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Abstract 

 The goal of this project was to investigate the influence of a large inland lake on 

adjacent coastal freshwater peatlands. The specific aim was to determine the source of 

groundwater for three differently formed peatlands located on the southern shore of Lake 

Superior. The groundwater study was conducted at Bete Grise, a peatland complex in a 

dune-swale system; Pequaming, a peatland developed in the swale of a tombolo; and 

Lightfoot Bay, a peatland developed in a barrier beach wetland complex. 

To determine the source of groundwater in the peatlands, transects of six 

groundwater monitoring wells were established at each study site, covering distinctly 

different vegetation zones. At Pequaming and Lightfoot Bay the transects monitored two 

vegetation zones: transition zone from upland and open fen. At Bete Grise, the transects 

monitored dunes and swales. Additionally, at all three sites, upland groundwater was 

monitored using three wells that were installed into the adjacent upland forest. Biweekly 

measurements of well water pH and specific conductance were carried out from May to 

October of 2010. At each site, vegetation cover, peat depths and surface elevations were 

determined and compared to Lake Superior water levels. From June 14 – 17, July 20 – 21 

and September 10 – 12, stable isotopes of oxygen (18O/16O) ratios were measured in all 

the wells and for Lake Superior water. A mixing model was used to estimate the 

percentage of lake water influencing each site based on the oxygen isotope ratios.  

During the sampling period, groundwater at all three sites was supported 

primarily by upland groundwater. Pequaming was approximately 80 % upland 

groundwater supported and up to 20 % Lake water supported in the uppermost 1 m layer 

of peat column of the transition zone and open fen. Bete Grise and Lightfoot Bay were 

100 % upland groundwater supported throughout the season. The height of Lake Superior 

was near typical levels in 2010. In years when the lake level is higher, Lake water could 

intrude into the adjacent peatlands. However, under typical hydrologic conditions, these 

coastal peatlands are primarily supported by upland groundwater.   
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Introduction 

Peatlands are terrestrially occurring wetlands where ecosystem respiration rates 

are lower than the net primary production, thus creating favorable conditions for organic 

soil accumulation in the form of peat (Wieder and Vitt 2006). The anoxic environment 

caused by waterlogged conditions is the most important factor contributing to this unique 

habitat. Different criteria apply for the classification schemes, but the most common 

being organic soil depth of greater than 30 or 40 cm (Gorham 1991). 

Peatland development is the result of terrestrialization, paludification or primary 

peat formation. Terrestrialization is the slow process of peat development in open bodies 

of stagnant water, gradually closing in from the edges with a floating mat of vegetation.   

Paludification is the most common form of peat formation, a process also known as 

swamping. In this process, peat accumulation begins directly over previous drier mineral 

soil. Primary peat production is a process described by peat formation directly on bare 

wet mineral soil, creation of which favored by the glacial retreat and the resulting land 

rise owing to the isostatic rebound (Wieder and Vitt 2006). 

Peat accumulation speeds vary greatly depending on the decomposition 

(mineralization) rate, which is mainly driven by water saturation and ambient 

temperature, as well as aerobic or anaerobic conditions (Moore and Dalva 1993; Yavitt et 

al. 1997; Glatzel et al. 2004). In Ecuador, for example, Chimner and Karberg (2008) 

have determined the accumulation rate of 1.3 mm year-1. Several studies show the 

average height accumulation of 0.6 mm year-1 for Northern Europe (Aaby 1986) and 0.6 

– 0.8 mm year-1for boreal areas of the Russian Federation (Botch and Masing 1983). 

Gorham and others (unpublished) have estimated the overall average peat accumulation 

of 0.48 mm year-1 for Canada.  
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Geographic range 

Peatlands are found in every ecoregion of the world, from arctic to tropical 

climates, (Gore 1983; Immirzi et al. 1992; Gignac and Vitt 1994; Lappalainen 1996; 

Charman 2002). Wetlands (marshes, mires, swamps and peatlands) cover about or 

between 4 to 6 %, or 4 × 106 km2 of land area on Earth in total (Mitch and Gosselink 

2000, Rosa 2008). Nearly 93% of them are found in six predominantly boreal countries 

(Gorham 1991, Mitsch and Gosselink 2000, Joosten and Clarke 2002, Wieder and Vitt 

2006). The largest intact area of peatlands in the world is on the vast West Siberian Plain 

in the Russian Federation (Neishtadt 1977, Walter 1977, Neustadt 1984, Gorham 1991). 

The second largest area is the Hudson Bay Lowland of Canada (Gorham 1991).   

The majority of peatlands are located in the boreal zone due to several factors, the most 

important of which being the positive water balance in the region during all or part of the 

growing season. The positive water balance allows local water tables to stabilize (Wieder 

and Vitt 2006).  

 

The importance of wetlands and their functions 

Global carbon cycle 

Peatlands are an important sink of carbon. CO2 fixed by plants, subsequently is 

deposited as dead plant material (Wieder and Vitt 2006). The fixation of carbon by plants 

is counterbalanced by the release of carbon via plant and soil respiration, the loss of 

dissolved organic carbon (DOC) through the groundwater and the release of CH4 because 

of methanogenesis (Wieder and Vitt 2006). The high water tables in peatlands create 

anaerobic conditions that prevent the decay of the dead plants, thereby causing the 

peatland to be a carbon sink. The ratio of net primary production (NPP) and peat 

accumulation is estimated to be between 1 to 20 % (Tolonen 1979; Tolonen et al. 1992; 

Warner et al. 1993; Francez and Vasander 1995; Moore et al. 2002; Feng 2002, Wieder 

and Vitt 2006). Therefore, peatlands act as an important reservoir of carbon storage. 
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More than 1/3, or 455 petagrams (455 x 1015 grams), of the world’s soil carbon is 

stored in the organic soils of peatlands (Gorham 1991), while occupying only 3 – 4 % of 

global land area (Mitsch and Gosselink 2000). The carbon stored in these peatlands has 

been estimated to range between 50–150 kg C m-2 and the accumulation rates are 

estimated to range between 10 and 30 g C m-2 y-1 (Gorham 1991; Turunen et al. 2001, 

Wieder and Vitt 2006). 

The large carbon stores may have several adverse effects on the global emissions 

to the atmosphere. For example, single large scale fire events can release vast quantities 

of carbon through peat combustion thereby altering the global atmospheric carbon 

balance. Page et al. (2002) estimated that the burning of 730 000 ha of tropical peatlands 

in 1997 released approximately 0.19 – 0.23 Gigatonnes (109 tons) to the atmosphere. The 

authors extrapolated the figures to the whole of Indonesia for one season of peat fires and 

concluded that between 0.81 – 2.57 Gt of carbon was released. Hence, peat fires in 

Indonesia represented one tenth to two fifths of the 6.4 Gt of carbon released globally by 

fossil fuels in 1957 (Page et al. 2002).  

In the light of increasing global temperatures of the atmosphere, peatlands that 

have been regarded as net carbon sinks are now being studied in great detail with regards 

to becoming potential net producers of carbon into the atmosphere. The shift of 

temperatures is expected to be most significant in boreal zone (Houghton et al. 1992), 

where summers will likely have higher temperatures and, thus, along with the drawdown 

of the water table, the mineralization or decomposition of peat could occur at a higher 

speed.  

Peatlands not only store carbon dioxide, but also produce two other greenhouse 

gases, CH4 and nitrous oxide. According to Bartlett and Harriss (1993), peatlands 

contribute up to 9% of the Earth’s CH4 from natural sources due to anoxic conditions 

often found in peatlands. CH4 is 23 times better at absorbing ultraviolet radiation than 

carbon dioxide, but has a much shorter atmospheric residence time (14.4 years compared 

to 230 years of CO2) (Gorham 1991, Meehl et al. 2007, Watterson 2008). CH4 is 
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produced by the splitting of acetate, which comes from the fermentation of organic matter 

(Kelley et al.1992). 

The answer to whether one third of world’s sequestered soil carbon will affect the 

climate as the temperatures rise is yet unclear. Complex processes within peatlands – 

vegetation dynamics, water table fluctuations, biochemical processes within the peat and 

other factors have high variability, hence each eco-zone has to be studied independently 

and no broad conclusions have yet been made. Large biotic feedbacks are expected to 

occur in northern wetlands, as the global temperatures rise (Houghton et al. 1992). A 

comprehensive study conducted by Bridgham et al. (1998) of carbon, nitrogen and 

phosphorus mineralization rates in northern peatlands concluded that carbon 

mineralization rates were relatively constant over different sites, while methane 

production varied greatly. The authors suggested that the respiratory response of the soil 

to changes in climatic patterns will likely be very different for these two important 

greenhouse gases (Bridgham et al. 1996). 

 

Peatland types 

Peatlands are directly dependent on a long term water supply that is relatively 

constant, while the origin of the water determines the form and function of the peatland 

(Rydin and Jeglum 2006). Ground water and precipitation are the two main sources of 

water. Water and nutrient availability for the peatland flora is influenced by seasonal 

precipitation patterns and the height of the groundwater table. Seasonal variations in 

hydrology force the vegetation to adapt to constantly changing environments. Specific 

propagation strategies and differences in nutrients absorption have developed over time 

in many of the plant species that are found in these ecosystems. For example, carnivorous 

plants like sundew (Drosera spp) and pitcher plant (Sarracenia spp) have adapted to 

catch and digest bugs using enzymes to compensate for the lack of nutrients of the habitat 

(Bridgham et al. 1998). 
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Northern peatlands are structured into two broad categories – fens and bogs. The 

two main peatland types are delineated based on the physiochemical properties of the 

groundwater supporting them. Fens have inputs of groundwater or surface runoff 

enriched in bases and nutrients, that originate from surrounding uplands and thus are 

termed minerotrophic fens. Fens can be further divided into rich and poor. Rich fens have 

greater quantities of nutrients in the ground water, mostly calcium, relative to poor fens, 

which are more nutrient limited. There is no uniform set limit for pH that can help 

classify fens only by their surface water pH, but according to Malmer (1986) poor and 

rich fens can differentiated by the acidity-alkalinity gradient of pH 5.5 in northwestern 

Europe. In contrast to fens, bogs are termed ombrotophic, which is explained by the 

domed shape above the surrounding landscape which disconnects them from the 

groundwater supply, and thus bogs rely on atmospheric inputs of nutrients and bases to 

the peat surface (Gorham 1991, Bridgham et al.1998). As a result, bogs are more acidic, 

with the pH of the surface water ranging approximately from 3.5 to 4.5 (Malmer et 

al.1992). Bog surface waters have low pH, because of the water input from the 

atmosphere lacks the alkalinity to neutralize the strong acids that are released from 

decomposing peat (Hemond 1980; Gorham et al. 1985; Reeve 1996; Glaser et al. 2004; 

Siegel et al. 2006). The difference in available nutrients affects the vegetation 

communities.  

Vegetation of the boreal peatlands ground layer was first classified according to 

the rich or poor fen gradient by DuReitz (1954). Wieder and Vitt (2006) described the 

minerotrophic, acidophilous Sphagnum-dominated plant communities with rather low 

species diversity were termed as poor fens, while species with high fidelity for nearly 

neutral soil pH or calcareous conditions were found in rich fens. Rich fens usually do not 

have a significant cover of Sphagnum peat mosses, rather they have a number of true 

mosses. Sphagnum mosses dominate only in precipitation fed bogs and precipitation and 

groundwater fed poor fens, however, this rule does not always apply, since Sphagnum 

mosses are also found in some rich fens. The type of the ground covering layer retains a 
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critical difference for classification between bogs and poor fens, as several authors have 

suggested (Gorham and Janssens 1992; Vitt 2000; Wheeler and Proctor 2002). 

 

Peatland Hydrology 

Peatland formation and function is determined by the origin of the constant, long-

term water supply. The link between peatland biota and hydrology has been known for 

more than a century. Dau (1823) was one of the first scientists to recognize and document 

three types of peatlands, according to the origin of water. Weber (1902) developed the 

concept of a raised bog, which is fed only by atmospheric precipitation. The movement of 

water in peatlands with the water table height fluctuations influences plant growth, 

resulting in the distinct vegetation patterns of hummocks, hollows, and pools (Gorham 

1953; Iversen 1973; Sjörs 1963, Siegel and Glaser 2006).   

Groundwater is defined as “subsurface water that flows through any saturated 

porous media regardless of its composition (mineral or organic), degree of consolidation 

(rock or sediment), or location (terrestrial or marine)” (Siegel and Glaser 2006). The rate 

of groundwater flow is determined by the physical properties of the porous media. Not all 

pores are connected and, thus, groundwater movement is limited to the connected pores, 

which is termed as effective porosity (connected pores which are 0.5 mm or greater).  

Siegel and Glaser (2006) have summarized the basic principles of groundwater 

hydrology regarding petlands:  

“Primary porosity develops when a rock or soil is formed. Although the 

total porosity of any rock or mineral soil is spatially variable, it remains relatively 

constant over decadal or century time scales. In contrast, the effective porosity of 

peat continually changes both spatially and temporally because of biological 

processes. Microbial decomposition, for example, continually breaks down the 

solid-phase peat skeleton, reducing the size of the pores and increasing the bulk 
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density of the peat. As the pores become smaller the capillary tension between the 

pore waters and peat walls increases exponentially, thereby restricting the 

movement of water under the force of gravity or pressure.” Additionally, it is of 

crucial importance to consider the multi-directional factors that affect the flow of 

groundwater. “The hydraulic conductivity of all porous media usually changes 

with direction. In the event of no formation of secondary porosity, hydraulic 

conductivity will decline exponentially with depth as various biological and 

physical processes reduce the volume of interconnected pore space” (Siegel and 

Glaser 2006).   

Different peats have different hydraulic properties, for example a 100 to a 1000 

fold discrepancy can occur in the hydraulic conductivity of well-humified Sphagnum peat  

(10-6 cm s-1) compared to fibric sedge peat (10-4 cm s-1) (Podniesinski and Leopold 1998). 

Such variation can draw a difference in the ground water flow paths through the site. 

Ingram (1978) proposed the concept of the uppermost surface layer of acrotelm, 

consisting of poorly to well decomposed organic material, where water levels fluctuate 

throughout the year, and underneath, the permanently saturated zone made of well 

decomposed peat – the catotelm (Rosa 2008). Hydraulic conductivity is higher near 

surface of the acrotelm, while it is much lower in the catotelm (Ingram 1978, Fraser et al 

2001, Drexler et al 1999). However, the acrotelm-catotelm concept has been considered 

ambiguous, because it is vaguely described and mostly site dependent (Amon et al. 

2002).  

 

Coastal wetlands 

 Coastal wetlands usually lie in the bordering and transition of terrestrial 

ecosystem zone into aquatic ecosystem and thus, are directly affected by both. Several 

categories of coastal wetlands occur, some of which border the oceans while others occur 

in freshwater systems.  
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Coastal Great Lakes peatlands 

The Great Lakes region of the United States was shaped by glaciation. The lake 

levels have shifted by tens of meters as the geological processes evolved in post-glacial 

periods as the ice retreated, and have been more stable and at levels as we know them 

today for less than 5 000 years (Herdendorf 1992, Booth et al. 2002). Four types of 

stream and shoreline processes provided favorable sites for wetlands as the lakes became 

established: (1) delta formation, (2) estuary formation, (3) sandbar and dune formation 

creating coastal lagoons, and (4) solution lagoons (Herdendorf 1992).  

The coastal wetlands in the Great Lakes region today hold a diversity of functions 

which are a mix of ecological and social uses can be categorized as (1) wetlands as 

habitats (fish production, spawning and nursery; waterfowl migration, wintering, and 

nesting; invertebrate and mammal habitat), (2) economical values (agricultural use, peat, 

blueberries, wild rice, etc.; commercial and sport fishing; waterfowl hunting; non-

consumptive recreation (bird watching, canoeing, hiking, etc.)), (3) physical functions of 

wetlands (groundwater recharge and flood storage; sedimentation basins; pollution 

control (waste assimilation, toxic substance absorption, nutrient uptake, etc.; coastal 

protection (attenuate wave attack) (adopted from Herdendorf 1992, Jaworski et al. 1978).  

Coastal peatlands are a specific type of peatlands that have been formed by the 

combination of high energy waves occurring at the shoreline, the fluctuations of the water 

level and the land forms created by the retreat of the Pleistocene ice sheets (Herdendorf 

1992). These factors contribute to sediment build-up over time, resulting in a variety of 

differently formed and functioning wetlands. For example, in peatlands of the northern 

Great Lakes region, trees are often stunted in growth, or do not appear at all, due to 

saturated growing conditions of the open fen or the seasonally dry conditions of an 

ombrotrophic bog. In some instances trees can thrive in mineral rich fens, often forming 

cedar swamps. Albert et al. (2005) developed a classification scheme for Great Lakes 

coastal wetlands, based on their specific hydrological and geomorphological conditions. 

According to their hydrogeomorphic (HGM) model, three main types of wetlands – 
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lacustrine system, riverine system and barrier-enclosed systems occur in the Great Lakes 

Region.  

Lacustrine, riverine and barrier-enclosed wetlands form under different 

conditions. Lacustrine systems are exposed, having little or no protection from the near-

shore processes such as seiches, lake-level fluctuations, near-shore currents and ice scour 

of the lake, thus restricting vegetation development. Riverine systems occur along and 

within rivers, but are less affected by coastal processes. Barrier-protected systems are 

formed by either coastal or fluvial processes, but are separated from the lake by a barrier 

feature, often a barrier beach. The isolation from lake creates a suitable environment for 

wetland initiation, which usually occur in the swales behind the sand barrier. If several 

sand ridges parallel to the shoreline have formed over the course of the time, a 

distinguished form of wetlands emerge in the swales between the dunes – thus called the 

ridge and swale or dune and swale complexes. These usually occur in embayments, 

where enough supply of sediment is available. In the upper Great Lakes region alone, 

more than 100 of these complexes have been determined (Cromer and Albert 1991, 

Cromer and Albert 1993, Baedke et al. 2004).  

Additionally, if an island is attached to the mainland by barrier beaches, a 

deposition landform called tombolo emerges (Hsu and Silvester 1990). The sediment 

accretion, also known as a salient, is developed by waves diffracting around the offshore 

barrier (an island), thereby slowing down and depositing sediment along the centerline, 

over time connecting the offshore barrier to the mainland. The resulting barrier enclosed 

system within a tombolo with more isolated and stable hydrologic conditions usually 

sustains a suitable environment for a wetland in the swale of a tombolo (Albert et al. 

2005).  
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Stable isotopes of oxygen 

Stable isotopes have emerged during the recent decades in ecological studies, 

providing previously unavailable opportunities to utilize them as geochemical tracers to 

determine the function or a process within a large frame of different applications 

(Hoffmann et al. 2000). The isotopes of any given element are characterized by their 

number of neutrons. Stable isotopes of oxygen 16O, 17O and 18O are components of 

naturally occurring oxygen. The most abundant is 16O, comprising for more than 99% of 

all oxygen isotopes. The stable isotopes of water molecules of lighter atomic mass are 

more likely to evaporate and fall as precipitation, thus building up concentrations of 

heavier isotopes in different hydrologic cycles. Mass spectrometry enables us to quantify 

the isotope ratio (16O/18O) or the relationship between atomic number and mass of a given 

example of water and express the values in an internationally recognized standard. For 

water samples, the VSMOW or Vienna Standard Mean Ocean Water scale is often used 

(Hoffmann et al. 2000).  

Stable isotopes can applied to a broad scale of hydrologic questions. Past research 

have used stable isotopes to determine the source of water used by plants (e.g. Dawson 

and Ehleringer, 1991; Dawson, 1993). For example, Chimner and Cooper (2004) studied 

a site in Colorado to determine the water source for native shrubs in San Luis Valley. The 

root system of the endemic shrubs is adapted to different water table heights, changing 

their water uptake source according to the seasonal monsoon rains. Additionally, the 

movement of water can be traced. For example, Ronkanen et al. (2007) determined the 

flow patterns of water in a constructed wetland treating municipal wastewater in Finland. 

The isotope study helped to determine both active flow volume and preferential 

pathways, which turned out to be in the top 40 cm layer in the peatland. A study of this 

type helped to determine the area-efficiency of the wastewater treatment and potential 

improvements. Lastly, Wilcox et al. (2004) quantified the flows of groundwater using 

isotopes in the North-East Everglades in Florida to determine whether groundwater 

pumping for human use affected the aquifer underlying the Everglades. Isotopic analysis 

helped them determine that up to 60% of water beneath the Everglades was removed by 
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pumping water for municipal use. Hence, environmental isotopes can be used in a variety 

of ways to better understand the hydrology of peatlands. 

 

Study questions  

The hydrologic conditions of each of the coastal wetland type in the Great Lakes 

region have been characterized only in general terms by Albert et al. 2005, but the 

influence of lake water to these differently formed peatlands has not been partitioned. 

This project uses stable isotopes to determine the source of groundwater for three barrier-

enclosed coastal freshwater systems in Lake Superior. The three peatlands are described 

as a dune and swale complex, a barrier beach lagoon and a tombolo. 

The hypotheses of this study were: (1) groundwater dominates the dune and swale 

complex and the barrier beach lagoon peatland, (2) while the more exposed tombolo at 

Pequaming is supplied primarily by lake water.  
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Methods  

Study sites  

The study occurred in three coastal peatlands, Bete Grise, Pequaming and 

Lightfoot Bay that are located in the Upper Peninsula of Michigan, United States (Figure 

1). All three peatlands are located on the southern shore of Lake Superior and were 

formed under its geomorphic conditions (Boisvert 2009). The bedrock in all study sites is 

mostly Jacobsville sandstone of Precambrian origin (Doonan and Byerlay 1973). 

Bete Grise 

Bete Grise is a dune and swale wetland complex (latitude 47°21'53.51" N longitude 

87°57'56.15" W, Figure 2). The dunes primarily support conifers (e.g. balsam fir (Abies 

balsamea), paper birch (Betula papyrifera), black spruce (Picea mariana) and northen 

white cedar (Thuja occidentalis) and swales supporting poor fen communities (Boisvert 

2009). The poor fen consists primarily of bryophytes (Sphagnum spp), three-seeded 

sedge (Carex trisperma), labrador tea (Ledum groenlandicum), tag alder (Alnus incana), 

willows (Salix spp), black spruce (Picea mariana) and tamarack (Larix laricina). 

Boisvert (2009) determined that at Bete Grise the basal zone of the shallow peat layer 

consisted of very humic, granular peat, which had a poorly humic Sphagum peat atop. 

Pequaming 

Pequaming is a wetland complex formed in the swale of a tombolo (latitude 46°51'9.72" 

N longitude 88°22'35.41" W, Figure 3), consisting of a large expanse of island mixed 

mire (Rydin and Jeglum 2006) with large expanses of floating sedge and Sphagnum mat 

interspersed with small bog-like treed islands (Boisvert 2009). Boisvert (2009) showed 

that the basal zone of peat consisted of very humic peat, with partly humic peat with 

traces of Sphagnum moss atop, the uppermost zone poorly decomposed peat of Carex ssp 

and Sphagnum ssp. The transition zone from upland into open fen at Pequaming is a thick 
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cedar swamp with distinct microtopography of hummocks covered mainly by northern 

white cedar (Thuja occidentalis), tag alder (Alnus incana), bryophytes (Sphagnum spp), 

horsetail (Equisetum spp), labrador tea (Ledum groenlandicum), royal fern (Osmunda 

regalis) and bluejoint (Calamagrostis canadensis). The open fen has sparsely spaced tree 

islands populated by stunted tamarack and northern white cedar and that were less than 2 

m in height. Both the hummocks and lawns were covered by bryophytes (Sphagnum spp), 

bog-rosemary (Andromeda polifolia), bog golden rod (Solidago uliginosa), pitcher plant 

(Sarracenia purpurea), horsetail (Equisetum spp), wiresedge (Carex lasiocarpa), royal 

fern (Osmunda regalis), northern white cedar and sweetgale (Myrica gale).  

Lightfoot Bay 

Lightfoot Bay is a barrier beach peatland, with a sand ridge separating the wetland from 

the lake (latitude 46°54'6.47" N longitude 88°10'42.81" W, Figure 4). The peat cores 

have fine granular peat, likely a gyttja, in the basal zone, partly humic sedge remains in 

the second zone, poorly decomposed brown moss in the third zone and near-surface zone 

consisted mainly of poorly decomposed Sphagnum, roots of Carex ssp and leatherleaf 

(Boisvert 2009). The upland at Lightfoot Bay supports mixed forest of trees. The upland 

transitions to a treed wetland that has sparse tamarack, northern white cedar and black 

spruce underlain by bryophytes (Sphagnum spp), small cranberry (Vaccinium oxycoccus), 

royal fern (Osmunda regalis) sweet gale and leatherleaf (Chamaedaphne calyculata). In 

the center of the wetland and open floating mat section contains only sparse clumps of 

northern white cedar seedlings. The herbaceous layer is dominated by bryophytes 

(Sphagnum spp) and narrow-panicle rush (Juncus brevicaudatus) with quite densely 

distributed pitcher plant (Sarracenia purpurea).  
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Sampling protocol and well placement 

For sampling purposes, we divided the sites into distinctly differing vegetation zones at 

each of the peatlands. At each of the three peatlands six wells were installed along a 

transect. In addition to the wells located in the peatland, three wells were installed in the 

adjacent upland forest (Figures 2 – 4). All wells inserted into the peatlands were made of 

150 cm long, 5.08 cm (2”) outer diameter polyvinyl chloride pipe. The upland wells were 

3.175 cm (1 ¼”) in diameter and with pointed tips, to make inserting them into hand-

augered holes as easy as possible. Slits were cut along the bottom 3/5 (90 cm) of the 

length of the pipes and covered with geotextile to prevent fine peat matter from seeping 

into the wells. The tops of the wells were capped to prevent precipitation from directly 

entering the wells. Due to the different formation patters of the three sites, the wells had 

to be inserted into different depths to sample ground water throughout the relatively dry 

summer season. At Pequaming and Lightfoot Bay the wells were inserted approximately 

1 m into the soil, while the existing groundwater monitoring wells and pizeometers (BG4, 

BG9) reached up to 363 cm below ground elevation at Bete Grise.  

The peatland at Bete Grise has shallow peat that overlays a sandy mineral soil (Figure 5). 

At Bete Grise we took advantage of an existing network of ground water monitoring 

wells and piezometers. At Bete Grise, the continuously altering dunes and swales resulted 

in the locations of wells being evenly spread across the peatland. At Bete Grise, the dune 

and swale complex (groundwater monitoring wells 4 – 9, Figure 2) was pooled as one 

vegetation zone because of the locations of the wells altering between sand ridges and 

peat covered swales, while the upland (wells 1, 2 and 3) was used a reference for 

groundwater. At Pequaming and Lightfoot Bay, three wells were inserted in the open fen 

and three were inserted in a transition zone consisting of tag alder and cedar.  
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Ground elevation and peat depth survey 

Trimble® GNSS system 

To obtain precise elevation values of the ground water monitoring wells and 

ground elevations across the sites, a Trimble® Global Navigation Satellite System 

(GNSS) rover equipped the R8 receiver with the TSC2™ data controller was used. A 

temporary reference station, with an additional R8 receiver, was set up at each field site 

before beginning the GIS survey to obtain Real Time Kinetic (RTK) GIS data with the 

highest possible precision. The normalized Root Mean Squared values for elevation 

precision were 0.255 m for Lightfoot Bay, 0.011 m for Pequaming and 0.267 m for Bete 

Grise. The WGS84 datum was used as the standard reference. For coordinate calculations 

between two points in the landscape in order to construct the cross sections of study sites, 

an online tool available from http://boulter.com/gps/distance/ was used. 

To map the peat depths, a 3 meter long, 1 cm diameter metal probe was used to 

penetrate through the peat until reaching the underlying mineral soil. Mineral soil was 

sand for all of the sites and was distinctively harder to push the rod into. Peat depth, 

ground elevation and GPS coordinates were recorded at each probing location throughout 

the sampling transect.  

The maps of the locations of the groundwater wells were created based on the 

recorded GPS coordinates using ArcMap ver. 9.3.1. from ESRI Inc., Redlands, 

California, U.S.A. Aerial photos date from the 2005 National Agricultural Inventory 

Program (NAIP) and were obtained from the Michigan Geographic Data Library 

(http://www.mcgi.state.mi.us/mgdl/).  

http://boulter.com/gps/distance/
http://www.mcgi.state.mi.us/mgdl/
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Specific conductance and pH measurements 

From 28 May to 27 October 2010, specific conductance was measured on a at 

least a bi-weekly basis Specific conductance and pH of each well was measured with 

handheld pH, conductivity, salinity and temperature system (YSI model 63, YSI 

incorporated, Yellow Springs, Ohio, U.S.A.). The specific conductance errors are made 

of instrument accuracy and cell-constant errors, which both account for .5% maximum 

(YSI 63 manual). To measure specific conductance, water samples from the wells were 

collected by first discharging it with a Jack Rabbit™ hand pump and then, after 5 to15 

minutes, when the groundwater had gradually recharged the well, water was pumped into 

an open polyvinyl chloride container approximately 4 liters in volume. The container was 

rinsed thoroughly using distilled water at each well. Lake Superior water was also 

sampled in a similar manner from the closest beach to the well transect. 

 

Automatic water table monitoring 

The year round water table data was available only for one site of the three. The 

automatically recorded water table levels were obtained from the permanent study plot 

located at the northeast corner of the Pequaming complex (Figure 3). Water table height 

was measured in a well using a level logger (model 3001 Levelogger® Junior, Solinst®, 

Georgtown, Ont. Canada). The water table data was air pressure corrected from the 

recorded dataset using barologger ( model 3001 Levelogger® Gold, Solinst®).  

 

Water samples for stable isotope ratios of oxygen (18O/16O) 

Water samples were collected on 15 June, 7 July and 10 September at Bete Grise, 

from Pequaming and Lightfoot Bay on 17 June, 21 July and 12 September, using a 

similar collection method as described for the specific conductance measurements of the 
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water in groundwater monitoring wells.   

Water samples from groundwater monitoring wells and Lake Superior were stored in 

Nalgene® scientific 125 ml plastic bottles and kept on ice on the way back to the 

laboratory where they were frozen until running them in the mass spectrometer. Freezing 

of the samples was carried out to prevent the potential diffusive fractionation of water 

isotopes during evaporation (Merlivat and Jouzel 1979). The water samples were 

analyzed on a ThermoFinnigan Deltaplus Continuous Flow-Stable Isotope Ratio Mass 

Spectrometer located in Sam Horner Hall of the School of Forest Resources and 

Environmental Science of Michigan Technological University. Internationally recognized 

reference water samples were used to calibrate the equipment before running the field 

specimens. VSMOW (Vienna Standard Mean Ocean Water), SLAP (Standard Light 

Arctic Precipitation), and GISP (Greenland Ice Sheet Project) certified isotopic standards 

were run at the beginning of each analysis. Values were reported on the VSMOW scale. 

The standard deviation of repeated measurements of a laboratory reference water is 0.2 

‰. 

To estimate the amount of ground water present at each vegetation zone of the site 

a mixing model was used to calculate the percentage from the 18O/16O results from the 

mass spectrometry:  

% 𝑔𝑟𝑜𝑢𝑛𝑑 𝑤𝑎𝑡𝑒𝑟 =  
𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 − 𝑙𝑎𝑘𝑒 𝑤𝑎𝑡𝑒𝑟

−𝑙𝑎𝑘𝑒 𝑤𝑎𝑡𝑒𝑟 + 𝑢𝑝𝑙𝑎𝑛𝑑 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
 

This method assumes there are only two end members affecting the isotopic signature of 

the 18O isotopes in the peatland groundwater. However, this signature will also be 

affected by evaporation and precipitation water. Therefore, when interpreting the results, 

this must be considered.  
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Statistical inferences 

One-way analysis of variance (ANOVA) tests were run in SigmaPlot (version 

11.0 from Systat Software, Inc., Chicago, IL, U.S.A.) to compare the specific 

conductance values of each vegetation zone at each site against each other and lake water 

using pairwise multiple comparison procedures (Tukey Test). Additionally, pairwise T-

tests for means were run in SigmaPlot to compare the 18O/16O ratios for each vegetation 

zone (three pooled sampling dates, 3 values per each zone, 6 for Bete Grise pooled dune 

and swale) against each other and against the Lake water values. For the significance 

level of the test, a commonly used p-value of 0.05 was used as the criterion. Additionally, 

95% confidence intervals were built around the isotopic signature means for each 

vegetation zone and Lake water to show the differences amongst groups.  

 

Meteorological data 

 Monthly average temperature and precipitation data was obtained from the United 

States of America’s National Oceanic and Atmospheric Administration’s (NOAA) 

National Climatic Data Center (NCDC) Station number 14858, Houghton County 

Memorial Airport (CMX) at latitude 47°10'8.40" N and longitude 88°30'21.60" W, with 

an elevation of 314 meters ASL. Controlled data dates back to December of 1889 to 

present day. All of the study sites, Bete Grise, Pequaming and Lightfoot Bay, are located 

less than 50 km in a straight line from the weather station.  

Lake Superior levels were summarized from the verified data of the National 

Oceanic and Atmospheric Administration’s (NOAA) Center for Operational 

Oceanographic Products and Services, Great Lakes station number 9099018 in 

Marquette, Michigan, at latitude 46° 32.7' N and longitude 87° 22.7' W. Lake level 

readings date from 1918 to 2010.  
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Results 

Weather conditions and the water table height 

The weather patterns of the first half of 2010 deviated from those recorded over the long 

term. In 2010 the precipitation summed 650 mm, 184 mm less than the 121 year mean of 

834 mm. The accumulated precipitation for the spring months was 76 mm in 2010, 

substantially lower than the long-term mean of 173 mm. In 2010, June and September 

received the greatest precipitation, 126 mm and 179 mm, respectively (Figure 8). The 

long-term climatic data describes an even distribution of precipitation throughout the 

year, with none of the values showing more than 100 mm per month.  

The mean daily air temperatures from 1889 to 2009 for the spring months of March, 

April and May in nearby Houghton, Michigan (46.4 km from the furthest peatland), were 

-4.4 °C, 3.0 °C and 9.8 °C, respectively. In contrast, in 2010, the mean air temperatures 

were 1.9 °C, 7.3 °C and 12.4 °C, respectively. The early and quick melting of the snow 

pack in March resulted in the presence of surface water at all vegetation zones of the 

study sites, including the upland areas. Hence the height of the water table peaked from 

the middle of March to early April, at the permanent study site of Pequaming complex 

(Figure 10). The summer of 2010 showed higher air temperatures than usual, with the 

mean for June, July and August being 18.4 °C, in contrast with the 17.0 °C for the long-

term mean. The warmest months of the summer were July and August (Figure 8). The 

accumulated precipitation for the summer period was within 40 mm of the long-term 

average. 

 

Lake Superior levels 

In 2010, the annual level of Lake Superior was 0.25 m lower than the average recorded 

annual mean of 183.41 m ASL. Lake levels declined from January to May, which 
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contrast with the long-term trend of gradual increase of the level starting from April. 

Lake levels of 2010 rose until mid-September and then began to decline. This fluctuation 

cycle matches with the long-term trend, but the overall lake level remained below the 

average for the entire year (Figure 9). 

Isotope and specific conductance measurements 

The results demonstrate that the source of water for all three sites was primarily from 

upland groundwater. Results from the stable oxygen isotope ratios from the three 

sampling dates showed distinctly different signatures to that of the lake water for all of 

the sites and vegetation zones (Tables 1, 2). 

 

Bete Grise 

The isotopic analysis for the three measurement dates suggests that 100% of the 

groundwater in the peatland originated from the upland (Figure 12). The isotopic 

signature over the measurement period averaged -13.4‰ ± 0.2 (95% CI) to -14.0‰ ± 0.1 

(95% CI) for the upland and from -13.4‰ ± 0.9 (95% CI) to -14.0‰ ± 0.8 (95% CI) for 

the dune and swale complex (Table 1). The 18O/16O isotope ratios of the lake water at 

Bete Grise Bay averaged (-8.84‰ ± 0.43 (95% CI)) and were statistically different from 

the peatland water (upland p-value = 0.003, dune and swale complex p-value = 0.003) 

water (Table 2). The upland and dune and swale complex water isotope ratios did not 

show a statistical difference (p-value >0.05).  

The specific conductance of the lake averaged 89.4 µS/cm, 76.9 µS/cm for the dune and 

swale complex and 59.9 µS/cm for the upland (Figure 11 C). The specific conductance of 

the upland was statistically different from lake water (p-value <0.05), however, there was 

no statistical difference between the dune and swale complex compared to both upland 

and the lake water (Table 3). For the measurement period, the pH in the upland and the 

dune swale complex averaged 4.9 and 4.72, respectively.  
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Pequaming 

The transition zone from upland and the open fen had up to 20% lake water in the 

uppermost 1 m of the peat column (Figure 12). Over the measurement period, the isotopic 

signatures averaged -12.21‰ ± 0.9 (95% CI) to -13.39‰ ± 1.54 (95% CI) for upland, -

12.27‰ ± 0.62 (95% CI) to -12.57‰ ± 0.12 (95% CI) for the transition zone and -

12.31‰ ± 1.21 (95% CI) to -12.46‰ ± 0.53 (95% CI) for the open fen (Table 1). Lake 

water 18O/16O isotope ratio averaged -8.79 ± 0.54 (95% CI) and was statistically different 

from the peatland (upland p-value = 0.008, transition zone p-value <0.001, open fen p-

value <0.001) water (Table 2). The vegetation zones within the peatland did not show 

statistical difference in the isotope ratios (p-values > 0.05).  

The specific conductance of the lake water averaged 87.5 µS/cm, 93.5 µS/cm for upland, 

68.7 µS/cm for the transition zone and 55.3 µS/cm for the open fen. The specific 

conductance of the upland differed from open fen (p-value <0.05), lake water differed 

from transition zone (p-value <0.05) and open fen (p-value <0.05) (Table 3). The pH for 

upland, transition zone and open fen averaged 5.92, 5.67 and 5.25, respectively. 

 

Lightfoot Bay 

Over the course of the sampling season, the isotopic signatures averaged -12.29 ± 0.48 

(95% CI) to -12.76‰ ± 0.58 (95% CI) for upland, -12.54‰ ± 0.64 (95% CI) to -12.72‰ 

± 1.91 (95% CI) for the transition zone, and -12.29‰ ± 1.23 (95% CI) to -12.66‰ ± 1.79 

(95% CI) for the open fen. Lake water 18O/16O isotope ratios at Lightfoot Bay averaged -

8.78 ± 0.7 (95% CI) and were statistically different from the peatland (upland p-value 

<0.001, transition p-value = 0.001, open fen p-value <0.001) water (Table 2). The 

vegetation zones within the peatland did not show statistical difference in the isotope 

ratios (p-values >0.05). 
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Specific conductance averaged 91.3 µS/cm for the lake, 95.13 µS/cm for the upland, 86.6 

µS/cm for the transition zone and 60.1 µS/cm for the open fen. Open fen specific 

conductance differed from the upland (p-value <0.05), lake water (p-value <0.05) and 

transition zone (p-value <0.05) (Table 3). The pH for the upland, transition zone and 

open fen averaged 5.79, 5.37 and 5.42, respectively.   
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Discussion 

Peatland hydrology  

The combination of isotope data and specific conductance shed light on the source 

water for these poor fens. The isotope data clearly demonstrates that most of the water in 

all three fens is not from Lake water for the study period (Figure 12). Of three wetlands, 

only the fen complex at Pequaming may have derived a portion of its groundwater from 

Lake Superior during the measurement period. Therefore, the water present in each of the 

peatlands came from upland groundwater or rainwater. 

The results of this study support past research which demonstrated that barrier 

enclosed coastal peatlands in the Great Lakes region are not primarily supported by lake 

water (Albert et al. 2005). For example, a similar study conducted in a protected barrier 

dune system coastal peatland of Lake Ontario showed ground water movement towards 

the lake despite the correlation between water-table elevation and the condition of the 

barrier beach (breaches in the barrier opening and closing) (Bailey and Bedford 2003).  

The data does not support past work that suggested that first couple of swales 

closest to the beach in a dune and swale complex can have direct hydrological connection 

to the lake, which can continue for hundreds of meters inland (Comer and Albert 1991, 

Albert et al. 2005). However, this connection could be mainly dependent on the surface 

water from the lake that inundates the peatland. The closest ground water well to the lake, 

BG9, was located on the first ridge, 43 meters from the shoreline (distance calculated 

from GPS coordinates). The depth of well BG9 was 363 cm below ground elevation of 

the sand ridge at 185.43 m ASL, which is a greater depth than that of other wells in the 

site. The well reaches 1.6 meters below the annual average lake levels since 1918. 

Oxygen isotope measurements do not support increasing influence of lake water with 

proximity to the lake for the Bete Grise dune and swale complex. When the pooled 

isotopic signatures from BG9 were compared to lake water in the mixing model, the 

source was 100% upland groundwater. The average isotopic signature of 18O/16O in well 
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BG9 was -14.27‰ (N=3) throughout the season, while Lake Superior water at Bete Grise 

Bay averaged -8.87‰ (N=3) 18O/16O ratios. The hydraulic head at BG, as measured by 

piezometric data, has shown that water is moving downward, thereby indicating that 

water is not moving into the area, but away from the peatland (Chimner, personal 

communication). Hence, it is not likely that lake water is moving into the peatland. 

The isotopic data provides conclusive data that these sites are supported primarily 

by upland groundwater. At all three sites rainwater and evapotranspiration will further 

influence the isotopic composition of the fen water. Evapotranspiration will cause the 

peatland groundwater to become less negative. Hence, one would expect the peatland 

water to be heavier than its source. Since the peatland water is much lighter than the lake 

and, in general, heavier than the upland groundwater, the results indicate that most of the 

water at all sites in 2010 was from upland groundwater. At Pequaming, the up to 20% of 

the peatland ground water may come from the Lake. This value is based on the mixing 

model and likely represents the upper bound of the amount of lake water in the system 

because a portion of the isotopic change may result from instrument error and 

evapotranspiration. Evapotranspiration ration would result in the isotopic signature being 

less negative. Hence, evapotranspiration would make the groundwater in the peatland 

appear to be partially derived from the Lake. However, if the peatland groundwater 

originated entirely from the lake, the isotopic signature would be less negative than the 

lake because of evapotranspiration. However, this was not the case as the peatland 

groundwater more closely represents the upland groundwater. Furthermore, rainwater is 

not likely to be the main contributor to the water found in any of these fens. If these fens 

were rainwater dominated, their pH would consistently reflect that of a bog, rather than a 

fen. Except for one sampling date on Oct 26, the pH at these fens remained above 5, with 

values typically ranging between 5.1 and 5.5 (Appendix table pH). These pH values are 

more indicative of a groundwater fed system (Mitch and Grosselink 2006).  

The specific conductances in the peatlands differed from the upland groundwater. 

It is possible that the specific conductances were more similar in the spring after snow 

melt and then diverged because of differences in evapotranspiration driven by changing 
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vegetation. Alternatively, groundwater with lower specific conductance may upwell into 

the peatland. This might be possible as both Lightfoot Bay and Pequaming have 

extensive floating mats that would not impede the flow of groundwater up from below 

(Boisvert 2009). For this to be true, however, the isotopic composition of the deeper 

groundwater would have to be nearly identical to the upland groundwater measured in 

this study. Therefore, this study demonstrates that groundwater is the likely the main 

source of water for these fens, but the mechanisms are still not entirely clear. 

 

Temporal changes in the stable isotope data 

The relatively stable readings for oxygen isotopes of groundwater and Lake 

Superior water samples of this study can reflect the temporal scale limitation of three 

sampling dates over the course of four months. An extensive groundwater study 

conducted by Huddart et al. (1998) of a transient barrier sand-bar that separates a coastal 

freshwater marsh from Lake Erie, Canada, showed high spatial and temporal variability 

in the marsh water (δ 18O -8.4 ‰ to -0.1 ‰) compared to relatively stable Lake water 

(δ 18O = -7.5 ‰ to -6.7 ‰ VSMOW) over the period of 21 months. The benefit of 

extensive sampling helped determine that groundwater flowed from the marsh to the lake 

during winter months, but the flow reversed the following spring, and again the following 

autumn. The effect of spring-melt recharge was noticeable as the head reversed and the 

total distance of groundwater travelling back and forth was determined to be at least 96 

meters per year (Huddart et al. 1998). Similarly with the Lake Erie study (Huddart et al. 

1998) the isotopic signature of precipitation fell within the brackets of local meteoric 

water lines of δ 18O = -10 ‰ to -15 ‰, suggested by Dansgaard (1964) and Hoffmann et 

al. (2000). A flow reversal could occur in the peatlands in the present study if Lake 

Superior levels were higher. 
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Potential influence of fluctuating lake levels 

In the past, the Lake Superior region has been influenced by altering climatic 

conditions. About 5,000 years B.P. the Upper Midwest region of North America shifted 

from a warm and dry climate to cooler and wetter conditions (Delcourt et al. 2002). The 

shift occurred because previously dominated dry North Pacific air gave way to increased 

transport of warm and moist air from the Gulf Coast during summer, and a combination 

of Pacific and Gulf air masses during winter (Delcourt et al. 2002). This has resulted in 

an increase in the precipitation events that could affect the source water for coastal 

peatlands in Lake Superior.  

The absolute recorded lake level minimums for August and September occurred 

in 2007, when Lake Superior levels reached 183.01 m ASL and 183.02 m ASL, 

respectively. The minimums for all the other months occurred in the 1920s (NOAA, 

NWS Marquette, MI 2011). Lake Superior minimum monthly mean levels usually occur 

at the end of the winter season, because during winter months, the dominating western 

winds carry dry air masses through the area, which then obtain moisture from the lake 

surface. This subsequently results in exceptionally heavy, lake effect snowfalls along the 

southern and eastern shore of Lake Superior. According to Delcourt et al. (2002) the lake 

effect precipitation events driven by the midwinter (from November to March) frigid air 

from Canada reach up to 100 km inland in the western Great Lakes region. 

In 2010, Lake Superior levels averaged to an annual level 183.16 m ASL, which 

is only slightly lower than the long term average of 183.41 m. Higher lake levels could 

result in a greater Lake water influence on groundwater at these peatlands. In particular, 

the groundwater at Pequaming could experience the greatest lake water influence, 

because it is the closest to the lake elevation (Figure 6) and is exposed to the lake from 

two sides (Figure 3).  

The lake level influence observed in the open fen and transition zone of 

Pequaming, however, does not extrapolate to the whole open fen section. The limiting 
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factor is that the transect of ground water monitoring wells was in the middle of the 

peatland, which is approximately 800 meters from the closest shoreline of Lake Superior. 

Additionally, there was no isotope water sample collected from the more hydraulically 

conductive and thus semi-transient sand barrier regions that isolate the peatland complex 

from the lake (Figure 3). In central portion of Pequaming peatland complex up to 20% of 

the ground water in the open fen and transitional vegetation zones may come from lake 

water (Figure 12). However, there was no data collected from proximity of the barriers 

that border the peatland in the northeast and southwest. The potential lake water intrusion 

to the site would occur after a very dry summer which draws down the groundwater at the 

peatland, while Lake Superior reaches its annual maximum in August and September 

(Figure 9). This is further supported by the fact that the open floating mat portion of 

Pequaming is roughly only 31 cm (183.7 m ASL) higher from Lake Superior long term 

recorded mean of 183.41 m ASL. According to the long term monthly maximum levels, 

lake levels could be higher during 8 months of the year and, thus, inundate the 

Pequaming floating mat portion (Figure 6).  

Other coastal freshwater wetlands in the Great Lakes region are occasionally 

inundated by lake water. For example, a coastal freshwater marsh study conducted by 

Huddart et al. (1999) at Lake Erie, Canada, determined two sources of water inputs: 

precipitation and groundwater discharge. However, in a decadal time scale Lake Erie 

occasionally inundates the marsh, when a portion of the isolating coastal sand barrier 

disintegrates because of wave action (Huddart et al. 1999). The southwestern barrier of 

Pequaming complex has a culvert beneath the road that runs along the barrier that could 

be an outlet of surface water for exceptionally high water levels in the open floating fen 

mat after spring-melt, or provide direct inlet into the peatland in the event of higher Lake 

Superior levels.  

It is assumed, that the large ground water dominance at Pequaming is solely 

driven by the hydraulic head of adjacent upland bordering the southern edge. To 

determine exact interactions with the lake, an extensive network of piezometers and 

water level monitoring systems would have to be established.   
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Conclusion 

This study demonstrates that despite Lake Superior contributing to the formation 

of these sites, they are mostly supported by groundwater input s from adjacent upland 

areas. The hypothesis that groundwater at Pequaming was primarily lake water 

dominated because the peatland was the most exposed to the lake was refuted. However, 

it is the only site that was moderately influenced by Lake and had partial presence of lake 

water in the groundwater mix. It is likely that the proportion of lake water present in the 

subsurface areas of transition zone and open fen at Pequaming are affected by snowmelt 

during springtime, and in longer temporal scale, Lake Superior water level fluctuations. 

Since records begin in 1918, Lake Superior water levels have reached higher levels than 

the open floating mat fen at Pequaming during 8 months of the year, suggesting that the 

open fen at Pequaming is periodically inundated with lake water.  
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Figures and Tables 

 

Figure 1. Study sites in the vicinity of the Keweenaw Peninsula in Upper Michigan of the 
United States 
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Figure 2. Transect of installed wells at Bete Grise 
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Figure 3. Transect of ground water monitoring wells at the tombolo peatland, 

Pequaming. The star marks the position of the permanent study site with the water 
table logger 
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Figure 4. Transect of ground water monitoring wells at Lightfoot Bay peatland 
complex 
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Figure 5. Cross section of probed peat depths of Bete Grise 
dune and swale complex 
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Figure 6. Cross section of probed peat depths of the 
Pequaming peatland complex 
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Figure 7. Cross section of probed peat depths of Lightfoot Bay 
peatland complex 
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Figure 8. Houghton County mean daily air temperatures and monthly accumulated 
precipitation, Jan 2010 to Dec 2010. Long term mean  

temperature data dates from 1889 to 2009 
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Figure 9. Lake Superior monthly levels of 2010, average monthly levels from 1918 to 
2009, and annual average level 
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Figure 10. Water table height and precipitation at Pequaming  
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Figure 11: Specific conductance at all sites (A) Pequaming,  

(B) Lightfoot Bay, (C) Bete Grise  
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Figure 12. Delta 18O/16O isotope ratios showing the amount of ground water supporting 
each site. Note that Pequaming (PQ) is missing the third sampling date due to potential 

sampling error from surface water 
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Figure 13: Layout of the 0.1 ha circular vegetation survey plots. The circle was divided 
into four quarters according to cardinal directions. 3x3 m plots were used for shrub layer 

sampling and 1x1m plots for the herbaceous layer, all placed randomly within the 
quarters. 
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Table 1.   
18O stable oxygen isotope ratios of all sites with 95% confidence intervals 

Site Vegetation 14 – 17.06.2010 20 – 21.07.2010 10 – 12.09.2010 

Bete Grise 

Upland -13.44 ±  0.16 -13.47 ± 0.2 -13.97 ± 0.13 

Dune and swale -13.46 ± 0.91 -13.39 ± 0.92 -13.99 ± 0.82 

Lake water -9.00 -8.87 -8.65 

Pequaming 

Upland -13.18 ± 0.45 -13.39 ± 1.54 -12.21 ± 0.9 

Transition -12.27 ± 0.62 -12.57 ± 0.12 -12.34 ± 0.2 

Open fen -12.33 ± 0.98 -12.46 ± 0.53 -12.31 ± 1.21 

Lake water -8.55 -8.99 -8.82 

Lightfoot Bay 

Upland -12.29 ± 0.48 -12.46 ± 0.75 -12.76 ± 0.58 

Transition -12.54 ± 0.64 -12.56 ± 1.17 -12.72 ± 1.91 

Open fen -12.29 ± 1.23 -12.46 ± 1.34 -12.66 ± 1.79 

Lake water -8.45 -8.94 -8.94 

 

Table 2.  
Student's pairwise comparison of 18O isotope ratios  

between vegetation zones and lake water 
PEQUAMING 

UPLAND vs LAKE  P = 0.008 

TRANSITION vs LAKE P = <0.001 

OPEN FEN vs LAKE P = <0.001 

LIGHTFOOT BAY 

UPLAND vs LAKE  P = <0.001 

TRANSITION vs LAKE P = 0.001 

OPEN FEN vs LAKE P = <0.001 

BETE GRISE 

UPLAND vs LAKE P = 0.003 

DUNE AND SWALE vs LAKE P = 0.003 
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Table 3.  
One-way ANOVA of specific conductance for each  

vegetation zone compared to lake water 

Comparison P <0.05 

PQ lake vs PQ open fen Yes 

PQ lake vs PQ transition Yes 

PQ lake vs PQ upland No 

PQ upland vs PQ open fen Yes 

PQ upland vs PQ transition No 

PQ transition vs PQ open fen No 

 LB upland vs LB open fen Yes 

LB upland vs LB transition No 

LB upland vs LB lake No 

LB lake vs LB open fen Yes 

LB lake vs LB transition No 

LB transition vs LB open fen Yes 

 BG lake vs BG upland Yes 

BG lake vs BG dune&swale No 

BG dune&swale vs BG upland No 
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Appendix 

 

  

Figure 14. Monthly air and groundwater temperatures at Pequaming 
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Table 4.  
Seasonal summary table of specific conductance (µS/cm) at Pequaming 

Date 
May 

28 

Jun 

17 

Jun 

23 
Jul 5 Jul 21 Aug 7 

Aug 

27 

Sep 

12 

Sep 

30 
Oct 26 

Up-

land 
77.90 81.83 113.37 102.27 111.03 109.07 95.37 80.33 79.43 79.17 

Tran-

sition 
70.47 65.40 70.40 67.50 71.60 77.13 70.90 64.37 64.77 64.47 

Open 

fen 
54.93 62.77 61.27 57.83 54.53 56.80 55.47 50.33 50.20 49.13 

 

Table 5.  
Seasonal summary table of specific conductance (µS/cm) at Lightfoot Bay 

Date Jun 1 
Jun 

17 

Jun 

23 
Jul 5 Jul 21 Aug 7 

Aug 

27 

Sep 

12 
Oct 3 

Oct 

26 

Upland 
128.0

7 
73.63 83.37 

87.1

3 

105.6

0 

123.1

3 
96.37 84.80 88.17 81.07 

Tran-

sition 
75.00 77.83 80.13 

74.6

3 
73.63 98.73 82.23 79.90 96.40 71.00 

Open 

fen 
52.27 55.57 58.87 

60.4

0 
62.93 64.70 63.90 59.33 59.80 63.70 
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Table 6.  
Seasonal summary table of specific conductance (µS/cm) at Bete Grise 

Date 
May 

28 

Jun 

14 

Jun 

24 
Jul 6 Jul 20 Aug 6 

Aug 

26 
Sep 10 Oct 3 

Oct 

27 

Up-

land 
38.17 34.53 53.93 59.83 61.40 84.43 84.37 67.80 67.10 47.83 

Dune 

and 

swale 

80.00 71.13 72.05 79.17 79.30 83.40 75.85 70.78 80.48 77.30 

 

Table 7.  
Seasonal summary table of pH at Pequaming 

Date 
May 

28 

Jun 

17 

Jun 

23 
Jul 5 Jul 21 Aug 7 Aug 27 Sep 12 

Sep 

30 

Oct 

26 

Up-

land 
5.97 5.96 6.09 5.90 5.88 6.03 6.11 5.76 5.75 5.96 

Tran-

sition 
5.57 5.77 5.70 5.69 5.70 5.76 5.75 5.63 5.67 5.80 

Open 

fen 
5.02 5.37 5.38 5.45 5.41 5.29 5.16 5.35 5.29 5.35 
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Table 8.  
Seasonal summary table of pH at Lightfoot Bay 

Date Jun 1 
Jun 

17 

Jun 

23 
Jul 5 Jul 21 Aug 7 

Aug 

27 

Sep 

12 
Oct 3 

Oct 

26 

Upland 5.87 5.65 5.85 6.06 6.12 5.90 5.93 6.11 5.93 5.92 

Tran- 

sition 
5.26 5.49 5.45 5.59 5.50 5.25 5.50 5.45 5.24 5.43 

Open 

fen 
5.04 5.51 5.35 5.57 5.48 5.57 5.57 5.47 5.30 5.47 

 

Table 9.  
Seasonal summary table of pH at Bete Grise 

Date 
May 

28 
Jun 14 

Jun 

24 
Jul 6 Jul 20 Aug 6 

Aug 

26 
Sep 10 Oct 3 Oct 27 

Upland 4.86 4.64 4.68 5.07 5.82 5.96 5.94 5.49 4.38 4.49 

Dune 

and 

swale 

5.49 5.53 5.09 5.34 5.52 5.43 5.22 5.37 5.03 4.88 
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Table 10.  
Mean daily temperatures and monthly accumulated  

precipitation from 1889 to 2009 and for 2010 
 Average from 1889 to 2009 2010 

Precipitation (mm) Average daily temp 
°C Precipitation (mm) Average daily 

temp °C 
January 80.37 -9.58 12.45 -7.33 

February 47.00 -9.36 0.51 -7.28 
March 46.96 -4.42 5.84 1.94 

April 50.69 3.03 45.97 7.33 
May 75.39 9.80 24.13 12.44 
June 77.67 15.27 125.73 15.17 
July 74.32 18.34 43.43 20.06 

August 73.34 17.49 96.27 20.11 
September 91.19 13.09 178.56 10.78 

October 72.59 7.02 47.75 8.17 
November 68.84 -0.48 56.13 0.56 
December 75.56 -6.53 12.95 -6.72 

SUM 
precipitation 833.91  649.73  

Annual mean air  
temperature °C  4.47  6.27 
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Table 11.  
Lake Superior levels of 2010 and long-term recorded  

monthly minimum and maximum levels at Marquette, MI 

 

meters above sea level 

2010 1918-2009 MIN MAX 

January 183.24 183.33 182.83 183.7 

February 183.17 183.27 182.76 183.63 

March 183.10 183.24 182.74 183.61 

April 183.09 183.26 182.72 183.68 

May 183.09 183.37 182.76 183.74 

June 183.14 183.45 182.85 183.76 

July 183.20 183.51 182.96 183.82 

August 183.22 183.54 183.01 183.86 

September 183.24 183.54 183.02 183.86 

October 183.20 183.51 183.1 183.91 

November 183.15 183.47 183.01 183.89 

December 183.10 183.41 182.92 183.81 

AVG 183.16 183.41 
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Table 12.  
Pooled seasonal average specific conductance with respect to  

distance from upland at Lightfoot Bay and Pequaming 

 
well distance µS/cm 

 
well distance µS/cm 

L
ig

ht
fo

ot
 B

ay
 

1 270 60.8 

Pe
qu

am
in

g 

1 470 41.6 

2 200 58.5 2 340 64.3 

3 120 61.1 3 230 60.1 

4 87 68.7 4 150 54.4 

5 50 72.1 5 110 60.2 

6 25 105 6 66 91.5 

UPLAND 0 95.1 UPLAND 0 93.5 

 

 

 

Table 13.  
Air and groundwater temperatures at Pequaming 

 
Air temperatures 

2009/10 °C 
Groundwater 

temperature °C 

Oct 4.28 10.73 

Nov 3.66 9.53 

Dec -7.16 7.76 

Jan -7.33 6.79 

Feb -7.28 5.93 

Mar 1.94 5.07 

Apr 7.33 5.06 

May 12.44 5.98 

Jun 15.17 7.42 

Jul 20.06 9.17 

Aug 20.11 10.87 

Sep 10.78 11.80 
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Table 14.  
Ground elevation and peat depth survey, Lightfoot Bay 

   dist (m) elevation subsurface  
LB8 46.90001 -88.178196 0 183.657 183.403 upland 

203 46.90011 -88.178269 12 183.367 182.884 

tra
ns

iti
on

 

LB6 46.90024 -88.178206 25 183.521 182.860 

205 46.90033 -88.178207 36 183.571 182.784 

LB5 46.90046 -88.178222 50 183.539 182.841 

207 46.90056 -88.17826 61 183.445 181.946 

208 46.90069 -88.178348 76 183.499 182.178 

LB4 46.90079 -88.178288 87 183.595 182.630 

210 46.9009 -88.178331 100 183.423 182.051 

op
en

 fe
n 

LB3 46.90111 -88.178377 120 183.394 181.692 

212 46.90128 -88.178431 140 183.324 181.063 

213 46.90152 -88.178477 170 183.271 181.595 

LB2 46.9018 -88.178559 200 183.277 179.924 

215 46.90197 -88.178614 220 183.253 180.154 

217 46.90219 -88.178694 250 183.271 181.036 

LB1 46.90241 -88.178811 270 183.324 182.003 

219 46.90254 -88.178875 290 183.229 182.061 

220 46.90281 -88.179017 320 183.226 181.727 

221 46.90302 -88.179206 340 183.341 183.036 sand barrier 

LAKE 46.90475 -88.182656 630 183.158 183.158 Lake 
Superior 
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Table 15.  
Ground elevation and peat depth survey, Pequaming 

   
dist (m) elevation subsurface 

 
PQ8 46.84942 -88.3709 0 184.219 183.508 upland 

303 46.84965 -88.3715 57 183.925 183.442 

tra
ns

iti
on

 

PQ6 46.84966 -88.3716 66 183.880 183.449 

305 46.84985 -88.3716 72 183.852 183.141 

PQ5 46.84989 -88.3721 110 183.882 182.790 

307 46.84998 -88.3723 130 183.907 183.069 

PQ4 46.85012 -88.3725 150 183.779 182.839 

309 46.85028 -88.3729 190 183.798 182.757 

PQ3 46.8506 -88.3733 230 183.751 182.456 

op
en

 fe
n 

w
ith

 h
um

m
oc

ks
 

311 46.85082 -88.3737 270 183.733 182.692 

312 46.85104 -88.3742 310 183.723 182.682 

PQ2 46.85119 -88.3744 340 183.761 182.593 

314 46.85159 -88.3751 400 183.681 182.513 

315 46.85196 -88.3755 450 183.850 182.809 

PQ1 46.85209 -88.3756 470 183.708 182.717 

317 46.85242 -88.376 510 183.676 180.882 

op
en

 fl
oa

tin
g 

m
at

 fe
n 

318 46.8527 -88.3765 560 183.654 181.089 

319 46.85308 -88.3772 630 183.591 181.229 

321 46.85328 -88.3775 660 184.074 180.975 

323 46.85329 -88.3775 670 183.750 181.261 

324 46.85349 -88.3778 700 183.699 181.235 

325 46.8538 -88.3783 750 183.963 181.169 

326 46.85426 -88.3792 830 183.673 181.184 

327 46.85474 -88.3802 930 183.593 181.104 

328 46.85499 -88.3808 980 183.679 181.215 

329 46.85502 -88.3808 985 183.767 180.668 

330 46.85537 -88.3818 1060 183.613 182.114 

331 46.85567 -88.3826 1130 183.610 182.391 

tra
ns

iti
on

 

333 46.85608 -88.383 1190 183.573 182.760 

334 46.85639 -88.3835 1230 183.679 182.434 

335 46.85653 -88.3836 1250 183.581 182.692 
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Table 16.  
Ground elevation and peat depth survey, Bete Grise 

   dist (m) elevation subsurface 
BG2 47.360769 -87.968649 0 187.252 187.100 upland 
405 47.361017 -87.968101 49 187.383 186.519 

treed fen 
407 47.361117 -87.967717 80 187.399 186.713 
BG5 47.361436 -87.966789 160 185.994 185.283 

du
ne

 a
nd

 sw
al

e 
co

m
pl

ex
 

410 47.361576 -87.966667 170 186.458 186.433 
411 47.361825 -87.966511 200 185.602 184.891 
412 47.361919 -87.966382 210 186.352 186.276 
413 47.362053 -87.966189 230 185.312 185.007 
414 47.362183 -87.965809 270 185.216 184.530 
416 47.362592 -87.9657 300 185.114 184.784 
417 47.363153 -87.965719 350 184.994 184.308 
BG7 47.363361 -87.96568 370 185.054 184.140 
419 47.363692 -87.965639 400 185.033 184.779 

open fen 
420 47.363928 -87.965567 420 184.959 184.349 
421 47.364022 -87.965318 440 185.371 185.269 dune 
BG8 47.364864 -87.965597 510 184.753 184.651 swale 
423 47.364933 -87.965536 520 185.319 185.319 

dune 
BG9 47.365347 -87.964887 580 185.438 185.438 

LAKE 47.365342 -87.964314 600 183.6 183.6  

 

Table 17.  
Specific conductance (SE) all season Pequaming open fen 

  μS open fen   
Date well 1 well 2 well 3 average SE AVG 

open 
SE 

open 
28-May 41.5 56.6 66.7 54.93 7.32 55.33 2.18 
17-Jun 44.1 68.5 75.7 62.77 9.56   
23-Jun 37.2 73.8 72.8 61.27 12.04   
5-Jul 40.9 72.3 60.3 57.83 9.15   
21-Jul 38.4 67.6 57.6 54.53 8.57   
7-Aug 43.9 68.4 58.1 56.80 7.10   

27-Aug 44.5 67.7 54.2 55.47 6.73   
12-Sep 41.3 58.4 51.3 50.33 4.96   
30-Sep 42.9 55.2 52.5 50.20 3.73   
26-Oct 41.3 54.5 51.6 49.13 4.01   
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Table 18.  
Specific conductance (SE) all season Pequaming transition zone 

  μS transition    
Date well 4 well 5 well 6 average SE AVG 

trans 
SE 

trans 
28-May 56.4 47.2 107.8 70.47 18.86 68.7 3.27 
17-Jun 50.2 60.9 85.1 65.40 10.32   
23-Jun 54.7 60.1 96.4 70.40 13.09   
5-Jul 48.8 64.4 89.3 67.50 11.79   
21-Jul 54 60.7 100.1 71.60 14.38   
7-Aug 57.5 69.8 104.1 77.13 13.94   

27-Aug 58.1 63.5 91.1 70.90 10.22   
12-Sep 56.8 60 76.3 64.37 6.04   
30-Sep 56.1 56.3 81.9 64.77 8.57   
26-Oct 51.7 58.8 82.9 64.47 9.44   

 

Table 19.  
Specific conductance (SE) all season Pequaming upland and lake water 

 μS upland    Lake water 

well 7 well 8 well 9 AVG SE AVG 
UP 

SE 
UP μS average SE 

69.4   86.4 77.90 8.50 93.50 4.83 90.3 91.34 0.679 
49.2 89.2 107 81.83 17.12   90.4   
79 154.9 106 113.37 22.20   87.8   

70.3 132.7 104 102.27 18.03   88.8   
72.6 144.8 116 111.03 20.97   94   
72.1 138.1 117 109.07 19.46   94.5   
72.2 111.6 102 95.37 11.89   92.7   
82.3 73.5 85.2 80.33 3.52   91.8   
73.1 79.2 86 79.43 3.73   92.4   
66.6 74.4 96.5 79.17 8.95   90.7   
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Table 20.  
Specific conductance (SE) all season Lightfoot Bay open fen 

  μS open fen 
    Date well 1 well 2 well 3 average SE AVG 

open SE open 

1-Jun 41.2 58.1 57.5 52.27 5.54 60.15 1.24 
17-Jun 58.2 56.9 51.6 55.57 2.02 

  23-Jun 63.3 56.4 56.9 58.87 2.22 
  5-Jul 66.2 57 58 60.40 2.91 
  21-Jul 68.2 61.1 59.5 62.93 2.67 
  7-Aug 72.4 60.1 61.6 64.70 3.87 
  27-Aug 69.4 62 60.3 63.90 2.79 
  12-Sep 60 59.8 58.2 59.33 0.57 
  3-Oct 50 56.6 72.8 59.80 6.77 
  26-Oct 59.3 57.4 74.4 63.70 5.38 
  

 

 

Table 21.  
Specific conductance (SE) all season Lightfoot Bay transition zone 

 
 μS transition 

    Date well 4 well 5 well 6 average SE AVG 
trans 

SE 
trans 

1-Jun 72.5 77.5   75.00 56.75 81.16 4.07 
17-Jun 60.4 52.5 120.6 77.83 21.50 

  23-Jun 66.8 65.6 108 80.13 13.94 
  5-Jul 63.4 68.9 91.6 74.63 8.63 
  21-Jul 58.9 63.2 98.8 73.63 12.64 
  7-Aug 67 76.3 152.9 98.73 27.22 
  27-Aug 67.7 72.5 106.5 82.23 12.21 
  12-Sep 70.3 80 89.4 79.90 5.51 
  3-Oct 90.2 91.2 107.8 96.40 5.71 
  26-Oct 69.4 73.6 70 71.00 1.31 
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Table 22.  
Specific conductance (SE) all season Lightfoot Bay upland 

 
 μS upland 

    Date well 7 well 8 well 9 average SE AVG 
upland 

SE 
upland 

1-Jun 156.6 111.5 116 128.07 14.33 95.13 4.95 
17-Jun 61.9 62.4 96.6 73.63 11.48 

  23-Jun 73.7 69.1 107 83.37 12.04 
  5-Jul 93.1 71.8 96.5 87.13 7.73 
  21-Jul 120.7 82.9 113 105.60 11.55 
  7-Aug 173.4 79.6 116 123.13 27.29 
  27-Aug 106 73.8 109 96.37 11.32 
  12-Sep 85.1 70.5 98.8 84.80 8.17 
  3-Oct 90.1 65.5 109 88.17 12.57 
  26-Oct 59.3 69.5 114 81.07 16.92 
  

 

Table 23.  
Specific conductance (SE) all season Bete Grise upland 

  μS upland 
    Date well 1 well 2 well 3 average SE AVG 

upland 
SE 

upland 
28-May 42.3 34.2 38 38.17 2.34 59.94 4.04 
14-Jun 31.5 33.6 38.5 34.53 2.074 

  24-Jun 48 55 58.8 53.93 3.163 
  6-Jul 53.5 44.4 81.6 59.83 11.196 
  20-Jul 42.6 44 97.6 61.40 18.105 
  6-Aug 82.8 58.6 111.9 84.43 15.408 
  26-Aug 74.9 67.3 110.9 84.37 13.447 
  10-Sep 62.9 58 82.5 67.80 7.485 
  3-Oct 58.8 77.1 65.4 67.10 5.351 
  27-Oct 40.8 36.5 66.2 47.83 9.267 
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Table 24.  
Specific conductance (SE) all season Bete Grise dune and swale complex 

 
 μS dune and swale    

 Date well 4 well 5 well 6 well 7 well 8 well 9 AVG SE AVG  
d & s 

SE  
d & s 

28-May 47.5   72 150.5   50 80.00 24.14 76.95 5.87 
14-Jun 59.1 61.1 76.2 145.3 40.6 44.5 71.13 15.72   
24-Jun 52.7 56 88.2 149.2 33.7 52.5 72.05 17.03   
6-Jul 52.7 51.8 108.1 179.3 31.6 51.5 79.17 22.61   
20-Jul 60.6 47 126 157.3 40.3 44.6 79.30 20.32   
6-Aug 54.3 39.8 142.1 182.2 40.8 41.2 83.40 25.53   

26-Aug 50.1 46.6 125.8 139.7 43 49.9 75.85 18.11   
10-Sep 52.4 75.3 141.6 

 
33.1 51.5 70.78 18.93   

3-Oct 50.2 118.3 95.1 148.1 30.9 40.3 80.48 19.33   
27-Oct 67.6 86.9 85.6 156 22.8 44.9 77.30 18.68   
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Table 25.  
Vegetation survey Bete Grise upland 

BG upland 1x1m Cover class  

Species name Latin name NE SE SW NW 
Tawny Cotton-grass Eriophorum virginicum 5       
Tussock Cotton-grass Eriophorum vaginatum       25 
Tag alder Alnus incana 20       
Labrador tea Ledum groenlandicum 5   7 50 
Small cranberry Vaccinium oxycoccus 95       
Bog-laurel Kalmia polifolia 30       

Bryophytes 100 5 50 90 
Canadian rush Juncus canadensis 5       
Three-leaf Solomon's-seal Maianthemum trifolium 20       
Cinnamon fern Osmunda cinnamomea 10       
Bluejoint Calamagrostis canadensis <5       
Boreal bog sedge Carex magellanica 7   3   
Bunch berry Cornus canadensis   1 3   
Canada mayflower Maianthemum canadense   2 3   
Bracken fern Pteridium aquilinum   20     
Common lake sedge Carex lacustris       15 
Softleaf sedge Carex disperma       2 
Oval leaved bilberry Vaccinium ovalifolium   40 25 10 
Starflower Borealis trientalis   1     
Red maple Acer rubrum   1     
Balsam fir Abies balsamea   1 1   
Leatherleaf Chamaedaphne calyculata       50 
Mountain Ash Sorbus americana   1     

Forest floor 60   85   
Three-leaf goldthread Coptis trifolia     1   
Creeping snowberry Gaultheria hispidula     5   
Lowbush blueberry Vaccinium angustifolium     10 10 
Northern Whitecedar Thuja occidentalis     20   

3X3 m NE SE SW NW 
Labrador tea Ledum groenlandicum 75 3 15 25 
Mountain Holly Nemopanthus mucronata <5       
Lowbush blueberry Vaccinium angustifolium 5       
Tag alder Alnus incana <5       
Northern white cedar Thuja occidentalis <5 20 40   
Black spruce Picea mariana <5     30 
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Table 25 (continued) 

BG upland 1x1m Cover class  

Species name Latin name NE SE SW NW 
Balsam fir Abies balsamea   15 5   
Common bilberry Vaccinium myrtillus   1     
Serviceberry Amelanchier   1     
Eastern Leatherwood Dirca palustris     25   
Paper birch Betula papyrifera       5 
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Table 26.  
Vegetation survey, Bete Grise upland tree data 

Trees BG  
Upland NE SE SW NW 

 Species 
name 

Latin 
name # 

D
B

H
 

H # 

D
B

H
 

H # 

D
B

H
 

H # 

D
B

H
 

H st per 
ha 

Pa
pe

r b
irc

h 

Be
tu

la
 p

ap
y-

ri
fe

ra
 

3 <5 1.5 21 10 12 36 9 9 17 5 4 770 
   1   8 6   <5 3   5 6 

    1   10 15   11 14   <5 3 
        12 14   34 17    3 
        10 9   10 9    2 
        10 12   7 8      
        <5 5   8 9      
         6 6   <5 3       
 

B
al

sa
m

 fi
r 

Ab
ie

s b
al

sa
m

ea
 15 5 2 94 18 12 56 19 17 15 5 3 1800 

  <5 1.5   <5 6   7 5   <5 2 
   <5 1.3   <5 4   5 5   5 2.5 
   <5 1   7 5   <5 3   5 5 
        <5 2   12 11   6 5 
           2   <5 2       
 

Ea
st

er
n 

w
hi

te
 

pi
ne

 

Pi
nu

s 
str

ob
us

 5 <5 1       1 35 17 3 11 6 90 
   1             <5 3 

     1               5 7 
 

B
la

ck
 sp

ru
ce

 

Pi
ce

a 
m

ar
ia

na
 15 <5 1 13 9 9 9 18 15 25 <5 2 620 

  6 1.5   6 5   15 16   7 4 
   9 6   12 16   10 9   12 9 
   <5 2        14 13   5 3 
   11 8               5 4 
 

N
or

th
er

n 
w

hi
te

 
ce

da
r 

Th
uj

a 
oc

ci
de

nt
al

is 

5 11 8 12 27 13 18 24 14 18 <5 2 530 
  <5 2   24 14   14 13    2 

   <5 2   14 7   16 8   13 8 
   <5 2   23 14   5 5   24 17 
   <5 2   34 15   29 16   <5 2 
 

Ta
m

ar
ac

k 

La
ri

x 
la

ri
ci

na
 5 12 5             3 9 10 80 

  6 4             7 6 
   10 6             <5 4 
   <5 2                
     3.5                   
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Table 27.  

Vegetation survey Bete Grise swale 

Bete Grise dune and swale BG6 1x1 m Cover class  

Species name Latin name NE SE SW NW 
Threeseeded sedge Carex trisperma 50       
Rattlesnake-mannagrass Glyceria canadensis 1       
Labrador tea Ledum groenlandicum 45 5 75 15 
Clubmoss Lycopodium spp 5       
Creeping snowberry Gaultheria hispidula 5       

Bryophytes 85 80 95 95 
Velvet leaved bilberry Vaccinium myrtillus 5 5 3   
Balsam fir Abies balsamea 7       
Bluejoint Calamagrostis canadensis 3   1 2 
Northern Blue Flag Iris versacolor   35     
Three-leaf Solomon's-seal Maianthemum trifolium   1     
Bracken fern Pteridium aquilinum     50   
Mountain ash Sorbus americana     1   
Bunchberry dogwood Cornus canadensis     7   
Softleaf sedge Carex disperma     5   
Serviceberry Amelanchier ssp     1   
Cinnamon fern Osmunda cinnamomea 15     20 
Starflower Trientalis borealis       5 
Three-leaf goldthread Coptis trifolia       7 
Hairy sedge Carex lacustris 3       
Dwarf birch Betula nana       1 
Labrador tea Ledum groenlandicum 25 10 15 50 
Black spruce Picea mariana 25   3   
Tag alder Alnus incana 10 25 7 50 
Mountain Holly Nemopanthus mucronata   7 10   
Paper birch Betula papyrifera   2 7   
Velvet leaved bilberry Vaccinium myrtillus     5 15 
Tamarack Larix laricina < 1       
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Table 28.  
Vegetation survey Bete Grise swale tree data 

Trees BG6 
dune & swale NE SE SW NW 

st per 
ha Common 

name 
Latin 
name # 

D
B

H
 

H # 

D
B

H
 

H # 

D
B

H
 

H # 

D
B

H
 

H 
B

la
ck

 sp
ru

ce
 

Pi
ce

a 
m

ar
ia

na
 3 7 5 5 5 4 42 14 16 10 14 11 600 

  15 9   6 4   9 6   8 7  
  20 18   6 5   16 16        
             11 9        
              6 7        

Ta
m

a-
ra

ck
 

La
rix

 la
ric

in
a 

3 21 16 14 7 5 30 < 
5 3 6 11 9 530 

  15 14   5 3   8 7   16 14  
  18 15   9 8   < 

5 
2   14 8  

       8 7   10 9   16 11  
       5 5   7 8   17 13  
              5 5        

Ta
g 

al
de

r 

Al
nu

s i
nc

an
a 

72 < 5 2 87 < 
5 

2 27 < 
5 

2 42 < 5 3 2280 

   3     2    2     2  
   2     1.

5 
   3     2  

   4     2    2     2  
    2     2.

5 
    2     3  

B
al

sa
m

 fi
r 

Ab
ie

s b
al

sa
m

ea
 11 5 2 6 < 
5 

1.
5 

9 < 
5 

2 11 < 5 2 370 

  < 5 2     1.
5 

   2     2  
  12 6     3    2     3  
  7 5     1.

5 
   3     2  

        6 4     4     3  

Pa
pe

r b
irc

h 

Be
tu

la
 p

ap
yr

ife
ra

 9 < 5 3 10 <5 2 9 < 
5 

2 11 < 5 2 390 

   2     2    2     2  
   3     2    2     3  
   3     3    4     2  
    4     4     3     3  
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Table 28 (continued) 

Trees BG6 
dune & swale NE SE SW NW 

st 
per 
ha Common 

name 
Latin 
name # 

D
B

H
 

H # 

D
B

H
 

H # 

D
B

H
 

H # 

D
B

H
 

H 
M

ou
nt

ai
n 

H
ol

ly
 

N
em

op
an

th
us

 
m

uc
ro

na
ta

 
            6 < 5 2 11 < 5 2  
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Table 29.  
Vegetation survey Bete Grise dune 

Bete Grise dune and swale well 8 1x1 m Cover class  

Species name Latin name NE SE SW NW 
Mayflower Epigaea repens 20     25 
Lowbush blueberry Vaccinium angustifolium 25     15 
Velvet leaved bilberry Vaccinium myrtillus 60     25 

Bryophytes 50 50 10 55 
Labrador tea Ledum groenlandicum 35     35 
Bracken fern Pteridium aquilinium 25     40 
Bunchberry dogwood Cornus canadensis     1 5 
Willow Salix spp     25   
Leatherleaf Chamaedaphne calyculata   25 25   
Few-seeded sedge Carex oligosperma   75 60   
Blue joint Calamagrostis canadensis     20   
Bog-laurel Kalmia polifolia   2 5   
Bog-rosemary Andromeda polifolia   7     
Small cranberry Vaccinium oxycoccus   5     
Bog birch Betula pumila   < 1     

3X3 m NE SE SW NW 
Labrador tea Ledum groenlandicum 25     30 
Black spruce Picea mariana 3 1 1   
Leatherleaf Chamaedaphne calyculata 4 5 16   
Mountain Holly Nemopanthus mucronata       10 
Willow Salix spp   40 20   
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Table 30.  
Vegetation survey Bete Grise dune tree data 

Trees BG8 
Dune & swale NE SE SW NW st 

per 
ha Common 

name Latin name # 

D
B

H
 

H # 

D
B

H
 

H # 

D
B

H
 

H # 

D
B

H
 

H 
Ta

m
ar

ac
k 

La
rix

 la
ric

in
a 2 <5 1.5 6 < 5 2 15 6 5 1 7 4 240 

   2   6 9   5 6        
       < 5 3   11 10        
              8 8        

B
la

ck
 sp

ru
ce

 

Pi
ce

a 
m

ar
ia

na
 18 <5 1.5 20 < 5 3 7 7 5 10 12 10 550 

  13 8   12 11   9 9   9 7  
  10 6   7 13   < 5 3        
  13 9   14 10             
  12 10   < 5 15              

W
ill

ow
 

Sa
lix

 
sp

p 2 <5 5       1 < 5 2       30 

Pa
pe

r 
bi

rc
h 

Be
tu

la
 

pa
py

ri
-

fe
ra

 

1 10 9 1 < 5 6 1 9 9 1 < 
5 3 40 

W
hi

te
 p

in
e 

Pi
nu

s s
tr

ob
us

 1 28 16 6 < 5 1.5 1 6 4 3 29 12 110 

       6 2        22 10  
       < 5 4        30 11  
        < 5 1.5              

R
ed

 m
ap

le
 

Ac
er

 
ru

br
um

 2 <5 3                   20 

  <5 2                    

M
ou

nt
ai

n 
H

ol
ly

 

N
em

o-
pa

nt
hu

s 
m

uc
ro

na
ta

 8 <5 2 3 < 5 2             110 

   2     1.5 9 < 5 2        
    1.5                    

 

  



 

84 
 

Table 30 (continued) 

Trees BG8 
Dune & swale NE SE SW NW st 

per 
ha Common 

name Latin name # 

D
B

H
 

H # 

D
B

H
 

H # 

D
B

H
 

H # 

D
B

H
 

H 
D

w
ar

f 
B

irc
h 

Be
tu

la
 

na
na

       3 < 5 3             30 

          2              

Se
rv

ic
e-

be
rr

y 

Am
e-

la
nc

hi
er

 
sp

p       1 < 5 2 1 < 5 2       20 
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Table 31.  
Vegetation survey Pequaming open fen 

Pequaming PQ2 open fen 1x1 m Cover class  

Common name Latin name NE SE SW NW 
Surface water 25 30 1-5 20 
Bryophytes  60 60 65   

Bog-rosemary Andromeda polifolia 25 5-10 10-15 10-15 
Leatherleaf Chamaedaphne calyculata 5-10 1-5 5-10   
Cranberry Vaccinium oxycoccus 1-5 1-5 1-5   
Bog Golden rod Solidago uliginosa 5-10 1-5 10-15 1-5 
Pitcher plant Sarracenia purpurea 1-5 1-5 15-20   
Violet Viola spp. 10-15       
Willow herb Epilobium palustre <1       
Marsh timothy Muhlenbergia glomerata <1       
Horsetail Equisetum spp <1   1-5 30 
Wiresedge Carex lasiocarpa 75 40 65 60 
Spikerush Eleocharis spp 1-5       
Bulrush Scripus spp 1-5 1-5 1-5   
Royal fern Osmunda regalis   10-15 10-15   
Tamarack Larix laricina   15     
Red maple Acer rubrum     <1   
Chokeberry Aronia melanocarpa     1-5   
Northern white cedar Thuja occidentalis     40   
Mountain Holly Nemopanthis mucronata       15 
Bog bean Menyanthes trifoliata       <1 
Bog birch Betula pumila       <1 

3X3 m NE SE SW NW 
Tamarack Larix laricina 1-5 1-5 <1 1-5 
Northern white cedar Thuja occidentalis 10-15 5-10 1-5 5-10 
Sweetgale Myrica gale 25   10-15   
Black spruce Picea mariana 1-5       
Black Chokeberry Aronia melanocarpa       <1 
Willow  Salix spp       <1 
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Table 32.  
Vegetation survey Pequaming open fen tree data 

Trees PQ2 
Open fen NE SE SW NW 

st 
per 
ha Common 

name Latin name # 

D
B

H
 

H # 

D
B

H
 

H # 

D
B

H
 

H # 

D
B

H
 

H 

Northern 
white cedar 

Thuja 
occidentalis 1 <5 1.5 1 <5 2 1 <5 1.5 1 <5 1.5 40 

Tamarack Larix 
laricina 

1 <5 1.5 2 <5 1.5 2 <5 1.5 1 <5 1.5 60 

        2    1.5       
Paper birch Betula 

papyrifera 1 <5 1.5                   10 
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Table 33.  
Vegetation survey Pequaming transition zone 

Pequaming PQ5 transition 1x1 m Cover class  

Common name Latin name NE SE SW NW 

Hairy sedge Carex lacustris     5 1-5 
Bristlystalked sedge Carex leptalea     20 1-5 
Horsetail Equisetum spp 5-10 30 40-50 40 
Labrador tea Ledum groenlandicum 10 15-20 15-20 1-5 
Three-leaf Solomon's-seal Maianthemum trifolium 1       
Few seeded sedge Carex trisperma 5-10 1 1-5   

Bryophytes 85 90 100 80 
Royal fern Osmunda regalis 25-30     25 
Starflower Trientalis borealis <1 1-5 <1   
Northern white cedar Thuja occidentalis 1 1-5   10-15 
White turtlehead Chleone glabra 1-5   <1   
Small cranberry Vaccinium oxycoccus <1   5-10 <1 
Michaux's sedge Carex michaux 1-5       
Liverleaf wintergreen Pyrola asarifolia <1 10-15   5-10 
Tag alder  Alnus incana   1 5-10   
Bluejoint Calamagrostis canadensis   1 1-5 30 
Sedge (orange roots) Carex limosa     1-5   
Canada mayflower Maianthemum canadense       1-5 

3X3 m NE SE SW NW 
Tag alder  Alnus incana 5-15 1-5 15 1-5 
Northern white cedar Thuja occidentalis 5-10 1-5 25-30 5-10 
Labrador tea Ledum groenlandicum 1-5 5-10 1-5 1-5 
Mountain Holly Ilex mucronata   1-5 <1   
Leatherleaf Chamaedaphne calyculata     1-5   
Tamarack Larix laricina     <1   
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Table 34.  
Vegetation survey Pequaming transition zone tree data 

Trees PQ5 
transition NE SE SW NW 

st 
per 
ha Common 

name Latin name # 

D
B

H
 

H # 

D
B

H
 

H # 

D
B

H
 

H # 

D
B

H
 

H 
Ta

g 
al

de
r 

Al
nu

s i
nc

an
a 57 5 7 20 <5 2 67 <5 2 40 <5 2 1840 

  <5 4    3    2    2  
  <5 4   5 5    1.5    1.5  
  <5 2    2    2    2  
  <5 3     3     3     1.5  

N
or

th
er

n 
w

hi
te

 
ce

da
r 

Th
uj

a 
oc

ci
de

nt
al

is
 61 <5 3 67 <5 1.5 76 6 4 94 9 5 2980 

  7 5   29 12   8 4   12 8  
  17 11   <5 3   10 5   8 7  
  17 12   6 5   <5 1.5   <5 1.5  
  31 13         12 5   7 6  

W
in

te
r-

be
rr

y 

Ile
x 

ve
rt

ic
ill

at
a 41 <5 2.5 11 <5 3 3 <5 1.5 14 <5 2 690 

   1.5              1.5  
   3              1.5  
   1.5              1.5  
    2                 2.5  

B
al

sa
m

 fi
r 

Ab
ie

s b
al

sa
m

ea
 26 <5 1.5 39 <5 3             650 

  2.5 4   6 7            
  4 4   <5 1.5            
  <5 1.5    2            
  <5 2   13 10              

M
ou

nt
ai

n 
ho

lly
 

N
em

o-
pa

nt
hu

s 
m

uc
ro

-
na

ta
 

1 <5 1.5 1 <5 4       1 <5 1.5 30 

A
sh

 

Fr
ax

in
us

 sp
p 6 <5 1.5                   60 

   1.5                 
   3                 
  5 5                 
  <5 4                    

Pa
pe

r 
bi

rc
h 

Be
tu

la
 

pa
py

ri
-fe

ra
 

      1 <5 5             10 

B
la

ck
 

sp
ru

ce
 

Pi
ce

a 
m

ar
ia

na
 1 6 6 3 <5 3             40 

       6 7            
        10 12              
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Table 35.  
Vegetation survey Pequaming upland 

Pequaming upland 1x1 m Cover class  

Common name Latin name NE SE SW NW 
labrador tea Ledum groenlandicum 7 1-5   1-5 
Creeping snowberry Gaultheria hispidula 5 <1 1-5   
Cinnamon fern Osmunda cinnamomea     30   
Lowbush blueberry Vaccinium angustifolium     1-5   
Starflower Trientalis borealis 1-5 1-5     
Mayflower Epigaea repens 1-5 5-10     

Bryophytes 85 25 10-15 35 
Twinflower Linnaea borealis 1-5       
Horsetail Equisetum ssp 1     1-5 
Fowl manna grass Glyceria striata 1-5   25 1-5 
Northern white cedar Thuja occidentalis 20 10-15 1-5 40 
Red maple Acer rubrum < 1       
Clubmoss Lycopodium spp < 1 < 1 1-5   
Three-seeded sedge Carex trisperma 30 1-5 5-10 5-10 
Balsam fir Abies balsamea 5-10 1-5 1-5   
Marsh marygold Caltha palustris       <1 
White turtlehead Chleone glabra       <1 
Royal fern Osmunda regalis       10-15 
Three-leaf goldthread Coptis trifolia   <1 <1   
Wintergreen Gaultheria   1-5     
Michaux's sedge Carex michauxiana     5-10   

3x3 m NE SE SW NW 
Mountain Holly Nemopanthis mucronata 5     <1 
Northern white cedar Thuja occidentalis 5-25 25   75 
Balsam fir Abies balsamea 50   50 5-10 
Green Ash Fraxinus Pennsylvanica <1       
Tag alder Alnus incana 1-5     1-5 
Mountain Holly Ilex mucronata 5-10   1 <5 
Red maple Acer rubrum       <1 
Labrador tea Ledum groenlandicum   1-5 1 <1 
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Table 36.  
Vegetation survey Pequaming upland tree data 

Trees PQ 
Upland NE SE SW NW 

st per 
ha Common 

name 
Latin 
name # 

D
B

H
 

H # 

D
B

H
 

H # 

D
B

H
 

H # 

D
B

H
 

H 
N

or
th

er
n 

w
hi

te
 c

ed
ar

 

Th
uj

a 
oc

ci
de

nt
al

is
 

55 6 4 76 6 4 97 11 8 67 21 12 2950 
  7 4   11 4   <5 2   9 6  

  12 6   11 6   8 6   13 11  

  7 5   6 3   22 13   <5 2  

  6 5   7 5        14 9  

  8 4                   

  10 6                   

  7 5                    

Ta
g 

al
de

r 

Al
nu

s i
nc

an
a 28 <5 2 19 <5 2 34 <5 5 50 <5 5 1310 

   3     2    6   <5 3  

   1.5     2    6   <5 2  

   2     3    5   7 8  

    3     2     7   <5 4  

B
la

ck
 sp

ru
ce

 

Pi
ce

a 
m

ar
ia

na
 5 8 14 3 12 15 1 23 14       90 

  9 9   7 6             
  11 10   8 10             

  11 11                   
  14 15                    

M
ou

nt
ai

n 
H

ol
ly

 

Ile
x 

m
uc

ro
na

ta
 22 <5 2 30 <5 2 19 <5 2 41 <5 2 1120 

   2     2    1.5     3  
   2     2    2     2  
   1.5     2    1.5     2  
    2     2     3     2  

Ta
m

ar
ac

k 

La
rix

 la
ri

ci
na

 6 6 7 13 8 9             190 
  6 6   8 8             
  17 10   7 7             
  9 8   14 10             
  21 10   7 7             
  12 7                    
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Table 36 (continued) 
Trees PQ 
Upland NE SE SW NW 

st per 
ha Common 

name 
Latin 
name # 

D
B

H
 

H # 

D
B

H
 

H # 

D
B

H
 

H # 

D
B

H
 

H 
B

al
sa

m
 fi

r 

Ab
ie

s 
ba

lsa
m

ea
 

            34 <5 4 18 <5 3 520 
              3     3  
              1.5     2  
              2     3  
                3     2  

A
sh

 

Fr
ax

in
us

 
sp

p 

                  4 <5 1.5 40 
                    3  
                    5  
                      6  

Pa
pe

r 
bi

rc
h 

Be
tu

la
 

pa
py

rif
er

a                   2 18 12 20 

                    15 10  
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Table 37.  
Vegetation survey Lightfoot Bay open fen 

Lightfoot Bay LB2 open fen 1x1 m Cover class  

Common name Latin name NE SE SW NW 
Bog-rosemary Andromeda polifolia 1 2   1 
Narrow-panicle rush Juncus brevicaudatus 60 25 35 40 

Bryophytes 35 25 20 45 
Violet Viola spp 2 2     
Small cranberry Vaccinium oxycoccus 2 5 4 1 
Horsetail Equisetum ssp 1 1   3 
Spiked muhly Muhlenbergia glomerata 5 15   4 
Sweet Gale Myrica gale 15 4   6 
American Winterberry Ilex verticillata 1       
Black Chokeberry Aronia melanocarpa 1     5 
Bog golden rod Solidago uliginosa 1 2 4 5 
Pitcher plant Sarracenia purpurea 2 25 10 10 
Bog bean Menyanthes trifoliata   1 3   

Royal fern Osmunda regalis         

Clubmoss Lycopodium spp   1     
Red maple Acer rubrum   1     
Ash Fraxinus ssp     1   
Northern white cedar Thuja occidentalis       15 
Softleaf sedge Carex disperma       3 

3X3 m NE SE SW NW 

Northern white cedar 
saplings 220 / ha         
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Table 38.  
Vegetation survey Lightfoot Bay transition zone 

Lightfoot Bay LB5 transition 1x1m Cover class  

Common name Latin name NE SE SW NW 
Sweet Gale Myrica gale 15 3 10 5 
Tag alder Alnus incana 7       
Leatherleaf Chamaedaphne calyculata 15 10 25   
Bog-rosemary Andromeda polifolia 7 3 25   

Bryophytes 100 5 50   
Starflower Trientalis borealis 3     2 
Dwarf raspberry Rubus pubescens 15 5 2 10 
Swamp rose Rosa palustris 7   25   
Bog bean Menyanthes trifoliata 10   1   
Pitcher plant Sarracenia purpurea 5       
Slender sedge Carex lasiocarpa 15 5 40 15 
Horsetail Equisetum ssp 10 <1 2 5 
Spikerush Eleocharis ssp 5       
Small cranberry Vaccinium oxycoccus 3 4 15 10 
Black chokeberry Aronia melanocarpa 1     1 
Bluejoint Calamagrostis canadensis 3       
Willow Salix spp 1 <1     
Royal fern Osmunda regalis 10 75   40 
Labrador tea Ledum groenlandicum   2   7 
Sedge Carex ssp   15     
Northern bugleweed Lycopus uniflorus     8   
Red maple Acer rubrum     1 4 
Bog-laurel Kalmia polifolia       1 

3X3 m NE SE SW NW 

Sweet Gale Myrica gale 90 80 95 30 
Tag alder Alnus incana 10 2 5 7 
American Winterberry Ilex verticillata 50 15   30 
Mountain Holly Nemopanthus mucronata 10 15 15   
Black Chokeberry Aronia melanocarpa 1 <5 5   
Leatherleaf Chamaedaphne calyculata   5-10 20 25 
Bog-rosemary Andromeda polifolia   1   5 
Red maple Acer rubrum     1   
Labrador tea Ledum groenlandicum     1 <5 
Willow Salix spp     1   
Serviceberry Amelanchier sp       <1 
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Table 39.  
Vegetation survey Lightfoot Bay transition zone tree data 

Trees LB5 
transition NE SE SW NW st 

per 
ha Common 

name 
Latin 
name # 

D
B

H
 

H # 

D
B

H
 

H # 

D
B

H
 

H # 

D
B

H
 

H 
B

la
ck

 sp
ru

ce
 

Pi
ce

a 
m

ar
ia

na
 4 5 3 3 7 4.5 1 <5 2 7 <5 2 150 

  5 2   <5 1.5         1.5  
  <5 1.

5              3  

  <5 1.
5              2  

                    5 4  

Ta
m

ar
ac

k 

La
rix

 la
ric

in
a 28 6 4 30 <5 2 24 <5 2.5 29 7 4 1110 

  4 4   <5 2   6 3.5   <5 2.5  
  7 4   6 2.5   5.5 3   6 4  
  6 4   7 5   <5 2   6 3  
  <5 2   <5 3   5 3   7 5  

N
or

th
er

n 
w

hi
te

 
ce

da
r 

Th
uj

a 
oc

ci
de

nt
al

is 

17 15 5 9 6 3 4 6 3 18 7 4 480 
  8 4   11 6   6 4   <5 3  
  11 5   11 5   10 5   7 4  
  8 4   7 5   9 5   6 3  
        8 4              

Ta
g 

al
de

r 

Al
nu

s 
in

ca
na

 

5 <5 2             1 <5 2 60 

R
ed

 m
ap

le
 

Ac
er

 ru
br

um
 3 <5 4 4 <5 2 1 <5 4 7 <5 2 150 

   2    3         1.5  
   2    2         5.5  
       5 5         2  
        <5 2              

W
hi

te
 

pi
ne

 

Pi
nu

s 
str

ob
us

 

1 <5 2 1 8.5 6 1 11 6.5       30 

R
ed

 o
si

er
 

do
gw

oo
d 

C
or

nu
s 

se
ri

ce
a 

3 <5 2             2 <5 2 50 
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Table 39 (continued) 

Trees LB5 
transition NE SE SW NW st 

per 
ha Common 

name 
Latin 
name # 

D
B

H
 

H # 

D
B

H
 

H # 

D
B

H
 

H # 

D
B

H
 

H 
Se

rv
ic

e-
be

rr
y 

Am
e-

la
nc

hi
er

 sp
p 

1 <5 1.
5                   10 

B
la

ck
 c

ho
ke

-
be

rr
y 

Ar
on

ia
 m

el
a-

no
ca

rp
a 

                  1 <5 1.5 10 

M
ou

nt
ai

n 
H

ol
ly

 

N
em

op
an

th
is 

m
uc

ro
na

ta
 

                  1 <5 1.5 10 

Sw
ee

t 
ga

le
 

M
yr

ic
a 

ga
le

 

                  1 <5 1.5 10 

A
m

er
ic

an
 

w
in

te
rb

er
ry

 

Ile
x 

ve
rti

ci
lla

ta
 

                  2 <5 2 20 
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Table 40.  
Vegetation survey Lightfoot Bay upland 

LB upland 1x1m Cover class  

Common name Latin name NE SE SW NW 
Bryophytes 100 25 20 60 

Royal fern Osmunda regalis 25     30 
Black spruce  Picea mariana 5-10       
Red maple Acer rubrum 5 30 10 2 
Brownish sedge Carex brunnescens 15     15 
Starflower Trientalis borealis 5     5 
Three-leaf goldthread Coptis trifolia 2 6     
Bunchberry dogwood Cornus canadensis 7 10     
Yellow birch Betula alleghaniensis 7 2 5   
Blue bead lily Clintonia borealis 1 2 5   
Trailing arbutus Epigaea repens   1     
Wood sorrel Oxalis spp   <1     
Creeping snowberry Gaultheria hispidula   <1     
Eastern Hemlock Tsuga canadensis 1 <1 3   
Clubmoss Lycopodium spp     3   
American Winterberry Ilex verticillata   4 5 5 
Canada Mayflower Maianthemum canadense   4 5   

3X3 m NE SE SW NW 
Black spruce  Picea mariana 7     5 
Yellow birch Betula alleghaniensis 10 5 5 5 
American Winterberry Ilex verticillata 3     30 
Common bilberry Vaccinium myrtillus     5   
Eastern Hemlock Tsuga canadensis 15       
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Table 41.  
Vegetation survey Lightfoot Bay upland tree data 

Trees LB 
upland NE SE SW NW 

st 
per 
ha Common 

name 
Latin 
name # 

D
B

H
 

H # 

D
B

H
 

H # 

D
B

H
 

H # 

D
B

H
 

H 
N

or
th

er
n 

w
hi

te
 

ce
da

r 

Th
uj

a 
oc

ci
de

nt
al

is
 26 29 12 7 16 8 21 13 9 39 16 11 930 

  32 13   43 14   7 4   12 11  
  24 10   17 11   33 13   27 12  
  16 8        38 14   10 8  
            8 9   5 4  
                    9 8  

B
la

ck
 

sp
ru

ce
 

Pi
ce

a 
m

ar
ia

na
 

1 32 16             1 33 13 20 

Ea
st

er
n 

he
m

lo
ck

 

Ts
ug

a 
ca

na
de

ns
is 1 32 15 4 19 13             50 

       30 16            
       6 4            
        11 9              

Y
el

lo
w

 
bi

rc
h 

Be
tu

la
 

al
le

gh
a-

ni
en

sis
 1 27 14 3 38 16 2 25 13       60 

       23 14   33 14       
        9 10              

B
al

sa
m

 fi
r 

Ab
ie

s 
ba

lsa
m

ea
       1 18 14 2 17 12 2 10 13 50 

              24 14   16 15  

R
ed

 
m

ap
le

 

Ac
er

 
ru

br
um

       3 18 13 1 30 14       40 
       27 20            
        24 16             
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