ yi := 1−ar; ), and (xi = r ∧yi 6= ar −→ yi := ar; ).
The first action assigns some yi := 1 − ar from a state where y0 = y1 = y2 = ar,
therefore this action breaks closure of L′

SAT and cannot exist in p′
SAT. We are left

with only one possible action (xi = r ∧yi 6= ar −→ yi := ar; ), therefore it must be used
to converge from a state where yi 6= ar and yj = ar for some other j 6= i because we just
showed that no process πi is enabled when yi = ar. It is now clear that the actions of
this p′

SAT without self-loops matches the form of the protocol used in Lemma 6.2.2.

Lemma 6.3.3 (Synchronous Scheduler). Let pSAT and LSAT be defined by the mapping
in Section 6.2 for any 3-SAT instance. If actions can be added to pSAT to form
a protocol p′

SAT that stabilizes to a subset of LSAT under a synchronous scheduler
(F = sync), then we can construct a protocol with the same form as in Lemma 6.2.2
that stabilizes exactly to LSAT under a synchronous scheduler.

74



Proof. Assuming that a protocol p′
SAT converges to a subset L′

SAT of LSAT under the
synchronous scheduler, we will show how to transform p′

SAT to have the same form as
in Lemma 6.2.2. This transformation performed by removing self-loop actions from
each process of p′

SAT, which trivially does not affect convergence, therefore let p′
SAT

actually be this transformed version for the sake of simplicity. We want to show that
some a0, . . . , an−1 values exist such that each process πi of the transformed p′

SAT is
defined by having the following action for each r ∈ Zn:

xi = r ∧ yi 6= ar −→ yi := ar;

First, we claim that if some process πi has an action (xi = r ∧ yi 6= a −→ yi := a; ) for
any r ∈ Zn and a ∈ Z2, then every process πj has that action (xj = r ∧ yj 6= a −→
yj := a; ). To see this for any r and a, consider πi having such an action enabled in a
state where x0 = x1 = x2 = r and y0 = y1 = y2 = 1 − a. Only 2 states satisfy LSAT

when x0 = x1 = x2 = r: (1) a state where y0 = y1 = y2 = 1 − a holds, and (2) a state
where y0 = y1 = y2 = a holds. Since at least one of these states must satisfy L′

SAT,
every other πj also needs to be enabled to assign yj := a, otherwise (1) closure would
be broken from y0 = y1 = y2 = 1 − a and (2) convergence to y0 = y1 = y2 = a would
be impossible.

All processes change their yi values identically, giving 3 possibilities for every xi =
r ∈ Zn value: (1) No process πi changes yi when xi = r. (2) Each process πi toggles
yi between 0 and 1 when xi = r. (3) Each process πi changes yi to equal some ar

when xi = r. From a state x0 = x1 = x2 = r and y0 6= y1 ∧ y1 6= y2, which does not
satisfy LSAT, the first possibility causes a deadlock and the second possibility causes a
livelock. Therefore it is clear that each πi has exactly one action (xi = r ∧ yi 6= ar −→
yi := ar; ) that changes yi for each possible xi = r ∈ Zn value. Since we removed
self-loops from p′

SAT, it exactly matches the form used in Lemma 6.2.2.

Stabilization to LSAT. Under a synchronous scheduler, all enabled processes of
p′

SAT act in one synchronous step to converge to LSAT. Since p′
SAT converges in one

synchronous step, it cannot possibly break closure and it therefore stabilizes to LSAT.

Theorem 6.3.4 (NP-completeness of AddEventuallyAlways). The problem of adding
stabilization to a subset of legitimate states is NP-complete with respect to the number
of global states for any particular choice of fairness F in {unfair, weak, local, global,
sync}.

Proof. Let f denote the polynomial-time mapping of Section 6.2 that transforms
any instance φ of 3-SAT to an instance f(φ) ≡ 〈pSAT, LSAT〉 of adding stabilization
to a subset of LSAT under fairness F (i.e., AddEventuallyAlways for any particular
choice of fairness F ∈ {unfair, weak, local, global, sync}). We want to show that f
is a mapping reduction, meaning that for every instance φ of 3-SAT, φ is satisfiable

75



iff a the corresponding instance f(φ) ≡ 〈pSAT, LSAT〉 of AddEventuallyAlways has
a solution protocol under fairness F . Lemma 6.2.2 proves the sufficient case, that
a satisfiable φ implies the existence of a protocol p′

SAT that silent-converges to LSAT

under any fairness F ∈ {unfair, weak, local, global, sync}. In the opposite direction,
Lemma 6.2.2 proves the necessary case with the help of Lemma 6.3.2 for asynchronous
schedulers (F ∈ {unfair, weak, local, global}) and Lemma 6.3.3 for the synchronous
scheduler (F = sync). That is, Lemma 6.3.2 and Lemma 6.3.3 show that given any
protocol p′

SAT that stabilizes to a subset of LSAT under any fairness F ∈ {unfair, weak,
local, global, sync}, another protocol exists that matches the form in Lemma 6.2.2,
which therefore implies that the corresponding φ is satisfiable. We have shown that
f is a polynomial-time mapping reduction from 3-SAT to AddEventuallyAlways for
any particular choice of fairness F ∈ {unfair, weak, local, global, sync}, which proves
that adding stabilization to a subset of legitimate states under fairness F is NP-hard.
Lemma 6.1.6 establishes NP membership, therefore the problem is NP-complete.

Corollary 6.3.5 (NP-completeness of AddSilentConvergence). The problem of adding
silent convergence is NP-complete with respect to the number of global states for any
particular choice of fairness F in {unfair, weak, local, global, sync}.

Proof. This proof is identical to that of Theorem 6.3.4 because Lemma 6.3.2 and
Lemma 6.3.2 establish that a protocol that stabilizes to a subset of LSAT under fairness
F can be transformed to achieve silent convergence to LSAT under F by removing
self-loops.

Corollary 6.3.6 (NP-completeness of AddShadowConvergence). The problem of
adding convergence to shadow behavior within legitimate states is NP-complete with
respect to the number of global states for any particular choice of fairness F in {unfair,
weak, local, global, sync}.

Proof. By Definition 2.2.14, stabilization to a subset L′ of legitimate states L is a
special case of convergence to legitimate behavior L2|L. Likewise, silent convergence
to L can be written as convergence to ∅2|L. Since AddShadowConvergence is in NP
by Lemma 6.1.6, and it is necessarily NP-hard due to its NP-hard special cases
AddEventuallyAlways and AddSilentConvergence, the problem is NP-complete.

Lemma 6.3.7 (Reducing AddEventuallyAlways to AddConvergence). Let pSAT and
LSAT be defined by the mapping in Section 6.2 for any 3-SAT instance. Let F be
any particular choice of fairness in {unfair, weak, local, sync}. A polynomial-time
mapping f exists such that an instance 〈pSAT, LSAT〉 of AddEventuallyAlways with
fairness F has a solution iff an instance f(〈pSAT, LSAT〉) of AddConvergence with
fairness F has a solution.

Proof. Lemma 6.3.1 already shows that the mapping of Section 6.2 works when F =
unfair. However, the other fairnesses (F ∈ {weak, local, sync}) require a different
mapping.

76



Consider two protocols pA and pB that share no variables and have legitimate state
sets LA and LB respectively. If their parallel composition pAB ≡ pA ‖ pB converges
to LAB ≡ LA ∧ LB under some fairness F ∈ {weak, local}, then either pA stabilizes to
a subset of LA under F or pB stabilizes to a subset of LB under F . If this were not
true, then some execution σA of pA reaches LA infinitely often, and some execution
σB of pB reaches LB infinitely often, therefore we can find a fair execution of pAB

under F that interleaves σA and σB such that LA ∧ LB is never satisfied.

The same fact holds for the synchronous scheduler (F = sync) if all processes have
2 states. If this were not true, then some execution σA of pA reaches LA every 2
steps, and some execution σB of pB reaches LB every 2 steps. This is because all
processes act synchronously and can either toggle between 2 states or stay in 1 single
state, making the entire synchronous system either toggle between 2 states or stay
in 1 single state. Given this behavior, we can find a synchronous execution of pAB

that leaves at least one of LA and LB at every step by offsetting the two synchronous
executions σA and σB.

Mapping. Let the mapping f transform an instance 〈pSAT, LSAT〉 of
AddEventuallyAlways with the given fairness F ∈ {weak, local, sync} to an instance
f(〈pSAT, LSAT〉) ≡ 〈pAB, LAB〉 of AddConvergence with fairness F . Let pAB and LAB

be defined as before by their components. Let pA ≡ pSAT and LA ≡ LSAT. Let pB

and LB be copies of pSAT and LSAT that use renamed variables.

Sufficient Case. Assuming that some p′
SAT gives a solution for AddEventuallyAlways

with fairness F , we want to show that some p′
AB gives a solution for AddConvergence

with fairness F . Simply define p′
AB as p′

SAT composed with a copy of itself that
uses the renamed variables of p′

B. This means p′
A stabilizes to a subset of LA and

p′
B stabilizes to a subset of LB, therefore p′

AB stabilizes to a subset of LAB because
F ∈ {weak, local, sync} ensures that processes that are enabled will eventually act.

Necessary Case. Assuming that some p′
AB gives a solution for AddConvergence

with fairness F , we want to show some solution p′
SAT exists for the associated instance

〈pSAT, LSAT〉 of AddEventuallyAlways with fairness F . Since all processes of p′
AB have

2 states and its component protocols p′
A and p′

B do not share any variables, we have
already established that either p′

A stabilizes to a subset of LA under F or p′
B stabilizes

to a subset of LB under F . In polynomial time, we can figure out which of these
protocols actually stabilizes, then use it to construct p′

SAT.

In total, we have shown that a polynomial-time mapping reduction exists from
AddEventuallyAlways with fairness F to AddConvergence with fairness F , for any
particular choice of F ∈ {unfair, weak, local, sync}.

Theorem 6.3.8 (NP-completeness of AddConvergence). The problem of adding con-
vergence to legitimate states is NP-complete with respect to the number of global states
for any particular choice of fairness F in {unfair, weak, local, sync}.

77



Proof. By the combined result of Lemma 6.3.7 and reduction used in Theorem 6.3.4,
a polynomial-time mapping reduction exists from 3-SAT to AddConvergence for any
F in {unfair, weak, local, sync}. This shows that AddConvergence is NP-hard for any
such a choice of F , and it is also NP-complete due to Lemma 6.1.6.

6.4 Adding Self-Stabilization

In this section, we investigate the complexity of stabilization, where a protocol must
be closed exactly within the legitimate states. In the previous section, we saw that
designing stabilization to a subset of legitimate states (i.e., convergence to legitimate
behavior) is hard even under global fairness. However, when the exact legitimate
states are known, adding stabilization under global fairness (a.k.a. weak stabilization)
is known to have polynomial time complexity [75, 88, 100]. This is because processes
can simply use all possible actions that do not break closure.

For hardness results, we make 3 modifications to the mapping of Section 6.2: (1) we
add a new binary variable sat that all processes can read, (2) we add a new process
π3 that can read all variables and write to sat, and (3) the legitimate states require
that sat = 1. This new mapping is summarized in Figure 6.4.

π0 π1 π2

π3

For each i ∈ Z3:

πi :















xi ∈ Zn (read-only)

yi ∈ Z2 (read & write)

sat (read from π3)

π3 :







sat ∈ Z2 (read & write)

xi, yi (read from πi)

Legitimate States: LSAT-SS ≡ LSAT ∧ (sat = 1)
where LSAT is defined in Figure 6.2

Figure 6.4: Reduction from 3-SAT (formula φ with n variables and m clauses) to
AddStabilization (topology pSAT-SS and legitimate states LSAT-SS).

Lemma 6.4.1 (Reducing 3-SAT to AddStabilization). Given any instance φ of
3-SAT, let pSAT-SS and LSAT-SS be defined by the mapping in Figure 6.4. Formula φ is
satisfiable iff actions can be added to pSAT-SS to form a protocol p′

SAT-SS that stabilizes
to LSAT-SS under no fairness (F = unfair).

Proof. Let pSAT and LSAT be defined by the mapping in Section 6.2. We heavily

78



leverage Lemma 6.3.1 and Lemma 6.2.2, which together prove that φ is satisfiable iff
actions can be added to pSAT in order to achieve convergence to LSAT.

Sufficient Case. Assuming that φ is satisfiable, we want to show that some protocol
p′

SAT-SS stabilizes to LSAT-SS. By Lemma 6.2.2, some protocol p′
SAT exists that silent-

stabilizes to a subset L′
SAT of LSAT. Give processes π0, π1, π2 of p′

SAT-SS the same
actions as in p′

SAT, but add the constraint (sat = 0) to their guards. In this way,
these processes are only enabled when sat = 0, and they provide convergence from
(sat = 0) ∧ ¬L′

SAT to (sat = 0) ∧ L′
SAT where they become disabled. To recover from

these states, we give π3 an action (sat = 0∧LSAT −→ sat := 1; ) to provide convergence
from (sat = 0∧L′

SAT) to (sat = 1∧L′
SAT). The only unresolved deadlocks are (sat = 1∧

¬LSAT), which we resolve by giving π3 an action (sat = 1 ∧ ¬LSAT −→ sat := 0; ).
Protocol p′

SAT-SS now silent-stabilizes to LSAT-SS ≡ LSAT ∧(sat = 0) because no process
is enabled within LSAT-SS and we have convergence stairs (Lemma 2.2.6) to LSAT-SS

from all states:

1. From (sat = 1 ∧ ¬LSAT) to (sat = 0 ∧ ¬LSAT) via π3

2. From (sat = 0 ∧ ¬LSAT) to (sat = 0 ∧ ¬L′
SAT) since LSAT ⊆ L′

SAT

3. From (sat = 0 ∧ ¬L′
SAT) to (sat = 0 ∧ L′

SAT) via π0, π1, π2

4. From (sat = 0 ∧ L′
SAT) to (sat = 1 ∧ L′

SAT) via π3

5. From (sat = 1 ∧ L′
SAT) to (sat = 1 ∧ LSAT) since L′

SAT ⊆ LSAT

Necessary Case. Assuming that some p′
SAT-SS stabilizes to LSAT-SS, we want to show

that φ is satisfiable. First, we claim that in such a p′
SAT-SS, only π3 can change a value

when sat = 1. To see this, consider any state where (x0 = x1 = x2) ∧ (y0 = y1 = y2) ∧
(sat = 1). This state obviously satisfies LSAT, but if any π0, π1, π2 changes a y0, y1, y2

value, then obviously closure is broken! Such a process πi can only read xi, yi, and
sat, therefore it cannot act when sat = 1 without also including an action that breaks
closure. Thus, since π3 can only modify sat, we know that the actions of π0, π1, π2

provide convergence from (sat = 0 ∧ ¬LSAT) to (sat = 0 ∧ LSAT). From these actions,
we can construct a protocol p′

SAT that converges to LSAT. By Lemma 6.3.1 and
Lemma 6.2.2, φ is satisfiable.

Theorem 6.4.2 (NP-completeness of AddStabilization). Adding self-stabilization is
NP-complete for any particular choice of fairness F in {unfair, weak, local, sync}.

Proof. For the unfair scheduler F = unfair, Lemma 6.4.1 establishes a polynomial-
time mapping reduction from 3-SAT to AddStabilization. For the synchronous sched-
uler F = sync, Lemma 6.3.3 establishes another such reduction using our earlier map-
ping from Section 6.2. Lemma 6.1.6 establishes NP membership, therefore clearly
AddStabilization is NP-complete for any particular choice of fairness F in {unfair,
sync}.

A reduction similar to the proof of Lemma 6.4.1 exists for the remaining fairnesses F ∈
{weak, local} (and also F = sync), but the mapping from 3-SAT to AddConvergence

79



for such a fairness F involves the composite system constructed in the proof of
Lemma 6.3.7. The idea is straightforward, where a process similar to π3 of Fig-
ure 6.4 can read all variables and write to a binary variable sat that is readable by all
processes. An in Lemma 6.4.1, we would find that the other processes of the compos-
ite system (there are 6) must provide convergence to their conjuncted legitimate state
predicate when sat = 0, which would then prove that a converging protocol without
sat exists, and would finally that φ is satisfiable by the mapping in Lemma 6.3.7.

Corollary 6.4.3 (NP-completeness of AddSilentStabilization). Adding silent stabi-
lization is NP-complete for any particular choice of fairness F in {unfair, weak, local,
sync}.

Proof. As shown in the sufficient case of Lemma 6.4.1, any satisfiable φ implies a
silent-stabilizing p′

SAT-SS to LSAT-SS. In the reduction using a composite protocol that
is discussed in Theorem 6.4.2 proof (which applies to any F ∈ {weak, local, sync}),
we would also be able to obtain silent convergence for any satisfiable φ. The necessary
cases of these reductions does not change, since a silent-stabilizing protocol is also
stabilizing.

6.5 Adding Nonmasking Fault Tolerance

In this section, we present a somewhat surprising result that adding nonmasking fault
tolerance remains NP-hard under global fairness. This is surprising because adding
stabilization under global fairness (a.k.a.weak stabilization [100]) is known to have
polynomial time complexity in the number of global states [75, 88, 100]. For this
proof, we reuse the reduction from the previous section since stabilization is a special
case of nonmasking fault tolerance. However, though the clever use of faults, we are
able to ensure that the processes used in the reduction cannot simply toggle their
variables as they would otherwise be able to do under global fairness. Figure 6.5
shows our new reduction.

80



π0 π1 π2

π3

π0 . . . π3 : Unchanged from Figure 6.4.

New Variables :







failed ∈ Z2 (unreadable by processes)

z0, z1, z2 ∈ Z3 (unreadable by processes)

Legitimate States: LSAT-FT ≡ LSAT-SS ∧ (failed = 0)
where LSAT-SS is defined in Figure 6.4
Faults: ftrans ≡ f0 ∪ f1 ∪ f2

where each fi has transitions:
fi : true −→ xi := xi + 1; z0 := 0; z1 := 0; z2 := 0;

fi : true −→ yi := yi + 1; z0 := 0; z1 := 0; z2 := 0;

fi : true −→ sat := sat + 1; z0 := 0; z1 := 0; z2 := 0;

fi : sat = 0 ∧ zi = 0 ∧ yi = 0 −→ zi := 1;

fi : sat = 0 ∧ zi = 1 ∧ yi = 1 −→ zi := 2;

fi : sat = 0 ∧ zi = 2 ∧ yi = 0 −→ failed := 1;

Figure 6.5: Reduction from 3-SAT (formula φ with n variables and m clauses) to
AddFaultTolerance (topology pSAT-FT, legitimate states LSAT-FT, and faults ftrans).

Lemma 6.5.1. Let p′
SAT-FT be a protocol whose topology pSAT-FT, legitimate states

LSAT-FT, and faults ftrans are defined by the mapping of Figure 6.5 for any 3-SAT
instance. Any p′

SAT-FT that is closed within LSAT-FT has a state satisfying failed = 1
in its fault span iff some process πi (i ∈ Z3) has two actions (sat = 0∧xi = r∧yi = 0 −→
yi := 1; ) and (sat = 0∧xi = r∧yi = 1 −→ yi := 0; ) for some r ∈ Zn that can repeatedly
toggle yi.

Proof. That system defined by Figure 6.5 is very similar to Figure 6.4, but it adds
faults, variables z0, z1, z2, failed that no process can read or write, and adds the con-
straint failed = 0 to its legitimate states.

Sufficient Case. Assuming p′
SAT-FT has two actions (sat = 0 ∧ xi = r ∧ yi = 0 −→

yi := 1; ) and (sat = 0 ∧ xi = r ∧ yi = 1 −→ yi := 0; ) for some r ∈ Zn and some i ∈ Z3,
we want to show that failed = 1 is in the fault span. Let the first 3 fault actions in
Figure 6.4 occur to bring the system to a state where xi = r ∧ yi = 0 ∧ sat = 0 ∧ zi = 0.
At this point, the fourth action of fault fi is enabled, and process πi is enabled to
assign yi := 1. Assume the fault occurs because it can, bringing the system to have
zi = 1. Now let πi act to assign yi := 1. At this point, the fifth action of fault fi is
enabled, and process πi is enabled to assign yi := 0. Assume the fault occurs because
it can, bringing the system to have zi = 2. Now let πi act to assign yi := 0. At this

81



point, the sixth action of fault fi is enabled, and process πi is enabled to assign yi := 1.
Let the fault occur, bringing the system to have failed = 1, therefore it is in the fault
span. This is depicted in Figure 6.6 if we find a path from LSAT-FT to failed := 1.

00 01 02

10 11 12

failed=1LSAT-FT

fi

fi

fi

fi

fi

yi:=1 yi:=0

yi:=1 yi:=0

yi:=1 yi:=0

Figure 6.6: Fault class fi prevents process πi from toggling yi.

Necessary Case. Assuming that a state where failed = 1 exists in the fault span of
the given p′

SAT-FT, we want to show that p′
SAT-FT necessarily has two actions (sat = 0∧

xi = r ∧ yi = 0 −→ yi := 1; ) and (sat = 0 ∧ xi = r ∧ yi = 1 −→ yi := 0; ) for some r ∈ Zn

and some i ∈ Z3. First notice that LSAT-FT ≡ LSAT-SS ∧ (failed = 0), therefore we
know that π0, π1, π2 cannot act when sat = 1 without breaking closure of LSAT-SS due
to our reasoning in the necessary case proof of Lemma 6.4.1. Since the first 3 fault
actions reset z0, z1, z2 to 0, only a process πi can change a yi without resetting all
z0, z1, z2 values. Furthermore, failed can only be changed to 1 when some zi = 2 and
yi = 0. Figure 6.6 shows this, and it is clear that an earlier state must have had zi = 1
and yi = 1, and still earlier we had zi = 0 and yi = 0. Since we have assumed that some
state in the fault span satisfies failed = 1, it is obvious that some πi has toggled its yi

value from 0 to 1 and back to 0 in order for the faults to increment zi from 0 to 2 and
finally assigning failed := 1. Since πi can only change its yi when sat = 0 in order to
preserve closure, the only way that any πi can toggle its yi value is by using the two
actions (sat = 0∧xi = r∧yi = 0 −→ yi := 1; ) and (sat = 0∧xi = r∧yi = 1 −→ yi := 0; )
for some r ∈ Zn.

Lemma 6.5.2. Given any instance φ of 3-SAT, let pSAT-FT and LSAT-FT be defined
by the mapping in Figure 6.5. Formula φ is satisfiable iff actions can be added to
pSAT-FT to form a protocol p′

SAT-FT that stabilizes to LSAT-FT from its fault span under
global fairness (F = global).

Proof. We heavily leverage the mappings between φ and adding stabilization (suffi-
cient case) and convergence (necessary case).

Sufficient Case. Assuming that φ is satisfiable, we want to show that some protocol
p′

SAT-FT stabilizes to LSAT-FT. Let p′
SAT-FT be the protocol p′

SAT-SS from the sufficient
case in the proof of Lemma 6.4.1 that stabilizes to LSAT-SS. Since and p′

SAT-SS stabilizes
to LSAT-SS, we only need to prove that no state in the fault span exists where failed = 1
holds. Each process πi in the constructed protocol p′

SAT-FT only assigns its yi to some

82



fixed value given xi, therefore by Lemma 6.5.1, no state in the fault span satisfies
failed = 1.

Necessary Case. Assuming that some fault-tolerant p′
SAT-FT exists under global

fairness, we want to show that φ is satisfiable. Let a protocol p′
SAT be constructed as

the actions of processes π0, π1, π2 in the fault-tolerant p′
SAT-FT (discarding references

to sat in the actions’ guards). By Lemma 6.5.1, we know that these processes do not
toggle their yi variables repeatedly, and since the fault span of p′

SAT-FT includes all
valuations of x0, x1, x2, y0, y1, y2, it is clear that p′

SAT-FT stabilizes to a subset of states
where LSAT holds. The first 3 processes are the only ones that write yi values, therefore
p′

SAT also stabilizes to a subset of LSAT under global fairness. By Lemma 6.3.2, this
implies that the corresponding φ is satisfiable.

Theorem 6.5.3 (NP-completeness of AddFaultTolerance). The problem of adding
nonmasking fault tolerance is NP-complete with respect to the number of global states
for any particular choice of fairness F in {unfair, weak, local, global, sync}.

Proof. Since stabilization is a special case of nonmasking fault tolerance, Theo-
rem 6.4.2 already proves this theorem for all F ∈ {unfair, weak, local, sync}, there-
fore we need only prove it for global fairness. A polynomial-time mapping reduc-
tion between 3-SAT and AddFaultTolerance (with F = global) has been shown in
Lemma 6.5.2, and the problem is in NP due to Lemma 6.1.6, therefore
AddFaultTolerance is NP-complete overall.

In our previous work showing this result [132], we allowed a fault-tolerant proto-
col to stabilize to a subset of legitimate states but did not exploit this fact. In
this work, we explicitly do not allow the legitimate states to “shrink” for the prob-
lem of AddFaultTolerance because otherwise, it would just be a special case of
AddEventuallyAlways, which was already proven to be NP-complete for all fairness
models under consideration in Theorem 6.3.4.

Corollary 6.5.4. The problem of adding masking fault tolerance is NP-complete with
respect to the number of global states for any particular choice of fairness F in {unfair,
weak, local, global, sync}.

Proof. Adding nonmasking fault tolerance is a special case of adding masking fault
tolerance where there are no transitions forbidden by safety properties. This result
matches with Kulkarni and Arora’s results in [137].

83





Chapter 7:
Verifying Convergence is
Undecidable on Parameterized
Unidirectional Rings

Verifying stabilization is known to be a difficult task [100] due to the need to analyze
execution from all states of a system. To further complicate analysis, we often want a
protocol to stabilize for any instance of a general topology formed by connecting arbi-
trarily many copies of processes (with the same transition functions). As introduced
in Section 2.1, these protocols are parameterized by the topology, commonly by the
number of processes in the system. There are numerous methods [45,82,89,93] for the
verification of safety properties of parameterized systems, where safety requires that
nothing bad happens in system executions (e.g., no deadlock state is reached). Apt
and Kozen [11] illustrate that, in general, verifying linear temporal logic [77] proper-
ties for parameterized systems is Π0

1-complete. Suzuki [169] shows that the verification
problem remains Π0

1-complete even for unidirectional rings where all processes have
a similar code that is parameterized in the number of nodes.

Contributions. In this chapter, we extend this result for the special case where the
property of interest is livelock freedom, and every system state is under consideration.
Or equivalently, silent stabilization of a protocol to any set of states. Specifically, we
illustrate that, even when processes are symmetric, deterministic, self-disabling, and
have a finite state space, livelock detection is undecidable (Σ0

1-complete) on unidirec-
tional ring topologies. The proof of undecidability in our work is based on a reduction
from the periodic domino problem [106]. Further, we conclude that verifying silent
convergence on this simple parameterized topology is Π0

1-complete.

Assumptions about Processes. To reiterate, we make some assumptions within
this chapter in order to strengthen the undecidability results. (1) Processes are fi-
nite state, which is the usual assumption throughout this work. (2) Processes are
deterministic. (3) Processes are self-disabling. (4) Processes are symmetric. Since
processes are symmetric, refer to each process πi by a name Pi. We omit the process

Sections 7.1–7.3 contain material from A. P. Klinkhamer and A. Ebnenasir. Verifying Livelock
Freedom on Parameterized Rings and Chains. In International Symposium on Stabilization, Safety,

and Security of Distributed Systems, 2013. © 2013 Springer.

85



index when referring to its transition function δ and input alphabet Σ. Each pro-
cess Pi is assumed to read the entire state space of its predecessor Pi−1 in the ring,
therefore its state space Γ ≡ Σ is equivalent to its input alphabet.

Organization. Section 7.1 presents some basic concepts. Section 7.2 provides a for-
mal characterization of livelocks in unidirectional rings. Then, Section 7.3 presents
a well-known undecidable problem that we will use to show the undecidability of
detecting livelocks in unidirectional ring protocols. Section 7.4 gives far-reaching
undecidability results for livelock detection and verifying stabilization. Section 7.5
presents a surprising result that stabilizing unidirectional ring protocols can be syn-
thesized to work for all ring sizes, but synthesis becomes undecidable for bidirectional
rings.

7.1 Concepts

This section presents the definition of unidirectional ring protocols and their propa-
gation graphs.

Definition 7.1.1 (Propagation Function). Let Pi be any process in a unidirectional
ring protocol p which owns one variable xi. We define its propagation function1

δ⊤ : Σ × Σ → Σ as a partial function such that δ⊤(a, b) = c if and only if Pi has an
action (xi−1 = a ∧ xi = b −→ xi := c; ). In other words, δ⊤ can be used to define all
actions of Pi in the form of a single parametric action:

((xi−1, xi) ∈ Pre(δ⊤)) −→ xi := δ⊤(xi−1, xi);

where (xi−1, xi) ∈ Pre(δ⊤) checks to see if the current xi−1 and xi values are in the
preimage of δ⊤.

We use triples of the form (a, b, c) to denote actions (xi−1 = a ∧ xi = b −→ xi := c; )
of any process Pi in a unidirectional ring protocol. To visually represent the structure
of a process, we depict a protocol by a labeled directed multigraph where each action
(a, b, c) in the protocol appears as an arc from node a to node c labeled b in the
graph. For example, consider the self-stabilizing sum-not-2 protocol given in [87].
Each process Pi has a variable xi ∈ Z3 and actions (xi−1 = 0 ∧ xi = 2 −→ xi := 1),
(xi−1 = 1 ∧ xi = 1 −→ xi := 2), and (xi−1 = 2 ∧ xi = 0 −→ xi := 1). This protocol
converges to a state where the sum of each two consecutive x values does not equal
2 (i.e., the state predicate ∀i : (xi−1 + xi 6= 2)). We represent this protocol with a
graph containing arcs (0, 2, 1), (1, 1, 2), and (2, 0, 1) as shown in Figure 7.1.

1In this chapter, we use a propagation function δ⊤ which is based off of our definition of
the transition function δ in Chapter 2. Rather, the two function arguments are swapped, giving
δ⊤(a, b) = δ(b, a), and our use of δ⊤ is not applicable to general topologies. When we graph δ⊤ as
in Figure 7.1, it does not represent the FSM of a process, which is the case for δ as in Figure 2.1.

86



0 1 2
2

1

0

Figure 7.1: Propagation graph of the sum-not-2 protocol.

Since protocols consist of self-disabling processes, an action (a, b, c) cannot coexist
with action (a, c, d) for any d. Moreover, when the protocol is deterministic, a process
cannot have two actions enabled at the same time; i.e., an action (a, b, c) cannot
coexist with an action (a, b, d) where d 6= c.

7.2 Livelock Characterization

This section presents a formal characterization of livelocks in parameterized rings,
which is an extension of [87, 89]. This characterization is based on a notion of se-
quences of actions that are propagated in a ring, called propagations and a leads
relation between the propagations. We shall use propagations and the leads rela-
tion to identify necessary and sufficient conditions for the existence of livelocks in
symmetric unidirectional ring protocols of self-disabling processes.

Propagations. When a process acts and enables its successor, it propagates its
ability to act. The successor may enable its own successor by acting, and the pattern
may continue indefinitely. This behavior is called a propagation and is represented
by a sequence of parameterized actions. Consider a propagation 〈(a, b, c), (d, e, f)〉 of
length 2 that says a state exists that allows some Pi to perform an action (a, b, c)
that then enables Pi+1 to perform (d, e, f). Since Pi assigns its variable xi to c and
Pi+1 is then enabled to perform (d, e, f), which relies on xi = d and xi+1 = e, we
know c = d. We therefore write the jth action of a propagation as (aj−1, bj, aj).
It follows that a propagation is a walk through the protocol’s graph. For example,
the sum-not-2 protocol has a propagation 〈(0, 2, 1), (1, 1, 2), (2, 0, 1), (1, 1, 2)〉 whose
actions can be executed in order by processes Pi, Pi+1, Pi+2, and Pi+3 from a state
(xi−1, xi, xi+1, xi+2, xi+3) = (0, 2, 1, 0, 1). A propagation is periodic with period n if its
jth action and (j+n)th action are the same for every index j. A periodic propagation
corresponds to a closed walk of length n in the graph. The sum-not-2 protocol has
such a propagation of period 2: 〈(1, 1, 2), (2, 0, 1)〉.

“Leads” Relation. Consider two actions A1 and A2 in a process Pi. We say
the action A1 leads A2 if and only if the value of the variable xi after executing
A1 is the same as the value required for Pi to execute A2. Formally, this means
an action (a, b, c) leads (d, e, f) if and only if e = c. Similarly, a propagation leads
another if and only if, for every index j, its jth action leads the jth action of the other
propagation. Therefore if we have a propagation whose jth action is (aj−1, bj, aj) that
leads another propagation whose jth action is (dj−1, ej, dj), then we know ej = aj

87



and write the led action as (dj−1, aj, dj). In the context of the protocol graph, this
corresponds to two walks (representing propagations) where the jth destination node
label of the first walk matches the jth arc label of the second walk for each index j.
After some first propagation executes through a ring segment Pq, . . . , Pq+n−1, a second
propagation can execute through the same segment only if the first propagation leads
the second. This is true since each process Pq+j performs the jth action of the first
propagation, assigning its variable xq+j to some value aj. If the second propagation
executes through the segment, each Pq+j must perform the jth action of the second
propagation from a state where xq+j = aj. As such, each jth action of the first
propagation must lead the jth action of the second propagation. Thus, the first
propagation itself must lead the second.

We focus on scenarios where for some positive integers m and n, there are m periodic
propagations with period n where the ith propagation leads the (i+1)th propagation
for each i (and the last propagation leads the first). This case can be represented
succinctly.

Lemma 7.2.1 (Periodic Propagations that Successively Lead). Consider a unidirec-
tional ring protocol of symmetric, self-disabling processes that may exhibit m propa-
gations of period n where each ith propagation leads the (i+1)th propagation (and the
last leads the first). Such propagations exists iff we can write each jth action of each
ith propagation as (ai

j−1, ai−1
j , ai

j) using some ai
j values and computing superscript and

subscript indices modulo m and n respectively.

Proof. The proof is by combining the notations used in this section when defining pe-
riodic propagations and the leads relation. Using X as a wildcard value (i.e., any value,
do not assume X = X), recall that an action is defined to lead another action (X, a, X)
iff it has the form (X, X, a). Also recall that a propagation of period n has the form
〈(an−1, X, a0), (a0, X, a1), . . . , (an−2, X, an−1)〉. Thus, we can write each ith propaga-
tion as 〈(ai

n−1, X, ai
0), (ai

0, X, ai
1), . . . , (ai

n−2, X, ai
n−1)〉 and can determine the X values as

〈(ai
n−1, ai−1

0 , ai
0), (ai

0, ai−1
1 , ai

1), . . . , (ai
n−2, ai−1

n−1, ai
n−1)〉. This makes (ai

j−1, ai−1
j , ai

j) the
jth action of the ith propagation.

Example 7.2.2. Livelock freedom of the sum-not-2 protocol.

Recall from Figure 7.1 that the sum-not-2 protocol consists of three parameterized
actions (0, 2, 1), (1, 1, 2), and (2, 0, 1). Every periodic propagation in this protocol
alternates between actions (2, 0, 1) and (1, 1, 2). These propagations require xi values
to alternate between 0 and 1 for each subsequent i. However, these propagations
assign xi values alternating between 1 and 2 for each subsequent i. Clearly no peri-
odic propagation can execute through a ring segment of alternating 1 and 2 values,
therefore no propagation leads another in this protocol. For any ring size, an infinite
execution requires that actions propagate around the ring. This is not possible since
no propagation leads another, therefore the protocol is livelock-free.

88



We form the same argument in terms of walks in the protocol’s graph. Every closed
walk in the graph alternates between visiting node 1 and node 2 indefinitely. No
closed walk exists that alternates between visiting arcs labeled 1 and 2, therefore no
periodic propagation leads another in this protocol. As such, no livelock exists.

Lemma 7.2.3. Assume a ring protocol where processes are symmetric. An execution
from some state C to itself exists (i.e., a livelock exists) if and only if an execution
exists from C to some C ′ obtained by rotating the values of C by some k positions.

Proof. Due to a finite number of states, an infinite execution must visit some state
C (i.e., C ′ for k = 0) infinitely often. Conversely, any execution from C to C can
simply repeat to make an infinite execution. To finish the proof, assume an execution
from C to C ′ exists for some k with the goal of showing that an execution from C to
C exists. Since processes are symmetric, another execution exists that rotates values
by another k positions, leaving the C values rotated by 2k positions. With N being
the ring size, this can continue for N total rotations to return the system to state
C. Emerson and Namjoshi [81] similarly use this notion of rotational symmetry to
reason about rings of symmetric processes.

Lemma 7.2.4. Assume a unidirectional ring protocol of symmetric, self-disabling
processes. The protocol has a livelock for some ring size if and only if there exist
some m propagations with some period n, where the (i − 1)th propagation leads the
ith propagation for each index i modulo m.

Proof. The proof is broken into two parts that show existence of a livelock is sufficient
and necessary for any m propagations of period n to exist such that each propagation
leads the next.

Sufficient Case. Assume a livelock exists on a ring of size N . By Lemma 7.2.3, an
execution exists that revisits some state C. Let m denote the number of enabled
processes at C, and let i0, . . . , im−1 denote their positions in the ring. The number of
enabled processes is m in all states between two visitations of C since, when processes
in a unidirectional ring are self-disabling, the number of enabled processes will not
increase or decrease over time [89] (a process enables its successor when it disables
itself). Thus between two visitations of C, for each ij, actions propagate forward
through indices ij, ij+1, . . . , ij+k−1 for some k, leaving process Pij+k

enabled. After
revisiting C a total of m times, for each ij, the propagation that started at index ij

leaves Pij+mk
= Pij

enabled. Since each of the m propagations has reached the same
position in the same state after nm total transitions, they can repeat with period n.

Necessary Case. Assume that m propagations of period n exist where each (i −
1)th propagation leads the ith for every index i modulo m. From Lemma 7.2.1,
we can write the jth action of the ith propagation as (ai

j−1, ai−1
j , ai

j) using some
appropriate ai

j values from the process domains. We will use these ai
j values to find

89



x0 x1 . . . xn−1

∣

∣

∣

∣

. . . . . .

∣

∣

∣

∣

x(m−2)n . . .

∣

∣

∣

∣

x(m−1)n . . .

am−1
0 am−1

1 . . . am−1
n−1

∣

∣

∣

∣

. . . . . .

∣

∣

∣

∣

a1
0a

1
1 . . . a1

n−1

∣

∣

∣

∣

a0
0a

0
1 . . . a0

n−1

a0
0 am−1

1 . . . am−1
n−1

∣

∣

∣

∣

. . . . . .

∣

∣

∣

∣

a2
0a

1
1 . . . a1

n−1

∣

∣

∣

∣

a1
0a

0
1 . . . a0

n−1

a0
0 a0

1 . . . am−1
n−1

∣

∣

∣

∣

. . . . . .

∣

∣

∣

∣

a2
0a

2
1 . . . a1

n−1

∣

∣

∣

∣

a1
0a

1
1 . . . a0

n−1

a0
0 a0

1 . . . a0
n−1

∣

∣

∣

∣

. . . . . .

∣

∣

∣

∣

a2
0a

2
1 . . . a2

n−1

∣

∣

∣

∣

a1
0a

1
1 . . . a1

n−1

Figure 7.2: A livelock on mn processes using m propagations of period n that lead
each other in order.

an execution from some state to itself to form a livelock. Construct a ring of mn
processes where the initial state is defined with x((m−1−i)n+j) = ai

j for all i ∈ Zm

and j ∈ Zn. This initial state and future ones in an execution are shown as rows
in Figure 7.2. Conceptually, we use the first propagation to initialize the last n
processes (x((m−1)n), . . . , x(mn−1)) = (a0

0, . . . , a0
n−1), then use the second propagation

to initialize the preceding n processes (x((m−2)n), . . . , x((m−1)n−1)) = (a1
0, . . . , a1

n−1),
and repeat this pattern until the last propagation is used to initialize the first n
processes (x0, . . . , xn−1) = (am−1

0 , . . . , am−1
n−1 ).

In the initial state, every process whose index is a multiple of n is enabled. Each
such process P((m−i)n) has x((m−i)n−1) = ai

n−1 and x((m−i)n) = ai−1
0 , and it is enabled

to assign x((m−i)n) := ai
0 since actions have the form (ai

j−1, ai−1
j , ai

j). These positions
are highlighted in the first row of Figure 7.2, and the second row shows the result of
all enabled processes acting. Let these m processes act in any order. The system is
now in a state where process P1 is enabled along with every nth process after it. For
each such process P((m−i)n+1), we know x((m−i)n+1) = ai−1

1 is true due to our choice of
initial state. Since the previous actions have assigned x((m−i)n) := ai

0, each P((m−i)n+1)

is enabled to assign x((m−i)n+1) := ai
1. After these m processes act, the system is in a

state where process P2 is enabled along with every nth process after it.

As shown in the last two rows of Figure 7.2, continuing this pattern will eventu-
ally enable Pn−1 and every nth process after it to act, reaching a state that is a
rotated version of our initial state. For each such process P((m−i)n+(n−1)), we know
x((m−i)n+(n−1)) = ai−1

n−1 is true due to our choice of initial state. Since the previ-
ous actions have assigned x((m−i)n+(n−2)) := ai

n−2, each P((m−i)n+(n−1)) is enabled to
assign x((m−i)n+(n−1)) := ai

n−1. After mn total steps, this execution has reached a
state where each x((m−i)n+j) = ai

j. This state is a copy of the initial state (where
x((m−1−i)n+j) = ai

j) that is rotated by m positions. Thus, the execution can revisit
the initial state by Lemma 7.2.3, and a livelock exists.

90



7.3 Tiling

With our new characterization of livelocks in a unidirectional ring protocol from
Lemma 7.2.4, we can explore the difficulty of livelock detection. We use the protocol
graph as an intuitive bridge between problems. To complete the bridge, we introduce
a well-studied undecidable problem, the domino problem, and reduce a variant of this
problem to the problem of livelock detection. The section concludes with the paper’s
main theorem of undecidability.

7.3.1 Variants of the Domino Problem

Problem 7.3.1 (The Domino Problem).
• INSTANCE: A set of square tiles with a color (label) on each edge. All tiles are

the same size.
• QUESTION: Can copies of these tiles cover an infinite plane by placing them

side-by-side, without changing tile orientations, such that edge colors match
where tiles meet? In other words, can the following be satisfied for each tile
T [i, j] at row i and column j on the plane?

(T [i−1, j].S = T [i, j].N) ∧ (T [i, j−1].E = T [i, j].W )

where T [i, j].N is the color on the north edge of tile T [i, j]. Similarly, the .S,
.W , and .E suffixes refer to south, west, and east edge colors of their respective
tiles.

The domino problem was introduced by Wang [176], and the square tiles are com-
monly referred to as Wang tiles. Berger showed the problem to be undecidable [28].
Specifically, the problem is co-semi-decidable, also written as Π0

1-complete using the
arithmetical hierarchy notation of Rogers [161].

A tile set is NW-deterministic when each tile in the set can be identified uniquely by its
north and west edge colors. In this case, if a tile meets another at its southwest (resp.
northeast) corner, then the tile to its south (resp east) side is uniquely determined.
Kari proved that the domino problem remains undecidable for NW-deterministic tile
sets [124].

Problem 7.3.2 (The Periodic Domino Problem). This domino problem asks whether
an infinite plane can be covered by placing copies of a fixed rectangular arrangement
of tiles side-by-side such that a repeating pattern forms. In other words, can Prob-
lem 7.3.1 be solved such that there exist m and n where the following is satisfied for
each tile T [i, j] on the plane?

(T [i, j] = T [i + m, j]) ∧ (T [i, j] = T [i, j + n])

91



Problem 7.3.2 is equivalent to asking whether a torus can be completely covered
using the same tiling rules. Gurevich and Koriakov [106] give a semi-algorithm that
terminates if the given tile set can periodically tile the plane or cannot tile the plane
at all, but it does not halt when the plane can only be tiled aperiodically. It follows
that this problem is semi-decidable, also written as Σ0

1-complete using notation of
Rogers [161].

Action Tiles. A tile is SE-identical when it has identical south and east edge colors.
For such sets, we refer to the south and east edge colors of a tile T [i, j] as T [i, j].SE .
We write (a, b, c) to denote such a tile with colors a, b, c, and c on its west, north,
east, and south edges respectively. A set of SE-identical tiles is W-disabling when
no two tiles that have the same west color have matching north and south colors
respectively. In other words, a SE-identical tile set is W-disabling iff for every tile
(a, b, c) in the set, no color d exists such that the tile (a, c, d) is also in the set. Due
to the following lemma (Lemma 7.3.3), we use the term action tile strictly to denote
tiles in a SE-identical W-disabling tile set and action tile set to denote the set itself.

7.3.2 Equivalence to Livelock Detection

The triples that we use to represent tiles in an action tile set are subject to the same
constraints as actions in a unidirectional ring protocol of symmetric, self-disabling
processes. That is, the W-disabling constraint for tiles is equivalent to the self-
disabling constraint for actions. As such, we have a bijection between these kinds of
tile sets and protocols.

Lemma 7.3.3. There is a bijective function that maps an action tile set to a unidirec-
tional ring protocol of self-disabling processes such that the tile set admits a periodic
tiling iff the protocol contains a livelock. The mapping preserves determinism (resp.
NW-determinism) in the protocol (resp. tile set).

Proof. Given a set of triples such that no two triples (a, b, c) and (a, c, d) coexist,
the set can represent an action tile set or the actions of self-disabling processes is
a unidirectional ring. Likewise, if the set of triples also ensures that no two triples
(a, b, c) and (a, b, d) coexist (where c 6= d), then the corresponding tile set is NW-
deterministic and the corresponding protocol is deterministic. Thus, our mapping
function (the identity) is bijective and preserves determinism.

We are left to show that the conditions that a set of triples must meet in order to
form a periodic tiling are the same conditions that must be met to form a livelock.
Recall that a livelock can be characterized by a list of m periodic propagations of
length n where each propagation leads the next one in the list (and the last leads
the first). From Lemma 7.2.1, we know that this is equivalent to finding ai

j values,

with indices ranging over i ∈ Zm and j ∈ Zn, such that each triple (ai
j−1, ai−1

j , ai
j)

forms an action in the protocol (with indices computed modulo m and n). Southeast

92



ai
j−1

ai−1

j

ai
j

ai
j

(a) Wang Tile

ai
j−1

ai−1

j

ai
j

(b) Simplified

Figure 7.3: Tile for action (ai
j−1, ai−1

j , ai
j).

a0

a1

a2

a3

b0

b1

b2

b3b4

c0

c1 c2

c3c4

c3

c1

c4

c0

c2

a0

a1 a2

a3

a2

a0

b1

b3

b0

b2

b4

b0

Figure 7.4: “A-b-C” protocol graph.

tile colors in a periodic tiling T behave the same as ai
j since each triple (T [i, j −

1].SE , T [i − 1, j].SE , T [i, j].SE) is a tile in the set with the same values as T [i, j] ≡
(T [i, j].W, T [i, j].N, T [i, j].SE). As such, satisfying the constraints on ai

j is equivalent

to solving the periodic domino problem, where each action (ai
j−1, ai−1

j , ai
j) must exist

as a tile in the action tile set as shown in Figure 7.3.

Example 7.3.4. Fictional “A-b-C” protocol with a livelock.

Figure 7.4 shows the graph of our example unidirectional ring protocol where each
arc corresponds to an action. Note that the labels a0, . . . , c4 are constants that could
equivalently be changed to numbers 0, . . . , 13. The protocol does not function in any
meaningful way, but it does provide an interesting livelock. First, propagations that
characterize the livelock do not correspond to simple cycles in the protocol’s graph.
Secondly, 3 of these 6 propagations correspond to walks that are unique regardless of
the starting node.

A livelock can be found by taking a walk through the graph. We start by choosing a
closed walk starting with node c0 and visiting nodes c3, c4, c0, c1, c2, and c0 without
considering which arcs were taken.

1. Using the previous nodes as arc labels c0, c3, c4, c0, c1, and c2, start from node a2

to form a closed walk visiting nodes a0, a1, a2, a0, a3, and a2. This corresponds
to the periodic propagation:
〈(a2, c0, a0), (a0, c3, a1), (a1, c4, a2), (a2, c0, a0), (a0, c1, a3), (a3, c2, a2)〉

2. Using the previous nodes as arc labels a0, a1, a2, a0, a3, and a2, start from node
b4 to form a closed walk visiting nodes b0, b1, b0, b2, b3, and b4. This corresponds

93



to the periodic propagation:
〈(b4, a0, b0), (b0, a1, b1), (b1, a2, b0), (b0, a0, b2), (b2, a3, b3), (b3, a2, b4)〉

3. Using the previous nodes as arc labels b0, b1, b0, b2, b3, and b4, start from node
c4 to form a closed walk visiting nodes c0, c1, c2, c0, c3, and c4. This corresponds
to the periodic propagation:
〈(c4, b0, c0), (c0, b1, c1), (c1, b0, c2), (c2, b2, c0), (c0, b3, c3), (c3, b4, c4)〉

4. Use previous nodes as arc labels to form a closed walk through nodes a2, a0, a3,
a2, a0, a1, and a2.

5. Use previous nodes as arc labels to form a closed walk through nodes b0, b2, b3,
b4, b0, b1, and b0.

6. Use previous nodes as arc labels to form a closed walk through nodes c2, c0, c3,
c4, c0, c1, and c2. We started with this same sequence of nodes, therefore we
are done and have found the last periodic propagation to be:
〈(c2, b2, c0), (c0, b3, c3), (c3, b4, c4), (c4, b0, c0), (c0, b1, c1), (c1, b0, c2)〉

Each of the 6 propagations is compactly illustrated as a row in Figure 7.5b, which is
a periodic block formed by action tiles in Figure 7.5a. Since copies of the periodic
block can be placed beside themselves to tile the infinite plane, this is a solution to
the periodic domino problem.

Lemma 7.3.5. A periodic tiling of action tiles exists iff the corresponding protocol
has a synchronous livelock with all processes enabled for some ring size N . Such a
livelock also exists for every ring whose size is a multiple of N .

Proof. Synchronous semantics ensure that every enabled process acts at every step,
which is not allowed by our usual interleaving semantics. For example, consider the
protocol of Example 7.3.4 on a ring of size 6 beginning at state (c0, b3, a2, c0, b3, a2).
This state is constructed from SE colors of tiles along the antidiagonal of the periodic
block in Figure 7.5b. In this state, every process is enabled to act, and they all will
act under synchronous semantics, making the subsequent state (a0, c3, b4, a0, c3, b4). In
the figure, these values correspond to the SE tile colors that are one tile below the an-
tidiagonal. The execution can continue with (b0, a1, c4, b0, a1, c4), and will eventually
reach the initial state after 6 total steps.

This livelock is no coincidence, but rather can always be constructed from the antidi-
agonal of a square periodic block of action tiles. Indeed, it is by definition that every
two consecutive values along the antidiagonal (or shifted version) will form some ac-
tion (T [i, j − 1].SE , T [i − 1, j].SE , X) where X is a wildcard value. Furthermore, we
can always construct a square N × N periodic block (for some N) by appropriately
placing copies of a non-square block beside itself. We can of course continue this
pattern to form a kN × kN periodic block for any integer k > 0. Any periodic block
of action tiles therefore implies a synchronous livelock where all processes are enabled
on some ring of size N , and likewise for every ring of size kN .

94



a0

c3

a1
a0

c1

a3
a1

c4

a2
a2

c0

a0
a3

c2

a2

b0

a0

b2
b0

a1

b1
b1

a2

b0
b2

a3

b3
b3

a2

b4
b4

a0

b0

c0

b1

c1
c0

b3

c3
c1

b0

c2
c2

b2

c0
c3

b4

c4
c4

b0

c0

(a) Wang Tile Set

a2

c0

a0

b4

a0

b0

c4

b0

c0

a2

c0

a0

b0

a0

b2

c2

b2

c0

a0

c3

a1

b0

a1

b1

c0

b1

c1

a0

c1

a3

b2

a3

b3

c0

b3

c3

a1

c4

a2

b1

a2

b0

c1

b0

c2

a3

c2

a2

b3

a2

b4

c3

b4

c4

a2

c0

a0

b0

a0

b2

c2

b2

c0

a2

c0

a0

b4

a0

b0

c4

b0

c0

a0

c1

a3

b2

a3

b3

c0

b3

c3

a0

c3

a1

b0

a1

b1

c0

b1

c1

a3

c2

a2

b3

a2

b4

c3

b4

c4

a1

c4

a2

b1

a2

b0

c1

b0

c2

(b) Periodic Block

Figure 7.5: Instance and solution for the periodic domino problem that corresponds
to finding a livelock in the “A-b-C” protocol.

Given a synchronous livelock where all processes are enabled, it is also straightforward
to see that a periodic block of action tiles exists. Let the livelock occur on a ring of
size n. Since the system is finite-state, a synchronous livelock will have some state
C that it can revisit after some m steps. We would like m and n to be the same,
therefore consider a ring of size N = mn instead whose initial state is created by
repeating C as C = (x0, . . . , xn−1) = (xn, . . . , x2n−1) = · · · = (xN−n, . . . , xN−1). The
system will still revisit this state after m steps, but it can also be said to revisit the
state after N steps. Thus, the initial state of N values can be used to form a tiling
by using the initial xj values as the SE colors of the antidiagonal in a periodic block.
Each tile T [−j, j] below the antidiagonal can now have its north and west colors filled
in to match the antidiagonal’s SE colors. That is, each north and west color of tile
T [−j, j] are the initial values of xj−1 and xj respectively. Therefore the SE color of
T [−j, j] is the value of xj after one step, and T [−j, j] indeed represents an action
from the tile set. Repeating this for all N steps, we fill a periodic block.

95



a
b

c
d

a→

b↑

abcd
abcd

$

d→

$

abcd

c↑

c↑

d→

$

Figure 7.6: Transform 1 Wang tile to 4 action tiles.

7.3.3 Equivalent Tile Sets

The remainder of this section shows how to transform a NW-deterministic Wang
tile set into a NW-deterministic action tile set that is equivalent with respect to the
domino problems. This gives us the tools to reduce the periodic domino problem
to livelock detection in the next section which proves that livelock detection is un-
decidable for unidirectional ring protocols of symmetric, deterministic, self-disabling
processes.

Lemma 7.3.6. For any set of Wang tiles, a W-disabling set of SE-identical tiles (i.e.,
an action tile set) exists that gives the same result to Problem 7.3.1 and Problem 7.3.2
and preserves NW-determinism.

Proof. Let (a, b, c, d) denote a Wang tile
a

b

c
d

by listing its edge colors in order of W ,
N , S, and E. From any Wang tile set, our new action tile set has colors: a→ and a↑

for every color a in the original tile set, abcd for every tile (a, b, c, d) in the original set,
and a new color $. The new set has tiles (a→, b↑, abcd), ($, abcd, c↑), (abcd, $, d→), and
(c↑, d→, $) for each tile (a, b, c, d) in the original set. This reduction is shown clearly
in Figure 7.6.

Tiling Correspondence. Observe that if a tile with a color of the form abcd is
placed on the plane, we can determine three other tiles that must be placed near it to
form the 2 × 2 arrangement shown in Figure 7.6. Two of these are determined since
the color abcd appears on exactly three tiles in the set (for the W , N , and SE edges).
The third tile (c↑, d→, $) is determined since any tile with X↑ on its W edge or X→ on
its N edge has a SE edge color of $.

Conversely, if a tile of the form (c↑, d→, $) is placed on the plane, its west neighbor
must have the form ($, abcd, c↑) for some a and b corresponding to the original set of
colors. After knowing these a and b, the two tiles to the north are determined due
to the reasoning in the previous paragraph. Thus, any valid tiling T ′ using the new
tile set consists of 2 × 2 blocks corresponding to the tiles in the original set. Further,
since the $ colors must match across these 2 × 2 blocks, the blocks must be aligned.

For correspondence, it remains to show that a valid tiling T exists using the original
tile set if and only if a valid tiling T ′ exists using the new set. This is easy to see

96



since two tiles (a, b, c, d) and (w, x, y, z) in the original set can border each other if
and only if their corresponding 2 × 2 blocks in the new set can border each other.

The new tile set is a W-disabling set of SE-identical tiles. All tiles in the
new set are obviously SE-identical, therefore we only need to show that the set is W-
disabling. That is, for every tile (a, b, c) in the new set, there does not exist another
tile (a, c, e) in the set for any e. Observe in Figure 7.6 that the action tiles each use 3
distinct forms of colors: X→, X↑, XXXX, and $. Furthermore, the form of the west color
determines the forms of the other two colors. Thus, for any two action tiles with the
same west color, we know that their north and southeast colors will not match. The
tile set is therefore W-disabling.

The new tile set preserves NW-determinism. Recall that a tile set is NW-
deterministic when for every tile (a, b, c, d), there does not exist another tile (a, b, e, f)
in the set for any e 6= c and d 6= f . If this is the case in the original set, then any tile
in the new set with a west color of a→ and a north color of b↑ for any a and b has a
uniquely determined southeast color abcd.

Each other tile in the new set (those with $ on some edge) can be uniquely identified
by its west or north color. For any abcd, a tile whose west color is abcd uniquely
has the form (abcd, $, c→). Similarly, a tile whose north color is abcd uniquely has
the form ($, abcd, c↑). Lastly, for any c, a tile whose west color is c↑ uniquely has the
form (c↑, c→, $). This covers all forms of tiles in the new set, therefore the new set
preserves NW-determinism.

7.4 Decidability of Verification

This section begins with a theorem of undecidability as a direct consequence of our
mappings between livelock detection and the periodic domino problem. Section 7.4.1
presents a corollary about the undecidability of verifying stabilization. Section 7.4.2
extends these undecidability results to all other execution models that we can con-
ceive, which includes the case of a strongly fair scheduler (i.e., verifying weak stabi-
lization).

Processes are symmetric, finite-state, deterministic, and self-disabling. For
brevity, we avoid restating our usual restrictions on processes within this section.
While these restrictions strengthen our undecidability results, they are also used at
every step of reasoning.

Theorem 7.4.1 (Σ0
1-completeness). Livelock detection for unidirectional ring proto-

cols is undecidable (Σ0
1-complete).

Proof. By Lemma 7.3.6 and Lemma 7.3.3, we can construct such a protocol from any
NW-deterministic Wang tile set such that the protocol has a livelock if and only if
the set can form a periodic tiling. Since this is a mapping reduction from tile sets to

97



protocols, livelock detection is at least as complex as the periodic domino problem.
Livelock detection is also no more complex than the periodic domino problem since
Lemma 7.3.3 gives a mapping reduction in the opposite direction. Therefore, like the
periodic domino problem, livelock detection is Σ0

1-complete.

7.4.1 Verifying Stabilization

As the complementary problem of livelock detection, verifying livelock freedom is
Π0

1-complete. This livelock freedom problem can be posed as a problem of verifying
stabilization to all states where no process is enabled to act. Closure and deadlock
freedom are satisfied by design, therefore verifying stabilization is Π0

1-hard. We first
claim Π0

1-completess as a corollary to Theorem 7.4.1, followed by a lemma that is
needed to show Π0

1 membership.

Corollary 7.4.2 (Π0
1-completeness). Verifying stabilization for unidirectional ring

protocols is undecidable (Π0
1-complete).

Lemma 7.4.3 (Membership in Σ0
1 and Π0

1). Livelock detection is in Σ0
1 for protocols

whose valid topologies and states can be enumerated and whose executions can only
reach a finite number of states. Likewise, verifying livelock freedom and stabilization
are in Π0

1.

Proof. In concrete terms, our only topology thus far has been unidirectional rings,
which can be enumerated by ring size. Each ring of fixed size has a finite number of
states, therefore the states can be enumerated and any execution will only reach a
finite number of states. In this way, the current lemma is sufficient to complete the
proof of Corollary 7.4.2.

In the broader context of the lemma, we can decidably detect livelocks, deadlocks, and
closure violations from any state since only a finite number of states are reachable.
Furthermore, we can enumerate (ith topology, jth state) pairs in order of increasing
i + j, which is the natural way to enumerate Z

+ × Z
+. As such, we can write a

semi-algorithm for detecting livelocks or non-stabilization that checks every state of
every valid topology in order of enumeration, halting when it detects invalid protocol
behavior. Thus, detecting livelocks or non-stabilization is is Σ0

1, and the problem
complements are in Π0

1.

7.4.2 Effects of Consistency and Scheduling

In Lemma 7.3.5, we observed that livelock existence is preserved in the extreme case
where all processes are enabled and act synchronously. Synchronous execution can
be viewed as a result of a relaxed memory consistency model or as a very strict kind
of process scheduling. We extend the idea of livelock equivalence to other consistency
models that allow communication delay between processes. While this equivalence

98



can be extended for schedulers allowing varying amounts of synchrony, it cannot be
extended for strongly fair schedulers. Since our focus is undecidability, we instead find
a protocol transformation such that livelocks in the resulting protocol equivalently
exist under any scheduler and consistency model.

Definition 7.4.4 (FIFO Consistency). In the context of stabilization on unidirec-
tional rings, the weakest consistency model allows arbitrarily delayed (but ordered)
communication between processes.

FIFO consistency [149] adds arbitrary communication delay between processes while
preserving order of communication. Using the common structure and logic of FIFO
queues, we can define FIFO consistency as a simple extension to our usual interleaving
semantics. If the topology is a unidirectional ring, give each process Pi+1 access to a
variable x′

i instead of xi. Finally, connect each xi and x′
i with an unbounded FIFO

queue qi that has associated actions:

Empty(qi) ∧ xi 6= x′
i −→ PushLast(qi, xi);

¬Empty(qi) ∧ xi 6= Last(qi) −→ PushLast(qi, xi);

¬Empty(qi) −→ x′
i := PopFirst(qi);

Strength of consistency models. The strongest consistency model is strict consis-
tency, where processes see updates from each other instantly. Since it is the strongest,
an execution under strict consistency can be simulated under every other consistency
model. For example, an action of any process Pi under strict consistency can be
simulated under FIFO consistency in 3 steps from a state with empty queues: (1)
Pi acts, (2) qi performs PushLast to copy the new xi value, and (3) qi performs
PopFirst to assign the new value to x′

i.

At the other extreme, we consider FIFO consistency to be the weakest consistency
model in the context of stabilization on unidirectional rings. Our eventual goal is
to show that the choice of consistency model does not impact whether a particular
unidirectional ring protocol is stabilizing for all ring sizes. In the taxonomy of shared
memory consistency models given by Steinke and Nutt [167], the local consistency
and slow consistency models are weaker than FIFO consistency. These traditionally
weaker models become equivalent to FIFO consistency by two implicit assumptions,
that (1) each Pi reads exactly one variable of Pi−1, and (2) each Pi sees updated
values from Pi−1 in order.

Without the first assumption, slow consistency would allow changes to different vari-
ables be seen at different times, which could introduce new livelocks. Given our choice
of a unidirectional ring, a process can always restrict itself to owning a single variable
because multiple variables can be encoded by a single one. This would not be feasible
in a more general context where processes can write to the same variables.

99



Without the second assumption, local consistency would allow changes to a single
variable to be seen out of order, which could introduce new livelocks. We forbid
message reordering since it is generally considered to be a fault, and stabilization
assumes that faults are transient and eventually stop occurring.

Simulating synchrony. FIFO consistency can also simulate synchronous actions
under any consistency model. For example, the synchronous actions of k processes
under strict consistency can be simulated under FIFO consistency in 3k steps from
a state with empty queues: (1) k processes act, (2) the k queues of those processes
perform PushLast to copy the new x values, and (3) the queues perform PopFirst

to assign the new x′ values. Likewise, synchronous actions of any k processes and
queues under FIFO consistency can be simulated as k individual actions by performing
all PushLast actions first, process actions second, and PopFirst actions last.

Lemma 7.4.5. If a unidirectional ring is stabilizing under FIFO consistency and no
fairness, then it is stabilizing under every scheduler and consistency model.

Proof. In the context of stabilization, we have established that FIFO consistency can
simulate any execution under any other consistency model. We have also established
that FIFO consistency can simulate synchronous actions under any consistency model.
Since fairness does not affect the form of individual execution steps, FIFO consistency
can simulate an execution under any choice of scheduler and consistency model. Thus,
if a unidirectional ring of size N is stabilizing FIFO consistency and no fairness,
then no other choice of scheduler and consistency model will break closure or create
livelocks. Likewise, no deadlocks will be created since deadlocks are only possible
when each Pi has an accurate view of xi−1 and clearly no deadlocks exist in these
cases, where all queues are empty, under FIFO consistency. The ring is therefore
stabilizing under every scheduler and consistency model.

Propagation Count. Until now, we have considered the number of propagations
in a state to be the number of enabled processes. This formula must change when
delay is introduced. That is, the propagation count is computed as the number of
pending actions of processes and queues, which is the sum of: (1) number of enabled
processes, (2) number of queues enabled to call PushLast, and (3) number of values
in queues.

Lemma 7.4.6 (Limited Propagations). Given N processes in a unidirectional ring
executing under any scheduler and consistency model, the number of propagations
cannot increase and the number of reachable states is therefore finite.

Proof. In Section 7.2, we noticed that the number of propagations (i.e., enabled pro-
cesses under strict consistency) cannot increase during an execution when processes
are self-disabling. This result is preserved for FIFO consistency and therefore all other
consistency models. To see this, consider the 3 types of actions that can occur: (1)

100



the action of a process Pi, (2) a queue qi calling PushLast, and (3) a queue qi calling
PopFirst. In the first scenario, Pi will disable itself but may enable qi. In the second
scenario, qi will disable itself from calling PushLast but will increase its number of
stored values. In the third scenario, qi will reduce its number of stored values but may
enable Pi+1. Thus, each of the 3 cases will either decrease the number of propagations
or keep it constant. Given that the number of propagations cannot increase, we have
an upper bound on the number of values in queues for any execution, meaning that
the number of reachable states is finite.

Lemma 7.4.7. A unidirectional ring protocol has a livelock if and only if it also has
a livelock under FIFO consistency with unbounded queues in any state. The livelocks
may appear for different ring sizes.

Proof. By Lemma 7.4.5, a livelock under interleaving semantics implies a livelock
under FIFO consistency in general. Thus, we are left to show that a livelock of p
under interleaving semantics is implied by a livelock of p under FIFO consistency
(allowing unbounded queues in any state). Assume protocol p has a livelock under
FIFO consistency for some ring size. By Lemma 7.4.6, the number of propagations
cannot increase during an execution but obviously must eventually stop decreasing,
therefore some fixed m propagations eventually exists in an infinite execution.

We are left to show that these m propagations respect the properties given in Sec-
tion 7.2 and that they are sufficient to form an interleaved livelock. Indeed, if a process
Pk performs an action (aj−1, bj, aj), then aj is pushed onto qi, and eventually we have
x′

k = aj, allowing Pk+1 to perform an action (aj, bj+1, aj+1). Thus, the propagations
match the definition given in Section 7.2. Furthermore, the action (aj−1, bj, aj) must
lead the next action (dj−1, ej, dj) that Pk takes, making ej = aj. We therefore have
m propagations that lead each other. Using the same proof idea as in Lemma 7.2.4,
we can show that the propagations are periodic. Only a finite number of states exist
with m propagations by Lemma 7.4.6, therefore the system must revisit some state C
by Lemma 7.2.3. Consider a fixed execution from C to itself that involves n process
actions. After revisiting C a total of m times using this fixed execution, each propa-
gation is located exactly where it was initially. Since each of the m propagations has
reached the same position in the same state after nm total process actions, they can
repeat with period n. Finally by Lemma 7.2.4, m propagations of period n lead each
other, implying that protocol p has a livelock under interleaving semantics.

Lemma 7.4.8 (Deterministic Livelock). If a unidirectional ring exhibits a livelock
where exactly one propagation exists, then a livelock exists under every scheduler and
consistency model.

Proof. If such a deterministic livelock exists, there is only one choice for each subse-
quent state in the execution because only one process or queue is enabled and acts

101



deterministically. Thus, the livelock is not affected by the scheduler choice. Further-
more, adding or removing delay between processes simply changes whether a process
enables its successor in the ring immediately. Thus, the livelock is not affected by the
consistency model.

Lemma 7.4.9. There is a function that maps any unidirectional ring protocol p to
another such protocol p′ such that if p has a synchronous livelock with all processes
enabled, then p′ has a deterministic livelock for the same ring size. Otherwise, both
protocols are livelock-free.

Proof. Without loss of generality, we can assume each process Pi acting under p
has a single variable xi. Let each Pi have propagation function δ⊤, and recall from
Definition 7.1.1 that we can define all actions of Pi as:

(xi−1, xi) ∈ Pre(δ⊤) −→ xi := δ⊤(xi−1, xi);

In the new protocol p′, give each process Pi variables xi and x′
i and give it read access

to x′
i−1. The new protocol p′ is defined by giving each process Pi the action:

(x′
i−1, xi) ∈ Pre(δ⊤) −→ x′

i :=







δ⊤(x′
i−1, xi); if (x′

i = xi)

xi; otherwise

xi := δ⊤(x′
i−1, xi);

Notice that in a livelock, p′ performs the p protocol using x′
i−1 instead of xi−1, and

x′
i−1 is eventually updated to xi−1. Therefore we can safely say that if p does not have

a livelock under FIFO consistency, then p′ does not have a livelock. By Lemma 7.4.7
and Lemma 7.3.5, a livelock exists under FIFO consistency iff a synchronous livelock
exists with all processes enabled. Thus, livelock freedom of p implies livelock freedom
of p′.

We are left to show that if p has a livelock, then p′ has a deterministic livelock. Assume
p has a livelock where all processes are enabled. By Lemma 7.2.3, an execution exists
that revisits some state C = (c0, . . . , cN−1). Let C ′ be a state of a system executing p′

such that xi = ci for all i and x′
0 = c0. Our goal is to make only P1 enabled, therefore

for all i 6= 1, choose x′
i−1 such that (x′

i−1, ci) 6∈ Pre(δ⊤). In other words, for all i > 0,
choose x′

i such that (x′
i, ci+1) 6∈ Pre(δ⊤). Finding such values is of course possible

because processes are self-disabling. Now only P1 is enabled in C ′. When P1 acts, it
assigns x′

1 as c1 and assigns x1 as ξ(c0, c1).

Now only P2 is enabled, and it assigns x′
2 as c2 and assigns x2 as ξ(c1, c2). At the

Nth step, P0 acts to assign both x′
0 and x0 as ξ(cN−1, c0). In this state, we have

xi = ξ(ci−1, ci) for all i, x′
0 = x0, and xi = ci for all i > 0. On the xi values, this is

the same state that would be visited after one synchronous step of p from state C.
Likewise, the x′

i values meet the same constraints as in C ′, where x′
0 = x0 and the other

102



x′
i values (where i > 0) make Pi+1 disabled. Since x′

0 = ξ(cN−1, c0) and x1 = ξ(c0, c1),
process P1 is once again enabled. Since P1 is enabled again, this execution of p′ can
continue to use one propagation to simulate the synchronous livelock of p.

This is indeed a deterministic livelock since one process is enabled at all times, actions
are deterministic and self-disabling in both p and p′, and an action of Pi in the livelock
only changes values read by Pi+1. We have therefore shown a mapping from p to p′

such that p has a livelock if and only if p′ has a deterministic livelocks.

Theorem 7.4.10. Livelock detection for unidirectional ring protocols is undecidable
(Σ0

1-complete) for any choice of scheduler and consistency model that is valid in the
context of stabilization.

Proof. Given such a protocol p, we can create a similar protocol p′ using the method
of Lemma 7.4.9. That is, if p has a livelock, then p′ has a deterministic livelock and
otherwise, both protocols are livelock-free. In the case of a p livelock, the determin-
istic p′ livelock exists under every scheduler and consistency model by Lemma 7.4.8.
In the case that p is livelock-free, no livelock exists in p′ under FIFO consistency
by Lemma 7.4.7, which means p′ is livelock-free for every scheduler and consistency
model by Lemma 7.4.5. A livelock in p has been shown to exist under interleaving
semantics if and only if a livelock exists in p′ under any particular choice of sched-
uler and consistency model. Thus, the Σ0

1-hardness of livelock detection shown in
Theorem 7.4.1 is preserved for any particular choice of scheduler and consistency
model.

We can enumerate the valid topologies for a protocol p by number of processes,
and we can enumerate states by their number of propagations. By Lemma 7.4.6, a
state of p can only reach a finite number of other states under any scheduler and
consistency model. Thus, the problem of livelock detection remains Σ0

1-complete due
to Lemma 7.4.3.

Corollary 7.4.11. Verifying stabilization for unidirectional ring protocols is unde-
cidable (Π0

1-complete) for any choice of scheduler and consistency model.

Proof. Since we have considered livelock detection in the entire state space, even for
arbitrarily filled queues in the case of FIFO consistency (Lemma 7.4.7), we can reduce
the problem of verifying livelock freedom to that of verifying stabilization to states
where all processes and queues are disabled. Using this set of legitimate states and
the Σ0

1-completeness result of Theorem 7.4.10, the proof for Corollary 7.4.2 applies for
any particular scheduler and consistency model, showing that verifying stabilization
is Π0

1-complete.

103



7.5 Decidability of Synthesis

While verifying stabilization is undecidable for unidirectional ring protocols, we will
show that it is decidable to synthesize such a protocol. Surprisingly, we find that
bidirectional rings are more expressive and synthesis becomes undecidable.

Processes are symmetric, finite-state, deterministic, and self-disabling.
For brevity, we only consider the case of an unfair scheduler in this section. As
a consequence, any stabilizing protocol can be rewritten to use deterministic and
self-disabling processes [130]. Therefore, while we retain the same constraints from
previous sections, we only assume that processes are symmetric and finite-state.

Lemma 7.5.1 (Impossibility of Coloring). Let L ≡ (∀i : L(xi−1, xi)) be a predicate
such that ¬(∃γ : L(γ, γ)). No unidirectional ring protocol provides stabilization to L
for all ring sizes.

Proof. The predicate L implies a coloring, where consecutive processes must hold
different values. Shukla et al. [163] have shown that no unidirectional ring protocol
of deterministic, finite-state processes can stabilize to a coloring for all ring sizes.

Theorem 7.5.2 (Decidable Synthesis for Unidirectional Rings). Given a predicate
L ≡ (∀i : L(xi−1, xi)) and variable domain M for a unidirectional ring, L(γ, γ) is
true for some γ if and only if there exists a protocol that stabilizes to L.

Proof. Assume that no γ exists such that L(γ, γ) is true. This implies that ∀i :
xi−1 6= xi in the legitimate states. By Lemma 7.5.1, we have established that stabi-
lization to L is impossible for all ring sizes when no γ makes L(γ, γ) true. Therefore,
the problem is decidable when L(γ, γ) is false for all γ. We are left to show how to
construct a stabilizing protocol p when some γ can make L(γ, γ) true.

Find a γ such that L(γ, γ) is true. Assuming such a γ exists, it is trivial to
find by trying each value in ZM . Intuitively, we will make the stabilizing protocol p
converge to (∀i : xi = γ) unless it reaches some other state that satisfies L. Figure 7.7
provides a running example where L(xi−1, xi) ≡ ((x2

i−1 + x3
i ) mod 7 = 3) and variables

have domain size M = 7. We arbitrarily choose γ = 5 (instead of γ = 4) to satisfy
L(γ, γ).

Construct relation L′ from arcs that form cycles in the digraph of L. The
relation L can be represented as a digraph such that each arc (a, b) is in the graph
iff L(a, b) is true. Let G be this digraph (e.g., formed by both solid and dashed lines
in Figure 7.7a). Closed walks in G characterize all states in (∀i : L(xi−1, xi)) [89].
Create a digraph G′ (and corresponding relation L′) from G by removing all arcs that
are not part of a cycle (e.g., arcs (4, 1), (3, 1), (2, 6), and (5, 6) in Figure 7.7a). Since
closed walks of G characterize states in L, we know that for every arc (a, b) in G that
is not part of a cycle, no legitimate state contains xi−1 = a ∧ xi = b at any index i. All

104



4 2 6

531

0 Legend

In L and L′

In L

(a) Predicates L and L′ as Digraphs (i.e., G and G′)

4 2 6

531

0 Legend

0–4|6

0–2|4|6
0|1|3|5|6

0–4|60–4|6
0|1|3|5|6

0–2|4|6

a|b

a–b

Match a or b

In {a, . . . , b}

(b) Stabilizing Protocol as a Digraph

Figure 7.7: Synthesis of stabilization to ∀i : L(xi−1, xi),

where L(xi−1, xi) ≡
(

(x2
i−1 + x3

i ) mod 7 = 3
)

and xi ∈ Z7.

closed walks of G are retained by G′, therefore L′ is equivalent to L for the sake of
defining legitimate states L ≡ (∀i : L′(xi−1, xi)).

Construct a spanning tree τ with γ at the root (and has a self-loop). We
can treat τ as a function where τ(a) = c means that the parent of a is c. First, let
τ(γ) := γ represent the root of the tree. Next, create a tree by backwards reachability
from γ in G′, and assign τ(a) := c for each a that has a path a, c, . . . , γ in G′. Finally,
let τ(a) := γ for each node a that has no path to γ in G′.

If these extra arcs of τ were added to G′, no cycle would be created. These extra
arcs are made directly to γ from nodes that cannot reach γ in G′. However, since all
arcs of G′ are involved in cycles, any walk in G′ can find its way back to a previously
visited node. Therefore, if a node cannot reach γ in G′, then γ cannot reach that
node. Since the extra arcs of τ would not introduce cycles in G′, we know that
(∀i : (L′(xi−1, xi) ∨ τ(xi−1) = xi)) is yet another equivalent way to write L.

Construct each action (a, b, c) of p by labeling each arc (a, c) of τ with all
b values such that (¬L′(a, b) ∧ τ(a) 6= b). In this way, τ defines how a process Pi

in p will assign xi when it detects an illegitimate state. Therefore, while Figure 7.7b
shows the solution protocol for our example, it also illustrates τ if we ignore the arc
labels. The protocol p is written succinctly by giving the following action to each
process Pi.

¬L′(xi−1, xi) ∧ τ(xi−1) 6= xi −→ xi := τ(xi−1);

This protocol p stabilizes to L. Deadlock freedom and closure hold because each
process Pi is enabled to act iff (¬L′(xi−1, xi) ∧ τ(xi−1) 6= xi) holds. In other words, a
process is enabled iff L is false since L = (∀i : (L′(xi−1, xi) ∨ τ(xi−1) = xi)). Livelock
freedom holds because all periodic propagations of p consist of actions of the form

105



(γ, b, γ) where L(γ, b) is false (e.g., the self-loops of node 5 in Figure 7.7b). Obviously
none of these (γ, b, γ) actions lead each other since b 6= γ. Thus, our scheme has
constructed a protocol p that stabilizes to L for any number of processes.

Lemma 7.5.3. Verifying livelock freedom of a unidirectional ring protocol p remains
Π0

1-complete even if a livelock of p is guaranteed to imply (1) p has a deterministic
livelock that (2) involves all actions and (3) involves all values.

Proof. Specifically, the second and third constraints stipulate that, if p has a livelock,
then p has an action (a, b, c) for every value c ∈ ZM , otherwise no livelock would
involve c since no action would assign using c. Additionally, if p has a livelock, then
p has an action (a, b, c) for every value a ∈ ZM , otherwise no action could come after
(X, X, a) in a periodic propagation.

These 3 (numbered) constraints on p do not affect Π0
1-completeness of verifying live-

lock freedom. First, by Lemma 7.4.9 and Theorem 7.4.10, deterministic livelock
detection is Σ0

1-complete on unidirectional rings. Second, deterministic livelock de-
tection is not decidable when the livelock must involve all actions, otherwise we could
detect deterministic livelocks for any protocol by checking each subset of actions.
Third, deterministic livelock detection is not decidable when the livelock must in-
volve all values, otherwise we could detect deterministic livelocks for any protocol by
checking each subset of values. Thus, verifying livelock freedom for our chosen form
of p remains Π0

1-complete.

Theorem 7.5.4 (Undecidable Synthesis for Bidirectional Rings). Given a predicate
L ≡ (∀i : Li) ≡ (∀i : L(xi−1, xi, xi+1)) and variable domain M (such that each
xi ∈ ZM) for a bidirectional ring, it is undecidable (Π0

1-complete) whether a protocol
can stabilize to L for all ring sizes such that no transitions exist within L.

Proof. To show undecidability, we reduce the problem of verifying livelock freedom
of a unidirectional ring protocol p to the problem of synthesizing a bidirectional ring
protocol p′ that stabilizes to L′, where L′ has some form determined by p. This L′ is
constructed such that exactly one bidirectional ring protocol p′ resolves all deadlocks
without breaking closure, but it only stabilizes to L′ if p is livelock-free. Therefore, p′

is the only candidate solution for the synthesis procedure, and the synthesis succeeds
iff p is livelock-free. Our reduction is broken into two parts: (1) showing that exactly
one particular p′ resolves all deadlocks without breaking closure, and (2) showing that
p′ is livelock-free iff p is livelock-free.

Definition of closure. Our definition of closure for this proof is expanded to mean
that no transitions of p′ can exist within L′. Up to this point, we have treated closure
this way without loss of generality. We believe this definition is not necessary to show
Π0

1-completeness, but it certainly helps this proof.

106



P0 P1 P2 P3 P4 P0

x0 x1 x2 x3 x4 x0x′
4 x′

0 x′
1 x′

2 x′
3 x′

4

Figure 7.8: Topology for bidirectional ring protocol p′ in Theorem 7.5.4. Each
process Pi owns x′

i−1 and xi.

Assumptions about p. We assume that if p has a livelock, then it (1) has a
deterministic livelock that (2) involves all actions and (3) involves all values. This
does not affect Π0

1-completeness due to Lemma 7.5.3.

Forming L′ from p. For the bidirectional ring topology, we augment the topology
of p by giving each process Pi a new variable x′

i−1 ∈ ZM along with its xi ∈ ZM ,
making its effective domain size M ′ ≡ M2. Since it is a bidirectional ring, Pi can
read xi−1 and x′

i−2 from Pi−1 and can read xi+1 and x′
i from Pi+1. Our goal is to

encode the behavior of p as a predicate L′, therefore we need 3 distinct values to
encode each action (a, b, c) ∈ ξ. To this end, we use xi−1 = a and x′

i = b to encode
the precondition of a Pi action (a, b, c), and xi = c to encode its assignment. Notice
that x′

i is from Pi+1 as depicted in Figure 7.8, therefore we must ensure x′
i eventually

obtains a copy of xi when a livelock should exist. The resulting L′ ≡ (∀i : L′
i) looks

like the p protocol with instances of xi replaced with x′
i and a condition that x′

i−1 is
a copy of xi−1. Specifically, we write L′

i as:

L′
i ≡

(

(xi−1, x′
i) ∈ Pre(δ⊤)

=⇒ x′
i−1 = xi−1 ∧ xi = δ⊤(xi−1, x′

i)
)

Forming p′ from L′. We want to show that a particular p′ stabilizes to L′ when p
is livelock-free, and it is the only bidirectional ring protocol that resolves deadlocks
without breaking closure when p has a livelock. This p′ has the following action for
each Pi.

(xi−1, x′
i) ∈ Pre(δ⊤) ∧

(

x′
i−1 6= xi−1 ∨ xi 6= δ⊤(xi−1, x′

i)
)

−→ x′
i−1 := xi−1; xi := δ⊤(xi−1, x′

i);

Notice that p′ is deadlock-free and preserves closure since a process Pi can act iff its
L′

i is unsatisfied. In fact, we can show that this p′ is the only such protocol when p
has a livelock. Assuming p has a livelock, consider a ring of 5 processes executing p′

where a process P2 and its readable variables from P1 and P3 have arbitrary values.
By our earlier assumptions about p, it has an action (a, b, c) for any given a or c (not
both), and (a, c) 6∈ Pre(δ⊤) because processes of p are self-disabling. Thus, we can
choose x0 of P0 to make (x0, x′

1) 6∈ Pre(δ⊤) for P1, and we can choose x′
3 of P4 to

107



make (x2, x′
3) 6∈ Pre(δ⊤) for P3. We have satisfied L′

1 and L′
3, and we can likewise

satisfy L′
0 and L′

4 by choosing values of x4 and x′
4 respectively. Thus, the system is in

a legitimate state iff L′
2 is satisfied. Therefore, if L′

2 is satisfied, then P2 cannot act
without adding a transition within L′ (i.e., breaking closure). As a consequence, no
other process but P2 can act if L′

2 is not satisfied, which leaves P2 to correct L′
2 itself.

Since processes are symmetric, each Pi of p′ must have the action above to ensure
x′

i−1 = xi−1 and xi = δ⊤(xi−1, x′
i) when (xi−1, x′

i) 6∈ Pre(δ⊤).

If p has a livelock, then p′ has a livelock. Assume p has a livelock to show that
this implies a livelock of p′. By assumption, p has a deterministic livelock from some
state C = (c0, . . . , cN−1) on a ring of size N where only the first process is enabled;
i.e., (ci−1, ci) ∈ Pre(δ⊤) only for i = 0. Let C ′ = (c′

0, . . . , c′
N−1) be the state of this

system after all processes act once. That is, c′
0 = δ⊤(cN−1, c0) and c′

i = δ⊤(c′
i−1, ci)

for all other i > 0. We can construct a livelock state of p′ from the same xi = ci

values for all i and x′
i = ci for all i < N − 1. The value of x′

N−1 can be cN−1, but
can be anything else such that (xN−2, x′

N−1) 6∈ Pre(δ⊤). In this state of p′, only P0

is enabled since we assumed that (ci−1, ci) ∈ Pre(δ⊤) only holds for i = 0. P0 then
performs x0 := c′

0 and x′
N−1 := cN−1. This does not enable PN−1, but does enable P1

to perform x1 := c′
1 and x′

0 := c′
0. The execution continues for P2, . . . , PN−1 to assign

xi := c′
i and x′

i−1 := c′
i−1 for all i > 1. At this point the system is in a state where

xi = c′
i for all i and x′

i = c′
i for all i < N − 1. The value of x′

N−1 is cN−1, which leaves
it disabled. This state of p′ matches state C ′ of p using the same constraints as we
used to match the initial state C. Therefore p′ can continue to simulate p, showing
that it has a livelock.

If p is livelock-free, then p′ is livelock-free. Assume p is livelock-free to show
that this implies p′ is livelock-free. First notice that if Pi+1 acts immediately after Pi

in p′, then Pi will not become enabled because xi = x′
i and self-disabling processes

of p ensure that (a, c) 6∈ Pre(δ⊤) for every action (a, b, c). This means that in a
livelock, if an action of Pi+1 enables Pi, then Pi−1 must have acted since the last
action of Pi. As such, an action of Pi−1 must occur between every two actions of Pi

in a livelock of p′. The number of such propagations clearly cannot increase, and thus
must remain constant in a livelock. In order to avoid collisions, an action of Pi+1

must occur between every two actions of Pi. Since Pi+1 always acts before Pi in a
livelock of p′, it ensures that x′

i = xi when Pi acts. By making this substitution, we
see that Pi is only enabled when (xi−1, xi) ∈ Pre(δ⊤), and assigns xi := δ⊤(xi−1, xi),
which is equivalent to the behavior of protocol p. Since p is livelock-free, p′ must also
be livelock-free.

Synthesis is Π0
1-complete. The unidirectional ring protocol p is livelock-free iff

a bidirectional ring protocol p′ exists that stabilizes to L′, where L′ has a form de-
termined by p. By Theorem 7.4.10, our reduction from verifying livelock freedom
on unidirectional rings shows that synthesizing stabilization on bidirectional rings is
Π0

1-hard. The synthesis problem is also in Π0
1 because verification is in Π0

1 due to

108



Lemma 7.4.3 and there are only a finite number of possible protocols to synthesize.
That is, by running the non-stabilization detection semi-algorithm on each candidate
protocol, we have a semi-algorithm that returns if none of them are stabilizing. Thus,
the complementary problem of synthesis is in Π0

1, making it Π0
1-complete.

109





Chapter 8:
Conclusions and Future Work

8.1 Conclusions

We have presented a shadow/puppet synthesis algorithm that, when given a spec-
ification, performs a complete backtracking search. The effectiveness of separating
specification (shadow) from implementation (puppet) has been justified by 4 new self-
stabilizing protocols that improve upon the process space requirements of published
work. Each of these could be specified intuitively and without the risk of interfering
with our ability to find a solution.

This synthesis algorithm was shown to be solving an NP-complete problem, which
justifies our use of an exponential-time backtracking algorithm. However, we were
able to apply many complete heuristics to limit the branching factor of the search
tree. These techniques include the Minimum Remaining Values heuristic, enforcing
processes to be deterministic and self-disabling, and using recorded conflicts across
parallel randomized search tasks to avoid trying the same decisions twice.

Finally, we showed that verifying stabilization of parameterized protocols is unde-
cidable (Π0

1-complete) even on unidirectional rings with very restrictive assumptions
on the processes. When designing protocols, we usually want them to work for all
topologies of a certain class (e.g., rings of any size). Therefore, to design around this
undecidability, we take a best-effort approach where we perform synthesis simultane-
ously on multiple small topologies (e.g., rings of size N ∈ {2, . . . , 7}). The generated
protocols may not stabilize for all topology instances, but as we verify a protocol
for larger topologies, we eventually gain enough confidence to manually analyze and
prove that the protocol is correct for all instances.

8.2 Future Work

Given our success in synthesizing new self-stabilizing protocols, it appears that au-
tomatic techniques have a great potential in this field. As opposed to manual tech-
niques, our approach does not require a designer to be an expert in fault tolerance.
For example, undergraduate students in computer science have successfully used the
Protocon tool in coursework to analyze and design simple protocols. If our synthesis
techniques can be made smarter as to handle processes with larger state spaces and

111



more flexible topologies, then synthesis could very well be the technology that brings
self-stabilization into general use. The areas of improvement can be split into three
categories: utility, speed, and generalization.

8.2.1 Utility

Current synthesis techniques leave much to be desired since they lack the constructs
needed to handle large classes of useful protocols. This is understandable due to the
complexity of adding convergence or general fault tolerance [132, 137, 140], therefore
increasing the expressiveness of synthesis problem’s input must be done carefully. Be-
low are some features that may be compatible with our current approach to synthesis.

Weak Fairness. Weak fairness is a practical assumption, but it can be costly to
verify [47] and causes our current search algorithm to be incomplete. Even so, it would
allow us to consider systems where multiple processes are enabled in the legitimate
states. Weak fairness may also offer advantages in reasoning since it is the most
natural fairness assumption; i.e., we assume weak fairness in real programs. However,
we have shown in Chapter 6 that adding stabilization under weak fairness remains
NP-complete, unlike the same problem under global fairness.

Unstructured Topologies. Our current synthesis methods do not support general
graph topologies. Rather, each process template can read and write fixed numbers of
variables. In this way, we can enumerate all possible actions (local transitions) of the
processes to consider during synthesis. There are many constant-degree topologies
such as ring, chain, torus, grid, n-ary tree, and Kautz graph, but we often desire
protocols to work on general graphs. In order to enumerate actions of a process that
can have an arbitrary number of adjacent processes, we need to reduce its possible
inputs and state changes to have a finite form. We need to further investigate how this
reduction should work by considering existing protocols. One option is to synthesize
an infimum operator [170] or the more general r-operator [72,73] to reduce the values
from adjacent processes. This covers operators like min, max, and ∪ (set union)
that are useful for computing height the center of a tree, height in a tree, and graph
coloring, but they may not be useful enough. Consider the Byzantine Generals’
Problem [158], where the majority function is used to pick the most popular choice.

To generate connected graph topologies of a given size, we can use the geng tool from
the Nauty software suite [152]. The Nauty software can also generate trees and planar
graphs given the number of vertices. This allows us to perform automatic verification
of a protocol on all topologies up to a certain number of processes. Though the
number of graphs for a given number of vertices quickly becomes infeasible, our limit
may be up to 5, 6, 7, or 8 unlabeled vertices that can respectively make 21, 112, 853,
and 11117 unique connected graphs. We can also run these cases in parallel to ease
the burden of verification.

Sufficiently Large Variables. Many problems require or benefit from a practical
assumption that each process can store at least O(lg N) bits, where N is the number

112



of processes. For example, Dijkstra’s token ring [64] can practically be implemented
with 32-bit integers when it is safe to assume that the ring size will never exceed 232

processes. This introduces three issues in (1) representing the transition system, (2)
enumerating the possible actions of a process, and (3) enforcing decidability. The
decision diagrams that we currently use do not support arbitrarily large variables,
but finite automata make this feasible [32]. To enumerate the possible actions of a
process, we can provide a set of operations that a process can perform on its values
such as the r-operators used in [59, 72, 73]. Predetermined operations would also
help with decidability since iterative application of some simple functions can yield
unpredictable behavior [11, 54,142]

8.2.2 Speed

Symmetry. Our search algorithm can achieve a substantial performance increase
if we exploit symmetry of the search space. (Note that this has nothing to do with
symmetry of processes or links.) That is, at a given point in the search, choosing a
candidate action A may be equivalent to choosing a candidate action B. For example,
consider synthesizing a 3-coloring protocol for rings. Initially, we start without any
actions in the protocol. Our first decision may be to add action A that is (xi−1 =
0 ∧ xi = 0 ∧ xi+1 = 0 −→ xi := 1; ) to the under-approximated protocol. Though we
could have chosen to add action B that is (xi−1 = 2 ∧ xi = 2 ∧ xi+1 = 2 −→ xi := 0; ).
In fact, the effect of B is the same as A because the labeled transition systems are
isomorphic. This is seen by transforming A’s transition system to B’s transition
system by relabeling the values of xi as 0 → 2, 1 → 0, and 2 → 1.

Cycle Detection. Cycle detection is the most costly operation when checking
whether a protocol is self-stabilizing. This cost carries over to the synthesis algorithm
when it checks for inconsistencies in a partial solution.

One technique that we have used successfully is to assume a synchronous sched-
uler. This kind of cycle detection is fast when processes are deterministic because
the system as a whole acts deterministically. However, this cycle detection may find
new cycles that are invalid in the asynchronous case, and it may miss asynchronous
cycles. Some topologies, particularly unidirectional rings, guarantee that any asyn-
chronous livelock will also appear as a synchronous livelock. We have therefore used
synchronous cycle detection for our token rings in order to verify up to high process
counts. Some speedups are enormous: For one of our synthesized 6-state token rings,
verification on 17 processes took 23 hours under an asynchronous scheduler yet only
3 seconds using the synchronous scheduler.

8.2.3 Generalization

Regular Model Checking. In Section 3.4.3, we discussed regular model checking
as a means to verify whether a protocol is generalizable. This kind of automatic

113



verification would be convenient to couple with synthesis, but unfortunately there is
no guarantee as to whether such a verification will halt.

Deadlock Freedom. It is beneficial to further investigate the limits of the deadlock
detection method of Farahat and Ebnenasir [89] for parameterized systems. For ex-
ample, consider a two-dimensional torus topology where each process has 4 neighbors
to form a rectangular lattice, but the opposing ends of the lattice connect with each
other to form the surface of a torus. Give each process 4 color variables, and let
each variable be read by a different neighboring process. Given any Wang tile set, we
can create a protocol whose deadlock states correspond exactly to states where each
process holds the colors of a tile in the set, and the color of tiles is the same on edges
where they meet. Clearly a deadlock in the parameterized protocol corresponds to a
periodic tiling, therefore deadlock detection is undecidable for this topology.

114



References

[1] P. A. Abdulla, B. Jonsson, P. Mahata, and J. d’Orso. Regular tree model
checking. In International Conference on Computer-Aided Verification, pages
555–568, 2002.

[2] P. A. Abdulla, B. Jonsson, M. Nilsson, and M. Saksena. A survey of regular
model checking. In International Conference on Concurrency Theory, pages
35–48, 2004.

[3] J. Abello and S. Dolev. On the computational power of self-stabilizing systems.
Theoretical Computer Science, 182(1-2):159–170, 1997.

[4] F. Abujarad and S. S. Kulkarni. Constraint based automated synthesis of
nonmasking and stabilizing fault-tolerance. In IEEE Symposium on Reliable
Distributed Systems, pages 119–128, 2009.

[5] F. Abujarad and S. S. Kulkarni. Multicore constraint-based automated stabi-
lization. In International Symposium on Stabilization, Safety, and Security of
Distributed Systems, pages 47–61, 2009.

[6] F. Abujarad and S. S. Kulkarni. Weakest invariant generation for automated
addition of fault-tolerance. Electronic Notes in Theoretical Computer Science,
258(2):3–15, 2009.

[7] F. Abujarad and S. S. Kulkarni. Automated constraint-based addition of
nonmasking and stabilizing fault-tolerance. Theoretical Computer Science,
412(33):4228–4246, 2011.

[8] Y. Afek, S. Kutten, and M. Yung. The local detection paradigm and its ap-
plication to self-stabilization. Theoretical Computer Science, 186(1-2):199–229,
1997.

[9] G. Alari. Improving the probabilistic three-state self stabilizing ring. Tech-
nical Report rr95-10, Université Catholique de Louvain, Aug. 1995. http:

//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.8312.

115

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.8312
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.8312


[10] T. J. Ameloot, F. Neven, and J. V. den Bussche. Relational transducers for
declarative networking. Journal of the ACM, 60(2):15, 2013.

[11] K. R. Apt and D. C. Kozen. Limits for automatic verification of finite-state
concurrent systems. Information Processing Letters, 22(6):307–309, 1986.

[12] A. Arnold and P. Crubille. A linear algorithm to solve fixed-point equations on
transition systems. Information Processing Letters, 29(2):57–66, 1988.

[13] A. Arora. A foundation of fault-tolerant computing. PhD thesis, University of
Texas at Austin, 1992.

[14] A. Arora and M. G. Gouda. Closure and convergence: A foundation of fault-
tolerant computing. IEEE Transactions on Software Engineering, 19(11):1015–
1027, 1993.

[15] A. Arora and M. G. Gouda. Distributed reset. IEEE Transactions on Comput-
ers, 43(9):1026–1038, 1994.

[16] A. Arora, M. G. Gouda, and G. Varghese. Constraint satisfaction as a ba-
sis for designing nonmasking fault-tolerance. Journal of High Speed Networks,
5(3):293–306, 1996.

[17] A. Arora and S. S. Kulkarni. Designing masking fault-tolerance via nonmasking
fault-tolerance. IEEE Transactions on Software Engineering, 24(6):435–450,
1998.

[18] A. Arora and S. S. Kulkarni. Detectors and correctors: A theory of fault-
tolerance components. In IEEE International Conference on Distributed Com-
puting Systems, pages 436–443, 1998.

[19] P. C. Attie, A. Arora, and E. A. Emerson. Synthesis of fault-tolerant concur-
rent programs. ACM Transactions on Programming Languages and Systems,
26(1):125–185, 2004.

[20] P. C. Attie and E. A. Emerson. Synthesis of concurrent systems with many
similar processes. ACM Transactions on Programming Languages and Systems,
20(1):51–115, 1998.

[21] P. C. Attie and E. A. Emerson. Synthesis of concurrent programs for an atomic
read/write model of computation. ACM Transactions on Programming Lan-
guages and Systems, 23(2):187–242, 2001.

[22] A. Avizienis, J.-C. Laprie, B. Randell, and C. E. Landwehr. Basic concepts
and taxonomy of dependable and secure computing. IEEE Transactions on
Dependable and Secure Computing, 1(1):11–33, 2004.

116



[23] B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and G. Varghese. A time-
optimal self-stabilizing synchronizer using a phase clock. IEEE Transactions on
Dependable and Secure Computing, 4(3):180–190, 2007.

[24] B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local
checking and correction (extended abstract). In Symposium on Foundations of
Computer Science, pages 268–277, 1991.

[25] J. Beauquier, A. K. Datta, M. Gradinariu, and F. Magniette. Self-stabilizing
local mutual exclusion and daemon refinement. Chicago Journal of Theoretical
Computer Science, 2002, 2002.

[26] J. Beauquier, M. Gradinariu, and C. Johnen. Cross-over composition - en-
forcement of fairness under unfair adversary. In International Symposium on
Stabilization, Safety, and Security of Distributed Systems, pages 19–34, 2001.

[27] J. Beauquier, M. Gradinariu, and C. Johnen. Randomized self-stabilizing and
space optimal leader election under arbitrary scheduler on rings. Distributed
Computing, 20(1):75–93, 2007.

[28] R. Berger. The Undecidability of the Domino Problem. Memoirs ; No 1/66.
American Mathematical Society, 1966.

[29] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded model
checking. Advances in Computers, 58:117–148, 2003.

[30] L. Blin, M. G. Potop-Butucaru, and S. Rovedakis. Self-stabilizing minimum
degree spanning tree within one from the optimal degree. Journal of Parallel
and Distributed Computing, 71(3):438–449, 2011.

[31] L. Blin and S. Tixeuil. Compact deterministic self-stabilizing leader election -
the exponential advantage of being talkative. In International Symposium on
Distributed Computing, pages 76–90, 2013.

[32] B. Boigelot and P. Wolper. Representing arithmetic constraints with finite
automata: An overview. In International Conference on Logic Programming,
pages 1–19, 2002.

[33] B. Bonakdarpour, A. Ebnenasir, and S. S. Kulkarni. Complexity results in revis-
ing unity programs. ACM Transactions on Autonomous and Adaptive Systems,
4(1), 2009.

[34] B. Bonakdarpour and S. S. Kulkarni. Exploiting symbolic techniques in au-
tomated synthesis of distributed programs with large state space. In IEEE
International Conference on Distributed Computing Systems, page 3, 2007.

117



[35] B. Bonakdarpour and S. S. Kulkarni. Revising distributed unity programs is
np-complete. In International Conference on Principles of Distributed Systems,
pages 408–427, 2008.

[36] B. U. Borowsky and S. Edelkamp. Optimal metric planning with state sets in
automata representation. In AAAI Conference on Artificial Intelligence, pages
874–879, 2008.

[37] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking.
In International Conference on Computer-Aided Verification, pages 403–418,
2000.

[38] A. Bouajjani, A. Legay, and P. Wolper. Handling liveness properties in (omega-
)regular model checking. Electronic Notes in Theoretical Computer Science,
138(3):101–115, 2005.

[39] C. Boulinier, F. Petit, and V. Villain. When graph theory helps self-
stabilization. In ACM Symposium on Principles of Distributed Computing,
pages 150–159, 2004.

[40] C. Boulinier, F. Petit, and V. Villain. Synchronous vs. asynchronous unison.
Algorithmica, 51(1):61–80, 2008.

[41] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 35(8):677–691, 1986.

[42] A. Bui, A. K. Datta, F. Petit, and V. Villain. State-optimal snap-stabilizing PIF
in tree networks. In IEEE International Conference on Distributed Computing
Systems, pages 78–85, 1999.

[43] J. E. Burns, M. G. Gouda, and R. E. Miller. Stabilization and pseudo-
stabilization. Distributed Computing, 7(1):35–42, 1993.

[44] J. E. Burns and J. K. Pachl. Uniform self-stabilizing rings. ACM Transactions
on Programming Languages and Systems, 11(2):330–344, 1989.

[45] D. Cachera and K. Morin-Allory. Verification of safety properties for parame-
terized regular systems. ACM Transactions on Embedded Computing Systems,
4(2):228–266, 2005.

[46] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-
Wesley, 1988.

[47] J. Chen, F. Abujarad, and S. S. Kulkarni. Towards scalable model checking
of self-stabilizing programs. Journal of Parallel and Distributed Computing,
73(4):400–410, 2013.

118



[48] J. Chen and S. S. Kulkarni. Effectiveness of transition systems to model faults.
In International Conference on Logical Aspects of Fault Tolerance, 2011.

[49] V. Chernoy, M. Shalom, and S. Zaks. A self-stabilizing algorithm with tight
bounds for mutual exclusion on a ring. In International Symposium on Dis-
tributed Computing, pages 63–77, 2008.

[50] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: A new
symbolic model checker. International Journal on Software Tools for Technology
Transfer, 2(4):410–425, 2000.

[51] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, strong, and strong
cyclic planning via symbolic model checking. Artificial Intelligence, 147(1-2):35–
84, 2003.

[52] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244–263, 1986.

[53] E. M. Clarke, O. Grumberg, and S. Jha. Verifying parameterized networks.
ACM Transactions on Programming Languages and Systems, 19(5):726–750,
1997.

[54] J. H. Conway. Unpredictable Iterations. In Proceedings of the 1972 Number
Theory Conference, pages 49–52. University of Colorado, Boulder, 1972.

[55] M. Correia, D. G. Ferro, F. P. Junqueira, and M. Serafini. Practical hardening
of crash-tolerant systems. In USENIX Annual Technical Conference, volume 12,
2012.

[56] A. Daliot and D. Dolev. Self-stabilization of byzantine protocols. In Self-
Stabilizing Systems, pages 48–67, 2005.

[57] A. K. Datta, L. L. Larmore, S. Devismes, K. Heurtefeux, and Y. Rivierre.
Self-stabilizing small k-dominating sets. International Journal of Networks and
Communications, 3(1):116–136, 2013.

[58] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 337–340, 2008.

[59] S. Delaët, B. Ducourthial, and S. Tixeuil. Self-stabilization with r-operators
revisited. Journal of Aerospace Computing, Information, and Communication,
3(10):498–514, 2006.

[60] M. Demirbas and A. Arora. Convergence refinement. In IEEE International
Conference on Distributed Computing Systems, pages 589–597, 2002.

119



[61] M. Demirbas and A. Arora. Specification-based design of self-stabilization.
IEEE Transactions on Parallel and Distributed Systems, 27(1):263–270, Jan
2016.

[62] J. Desel, E. Kindler, T. Vesper, and R. Walter. A simplified proof for a
self-stabilizing protocol: A game of cards. Information Processing Letters,
54(6):327–328, 1995.

[63] S. Devismes, S. Tixeuil, and M. Yamashita. Weak vs. self vs. probabilistic stabi-
lization. In IEEE International Conference on Distributed Computing Systems,
pages 681–688, 2008.

[64] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Com-
munications of the ACM, 17(11):643–644, 1974.

[65] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[66] D. Dolev, J. H. Korhonen, C. Lenzen, J. Rybicki, and J. Suomela. Synchronous
counting and computational algorithm design. In International Symposium on
Stabilization, Safety, and Security of Distributed Systems, pages 237–250, 2013.

[67] S. Dolev. Self-Stabilization. MIT Press, 2000.

[68] S. Dolev, M. G. Gouda, and M. Schneider. Memory requirements for silent
stabilization. Acta Inf., 36(6):447–462, 1999.

[69] S. Dolev, Y. A. Haviv, and M. Sagiv. Self-stabilization preserving compiler.
ACM Transactions on Programming Languages and Systems, 31(6), 2009.

[70] S. Dolev and T. Herman. Superstabilizing protocols for dynamic distributed
systems. Chicago Journal of Theoretical Computer Science, 1997.

[71] B. Ducourthial. r-semi-groups: A generic approach for designing stabilizing
silent tasks. In International Symposium on Stabilization, Safety, and Security
of Distributed Systems, pages 281–295, 2007.

[72] B. Ducourthial and S. Tixeuil. Self-stabilization with r-operators. Distributed
Computing, 14(3):147–162, 2001.

[73] B. Ducourthial and S. Tixeuil. Self-stabilization with path algebra. Theoretical
Computer Science, 2003:293–1, 2003.

[74] A. Ebnenasir. Automatic Synthesis of Fault-Tolerance. PhD thesis, Michigan
State University, May 2005.

[75] A. Ebnenasir and A. Farahat. A lightweight method for automated design of
convergence. In IEEE International Parallel and Distributed Processing Sym-
posium, pages 219–230, 2011.

120



[76] A. Ebnenasir and A. Farahat. Swarm synthesis of convergence for symmetric
protocols. In European Dependable Computing Conference, pages 13–24, 2012.

[77] E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Com-
puter Science, Volume B: Formal Models and Sematics (B), pages 995–1072.
Elsevier, 1990.

[78] E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness in the
temporal logic of branching time. Journal of Computer and System Sciences,
30(1):1–24, 1985.

[79] E. A. Emerson and V. Kahlon. Reducing model checking of the many to the few.
In International Conference on Automated Deduction, pages 236–254, 2000.

[80] E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propo-
sitional mu-calculus (extended abstract). In Symposium on Logic in Computer
Science, pages 267–278, 1986.

[81] E. A. Emerson and K. S. Namjoshi. Reasoning about rings. In ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 85–94,
1995.

[82] E. A. Emerson and K. S. Namjoshi. On reasoning about rings. International
Journal of Foundations of Computer Science, 14(4):527–550, 2003.

[83] F. Faghih and B. Bonakdarpour. Smt-based synthesis of distributed self-
stabilizing systems. In International Symposium on Stabilization, Safety, and
Security of Distributed Systems, pages 165–179, 2014.

[84] F. Faghih and B. Bonakdarpour. Smt-based synthesis of distributed self-
stabilizing systems. ACM Transactions on Autonomous and Adaptive Systems,
10(3):21, 2015.

[85] N. Fallahi, B. Bonakdarpour, and S. Tixeuil. Rigorous performance evaluation
of self-stabilization using probabilistic model checking. In IEEE Symposium on
Reliable Distributed Systems, pages 153–162, 2013.

[86] Y. Fang, N. Piterman, A. Pnueli, and L. D. Zuck. Liveness with invisible rank-
ing. International Journal on Software Tools for Technology Transfer, 8(3):261–
279, 2006.

[87] A. Farahat. Automated Design of Self-Stabilization. PhD thesis, Michigan
Technological University, 2012.

[88] A. Farahat and A. Ebnenasir. A lightweight method for automated design
of convergence in network protocols. ACM Transactions on Autonomous and
Adaptive Systems, 7(4):38:1–38:36, Dec. 2012.

121



[89] A. Farahat and A. Ebnenasir. Local reasoning for global convergence of param-
eterized rings. In IEEE International Conference on Distributed Computing
Systems, pages 496–505, 2012.

[90] B. Finkbeiner and S. Schewe. Bounded synthesis. International Journal on
Software Tools for Technology Transfer, 15(5-6):519–539, 2013.

[91] K. Fisler, R. Fraer, G. Kamhi, M. Y. Vardi, and Z. Yang. Is there a best
symbolic cycle-detection algorithm? In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 420–434, 2001.

[92] D. Fisman, O. Kupferman, and Y. Lustig. On verifying fault tolerance of
distributed protocols. In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 315–331, 2008.

[93] L. Fribourg and H. Olsén. Reachability sets of parameterized rings as regular
languages. Electronic Notes in Theoretical Computer Science, 9:40, 1997.

[94] P. Funk and I. Zinnikus. Self-stabilization as multiagent systems property.
In International Conference on Autonomous Agents and Multi-Agent Systems,
pages 1413–1414, 2002.

[95] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[96] R. Gentilini, C. Piazza, and A. Policriti. Computing strongly connected com-
ponents in a linear number of symbolic steps. In ACM-SIAM Symposium on
Discrete Algorithms, pages 573–582, 2003.

[97] W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani. Anonymous
daemon conversion in self-stabilizing algorithms by randomization in constant
space. In International Conference on Distributed Computing and Networking,
pages 182–190, 2008.

[98] C. P. Gomes, B. Selman, and H. A. Kautz. Boosting combinatorial search
through randomization. In AAAI Conference on Artificial Intelligence, pages
431–437, 1998.

[99] M. G. Gouda. The triumph and tribulation of system stabilization. In Workshop
on Distributed Algorithms, pages 1–18, 1995.

[100] M. G. Gouda. The theory of weak stabilization. In Workshop on Self-Stabilizing
Systems, pages 114–123, 2001.

[101] M. G. Gouda and H. B. Acharya. Nash equilibria in stabilizing systems. Theo-
retical Computer Science, 412(33):4325–4335, 2011.

122



[102] M. G. Gouda and F. F. Haddix. The stabilizing token ring in three bits. Journal
of Parallel and Distributed Computing, 35(1):43–48, May 1996.

[103] M. G. Gouda and T. Herman. Adaptive programming. IEEE Transactions on
Software Engineering, 17(9):911–921, 1991.

[104] M. G. Gouda and N. J. Multari. Stabilizing communication protocols. IEEE
Transactions on Computers, 40(4):448–458, 1991.

[105] M. Gradinariu and C. Johnen. Self-stabilizing neighborhood unique naming
under unfair scheduler. In International European Conference on Parallel and
Distributed Computing, pages 458–465, 2001.

[106] Y. Gurevich and I. O. Koriakov. A remark on Berger’s paper on the domino
problem. Siberian Mathematical Journal, 13(2):319–321, 1972.

[107] R. K. Guy and F. Harary. On the Möbius ladders. Canadian Mathematical
Bulletin, 10(4):493–496, 1967.

[108] P. Habermehl and T. Vojnar. Regular model checking using inference of regular
languages. Electronic Notes in Theoretical Computer Science, 138(3):21–36,
2005.

[109] S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani. Linear time self-stabilizing
colorings. Information Processing Letters, 87(5):251–255, 2003.

[110] T. Herman. Probabilistic self-stabilization. Information Processing Letters,
35(2):63–67, June 1990.

[111] T. Herman. Self-stabilization: Randomness to reduce space. Distributed Com-
puting, 6:95–98, 1992.

[112] J.-H. Hoepman. Self-stabilizing ring-orientation using constant space. Informa-
tion and Computation, 144(1):18–39, 1998.

[113] G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software
Engineering, 23:279–295, 1997.

[114] R. R. Howell, M. Nesterenko, and M. Mizuno. Finite-state self-stabilizing proto-
cols in message-passing systems. Journal of Parallel and Distributed Computing,
62(5):792–817, 2002.

[115] S.-T. Huang. Leader election in uniform rings. ACM Transactions on Program-
ming Languages and Systems, 15(3):563–573, 1993.

[116] M. Imase and M. Itoh. A design for directed graphs with minimum diameter.
IEEE Transactions on Computers, 32(8):782–784, 1983.

123



[117] A. Israeli and M. Jalfon. Uniform self-stabilizing ring orientation. Information
and Computation, 104(2):175–196, 1993.

[118] G. Itkis, C. Lin, and J. Simon. Deterministic, constant space, self-stabilizing
leader election on uniform rings. In Workshop on Distributed Algorithms, pages
288–302, 1995.

[119] S. Jacobs and R. Bloem. Parameterized synthesis. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, pages
362–376, 2012.

[120] A. Jhumka. Automated design of efficient fail-safe fault tolerance. PhD thesis,
Darmstadt University of Technology, 2004.

[121] A. Jhumka, F. C. Freiling, C. Fetzer, and N. Suri. An approach to synthesise
safe systems. International Journal of Security and Networks, 1(1/2):62–74,
2006.

[122] H. Kakugawa and T. Masuzawa. A self-stabilizing minimal dominating set
algorithm with safe convergence. In IEEE International Parallel and Distributed
Processing Symposium, 2006.

[123] M. H. Karaata. Self-stabilizing strong fairness under weak fairness. IEEE
Transactions on Parallel and Distributed Systems, 12(4):337–345, 2001.

[124] J. Kari. The nilpotency problem of one-dimensional cellular automata. SIAM
Journal on Computing, 21(3):571–586, 1992.

[125] S. Katz and K. J. Perry. Self-stabilizing extensions for message-passing systems.
Distributed Computing, 7(1):17–26, 1993.

[126] A. Khalimov, S. Jacobs, and R. Bloem. Towards efficient parameterized synthe-
sis. In International Conference on Verification, Model Checking, and Abstract
Interpretation, pages 108–127, 2013.

[127] A. P. Klinkhamer and A. Ebnenasir. On the complexity of adding convergence.
In Fundamentals of Software Engineering, pages 17–33, 2013.

[128] A. P. Klinkhamer and A. Ebnenasir. Verifying livelock freedom on parameter-
ized rings. Technical Report CS-TR-13-01, Michigan Technological University,
July 2013. http://www.cs.mtu.edu/html/tr/13/13-01.pdf.

[129] A. P. Klinkhamer and A. Ebnenasir. Verifying livelock freedom on parameter-
ized rings and chains. In International Symposium on Stabilization, Safety, and
Security of Distributed Systems, pages 163–177, 2013.

124

http://www.cs.mtu.edu/html/tr/13/13-01.pdf


[130] A. P. Klinkhamer and A. Ebnenasir. Synthesizing self-stabilization through
superposition and backtracking. In International Symposium on Stabilization,
Safety, and Security of Distributed Systems, pages 252–267, 2014.

[131] A. P. Klinkhamer and A. Ebnenasir. Synthesizing self-stabilization through su-
perposition and backtracking. Technical Report CS-TR-14-01, Michigan Tech-
nological University, May 2014. http://www.mtu.edu/cs/research/papers/

pdfs/CS-TR-14-01.pdf.

[132] A. P. Klinkhamer and A. Ebnenasir. On the hardness of adding nonmask-
ing fault tolerance. IEEE Transactions on Dependable and Secure Computing,
12(3):338–350, May 2015.

[133] A. P. Klinkhamer and A. Ebnenasir. Shadow/puppet synthesis: A stepwise
method for the design of self-stabilization. IEEE Transactions on Parallel and
Distributed Systems, 2016. In Press.

[134] D. E. Knuth. The Art of Computer Programming, Volume I: Fundamental
Algorithms. Addison-Wesley, 1968.

[135] A. Kosowski and L. Kuszner. Energy optimisation in resilient self-stabilizing
processes. In International Conference on Parallel Computing in Electrical En-
gineering, pages 105–110, 2006.

[136] S. S. Kulkarni. Component-based design of fault-tolerance. PhD thesis, Ohio
State University, 1999.

[137] S. S. Kulkarni and A. Arora. Automating the addition of fault-tolerance. In In-
ternational Symposium on Formal Techniques in Real-Time and Fault-Tolerant
Systems, pages 82–93, 2000.

[138] S. S. Kulkarni and M. Arumugam. Transformations for write-all-with-collision
model. Computer Communications, 29(2):183–199, 2006.

[139] S. S. Kulkarni and A. Ebnenasir. The complexity of adding failsafe fault-
tolerance. In IEEE International Conference on Distributed Computing Sys-
tems, pages 337–344, 2002.

[140] S. S. Kulkarni and A. Ebnenasir. Complexity issues in automated synthesis of
failsafe fault-tolerance. IEEE Transactions on Dependable and Secure Comput-
ing, 2(3):201–215, 2005.

[141] S. S. Kulkarni and A. Ebnenasir. The effect of the specification model on the
complexity of adding masking fault tolerance. IEEE Transactions on Depend-
able and Secure Computing, 2(4):348–355, 2005.

125

http://www.mtu.edu/cs/research/papers/pdfs/CS-TR-14-01.pdf
http://www.mtu.edu/cs/research/papers/pdfs/CS-TR-14-01.pdf


[142] S. A. Kurtz and J. Simon. The undecidability of the generalized collatz problem.
In Theory and Applications of Models of Computation, pages 542–553, 2007.

[143] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic verification of her-
man’s self-stabilisation algorithm. Formal Aspects of Computing, 24(4):661–670,
2012.

[144] H. J. La and S. D. Kim. A self-stabilizing process for mobile cloud computing. In
IEEE International Symposium on Service-Oriented System Engineering, pages
454–462, 2013.

[145] L. Lamport and N. A. Lynch. Distributed computing: Models and methods.
In Handbook of Theoretical Computer Science, Volume B: Formal Models and
Sematics (B), pages 1157–1199. Elsevier, 1990.

[146] L. Lamport, R. E. Shostak, and M. C. Pease. The byzantine generals prob-
lem. ACM Transactions on Programming Languages and Systems, 4(3):382–401,
1982.

[147] D. Li, X. Lu, and J. Wu. FISSIONE: a scalable constant degree and low con-
gestion dht scheme based on kautz graphs. In IEEE International Conference
on Computer Communications, pages 1677–1688, 2005.

[148] Y. Lin, B. Bonakdarpour, and S. S. Kulkarni. Automated addition of fault-
tolerance under synchronous semantics. In International Symposium on Stabi-
lization, Safety, and Security of Distributed Systems, pages 266–280, 2013.

[149] R. J. Lipton and J. S. Sandberg. PRAM : a scalable shared memory. Technical
Report CS-TR-180-88, Princeton University, Sept. 1988.

[150] Z. Liu and M. Joseph. Transformation of programs for fault-tolerance. Formal
Aspects of Computing, 4(5):442–469, 1992.

[151] A. J. Mayer, R. Ostrovsky, Y. Ofek, and M. Yung. Self-stabilizing symmetry
breaking in constant space. SIAM Journal on Computing, 31(5):1571–1595,
2002.

[152] B. D. McKay and A. Piperno. Practical graph isomorphism, ii. Journal of
Symbolic Computation, 60:94–112, 2014.

[153] J. Meseguer, M. Palomino, and N. Martí-Oliet. Equational abstractions. Theor.
Comput. Sci., 403(2-3):239–264, 2008.

[154] B. Neggazi, V. Turau, M. Haddad, and H. Kheddouci. A self-stabilizing al-
gorithm for maximal p-star decomposition of general graphs. In International
Symposium on Stabilization, Safety, and Security of Distributed Systems, pages
74–85, 2013.

126



[155] M. Nesterenko and A. Arora. Stabilization-preserving atomicity refinement.
Journal of Parallel and Distributed Computing, 62(5):766–791, 2002.

[156] M. Nesterenko and S. Tixeuil. Ideal stabilization. International Journal of Grid
and Utility Computing, 4(4):219–230, 2013.

[157] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system.
In International Conference on Automated Deduction, pages 748–752, 1992.

[158] M. C. Pease, R. E. Shostak, and L. Lamport. Reaching agreement in the
presence of faults. Journal of the ACM, 27(2):228–234, 1980.

[159] A. Pnueli. The temporal logic of programs. In Symposium on Foundations of
Computer Science, pages 46–57, 1977.

[160] A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesize.
In Symposium on Foundations of Computer Science, pages 746–757, 1990.

[161] H. Rogers. Theory of recursive functions and effective computability (Reprint
from 1967). MIT Press, 1987.

[162] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall Press, Upper Saddle River, NJ, USA, 3rd edition, 2009.

[163] S. K. Shukla, D. J. Rosenkrantz, and S. S. Ravi. Developing self-stabilizing
coloring algorithms via systematic randomization (extended abstract). In Pro-
ceedings of the International Workshop on Parallel Processing, pages 668–673,
1994.

[164] S. K. Shukla, D. J. Rosenkrantz, and S. S. Ravi. Observations on self-stabilizing
graph algorithms for anonymous networks (extended abstract). In Proceedings
of the 2nd Workshop on Self-Stabilizing Systems, pages 7–1, 1995.

[165] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal
logics. Journal of the ACM, 32(3):733–749, 1985.

[166] F. Somenzi. CUDD: Cu decision diagram package release 2.3.0, 1998.

[167] R. C. Steinke and G. J. Nutt. A unified theory of shared memory consistency.
Journal of the ACM, 51(5):800–849, Sept. 2004.

[168] F. A. Stomp. Structured design of self-stabilizing programs. In Israeli Sympo-
sium on Theory of Computing and Systems, pages 167–176, 1993.

[169] I. Suzuki. Proving properties of a ring of finite-state machines. Information
Processing Letters, 28(4):213–214, July 1988.

127



[170] G. Tel. Total algorithms. In International Conference on Concurrency, pages
277–291, 1988.

[171] T. Touili. Regular model checking using widening techniques. Electronic Notes
in Theoretical Computer Science, 50(4):342–356, 2001.

[172] T. Touili. Computing transitive closures of hedge transformations. International
Journal of Critical Computer-Based Systems, 3(1/2):132–150, 2012.

[173] M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of
programs. Journal of Computer and System Sciences, 32(2):183–221, 1986.

[174] G. Varghese. Self-stabilization by local checking and correction. PhD thesis,
MIT, Oct. 1992.

[175] G. Varghese. Self-stabilization by counter flushing. SIAM Journal on Comput-
ing, 30(2):486–510, 2000.

[176] H. Wang. Proving theorems by pattern recognition II. Bell System Technical
Journal, 40:1–42, 1961.

[177] U. Wappler and C. Fetzer. Software encoded processing: Building depend-
able systems with commodity hardware. In Computer Safety, Reliability, and
Security, pages 356–369. Springer, 2007.

[178] P. Wolper and B. Boigelot. Verifying systems with infinite but regular state
spaces. In International Conference on Computer-Aided Verification, pages 88–
97, 1998.

[179] L. Zhu and S. Kulkarni. Synthesizing round based fault-tolerant programs using
genetic programming. In International Symposium on Stabilization, Safety, and
Security of Distributed Systems, pages 370–372, 2013.

128


	On the Limits and Practice of Automatically Designing Self-Stabilization
	Recommended Citation

	Contents
	List of Protocols
	List of Algorithms
	List of Figures
	Preface
	Acknowledgements
	Abstract
	Introduction
	Motivation for Shadow/Puppet Synthesis
	Contributions

	Concepts
	Topology and Protocol
	Actions of a Process
	Transitions of a Protocol
	Executions of a Protocol

	Convergence and Stabilization
	To Legitimate States
	To Silent States
	To a Shadow Protocol
	To a Subset of States
	From Transient Faults

	Scheduling Daemon
	Fairness
	Execution Semantics
	Probabilistic Processes


	Related Work
	System Model
	Communication
	Fairness
	Faults

	Verification
	Hardness
	Implementation
	Symbolic Cycle Detection

	Design
	Hardness
	Manual Techniques
	Automated Techniques

	Parameterized Systems
	Decidability of Verification
	Decidable Restrictions
	Regular Model Checking

	Protocols
	Coloring
	Orientation
	Token Passing
	Leader Election


	A Backtracking Algorithm for Shadow/Puppet Synthesis
	Synthesis Problem
	Overview of the Search Algorithm
	Algorithm Details
	Optimizing the Decision Tree
	Probabilistic Stabilization

	Case Studies
	2-State Maximal Matching on Rings
	5-State Token Ring
	3-State Token Chain
	Daisy Chain Orientation
	Specifying Various Topologies

	Adding Convergence is Hard
	Problem Statement
	Polynomial-Time Mapping
	Adding Convergence
	Adding Self-Stabilization
	Adding Nonmasking Fault Tolerance

	Verifying Convergence is Undecidable on Parameterized Unidirectional Rings
	Concepts
	Livelock Characterization
	Tiling
	Variants of the Domino Problem
	Equivalence to Livelock Detection
	Equivalent Tile Sets

	Decidability of Verification
	Verifying Stabilization
	Effects of Consistency and Scheduling

	Decidability of Synthesis

	Conclusions and Future Work
	Conclusions
	Future Work
	Utility
	Speed
	Generalization


	References

