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Abstract 
Boreal peatlands are important in the global carbon cycle. Despite covering only 

3% of the global land area, peatlands store approximately one third of all soil carbon. 

Temperature is one of the major drivers in peatland carbon cycling as it affects both plant 

production and CO2 fluxes from soils. However, it is relatively unknown how boreal 

peatland plant photosynthesis is affected by higher temperatures. Therefore, we measured 

plant photosynthetic rates under two different warming treatments in a poor fen in 

Northern Michigan. Eighteen plots were established that were divided into three 

treatments: control, open-top chamber (OTC) warming and infrared (IR) lamp warming. 

Previous work at this site has shown that there was a significant increase in canopy and 

peat temperature with IR warming (5°C and 1.4°C respectively), while the OTC’s had 

mixed overall warming. Plots were divided equally into lawns and hummocks. We 

measured mid-day carbon dioxide (CO2) uptake on sedges (Carex utriculata), shrubs 

(Chamaedaphne calyculata) and Sphagnum mosses. Sphagnum moss net primary 

production (NPP) was also measured with cranked wires and compared with CO2 uptake. 

Our results indicate that there was no significant difference in sedge CO2 uptake, 

while shrub CO2 uptake significantly decreased with warming. A significant increase 

occurred in Sphagnum moss gross ecosystem production (GEP), ecosystem respiration 

(ER) and net ecosystem exchange (NEE). Contrary to the positive CO2 exchange of 

Sphagnum, overall NPP decreased significantly in hummocks with both warming 

treatments. The results of the study indicate that temperature partly limits the 

photosynthetic capacity of plants in sub-boreal peatlands, but not all species respond 

similarly to higher temperatures.   

Key words: Peatlands, CO2 uptake, Climate change, microtopography.  
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Introduction 

Peatland Types 
Peatlands are wetlands where long-term average plant biomass accumulation 

exceeds decomposition rates (Crum 1992). Peatlands form because perennially saturated 

soils create anoxic conditions that hinder decomposition.  Different countries have 

different requirements for peat thickness, with minimum thickness ranging between 30 

cm to 50 cm (Gorham 1991). Peatland distribution is controlled primarily by climate and 

topography. Peatlands are most commonly found in cool and moist climates with low 

evapotranspiration and flat landforms (Sjörs 1980; Wieder and Vitt 2006). For instance, 

boreal and arctic peatlands (thickness > 30 cm) cover 3.5 x 105 km2 , or about 90% of all 

peatlands globally (Charman 2002).  

Peatlands are often divided into two main types based on source of water and 

nutrients (Charman 2002). Peatlands that receive all of their water and nutrients from 

precipitation are called ombrotrophic peatlands, or bogs (Bridgham et al. 1999). Since 

they are cut off from groundwater, which contains minerals, these peatlands are 

characterized by low pH, low base cation (Ca2+, Mg2+, K+, Na+) content and low nutrient 

levels (Zoltai and Vitt 1995; Wheeler and Proctor 2000). As a result, they have vegetation 

that is able to tolerate nutrient poor and acidic conditions and are characterized by the 

dominance of Sphagnum mosses. Peatlands that receive at least a part of their water from 

groundwater are called minerotrophic peatlands, or fens (Wieder and Vitt 2006). These 

peatlands have higher concentrations of nitrogen and phosphorus, base cations, and 

greater pH due to inflow of groundwater (Bridgham et al. 2001). Minerotrophic fens are 

dominated by plants which are not able to tolerate acidity like brown mosses and many 

types of sedge. Bogs have pH usually <4.0, while fens have pH >4.0 and are divided into 

poor fens, intermediate fens and rich fens based upon their pH and base cation content 

(Wheeler and Proctor 2000). Poor fens are acidic, Sphagnum dominated but have some 

influx of ground water (Zoltai and Vitt 1995). Intermediate fens and rich fens have 
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pH>5.5 and are dominated by plants which do not tolerate acidity and lack significant 

cover of Sphagnum (Wieder and Vitt 2006).  

 

Peatland Carbon Cycling 
Peatlands are globally important in the terrestrial carbon cycle. What makes these 

ecosystems special is not their production rates, but the continuous imbalance between 

the production and decomposition, which over long time periods has resulted in very 

large carbon pools (Wieder and Vitt 2006). About 98.5% of carbon in peatlands occurs  

in the form of peat, while the rest is found in vegetation (Gorham 1991). Boreal peatlands 

cover 3% of the global land mass, (~330,000 km2) (Gunnarsson 2005), but store about 

one third of all terrestrial soil carbon (Moore et al. 1998). Boreal peatlands accumulate 

carbon at an average rate of 29 g carbon m-2 yr-1 (Gorham 1991). Boreal peatlands are 

found within the boreal climatic zone and have been developing since the end of the last 

ice age (Gignac et al. 1998) and have accumulated 300-450 x 1015 grams of carbon 

during this period (Gorham 1991). This is about the same amount as currently stored in 

atmosphere (Houghton et al. 1990), and twice as much as forest biomass contains 

globally (Parish et al. 2008). Boreal peatlands have lower values of primary production 

compared to other ecosystems in the same climatic region. The most important plant 

genus in terms of carbon storage is Sphagnum (Clymo 1970), which contributes the 

majority of aboveground production in nutrient poor systems like bogs and poor fens, 

averaging 259 g m-2 yr-1 (Weltzin et al. 2000) compared to average boreal forest biomass 

accumulation of 424 g m-2 yr-1 (Gower et al. 2001).  

The imbalance between production and decomposition itself is fragile. Around 

90% of the carbon accumulated annually by plants is lost through decomposition, 

resulting in only 10% of plant biomass being stored over longer time periods (Gorham 

1988; Vasander 1982). Peatlands are therefore sensitive to decreases in net primary 

production (NPP) or increases in ecosystem respiration (ER), which is the main loss of 

carbon to the atmosphere (Dorrepaal et al. 2009). Shifts in the carbon balance of these 



11 
 

ecosystems could start releasing stored carbon back in the atmosphere as CO2; further 

accelerating the “greenhouse effect”. For example, a 1°C increase was found to raise ER 

rates 56%,with 69% of this increase coming from the bottom of the active layer in a 

permafrost peatland (Dorrepaal et al. 2009). 

Primary productivity is the major input of carbon to a peatland (Rydin and Jeglum 

2006). Net primary production is defined as a difference between gross primary 

production, total amount of organic carbon fixed by a plant, and autotrophic respiration 

which is the total amount of carbon lost by a plant (Woodwell and Whittaker 1968). 

Plants acquire carbon from CO2 taken up through photosynthesis (Lambers et al. 1998). 

The amount of CO2 assimilated by a vegetated surface is called gross ecosystem 

production (GEP) (Wofsy et al. 1993). For photosynthesis to occur, plants need sufficient 

source of water, sunlight and CO2. Each plant species has different requirements for 

optimum photosynthesis to occur. Photosynthesis is influenced directly by the light 

intensity and air temperature, which alters vapor pressure deficit, electron transport rate 

and photosynthetic enzyme production (Lloyd and Farquhar 2008). Light intensity 

(irradiance) relates to photosynthesis through the amount of captured photons (units of 

light), greater irradiance results in enhanced CO2 uptake (Lambers et al. 1998). Therefore 

if warming enhances photon capture, plant is able to fix more CO2 resulting in higher net 

biomass production.   

Carbon outputs from peatlands are from efflux of CO2, methane and leaching of 

dissolved organic carbon (Davidson and Janssens 2006). Some of the carbon plants fix 

through photosynthesis is lost through plant respiration, defined as autotrophic respiration 

(Lambers et al. 1998). Heterotrophic respiration is a combination of fungal and microbial 

respiration and other organic matter decaying organisms (Shaver et al. 2000). 

Autotrophic and heterotrophic respiration together form ecosystem respiration, which is 

the total amount of CO2 lost from an ecosystem at a given time period (Davidson and 

Janssens 2006; Moore et al. 1998). Net ecosystem exchange (NEE) is the difference 

between the carbon gained by an ecosystem (GEP) minus the loss of carbon from ER. 
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Peatland Warming 
Increased greenhouse gas concentrations are expected to increase surface 

temperatures and alter regional precipitation patterns (IPCC 2007). It is predicted that 

higher concentrations of atmospheric CO2 concentrations will lead to greater 

photosynthesis and plant growth in most ecosystems (Norby et al. 2001), in nutrient poor 

ecosystems, increased CO2 concentration are predicted to have negligible effect on NPP 

(Hoosbeek et al. 2001). 

Boreal peatlands are ecosystems characterized by generally low temperatures, 

short growing seasons, and low soil nutrient contents (Arft et al. 1999). Average global 

temperatures are predicted to increase 0.6 - 6°C by the end of 21stcentury compared with 

the temperatures a century before (IPCC 2007). The greatest increases are predicted to 

occur at high latitudes of the Northern Hemisphere, especially in the arctic, where 

temperature increase could be even higher than average (Houghton et al. 1990; Houghton 

et al. 1995; Maxwell and Barrie 1989). Higher temperatures in northern peatlands could 

be seen as a large-scale disturbance with implications on growing conditions of the plants 

(Alm et al. 1999). Higher temperatures have the potential to increase evapotranspiration 

rates, which will lower water table and make oxygen more available for microbial 

decomposition (Faubert 2004; Gorham 1991). Both plant and soil microbial respiration 

rates could be positively influenced by higher temperatures (Dorrepaal et al. 2009). 

Heterotrophic respiration counts for 80% of soil respiration and increases more than 

autotrophic respiration in short time scale warming experiments (Melillo et al. 2002). 

Plant production could also be influenced either positively or negatively by increasing 

temperatures. Boreal peatlands are therefore, sensitive to either increases in 

decomposition or decreases in plant production (Wieder 2001), and could shift from 

carbon sinks to sources (Hoosbeek et al. 2001). If decomposition values exceed the CO2 

uptake by plants, the carbon released to the atmosphere may result in positive feedback of 

rising CO2 concentrations in atmosphere (Oechel et al. 1993). Increase in both 
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temperature and ER through lowered water tables will result in increased CO2 emissions 

to the atmosphere (Moore et al. 1998). It has been suggested that daytime CO2 uptake 

will be influenced less by temperature than ER (Houghton and Woodwell 1989). 

Therefore, peat accumulation in most sub-boreal peatlands may decrease or even cease 

(Gignac and Vitt 1994). 

Peatlands at the southern end of boreal region (sub-boreal) could be especially 

vulnerable to climate change. The plant communities in these peatlands are accustomed 

to a moist and cold climate, and increasing temperature could affect their growing 

conditions. As the boreal forest zone is predicted to move northwards, and boreal 

peatlands are highly linked with the boreal forest zone (Gignac et al. 1998), peatland 

distribution could move northwards too. This was illustrated by (Prentice et al. 1991), 

who used a forest succession model to predict that in central Sweden boreal zone 

evergreen trees like Norway spruce (Picea abies) will be replaced by broadleaved 

temperate trees like beech (Fagus sylvatica) and common oak (Quercus robur), which 

require longer growing season and higher summer temperatures. Similarly, boreal 

peatland plants in sub-boreal zone could already be at their temperature threshold and any 

increase in temperature could result in northward movement of peatlands and changes of 

species composition of peatlands in former sub-boreal zone. It has been shown that with 

increased temperatures at high latitudes, areas currently unvegetated will have plant cover 

(Myneni et al. 1997), giving further evidence to movement of ecosystems following 

suitable conditions. Species will follow the shifting climate northwards to higher latitudes 

as much as the dispersal and resource availability allow (Aerts et al. 2006).  

Water table level is the most important factor controlling decomposition rates in 

peatlands (Bridgham and Richardson 2003). Upland soils are well aerated and therefore 

have low carbon stocks (Davidson and Janssens 2006). If rising temperatures or lower 

precipitation in the future lower the water table, increased microbial activity is expected 

to occur in the peat (Clymo 1992). Plant photosynthesis responds to temperature almost 

immediately, which can result in higher NPP (Shaver et al. 2000). Higher temperatures 
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have positive effects on overall soil respiration rates (Lloyd and Taylor 1994) since 

microbial decomposition is reduced under low temperatures (Allison et al. 2010; 

Woodwell and Whittaker 1968). In nutrient poor ecosystems like boreal peatlands, 

warming enhanced soil respiration results in higher nutrient availability over long time 

periods (Chapin 1983). Plant growth in most boreal peatlands is nutrient limited (Shaver 

et al. 2000), especially by nitrogen (Aerts et al. 1992). Most of the nutrients are tied up in 

plant biomass or peat. Nutrient availability is crucial for plant growth and warming 

induced changes in nutrient dynamics could result in changes in plant communities (Aerts 

et al. 2006). Nitrogen availability could increase through faster decomposition of organic 

matter (Shaver et al. 2000). Nitrogen availability has also increased through increased 

atmospheric N deposition (Aber et al. 1998). Increased N supply possesses more positive 

growth response on fast growing sedges and deciduous shrubs and decreases the 

abundance of slow growing mosses (Aerts et al. 2006). If plant species composition 

changes, so does litter composition and quality. Tissue quality (e.g. cellulose, lignin and 

nutrient composition) can be more important on decomposition rates than temperature or 

pH (Bartsch and Moore 1985). For example, because of their low tissue quality, 

Sphagnum species decompose more slowly than sedges (Toet et al. 2006). This is one of 

the reasons why Sphagnum spp. is one of the major peat forming plant genus and its 

remains store more carbon than any other plant genus on the globe (Clymo 1970). 

Peatlands dominated by Sphagnum mosses typically store more carbon than sedge 

dominated peatlands (Thormann and Bayley 1997). Sphagnum has unique properties in 

acidifying the substrate it is living in, resists decay, and being able to live in extremely 

nutrient poor conditions (Clymo 1964; Verhoeven and Liefveld 1997). Sphagnum’s 

ability to acidify it’s environment is thought to help it reduce the competition and gain 

competitive advantage (Andrus 1986). In boreal peatlands, vascular plant growth is 

limited by presence of Sphagnum, which dominates the lower layer of vegetation (Arft et 

al. 1999). Vascular plants have to invest into height growth not to become overgrown by 

Sphagnum (Rydin 1997). Therefore, shifts in species composition could result in peatland 

transformation from carbon sink to source if Sphagnum is outcompeted with sedges, 
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shrubs or other mosses that are able to respond more rapidly to available nutrients, decay 

at faster rates, and do not acidify the soil (Toet et al. 2006).  

Net primary production, increment of organic matter over time, is the most 

common metric to quantify warming on peatland plants (Dorrepaal et al. 2004; 

Szumigalski and Bayley 1997). Probable reasons for using NPP is because of limited 

accessibility of many arctic and boreal peatlands, and NPP measurements can be done 

with few field days. However, NPP measurements do not allow for monitoring short-term 

plant physiological responses to changes in temperature. Because NPP measurements 

may miss smaller time scale changes in plants, like reduced photosynthesis due to 

desiccation, CO2 flux measurements (leaf or ecosystem level) are commonly conducted 

to quantify these processes. The common method for measuring CO2 exchange between 

an ecosystem and the atmosphere has been to use small chambers (Alm et al. 1999; 

Gunnarsson et al. 2004; Kivimaki et al. 2008; Laine et al. 2007; Moore et al. 2002). 

These chambers allow monitoring photosynthesis and respiration of peatlands at 

community scale, which can thereafter be extrapolated to bigger areas. The problem with 

the method is that it neglects the response of individual plant groups within that 

community. Measuring CO2 uptake on a plant level gives the opportunity to quantify the 

differences between species or plant groups within the community. This is helpful in 

determining the possible shift in species composition in the future.  

 

Methodology Background 
In our study, we categorized plants as either woody (shrubs), graminoids (sedges) 

or bryophytes (Sphagnum spp.) to quantify changes in CO2 uptake under increased 

temperature.  

How peatlands and peatland plants will behave under future climates has been 

under intensive study since it was realized how important peatlands are to the global 

carbon cycle. Artificial warming is the most common method used to study the effect of 
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warming on ecosystem processes in peatlands (Arft et al. 1999; Marion et al. 1997). 

Artificial warming can be divided into two functionally different groups, active and 

passive. Active treatments use an artificial energy source to heat the soil or plant canopy 

(Aronson and McNulty 2009). Passive warming treatments utilize the suns energy to heat 

the canopy during the daytime and reduce heat loss during the night (Marion et al. 1997). 

In our study, we used standard ITEX (International Tundra Experiment) (Henry and 

Molau 1997) passive warming open top chambers (OTC’s) and active warming infra-red 

(IR) lamps (Aronson and McNulty 2009) as treatments to monitor changes in plant CO2 

uptake. IR lamps are elevated above the vegetation and distribute IR energy evenly to the 

canopy, while OTC’s act as a greenhouse that is open at the top. They trap the IR 

wavelengths and reduce their re-radiation back to the atmosphere further warming the air 

inside the chamber (Marion et al. 1997). Although OTC’s alter air temperature, they have 

relatively little impact on disturbing gas exchange, light and moisture (Arft et al. 1999). 

The IR lamps were constantly on during the growing season and warmed the plots during 

days and nights, whereas OTC’s provide heating effect only during daytime. Since global 

temperature increase will raise nighttime temperatures (Luxmoore et al. 1998), it has 

been suggested that IR-lamps are more accurate in simulating future higher temperatures 

(Aronson and McNulty 2009). In Arctic peatlands, OTC’s have been shown to increase 

the average temperature by about 2°C (Marion et al. 1997). Two functionally different 

warming treatments enabled us to monitor the differences these two treatments were 

having on vegetation CO2 uptake. Changes in basic metabolism of a plant like 

acclimation to temperature occurs within a year (Shaver et al. 2000). Therefore short time 

period warming experiments enable monitoring plant physiological changes without 

influencing long term changes in the ecosystem like soil nutrient availability. 

Several different methods have been used to measure CO2 exchange of plants, soil 

or the whole ecosystem. They all follow the same basic concept of analyzing the 

incoming and outgoing gas concentrations in the air and velocity of air movement 

between ecosystem and atmosphere. Eddy covariance towers are the primary means for 

monitoring the whole ecosystem fluxes (Baldocchi 2003). Since eddy covariance towers 
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require uniform vegetation structure, flat landforms, big land areas and are biased during 

the nighttime they are unsuitable for use in all ecosystems (Baldocchi 2003). They cannot 

also be used for small experiment units with many treatments (Sullivan et al. 2008). 

Therefore manual chambers are often used to monitor smaller areas and areas with less 

uniform landscapes (Oechel et al. 1993). These kinds of chambers enable monitoring of 

differences in gas concentrations and humidity within the chamber. Chambers are put on 

top of the soil with vegetation enclosed into it, gas is directed into it while air is 

circulated at constant speed to mix the air (Vourlitis et al. 1993). Infra-red gas analyzer 

measures the difference between incoming and outgoing CO2 concentration in the 

chamber and calculates flux rates (Vourlitis et al. 1993). The reduction in gas 

concentration (CO2) indicates uptake by plant photosynthesis from within the chamber. 

Manual chamber techniques have been found to give comparable results with eddy 

covariance method (Oechel et al. 1998).  

We separated our treatments equally between two microtopographic features, 

hummocks and lawns. Their importance comes from the height of the water table, which 

influences soil moisture, biogeochemical cycling, and species composition (Moore et al. 

2002). Hummocks are elevated higher up from the water table than lawns and typically 

have higher vascular plant biomass and less Sphagnum dominance (Vasander 1982). 

Hummocks are 20-50 cm above the water table, whereas lawns are only 0-10, and during 

some part of the growing season might even be submerged by water. Hummocks and 

lawns tend to have different Sphagnum moss composition and growth forms. At our study 

site, the species dominating the hummocks, Sphagnum fuscum, was rarely found on 

lawns. Microtopography is vitally important in determining Sphagnum growth and 

decomposition (Wieder and Vitt 2006). Sphagnum is dependent on the height of the water 

table and moisture content of the capitulum determines the growth rate of Sphagnum.  

Lawn species tend to have higher growth rates as illustrated by (Weltzin et al. 2001), who 

found that lawn species showed 100% higher primary production than hummock species 

and 50% higher production than intermediate microtopography. Since hummock 

Sphagnum species are farther away from the water table and they have no roots, they 
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utilize their better capillary water transport and have denser growing forms than lawn 

species (Murray et al. 1989; Wieder and Vitt 2006). Sphagnum species are also known 

for their water holding capacity as they can hold up to 25 times more water than their 

own weight (Clymo and Hayward 1982). Even though the higher production in hollows 

could indicate that the microtopography would eventually become evened out, the 

hummock hollow dynamics seem to be maintained by lower decomposition rates of 

hummock species (Rochefort et al. 1990).  

 

Article introduction 
Boreal peatlands have accumulated vast amounts of carbon (300-450 Pg) since 

the end of the last ice age (Gorham 1991). Even though they only cover 3% of the global 

land area (Gunnarsson 2005), they store about one-third of all terrestrial soil carbon 

(Moore et al. 1998). Carbon accumulates as peat when long-term plant productivity 

exceeds decomposition rates (Crum 1992; Gorham 1991). Temperature is one of the 

major drivers in peatland carbon cycling as it affects both plant production and 

decomposition; either of which could shift peatlands from a carbon sink to source 

(Hoosbeek et al. 2001).  Average global temperatures are predicted to increase 0.6 - 6°C 

by the end of 21stcentury compared with the temperatures a century before (IPCC 2007). 

The greatest increases are predicted to occur at high latitudes of the Northern 

Hemisphere, especially in the arctic (Houghton et al. 1990; Houghton et al. 1995; 

Maxwell and Barrie 1989).  

The southern end of the boreal zone might also be sensitive to warming since 

peatlands closely follow geographic placement of boreal forests and its ecotone (Gignac 

et al. 1998). Since the southern boundary of boreal peatlands will move northwards 

(Gignac et al. 1998), the peatland plants already at their higher temperature threshold 

could experience considerable biotic responses to temperature (Callaghan and Jonasson 

1995). Warming could therefore, cause shifts in vegetation with cold tolerant species 
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moving northwards. For instance (Prentice et al. 1991) used computer based forest 

succession model and predicted that in central Sweden boreal zone evergreen trees, like 

Norway spruce (Picea abies), are being replaced by broadleaved temperate trees like, 

beech (Fagus sylvatica) and Common oak (Quercus robur), that require longer growing 

season and higher summer temperatures.  

Both plant production and peat decomposition influence peat growth (Wieder 

2001). Peat respiration (heterotrophic and autotrophic combined) has been shown to 

increase with rising temperatures (Chapman and Thurlow 1996; Chapman and Thurlow 

1998), which will increase CO2 released from peatlands to the atmosphere. However, this 

additional loss of carbon could be offset by increased plant photosynthesis, which 

responds positively to higher temperatures (Shaver et al. 2000). Therefore, understanding 

how rates of photosynthesis will respond to warming in peatlands is vital to predict and 

model changes from climate change. 

Experimental warming has been the major tool used to study the response of plant 

communities to warming (Arft et al. 1999; Weltzin et al. 2000).  Experimental warming 

is divided into two functionally different types, active and passive (Aronson and McNulty 

2009). Active treatments use an artificial source of energy to heat the soil or plant 

canopy, the most common example being infra-red (IR) lamps (Aronson and McNulty 

2009).  Passive warming treatments, such as open top chambers (OTC’s), utilize the sun’s 

energy by heating the canopy during the daytime and reducing heat loss during the night 

(Marion et al. 1997). However, it is unclear how these different types of warming affect 

plant photosynthesis and carbon cycling. 

Therefore, the objective of this study was to test how CO2 uptake of a sedge, 

shrub, and Sphagnum mosses respond to two different experimental warming treatments. 

We hypothesize that: 1) Warming will increase CO2 uptake of sedges and shrubs since 

they have been found to grow faster on drier, more aerated soil, 2) The CO2 uptake of 

Sphagnum moss will decrease because the mosses are at their southern boundary and 

warmer conditions will increase respiration more than photosynthesis, and 3) the IR-
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warming lamps will have a larger influence on CO2 uptake than OTC’s since they warm 

plots 24 h per day and therefore influence soil temperatures more.   

Methods 

Site Description 
We conducted a field experiment to test the influence of two different types of 

warming (IR-lamps vs. OTC’S) on peatland carbon cycling.  The study occurred in a 

poor fen in Pequaming (46.85°N 88.37°W, elevation 193m), in the western half of 

Michigan’s Upper Peninsula.  The poor fen is 170 ha in size (EPA 2010), and occurs in a 

tombolo on the Keweenaw Bay, Lake Superior. A tombolo forms when sediments from 

waves create a land bridge connecting an island to a mainland. The Pequaming tombolo 

has a ridge on both lake sides, which act as barriers that keep most of the lake water out 

of the tombolo (Boisvert 2009). 

The growing season in this region is 110 to 130 days (Eichenlaub 1990), with 

average minimum winter temperature of -17° C and average maximum summer 

temperature of 26° C (IDcide 2010). Mean annual precipitation ranges from 760 to 910 

centimeters, with heavy lake-effect snowfalls up to 5 meters per year (Albert 1995). 

Peat cores indicate that the peat is 200-250 cm thick with a14C basal age of 2,225 

+/- 105 years, consisting of humic Carex and Sphagnum remains (Boisvert 2009). The 

bottom layer of peat from 110-200 cm is mainly remnants of Carex ssp. The upper layer 

of peat (20-110 cm) is mostly Sphagnum with some undecomposed Carex ssp. (Boisvert 

2009). Peat humification increased with increasing peat depth, with the uppermost 20 cm 

of peat consisting of undecomposed woody material and Chamaedaphne calyculata, 

Carex ssp. and Sphagnum moss. 

Vegetation composition was surveyed during the summer of 2009 using a grid 

intercept method in the middle of each plot. A 1 m x 1 m grid was used with 100 points 

in each plot. An aluminum frame with a movable crossbar mounted with laser was used 
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for sampling. All vascular plants and bryophytes hit by a laser pointer were identified, 

counted, and the number of hits was divided by 100 to get the percent cover of each 

species. Vascular plants and bryophytes were treated as two different vegetation layers, 

both summing up to 100%. In summary, vegetation at the site is similar to other poor fens 

in the region (Table 1). The main vascular plants on the hummocks were Chamaedaphne 

calyculata, Vaccinium oxycoccos and Picea mariana.  The dominant vascular plants in 

the lawns were Vaccinium oxycoccos, Carex exilis, Carex oligosperma and 

Chamaedaphne calyculata. Sphagnum fuscum was the dominant moss on the hummocks, 

constituting almost 60% of the cover, followed by Sphagnum magellanicum and 

Sphagnum rubellum.  Sphagnum rubellum was the most common bryophyte in the lawns 

followed by Sphagnum papillosum. 

 

Experimental Design 
Eighteen plots were established in 2008 and divided into three treatments with 

equal numbers of IR heating lamps (lamps), OTC’s, and unwarmed control plots. The 

warming experiment ran from late 2008 through October 2010. The 6 replicates of each 

warming treatment were split equally among hummocks and lawns. Boardwalks were 

installed to all plots to minimize impacts.   

Air and soil temperatures were manipulated on six lamp plots by using adjustable, 

thermal infrared heating lamps [~ 2 m in length, Kalglo Inc. IR lamps (120V, 1500 W, 

12.5 amps)] suspended 1.25 m above the moss surface. The lamps were operational 24 

hours per day until the end of the growing season, from April to middle of October. 

Lamps were disassembled for the winter and stored in the lab until used again the 

following year. 

Six plexiglass hexagon OTC’s were designed according to ITEX (International 

Tundra Experiment) specifications (Henry and Molau 1997). The OTC’s were 2.08 m 

wide from the bottom, 0.5 m in height, the sides were at 60° angle and the open top was 
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1.5 meters wide. OTC’s were assembled and put out at the same time with lamps and 

disassembled in mid-October. 

. IR lamps in our study increased average daily soil temperatures by about 1.4°C 

compared to OTC and control plots, but warmed even more during the night since the 

lamps were constantly operating (Chris Johnson, unpublished data). 

Precipitation was measured on site using tipping-bucket rain gauge (TE525WS, 

Texas Instruments, Dallas, TX). Water table depth beneath the surface was monitored 

daily using a 10.16 cm wide and 1.5 m long PVC pipe well which had pressure 

transducers (Levellogger Junior, Solinst, Georgetown, Ontario) and a barometric logger 

(Baralogger Gold, Solinst, Georgetown, Ontario) installed into it. I-Buttons were installed 

to all plots (I-Buttons, Maxim Integrated Products, Sunnyvale, CA) 5 cm beneath the 

moss surface to monitor hourly temperature. Volumetric water content of the top 12 cm 

beneath the Sphagnum moss surface was measured manually with a HydroSense® Water 

Content Sensor (Campbell Scientific Inc., Australia).  

 

Gas exchange of vascular plants 
Gas exchange measurements of two different vascular plant species [leatherleaf 

(Chamaedaphne calyculata) and sedge (Carex utriculata)] were conducted. C. calyculata 

was chosen to represent shrub and C. utriculata sedge plant functional groups. The 

photosynthetic rate of these two species was measured over the growing season (end of 

April to the start of October 2010) using a Licor-6400 portable photosynthesis system 

(LI-COR Inc., Lincoln, NE, USA), equipped with a 6400-2B LED Light Source. The 

light source provided a constant photosynthetically active radiation (PAR) during the 

measurements and was set to 1500 µmol photons m-2 s-1. The reference CO2 

concentration was set to 400 µmol per mole and the flow was set to a constant rate of 400 

µmol per second. Leaf temperature and humidity were not controlled during the 

measurements. 
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To determine leaf area in cm2, a requirement to calculate CO2 uptake, sedge leaf 

width was multiplied by 3 cm (longest side of IRGA’s chamber). For leatherleaf, a 

common mathematical formula for ovals was used, where the area of the oval (cm2) 

equals the width (cm) x length (cm) x 0.8. In most cases, the leaf area for the leatherleaf 

was relatively small, ranging from 0.7 to 3.36 cm2 with the mean 1.61 cm2.The average 

leaf area for sedges was more evenly balanced with values between 1.0-2.67 cm2 with a 

mean value of 1.72 cm2. 

Measurements of vascular plant CO2 uptake were performed twice monthly 

between 9AM and 4PM. Cloudy and rainy days were avoided because the purpose was to 

diminish differences in environmental conditions surrounding the leaves between 

measurements and to simulate days when the leaf’s photosynthetic capacity was high. 

Gas exchange of Sphagnum moss 
Due to difficulties with measuring Sphagnum spp. with a Licor 6400, chamber 

methods (Moore et al. 2002) were used instead to measure the gas exchange of 

Sphagnum moss. A small clear cylindrical plexiglass chamber was used with diameter of 

10.46 cm and inner volume of 1.295 dm3. Permanent round plastic collars (diameter of 

10.46 cm and 10 cm deep) were installed into the peat at all plots, where the chamber was 

mounted on during the measurements. Sites for collars were chosen with very few 

vascular plants, but if any occurred in the collars they were picked or cut out to eliminate 

the photosynthetic gas exchange from vascular plants. The chamber was mounted with a 

battery operated fan for the mixing of air. Field measurements were done using an EGM-

4 environmental gas monitor (PP-Systems; Amesbury, Massachusetts, USA), which 

monitors the CO2 concentrations in the chamber. Both light (NEE) and dark 

measurements (ER) were carried out with the chamber. Before the measurements started, 

the chamber was placed on a collar and left to equilibrate until steady mixing ratio 

occurred. Typically for 20-30 seconds, which was indicated by steady increase or 

decrease in CO2 concentration inside the chamber (Chimner et al. 2010). NEE 

measurements were conducted first and lasted 120 seconds with readings recorded every 
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5 seconds. After the measurement the chamber was taken off from the collar and flushed 

with ambient air for ~2 minutes since chambers cannot be held on place for extended 

periods because they start to alter evapotranspiration and temperature (Goulden and Crill 

1997). Then the chamber was placed again on collar for ER measurement, covered with 

opaque cloth and same procedure was repeated. The Infra-Red Gas Analyzer (IRGA) 

uses the chamber volume and plot area to calculate the gas mixing ratio from linear or 

near-linear change in headspace CO2 concentration over the measurements period (Alm 

et al. 1999). GEP was later calculated by summing ER with the NEE (GEP=NEE+ER).  

 

Measurements of Sphagnum growth 
Sphagnum growth and production was measured in order to compare it with 

Sphagnum gas exchange measurements. Vertical growth of Sphagnum was measured by 

installing 48 cranked wires (Clymo 1970) per plot (864 total) on 30th of May, 2010. 

Wires were measured again on October 15th, 2010 to quantify vertical growth during the 

growing season. Ten bulk density samples were collected for each five Sphagnum species 

present at plots, samples were oven dried at 70°C for 48 hours and weighed. Vertical 

growth of each Sphagnum species was correlated with bulk density samples of Sphagnum 

biomass to calculate the biomass increment (NPP) in g m2.  

 

Data analysis 
Uptake of CO2 by plants was analyzed using three-way ANOVAs with treatment, 

species and topography set as independent variables. A separate two-way ANOVA was 

run for sedge and leatherleaf with topography and treatment set as independent variables. 

To measure treatment effect for Sphagnum growth, one-way ANOVA was used. All 

analyses were carried out using Systat statistical software (Systat Software, Inc., Chicago, 

IL).  
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Results 
The summer of 2010 had lower than average precipitation during July and 

August. This resulted in continuous water table drawdown through the season until the 

beginning of September (Figure 1). Photosynthetic uptake of vascular plants dropped by 

the middle of September while Sphagnum moss remained photosynthetically active until 

October (data not shown). IR-lamps raised the average soil temperature at 5 cm depth in 

2010 summer months by more than 1.4ºC and also increased canopy temperatures 

compared to control plots.  OTC’s had similar soil temperatures compared to control 

plots but experienced small cooling effect on mid-days (Chris Johnson, unpublished 

data).  

 

Vascular plants 
Average CO2 uptake of leatherleaf was not significantly different (Table 2) 

between the hummocks and lawns, averaging 9.8 µmol of CO2 m-2 s-1 (Figure 2).The 

control plots had the highest average rate of CO2 uptake over the growing season (9.58 

µmol of CO2 m-2 s-1) (Figure 2). Warming was found to significantly lower CO2 uptake 

(P=0.049, Figure 2), averaging 8.20 µmol of CO2 m-2 s-1 under OTC treatment and 7.78 

µmol of CO2 m-2 s-1with the lamp treatment. Water table depth was correlated with 

leatherleaf stomatal conductance (Figure 3), and CO2 uptake by leatherleaf (Figure 4). 

Stomatal conductiance of leatherleaf in lawns tended to be lower with warming, but not 

significantly (P=0.2, Figure 5). 

Average CO2 uptake of the sedge in the control plots (8 µmol) was found to be 

slightly lower than the leatherleaf control plots (Figure 6). Average CO2 uptake was 

slightly greater in the hummocks than lawns, but the difference was not significant. There 

were also no significant differences found in CO2 uptake with warming, nor a warming x 

microtopography interaction (Table 3).  
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Sphagnum moss 
GEP of Sphagnum was not significantly different between lawns and hummocks 

(Figure 7). Pooled across microtopography, GEP was significantly greater under the 

lamps compared to the unwarmed control. In fact, GEP was almost 3 times as large.  

However, there was no significant difference between the OTC’s and controls (Figure 7).  

Similar to GEP, ER was significantly greater under lamps compared to the 

controls (Table 5), 5.6 and 2.8 µmol of CO2 m-2 s-1, respectively. There was also no 

significant ER differences between the OTC’s and control plots (P<0.18, Figure 7).   

Average net ecosystem exchange (NEE) varied significantly between the 

warming treatments (Table 4). OTC’s and control had similar average rates of NEE (2.33 

and 2.83 58 µmol of CO2 m-2 s-1, respectively), while the lamps had significantly greater 

NEE (P<0.001, Table 4) rates (8.42 µmol of CO2 m-2 s-1). Microtopography was not a 

significant factor, but there was a near significant affect with the interaction of 

microtopography and warming (Table 4, P=0.07). 

In sharp contrast to chamber based gas flux measurements, Sphagnum biomass 

production was greatest in control plots and decreased significantly with both warming 

treatments (Figure 8 & Table 6). This was mostly caused by decreased biomass 

production in the hummocks (Figure 9). In the lawns there was no significant difference 

with warming, but the biomass accumulation was lower compared to the hummocks 

(Figure 10).   

Volumetric water content at 12 cm depth was lower in hummocks than in lawns 

indicating the importance of the water table depth on Sphagnum moss photosynthesis 

(Figure 11 & 12). Water content was related to Sphagnum NEE in lawns (Figure 13). 

Warming did not have an effect on Sphagnum moss moisture content. Highest vapor 

pressure deficit of the leaf (VpdL) occurred at August, early September (Figure 14). 

Simultaneously with high VpdL and low amount of precipitation, Sphagnum NEE ceased 

in most study plots and was especially visible in hummocks (Figure 15).  
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Discussion 

Vascular plants 

The two vascular plants in our study responded differently to experimental 

warming. Our results were contradictory to our hypothesis that vascular plants should 

increase their CO2 uptake. We found no difference in sedge CO2 uptake between warmed 

and control treatments, while the rate of CO2 uptake of leatherleaf dropped under both of 

our warming treatments independent of microtopography.  

Our results are similar to those of (Weltzin et al. 2000), who found that Carex 

limosa, C. lasiocarpa and C. livida production was unaffected by IR warming in a fen 

mesocosm study in Minnesota, USA. Sullivan et al. (2008) also found that leaf length 

growth and CO2 uptake of Carex bigelowii did not change with OTC warming in a high 

arctic sedge fen in Greenland. However, long-term (25 yrs.) study in the Arctic found that 

increased temperatures increased Carex aquatilis and Carex membranacea above- and 

belowground biomass (Hill and Henry 2011).   

Contrary to our finding, bog monolith mesocosms treated with IR lamp warming 

showed no difference in leatherleaf aboveground NPP (Weltzin et al. 2000).  In addition, 

OTC warming in the high arctic significantly increased stem growth of shrub Salix 

arctica in hummocks (Sullivan et al. 2008). Although most of the increased growth was 

invested above ground through a doubling of stem length growth and probably increased 

leaf area, increases in root growth was also measured (Sullivan et al. 2008). Simultaneous 

increase in shrub Betula nana height growth with increased Sphagnum growth has been 

observed in OTC warming treatments (Dorrepaal et al. 2006). 

These studies indicate that the physiology of these sedge species was not affected 

by warming and at higher temperatures they may not take up more carbon. Since the 

Pequaming field site is a poor fen, there are relatively few sedges and the amount of 
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available nutrients and competition pressure might have limited sedge response to 

warming. That might be the reason why our initial hypothesis proved to be incorrect. 

Similarly, Carex oligosperma aboveground primary productivity in bog community did 

not respond to IR lamp warming (Weltzin et al. 2000). Sedges have been shown to have 

high growth rates and are influenced by nutrient addition (Aerts et al. 2006). Short-term 

warming manipulations do not increase nutrient availability since there is time lag of over 

3 years between the initiation of a warming experiment and ecosystem response in 

nutrient availability (Chapin et al. 1995). An experiment in Alaskan sedge meadows 

showed that biomass production did not respond to short-term changes in temperature 

(Rydin and Jeglum 2006).  However, a long-term (25 yrs.) warming study in Arctic 

measured an increase in C. aquatilis and C. membranacea above- and belowground 

biomass (Hill and Henry 2011). This increase probably was due to increased 

decomposition and mineralization in soil (Hill and Henry 2011).  Because of the 

competition pressure and nutrient deficiency in our study, sedges may not have been able 

to take up more CO2 even if the temperature increase would be beneficial for sedge 

growth. 

Our finding of a decline in leatherleaf CO2 uptake could be related to drier than 

average growing season and low water table levels. Shrub aboveground NPP seems to be 

related to site wetness; bogs and poor fens have much higher shrub NPP than rich fens 

(Szumigalski and Bayley 1997). During the growing season, the water table gradually 

declined to 25 cm below the surface.  Low water table resulted in lower stomatal 

conductance. Stomatal conductance is directly linked to the photosynthesis since plants 

need to keep the stomata open in order to photosynthesize (Lambers et al. 1998). At the 

same time, we did not find significant differences in stomatal conductivity nor Vpd of the 

leaf between the warming treatments. Therefore, we cannot confirm why CO2 uptake 

decreased. One possible reason is that decreased N content in leaf due to decreased N 

availability in the soil. Leaf N content is vital for photosynthesis since more than 50% of 

the N in plant appears in leafs photosynthetic apparatus, especially in enzyme Rubisco 

which drives photosynthesis (Lambers et al. 1998). Leatherleaf is probably not at the 
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thermal limit in the region since it can be found in much southerly locations (Myneni et 

al. 1997).  

Sphagnum gas exchange 
The limited amount of studies focusing on CO2 uptake of Sphagnum have 

generally been community scale responses to temperature where Sphagnum has been the 

dominant plant species (Silvola et al. 1996; Sullivan et al. 2008; Updegraff et al. 2001). 

We hypothesized that increased temperatures would reduce Sphagnum CO2 uptake but 

the opposite was observed with IR lamps. OTC warming resulted in no change at 

Sphagnum CO2 uptake compared to control plots, which means that our third hypothesis 

proved to be true. In our study, IR lamp warming increased NEE, ER and GEP of plots 

covered only by Sphagnum spp. Increase in NEE exhibits positive effect of temperature 

on Sphagnum photosynthesis. This might indicate that Sphagnum is not at its thermal 

limit and might be able to photosynthesize faster at higher temperatures. There was also a 

simultaneous increase in both ER and GEP. ER is dependent on water table position and 

temperature (Moore et al. 1998; Updegraff et al. 2001). In our case ER rose significantly 

under IR lamps, which had much higher soil warming than the OTC’s. The IR lamps 

raised the average soil temperatures by 1.4°C while OTC’s had similar soil temperatures 

compared to control plots (Chris Johnson, unpublished data). Similarly, Updegraff et al. 

(2001) observed an increase in ER in both bog and fen plant communities under IR lamp 

warming while the water table depth had no significant influence (Updegraff et al. 2001). 

In our study, the water table depth stayed in upper 25 cm for most of the growing season 

and IR lamp warming had positive effect on ER compared to control, which resulted in a 

100% increase. Since we did not modify water table levels between treatments, we can 

conclude that IR lamp warming increased ER in our study.  

In nutrient poor ecosystems, like boreal peatlands, warming has been found to 

enhance ER (Chapin 1983). Summarized findings from different ecosystems indicate 

exponential relationship between temperature and ER (Lloyd and Taylor 1994). Increase 

in ER indicates the increase either in plant biomass, and therefore plant respiration, or an 
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increase in soil respiration (Sullivan et al. 2008). Both plant production and ER are 

positively influenced by temperature, but ER increases more in short time scale warming 

treatments (Woodwell 1995). CO2 fluxes from soils were found to be influenced by 

temperature much more if the water table is 0-20 cm beneath the surface compared to 

lower water tables (Q10 value of 4.9 and 1.3, respectively)(Weltzin et al. 2001). The same 

temperature effect for water table depths of 0-20 cm (Q10 value being 2.9) has been 

shown by (Silvola et al. 1996). Temperature and water table level play significant role in 

carbon cycling of boreal peatlands. CO2 fluxes from boreal peatlands have shown to rise 

up to 10 times if you compare fluxes under 10°C with high water table levels and 

summertime CO2 fluxes with lowered water table (Silvola et al. 1996). Summer ER 

might be higher than CO2 uptake of bog plant community, resulting in negative NEE 

(Alm et al. 1999; Moore et al. 2002). At present, peatlands can be sources for CO2 at 

current summer temperatures (Burrows 2005). Drier than average summers resulted in 

water table level 15 cm below surface which resulted in increased ER which exceeded 

NPP in study by Alm et al. (1999). This all indicates that during the summer, when water 

table levels drop and peat is exposed to aeration, ER increases due to higher temperatures 

and could be even higher than CO2 uptake by vegetation.  

 

Sphagnum NPP 
Our seasonal Sphagnum NPP measurements were contradictory to our daytime 

gas flux measurements. Increased CO2 uptake by Sphagnum should increase seasonal 

NPP, but the opposite was observed. While this reduction was evident in both hummocks 

and lawns, it was significantly greater only in hummocks where S. fuscum was dominant. 

This indicates that while Sphagnum is able to take up more CO2 at higher temperatures, it 

is vulnerable to moisture availability. Our results are contradictory to studies where 

summer warming increased Sphagnum growth (Dorrepaal et al. 2004; Dorrepaal et al. 

2006; Sonesson et al. 2002). OTC warming in northern Sweden increased S. fuscum 

summer length increment by 62 and 42% in two consecutive years after the warming 



31 
 

treatment was set up (Dorrepaal et al. 2004). Even though the warming also reduced bulk 

density of Sphagnum, the biomass accumulation increased. Also Sonesson et al. (2002) 

found increased S. fuscum length increment in warming treatments. When combined with 

additional precipitation of 1 mm per day, the length increment rose by 50% in spring and 

33% in peak growing season. However, IR lamp warming of boreal peatland mesocosms 

did not increase Sphagnum production in Minnesota (Weltzin et al. 2001). 

Our observed reduction in Sphagnum NPP might be due to water stress since 

Sphagnum production is highly water dependent (Titus et al. 1983; Weltzin et al. 2001). 

Our observed reduction in NPP was greater in hummocks, which are even further away 

from the water table. The summer of 2010 had less than average amount of precipitation, 

especially in July and August. Vapor pressure deficit of the leaf was significantly higher 

in August and early September compared to July or October (Figure 14). During the 

growing season, the water table fell gradually, reaching a minimum of 25 cm below the 

lawn surface by the end of August. During measurement days in August, the Sphagnum 

photosynthesis was decreased at most study plots since the capitulum was dry and had a 

bleached color (Figure 15). Just before the next measurement (September 2010), there 

was a small precipitation event (2.5 mm) in the morning, which allowed photosynthesis 

to recover. Small precipitation events less than 5 mm have the same effect on capitulum 

moisture content as a rise in water table level of 20 cm, and has major implications on 

photosynthesis (Strack and Price 2009). These small events moisten the capitulum and 

therefore have big implications on photosynthesis since Sphagnum does not possess 

roots. Water is essential in maintaining photosynthetic capacity for Sphagnum and water 

lost in evaporation must be replaced from water table (Schipperges and Rydin 1998). 

Height of the water table determines the Sphagnum capitulum moisture content; moisture 

content decreases with decreasing water table levels (Titus et al. 1983). We found that 

NEE was influenced by the moisture content at 12 cm depth in lawns (Figure 13).  

Volumetric water content in upper 10 cm of soil is dependent of the water table 

depth in upper 55 cm of peat (Strack and Price 2009). Sphagnum abundance has shown to 
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decline if water table levels are lower than 50 cm beneath the surface (Moore et al. 2002). 

Lower water table resulted in 50-80% reduction of Sphagnum NPP between two years of 

measurements (Szumigalski and Bayley 1997). Additionally, S. fuscum growth has been 

shown to be highest when water table is 0-10 cm below the capitulum (Jauhiainen et al. 

1997). In our study the water table level fell as low as 25 cm beneath the surface while 

Sphagnum fuscum, the dominant Sphagnum species on hummocks where the reduction in 

NPP was significant, was elevated even further away from the water table. Sphagnum 

production seems to be correlated to the height of the water table since low 

microtopography has 100% higher NPP values than high microtopography (Weltzin et al. 

2001). Similarly in the same study, warming did not increase Sphagnum production, 

instead it was more influenced by the water table. In Alaska, optimum water content for 

photosynthesis for Sphagnum mosses was 6-10 times the dry weight, below that the 

photosynthesis starts to decrease (Murray et al. 1989). If Sphagnum capitulum is dry for 

extended periods, growth has been found to be reduced (Schipperges and Rydin 1998). 

Desiccation experiments showed that Sphagnum is able to recover to some extent from 

short desiccation periods, but is not able to recover after 12 days of desiccation 

(Schipperges and Rydin 1998). Because of the low water table level and high VpdL from 

August to September, the reduction in NPP might have occurred between the 

measurement days. Both warming treatments might have increased canopy temperatures 

and therefore higher evapotranspiration compared to control plots making water even less 

available for photosynthesis.   

Another aspect which could have influenced the reduction of Sphagnum NPP in 

our study is an increase in nighttime plant respiration. Like all biological processes, plant 

and soil respiration increases with higher temperatures  (Woodwell and Whittaker 1968). 

During the nighttime when no photosynthesis occurs, it can result in greater CO2 losses 

compared to nights with lower soil temperatures. Nighttime soil respiration has been 

linked to temperatures at 5 cm depth (Goulden and Crill 1997) and areas with greater 

plant cover have been shown to lose more CO2 at night, indicating the role of root 

respiration in nighttime soil respiration (Billings 1987).  
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Conclusions 
Neither of the vascular plants increased CO2 uptake under warming, which is 

contrary to our hypothesis. We expected that short term warming would increase vascular 

plant photosynthesis, while long-term warming would cause nutrient limitations and 

inhibit photosynthesis (Shaver et al. 2000). It is possible that the low nutrient status of 

our site might have influenced the non-responsiveness of sedges to warming. Leatherleaf 

decreased its CO2 uptake at higher temperatures which again is against our hypothesis. 

Low water table level might play a role here since water table is able to influence 

stomatal conductance of leatherleaf. But we still could not find any evidence behind the 

drop in leatherleaf CO2 uptake. Our hypothesis that Sphagnum ‘s CO2 uptake will drop 

turned out to be disproven as Sphagnum was able to increase its CO2 uptake under IR 

lamp warming, while this increase in CO2 uptake seems to be dependent on moisture 

availability. However, Sphagnum NPP decreased. Current climatic predictions indicate 

that precipitation in northern latitudes will increase (IPCC 2007), however most of the 

precipitation increase will probably happen during the wintertime (Dorrepaal et al. 2004; 

Houghton 2005; Prentice et al. 1991). Our results indicate the importance of summer 

precipitation to Sphagnum biomass accumulation. Sphagnum has shown to gain 

competitive advantage over Dicranum elongatum in natural mixtures of these two species 

if both temperature and precipitation increase (Sonesson et al. 2002). Since higher 

temperatures are able to increase evapotranspiration (Gignac and Vitt 1994; Mitchell 

1989), summertime water table height and precipitation events become even more 

important. Our study demonstrates that Sphagnum is not at its thermal limit in sub-boreal 

climatic zone but future summertime precipitation amounts and patterns will determine 

its vitality in this ecosystem.   
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Tables 
Table 1. 

Average percent (%) cover of plant species by treatment and microtopography. 
Sphagnum and vascular plants are divided into two vegetation layers, each summing up 

to 100% 

Species 

Hummock Lawn 

Control OTC Lamp Control OTC Lamp 

Picea mariana 32% 2% 7% 

   Chamaedaphne calyculata 19% 27% 37% 6%    1% 22% 

Vaccinium oxycoccos 19% 17% 24% 28% 31% 22% 

Carex exilis 8% 

  

21% 13% 20% 

Carex oligosperma 4% 

 

3% 17% 13% 18% 

Ledum groenlandicum 4% 5% 6% 

  

1% 

Kalmia polifolia 4% 13% 8% 8% 19% 7% 

Andromeda polifolia 3% 17% 4% 8% 10% 4% 

Myrica gale 3% 12% 

 

6% 3% 2% 

Sarracenia purpurea 1% 

  

2% 

 

1% 

Drosera rotundifolia 1% 

 

4% 

 

9% 2% 

Larix laricina 1% 4% 

    Carex utriculata            1% 3%       1% 4%    1% 1% 

Carex pauciflora 

  

6% 

   
       Sphagnum fuscum 59% 30% 82% 1% 

  Sphagnum rubellum 27% 7% 5% 63% 57% 62% 

Sphagnum magellanicum 10% 60% 13% 1% 

 

12% 

Sphagnum papillosum 4% 1% 

 

17% 43% 26% 

Sphagnum angustifolium 

 

1% 

 

18% 

  Sphagnum capillifolium 

 

1% 
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Table 2. 
ANOVA results for Leatherleaf CO2 uptake 

Source Sum-of-Squares df Mean-Square F-ratio P 

Topography 0.546 1 0.546 0.045 0.83 

Warming 74.356 2 37.178 3.091 <0.05 

Warming*Topography 1.250 2 0.625 0.052 0.95 

Error 1443.365 120 12.028   
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Table 3. 
ANOVA results for Sedge CO2 uptake 

Source Sum-of-Squares df Mean-Square F-ratio P 

Topography 13.212 1 13.212 0.899 0.35 

Warming 0.339 2 0.169 0.012 0.99 

Warming*Topography 1.697 2 0.849 0.058 0.94 

Error 1602.174 109 14.699   
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Table 4. 
ANOVA results for Sphagnum net ecosystem exchange (NEE) 

Source Sum-of-Squares df Mean-Square F-ratio P 

Warming 961.047 2 480.524 12.630 <0.01 

Topography 79.530 1 79.530 2.090   0.15 

Warming*Topography 212.678 2 106.339 2.795   0.07 

Error 4565.398 120 38.045   
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Table 5. 
ANOVA results for Sphagnum Ecosystem respiration (ER) 

Source Sum-of-Squares df Mean-Square F-ratio P 

Warming 292.101 2 146.051 12.065 <0.01 

Topography 13.731 1 13.731 1.134   0.29 

Warming*Topography 7.842 2 3.921 0.324   0.72 

Error 1452.593 120 12.105   
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Table 6. 
ANOVA results for mean Sphagnum biomass accumulation 

Source     Sum-of-Squares df Mean-Square F-ratio P 

 
Warming 129499.7 2 64749.877 34.549 <0.01 

 
Microtopography 0.129 1 0.129 0.000 0.99 

 
Warming*Topography 44124.5 2 22062.292 11.772 <0.01 

 
Error 1892897 101 1874.156   
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Figure 1. Water table depth and precipitation amounts (study period only) at Pequaming 
during 2010. Water table depth marked as solid black line and precipitation as gray bars. 



41 
 

HUMMOCK LAWN

µm
ol

 C
O

2 
m

-2
 s

-1

6

7

8

9

10

11

Control
OTC
Lamp

 a

   b

     
     a

 
 b

   
     b

    ab

 

Figure 2. Average (se) CO2 uptake of Leatherleaf (Chamaedaphne calyculata) in two 
different microtopography features and two different warming treatments. Positive values 
indicate CO2 uptake by leatherleaf. 
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Figure 3. Correlation between water table depth (cm) and leatherleaf stomatal 
conductance. Larger values of stomatal conductance indicate the openness of stomata. 
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Figure 4. Correlation between leatherleaf stomatal conductance and CO2 uptake.  
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Figure 5. Average (se) warming treatment effect on stomatal conductance (mmol s-1)of 
leatherleaf in lawns. Larger values of stomatal conductance indicate openness of stomata. 
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Figure 6. Average (se) CO2 uptake of Sedge (Carex utriculata) in two different 
microtopography features and two different warming treatments. Positive values indicate 
CO2 uptake by sedge. 
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Figure 7. Average (se) CO2 exchange by Sphagnum moss over two different 
microtopography features and two different warming treatments. Positive values of NEE 
indicate the amount of CO2 taken up from the atmosphere and positive values of ER the 
amount of CO2 released to the atmosphere by Sphagnum . 
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Figure 8. Mean (se) Sphagnum biomass accumulation from 30th of May to 15th of 
October 2010.  
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Figure 9. Mean (se) biomass production of Sphagnum moss on hummocks. 
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Figure 10. Mean (se) biomass production of Sphagnum moss on lawns. 
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Figure 11. Average volumetric water content (se) of Sphagnum moss in hummocks, 12 
cm beneath the surface. Lines help to clarify trends but do not indicate changes in 
volumetric water content between measurement days.  
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Figure 12. Average volumetric water content (se) of Sphagnum moss in lawns, 12 cm 
beneath the surface. Lines help to clarify trends but do not indicate changes in volumetric 
water content between measurement days. 
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Figure 13. Correlation between volumetric water content 12 cm beneath the surface and 
Sphagnum NEE in lawns. 
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Figure 14. Sphagnum vapor pressure deficit (se) by date. 
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Figure 15. Sphagnum NEE (se) in hummocks by date. 
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