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Abstract 
 
Global climate change might significantly impact future ecosystems.  The purpose of this 

thesis was to investigate potential changes in woody plant fine root respiration in 

response to a changing climate.  In a sugar maple dominated northern hardwood forest, 

the soil was experimentally warmed (+4 °C) to determine if the tree roots could 

metabolically acclimate to warmer soil conditions.  After one and a half years of soil 

warming, there was an indication of slight acclimation in the fine roots of sugar maple, 

helping the ecosystem avoid excessive C loss to the atmosphere. In a poor fen northern 

peatland in northern Michigan, the impacts of water level changes on woody plant fine 

root respiration were investigated.  In areas of increased and also decreased water levels, 

there were increases in the CO2 efflux from ecosystem fine root respiration.  These 

studies show the importance of investigating further the impacts climate change may 

have on C balance in northern ecosystems. 
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Chapter 1 
 

Thesis Introduction 
 

The Intergovernmental Panel on Climate Change (IPCC) predicts that by 2100, the planet 

as a whole will be from 2-4°C warmer, with significant local and regional changes in 

water availability due to altered precipitation regimes (IPCC 2007).  Greenhouse gases 

are one of the main contributors to climate change, with these gases affecting the 

radiative balance of this planet, generally causing more energy to be reemitted toward the 

surface of the earth causing a general warming of the planet.  The response of the 

autotrophic portion of this planet to climate change is not fully understood, and the 

purpose of this thesis is to improve our understanding of how root systems of woody 

plants might respond to climate change and how this will affect  ecosystem carbon 

balance and possible feedbacks to atmospheric CO2 and climatic forcing.   

 

This study chose to specifically investigate root respiration of plants as the way to 

determine the effects of climate change on these systems.  Respiration is the use of 

photosynthate to create energy and carbon skeletons.  Respiration occurs in all living 

tissues of the plant and the energy created through this process is used in creating new 

tissue, maintaining tissues, and conducting transport of ions.  Respiration is a metabolic 

process, and thus, is sensitive to temperature and has been found to often respond 

exponentially to increased temperatures (Tjoelker et al. 2001).  The fine roots (<1 mm) of 

woody perennials are very active.  For example, the very fine roots (< 0.5 mm) in surface 
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soil (0-10 cm soil depth) have been found to contribute 53% to ecosystem root respiration 

(Burton et al. 2011). 

 

If climate change occurs during the next century, and global temperatures rise, then we 

could see exponential increases of root respiration, in accordance with values of Q10 in 

the range of 2 to 3  (Q10 is the relative increase in respiration for every 10 °C increase in 

temperature) (Piao et al. 2010).  This exponential increase in respiration would represent 

an increased return of photosynthate to the atmosphere as CO2 (a greenhouse gas).  A 

positive feedback loop could then occur with this increase in atmospheric CO2 increasing 

global temperatures more, and thus causing respiration rates to increase further.  This 

enhanced respiratory release of CO2 also would represent less C that the plant can use for 

biomass production, and thus could affect net primary productivity (NPP).  However, if 

the plants can acclimate, that is metabolically down-regulate respiration as temperatures 

rise, they can mitigate C loss from the plant to the atmosphere.  The following chapters 

will discuss two experiments conducted to observe changes in fine root respiration in two 

very different ecosystems.  The research described in Chapter 2 was conducted in a sugar 

maple (Acer saccharum Marsh.) dominated northern hardwood forest in northern 

Michigan where the soil was experimentally warmed to mimic climate change.  The 

degree to which sugar maple root respiration can metabolically acclimate to these 

increased temperatures was observed in heated soil both with and without a the use of 

water addition to alleviate drier soil conditions associated with increased temperatures.  

Chapter 3 describes research conducted in a sphagnum dominated poor fen located in 

northern Michigan, with black spruce (Picea mariana (Mill.) B. S. P.), tamarack (Larix 
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laricina (Du Roi) K. Koch), cranberry (Vaccinium spp.), and leatherleaf (Chamaedaphne 

calyculata) plants.  This fen was altered by a failed agriculture attempt that was put in 

place in the early 1900’s.  As a result of this abandoned effort, the site has a series of 

levees and ditches to control and drain water coming into the fen.  This situation provided 

an opportunity to observe the effects of water table on changes in the woody vegetation 

component in this peatland, and how root respiration is affected by altered aeration that is 

representative of possible impacts of climate change on water table depth. 
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Chapter 2 
 
Short-term responses of woody fine root respiration to warmer soil in a 

sugar maple dominated northern hardwood forest exhibits metabolic 

acclimation 

Abstract 
 

Climate change will potentially impact C cycling in terrestrial ecosystems during the next 

century.  Plant respiration uses a significant portion of CO2 fixed during photosynthesis, 

and predicted warmer future temperatures could result in an exponential increase in plant 

respiration, increasing the amount of photosynthate returned to the atmosphere as new 

CO2, and decreasing the amount of C sequestered in new plant biomass.  One way a plant 

may counteract this C loss is through metabolic acclimation, a physiological down-

regulation of respiration at increased temperature.  This study examined root respiration 

in an experimentally warmed sugar maple dominated northern hardwood forest in the 

Upper Peninsula of Michigan, United States.  The objective was to determine if fine roots 

of these trees had the capacity to acclimate to warmer soil temperatures (+4 °C) and 

minimize the C loss from the ecosystem.  This study was conducted from 2009-2011, and 

included a pre-treatment period from May 2009 through June 2010, with the initiation of 

treatments during late summer of 2010 and continuing throughout the growing season of 

2011.  Root respiration was measured biweekly throughout the growing season, at both 

ambient soil temperature for the sample date and at a reference temperature of 18°C.  The 

pre-treatment period found no inherent differences between any of the future treatment 
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plots.  Part of the experimental design consisted of an additional treatment of heat and 

water (ambient +30%), intended to maintain adequate soil moisture content for heated 

soil experiencing increased evaporative demand.  The heat + water treatment allowed us 

to assess whether apparent acclimation due to soil warming was due to increased 

temperature or simply a reduction in respiration associated with drier soil conditions.  

During the treatment period we found down-regulation of metabolic capacity (respiration 

rate at the 18°C reference temperature) for the plots receiving the heat treatment.  Much 

of this was due to drier soil conditions caused by heating, but when soil moisture effects 

were accounted for, there was still down-regulation of root respiration with heating, 

indicating a slight degree of acclimation.  The combined effects of dry soil conditions and 

acclimation resulted in average root respiration for the heat and heat + water treatments 

being 6 and 26% greater, respectively, than in the control, which is far less than the 48% 

increase that would have resulted if a simple exponential increase had occurred for the 

4°C increase in soil temperature. 

 

Introduction 
 

Climate change and its potential impacts on terrestrial ecosystems are a growing global 

concern.  The Intergovernmental Panel on Climate Change (IPCC) predicts that many 

regions of the planet will warm significantly by 2100, while on the other hand, some 

regions will actually become cooler (Christensen et al. 2007).  Additionally, some regions 

of the planet are predicted to receive more annual precipitation, while other regions might 

receive less annual precipitation (Christensen et al. 2007).   The region of the upper Great 
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Lakes, including the Upper Peninsula of Michigan, is predicted to experience 3.5°C 

increase in temperature by 2100 with a possible slight decline in growing season 

precipitation (Christensen et al. 2007).  Understanding how these changes will alter 

productivity and C cycling in terrestrial ecosystems will help humans make management 

decisions to either mitigate changes or prepare for a different planet. 

 

The terrestrial portion of the planet sequesters 1.0 ± 0.8 Pg C/yr (House et al. 2003).  

From 30% - 80% of this is used during plant tissue respiration annually and returns to the 

atmosphere (Atkin and Tjoelker 2003; DeLucia et al. 2007; Litton et al. 2007; Luyssaert 

et al. 2007).  The total soil carbon efflux portion of the carbon cycle has been found to be 

60-80% of total ecosystem respiration, of which 30-60% of soil carbon efflux is 

attributed to root respiration (Bowden et al. 1993; Epron et al. 1999; Nakane et al. 1996; 

Pregitzer et al. 1998). Plant autotrophic respiration of CO2 from forests is 45-60 Pg C/yr 

(Atkin and Tjoelker 2003; Luyssaert et al. 2007), which is currently six to seven times the 

annual C release from fossil fuel combustion (Piao et al. 2010).  The fine roots (<1 mm) 

of woody perennials are very active contributors to ecosystem respiration.  In northern 

hardwood forests, very fine roots (< 0.5 mm) in surface soil (0-10 cm soil depth) 

contributed 53% to ecosystem root respiration, and those to a depth of 50 cm contributed 

69% of ecosystem root respiration (Burton et al. 2011). Plant tissue respiration has been 

found to increase exponentially in response to immediate increases in temperature (Piao 

et al. 2010; Ryan et al. 1997; Tjoelker et al. 2001) with a Q10 often between 1.8 and 2.9 

(Piao et al. 2010).  (Q10 is the increase in respiration rate for every 10°C).  If this response 

to temperature holds true for a long-term climatic warming, net primary productivity 
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(NPP) could be affected, as exponentially more photosynthate would be used for 

respiration and lost as CO2 at higher temperatures, with less left for NPP.  This could lead 

to faster CO2 build up in the atmosphere, as C that would have normally been sequestered 

in plant biomass was released through autotrophic respiration enhancing the greenhouse 

effect.  A positive feedback loop could occur where increased temperatures would cause 

more CO2 to return to the atmosphere, causing even higher global temperatures 

(Woodwell and Mackenzie 1995).   

 

However, this positive feedback loop could be lessened if the plants acclimated to these 

warmer temperatures by reducing metabolic activity of existing tissues or by creating 

new less metabolically active tissues when ephemeral components, such as leaves and 

fine roots, are replaced.  Acclimation to warmer temperatures has been found to occur in 

some plant tissues and the sensitivity of respiration to temperature can decline with 

warmer temperatures (King et al 2006).  Atkin and Tjoelker (2003) found that Q10 values 

for plant respiration are not constant, but decline linearly with increasing temperatures.  

They state that respiration is limited at low temperatures by maximum enzymatic activity, 

but shifts to substrate limitations at higher temperatures, thus affecting Q10 values.  If 

substrate limitation moderates the increase in respiration with climatic warming, then it 

may be possible to maintain or increase NPP.  The presence and ranges of acclimation are 

still unknown for many types of plant tissues, but Tjoelker et al. (2001) found that an 

increase of 1°C ambient temperature could reduce the Q10 value for foliar respiration by 

0.04. However, the long-term scale of acclimation to temperature changes may be lower 

than the short-term scale (Tjoelker et al. 2008).  Atkin et al. (2000a) found acclimation 
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occurred in snow gum leaves (Eucalyptus pauciflora) within one day to changes in 

temperature.  Ryan et al. (1997) state that scientific analysis on plant tissue respiration 

should be investigated with different tree organs (i.e. leaf, stem and root).  Piao et al. 

(2010) ponder what fractions of the total plant tissue respiration are leaf, stem and root.  

Additionally, they ask if each tree organ (leaf, stem and root) shows similar temperature 

sensitivity, and if acclimation is possible for these different plant tissues. Atkin et al. 

(2000b) synthesized several studies across different species of plants where acclimation 

of root respiration does occur.  These species where acclimation occurs due to changing 

growth temperatures are; Plantago lanceolata, Zostera mariana, Citrus volkameriana, 

Festuca ovina, Juncus squarrosus, Nardus stricata, Bellis perennis, Poa annua and 

Holcus lanatus.  Bryla et al. (1997) found growth in different moisture regimes affected 

temperature acclimation, in which Citrus volkameriana root respiration exhibited 

temperature acclimation when growing in wet soils, but showed no acclimation when 

growing in dry soils.  Though the mechanisms that may cause temperature acclimation in 

roots are unclear, Atkin et al. (2000b) suggests that the main factor for a short-term 

response of respiration to temperature is a change in the demand for ATP at warmer 

temperatures, while at low soil temperatures, the response of respiration to temperature is 

controlled by enzyme activity.  Aktin et al. (2000b) states that a method to determine 

acclimation is to compare measurements at a common measuring temperature on plant 

species grown with different growing temperatures.  This study chose 18°C as the 

common reference temperature to assess acclimation, because 18°C is typically close to 

the soil temperature during the warm portion of the growing season (Figure 2.1). 
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Figure 2.1. Temperature response curve for specific root respiration at ambient 
soil temperature May 2009 through August 2011 
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There are several scenarios that can occur with metabolic acclimation of fine root 

respiration to temperature at the ecosystem level.  There could be no metabolic 

acclimation, in which the trees would either lose an increased amount of C to respiration 

or need to undergo other adjustments to mitigate the increase in carbon loss associated 

with increased temperatures (i.e. reduce root biomass).  There also could be acclimation 

by adjusting metabolic capacity of plant cells found in the fine roots.  For example, this 

metabolic adjustment could be a reduction in the number of mitochondria in each cell, 

which would lower the amount of respiration taking place.  Another scenario would be 

the number of cell mitochondria remaining unchanged, but the rate at which each cell 

undergoes respiration decreasing.  Plant mitochondria can be likened to the power 

stations of cells.  The first acclimation scenario (a reduction of mitochondria) could be 

similar to a city reducing the number of power stations, but running all the power stations 

at an unchanged rate.  The second acclimation scenario (a reduction in the rate at which 

the cell undergoes respiration) could be imagined as the city maintaining the same 

number of power stations, but just reducing the output of each station slightly.  Both 

scenarios would reduce the amount of CO2 leaving the power station and entering the 

atmosphere.  An indicator of this metabolic change could be sugar maple trees growing in 

warmer conditions creating new fine roots with lower N concentration. 

 

Acclimation, or other responses of the tree to limit C loss, would help mitigate any 

negative effects of increased temperature on NPP and maintain a forest’s carbon sink 
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strength.  Additionally, NPP could increase as global CO2 levels rise and plants undergo 

CO2 fertilization thus increasing plant water use efficiency (Amthor 1995; DeLucia et al. 

1999), and increased temperatures could also create a longer growing season (Menzel and 

Fabian 1999; Tucker et al. 2001).  This situation would allow trees to capture more C by 

starting photosynthesis earlier in the year.  However, to conduct this photosynthesis the 

trees would have to be supplied with adequate water and nutrients that would allow them 

conduct photosynthesis and respiration.  Atkin and Tjoelker (2003) further postulate that 

water availability could have an effect on the ability of plant tissue respiration to 

acclimate to warmer temperatures. 

 

The objective of this study was to see if the fine roots (<1 mm) in a sugar maple 

dominated northern hardwood forest could metabolically acclimate to increased soil 

temperatures, avoiding excessive C loss to respiration.  This study was located in the 

Upper Peninsula of Michigan.  The soil was experimentally warmed (+4°C) with the use 

of infrared heating lamps in a factorial combination with water additions intended to 

maintain the soil moisture in a subset of heated plots at an equivalent level to that found 

on unheated control plots.  This water addition was intended to allow the effects of 

warmer soil on plant respiration to be separated from effects created by co-occurring 

drier soil conditions.  Specific hypotheses included: 
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Hypothesis 1 

The specific root respiration of sugar maple will increase exponentially with seasonal 

increases in temperature, with no seasonal acclimation (i.e. down-regulation) during 

warm periods of the year. 

 

Hypothesis 2 

There will be no short-term acclimation of fine root respiration in response to 

experimental soil warming.  As a result, in the days to weeks after the initiation of 

treatments specific root respiration from the heat plus water addition plots will be 

significantly higher than the control plots at ambient temperature, and similar to the 

control plots at the reference temperature of 18°C.  After the initiation of treatments the 

specific root respiration at ambient temperature will be the highest for the heat plus water 

addition, intermediate for the heat addition, and lowest for the control and water addition 

plots. 

 

Hypothesis 3 

There will be long-term acclimation of fine root respiration in months to years after the 

initiation of experimental warming.  This will be the result of new fine roots being 

constructed with changes in root N content.  As a result, there will be less fine root N in 

the heat plus water addition, intermediate lessening of fine root N in the heat only and the 

water only addition, and no change in root N for the control plots after the presence of 

acclimation occurs when compared to the other treatments. 
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Materials/Methods 
 

Location 
 
This study was conducted at Michigan Technological University’s Ford Forestry Center 

(FFC) in Baraga County, Michigan (46° 38’ 26.17” N 88° 29’ 00.94” W, 400 m 

elevation) during the growing seasons of 2009 through 2011. Mean annual temperature in 

this region is 4.9 °C, with a growing season average temperature of 15°C across 134 

growing season days.  This area receives on average 879 mm of annual precipitation, 

with 401 mm of precipitation during the growing season (Burton et al. 2011).  During the 

pretreatment measurement year of 2009, the MAT was 4.0 °C with monthly average 

temperature ranging from 16.9 °C in August to -15.2 °C in January.  This pretreatment 

time period also accumulated 915.2 mm of annual precipitation.  The MAT in 2010 was 

6.2 °C with a monthly average ranging from 20.2 °C in July to -8.5 °C in January.  The 

site received 697.7 mm of precipitation in 2010 (Table 2.1). 
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Sugar maple dominates the overstory (>5.0 cm dbh), contributing 89.3% (21.7 m2 ha-1) of 

the overstory basal area.  American elm (Ulmus americana L.), eastern hemlock (Tsuga 

canadensis (L.) Carr.), ironwood (Ostrya virginiana (Mill.) K. Koch) and yellow birch 

(Betula alleghaniensis Britton) comprise the remainder.  Dominant trees in the overstory 

are at least 100 years in age.  Understory species consist of young sprouts and seedlings 

of overstory trees with the addition of black cherry (Prunus serotina Ehrh.), which rarely 

competes successfully in the overstory at this location.  The herbaceous layer consists of 

American fly honeysuckle (Lonicera canadensis Bartram ex Marsh.), common lady fern 

(Athyrium filix-femina (L.) Roth), spinulose shield fern (Dryopteris carthusiana (Vill.) 

H.P. Fuchs), wild leek (Allium burdickii (Hanes) A.G. Jones), dutchman’s breeches 

(Dicentra cucullaria (L.) Bernh.), trillium (Trillium spp. L.) and yellow trout lily 

(Erythronium americanum Ker.). 

 

The soil at the site is classified as a Kallio cobbly silt loam (Coarse-loamy, mixed, 

superactive, frigid Oxyaquic Fragiorthods), which consists of a cobbly silt loam to silt 

loam to a depth of 41 cm below soil surface, where deeper soil consists of sandy loam to 

86 cm turning to gravely loam at the deepest depths of 152 cm. 

 

Disturbance in this forest is historically windthrow and single-tree death (Goodale and 

Aber 2001; Lorimer 2001).  However, since the heavy logging and subsequent clear 

cutting and fires in the late 19th century that occurred in this area, the canopy is more 

evenly aged and singletree death is the most common form of disturbance today.  This 
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area also occasionally experiences instances of periodic ice damage (Goodale and Aber 

2001), defoliation by insects (Kulman 1971) and canopy dieback of sugar maple 

(Duchesne et al. 2003).    

 

Experimental Design 
 
Twelve 10 m by 10 m research plots were established in 2009.  These were divided into 

three blocks of four plots based on geographic separation, with each of four treatments 

randomly assigned to one plot in each group.  Experimental treatments included a control 

(no treatment), soil warming (+4 °C) by infrared lamps, water addition (ambient + 30% 

of average ambient), and soil warming plus water. The water additions are intended to 

offset the increased evaporative water loss due to warming.  Wooden boardwalks were 

installed throughout the plots to minimize disturbance and soil compaction during 

installation of equipment and sample collection. 

 

Sixteen infrared heating lamps (model MRM1215 heaters, Kalglo Electronics Co., 

Bethlehem, PA) were suspended 1.5 m above the soil surface for each of the heated plots 

with the use of a ¾” stainless steel conduit framework.  Each heated plot has four rows of 

IR lamps spaced 2.5 m apart, with each row containing four heaters, also spaced 2.5 m 

apart.  The lamps were spaced so that their infrared beams would overlap slightly on the 

surface of the soil to ensure adequate and even distribution of radiation.  The infrared 

heating lamps were manually adjusted to 80% power to allow the soil to a depth of at 

least 5 cm to increase in temperature by at least 4°C.  The lamps were kept on throughout 



 

the snow-free season, from early May to mid-November and stayed on 24 hours per day 

to follow diurnal fluctuations.  Measurements on site indicate the actual heated area 

slightly exceeded the targeted 10 m by 10 m area and soil temperature slowly declined 

for up to 2 meters outside of the plot edge where soil temperatures equaled the 

temperature found on the control plots (Table 2.2 and Figures 2.2 & 2.3). 

 

 

 

 

Table 2.2.  Temperature differential along transects (n = 24) conducted from inside (-
0.05) and outside the 10 m by 10 m treatment plots for the heated treatments (heat and 
water + heat).  Average plot temperature at the same time was 22.0 C (n = 120). 
 

 
Transect 

(m) 
Temperature 

(°C) 
-0.5 21.3 

0 20.2 
0.5 19.5 
1 18.9 

1.5 18.3 
2 18.3 
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Figure 2.2. The heated footprint illustrated in snow reflects the complete dispersal of 
heat evenly across the 10 m by 10 m treatment plot.  Note the heat extends beyond the 
10 m by 10 m plot (Photo by M. Jarvi). 
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Figure 2.3. Partial heating extended beyond the 10 m by 10 m plots for up to 2 meters 
(Photo by M. Jarvi). 
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Soil and air temperature and soil moisture were monitored with data loggers recording at 

30-minute intervals. At plot center soil temperature at depths of 1, 5 and 15 cm and air 

temperature at 1 m were monitored (Hobo U12 4-external channel outdoor/ industrial 

data logger with TMC6-HA probes, Onset Computer Corporation, Bourne, MA).  

Volumetric soil moisture and soil temperature were also recorded at 2, 5 and 10 cm 

below soil surface under heater rows and 2 and 5 cm depths halfway between heater rows 

in locations approximately midway from plot center to plot edge (Em50 data loggers with 

5TM temperature/moisture probes, Decagon Devices Inc., Pullman, Washington).  

Additionally, on plots receiving warming, soil moisture was monitored at 2 and 5 cm 

below the soil surface directly under and halfway between heater rows near the plot edge 

(Hobo U12 4-external channel outdoor/industrial data logger with TMC6-HA probes, 

Onset Computer Corporation, Bourne, MA). 

 

Ambient precipitation was measured with a weighing rain gage (Model 5-780, Belfort 

Instrument Co., Baltimore, MD) located in an open area 150 m from the experimental 

plots.  Precipitation used for the water addition plots was captured with the use of three-

1,900 L tanks and gutter systems on rooftops of buildings at the Ford Forestry Center, in 

close proximity to the study site.  Water was distributed to the plots with the use of four 

sprinkler heads (5000 series rotor, Rainbird Corporation, Tucson, AZ) per plot that 

oscillated 90° from each corner of the plot.  The sprinkler head output was adjusted so 

that there was a slight overlap of water at the center of the plot to ensure even distribution 

of water.  Water addition schedules were arranged to supplement natural rain events 

when possible, to allow for natural wetting and drying cycles on watered plots.   
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Root Respiration 
 
Fine root respiration (<1 mm diameter) was measured periodically over three growing 

seasons from 2009 through 2011 using an open-system infrared gas analyzer (IRGA, 

CIRAS-1 and CIRAS-2 portable gas analyzers, PP Systems, Haverhill, MA) at both 

ambient soil temperature and a constant reference temperature of 18 °C.  Measurements 

at the reference temperature were used to assess changes in respiratory capacity over time 

and across treatments, and have been found to be a reliable test of acclimation to 

experimental warming (Atkin et al. 2000a).  Excised fine root samples were obtained 

with the use of a 5 cm diameter by 10 cm deep soil core. Three cores per plot were taken 

from the center 5 m by 5 m portion of the plot to maximize the likelihood of sampling 

roots that were connected to trees that had a vast majority of their root system located in 

treated soil.  The roots were hand cleansed of soil, and approximately 2 g fresh weight of 

fine roots (<1 mm diameter) were placed in a respiration cuvette attached to the IRGA 

operating in an open system (Burton and Pregitzer 2003; Burton et al. 2011).  Respiration 

rates were recorded after allowing fifteen minutes for readings to stabilize.  The cuvette 

bases were placed in a water bath to maintain the respiration samples at the desired target 

temperatures.  Respiration was analyzed at a CO2 concentration of 1000 μl l-1, which 

Burton et al. (1997) found approximates the soil CO2 concentrations typically found near 

the soil surface of sugar maple dominated northern hardwood forests.  The samples were 

subsequently dried at 65 °C for 48 hours in the lab to obtain dry weights of roots.  The 

samples were then ground to a fine powder (8000M Mixer/Mill, Spex SamplePrep LLC, 
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Metuchen, NJ) and analyzed for nitrogen (N) concentration with an elemental analyzer 

(Carlo Erba NA 1500 NC, CE Elantech, Lakewood, NJ). 

 

Root respiration was measured every two to three weeks during three time periods: 

pretreatment, post-installation of experimental infrastructure (post-installation) and 

treatment.  The pretreatment period from May 2009 to June 2010 was used to determine 

if there were any underlying differences between the plots before any heating and water 

infrastructure was built and before any treatments were started.  The post-installation 

period from July 2010 to September 2010 was used to determine if any changes in root 

respiration had occurred due to installation of the infrastructure that supports this 

experiment.  The treatment period from September 2010 to August 2011 was the period 

of time after the initiation of treatments. 

  

Statistical Analyses 
 

All statistical analyses were conducted with R (2.12.0, R Development Core Team, 

Vienna, Austria).  Non-linear regression was used to develop temperature response 

curves of specific root respiration at ambient soil temperature using data from the 

pretreatment period for all plots, plus data from control plots from the post-installation 

and treatment periods.  This non-linear regression was used to develop the Q10 for 

specific root respiration applicable this forest.  Seasonal acclimation was assessed from 

this data by plotting specific root respiration at the reference temperature of 18 °C against 

the applicable ambient soil temperatures for those sample dates.  A strong negative 
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correlation would indicate that as seasonal temperatures increased, the roots acclimate to 

warmer temperatures by down-regulating specific root respiration.  Repeated measures 

analysis of variance (ANOVA) was used to test the effects of soil warming and water 

additions on fine root respiration rates across time.  Separate analyses were performed for 

the pretreatment, post-installation and treatment periods and for ambient and reference 

temperatures.  The pretreatment and post-installation periods used date (repeated 

measure) and future treatment as factors in the ANOVA.  The treatment period used a 

two-factor (heat and water) repeated measures (date) ANOVA. 

Results 

Pretreatment 
 
The purpose of the pretreatment period was to compare future treatment designations to 

determine if there were any pre-existing differences.  This period was also used to 

determine if there was any seasonal acclimation of root respiration, with a down 

regulation of specific root respiration as soil temperatures warmed.  There were thirteen 

sample dates during the growing season within the pretreatment sample period occurring 

from 27 May 2009 to 30 June 2010.  Repeated measures ANOVA indicated no 

significant differences between the plots and future treatment designations at both 

ambient (P = 0.84) and reference (P = 0.86) soil temperatures (Table 2.3, Figure 2.4 & 

2.5).   There are significant differences among sample dates at ambient (P = <0.001) and 

reference (P = <0.01) measurement temperatures.  We found that the specific root 

respiration at this site does indeed increase exponentially with temperature, and 

subsequently used all pretreatment data, and all treatment data for the control plots to 
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develop a temperature response curve (Figure 2.1).  This temperature response curve was 

fitted with a trend line using non-linear regression (Equation 2.1), where Rt is specific 

root respiration and T is ambient soil temperature.  This fitted equation was then used to 

develop the Q10 for this site, which was 2.7 (Equation 2.2) (Figure 2.1). 

 

Eq. 2.1: R = 0.8539 * e0.0993 * T 

Eq. 2.2: Q10 = e(0.0993 * 10) 

  Q10 = 2.7 
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Figure 2.4. Average specific root respiration by treatment at ambient soil 
temperature (average 12.3°C) for the pretreatment period of 2009-2010 (n = 13).  
Error bars are standard error of the mean. 
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Figure 2.5. Average specific root respiration by treatment at the 18°C reference 
temperature (average 17.9°C) for the pretreatment period of 2009-2010 (n = 13).  
Error bars are standard error of the mean. 
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We used plotted specific root respiration at the reference temperature against ambient soil 

temperature for each sample date and fit a correlation to that data to determine if seasonal 

acclimation occurs on the site.  Seasonal acclimation does not occur (P = 0.47, r = -0.15), 

with the fine roots of sugar maple showing little reduction in metabolic capacity, as 

indicated by specific root respiration at the reference temperature of 18°C, when 

considering periods of adequate soil moisture.  When all time periods, including periods 

of drought, are used in the analysis there is a slight reduction of metabolic capacity with 

warmer soil temperature (P  = 0.09, r = -0.33) (Figure 2.6). 
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Figure 2.6.  Specific root respiration at reference temperature plotted against the 
ambient soil temperature for each sample date to assess seasonal temperature 
acclimation.  All pretreatment and post-installation plots and dates, with control plots 
from the post-warming dates used in the analysis.  The closed circles and solid 
regression line indicate periods of adequate soil moisture (>0.20 cm3 cm-3) (n = 25).  
The open circles indicate dry periods (<0.20 cm3 cm-3), and the dashed regression line 
is for all data (both wet and dry periods n = 28).  Pearson’s correlation for the wet 
period is -0.15 (P = 0.47), and for the wet and dry period is -0.33 (P = 0.09).  Error 
bars are standard error of the mean for the twelve samples taken on each measurement 
date. 
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Post-installation 
 
The post-installation period occurred from 23 July 2010 to 13 September 2010 and 

consisted of four sampling dates.  Repeated measures ANOVA indicated no significant 

differences among the future treatment designations after potential disturbance on the site 

during the construction of the infrastructure to support the experiment P = 0.94 at 

ambient temperature and P = 0.94 at reference temperature (Table 2.4, Figures 2.7 & 

2.8).  There was a significant measurement date effect (P = <0.001) at ambient soil 

temperature. 
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Figure 2.7. Average specific root respiration across treatments at ambient temperature 
(average 16.1°C) for the post-installation period of 2010 (n = 4).  Error bars are 
standard error of the mean. 
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Figure 2.8. Average specific root respiration across treatments at reference 
temperature (average 18.0°C) for the post-installation period of 2010 (n = 4).  Error 
bars are standard error of the mean. 
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Treatment period  
 

All dates analyzed 

The treatment period included 11 sample dates from 20 September 2010 to 12 November 

2010 for the 2010 growing season, and from 13 May 2011 to 23 August 2011 for the 

2011 growing season.  There was a significant measurement date effect at ambient (P = 

<0.001) and reference (P = <0.001) temperatures during this period (Table 2.5).  For root 

respiration measured at ambient soil temperature, a significant date x heat interaction (P 

= 0.03) occurred and a slight water x date interaction occurred (P = 0.07).  At the 

reference temperature, there was a significant heat effect on root respiration (P =0.01) 

(Table 2.5, Figures 2.9 & 2.10). 

 

Dates with adequate soil moisture (>0.20 cm3 cm-3) 

Adequate soil moisture occurred for eight of the eleven treatments period sample dates, 

with 15 July 2011, 1 August 2011, and 23 August 2011 excluded due to dry soil 

conditions on the heated plots (Table 2.6, Figures 2.11, 2.12, 2.13).  There was a heat 

effect on root respiration at ambient soil temperature for these dates (P = 0.03) and a 

slight heat effect for root respiration at the reference temperature (P = 0.07) (Table 2.6).  

There were also significant differences among sample dates in root respiration at both the 

ambient soil temperature (P = <0.001) and reference temperature 18°C (P = <0.01).   
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Figure 2.9. Average specific root respiration by treatment at ambient temperature 
(average 13.8°C) for the treatment period of 2010-2011 for all dates (n = 11).  
Error bars are standard error of the mean. 
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Figure 2.10. Average specific root respiration by treatment at reference temperature 
(average 18.0°C) for the treatment period of 2010-2011 for all dates (n = 11).  Error 
bars are standard error of the mean. 
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Figure 2.11. Average specific root respiration by treatment at ambient temperature 
(average 12.8°C) for the treatment period of 2010-2011 for all dates with adequate soil 
moisture (>0.20 cm3 cm-3) (n = 8).  Error bars are standard error of the mean. 
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Figure 2.12. Average specific root respiration by treatment at reference 
temperature (average 17.9°C) for the treatment period of 2010-2011 for all dates 
with adequate soil moisture (>0.20 cm3 cm-3) (n = 8).  Error bars are standard error 
of the mean. 
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Root N 
 
There were no statistical differences for N concentration (g kg-1) of the fine roots between 

the plots for the period of time before the initiation of treatments (both pretreatment and 

post-installation periods) (P = 0.60).  Additionally, there was no significant difference in 

fine root N during the treatment period (P = 0.93) (Figure 2.14). 

 

Root respiration and soil moisture 
 
All treatments have a positive relationship of fine root respiration at reference 

temperature to volumetric soil moisture (cm3 cm-3) (P = <0.001, r = 0.57).  There is an 

indication that the heated plots (heat and water + heat) have lower metabolic capacity 

(respiration at 18 °C reference) at a given volumetric soil moisture level than the non-

heated plots (control and water) (Figure 2.15). 

 

Root respiration and root N 
 
Fire root respiration at reference temperature has a positive relationship to root N (g kg-1) 

for the non-heated plots (control and water), but there is an inherent decrease in 

respiration at a given root N concentration for the heated plots (heat and heat + water) 

(Figure 2.16). 
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Figure 2.14. Root N concentration (g kg-1) for pre-warming (P = 0.60 for treatment 
effects) (pretreatment & post-installation) and treatment periods (P = 0.90 for 
treatment effects). 
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Figure 2.15. Relationship of specific root respiration at reference temperature to 
volumetric soil moisture by treatment for the treatment period. The solid black line is 
the fitted regression for control treatment, the grey solid line is the fitted regression for 
the heat treatment, the dashed black line is the fitted regression for the water 
treatment, and the dashed grey line is fitted regression for the water + heat treatment. 
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Figure 2.16. Specific root respiration at reference temperature versus root N 
concentration by treatments for the treatment period.  Open triangles are control plots, 
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water + heat plots. Solid black line is the fitted regression for the control plots, the 
grey solid line is the fitted regression for the heat treatment, the dashed black line is 
the fitted regression for the water treatment, and the dashed grey line is the fitted 
regression for water + heat treatment. 
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Discussion 
 

The purpose of the pretreatment period of 2009 was to see if there were any underlying 

differences between any of the groups of plots assigned to the treatments before the 

initiation of the experiment.  We also wanted to confirm that there was an exponential 

increase in specific root respiration to ambient soil temperatures.  We found that fine root 

respiration increased exponentially with a Q10 of 2.7 across a temperature range from 2.8 

to 19.2 °C.  This temperature range also confirmed that our reference temperature of 18 

°C represented the warmer soil temperatures that the fine roots experience in mid-

growing season in the top 10 cm of soil.  There were no pretreatment differences in fine 

root respiration among sets of plots intended for the various treatments.  The significant 

effect of measurement date at ambient temperatures (P = <0.001) is due to variation in 

soil temperatures among dates, affecting root respiration in accordance with the 

calculated Q10 of 2.7.  The significant effect of measurement date on specific root 

respiration at the 18 °C reference temperature (P = <0.01) is likely due to some dates 

having drier soil conditions, which are known to reduce root respiration rates (Burton et 

al. 1998). 

 

Seasonal acclimation would be a down regulating of root respiration as soil temperature 

warmed seasonally.  A slight indication of seasonal temperature acclimation exists when 

all sample periods are considered, but when only sample periods with adequate soil 

moisture (>0.20 cm3 cm-3) are used in the regression analysis there is no seasonal 

acclimation, as only a non-significant (P = 0.47) minor reduction (3.4%) in specific root 
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respiration occurs as soil temperatures increases by 13.7°C.  Even when all sample 

periods, including those with dry soil conditions (<0.20 cm3 cm-3), are considered, there 

is still only a 7.8% reduction (P = 0.09) in specific respiration rate at the reference 

temperature across a 14.4 °C temperature range in ambient soil temperature.  This 

indicates that soil moisture has a fairly important effect on specific root respiration.  It is 

apparent that there is no large down regulation in the respiration of sugar maple fine roots 

to seasonal changes in soil temperatures. 

 

There was visual evidence suggesting some site disturbance occurred during the 

construction of the infrastructure that would support the experiment (racks to hold 

heating lamps, electrical wiring and sprinkler systems to provide the water treatment).  

We therefore analyzed root respiration for the time from where we finished installing the 

infrastructure (23 July 2010) to when we began to initiation of treatments (13 September 

2010).  Root respiration rates remained similar for all treatments in the post-installation 

period at both ambient soil temperatures (P = 0.94) and the reference temperature (P = 

0.94), indicating no effect of installation on root respiration.  There was again a 

significant effect of measurement date at ambient soil temperatures (P = <0.001), and is 

attributed to variation in soil temperature among sample dates.  

  

The treatment period consists of 11 sampling dates from 20 September 2010 to 12 

November 2010, and then again from 13 May 2011 to 23 August 2011.  The growing 

season of 2011 experienced a below average amount of precipitation, and the heated plots 

(heat and water + heat) experienced very dry soil conditions (<0.20 cm3 cm-3) in July and 
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August (Table 2.1).  As a result, separate repeated measures ANOVA were used to assess 

data from all sampling periods (moist and dry soil conditions) and for only those dates 

with adequate soil moisture (>0.20 cm3 cm-3).  There were three sampling dates where the 

volumetric soil content was considered very dry for the heated plots.  These were 15 July 

2011 with 0.18 cm3 cm-3, 1 August 2011 with 0.12 cm3 cm-3, and 23 August 2011 with 

0.11 cm3 cm-3 (Figure 2.13).  When all dates, including those without adequate soil 

moisture, were included, there was a potential for a significant reduction in metabolic 

capacity for the heated treatment, as indicated by reduced specific root respiration at the 

18 °C reference temperature, P = 0.01 (Figure 2.10).  This is also illustrated by the lower 

specific root respiration rates for dry soils for the heated treatment (Figure 2.15).  It is 

evident that at any given soil moisture the plots that receive heat treatments have a lower 

respiratory capacity than those of the non-heated treatments.  This down-regulation of 

respiration at reference temperature for the heat treatments could be an indication of 

acclimation.  There is a slight down-regulation of respiration at reference temperature for 

the heat + water treatment at reference temperature when compared to the control 

treatment.   

 

This apparent acclimation could also be due to the effects of drier soils in the heated 

treatments, as the effect largely goes away when only dates with adequate soil moisture 

are assessed (Figure 2.12).  Because drought can reduce root respiration, a separate 

analysis was conducted for dates with adequate soil moisture.  For dates where soil 

moisture was adequate, root respiration was not impacted by the water additions. Root 

respiration was greater with heat addition at ambient temperature, and marginally lower 
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metabolic capacity (respiration at reference temperature, P = 0.07) occurred with heat 

(Figures 2.9 and 2.10).  This result strengthens the indication that fine root respiration is 

indeed sensitive to soil moisture, and when soil moisture is sufficient to meet the 

increased evaporative demand associated with raised soil temperatures, the fine roots in 

heated plots respire at a rate similar to that which would be predicted at a temperature of 

4°C warmer than the control, using a Q10 of 2.7.  There is a 4% lower difference between 

predicted and actual fine root respiration for the water + heat plots when using a Q10 of 

2.7 and equation 2.1 where there is adequate soil moisture, and a 20% lower difference 

between predicted and actual fine root respiration for the heat only plots.  Still, there is 

evidence of slight acclimation in the heated plots even when there is adequate soil 

moisture for the roots (Figure 2.15).  The combined effects of dry soils and this slight 

acclimation result in annual fine root respiration for the heat treatment being 6% greater 

than the control and that the heat + water treatment being 26% greater than the control.  

This is less than the 48% that would be predicted for the 4°C temperature increase with a 

Q10 of 2.7.  This indicates an ability of these ecosystems to at least partially avoid 

excessive CO2 loss from root respiration in warmer soil. 

 

Slight acclimation is evident at this site but there is no indication that it is due to changes 

in root N concentration.  There was no significant difference between root N among 

treatments during pre-warming (pretreatment and post-installation periods), and there 

were no differences in root N among treatments (Figure 2.14).  During the first year and a 

half of treatment the trees did not construct new fine roots with a lower N concentration 

that would be indicative of a lower amount of enzyme and protein N as a mechanism to 
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down-regulated respiration.  There is a clear indication that soil moisture affects fine root 

respiration in all treatments, but there is also an indication that there is a separation of the 

response of non-heated plots and heated plots, where the heated plots respire at a lower 

rate at a given soil moisture content (Figure 2.15).  Fine root respiration has been found 

to increase with root N concentration (Reich et al. 2008; Atkinson et al. 2007; Ryan et al. 

1996), but there seems to be an interaction going on for the heated plots when compared 

to the non-heated plots.  Even if the heated plots have roots with a higher N 

concentration, they are not respiring at a higher rate when compared to root respiration 

for non-heated plots at a given N concentration (Figure 2.16).  It seems that soil moisture 

and/or substrate limitation have more of an effect on specific root respiration for the 

heated plots. 

 

A long-term response of root systems subjected to soil warming at the Harvard Forest is 

that of reduced biomass (Melillo et al. 2011).  This response could occur in a similar 

fashion at the FFC center as well after a longer period of treatment.  A reduction in root 

biomass from the trees could result from a number of different scenarios, in which 

belowground C allocation patterns, related to C sink strength, could play a role.  Carbon 

in plants often is allocated preferentially to the strongest C sinks (i.e. plant tissues that are 

most active).  If total belowground C allocation remains unchanged in a warmer 

environment, tree fine root biomass might decline as portions of the root system, which 

are less active, receive insufficient carbohydrates and senesce.  Another scenario of 

reduced root biomass could come from adenylate control of respiration (Atkin et al. 

2000b).  This scenario would witness a build up of ATP from enhanced respiration at 
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higher temperature, but the ATP available would be in excess of that needed for 

metabolic functions (e.g. nutrient uptake and transport).  With ATP unused, ADP would 

not be regenerated.  Since ADP is needed for respiration, then this reduction in ADP 

would ultimately limit the ability of the roots to undergo respiration.  Either of these 

scenarios could possibly positively affect C gain, as it they would cause less 

photosynthate to be utilized in less active portions of the root system (e.g. those in lower 

nutrient patches).  The result of this scenario may cause a reduction in C allocation to 

these root segments severe enough to cause senescence, leading to a reducedroot biomass 

similar to the long-term scenario at Harvard Forest (Melillo et al. 2011).  Though reduced 

biomass would not be metabolic acclimation, it is still a response from the plant that 

reduces the amount of carbon lost to the atmosphere, allowing more C to be sequestered 

in production of new plant tissues. 

 

Conclusion 
 

Although seasonal temperature acclimation was not apparent for sugar maple fine roots, 

there was evidence of metabolic acclimation occurring during the first year and a half of 

experimental soil warming by 4 °C.  The increased evaporative demand associated with 

these increased soil temperatures also clearly plays a role in reducing root respiration 

when soils are dry.  However, when only periods of adequate soil moisture are examined, 

a slight down regulation of fine root respiration at a given temperature still occurred.  

This could be due to substrate limitation due to limitations of the total amount of C being 

allocated to belowground resource acquisition.  There also could be adenylate control 
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where the amount of ATP created by enhanced respiration at higher temperature exceeds 

that needed for metabolic processes such as nutrient uptake and transport, leading to a 

reduction in ADP regeneration, and a feedback that limits respiration rate.  Both of these 

scenarios could reduce fine root respiration, and substrate limitation could have further 

impacts, leading to reduced root biomass in the future, if C preferentially flows to only 

the strongest C sinks (i.e. most active portions of the root systems).  Root biomass will 

continue to be measured annually to assess the long-term potential for changes in root 

biomass to serve as a mechanism for avoiding excessive root system respiration in 

warmer soil.  Additionally, metabolic acclimation related to enzyme limitation through 

the production of future root cohorts with lower enzyme and N concentration, will 

continue to be assessed.  Acclimation may not be necessary in plant roots if IPCC 

predictions are correct in modeling future precipitation events.  If the plants experience 

more drought events, root respiration will decrease with these events and thus there will 

be a reduction in C lost to the atmosphere potentially leaving more C sequestered in 

biomass.  However, the plant might have to undergo other physiological changes in the 

roots or leaves to counteract the decrease in available water and its effects on both 

respiration and photosynthesis. 

 
 
 
 
 
 
 
 
 



 

 63

Chapter 3 
 

Ecosystem respiration responses to changes in water level in a northern 

poor fen peatland may be partially attributed to woody fine root 

respiration 

Abstract 
 

Peatlands cover a small portion of the earth’s surface, but contain a large proportion of 

the C sequestered in the world’s terrestrial ecosystems.  Though much C can be 

sequestered in peatlands, CO2 (an important greenhouse gas) is expelled from peatlands 

at during ecosystem respiration.  The amount of this gas either entering or leaving the 

peatland is what allows it to either be a C sink or source in terms of atmospheric 

greenhouse gases.  Future predictions of climate in the world’s peatlands are for 

increased temperatures and changes in precipitation patterns.  These changes in climate 

could have a significant impact on the C cycling within these systems.  Presently, drier 

conditions in peatlands are assumed to increase ecosystem C loss due to lower water 

levels leading to enhanced decomposition of peat that accumulated over a long time 

period in saturated conditions.  In some cases, this could shift peatlands from atmospheric 

C sinks to C sources.  However, the role which root respiration plays in altered ecosystem 

respiration is not well understood.  Root respiration, being a metabolic process, is highly 

sensitive to temperatures and increases exponentially with temperature.  The purpose of 

this study was to determine the role in which fine root respiration of woody plants plays 
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in the C cycle in a northern poor fen located in the Upper Peninsula of Michigan in Seney 

National Wildlife Refuge, and how this role changes with manipulation of water table 

depth.  The area is a sphagnum dominated poor fen with black spruce, tamarack, 

cranberry and leatherleaf dominating the woody plant portion of the vegetation.  This 

location includes a water level manipulation that resulted from a failed agriculture 

attempt that occurred around the beginning of the 20th century.  This study utilized three 

water levels that exist at the site: control, a wet area (where water flowing through the fen 

has backed up), and a drained area (where water flowing through the fen has not been 

allowed to fully enter).  All three of these water level treatments have areas of hummocks 

(raised microtopography), and lawns (lowered microtopography), which also influence 

vegetation present.  Fine root respiration was measured three times during the 2011 

growing season with the use of an open-system IRGA.  Additionally, root biomass was 

measured in order to calculate ecosystem level root respiration (specific respiration x 

biomass), allowing us to determine the contribution of fine root respiration to ecosystem 

C exchange, as measured by eddy covariance.  The wet areas had the highest average 

specific root respiration rate, with the lowest rates occurring in the control.  Root biomass 

was dominated by leatherleaf and cranberry in all areas and microtopological positions.  

Greatest root biomass occurred within the drained hummocks, with the wet areas having 

the second highest biomass, and the controls the lowest amount of biomass.  Overall the 

wet areas had the highest ecosystem root respiration (0.33 μmol CO2 m
-2 s-1), the drained 

areas were similar (0.31 μmol CO2 m
-2 s-1), and the controls were the lowest (0.17 μmol 

CO2 m
-2 s-1).  These rates compare with about 2.3 μmol CO2 m

-2 s-1 of total nighttime 

ecosystem respiration measured from eddy covariance towers from this location.  Woody 
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fine roots in these peatland systems are an important contributor to ecosystem respiration, 

and it is clear that changes in ecosystem C exchange as peatland water tables change are 

not due solely to altered rates of peat decomposition, as significant changes in woody 

root respiration are also possible. 

 

Introduction 
 

Wetlands worldwide occupy 3% of the world’s terrestrial surface; yet they contain about 

33%, or about 455 petagrams (Pg), of the world’s total soil carbon (about 1395 Pg) 

(Gorham 1991; Post et al. 1982).  Current climate change models predict warmer 

temperatures globally in the next century, especially at latitudes close to the north and 

south poles (IPCC 2007).  The majority of peatlands are found in the boreal and subarctic 

regions of the globe, but some peatlands are found in temperate and tropical regions as 

well (Gore 1983).  With global temperatures predicted to increase over the next century, 

there is a potential for increased evaporation and decreased water levels in northern 

peatlands (Gorham 1991; Gorham 1995; IPCC 2007).  Additional water level changes 

will occur due to land use change (Armentano and Menges 1986).  A decrease in near-

surface water levels in peatlands could increase peat decomposition as conditions become 

more aerobic (Holden 2005; Waddington and Price 2000).  Gorham (1991) calculated 

that long-term drainage of peatlands could cause a release of 0.0085 Pg of CO2-C to the 

atmosphere, which is a small proportion of the estimated 0.096 Pg C yr-1 sequestered by 

peatlands (Gorham 1991). 
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Globally C stored in aboveground and belowground vegetation can be highly variable, 

but can range from 342 g m-2 to 6210 g m-2 in woody bogs (Grigal et al. 1985), with an 

average of about 2000 g C m-2 (Grigal et al. 1985; Oechel 1989; Olsen et al. 1983).  

Gorham (1991) used these estimates to conclude that about 98.5% of total peatland 

carbon is in the form of peat, with the remainder (about 1.5%) occurring in vegetation.  

Additionally, Moore et al. (2002) examined plant biomass in bogs and fens in Canada and 

found that aboveground biomass was 487 g m-2 in the bog, and 317 g m-2 in the poor fen, 

with belowground biomass averaging 2,400 g m-2 in the bog and 1,400 g m-2 in the fen.  

Moore et al. (2002) also further compared fine root (<2 mm) biomass in the bog and fen 

systems, and biomass averaged 300 g m-2 and 450 g m-2 respectively.   

 

Comparatively, terrestrial ecosystem soil respiration accounts for 50-70 Pg C yr-1 

(Houghton and Woodwell 1989; Schlesinger 1977), of which temperate deciduous forests 

are about 647 g C m-2 yr-1, temperate coniferous forests efflux rates are 681 g C m-2 yr-1, 

and northern bogs and mires efflux rates are 94 g C m-2 yr-1 (Raich and Schlesinger 

1992).   

 

Peatlands are considered a slight carbon sink (Tolonen et al. 1992), or a carbon source if 

methane (CH4) output overpowers the CO2 sequestration (Whiting and Chanton 2001).  

Moore et al. (2002) found that there is an annual C sequestration rate of about 60 g C m-2 

yr-1 in a poor fen located in Ottawa, Canada.  Other studies have found weaker sinks in 

peatlands of 23 g C m-2 (Gorham 1995) and 2 g C m-2 in boreal peatlands of Sweden 
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(Waddington and Roulet 2000).  A more recent study in eastern Ontario found a daytime 

uptake of 8-12 μmol CO2 m
-2 s-1, and a nighttime efflux of about 4 μmol CO2 m

-2 s-1 from 

both bogs and fens, calculated from eddy covariance measurements (Humphreys et al. 

2006).  With climatic warming and decreased water levels in peatlands, there could be a 

shift from a C sink to a carbon source for some peatlands (Minkkinen and Laine 1998).  It 

has been found that a lowering of the water table in northern peatlands increases annual 

CO2 emissions (Martikainen et al. 1995).  Minkkinen and Laine (1998) found that 

although the peat surface had subsided about 22 cm in a peatland after 60 years of 

drainage in Finland, the C density had increased by about 0.026 g cm-3, and C stores had 

increased about 5.9 kg m-2 since this drainage occurred.  Minkkinen and Laine (1998) 

concluded that the reduction in peat levels due to oxidation of the peat was of little 

importance and that the increase in C density and C storage was from a new input of C 

through NPP of woody trees at their study location.  They further speculated that much of 

this new input of C to the system was through the increase in the fine roots of trees.   

 

Early hypotheses suggested that the draining of peatlands will increase their C efflux, 

potentially causing them to switch from C sinks to C sources.  However, since drainage 

in peatlands can initiate succession towards forest vegetation (Laine et al. 1995), the 

increase in NPP that Minkkinen and Laine (1998) found with woody trees could 

alternatively maintain peatlands as a C sink.   

 

The interaction of woody plants and water table depth in a northern poor fen, especially 

in terms of CO2 efflux associated with fine root (<1mm) respiration, was the focus of this 
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study.  Respiration can be a large determining factor of carbon balance and in many 

instances is very close to GPP in peatland systems (Gorham 1995; Moore et al. 2002; 

Waddington and Roulet 2000).  As a result, changes in respiration can move peatlands 

from a C sink to a C source.  However, measured increases in CO2 efflux that are 

presumed to be due to oxidation of peat (heterotrophic respiration) could also be due to 

enhanced fine root respiration (autotrophic respiration) associated with increased fine 

root biomass from encroaching trees.  Decreased water levels might allow higher peat 

temperatures and higher levels of oxygen that could favor tree species encroachment into 

the peatland.  In addition, the decomposition of peat due to decreased water levels could 

provide needed nutrients for plant biomass production and further provide adequate 

growing conditions for woody plants, helping offset the C loss from peat.  

 

This study was conducted in Seney National Wildlife Refuge (SNWR) in the Upper 

Peninsula of Michigan during the summer of 2011.  A system of ditches and dikes were 

constructed at SNWR in the early part of the 20th century for agricultural attempts that 

subsequently failed.  The effects of the alterations on water levels have persisted, and 

provided an opportunity to study effects of water level in a northern peatland system 

(Figure 3.1).  The series of ditches and levees in this study location run parallel with the 

water flow in some locations which provide a control condition (no water level effect), 

and the ditch/levee runs perpendicularly to the water flow very close to the control area 

which backs up the water on one side of the ditch raising the water level when compared 

to the control, and drains the peatland on the other side of the ditch (Figure 3.1).  Fine 

root respiration rates for woody roots in hummocks and lawns located in different water 
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levels were sampled three times during the summer of 2011.  Woody fine root biomass 

was also measured during the middle sampling period.  
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Specific hypotheses included: 

Hypothesis 1 

Specific root respiration will be highest for the drained hummocks and lawns, with 

control plots having intermediate specific root respiration rates and the wet plots having 

the lowest respiration rates for both hummocks and lawns. 

 

Hypothesis 2 

The drained plots will have the highest amount of woody fine root biomass (<1mm), the 

control plots will be intermediate, and the wet plots will have the lowest biomass. 

 

Hypothesis 3 

Overall the drained plots will have the highest ecosystem level root respiration (biomass 

x specific respiration rate), the control plots will be intermediate and the wet plots will 

have the lowest ecosystem level root respiration. 

 

Hypothesis 4 

Decreased water levels will increase decomposition and thus supply woody tree species 

with more N.  This will cause an increase in root N that will be correlated with increased 

specific root respiration, such that, the drained plot will have higher root N concentration, 

the control plots intermediate, and the wet plots will have the lowest root N. 
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Materials/Methods 
 

Location 
 
This study was located in a poor fen northern peatland at Seney National Wildlife Refuge 

(SNWR), in Schoolcraft County, Michigan (46° 11' 26.12" N, 86° 1' 14.59" W).  SNWR 

is located in the Upper Peninsula of Michigan, is managed by the United States Fish and 

Wildlife Service and encompasses about 38,500 ha.  SNWR was established in 1935 after 

years of logging operations, fire clearing, and finally ditch construction for the purposes 

of draining the wetland for agriculture had greatly altered the landscape.  A water table 

manipulation resulted from a failed ditching attempt to drain the peatland for agriculture 

in the early 1900’s.  The ditches and dikes in this particular location were intended to 

intercept the water flowing from the northwest and move the water offsite to allow the 

peat to drain and create an opportunity to farm.  For a section of the site, the dike follows 

the flow of water from the northwest to the southeast.  From here the dike turns sharply to 

the west and runs perpendicularly to the flow of water.  This series of dikes creates a 

control treatment on one side of the dike where the water flows parallel to the dike and is 

allowed to flow relatively unchanged from the site (plots A and B, henceforth named 

Control).  Plots C and D (henceforth Wet) are located where the dike turns sharply west 

and collects water flowing from the northwest, and plots E and F (henceforth Drained) 

are located on the opposite side of the dike where water is drastically cut off from 

flowing southeast beyond the dike (Figure 3.1).  Boardwalks were established on site to 
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allow access to the area while minimizing impacts on the peatland vegetation and soil.  

This poor fen has microtopography consisting of hummocks (raised areas) and lawns 

(lower areas) typical of northern peatlands. 

 

Root respiration 
 

Woody plant fine root (<1mm) respiration was the focus of this study.  Woody species 

present included black spruce (Picea mariana (Mill.) B. S. P.), tamarack (Larix laricina 

(Du Roi) K. Koch), cranberry (Vaccinium spp.), and leatherleaf (Chamaedaphne 

calyculata).  Root respiration was determined for excised fine roots (<1mm) collected 

using an 11.5 cm diameter peat core to sample a depth of 20 cm at randomly selected 

locations within each treatment area.  Roots were sorted from the peat by hand from 2 

cores taken per sample location on each sample date, and approximately 2 g fresh weight 

of live fine roots of the woody plants was collected.  Root samples were measured for 

CO2 efflux (nmol CO2 s-1) after being placed in a cuvette attached to an open-system 

infrared gas analyzer (IRGA, CIRAS-1/CIRAS-2 portable gas analyzer, PP Systems, 

Haverhill, MA).  Measurements were made at ambient peat temperature for each 

particular sample location and date, and respiration rates were recorded after allowing 

fifteen minutes for readings to stabilize.  The cuvette’s aluminum base was placed in a 

water bath to maintain the roots at the desired temperature during the measurement 

period (Burton and Pregitzer 2003; Burton et al. 2011).  Respiration was analyzed at a 

CO2 concentration of 1000 μl l-1.  The samples were subsequently dried at 65°C for 48 
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hours in the lab to obtain dry weights of roots for use in determining specific root 

respiration (nmol CO2 g
-1 s-1). The samples were then ground (8000M Mixer/Mill, Spex 

SamplePrep LLC, Metuchen, NJ) to a fine powder and analyzed for nitrogen (N) 

concentration with an elemental analyzer (Carlo Erba NA 1500 NC, CE Elantech, 

Lakewood, NJ). 

Root biomass 
 

Root biomass was determined for two 11.5 cm by 20 cm deep diameter cores per sample 

location.   The cores were placed on ice for transport and hand sorted in the lab to remove 

peat, and separate the roots by species and diameter class (<1, 1-2, 2-10 mm).  Roots 

attached to living members of the species in the field were examined to define 

morphological fine root characteristics that were used to separate species during sorting 

of bulk root biomass samples in the lab.  Samples were then oven dried at 65°C for 48 

hours to calculate root biomass (g m-2) to a depth of 20 cm. 

 

Ecosystem root respiration 
 

Ecosystem level root respiration (μmol CO2 m
-2 s-1) was calculated from the product of 

measured specific root respiration and measured root biomass for both hummocks and 

lawns at each site, and then weighted for areal proportions of hummocks and lawns 

particular to this site for comparison with eddy-covariance C exchange rates. 
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Statistical Analysis 
 

Statistical analyses were conducted with R (2.12.0, R Development Core Team, Vienna, 

Austria).  Analysis of variance (ANOVA) was used to determine differences among 

water levels and microtopological positions (hummocks and lawns) for specific root 

biomass.  Repeated measures ANOVA was used to detect the effects of water table 

elevation (control, wet, drained) and microtopological positions (hummocks vs. hollows) 

across the sample dates (repeated measure) for specific root respiration, ecosystem root 

respiration and root N concentration.  All tests used an alpha of 0.05.  Non-linear 

regression was used to determine temperature response curves for specific root 

respiration as a function of ambient peat temperature conducted post-hoc when 

differences between water levels using analysis of covariance (ANCOVA) were 

established with temperature as a covariate.  Tukey’s HSD was used post-hoc to 

determine differences which combinations of water table elevation and microtopological 

position differed in fine root biomass.  

 

Results 
 

There were no significant differences in specific root respiration (nmol CO2 g-1 s-1) 

among control, wet or drained plots, between microtopological positions (hummock vs. 

lawn), or their interaction  (Table 3.1, Figures 3.2, 3.3). 
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There were significant differences among sample dates in specific root respiration (P 

<0.001), and a significant date x water level interaction (P = 0.05) (Table 3.1) that were 

both likely due largely to differences among sample dates in peat temperature.  As a 

result, there was a significant difference between water levels (P = 0.03) when ambient 

peat temperature is used as a covariate to predict specific root respiration.  In this instance 

the wet plots were significantly different from the control and the drained plots, with no 

significant difference between the control and drained plots.  Based on these results, non-

linear regression was used to fit responses of specific root respiration to temperaturefor 

the wet plots, and for the control and drained plots combined.  Q10 values of 2.4 for the 

control and drained plots, and 1.6 for the wet plots were calculated from these non-linear 

regression equations (Figure 3.3). 
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Figure 3.2. Specific root respiration at ambient temperature by treatment (control, 
drained, wet) and microtopological position (hummock, lawn) with standard error 
bars. 

 

 

 

 

 

 

 

 



        

  

       

D
ep

en
d

en
t 

F
ac

to
r 

d
.f

. 
S

u
m

 
S

q
 

M
ea

n
 

S
q

 
F

 
va

lu
e

P
-v

al
u

e 

B
et

w
ee

n
 

  
  

  
  

  
W

at
er

 le
ve

l 
2 

10
.6

6 
5.

33
 

1.
14

 
0.

38
 

M
ic

ro
to

po
gr

ap
hy

 
1 

0.
47

 
0.

47
 

0.
10

 
0.

76
 

W
at

er
 le

ve
l x

 M
ic

ro
to

po
gr

ap
hy

2 
0.

60
 

0.
30

 
0.

06
 

0.
94

 
R

es
id

ua
ls

 
6 

28
.0

3 
4.

67
 

  
  

W
it

h
in

 
  

  
  

  
  

D
at

e 
2 

17
.6

4 
8.

82
 

16
.1

2
<

0.
00

1 
W

at
er

 le
ve

l x
 D

at
e 

4 
7.

23
 

1.
81

 
3.

30
 

0.
05

 
M

ic
ro

to
po

gr
ap

hy
 x

 D
at

e 
2 

0.
23

 
0.

11
 

0.
21

 
0.

82
 

W
at

er
 le

ve
l x

 M
ic

ro
to

po
gr

ap
hy

 
x 

D
at

e 
4 

1.
38

 
0.

35
 

0.
63

 
0.

65
 

S
p

ec
if

ic
 r

oo
t 

re
sp

ir
at

io
n 

R
es

id
ua

ls
 

12
 

6.
57

 
0.

55
 

  
  

T
ab

le
 3

.1
. R

ep
ea

te
d 

m
ea

su
re

s 
A

N
O

V
A

 f
or

 th
e 

ef
fe

ct
s 

of
 w

at
er

 le
ve

l a
nd

 m
ic

ro
to

po
gr

ap
hy

 o
n 

sp
ec

if
ic

 r
oo

t r
es

pi
ra

ti
on

 in
 a

 n
or

th
er

n 
pe

at
la

nd
 

78 



0123456

control

drained

wet

control

drained

wet

control

drained

wet

7/
1/

20
11

7/
18

/2
01

1
9/

17
/2

01
1

Specific root respiration (nmol CO2 g
-1

 s
-1

)

hu
m

m
oc

k

la
w

n

  

  

           

F
ig

ur
e 

3.
3.

 S
pe

ci
fi

c 
ro

ot
 r

es
pi

ra
ti

on
 b

y 
w

at
er

 le
ve

l a
nd

 m
ic

ro
to

po
gr

ap
hy

 a
cr

os
s 

da
te

s 
w

it
h 

st
an

da
rd

 e
rr

or
 

ba
rs

. 

79 



 

control + drained

y = 0.5627e0.0867x

r² = 0.26
Q10 = 2.4

wet

y = 1.5323e0.0456x

r² = 0.29
Q10 = 1.6

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

Temperature

Sp
ec

if
ic

 r
oo

t 
re

sp
ir

at
io

n

 

Figure 3.4. Relationships between specific root respiration and ambient peat 
temperature.  The closed circles are control and drained plots, with the solid black line 
as the fitted non-linear regression.  The open circles are the wet plots with the dashed 
black line as the fitted non-linear regression 
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Root biomass differed significantly among water levels (P = 0.01), and microtopological 

position (P = <0.001).  There also was an indication of a potential interaction between 

water level and microtopological position (P = 0.07) (Figure 3.4).  The drained plots had 

a greater total root biomass than the control plots, with an encroachment of black spruce 

and tamarack roots into the lawn of the drained area, and increased leatherleaf fine root 

biomass.  The wet plots have less of a proportion of black spruce and tamarack roots, but 

a greater proportion of cranberry roots when compared to the control and drained plots 

(Figure 3.5). 

 

Ecosystem root respiration, the product of measured specific root respiration and fine 

root biomass, exhibited no effect for water level (P = 0.45), no influence of topological 

position (P = 0.80), and no interaction between the two (Figure 3.6).  Repeated measures 

ANOVA indicated significant difference among sample dates for ecosystem root 

respiration (P = <0.001) and a non-significant date by water level interaction (P = 0.11) 

(Table 3.2, Figure 3.8).  Figure 3.9 shows the component of ecosystem level root 

respiration, as an eddy covariance tower would measure CO2 flux.  Ecosystem level fine 

root respiration has been calculated as a weighted average of contributions from 

hummocks and lawns, based on transects conducted on site to determine the relative 

proportions of each found at the site.  The areal proportions for the control plots are 50:50 

hummocks to lawns, the wet plots are 40:60 hummocks to lawns, and drained plots are 

55:45 hummocks to lawns. 
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A repeated measure ANOVA indicated no significant differences for N concentration of 

the fine roots by water level and topological position across dates (Table 3.3, Figure 

3.10).  However, when root N is weighted based on areal proportions of hummocks and 

lawns, and when microtopography is combined for each water level across dates, there is 

a trend for wet and drained plots to have higher root N concentration progressing through 

the growing season, with wet plots having higher root N than drained plots (Figure 3.10). 
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Figure 3.5. Fine root biomass by treatment and microtopological position with 
standard error bars.  Letters above bars indicate Tukey HSD test results. 
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Figure 3.6.  Fine root biomass (<1 mm) by species, treatment and microtopological 
position. 
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Figure 3.7. Ecosystem level root respiration by water level and microtopological 
position.  Values are averages across all three sample dates. 
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Figure 3.11. Ambient peat temperature (°C) to a depth of 10 cm for treatments and 
microtopography across dates with standard error bars 
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 Figure 3.12. Ecosystem level root respiration by treatment. 
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Discussion 
 

There is a significant water level by date interaction (P = 0.05), indicating that when 

water levels dropped seasonally for all treatments, beginning with the 18 July 2011 date, 

specific root respiration was greater for the wet plots (Figure 3.7).  Overall, the wet plots 

seem to have higher specific root respiration rates for the hummocks and lawns than the 

control and drained plots (Figure 3.2).  Evidently, when this peatland dries seasonally, 

respiration increases in response to increased aeration, in addition to effects of increased 

temperature.  Field observations indicated that water level across the entire site was 

highest for the 1 July 2011 date, and lowest for the 17 September 2011 date with the 18 

July 2011 date occurring just after the water levels began to drop.  It seems that during 

this time period, that the fine roots on the wet plots for the 18 July 2011 date responded 

to the presence of more aerobic conditions.  Additionally, the 18 July 2011 date 

corresponds to the highest ambient peat temperatures from all three sampling dates, with 

the wet plots having the highest average temperature of all (24.5°C) (Figure 3.11).  Roots 

in the wet plots may be responding to both increased aeration and increased nutrient 

availability resulting from enhanced decomposition of the aerated peat by initiating a new 

flush of fine roots.  New fine roots often have higher N concentration and respiration 

rates (Burton et al. 1996), as we observed for fine roots on this date, especially those 

from the wet plots.  Based of field observations, the 18 July 2010 date had the greatest 

amount of fine white root tips on the collected samples.  In the wet lawn areas where fine 

root respiration was highest, the roots experienced the greatest amount of water level 
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decline during this period and are likely responding rapidly to the sudden decrease in 

water level and associated changes in aeration and nutrient availability. 

 

Cranberry and leatherleaf dominate the fine root biomass for all water levels and 

microtopological positions.  The drained hummocks have higher fine root biomass than 

the other water levels and microtopological positions (Figure 3.4).  Additionally, the 

drained hummocks and lawns seem to have the highest proportion of black spruce and 

tamarack roots.  However, the wet plots have a larger proportion of leatherleaf and 

especially cranberry roots in the lawns and hummocks, which seem to be affecting root 

respiration (Figure 3.5).  This domination is further expressed when calculating 

ecosystem level root respiration as a product of specific root respiration and root biomass 

and weighted to actual areal proportions of hummock/lawn found on the water levels.  

The control and drained areas had relatively even proportions of hummock/lawns with 

50/50 and 55/45 respectively, but the wet area had a proportion of 40/60.  This means 

when the microtopological positions are weighted to calculate ecosystem root respiration 

for a given water level, the influence of cranberry and leatherleaf roots is increased, 

especially in the wet area (Figures 3.5 & 3.6).  The wet and drained plots have greater 

ecosystem level fine root respiration than the control plots (Figure 3.12), which can have 

implications for interpreting eddy covariance measurements.  If one were to see an 

increase in CO2 flux from studies located in wetlands with water table manipulations, 

they could misinterpret changes in the flux rate as being largely indicative of changes in 

peat decomposition.  The control plot fine roots respire at a specific respiration rate of 

0.171 μmol CO2 m
-2 s-1, the drained plots respire at a rate of 0.307 μmol CO2 m

-2 s-1, and 
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the wet plots respire at a rate of 0.330 μmol CO2 m
-2 s-1.  Within the SNWR site there is 

an 80% increase in ecosystem level root respiration from the control plot to the drained 

plot, and a 93% increase in ecosystem level root respiration from the control plot to the 

wet plot.  Compared to nighttime ecosystem respiration from eddy flux towers at the 

SNWR site, ecosystem fine root respiration contributes an important proportion of the 

total ecosystem respiration rates.  For the dates of our root respiration measurements, 

nighttime ecosystem respiration rates were 2.4 μmol CO2 m
-2 s-1 from the wet plots, 2.5 

μmol CO2 m
-2 s-1 for the drained plots, and 3.1 μmol CO2 m

-2 s-1 for the control plots.  

Our estimates of fine root respiration would account for 14, 13, and 6% of these values 

for the wet, drained, and control area, respectively.  Though these calculations only 

represent three sample dates from the warmer part of the growing season, the larger 

proportional contribution of fine roots to ecosystem root respiration for the drained and 

wet plots, illustrates the importance of considering root respiration when making 

inferences regarding changes in C cycling and peat decomposition as peatland conditions 

are altered. 

 

The large increase in specific root respiration is evident for the wet plots on 18 July 2011, 

and it is likely due to the combined effects of warmer temperatures (Figure 3.11), and the 

initiation of new, high N concentration roots just after lowering of water levels associated 

with low precipitation events during the summer of 2011. During the 17 September 2011 

sampling date when water levels were even lower due to prolonged drought (Figure 3.7), 

specific respiration were again highest for the wet plots, but values for all water levels 

were lower than in mid July due to decreased peat temperature (Figure 3.11), with the 
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average temperature of the peat for the control, drained and wet plots at 10.9, 8.8 and 

11.5o C respectively.   

 

The increase in ecosystem level root respiration across dates also follows this pattern of 

decreased water levels and increased peat temperature associated with higher respiration 

rates for the drained and wet plots on 18 July 2011 especially (Figure 3.9).   

 

Conclusion 
 

As temperatures increase, and precipitation regimes change, C cycling and nutrient 

availability in peatland systems will change, and if peatland water levels lower, woody 

plants may encroach.  It is expected that lower water levels will enhance peat 

decomposition, leading to greater CO2 efflux from these ecosystems.  However, 

assumptions that measured increases in C flux from northern peatlands due to shifts in 

water levels are due primarily to enhanced decomposition could be in error, especially for 

chamber-based measurements.  Our data does support previous studies which show that 

changes in water levels might increase the C flux from the peatland to the atmosphere.  

However, we also measured an increase of up to 93% more ecosystem level fine root 

respiration for areas experiencing water level changes.  Up to 14% of the measured 

ecosystem root respiration from this study area could be attributed to woody fine root 

respiration during our measurement dates, with the greatest contribution occurring from 

areas where the water level had been altered.  Thus an important proportion of the 

increase in ecosystem respiration with water level change was not due to altered peat 
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decomposition, but was instead attributable to increased fine root respiration, which 

represents a return to the atmosphere of recently fixed photosynthate, rather than old C 

sequestered in the peat.  As a result there must be caution in assuming that a large change 

in flux of C from a drained peatland is strictly decomposition. 
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Chapter 4 
 

Thesis Summary 
 

An improved understanding of mechanisms by which climate change may alter C 

allocated to autotrophic respiration of plant fine roots may help future climate change and 

ecosystem modelers fine-tune their models to better reflect likely real-world ecosystem 

responses.  These improved models may help land managers and policy makers make 

sound decisions based on actual scientific findings to help mitigate any hardships that 

might be encountered with changes in our planet in the next 100 years.   

 

In Chapter 2, we show that even after a short-term temperature manipulation (one and 

half years), the trees were already metabolically adjusting fine root respiration to warmer 

soil, which at the ecosystem level would help constrain carbon loss from autotrophic 

respiration.  Perhaps with further observation and experimentation, researchers may be 

able to fully understand the degree to which such acclimation will occur and persist in the 

roots of sugar maple tree and other trees, and how it will impact the C balance, health and 

productivity of northern temperate tree species.  This may help managers of this forest 

type make decisions on either continuing management for species such as sugar maple, or 

favor different species.  Further investigation may confirm findings similar to Melillo et 

al. (2011) in which the trees reduced their root biomass after being subjected to warming 

at Harvard Forest, MA, effectively reducing C allocated to root respiration, allowing C to 

be allocated to other uses, such as the observed increase in aboveground productivity. 
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Chapter 3 shows that changes in water level can dramatically increase woody plant 

specific root respiration in peatlands, and ultimately ecosystem root respiration.  These 

increases in ecosystem root respiration result in increased peatland CO2 efflux in 

response to changes in water level, and could be misinterpreted as increased 

decomposition of peat that has been sequestered for hundreds, if not thousands of years, 

if details of autotrophic C cycling were not fully understood.  At the SNWR, a 

measureable proportion of the increase in ecosystem respiration measured by eddy 

covariance towers was actually C that was recently captured through photosynthesis and 

returned to the atmosphere through root respiration. 

 

These two studies show the importance of investigating mechanistic responses of woody 

plant root systems to a changing environment.  It is very important to utilize these and 

similar data from other studies to further strengthen the ability of ecosystem process 

models to predict effects of climate change and integrate the resulting feedbacks to 

atmospheric CO2 into coupled climate change models. 
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