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Preface 

This thesis is composed of three published (or submitted for publishing) papers. The 
author’s contributions are described hereafter. 
 

Chapter 2 is “Levelized cost of Electricity for Solar Photovoltaic, Battery and Cogen 
Hybrid Systems” published in the journal Renewable and Sustainable Energy Reviews 
(http://dx.doi.org/10.1016/j.rser.2015.12.084). This article was written by A. Mundada, 
K. Shah and J. Pearce. A. Mundada’s contribution to the paper was the literature review, 
methodology, sensitivity analysis, case study, figures and results, writing and editing 
paper with multiple revisions. K. Shah’s contribution to the paper was working on the 
technical analysis of the hybrid system. J. Pearce’s contribution to the paper was 
conceiving and designing the study, analyzing the data, writing and editing the paper 
with multiple revisions. 

 

Chapter 3 is “A Review of Technical Requirements for Plug-and-Play Solar Photovoltaic 
Microinverter Systems in the United States” which is under review. This article was 
written by A. Mundada, Y. Nilsiam and J. Pearce. A. Mundada’s contribution to the paper 
was the literature review, review NEC codes and standards for solar technologies, case 
study, figures, results, writing and editing paper with multiple revisions. Y. Nilsiam 
developed the streamlined process. J. Pearce’s contribution to the paper was conceiving 
and designing the study, analyzing the data, writing and editing the paper with multiple 
revisions. 

 

Chapter 4 is “U.S. Market for  Solar Photovoltaic Plug-and-Play Systems” which is under 
review. This article was written by A. Mundada, E. Prehoda and J. Pearce. A. Mundada’s 
contribution to the paper was the literature review, developed methodology for LCOE 
calculations, case studies, sensitivity analysis, U.S. market and employment analysis, 
figures, results, writing and editing paper with multiple revisions. E. Prehoda’s 
contribution to the paper was GIS analysis, results, demographic figures, writing and 
editing paper with multiple revisions. J. Pearce’s contribution to the paper was 
conceiving and designing the study, analyzing the data, and detail U.S. market analysis, 
writing and editing the paper with multiple revisions. 
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Abstract 

Technical improvements and scaling have resulted in a significant reduction in solar 
photovoltaic (PV) module costs, which have resulted in PV industry growth both globally 
as well as in the United States. In many regions there have been favorable policies for 
solar energy due to the positive public response and support for growth of solar energy. 
As the demand for PV installations continues to increase, the costs continue to decline, 
feeding a virtuous cycle. This thesis is composed of a three part study directed towards 
technical as well as economical analysis of new technologies for residential solar 
photovoltaic systems for increasing in the PV penetration level as well as reducing 
greenhouse gas (GHG) emissions in the United States.  
 
First, a technical and economical analysis is performed of a complete off-grid hybrid 
system comprising a solar PV unit, battery storage unit and cogen unit for residential 
sector in United States. A new method of quantifying the economic viability of off-grid 
PV+battery+CHP systems by calculating the LCOE of the technology is compared to 
centralized grid electricity. A case study for residential electricity and thermal demand in 
an extreme worst case environment (Houghton, Michigan) is provided to demonstrate the 
methodology. Moreover, a sensitivity analysis was carried out for various input 
assumptions to provide decision makers with clear guides to the viability of such a hybrid 
system and to provide support through a preliminary analysis that indicated a potential 
increase in grid defection in the U.S. in the near future.  
 
Second, a technical evaluation is made as well as safety analysis is made for a fully 
inclusive, commercial, off-the-shelf PV system (normally consisting of a PV module and 
microinverter), which a prosumer can install by plugging it into an electric outlet and 
avoiding the need for significant permitting, inspection and interconnection processes. 
Such systems are referred to as ‘plug and play solar’ systems. The relevant codes and 
standards from the National Electric Code, local jurisdictions and utilities was reviewed 
for PV with a specific focus on plug-and-play solar. A streamlined application process is 
provided with only technical requirements to ease utility implementation. The results 
indicated that supporting the installation of plug-and-play solar PV with UL (Underwriters 
Laboratory) certified microinverters will improve PV system performance, will lead to 
faster uptake and higher PV penetration levels, will also improve prosumer economics, 
and more environmentally responsible electric power generation. 
 
Finally, a U.S. market analysis is performed for plug and play solar assuming the U.S. 
regulations modernize and permit the installation of plug and play solar for the residential 
sector. This study provides an estimate of this new U.S. market for plug and play PV 
systems if such regulations are updated by investigating personal financial decision 
making for Americans. The potential savings for the prosumer are mapped for the U.S. 
over a range of scenarios. This study shows that this system would generate approximately 
108,417 thousand MWh per year and this distributed solar energy, which would provide 
prosumers approximately $13 billion/year in electricity cost savings. 
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Chapter 1 

 
 
Introduction and Overview 
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1. Introduction and Overview 
 
1.1 Motivation 

 
The main objective of this research was to perform a technical as well as economic 
analysis of new solar PV technologies for residential sector in United States. It is proposed 
in this research that installing off-grid or on-grid solar PV technologies for the residential 
sector will not only increase the PV penetration level in U.S., but it will also help in 
electricity cost savings and environmentally responsible electric generation.  

 
1.2 Thesis Outline 

 
This study begins with Chapter 2 where a new method to determine the levelized cost of 
electricity (LCOE) of an off-grid hybrid system comprised of a solar photovoltaic, battery 
and cogen hybrid systems in order to determine the economic viability of such off-grid 
hybrid systems installed at residential level.  
 
In Chapter 3 a review of technical requirements for plug-and-play solar photovoltaic 
microinverter systems in the United States is completed to permit the installation of plug 
and play solar systems for residential sector in United States. A prosumer can install such 
systems by plugging it into an electric outlet and avoiding the need for significant 
permitting, inspection and interconnection processes. 
 
In Chapter 4 a U.S. market analysis for plug and play solar systems is provided if U.S. 
regulations mordernize and permits the installation of plug and play solar for residential 
sector in United States. 
 
Finally, Chapter 5 discusses the conclusions and opportunities for future work drawn from 
these studies and how they can help in improving the PV penetration in U.S. as well as 
help in providing environmentally responsible and economical electric generation. 
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Chapter 21 
 

 

 

Levelized cost of Electricity for Solar 
Photovoltaic, Battery and Cogen Hybrid Systems 
 
  

                                                           
1 Published in the journal Renewable and Sustainable Energy Reviews, 57, (2016), 692–703. 
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Abstract 
 
The technological development and economic of scale for solar photovoltaic (PV), 
batteries and combined heat and power (CHP) have led to the technical potential for a 
mass-scale transition to off-grid home electricity production for a significant number of 
utility customers. However, economic projections on complex hybrid systems utilizing 
these three technologies is challenging and no comprehensive method is available for 
guiding decision makers. This paper provides a new method of quantifying the economic 
viability of off-grid PV+battery+CHP systems by calculating the levelized cost of 
electricity (LCOE) of the technology to be compared to centralized grid electricity. The 
analysis is inherently conservative as it does not include the additional value of the heat 
form the CHP unit. A case study for residential electricity and thermal demand in an 
extreme worst case environment (Houghton, Michigan) is provided to demonstrate the 
methodology. The results of this case study show that with reasonable economic 
assumptions and current costs, PV+battery+CHP systems already provide a potential 
source of profit for some consumers to leave the grid. A sensitivity analysis for LCOE of 
such a hybrid system was then carried out on the capital cost of the three energy sub-
systems, capacity factor of PV and CHP, efficiency of the CHP, natural gas rates, and fuel 
consumption of the CHP. The results of the sensitivity provide decision makers with clear 
guides to the LCOE of distributed generation with off-grid PV+battery+CHP systems and 
offer support to preliminary analysis that indicated a potential increase in grid defection 
in the U.S. in the near future. 
 
 
Keywords:  photovoltaic; cogeneration; off-grid; combined heat and power; CHP; 
levelized cost of electricity; battery; storage 

 

Nomenclature: 

Ccf: Capacity factor of CHP(%) 

Cs: CHP system size (kW) 

d1: degradation rate of the PV module per year (%) 

d2: degradation rate of the CHP unit per year (%) 

dr: discount rate on the hybrid system per year (%) 

Echp: Electrical power output of CHP unit (kW) 

Eff: Efficiency of CHP unit (%) 

Etchp: Rated energy from CHP unit yearly (kWh/year) 

Etpv: Rated energy from Solar PV module yearly (kWh/year) 

Fchp: Fuel cost of the CHP unit yearly ($) 
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Fcon: Fuel consumed by the CHP unit yearly (MMBTU/year) 

Fc: Cost of fuel per unit thermal energy ($/MMBTU) 

Hchp: number of hours CHP operates in a year (hours) 

I: interest rate on the hybrid system for 100% debt (%) 

Ipv: Installation cost of Solar PV ($) 

Ichp: Installation cost of CHP unit ($) 

Ibat: Installation cost of battery storage unit ($) 

Mpv: Maintenance cost of Solar PV yearly ($) 

Mchp: Maintenance cost of CHP unit yearly ($) 

Opv: Operation cost of Solar PV yearly ($) 

Ochp: Operation cost of the CHP unit yearly ($) 

Pcf  : Capacity factor of PV(%) 

Ps: PV power system size( kW) 

Rbat: Cost of battery replacement considered after every 10 years ($) 

T : loan return term or lifetime of the hybrid system (years) 

Tchp : Thermal output of CHP unit (MMBTU/hr) 

Vchp: Variable Operation and Maintenance cost of the CHP unit yearly ($) 

 

2.1 Introduction 
 
Technical improvements and scaling have resulted in a significant reduction in solar 
photovoltaic (PV) module costs, which have resulted in PV industry growth both globally 
as well as in U.S. [1]. In many regions there have been favorable policies for solar energy 
due to the positive public response and support for growth of solar energy [2-7]. High 
exergy electricity from PV is not only reliable, safe and sustainable [8-11], but now it has 
become an economical way of providing global society's energy needs as well [12-13]. As 
the demand for PV installation continues to increase, the costs continue to decline feeding 
a virtuous cycle [14-19]. In some regions of U.S. the solar levelized cost of electricity for 
small-distributed on-grid PV systems is already competitive with conventional utility 
electrical rates [12, 20-21]. 
This represents an economic threat to conventional electric utility business models and in 
response utilities are using a number of mechanisms to discourage the distributed 
renewable energy generation market including: i) revoking or repealing net metering 
legislation [22-25]; ii) placing caps on distributed generation [27-28]; iii) specifying solar 
grid charges [29-32]; iv) continuing manipulation of customer charges to act as 
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disincentives of both energy efficiency and distributed renewable energy [33-35]; and v) 
placing temporary prohibition of activities on state Renewable Portfolio Standards [36]. 
Many of the arguments (e.g. iii) are framed as costs of an inherently intermittent electrical 
source such as solar. However, the potential for economic dispatchable distributed power 
becomes possible with the simultaneous decline of the cost of battery storage. Current  
battery costs are between $600-1,000/kWh. The U.S. DOE expects that this cost will 
decline further  to reach $225/kWh in 2020 and will further drop below $150/kWh in the 
longer term [37]. Economy of scale will also factor into future battery prices, especially 
with Tesla’s battery GigaFactory, which will shortly have battery packs (Power Wall) 
available for $350/kWh for home use [38]. However, in many applications (e.g. northern 
U.S. communities) where a battery bank would need to be prohibitively large to cover the 
load with PV system alone, such systems can be coupled to a cogeneration or combined 
heat and power (CHP) system. 
The passage of the Public Utility Regulatory Policies Act (PURPA) in November 1978 
[39], created the impetus for a resurgence of co-generation and significant growth in CHP 
capacity.  Conventional generation is inherently inefficient, only converting on average 
about a third of the input fuel's potential energy into usable energy. When comparing 
overall CHP system efficiency to the typical central power station (for electricity) and 
boiler system (for steam) scenario, CHP offers reductions in total primary fuel 
consumption on the order of 30% to 35%, which results in a similar CO2 emissions 
reduction, consuming the same fuels [40]. However, if coal-fired electric generation is 
compared to natural-gas fired CHP systems the result is CO2 emission reductions 
approaching 60% and even greater reductions in pollutants such as SO2, NOX and mercury 
[41]. More than two-thirds of the CHPs in the U.S. are fueled with natural gas, but 
renewable biomass and process wastes are also potential fuel sources [41].  According to 
a 2012 joint report by U.S. D.O.E. and U.S. E.P.A., CHP makes up about 8 percent of U.S. 
total generating capacity with an installed capacity of about 82 GW (2012) [42]. The CHP 
technologies have also improved and are now available at a household scale. In a review 
comparing various CHP technologies depending on size, cost, efficiency and performance 
parameters for residential use, CHP modules with internal combustion engine technology 
were found to be more efficient [43-45]. Finally, the development of shale gas has had a 
significant moderating effect on natural gas prices [40]. For example, average residential 
natural gas rates for Michigan in 2009 were $11.30/MMBTU and in 2014 they were 
$8.99/MMBTU [46]. This has assisted in the economic viability of small-scale CHP units. 
Hence, these three technological developments in PV, batteries and CHP have led to the 
possibility of grid defection (moving completely off-grid) for a significant number of 
utility customers and is projected to increase in the future [47]. However, economic 
projections on such complex systems utilizing multiple technologies and fuel sources is 
challenging and no comprehensive review is available for guiding decision makers. This 
paper provides such a means by quantifying the economic viability of off-grid 
PV+battery+CHP systems by calculating the levelized cost of electricity (LCOE) of the 
technology and a case study for residential electricity and thermal demand in Houghton, 
Michigan is provided to demonstrate the methodology. A sensitivity analysis for LCOE of 
such a hybrid system is then carried out on the following factors: capital cost of the three 
components, capacity factor of PV and CHP, efficiency of the CHP, natural gas rates, and 
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fuel consumption of the CHP. The results enable the cost of distributed generation with 
off-grid PV+battery+CHP systems to be compared to the cost of electricity with the 
conventional grid. The results for potential grid defection are discussed. 

 
2.1.1 Background 
 
The simplified block diagram of the modeled PV + CHP + battery hybrid system considers 
only AC loads [48] and is depicted in Figure 1. Such a hybrid system is used to satisfy 
electrical as well as thermal load demand for a residential single-family detached homes. 
The hybrid system consists of PV and CHP unit, which are both used to generate 
electricity. Also the waste heat from co-generation units can be used primarily for space 
heating and cooling and domestic water heating. The use of co-generation units in this 
way is optimal for energy management [49–51]. Moreover the CHP unit also generates 
thermal energy, which it uses to partially fulfill thermal load demand and thus offsets the 
primary furnace and fuel source (e.g. natural gas furnace). The output of PV and the energy 
stored in the battery is DC, which necessitates a DC-AC inverter to supply the AC load. 
Moreover, as the output of CHP unit is AC, any excess AC output has to be converted into 
DC form before storing it in the battery unit. Thus, an AC to DC rectifier is incorporated 
for this purpose. It should be noted, the dispatch strategy of the system will be reliant on 
both the load data and the fuel economics for a given region.  Parallel topology is 
employed for the electrical component of the system [52]. Here, the priority given to fulfill 
the electrical demand will be solar PV followed by the storage battery and finally the CHP 
unit, in order to minimize fuel use and greenhouse gas emissions. Thus, the PV unit will 
try to satisfy the AC load demand. If it is incapable of satisfying, then PV and the battery 
unit will fulfill the load demand, which will help to increase system efficiency. If still the 
AC load demand is not satisfied the remaining load demand will be served by the CHP 
unit [53]. 
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Figure 1. Simplified Block diagram of PV+CHP+Battery Hybrid system 

 
2.2 Methodology 
 
LCOE methods for PV are well established [54-57] and recently standardized in [12]. 
LCOE of CHP units is slightly more complex because of potentially unknown 
expenditures for carbon dioxide emissions, but is also well established taking into account 
the amount of electricity produced, the discount factor, investment costs; operations and 
maintenance costs; fuel costs; carbon costs; and decommissioning costs [58-61]. Here the 
LCOE calculation requires determining the cost of generation of energy by the hybrid 
system and the energy generated by the system in its lifetime and gives cost of energy in 
($/kWh). As LCOE is sensitive to the input assumptions a sensitivity analysis is carried 
out encompassing the following variables: 

• Capital cost of the three systems: 
1.  PV ($0.50/W to $4.00/W), 
2. Battery storage $250/kWh to $1,000/kWh) and 
3. CHP ($500/kW to $1,400/kW). 

The high capital costs are the current market prices as of this writing. 
• Efficiency of the CHP module: 80% to 98%. 
• Capacity factor of the PV: (13% to 18%) and consequently CHP module (55% to 

14%). 
• Financing terms:  interest rate (0% to10%) and discount rate (0% to 10%). 
• Fuel cost of natural gas being consumed by the CHP module: ($6/MMBTU to 

$15/MMBTU) 
 
It should be noted that starting from year one until the loan term, T, the operation and 
maintenance, fuel cost and the interested amount is considered just as in the case with the 
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generated energy by the system. In this paper the LCOE method represented does not 
include any incentives as well as any decommissioning cost, carbon cost or refurbishment 
costs. 
 The installation cost is taken out of the summation as it is just considered initially. 
The installation cost will include the cost of solar PV, battery and the CHP module and is 
given by: 
 
I = Ipv+Ichp+Ibat                                                                                                                                      (1) 
 
 The operation and maintenance will include the operation and maintenance cost 
for solar PV (including inverter replacement) and CHP module along with variable 
operation and maintenance cost of CHP module and replacement cost of battery is: 
 
O = Opv+ Ochp+ Mpv+ Mchp+ Vchp+ Rbat                                                                                                   
(2) 
 
The LCOE of the hybrid system can be determined using: 
 
                                                 

LCOE=
I+∑𝑇𝑇n=1

(𝐼𝐼×i+O+Fchp)
(1+d𝑟𝑟)𝑛𝑛

∑
𝐸𝐸tchp×(1−𝑑𝑑2)𝑛𝑛 +𝐸𝐸tpv×(1−𝑑𝑑1)𝑛𝑛

(1+d𝑟𝑟)𝑛𝑛
𝑇𝑇
n=1

          (3) 

where: 
Etpv = 8760 hrs/year x Ps x Pcf                                                                                         (4) 

and 
Etchp = 8760 hrs/year x  Cs x  Ccf                                                                                    (5) 

 
The cost of fuel can be determined by multiplying the fuel consumption per hour by the 
number of hours the CHP is working in a year, which is then multiplied with the cost of 
fuel in that area: 
 
Fchp = Fcon x Fc x Hchp                                                                                                        
(6) 
 
The fuel consumption can be found out by dividing total electrical and thermal output 
generated by the CHP by the efficiency of the CHP unit [62-64]: 
𝐹𝐹con = ((𝐸𝐸chp×3.143)+Tchp)

𝐸𝐸ff
                                                                                                     (7) 

 
As can be seen by equation 3, the LCOE greatly depends on the capital costs of the PV, 
battery and CHP. It also varies depending on the operation and maintenance costs of the 
sub-systems. Moreover, the fuel cost also affects the LCOE of the hybrid system. The fuel 
cost depends on the fuel consumption of the CHP unit, which depends on the efficiency 
and the power to heat ratio of the CHP unit. 
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2.3 Theory and Calculations for Determining LCOE of the Hybrid System 
 
The choice of discount rate, system costs, average system lifetime and the degradation 
rate of the entire system every year. 
 
2.3.1 Discount rate 
 
The choice of discount rate can vary depending on the location, the life time of the project 
and the technologies being used based on investors' perception of financial risk. The DOE 
discount rate for projects related to energy conservation and renewable energy resources 
in 2013 was 3% [65], which will be used here. 
 
2.3.2 System cost 
 
System component cost not only depends on the capacity and the variability from vendors, 
but also on the type of the system and the location where the system is being installed. 
Installation costs vary widely as a function of location and depends on the engineering 
costs, permitting and regulations, labor costs and the remainder of balance of system costs 
(BOS). Capital costs of the major system components are all decreasing. 
The PV unit  price, is highly dependent on the type of solar PV system, location and type 
of the dwelling. For an instance, a thin-film solar PV system cost less per Watt as 
compared to a crystalline silicon PV system [66-67]. The installed prices for residential 
PV continued their precipitous decline in 2014, falling year-over-year by 12-15% 
depending on system size range [1]. The installation cost include the module price, labor 
cost, electrical BOS cost, structural BOS cost, inverter costs, engineering & PII cost [1]. 
In general, labor cost and BOS of a solar PV system adds up to 50% of the system cost 
[68], but strategies are being developed to halve these prices [69]. Through industrial 
symbiosis and manufacturing facilities the solar manufacturing prices have been declining 
on the economic scale [66, 70, 71]. Finally, installation costs are expected to decrease with 
technological experience, although not as drastically as hardware costs [72]. The installed 
PV system median costs for location are summarized in Table 1. Due to technical 
advancement PV modules are available at historically extremely low prices such as 
$0.69/W for Canadian Solar CS6P-280P [75]. The major contribution to the PV capital cost 
in U.S. is the soft cost which is around 50-70% of the total PV system installation cost 
which is double the soft cost incurred by the PV installation in Germany  (i.e. the U.S. 
solar PV soft cost is ~ $0.49/W whereas for Germany it is only ~$0.18/W ) [76]. 
The engineering, capital cost and efficiency for CHP units as a function of the prime mover 
technology [44, 77]. The fuel cost varies depending on the efficiency of the CHP unit and 
the location where the system is installed. Table 2, compares the efficiency of various 
micro CHP units, which are both sufficient for residential use and available on the market 
[78]. These are put in context in Table 3, which compares capital cost of different prime 
mover technologies to large scales [68, 77]. It can be observed from the Table 2 that CHP 
with ICE technology is suitable and efficient for such type of hybrid system. 
Moreover, the cost is also declining and the lifetime is increasing for electrical storage 
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technology as a whole, although it depends on the type of the battery being used for the 
system and the battery rating, and number of batteries connected in series or parallel. 
Historically, deep cycle batteries were preferred for off-grid applications. For example, 
Trojan T105 RE, with 1000 cycles to 80% discharge rate has a normal lifespan of 10 to 
12 years and cost of $0.16/kWh for life time of battery [79]. These battery costs along 
with the battery technology are evolving quickly as noted above. 
Thus, the LCOE of the system is obviously sensitive towards the system cost and 
sensitivity analysis is carried out. For the case study presented here the capital cost of PV 
is considered to be $4/W and installation cost of CHP is considered to be $1,400/kW. 
 
2.3.3 Financing 
 
Financing depends on the credit of the individual and the tax laws, which also varies 
depending on location. Financing can be government incentives, loans, equity financing, 
mortgage, or debt financing. Debt financing is common as interest payment does not on 
include taxes. For the case study, 100% debt financing will be used. Moreover, the loan 
period is different from the life time of the system, it is a guarantee period. 
 
2.3.4 Life time of the hybrid system 
 
The life time of hybrid system depends on the life time of the PV as well as CHP module. 
The average life time of PV module is considered to be 25 years in the analysis here to be 
conservative, although it is known that PV operate much longer. The life time of a CHP 
unit is a minimum 10-20 years. Operation and maintenance cost increases with the time 
and is mainly due to inverter and battery replacement (at 10 years) and to insure the proper 
performance of the CHP unit. The fuel cost depends on the type of fuel required for the 
CHP unit, generally natural gas or propane based CHP units are available in market. Here 
natural gas will be considered primarily for economic reasons and the technical feasibility 
of scaling.  Table 4 and 5 provide the EIA-2015 natural gas rates for the state of Michigan 
[46]. 
 
2.3.5 Degradation rate and the energy generated by the system 
 
The energy output from PV depends on the degradation rate of the modules.  The 
degradation rates for amorphous silicon PV is 0.5-1.0%/year, for crystalline silicon it is 
0.1-0.5%, for  polycrystalline silicon PV it is 0.1-1.0% and for cadmium telluride 0.1-
0.5%/year [80-81]. This  degradation is due to chemical and material processes such as 
weathering, oxidation, corrosion and thermal stress. The degradation rate of the CHP 
module depends on the type of the technology of prime mover; for all the technologies, 
however, the degradation annually is below 0.5% [44].  For the case study in this paper 
the annual degradation of the PV module and the CHP module with internal combustion 
engine prime mover is considered to be 0.5%. 
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2.4 Results 
 
2.4.1 Case study: Houghton, Michigan, USA.  
 
A case study was chosen with relatively challenging resources. Houghton, MI is located 
in the upper peninsula for Michigan, thus it has relatively long winters, poor solar flux 
distribution and high heat loads relative to most of the rest of the U.S. The case study is 
for residential sector in Houghton, MI with average electric demand of 9,128 kWh/year 
[82] and thermal demand of 98.3MMBTU/year [83]. As it is a low-population density 
isolated community the installation costs of PV are above the national average and will be 
assumed here to be $4.00/W. Moreover, the minimum capital cost of the PV considered 
for the sensitivity is $0.5/W. The size of PV required for fulfilling the load demand is 
8.133 kW [48]. Whereas the CHP module is assumed to have a capital cost $1,400/kW 
with an engineering cost of 450$ [44, 77]. The CHP unit with ICE prime mover technology 
has different minimum cost ranging from $800-$1400/W [77, 84, 85]. Thus, a minimum 
capital cost of $500/kW was considered for sensitivity analysis. The size of CHP required 
to fulfill the load demand on an hourly basis throughout the year is 1kWe [48]. A battery 
storage unit considered is deep-cycle batteries with nominal voltage 48V and 1199A-h 
costs around $2,000 and has a lifetime of 10 years or more (although as noted earlier this 
is likely to decline considerably as Tesla batteries become available). 
Battery backup banks can be made up of many small batteries which are connected in 
series and or parallel to give the wattage (V-A) capacity needed. The optimal sized deep 
cycle lead acid battery storage unit for 1kWe of CHP unit is 4 batteries in series and 8 in 
parallel for a PV array of 8.1kW and a CHP of 1kWe for a total battery size of 300 Ah 
[48]. The life span duration of such a battery storage unit is 10 years or more [86,87]. 
From the results of the HOMER simulation shown in Figure 2 of such an optimized hybrid 
system run using the above PV, CHP and battery sizing it can be observed that system is 
able to fulfill the load demand completely for residence in Houghton, MI [48]. It can also 
be observed that the operating hours for all the three units are different and also varies 
according to the monthly AC load demand and the solar hours. The thermal load demand 
of the residence is fulfilled by CHP unit as well as boiler. 
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Figure 2. Region Michigan -Houghton. Average hourly energy produced per month  
by PV, CHP and Battery units to meet the load demand 
 
The engineering cost for the hybrid system should also be considered to get precise results. 
Here it is assumed that the dispatch strategy considered ensure that the CHP operational 
time is minimized to reduce the fuel consumptions and the concomitant fuel costs and 
GHG emissions. The capacity factor of the PV is considered to be 15.3% for Houghton 
based on solar data and that of the CHP is considered to be 36.28% with an efficiency of 
the CHP module of 83% [48]. Moreover, historically the efficiency of ICE technology 
based CHP module varies from 75-80% [77, 84]. Today, the CHP modules with ICE 
technology available on the market have efficiencies of around 80%-95% [88-91]. Thus 
for the sensitivity analysis the efficiency of CHP unit has been considered to be 80%-98%. 
Along with it 100% debt financing was used. The operation cost for the PV is 1.5% of the 
PV installation cost; whereas the maintenance cost, which is mainly due to inverter 
replacement, is 9% of the PV installation cost [12].  The battery is to be replaced after 10 
years and cost of the replacement is considered in the operation and maintenance cost. 
The operation and maintenance cost for ICE based CHP unit is $50/year whereas the 
variable operation and maintenance cost is $0.08/kWh [44]. The fuel used by the CHP 
module is natural gas and in Houghton the rates are $8.90/MMBTU [46]. Thus, following 
the equations above the total fuel cost for the CHP module is $341.53/year. 
The electricity price for residential sector in Houghton varies from $0.21/kWh to 
$0.24/kWh [92], electric utility company annual reports the electricity rates for Houghton 
in 2013 was $0.22/kWh. It has been observed that this electricity rates are escalating. For 
example: the electricity rate in Houghton in 2003 was $0.1459/kWh and in 2013 it was 
$0.22/kWh (i.e. an increase by almost 50% in a duration of 10 years). Thus, to compare 
the LCOE of the hybrid system with the rates of electricity it is important to consider the 
escalation rate of electricity each year. This escalation rate is due to a number of factors 
that are difficult to estimate so the estimated cost of electricity after 25 years with varying 
escalation rates 0% to 6% is shown in Figure 3. 
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Figure 4A-F shows the effects on the LCOE of the hybrid system of financing 
assumptions.  The LCOE of the system with with different discount rates of 0%, 3%, 5% 
and 10% and interest rates of 0%, 1%, 2%, 3%, 5% and 10% with all other factors 
maintained for a loan term vary from 25 years are shown. For Figure 2 it is clear that 
LCOE decreases as the interest rate falls for the same discount rate. The LCOE for 0% 
interest rate and 0% discount rate has minimum value $0.212/kWh. Moreover, for each 
discount rate the minimum LCOE will be observed with 0% interest rate, for example, the 
LCOE for the hybrid system when the discount rate is 5% is $0.229/kWh (25 year loan 
term); when discount rate is 3% is $0.223/kWh (25 years loan term). 
 Figure 5A-C shows how the LCOE of the system varying as a function of the capital cost 
of the PV and CHP with capital cost of battery held constant. The discount rate for this 
case is 3%, 2% interest rate, 25 years loan term, whereas this will affect the operation and 
maintenance cost of the PV module. In Figure 5A-C, the capital cost of the CHP module 
is $1,400/kW, $1,000/kW and $500/kW respectively, whereas the installation cost of PV 
module is varied from $0.50/W to $4.00/W for each case. It can be seen that the LCOE is 
obtained with installation cost of PV at $0.50/W and capital cost of CHP is $500/W is 
$0.063/kWh. The capital cost of the modules plays an important role in LCOE of the 
hybrid system, whereas a small change in capital cost of the CHP module does not change 
the LCOE of the system by large values. For example when installation cost of the PV 
subsystem is $1.00/W with the capital cost of CHP of $1,400/kW, the LCOE of the hybrid 
system is $0.086/kWh (25years), however, when the capital cost of CHP module is 
$1,000/kW the LCOE of the hybrid system is $0.085/kWh. Furthermore, if the capital cost 
of the battery is reduced with minimum capital cost of CHP module and installation cost 
of PV module the LCOE value can be reduced more. Figure 3D gives the LCOE of the 
system with installation cost of PV at $0.50/W and the capital cost of CHP $500/kW and 
varying capital cost of battery sub-system between $1,000 and $250, respectively. Note, 
that this capital costs change also effects the battery replacement cost. It can be seen that 
the LCOE of the  hybrid system is $0.053/kWh and is obtained when installation cost of 
CHP module is $500/kW, whereas the capital cost of PV module and battery is $0.50/W 
and $500 respectively.  With the battery cost declining by another 50%, the LCOE declines 
by another approximately 2 cents per kWh. 
Figure 6 shows how the LCOE of the system is affected by change in the capacity factor 
of the PV and the CHP sub-systems. As already mentioned, by minimizing the capacity 
factor of the CHP sub-system the LCOE of the complete system can be reduced. The 
capacity factor of the PV and CHP will affect the rated energy generated by each other. 
The total energy out of the system is the energy contribution of PV and the CHP sub-
systems. If the capacity factor of the PV module is increased this will increase the rated 
energy output of the PV and will reduce the contribution by the CHP. The capacity factor 
of the PV module is varied 13%, 15.3% and 18% and the resultant CHP capacity factor is 
summarized in Table 6. For this case the discount rate is 3% and interest rate is 2% with 
25 years loan term and the results are shown in Figure 6. It can be observed that we get 
minimum LCOE $0.225/kWh when capacity factor of PV module is 18% and CHP 
module is 14.32%. 
Figure 7 shows how the LCOE of the system is affected by the change in the efficiency of 
the CHP module. The change in the efficiency also impacts the fuel consumption of the 
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CHP module and hence the total cost of fuel.  The efficiency of the CHP is varied from 
85% to 98% and all other factors are kept unchanged. As the efficiency increases the total 
fuel cost is reduced and thus the LCOE of the system. For example the LCOE of the 
system is $0.239/kWh for 90% efficient CHP and is $0.241/kWh for 85% efficient CHP 
module. The minimum LCOE $0.237/kWh is obtained when the efficiency is maximum 
98% (25 years). 
Figure 8 shows how the LCOE of the hybrid system varies with change in rates of natural 
gas ($/MMBTU). As can be seen from Table 3 the natural gas rates have varied historically 
and is difficult to predict into the future so a sensitivity analysis on natural gas rates was 
performed to investigate the effects on the LCOE of the hybrid system.  The natural gas 
rates are varied from $6/MMBTU to $15/MMBTU and LCOE of the system has been 
determined. From the results summarized in Figure 8 it is clear that the natural gas rates 
have a muted effect the LCOE rates of the system.  For example the LCOE is $0.258/kWh 
when natural gas rates are $15/MMBTU, whereas it is only 2 cents less ($0.232/kWh) 
when natural gas rates are reduced by nearly a factor of three to $6/MMBTU. 
 
 

 
Figure 3.  The levelized cost of electricity for central generation, which depends on the 
current electricity rates in the residential sector of Houghton, MI withvarying escalation 
rates determined with NRELs LCOE calculator [93]. 
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Figure 4a 

Figure 4b 

Figure 4c 
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Figure 4d 

Figure 4e 

Figure 4f 

Figure 4: LCOE of the system for varying discount rate (0%,3%,5%,10%) and interest 
rates (A=0%,B=1%,C=2%,D=3%,E=5%,F=10%).  Assumptions: Installation cost of 
PV=$4/W, CHP=$1950/kW and battery=$2,000/kWh, the total energy output=14,000 
kWh/year, degradation rate=0.5%/year and loan term of 25 years. 
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Figure 5a     Figure 5b 
 

  
Figure 5c     Figure 5d 
 

Figure 5: LCOE of the system for varying installation cost of PV (0.5$/W, 1$/W, 2$/W, 
3$/W, 4$/W) and CHP capital cost (A=$1400/kW, B=$1000/kW, C=$500/kW). 
Assumptions included installation cost of battery of $2000/kWh, loan term is 25 years, 
degradation rate=0.5%/year, total energy output=14,000Wh/year, discount rate=3% and 
interest rate=2%.  
Figure 5d: LCOE of the system for varying installation cost of battery 
($1000/kWh,$500/kWh, $250/kWh) with minimum  installation cost of PV and capital 
cost of the CHP module for loan term of 25 years. Assumptions included, degradation 
rate=0.5%/year, installation cost of PV=$0.50/W, capital cost of CHP=500$/kW, total 
energy output=14,000Wh/year, discount rate=3% and interest rate=2%. 
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Figure 6: LCOE of the system for varying the capacity factor of PV module  
(13%,15.3%,18%) and hence the capacity factor of the CHP module (55%, 36%, 14%). 
Assumptions included loan term is 25 years,  degradation rate=0.5%/year, installation 
cost of PV=$4.00/W, capital cost of CHP=$1400/kW,  
total energy output=14,000Wh/year, discount rate=3% and interest rate=2%. 
 

 
Figure 7: LCOE of the system for varying the efficiency of the CHP module(85%,  
90%, 95%, 98%)  for a loan term of 25 years. Assumptions included degradation rate  
of 0.5%/year, installation cost of PV is $4.00/W, capital cost of CHP is $1400/kW,  
total energy output is 14,000Wh/year, discount rate is 3% and interest rate of 2%. 
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Figure 8: LCOE of the system for varying the rates of the natural gas ($15, $12, $9, $6 
per MMBTU) used by CHP for a loan term of 25 years. Assumptions included 
degradation rate of 0.5%/year, installation cost of PV is $4.00/W, capital cost of 
CHP is $1400/kW, total energy output is 14,000Wh/year, discount rate is 3% and  
interest rate of 2% . 
 
2.5 Discussion 
 
A simple methodology for calculation of LCOE of hybrid PV, battery and CHP system 
has been presented. The methodology was used to determine the LCOE for the hybrid 
system which can be installed in Houghton, Michigan, US. The results of the case study 
are present in Figures 3-8, which provide a quantitative view of the effects on the LCOE 
with changes in various input factors. 
The high initial installation cost of the hybrid system can be an obstacle in its installation 
in this region with an immature market for both PV and CHP systems. However, it can be 
observed that with lower interest rates, long term loans, high discount rate and a 
reasonable degradation rate, such a system will be profitable and may be preferred to 
maintaining grid dependence. It can be seen from Figure 5A-C that the LCOE of the 
system was greatly affected by the installation cost of PV and the capital cost of the CHP. 
The largest contributions of the PV subsystem costs are the PV module cost and the 
inverter cost, although it is clear in comparison with regions with more mature markets 
that if the BOS cost is reduced then the installation cost of PV module can be significantly 
further reduced. Moreover, Figure 5D shows with the reduction in the battery cost the 
LCOE of the system can further be reduced, but the cost of the battery has a relatively 
small impact on the LCOE for the entire system. 
The interest rates and discount rates also affects the LCOE of the system. This can be seen 
by comparing the results in Figure 4A-4F. When both of these financing terms are high 
the impact is severe and raises the LCOE outside of the range of profitability. Using 
current low interest rates result in a competitive LCOE even with inflated initial costs. 
Figure 4A shows 0% interest rate with long loan term results into lowest LCOE value for 
any given starting condition. 
The capacity factor of the PV as well as CHP also affects the LCOE of the system. This 
can be seen from Figure 6. As the capacity factor of PV increases the energy generated at 
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the output of the PV also increases. The total energy at the output of the system is 
maintained constant so as it is sufficient to satisfy the electrical load demand of the house, 
and thus the energy at the output of the CHP can be reduced by reducing the capacity 
factor of the CHP. As the capacity factor of the CHP declines the number of hours the CHP 
module operates in a year is reduced resulting in less fuel consumption and improving the 
LCOE of the hybrid system. As can be seen in Figure 6 this effect is relatively minor. 
The efficiency of the CHP was also varied between 75% to 98%. As the efficiency of the 
CHP increases the fuel consumption is reduced, reducing the fuel cost and improving the 
LCOE as can be seen in Figure 7.  As CHP units are already relatively efficient the relative 
impact on the LCOE is a minor one. 
Although in recent years in the U.S. as a whole (and in the case study region of MI in 
particular) the natural gas retail prices have been declining as seen in Table 3, the natural 
gas rates can even increase or decrease over the next 25years. Thus, the cost of the fuel 
utilized by the CHP will be affected, and hence the LCOE of the system. The impact of 
natural gas prices on the hybrid system can be seen in Figure 8. Lowering the natural gas 
rates reduces the LCOE of the system, but large changes in the fuel costs have relatively 
minor impacts on the LCOE of the whole system. 
The results of both the initial case study (Figure 4) in Houghton, MI and the sensitivity 
(Figures 5-8) provide decision makers with clear guides to the LCOE of distributed 
generation with off-grid PV+battery+CHP systems. The lower LCOE costs of the hybrid 
off-grid system (Figures 4-8) as compared to grid costs with even modest escalation rates 
(Figure 3) offer support to preliminary analysis that indicated a potential increase in grid 
defection in the U.S. in the near future [94]. 
 
Tables 
Table 1: Summary of Average Residential PV Installed System Costs [67,73,74]. 

Solar PV 
Installation year 

Size of the  

system 

  (kW) 

Installed Cost($/W)  

2012 (US)* 2-5 5.2 

2012 (Germany)* 2-5 2.6 

2012(Australia)* <5 3.1 

2012(Italy)* 2-3 3.1 

2012(France)* <3 4.8 

2012(Germany)** 2-5 2.3 

2012(US)** 2-5 5 

2013(US) <10 4.72  
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*-Excluding Tax 

**-Including Tax 

Table 2 : Electrical output, efficiency and total system efficiency for various CHP 
product available in market for residential use[61]. 

Product Technology Electri
cal 
output
(kW) 

Electrica
l 
Efficienc
y(%) 

Total 
Efficienc
y(%) 

Baxi-cogen Stirling 1 15 91 
Honda Eco-

ill 
ICE 1 26 92 

PanasonicEne
f  

Fuel cell 1 35 85 
CFCL Blue-

 
Fuel cell 1.5 60 <85 

 

Table 3 :CHP capital, engineering cost and efficiency depending on the technology  
[77,68]. 
 

CHP 
technolog
y (prime-
mover) 

Typical Capacity  Installed 
cost($/kWe) 

Efficiency (%) 

Gas 
Turbine 

500kWe-300MWe 1,200-3,300  
(5-40 MW) 

66-71% 

Steam 
Turbine 

50kWe to several 
hundred MWe 

$670-1,100 Nearly 80% 

Microtur
bine 

30 kWe to 250 kWe 
with multiple unit 
packages up to 1,000 
kWe 

2,500-4,300 63-70% 

Internal- 
combusti
on engine 

1 kWe to 10 MWe in 
DG applications 

1,500-2,900 75-80% 

Fuel Cell 5 kWe to 2 MWe 5,000-6,500 55-80% 

    

2014(US) <10 3.5 
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e: Electrical output from the CHP module. 
 
Table 4 : Natural gas rates for various years in MI, US [46]. 
 

Natural Gas rates Michigan 
State($/MMBTU) 

Year 

11.37 2009 
11.32 2010 
10.47 2011 
9.95 2012 
9.09 2013 

 
Table 5 : Natural gas rates variation in year 2014 for MI, US [46]. 
 

Month 
year- 
2014 

Michigan state Natural gas rates 
($/MMBTU) 

  July 14.00 
August 14.57 

September 12.48 
October 10.04 

November 8.85 
December 8.99 

 
Table 6: Capacity factor for PV and CHP module. 
 

Capacity factor PV 
 

Capacity factor CHP 
 13% (minimum of 3.3 

    
55% 

15.3% (Houghton from 
 

36% 
18% (maximum 4.1-4.4 

    
14% 
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Abstract 

The average American is highly supportive of solar photovoltaic (PV) technology and 
has the opportunity to earn a high ROI from a PV investment for their own home. 
Unfortunately, the average American does not have easy access to capital/financing to 
install a PV system able to meet their aggregate annual electric needs. One method to 
overcome this challenge is to allow 'plug-and-play solar', which is defined as a fully 
inclusive, commercial, off-the-shelf PV system (normally consisting of a PV module and 
microinverter), which a prosumer can install by plugging it into an electric outlet and 
avoiding the need for significant permitting, inspection and interconnection processes. 
Many advanced countries already allow plug-and-play solar, yet U.S. regulations have 
lagged behind. To assist US policy makers in overcoming regulatory obstructions to 
greater PV penetration, this article first reviews the relevant codes and standards from 
the National Electric Code, local jurisdictions and utilities for PV with a specific focus 
on plug-and-play solar. Next, commercially available microinverters and alternating 
current (AC) modules are reviewed for their technical and safety compliance to these 
standards and all were found to be compliant. The technical requirements are then 
compared to regulatory and utility requirements using case studies in Michigan, which 
were found to create arbitrary non-technically-valid barriers to grid entry. The analysis 
also exposed the redundancy of the utility accessed AC disconnect switch for residential 
and small commercial grid connected solar PV. It is clear that the AC disconnect switch 
is not technically necessary and thus imposing it is an economic barrier to grid entry for 
solar PV systems with UL (Underwriters Laboratory) certified microinverters. To reduce 
consumer and utility workload and the concomitant soft costs, this article provides a 
streamlined application with only technical requirements and free and open source 
software to ease utility implementation. Finally, the advantages of supporting plug-and-
play solar PV with UL certified microinverters include greater PV system performance, 
faster uptake and higher PV penetration levels, improved prosumer economics, and more 
environmentally responsible electric generation. 

Keywords: AC disconnect switch; distributed generation; net metering; net metering 
application; photovoltaic; plug and play solar; prosumer; renewable energy; solar energy; 

PACS: 88.05.-b, 88.05.Lg, 88.40.-j, 8.40.fc, 88.40.H-, 88.40.hm, 88.40.M-, 88.40.mp, 
88.80.-q, 88.20.tf  

 
Abbreviations 

The following abbreviations are used in this manuscript: 
AC: alternating current 
AHJ: authorities having jurisdiction 
BOS: balance of system 
𝐶𝐶𝑆𝑆: average solar PV system cost ($) 
DC: direct current 
𝐷𝐷𝑓𝑓: derate factor rate 
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DR: distributed resources  
𝐸𝐸𝑙𝑙: average electricity load demand (kWh) 
EPS: electric power system 
FIT: feed-in-tariff 
GFDI : Ground-Fault Detection and Interruption  
IBC: International Building Code  
IEEE: Institute of Electrical and Electronics Engineers  
Icont: continuous current    
Imax: maximum current  
LCOE: levelized cost of electricity 
𝑀𝑀𝑆𝑆: average solar PV installation cost per Watt ($/W) 
NEC: National Electric Code 
OCPD: over current protective devices 
𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎: average installed PV Power (kW) 
PD: Project Developer  
POA: Parallel Operating Agreement 
𝑃𝑃𝑆𝑆: solar PV power (kW) 
PV: photovoltaic 
RET: renewable energy technology  
ROI: return on investment  
RPS: renewable portfolio standards 
𝑆𝑆𝐻𝐻: solar irradiance 
UEDS: utility external disconnect switch 
UL: Underwriters Laboratories 

3.1 Introduction 

Technical improvements [1-4] and scaling [1, 5] have resulted in a significant reduction 
in solar photovoltaic (PV) module costs, which has catalyzed PV industry growth both 
globally as well as in U.S [6]. As the demand for PV installations continues to increase, 
the costs continue to decline further [7-15]. This has enabled the solar levelized cost of 
electricity (LCOE) [16] to sometimes surpass grid parity (equal to or drop below the 
price of grid supplied electricity) [17] and now small-distributed on-grid PV systems are 
competitive with conventional utility electrical rates in many instances [18]. This has led 
to a surge of distributed generation, with PV installations up by 30% in 2014 over 2013, 
reaching 6.2GW of cumulative solar photovoltaic electric capacity [19]. According to 
SEIA, by the second quarter of 2015, 22.7GW of total installed solar electric capacity 
was operating in U.S., which is enough to power 4.6 million American homes [20]. There 
is a popular support for solar energy in the U.S. [21-23]. Globally, such popular support 
often leads to political support [24] and a mix of pro-solar policies [25-28] such as net 
metering [29-31], renewable portfolio standards (RPS) [29,32-33], strong statewide 
interconnection policy [29,34], and financing policy [29,35-36]. This has made solar 
energy generation the fastest growing energy source over the past decades, having more 
than tripled globally in the past 5 years [37-39]. In addition, many of the world's 
governments are carrying out steps to provide policy-supported financial incentives 
programs such as feed-in-tariffs (FITs) [40]. A FIT is set to be a financially rewarding 
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rate the utility pays for electricity being generated by the local renewable energy 
generators. Many countries who have adopted this mechanism have experienced the 
largest renewable energy technology (RET) deployments [29,40-46]. However, even 
with the popularity and steps taken by various state and federal governments to support 
solar PV, it is contributing only 0.54% of the electricity generation in the U.S. by April 
of 2015 [47-48]. This is far less than economics would presume.  

PV can earn individuals a significant return on investment (ROI) throughout the U.S. 
even in sub-optimal locations such as the relatively snowy [49] Houghton, MI [50-51]. 
Yet, why has the growth in solar failed to reach market saturation, a situation that would 
be characterized by most southern facing rooftops generating solar energy? This puzzle 
can in part be explained by simple lack of capital and the requisite financing amongst the 
general population [41,52-56]. Installing a solar PV system is expensive for an average 
homeowner [57] and many simply lack access to credit [41,52]. Although the median net 
worth of U.S. households was $81,400 [58], the majority of the wealth (89%) has been 
aggregated in the top 20% (of which the top 1% holds 35% of the wealth [59]), indicating 
that the majority of Americans may not have the capital to invest in full PV power for 
their households.  This can be quantified with the following assumptions. If the average 
family needs approximately 10,000 kWhrs per year [60], and the average solar hours per 
day in U.S. is approximately 4.5hrs [61], the installed PV power (Pave) is about 8.2kW 
for the average family determined by:  

𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐸𝐸𝑙𝑙
365∗𝑆𝑆𝐻𝐻∗𝐷𝐷𝑓𝑓

                                  (1) 

where 𝐸𝐸𝑙𝑙is the annual load demand (kW h), 𝑆𝑆𝐻𝐻 is the peak average solar hours per day, 
and 𝐷𝐷𝑓𝑓is the derate factor, which is considered here to be 75% [62]. The median installed 
cost for a (𝑃𝑃𝑆𝑆) ≤10kW PV system in 2014 was at (𝑀𝑀𝑆𝑆) $3.83/W [63] and so the average 
U.S. family would need to invest approximately (𝐶𝐶𝑆𝑆) $32,000 for their PV array. This is 
a significant fraction of the average American's wealth that includes home ownership, 
but it also represents significantly more than the average wealth for African Americans 
(at $11,000) and Hispanics (at $13,700) [64], which make up 13.2% and 17.4% of the 
U.S. population, respectively [65]. In addition 35% of the U.S. population rents rather 
than owns their houses [66] and even those that do own their homes are likely to move 
approximately 11.4 times on an average in their life [67]. Thus, the average American 
family cannot wait for a long payback at a given location and many cannot simply afford 
to invest in a PV systems to offset all of their electrical consumption despite the fact that 
it would result in a positive economic return. 

One method to overcome this challenge is to allow plug-and-play solar, which is defined 
here as a fully inclusive, commercial, off-the-shelf PV system, which is able to be 
installed by an average prosumer. A prosumer can buy and install the system (one PV 
module and microinverter or a pre-packaged alternating current (AC) module, mount it 
on a low-cost temporary fixture using commonly available tools and without the need 
for training or special skills, ground it and then plug it into a conventional house electric 
outlet. The system can be installed and commissioned without the need for significant 
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permitting, inspection and interconnection processes. By removing these sources of 
“soft” costs, residential solar PV systems will be more cost competitive and attractive to 
consumers, accelerating U.S. solar adoption and production [68-69].  In some countries 
like the United Kingdom [70-71], Netherlands, Switzerland and Czech Republic [72] this 
is already permitted. Yet the U.S. regulations have lagged behind creating, substantially 
higher soft costs than more mature markets, such as those in Germany [73-76]. 

In order to assist U.S. policy makers in overcoming the regulatory obstructions to greater 
PV penetration, this article first reviews the relevant codes and standards from the U.S. 
National Electric Code (NEC), American local jurisdictions and U.S. utilities for PV with 
a specific focus on plug-and-play solar. Next, commercially available microinverters and 
AC modules are reviewed for their technical and safety compliance to these standards. 
The technical requirements are then compared to utility regulatory requirements using 
case studies in Michigan. A streamlined application is generated and methods of 
implementing it are provided to reduce consumer and utility workload and the 
concomitant soft costs. A sensitivity analysis is performed based on tolerable kW 
capacity of potential future regulations on the U.S. market. The results are discussed and 
recommendations are made for national level policy normalization. 

3.2 A Review of PV Codes, Standards and Utility Grid-Interconnection Application 

3.2.1. U.S. National Electrical Codes  

The solar industries growth and success requires PV system safety and thus PV systems 
are to be designed and installed to meet the standards set forth by NEC [77] and standards 
stated in the National Fire Protection Association-70 [78]. Article 690 'Solar Photovoltaic 
Systems' and Article 750 'Interconnected Electric Power Production Sources', are of 
particular interest to PV system designers and installers [78]. The following are relevant 
technical details to the NEC 2014 code for plug-and-play PV systems [77-81] and will 
be reviewed in detail here: 1) ground fault protection, 2) overcurrent protection, 3) arc 
fault circuit protection, 4) disconnecting means, 5) disconnecting type, and 6) grounding. 

3.2.1.1. Section 690.5: Ground fault protection 
According to NEC 2014 grounded DC PV arrays must be provided with DC ground-fault 
protection meeting the requirements of 690.5(A) and (C) to reduce fire hazards  

(A) Ground-Fault Detection and Interruption (GFDI) The ground fault protection must: 
(1) Be capable of detecting a ground fault in the PV array DC current-carrying 
conductors   and components, including any intentionally grounded conductors, 
(2) Interrupt the flow of fault current, 
(3) Provide an indication of the fault, and, 
(4) Be listed for providing PV ground-fault protection. 

(C) A warning label that is not handwritten and is of sufficient durability to withstand 
the environment involved, must be permanently affixed on the utility interactive inverter 
at a visible location stating the following [77,79]: 
 
WARNING: ELECTRIC SHOCK HAZARD-IF A GROUND FAULT IS INDICATED, 
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NORMALLY GROUNDED CONDUCTOR MUST BE UNGROUNDED OR 
ENERGIZED. 
 

3.2.1.2. Section 690.9: Overcurrent protection 
According to NEC 2014 the overcurrent risk in PV systems is associated with the 
parallel-connected circuit as the PV modules and utility-interactive inverters are 
inherently current limited.  To clarify, on the DC side of the system, there is a risk from 
PV source or output circuits that are connected in parallel. However, in a plug-and-play 
PV system each individual module is directly connected to an inverter so this is not an 
issue. On the AC side of the system, the risk comes from the utility grid or the inverter 
output circuits in parallel. Thus, the AC circuit must be protected at the source of 
significant higher current. In this case no combiner box is used and thus no protection 
of it is necessary. 

 
3.2.1.3. Section 690.11: Arc Fault Circuit Protection (Direct Current) 

PV arc faults in ground-mounted PV arrays can result in grass and brush fires. Such fires 
can result in deaths and significant property damage, which can be prevented with PV 
arc-fault protection. An arc-fault protective device must be listed for use in DC PV 
systems. The applicable product safety standard is UL 1699B, “Photovoltaic (PV) DC 
Arc-Fault Circuit Protection”. 
 

3.2.1.4. Section 690.12: Rapid Shutdown of PC Systems on Buildings 
The NEC 2014 code requires that conductors associated with a PV system, whether AC 
or DC, be able to be de-energized on demand, so that any portion of the conductors that 
remain energized do not extend more than 10 feet from the PV array or more than 5 feet 
within a building.  The rapid shutdown initiation methods shall be labeled in accordance 
with 690.56(B).  Equipment that performs rapid shutdown must be listed and identified. 
It should be noted that the code does not specify where the control point for the rapid 
shutdown is to be located.  
 

3.2.1.5. Section 690.14: Disconnecting means  
 The NEC 2014 code also has a separate section (690.14) directly relevant to 

microinverters, which is the most relevant for plug-and-play PV and includes all the 
prior requirements [82]. Specifically, PV disconnecting means shall comply with 
690.14(A) through (D). 

 (A) The disconnecting means shall not be required to be suitable as service equipment 
and shall comply with 690.17. 

 (B) Equipment such as photovoltaic source circuit isolating switches, overcurrent 
devices, and blocking diodes shall be permitted on the photovoltaic side of the 
photovoltaic disconnecting means. 

 (C) Requirements for Disconnecting Means. Means shall be provided to disconnect all 
conductors in a building or other structure from the photovoltaic system conductors. 

(1) Location. The photovoltaic disconnecting means shall be installed at a readily 
accessible location either on the outside of a building or structure or inside nearest the 
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point of entrance of the system conductors. Exception: Installations that comply with 
690.31(E) shall be permitted to have the disconnecting means located remote from 
the point of entry of the system conductors. 

 (D) Utility-Interactive Inverters Mounted in Not-Readily-Accessible Locations. Utility-
interactive inverters shall be permitted to be mounted on roofs or other exterior areas 
that are not readily accessible. These installations shall comply with (1) through (4): 

(1) A direct-current photovoltaic disconnecting means shall be mounted within sight 
of or in the inverter. 

  (2) An alternating-current disconnecting means shall be mounted within sight of 
or in the inverter 

(3) The alternating-current output conductors from the inverter and an additional 
alternating-current disconnecting means for the inverter shall comply with 690.14(C) 
(1). 

  (4) A plaque shall be installed in accordance with 705.10. 
 
3.2.1.6. Section 690.17: Disconnect Type 

Section 690.17 gives the details of allowable types of manually operable disconnecting 
means for ungrounded PV conductors. The list of devices allowed when specifically 
marked for use in PV systems includes industrial control switches (the subject of UL 
98B), molded-case circuit breakers and switches (the subject of UL 489B), and enclosed 
and open-type switches (the subject of UL 508I). The disconnecting means for 
ungrounded conductors shall consist of a manually operable switch(es) or circuit 
breaker(s) complying with all of the following requirements. 

(1) Located where readily accessible 
(2) Externally operable without exposing the operator to contact with live parts 
(3) Plainly indicating whether in the open or closed position 
(4) Having an interrupting rating sufficient for the nominal circuit voltage and the 
current that is available at the line terminals of the equipment. 

There is an exception listed to allow a connector as a disconnecting means if it meets 
the requirements of 690.33, but a standard plug does not do so. This means prosumers 
would need to plug the inverter into an extra switch or have it packaged in the plug-and-
play product  

 
3.2.1.7. NEC 690.8: PV Circuit Sizing and Current Calculation 

This section deals with PV circuit sizing and current calculations, and defines how to 
calculate four maximum circuit current values. 

(1) PV source circuit: These are conductors between the modules, and from modules 
to a     common point of connection, typically a junction box or combiner box  

(2) PV output circuit: These are the circuit conductors after a combiner box to the 
inverter or   charge controller. 

(3)Inverter input circuit: These are the conductors between the inverter’s integrated 
DC disconnect and the inverter’s DC input connection.  
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(4)Inverter output circuit: These are the AC conductors from the inverter to the 
ultimate connection to the AC distribution system for either stand-alone or utility-
interactive systems.  

 

According to NEC 690.8 (B) over current protective devices (OCPDs) shall be sized to 
carry not less than 125% of the maximum current as calculated in 690.8(A). To 
determine the minimum OCPD, multiply the maximum current (Imax) for a given 
conductor run by 1.25. The resulting continuous current (Icont) is the minimum OCPD 
required to protect the conductor in the circuit and the minimum rating of all terminals 
used to make the wiring connections. Plug-and-play PV is limited by the amperage of 
the branch circuit supplying the receptacle that the prosumer is plugging into. To be safe 
the Imax value can be assumed to be 15 amps. Thus if the over current protective device 
shall be the inverter continuous output rating multiplied by 125%. So the plug-and-play 
system is limited to 1,440 Watts (12A X 120V). 

3.2.1.8. NEC 690.46: PV Array Equipment Grounding Conductors 

NEC 690.46 requires that equipment grounding conductors for PV modules smaller than 
6 AWG shall comply with 250.120(C), which requires them to be protected from 
physical damage [83]. This is particularly important if conductors are a potential a trip 
hazard. This may include the back of an array, even on rooftops, according to some 
authorities having jurisdiction (AHJs) [84]. AHJs should consider the circumstances for 
a plug-and-play PV system carefully to ensure that such rulings are appropriate for the 
context. In some commercialized plug and-play solar systems the DC voltage generated 
is around 50V and the microinverters used are frame grounded via a pre-fabricated 6 
AWG ground wire [85]. Plug and play solar units are generally provided with ground 
lugs, which can be used to connect the system to ground using a 6AWG EGC. Suppliers 
should also considering providing the grounding wire in kit forms. Thus, use of frame 
grounding ensures ground safety. 

 

3.2.2 State and Community Codes 
 

Along with the NEC codes and standards each state and community has its own sets of 
codes and regulations to add a small renewable energy system homes and small business 
[86]. To illustrate the challenges with these local codes a case study is presented for 
Michigan. 

 
3.2.2.1. Case Study: Michigan Electric Utility-Interconnection Procedure and 
Requirements  

The data is provided by references [87-88]: An inverter based project less than 20kW 
falls under category 1, which would be the case for all plug-and-play PV systems. Thus, 
the equipment used must be certified by a nationally recognized testing laboratory to 
IEEE1547.1 testing standards. 
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1. Technical Requirements: 

(a) Major Component design requirements: The data required is summarized in Figure 
9 for all major equipment and relaying proposed by the Project Developer (PD) must 
be submitted as part of the initial application for review and approval by the Utility. 
The Utility may request additional data be submitted as necessary during the study 
phase to clarify the operation of the Project. 

(b) Data requirements: The data required by the Utility to evaluate the proposed 
interconnection is documented on one-line diagram as shown in Figure 9 site plan, 
one-line diagrams, and interconnection protection system details of the Project are 
required. The generator manufacturer supplied data package should also be supplied. 

 
Figure 9. Technical requirements and sample line diagram 

 

(c) Isolation Device:  
This device can be circuit breaker, circuit switcher, pole top switch, load-break 
disconnect, etc., depending on the electrical system configuration. After review this 
may not be required by the utility. This device should be placed at point of common 
coupling. 
(d) Interconnection Lines: Any new interconnection lines required to connect the 
system or project to the grid will be undertaken by the Utility. 

 
2. Relaying Design Requirements:  
The interconnection, for simplicity for all Projects in this capacity rating range, the 
interconnection relaying system must be certified by a nationally recognized testing 
laboratory to meet IEEE standard 1547. 

(a) Auto reclosing: The Utility employs automatic multiple-shot reclosing on most of 
the Utility’s circuit breakers and circuit reclosers to increase the reliability of service 
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to its customers. Automatic single-phase overhead reclosers are regularly installed on 
distribution circuits to isolate faulted segments of these circuits. 
(b) Single Phase Sectionalizer: The Utility also installs single-phase fuses and/or 
reclosers on its distribution circuits to increase the reliability of service to its 
customers. Three-phase generator installations may require replacement of fuses 
and/or single-phase reclosers with three-phase circuit breakers or circuit reclosers. 

 
3. Inverter Project Requirements: 

(a) Inverter Projects: No isolation transformer is required between the generator and 
the secondary distribution connection. 
(b) Maintenance and Testing: The Utility reserves the right to test the relaying and 
control equipment that involves protection of the Utility’s electric system whenever 
the Utility determines a reasonable need for such testing exists. 
 

4. Miscellaneous Operation Requirements: 

(a) Operating in Parallel: Voltage fluctuation at the PCC during synchronizing is 
limited by IEEE standard 1547. These requirements are directly concerned with the 
actual operation of the Project with the Utility: 

(i) The Project may not commence parallel operation until approval has been 
given by the Utility. The completed installation is subject to inspection by 
the Utility prior to approval. Preceding this inspection, all contractual 
agreements must be executed by the PD. 

(ii) The Project must be designed to prevent the Project from energizing into a 
de-energized Utility line. The Project’s circuit breaker or contractor must be 
blocked from closing in on a de-energized circuit. 

(iii) The Project shall discontinue parallel operation with a particular 
service and perform necessary switching when requested by the Utility. 

5. Revenue Metering Requirements: 
 The Billing equipment will be owned, operated and maintained by the utility. 

(a) Non-Flow-back Projects: A Utility meter will be installed that only records energy 
deliveries to the Project. 
(b) Flow-back Projects: Special billing metering will be required. The PD shall 
provide the Utility access to the premises at all times to install, turn on, disconnect, 
inspect, test, read, repair, or remove the metering equipment. The metering 
installations shall be constructed in accordance with the practices, which normally 
apply to the construction of metering installations for residential, commercial, or 
industrial customers. 

 
6. The Application process and time consumed for the activation [87-88].   

The flow chart of this application process is provided shown in Figure 10 and described 
below. Interconnection Application:  
 

1. The PD must first submit an Interconnection Application to the Utility:  
A completed Interconnection Application consists of: (1) an application with all 
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relevant data fields populated, Site Plan and One-line diagram provided, and (2) a 
$75 filing fee. The Utility will notify the applicant within 10 working days after 
the application has been received. If any portion of the Interconnection 
Application, data submitted (a site plan and the one-line diagrams), or filing fee is 
incomplete and/or missing; Utility will return the application, data, and filing fee 
to the Applicant with explanations.   
 

2. Engineering Review and Distribution study:  
Once the Utility has accepted an Interconnection Application, the Utility must 
determine whether an Engineering Review (Additional Study) is required (e.g. 
Inverter Based Generators with UL certification 1741 Scope 1.1A meeting IEEE 
1547-2003 and 1547.1-2005 usually do not require a review). After the 
Engineering review is complete, the Utility will determine if a distribution study 
is required (e.g. Inverter Based Generators with UL certification 1741 Scope 1.1A 
meeting IEEE 1547-2003 and 1547.1-2005 usually do not require a study). This 
process take around 10 business days and the utility will notify the applicant if any 
further additional studies is needed or not. 
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Figure 10. Flow chart of the Interconnection Application process. 

 
3. Customer Install and Parallel Operating Agreement (POA):  
The applicant shall notify the Utility when an installation and any required local code 
inspection and approval is complete. 
 
4. Project Design & Construction:  
Upon receipt of the local code inspection approval and POA executed by the applicant, 
utility will schedule the meter install, testing, and inspection.  Utility shall notify the 
applicant of its intent to visit the site, inspect the project, witness or perform the 
commissioning tests, or of its intent to waive inspection within 10 working days after 
notification that the installation and local code inspections have passed.  
  
5. Commissioning Test Report & Final Reconciliation:  
Within 5 business days of receiving a completed commissioning test report, the Utility 
will notify Applicant of its approval or disapproval of the interconnection. If approved, 
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the Utility will provide a written statement of final approval, cost reconciliation and a 
Generator Interconnection & Operating Agreement. Table 7 gives the probable business 
days needed to install the project using current rules, which amount to more than a 
month at minimum. 
 

Table 7. Application Time-Business days [87-88] 
 

Steps       Time(Business days) 
       Application Complete    10 
       Application Review                                       10 
Engineering Review and Distribution 
Study                      

If needed 

       Distribution Upgrades                                  If needed 
Project Design and Constructions                                  10 
Commissioning Test Report and Final 
Reconciliation                  

5 

              TOTAL                                           35 
 
 

3.3 Results 

3.3.1 Microinverters and AC module Compliance 
 
A microinverter is a device that is used in a solar PV system to convert DC generated by 
a solar module to AC using power converter topologies [89-91]. In a PV system using 
microinverters, each PV module is coupled with an individual microinverter, which 
enhances the output power efficiency of the solar PV system [91], while also enabling 
solar PV to be used as plug-and-play device [92]. The output from each single PV module 
or several microinverters can be combined together and fed into electric grid [91]. 
Interconnection equipment (in this case is the microinverter) that connects distributed 
resources (DR) (in this case is a solar PV module) to an electric power system (EPS) must 
meet the requirements specified in IEEE Standard 1547.1 [93-95]. Standardized test 
procedures are necessary to establish and verify compliance with those requirements [94]. 
These test procedures must provide both repeatable results, independent of test location, 
and flexibility to accommodate a variety of DRs (in this case PV module technologies) 
[94]. In the event of electric grid failure it is required that any independent power-
producing inverters attached to the grid turn off in a short period of time (2 seconds) [95-
96] to prevent the inverters from continuing to feed power into small sections of the grid, 
known as “islands.”  Powered islands present a risk to workers who may expect the area 
to be unpowered, and they may also damage grid-tied equipment. Thus UL1741 safety 
testing of the inverters including anti-islanding requirements has been standardized and is 
harmonized by IEEE1547 [95-96]. 
  
Table 8. Microinverters available on the U.S. market and their safety standard and grid 
connection standard compliance [97-103]. 
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Company 
[Source] 

Product Safety Standard 
 Compliance 

Grid 
Connection 
Compliance 

Apparent MGi-220   
Grid-connected  
Micro-inverter 

UL 1741 : 1999 
R11.05 CSA 
C22.2.107.1-01 

  IEEE 1547 

APS 
Microinvete
rs 

YC500A  
Micro-inverter 

UL 1741 , CSA 
C22.2, No. 107.1-
01,NEC2014 690.12 

  IEEE 1547 

APS 
Microinvete
rs 

YC1000-3A 
Microinverter 

UL1741xCSA 
C22.2 No.107.1-01 

  IEEE 1547 

Chilicon 
Power 

CP-250  
Micro-inverter 

UL1741. CSA 
C22.2 NO. 107.1 

  IEEE 1547 

Solar Panel 
Plus 

MI-250-240A  
Micro-inverter 

UL 1741 CSA C22.2 
No. 107.1 

  IEEE 5047 

Enphase M215 Micro-
inverter 

UL1741. 
CAN/CSA-C22.2 
NO. 0-M91, 0.4-04, 
and 107.1-01 

  IEEE 1547 

Enphase M250 Micro-
inverter 

UL1741. 
CAN/CSA-C22.2 
NO. 0-M91, 0.4-04, 
and 107.1-01 

  IEEE 1547 

Enphase C250 Micro-
inverter 

UL1741. 
CAN/CSA-C22.2 
NO. 0-M91, 0.4-04, 
and 107.1-01 

  IEEE 1547 

Enphase S230 Micro-
inverter 

UL1741. 
CAN/CSA-C22.2 
NO. 0-M91, 0.4-04, 
and 107.1-01 

  IEEE 1547 

Enphase S280 Micro-
inveter 

UL1741. 
CAN/CSA-C22.2 
NO. 0-M91, 0.4-04, 
and 107.1-01 

  IEEE 1547 

Siemens SMIINV215R60
XX Micro-
inverter 

UL1741, 
CAN/CSA-C22.2 
NO. 0-M91, 0.4-04, 
and 107.1-01 

  IEEE 1547 
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An AC module is a photovoltaic module which has a small AC inverter mounted on the 
back that produces AC power without any external DC [104]. Table 9 summarizes the 
safety and module compliance of many of the AC module available in U.S. market. 

Table 9. AC modules available in U.S. market and their safety and module compliance 
[105-107]. 

 

Company  Product Micro-inverter 
 Compliance 

Module Compliance 

Phono Solar PS250P-AC UL1741/IEEE154
7, FCC Part 15  
Class B, 
CAN/CSA-C22.2 
NO. 0-M91, 0.4-
04, and 107.1-01 

          UL1703 

LG MonoXAcE 
LG-300A1C-B3 

UL1741, IEEE 
1547, FCC Part 15  
Class B, 
CAN/CSA-C22.2 
NO. 107.1-01 

       UL1703 

ET AC 
Module 

ET-
P660245WBAC/ 
ET-
P660245BBAC/  
ET-
P660250WBAC/ 
ET-
P660250BBAC 

UL1741/CSA 
107.1 FCC Part 15  
Class B 

          UL1703 

 

As can be seen by Tables 8 and 9, all of the commercial systems from the survey of 
available plug-and-play solutions in the U.S as of Nov. 2015 (both PV + microinverter 
and AC modules) are compliant with safety, grid connection, inverter and module 
requirements. 
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3.3.2 External AC Disconnect Switch: a Redundant Device 
 
The utility-accessible AC external disconnect switch for distributed generators, including 
PV systems, is a hardware feature that allows a utility’s employees to manually disconnect 
a customer-owned generator from the electricity grid. The main purpose of installing such 
an AC disconnect switch is to keep workers safe when they make repairs to the electric 
grid [108]. Thus, a utility external disconnect switch (UEDS) is a disconnect device that 
the utility uses to isolate a PV system to prevent it from accidentally sending power to the 
utility grid during routine or emergency maintenance [109 Sheehan, 2008]. For decades 
there has been a debate about UEDS among utilities, state public utility commissions and 
PV system installers as many utilities requires the AC external disconnect switch installed 
within the sight of the revenue meter [108].  Underwriters Laboratories (UL) Standard 
1741 covers inverters, which convert DC power to alternating-current (AC) power for use 
by the customer or utility [108]. The Institute of Electrical and Electronics Engineers 
(IEEE) Standard 1547 provides interconnection requirements for PV systems at the point 
of common coupling and is referenced in the utility connection requirements of UL 1741 
[108].  IEEE 1547, UL 1741, and the NEC do not require the use of customer-owned 
external AC disconnect switch for PV systems [108]. According to IEEE 1547 External 
AC disconnect switch is not a universal requirement, but the utility may desire it for its 
own use [108]. All the above mentioned codes and standards require that PV systems 
automatically disconnect from the grid in the event of an electric outage. However, many 
utilities require a redundant utility-accessible external AC disconnect switch for grid-
related problem. Moreover, It is important to note that all grid interactive inverters 
installed in the U. S. have been tested to the UL 1741 and IEEE 1547 standards that include 
passing the Unintentional Islanding Test, which verifies that the inverter does not operate 
independent of the utility. This evaluation also tests that these inverters cease to export 
power when the utility is de-energized [109]. The NEC requires all buildings to have 
switches or breakers capable of disconnecting them from all sources of power. The 
switches must be manually operable without exposing the operator to contact with live 
parts and must be readily accessible. NEC 690.13 states that Means shall be provided to 
disconnect all current carrying conductors of a photovoltaic power source from all other 
conductors in a building or other structure [109 Sheehan, 2008]. Moreover, the NEC does 
not require that these disconnects be lockable or that they provide a visible-break 
separation [109]. There are three core issues encountered if an external AC disconnect 
switch is mandated: 

1. Operational issues [108-109]:  
Firstly, as the number of PV systems increases, the work and time needed to 
troubleshoot an outage on a distribution circuit with PV systems (and external AC 
disconnect switches) will increase. Second, if utility line workers are required to use 
a group of external AC disconnect switch on a line section, they must be incorporated 
into switching orders. Third, the geographic information system departments at 
utilities will need to maintain accurate and timely maps to help dispatchers and line 
workers locate the external AC disconnect switch during emergencies. And fourth, as 
the time needed to turn off all of these redundant switches causes line workers to 
ignore them, utilities may face liability in the event of injury or equipment damage. 
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2. Cost issues [109-110]:  

Many of the commercially available small generator systems that use inverters cost 
from $4-8,000/kW installed.  Several PV installers have estimated the typical 
incremental cost of installing an external AC disconnect switch to be in the range of 
$200 to $400. This represents only five to ten percent of the installed cost of a one 
kilowatt system although these costs can be much higher. For example, the estimated 
cost by Progress Energy (now Duke Energy) of the external AC disconnect switch is 
to be around $1200 per customer [111]. Thus, for plug-and-play PV systems the 
UEDS may actually cost more than the PV system itself. 

 

3. Legal and Jurisdiction issues [109]:  
The utility requires the line worker to operate the UEDS even though it is located 
outside the utility’s jurisdiction. In other words the external AC disconnect switch is 
located on the customer side and its the property of the customer. 

 

A number of states have allowed utilities to require external disconnect switches, but 
specified that the utility must reimburse applicants for the cost of the switch. Several 
states have specified that an external disconnect switch may not be required for smaller 
inverter-based generating facilities [112]. Among the 35 U.S. States with specific rules, 
18 states requires the external AC disconnect switch, 8 states have waived the 
requirement for small systems (that meet specific technical requirements), and 9 states 
have left the decision to utilities. PG&E (Pacific Gas and Electric) has the most 
interconnected PV systems in U.S. and SMUD (Sacramento Municipal Utility District) 
is one of the most fast pacing adopters of PV technologies, both of which have changed 
their policy for the utility grid connected PV system, and eliminated the installation of 
external AC disconnect switch [113-114]. This policy change was based on the expected 
cost and time saving for utilities as well as the customers [108-109]. This is becoming 
more common, as for example, another utility that has adopted the same policy is SDGE 
(San Diego Gas and Electric) [115]. Thus, the utility accessed AC disconnect switch 
issue is addressed by the IEEE 1547 and UL 1741 and requirements for another switch 
are thus redundant and unnecessary. By eliminating the requirement locally, 
administrative burden and the cost associated with AC disconnect switch will be reduced 
and utility interactive PV systems with effective and UL 1741 listed inverters will 
increase. This will assist in increasing the PV installation rates to meet targets at the 
state level or national level. 

 

3.3.3 Streamlining the U.S. Grid-Tied PV Application Process: 

As can be seen in Section 2, the current PV application process is unduly time consuming 
and costly for a plug-and-play PV system. The application form to be submitted to the 
utility for plug-and-play PV grid interconnection should be well organized and should be 
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presented in a logical manner. The form should shorten the time of the process so that the 
time required to process the application and giving the permit for the same is minimized.  

 

3.3.3.1. Streamlined Interconnection Application 
 
The form should include customer information along with the electric service account 
number and meter number. Then depending on whether the system being installed by the 
customer is a Section A-plug and play solar kit or Section B-discrete equipment’s 
integration, a customer can fill in the required information of that desired section. Section 
A includes the plug and play module kit number, testing standards criteria, number of 
modules being installed and the AC operating voltage. Section B includes the inverter 
information such as power-rating, quantity, AC output voltage; it also includes solar panel 
information such as AC output rating, number of solar panels and few testing standards 
for inverter and the solar panel. A streamlined interconnection application is shown below 
in Table 10. It is comprised of three parts. The first is for customer information. Then the 
user chooses to fill out either section A for a plug and play kit or a section B or the second 
for PV and microinverters a la carte. 

 
 

Table 10. Net metering interconnection application for plug and play solar system 

CUSTOMER INFORMATION 

1. CUSTOMER NAME:                 

2. CUSTOMER MAILING ADDRESS: 

3. CUSTOMER PHONE NUMBER: 

4. CUSTOMER EMAIL: 

5. ELECTRIC SERVICE ACCOUNT NUMBER: 

6. ELECTRIC SERVICE METER NUMBER: 

7. ARE YOU APPLYING FOR NET METERING:           YES          NO 

Y SYSTEM INFORMATION 

 

(IF PLUG AND PLAY SOLAR KIT REFER SECTION A 

       IF DISCRETE EQUIPEMENTS REFER SECTION B) 
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SECTION A 

PLUG AND PLAY SOLAR KIT 

 

1. MANUFACTURER: 

2. MODEL NUMBER: 

3. AC POWER TYPE: SINGLE PHASE [Y/N]                 THREE PHASE[Y/N] 

4. TESTING STANDARDS:            

                                                     CEC                                  YES         NO 

                                               UL 1741                                  YES         NO 

5. NUMBER OF MODULES: 

6. AC OPERATING VOLTAGE:_______V 

SECTION B 

INVERTER AND SOLAR PANEL INFORMATIION 

 

1. INVERTER MANUFACTURER: 

2. INVERTER MODULE NUMBER: 

3. INVERTER POWER RATING (kW/unit): 

4. NUMBER OF INVERTER UNITS: 

5. AC OUTPUT VOLATGE:_____V 

6. SOLAR PANEL AC OUTPUT RATING:____kW/unit. 

7. NUNBER OF SOLAR PV PANELS: 

8. AC POWER TYPE: SINGLE PHASE [Y/N]                 THREE PHASE[Y/N] 

9. UL1741 STANDARD TESTING:                                    YES            NO 

10. UL1703 STANDARD TESTING:                                  YES            NO 

IF YES THEN CERTIFIED TESTING RECORD NUMBER: 

 

3.3.3.2 Net Metering Interconnection for Plug and Play Solar System Application  
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Webpage 

Figure 11. Streamlined net metering application for plug-and-play solar kit. 

In order to streamline the process for the utilities a free and open source web application 
for 'Net metering Interconnection for Plug and Play Solar System Application' was created 
based on the required information for the application from in Table 10 [116]. Text boxes 
and radio buttons were used to receive data input by a user (utility customer). The web 
page of the system is shown in Figures 11 and 12 for a plug-and-play PV system and PV 
and microinverters a la carte systems, respectively. 
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  Figure 12. Streamlined net metering application for PV and microinverters 
chosen  a la carte 

 

In order to host the web application, a server machine with a web server (Apache HTTP 
server), PHP interpreter, and MySQL database installed is needed. Then the web 
application (application.php) and the SQL code (nmifpapss.sql) can be download from 
https://github.com/mtu-most/Net-Meter-Solar-App. On the server machine, utilities 
may use phpmyadmin or other MySQL clients of their choice to create a database and 
tables by running the SQL file. After that the 'appplication.php' should be copied to the 
public folder of the Apache web server, usually at '/var/www/html' on Linux machines. 
The default user name and password for MySQL server are 'root' and 'password!', 
respectively. If the different user name and password were set up, then utilities can 
change them in the 'application.php' by finding the line:  
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$db_conn = new mysqli("localhost", "root", "password!", "nmifpapss"); and changing 
it to their new user name and password. On the server machine, the application page can 
be accessed from the url: 'localhost/application.php'. On other machines, the IP address 
or the domain name of the server is needed to access the page through them, for example, 
'192.168.2.7/application.php' or 'mydomain.com/application.php'. On the page, users 
can fill in all the data according to the form then click the submit button. The page will 
notify users if the submission has succeed and the data will be saved to table named 
'application' in the database named 'nmifpapss', which can then be used by utilities for 
planning and service purposes. 

 

3.4 Barriers and Solutions to Plug-and-play PV 
 

In summary, according to workshop held by DOE the Plug and Play Solar technology has 
several barriers, which need to be overcome for widespread use [68; 116] including 
structural permitting and inspection, electrical permitting and inspection and utility 
interconnection and reliability. 

 
1. Structural Permitting and Inspection:  

Based on documents like the International Building Code (IBC), AHJ’s generally 
require structural inspections in order to ensure the safety, health, and welfare of the 
public as affected by building construction, as well as the life and property of 
occupants. Generally most solar PV systems require a permanent mount, usually on 
the roof, which would require a substantial change to a building. However, this is 
inappropriate for temporary mobile plug-and-play PV systems, which is mechanical 
functionally equivalent to installing a beach umbrella, and thus there is no need of a 
building permit for such a system. 

2. Electrical Permitting and Inspection:   

Based on provisions in the NEC, AHJ’s generally require permits and inspections in 
order to safeguard persons and property from hazards arising from the use of 
electricity.  A plug-and-play systems has the potential to eliminate electrical 
inspections include developing one listing for the entire PV system eliminating the 
need for inspection, developing a standard PV plug at the utility meter or elsewhere, 
installing an external AC disconnect switch if mandated, and developing smart, PV-
ready circuit breakers. However, installation of a plug-and-play PV system is 
equivalent to plugging in a bug zapper into an electric outlet and thus does not 
necessitate an electrical permit and inspection.  

3. Utility Interconnection and System Reliability:   

Without adequate communications between plug-and-play PV systems and the utility, 
grid reliability could be jeopardized in high penetration scenarios. When plugged in, 
the PV system should automatically connect with the grid, perform self-diagnostics, 
and communicate to the utility the pertinent information required to ensure that it does 
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not interfere with the normal operation of the grid. The current microinverters 
available in the market does not have the communication feature available. Moreover, 
a few microinverter companies also manufactures communication gateways to 
monitor the microinverter connected to the PV modules (eg. Enphase Envoys, 
Enphase Envoy collects energy and performance data from the microinverters over 
on-site AC power lines and then forwards that data to Enphase Enlighten, via the 
Internet, for statistical reporting). This is not needed for plug and play PV system for 
systems less than or equal to 1kW.  

 
3.5 Discussion 

 
A circuit breaker panel (also called as load center, service panel, electrical panel or breaker 
box) holds multiple circuit breakers that distribute power throughout a building.  Circuit 
breakers protect wiring from damage by “tripping” when an electrical short or overcurrent 
occurs. According to NEC Codes and Standards, a circuit breaker is a device designed to 
open and close a circuit by non-automatic means, and to open the circuit automatically on 
a predetermined overcurrent without damage to itself when properly applied within a 
given rating [118]. The NEC defines overcurrent as any current in excess of the rated 
current of the equipment or the ampacity of a conductor. Overcurrent (or excessive 
current) are resultant of defective conductor insulation, defective equipment, or an 
excessive workload burden placed upon the utilization equipment and its electrical circuit. 
Fuses and circuit breakers provide a level of safety against overcurrent conditions in 
electrical circuits. Thus, they are generally termed as overcurrent protective devices 
(OCPD). An OCPD opens a circuit to prevent excessive heat from damaging conductors 
and related equipment [119]. NEC codes that are applicable for proper selection of an 
OCPD are stated below. According to 210.20(a) and 215-3 the over-current protective 
devices must be sized not less than 100% of the non-continuous load and not less than 
125% of the continuous load [119]. Moreover, the section 240.6(a) provides with the list 
of standardize over-current devices sizes in amperes is 15A, 20 A or 30 A [119-120]. 
Thus, the minimum circuit breaker rating that is permitted by NEC standards is 15A. On 
of the commercially available grid-tied Solar-Pods has a dedicated 20A rated Circuit 
breaker with four solar PV modules generating 1000W, costs around $2,800 along with 
additional Federal Tax and some local incentives [85]. Even if an average American 
budget is considered, where the average American annual household earning is around 
$51,000 excluding taxes [121]; after excluding all the expenses an average annual saving 
will be more than 5% of the annual income [121] (historically it was higher with the saving 
rate on an average of an American of 9.8% from 1913-2013 [122]). This provides over 
$2,500/month in average yearly savings and indicates the average American could afford 
a plug-and-play PV system that will have a higher ROI than their other investments or the 
cost of borrowing money. 

  
3.5.1 Advantages of Micro-inverter over Traditional Inverters 
 
Microinverters are plug and play ready and can be easily installed without professionals, 
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however, they have several other attributes that make them particularly appealing for 
prosumers. Microinverters optimize each PV module independently unlike that of 
traditional inverters which optimize the whole PV system providing an advantage [123], 
particularly under partial shading conditions. For example, even 9% shading of a PV 
system connected to central inverter can reduce the power output by 54%, whereas if 
micro-inverters are used partial shading of the modules in a system only effect those 
shaded modules and do not drag down the performance of the whole PV system [124]. In 
addition, microinverters optimize the power of a system, which results in increasing the 
power output per PV module by 15% [125] and hence the whole solar system [91;123]. 
Microinvereters also possess a significantly longer lifetime than that of central inverters 
as they are not exposed to as high of power and heat loads as central inverters, which 
results in a life time of 20 to 25 years for microinverters [124-125]. Unlike in case of 
traditional inverters restringing or installing a second central inverter is required [91,126], 
expanding with microinverters is easy as each module has a dedicated micro-inverter.  
Finally, micro-inverters eliminate the use of wiring with high DC voltages, which results 
in safety for both installers as well as home-owners [89,124-125]. 
 
3.5.2 Advantages of Plug and Play Solar 

 
The greatest advantage of plug-and-play PV systems is the ability to produce power output 
from the PV modules by simply plugging in an extension cord, followed by a short 
applications to request net metering [127,128]. Plug-and-play PV kits will not only 
eliminate the relatively high cost required during installation and wiring by a professional 
electrician [127,128], but also provides the potential to streamline permits, inspections 
and utility interconnect requirements [73]. In recent years the soft costs of a PV system, 
which includes the balance of system (BOS) costs, permitting, inspection, interconnection 
accounts for a growing percentage of the PV system installation cost due to radical 
declines in the PV module costs [129]. Also the regulatory requirements, the permit 
process takes a substantial amount of time and money, which is again considered under 
the soft cost [73]. Installing Plug and Play solar PV system and modifying the Standards 
and local jurisdiction will reduce the soft cost involved by considerable amount [73,127]. 
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Abstract  

Plug and play solar photovoltaic (PV) systems are affordable, easy to install and portable 
grid-tied solar electric systems, which can be purchased and installed by an average 
prosumer (producing consumer). The combination of recent technical/safety analysis and 
trends in other advanced industrialized nations indicate that U.S. electrical regulations 
may allow plug and play solar in the future. Such a shift in regulations could radically 
alter the current PV market.  This study provides an estimate of this new U.S. market for 
plug and play PV systems if such regulations are updated by investigating personal 
financial decision making for Americans. The potential savings for the prosumer are 
mapped for the U.S. over a range of scenarios.  The results show the total potential U.S. 
market is over 57 GW, which represents an opportunity for sales for retailers from $14.3–
$71.7 billion depending on the capital cost of plug and play solar systems ($0.25-
$1.25/W). These systems would generate ~108,417,000 MWh/year, which is 4 times the 
electricity generated from U.S. solar in 2015. This distributed solar energy would provide 
prosumers approximately $13 billion/year in cost savings, which would be expected to 
increase by about 3% per year over the year lifetime of the systems. 

 

Keywords: electricity market; distributed generation; levelized cost of electricity; 
photovoltaic; plug and play solar; prosumer 

 

Nomenclature 
AC-Alternate Current 
BNEF- Bloomberg New Energy Finance 
BOS-Balance of System 
Cg  - Electricity cost on grid ($/kWh) 
d- Degradation rate (%/year) 
DOE- Department of Energy 
E- total potential electricity generated from appropriate plug and play PV systems in the 
U.S. (kWh) 
ECD- Esource Customer Direct 
EIA- U.S. Energy Information Administration 
EURAC- European Academy of Bozen/Bolzano 
Epv - Electricity generated by AC PV module (kWh) 
GTM- Greentech Media Company 
h- U.S. average Household size (%) 
hs - appropriately oriented households in a state  
I- Installation cost of the plug and play solar photovoltaic system 
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IEA- International Energy Agency 
IEEE- Instititute of Electrical and Electronics Engineering. 
IFC- Internation Finance Corporation 
IRENA- International Renewable Energy Agency 
LCOE- Levelized cost of Electricity ($/kWh) 
M- Total U.S. Market value for plug and play solar PV system (W) 
NMCH- National Multi-Family Housing Council 
NREL- National Renewable Energy Laboratory 
NSJC- National Solar Job Census 
O- Total amount of power of plug and play PV that can be installed by households that 
owns their homes/apartments (W) 
Oo  -  Orientation in the class of housing for owners (%) 

OR   - Orientation in the class of housing for renters (%) 
OMB- Office of Management and Budget 
p- Households that can install plus and play solar PV system 
Po – Total population that own their housing (%) 
PR   - Total population that rent their housing (%) 
PS- Solar PV system size (kW)  
Pcf - Capacity factor of the solar PV (%) 
PV- Photovolatic 
R- Total amount of power of plug and play PV that can be installed by households that 
rent their homes/apartments (W) 
r- Discount rate (%) 
SH – Percentage shading (%) 
SEIA- Solar Energy Industries Association. 
SPS- Solar Power Station  
T- Life time of the technology (years) 
Treasury- U.S. Department of Treasury 
us – solar flux per unit area per day for a state ( kWh/m2/day or 1 sun hours)  
WNA- World Nuclear Association 
Z- Size of the system (kW) 
 

4.1  Introduction 

In the United States there is widespread support for solar energy from all political groups 
(Shahan, 2012; Riffkin, 2015; SEIA, 2015). Historically, the enormous potential of solar 
photovoltaic (PV) (Pearce, 2002) has only been held back from extensive use (and even 
dominance in the electrical generation market) by economics (Wilkins, 2002; Beck & 
Martinot, 2004; Pietruszko, 2006; IFC, 2007; Branker, Shackles, & Pearce, 2011; Alafita 
& Pearce, 2014). However, solar PV module costs have declined sharply (SEIA&GTM 
Q2, 2012; SEIA&GTM Q3, 2015) resulting in sustained and rapid growth of the solar PV 
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market (SEIA&GTM, 2015; IRENA, 2015; SEIA&GTM-Q3, 2015). For example, solar 
PV module prices have declined by 75% between 2009 and 2014 (IRENA, 2015) and 
overall residential scale PV systems costs declined by 45% since 2010 (IRENA, 2015; 
SEIA&GTM, 2015).   This resulted in cumulative 41 GWdc of U.S. solar PV installations 
from 2007 to 2016, of which 41% were residential (SEIA&GTM, 2015).  

 

As the cost of fossil fuels increases due to reduced conventional sources (Payne, Dutzik 
& Figdor, 2009; IEA, 2014; WNA, 2016) and greenhouse gas emission liability increases 
(Short et.al., 2013; Cooper& Rosin, 2014; Heidari & Pearce, 2016), the demand for PV 
installations will continue to increase, resulting in further declines in PV manufacturing 
costs, which will continue to drive more demand  (McDonald & Schrattenholzer, 2001; 
Van der Zwaan & Rabl, 2003; Watanab, Nagamatsu & Griffy-Brown, 2003; Nemet, 2006; 
Candelise, Winskel, & Gross, 2013 Parkinson, 2014;  Barbose, et al., 2015; Rubin, et al., 
2015; WNA, 2016). Reductions in solar PV module costs reduces the levelized cost of 
electricity (LCOE) of solar (Branker, Pathak & Pearce, 2011; Parkinson, 2014) and helps 
expand the solar PV markets to achieve or surpass grid parity (equal to or drop below the 
price of grid supplied electricity) (Christian & Gerlach, 2013). Many economically 
beneficial PV markets already exist.  The cost of electricity generated by small-distributed 
on-grid PV systems is comparable with the conventional electricity rates in various 
locations (Branker, Pathak & Pearce, 2011; Stefan and Yorston, 2013).  

 

Despite the popularity of solar energy technology and ability to achieve positive economic 
returns, solar PV contributes only 0.54% to the total electricity generation in U.S. as of 
April 2015 (EIA, 2015a; EIA, 2015b). Primary barriers for rapid growth of solar PV 
among the general population include the lack of initial capital and inappropriate 
financing mechanisms (Wilkins, 2002; Beck & Martinot, 2004; Pietruszko, 2006; IFC, 
2007; Branker, Shackles, & Pearce, 2011; Alafita & Pearce, 2014). While the U.S. is a 
wealthy country, with a total net worth of $84.9 trillion in June 2015, (Poppick, 2015), the 
top 20% of the population possesses 89% of the wealth (of which top 1% owns 35% of 
the wealth) (Wolff, 2012).  The median net worth of U.S. households is only $81,400 
(Lubin, 2013). Thus, obtaining a solar PV system capable of providing all electrical 
consumption is relatively expensive for the average American homeowner (Wilkins, 
2002; Pietruszko, 2006; ECD, 2008).  

 

One method to overcome this challenge is to allow installation of “plug and play” solar 
PV systems for residential purpose and small-commercial use (Mundada, Nilsiam & 
Pearce, 2016). Plug and play PV systems are affordable, easy to install, and portable grid-
tied solar PV systems, which can be purchased and installed by an average prosumer 
(producing consumer). A prosumer can buy such a pre-configured and pre-certified grid-



 
 

80 
 

tied AC module (consisting of PV modules, microinverters, and wires) and can install it 
by plugging it into a household outlet to produce solar electricity. This can be 
accomplished using commonly available tools and without assistance of a trained licensed 
technician or concomitant overhead and soft costs. Additionally, plug and play solar 
systems are portable, allowing easy transport for people who relocate to own solar. The 
United Kingdom (Kennect 2012; SPS 2015), Switzerland, Netherlands and the Czech 
Republic (Movellan, 2014) currently permit and install plug and play solar without any 
technical issues. A recent technical review of plug and play solar indicated that it is 
technically viable and safe for U.S. adoption as well (Mundada, Nilsiam & Pearce, 2016). 

 

Based on technical analysis and the trends in other advanced industrialized nations, 
expanding U.S. electrical regulations to allow/or include plug and play solar is viable. 
Such a shift in regulations could radically alter the current PV market.  This study provides 
an estimate on a potential new market for plug and play PV systems in the U.S. if such 
regulations are updated. This is accomplished by investigating personal financial decision 
making for Americans using plug and play solar PV as an investment. First, the LCOE 
calculation is made for all the States in the U.S. based on solar flux using a sensitivity 
analysis on the cost of a system. Next, the current residential retail electricity rate is 
determined for the entire U.S. The potential savings for the prosumer are then mapped for 
the U.S. over a range of scenarios and escalation rates.  Finally, demographic data is 
correlated with the GIS date to extract the total market in the U.S.  These results are 
presented and discussed. 

 

4.2  Methodology 

 

LCOE can be determined by summing up all the costs incurred for the generation of 
electricity by a PV-based technology in a time span divided by the total energy generated 
by the technology during that time span (Branker, et al., 2011 ; Mundada, Shah & Pearce, 
2016). LCOE is expressed in $/kWh, which can be compared directly to residential 
electric rates. There has been various methods to determine LCOE of solar PV 
technologies (Short, Packey, & Holt, 1995; Cambell, 2008; Grana, 2010; Velosa III, 2010; 
Darling, et al., 2011), however, this analysis will use the simplified version of the 
comprehensive review of LCOE by Branker et al. (2011). The LCOE of a plug and play 
solar PV depends on the following inputs: 

1. Capital cost of the AC PV module (I) 

2. Discount rate (r) 

3. Degradation rate (d) 
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4. Electricity generated by AC PV module (Epv) 

5. Life time of the technology (T), which is normally taken as the warranty life. 

 

The LCOE from plug and play PV, Cpnp, is thus determine by: 

                                             𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐼𝐼

∑
�8760ℎ𝑟𝑟𝑟𝑟𝑦𝑦𝑦𝑦𝑦𝑦𝑟𝑟𝑟𝑟 �∗𝑃𝑃𝑟𝑟∗𝑃𝑃𝑐𝑐𝑓𝑓∗(1−𝑑𝑑)𝑛𝑛

(1+𝑟𝑟)𝑛𝑛
𝑇𝑇
𝑛𝑛=1

               $
𝑘𝑘𝑘𝑘ℎ

                                  

(1) 

                         

where  PS is the solar PV system size (kW) and Pcf is the capacity factor of the solar PV 
(%), which is the ratio of full sun hours (defined as 1000W/m2) to 24 hours in a day. The 
electricity generated by the plug and play solar PV module is location dependent, relying 
directly on the capacity factor of the solar PV module, and the solar flux (kWhr/m2/day) 
of the region. The solar flux available in the United States ranges from 3 kWhr/m2/day to 
9 kWhr/m2/day (NREL, 2007).  

 

The savings, S, which prosumers can obtain from installing a plug and play PV system is 
given by: 

 

S= Cg - Cpnp  [$/kWh]        (2)  

 

where Cg is the cost of electricity on the grid in [$/kWh]. Any positive S, indicates a 
positive return for the prosumer. 

In this study a sensitivity analysis is run on the three primary variables in the LCOE 
calculation: 1) the capital cost of the AC PV module is varied from $0.25/W to $1.25/W, 
2) the discount rate is analyzed at 1% and 7% and 3) capacity factor is varied from 13% 
to 28%. The justification for this sensitivity and the values of the other core variables are 
explained below. 

 

4.2.1 Theory and calculations for determining LCOE of plug and play solar PV 
microinverter system 

 

4.2.1.1 Capital cost of the AC Solar PV module 
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 A solar plug and play PV module consists of solar PV module, microinverter, 
mounting materials, and electric cables.  As homeowners can install the systems 
themselves, the installation cost of the plug and play solar PV module includes only the 
capital cost of the hardware, which is dominated by the AC PV module (plug and play 
solar can be made up of a PV module and a microinverter or an AC PV module that 
integrates the microinverter into the module). Other factors that normally accompany PV 
installations such as labor costs, electrical BOS costs, structural BOS costs, engineering 
& permitting, inspection, and interconnection cost are excluded. This represents a 
substantial savings as labor cost and BOS of a solar PV system adds up to more than 50% 
of the system cost (Barbose, Darghouth, & Wiser, 2010) and is increasing as a percentage 
as PV module prices have declined. It should be pointed out here, that because of this, the 
plug and play PV systems reverse the trend observed in the rest of the PV industry: the 
larger the system the smaller the cost per unit power no longer holds. Reports show, since 
1998, the overall installation cost of solar PV system is declining on average by 6%-8% 
every year in all the sectors (residential, commercial and utility scale) (Feldman, et al., 
2014). From 2012-2013 the solar PV market realized a decline of 12% in the installation 
cost of solar PV system of <10kW (Feldman, et al., 2014). The solar PV module cost 
decreased sharply from $1.85/W in 2010 to $0.65/W in 2013 (BNEF, 2013; SEIA&GTM, 
2014). Additionally there has been noticeable decline in the inverter cost of 6% (i.e. 
$0.42/W to $0.25/W from 2010-2013) (BNEF, 2013; Davidson, et. al., 2014). In year Q1-
2014 to Q1-2015 the solar module cost around $0.64/W to $0.75/W and the inverter cost 
around $0.23/W to $0.34/W (SEIA-&GTM- Q1, 2015). In addition, capital costs for PV 
modules drop below $0.50/W when purchased in bulk from wholesalers. For example: 
Sunvia solar modules currently cost $0.45/W (Sunvia, 2016). Thus, for determining the 
LCOE the capital cost of the AC solar PV module is considered to be $1.00/W. For 
sensitivity analysis the capital cost of the AC PV module is varied from $0.25/W to 
$1.25/W, representing near and medium term potential costs to prosumers. 

 

4.2.1.2 Degradation rate 

 The degradation in performance of solar PV module is an important variable for 
predicting lifetime output and is influenced by chemical and material processes such as 
weathering, oxidation, corrosion and thermal stress (Jordan & Kurtz, 2012). Researchers 
conducted standardized tests to determine a degradation rate of solar PV modules 
(Osterwald et.al., 2002; Pinge et al., 2010;  Jiang,  Lu, & Sun 2011) and the degradation 
rates for amorphous silicon PV is 0.5-1.0%/year, for crystalline silicon it is 0.1-0.5%, for 
polycrystalline silicon PV it is 0.1-1.0%  and for cadmium telluride 0.1-0.5%/year 
(Osterwald et.al., 2002; Jordan et.al., 2011; Belluardo, Ingenhoven, & Moser, 2013). A 
median degradation rate for solar PV module is 0.5%/year (Jordan and Kurtz, 2012) and 
thus the degradation rate considered for determining LCOE in this case is 0.5%/year 
following Branker et al. (2011). 

http://www.sciencedirect.com/science/article/pii/S1352231011005243
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4.2.1.3 Life span of the Plug-and-Play PV System 

 The lifespan of solar PV module is beyond 25 years (Czanderna & Jorgensen, 
1999; Realini, 2003; Dunlop, Halton, & Ossenbrink, 2005; Skoczek, Sample, & Dunlop, 
2009; Holladay, 2010). Although a lifespan of 30 years or more is expected for a solar PV 
module (Harrabin, 2009), the financial lifespan is normally taken as the warranty period, 
which is 20-25 years (Wohlgemuth, 2003; Brearley, 2009).  In addition, a service life-
time of over 25 years is expected for certified, microinverters available on the market 
(Nahi, 2009). The life-time of plug and play solar PV system depends on the life-time of 
the PV and microinverter, thus, the life span, T, of the system is considered to be 25 years. 
Table 11 summarizes the commercially available microinveretes on the U.S. market and 
their warranty period.  
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Table 11. Microinverters available on the U.S. market with their lifespan warranty period 
and certified standards.  

Company 
[Source] 

Warranty 
Period 
( Years) 

Product Safety Standard 
Compliance 

Grid 
Connection 
Compliance 

Chilicon 
Power 

25 CP-250 Micro-
inverter 

UL1741. CSA C22.2 
NO. 107.1 

IEEE 1547 

Solar Panel 
Plus 

25 MI-250-240A 
Micro-inverter 

UL 1741 CSA C22.2 
No. 107.1 

IEEE 1547 

Enphase 25 M215 Micro-
inverter 

UL1741. CAN/CSA-
C22.2 NO. 0-M91, 0.4-
04, and 107.1-01 

IEEE 1547 

Enphase 25 M250 Micro-
inverter 

UL1741. CAN/CSA-
C22.2 NO. 0-M91, 0.4-
04, and 107.1-01 

IEEE 1547 

Enphase 25 C250 Micro-
inverter 

UL1741. CAN/CSA-
C22.2 NO. 0-M91, 0.4-
04, and 107.1-01 

IEEE 1547 

Enphase 25 S230 Micro-
inverter 

UL1741. CAN/CSA-
C22.2 NO. 0-M91, 0.4-
04, and 107.1-01 

IEEE 1547 

Enphase 25 S280 Microinveter UL1741. CAN/CSA-
C22.2 NO. 0-M91, 0.4-
04, and 107.1-01 

IEEE 1547 

Siemens 25 SMIINV215R60X
X Microinverter 

UL1741, CAN/CSA-
C22.2 NO. 0-M91, 0.4-
04, and 107.1-01 

IEEE 1547 
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4.2.1.4 Capacity factor 

 Capacity factor is the total energy a technology can produce in a duration of time 
compared to that of the total energy it could have generated to its full capacity. The 
capacity factor of solar PV module is a function of the solar irradiation at the location, the 
orientation of the solar PV module, the performance (or efficiency) of the solar PV 
module, the electrical efficiency of the system (Campbell et al., 2009; Hossein et al., 2012; 
NREL, 2013).  For the case studies in this paper the capacity factor is varied from 13.08% 
(IL, Chicago, average sun hours/day 3.14 hrs/day) to 28.2% (NM, Albuquerque, average 
sun hours/day 6.77 hrs/day) (SolarDirect, 2016; Alternate Energy sources, 2016) 
depending on the solar irradiation (3 kWhr/m2/day to 9 kWhr/m2/day) (NREL, 2007) 
received at different states in U.S. 

 

4.2.1.5 Discount rate 

 Discount rates are used to determine the discounted cash flows, which takes into 
account time value for money and risk or uncertainty involved in the future cash flows. 
The U.S. Department of Energy (DOE) establishes technologically feasible energy 
efficiency standards for many appliances used daily in American households (i.e. 
microwaves, clothes dryers, and air conditioners). To determine if the investments in 
reduced electrical consumption are economically justified, the DOE performed a 
sensitivity analysis on consumer purchase of energy by varying the discount rate from 3% 
and 7% (OMB, 1992). These values were chosen by the OMB based on the following 
logic: On the low end, the OMB recommends using a “social rate of time preference” of 
approximately 3 percent, which approximates average saving rates using the real rate of 
return on long-term government debt, such as 10-year Treasury notes (OMB 2003, 33), 
and thus can act as a proxy of how consumers value future consumption against current 
consumption.  On the high end, a 7% discount rate is appropriates the marginal pretax rate 
of return on an average investment in the stock market (OMB 1992, 9). Both of these 
values can be viewed as overly conservative. First, on the low-end the daily long term-
real treasury rate for more than 10 years for 2015 was around 1% (Treasury, 2016). On 
the high end, 7%, may be the average rate of return on the stock market before taxes, but 
both energy efficiency and solar generated offsets of electricity consumption for 
consumers can be viewed as after tax savings. For high income households this number 
decreases significantly, but for the lowest income households 7% can be seen as the 
maximum valid discount rate. Thus, in this study 1% and 7% will be used in the sensitivity 
analysis. 

 It should be noted that discount rates are often points of contention in the literature. 
Various studies have attempted to determine “implicit consumer discount rates” based on 
purchasing preferences using appliances and finding large variances and in some cases 
extremely high (triple digit) discount rates (Ruderman et al., 1987; Hausman, 1979; 
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Dermot, 1980; Frederick et al., 2002; Harrison et al., 2005; Andersen et al., 2006; Newell 
& Siikamäki, 2015). It has been well established that discount rates for consumers varies 
according to income, race, education (Newell & Siikamäki, 2015). For example, as the 
education of consumers increases the discount rates they use for decision-making 
decreases (Newell & Siikamäki, 2015). It has been pointed out that observed discount 
rates are so high because of lack of information and inability to adequately understand 
available information related to energy consumption (Frederick et al., 2002). Stated 
simply, un-educated or poorly educated consumers make irrational economic decisions.  
Unfortunately, some older studies such as (Hausman, 1979) have erroneously argued that 
low discount rates should only be used for efficiency standards for high-income 
households and are not suitable for low or median-income households that have implicit 
discount rates that are much higher. Sadly, even some contemporary studies have 
mistakenly argued for government policy for low and median-income households to use 
implicit discount rates (e.g. 27% to 102%) (Miller, 2015).  Such policy recommendations 
are simply incorrect and if adopted would perpetuate ignorant economic errors commonly 
observed in American middle and lower class. No low- or median-income household, for 
example, has standard legal low-risk investment opportunities available to them to reach 
triple digit returns. Yet as many studies have shown they pass up energy efficiency 
investments as if they do. Considerations for economic education will be presented in the 
discussion, but for the present case studies in this paper the discount rates considered is 
1% and 7%. 

4.2.2 GIS Analysis 

A shapefile of the United States was obtained from the ArcGIS database (Fitzpatrick, 
2012). The electricity rate of each state was obtained from the U.S. Energy Administration 
database (EIA 2016). Savings for each state were calculated utilizing a 1% and 7% 
discounted LCOE at $1.25/W capital cost. Average electricity rate for each state was 
subtracted from this value. Average savings across the United States were transcribed to 
a map utilizing ArcMap version 10.3.1.  

4.2.3 U.S. Market Analysis 

To estimate total market for plug and play, several assumptions and factors that affect 
solar plug and play market size are included. The average family will require a 1kW plug 
and play installation to satisfy electrical needs. There are about 117,259,427 U.S. 
households and approximately 37% of U.S. households (43,267,432) are renter occupied 
(hr) and 63% (73,991,995) are owner occupied (ho) (NMHC, 2014). As the number of 
occupants within a household is correlated with varying electrical consumption 
(Kavousian, 2013), it is expected that larger households will consume greater amounts of 
electricity. However, for the maximum plug and play PV system size considered here 
(1kW), even the smallest households (e.g. 1 person) are expected to have a demand above 
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what can be provided by the PV system alone. This, thus, does not affect the potential 
market for plug and play solar.    

It is assumed that the average U.S. utility rates will remain static or rise, allowing for the 
market penetration of plug and play solar determined in this study to be considered a base. 
This is a conservative assumption as the real electricity price escalation for the residential 
market has historically increased (e.g. on average 3.6% per annum in the years 2000 to 
2006 in the U.S. (EIA, 2016)).  In addition, it is assumed that the median U.S. household 
incomes will remain at roughly $52,250 (Noss, 2014) indicating that the economic 
situation that favors plug and play over larger-scale residential PV remains intact.  

Factors such as orientation, shading, and neighborhood configurations will affect 
customers who can optimally utilize plug and play solar technology Orientation of homes 
or rental units in a direction other than south, southwest, or southeast will affect solar plug 
and play performance and should be accounted for in calculations (Hachem et al 2013). 
For single family homes the size of the plug and play systems remove restrictions on 
orientation as it could be located on the southernmost facing facade. However, for those 
that rent, a fraction of 50% is used for appropriate orientation. This assumes a random 
orientation of the rentals with roughly half facing south in some capacity. Previous 
conservative estimation for unshaded roof in cities was taken as 30% for all locations 
(Wigington, et al., 2010) as shading due to trees, multiple facades on the home, or 
proximity to other residences can reduce PV performance (Norton et al., 2011). In this 
study because the prosumer would have the option to move the relatively small footprint 
(1kW is only 3 to 4 modules) of the plug and play solar to unshaded rooftop, porches, or 
yard locations this study assumes the unshaded percent is doubled to 60%. These factors 
and assumptions are considered when determining the total U.S. market, M, value for plug 
and play solar given by: 

M = O+R [W]         (3) 

Where O is the total power [W] of plug and play PV that can be installed by households 
that own their homes and is given by:  

O = ho*p*Z*sh*oo  [W]       (4) 

and R is the total number of power [W] of plug and play PV that can be installed by 
households that rent their homes/apartments and is given by:  

R = hr*p*Z*sh*or  [W]       (5) 

Where p is the percent of U.S. households that can economically and technically install a 
plug and play PV system, Z is the size of that system based on power in W, sh is the percent 
of unshaded residences and oo and or is the appropriately oriented in that class of housing 
for owners and renters, respectively. 
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The average U.S. household size in 2015 was 2.54 (U.S. Census, 2015a). This value was 
used to estimate the number of households in each state given the state populations (U.S. 
Census, 2015b). 

 

The potential energy generated from plug and play solar in the U.S. is then given by: 

E = Σstates (hs*Z*us*365 days/year*sh)   (kWh)   (6) 

Where hs is the appropriately oriented households in the state, which assumed the same 
ratio of renters and owners nationally resulting in a value of 0.8155), and us is the 
kWh/m2/day (1 sun hours) for the state from Table 12. 

 

4.3  Results 

A case study is performed for residential sectors in all the states with average solar hours 
and average electricity rate as represented in Table 12.  

Table 12: The average 1 sun (1000W/m2) solar hours and the average electricity rates 
during Dec. 2015 for residential sector in United States (EIA, Dec 2015; Solar Direct, 
2016; Alternate Energy Source, 2016): 

 

Census Division and  
States 

Average sun hours 
(hrs/day) 

Average Electricity rate 
(cents/kWh) 

New England   
Connecticut 4.30 19.43 
Maine 4.19 15.52 
Massachusetts 3.79 19.60 
New Hampshire 4.60 18.00 
Rhode Island 4.23 19.88 
Vermont 4.40 17.17 
Mid Atlantic   
New Jersey  4.21 15.54 
New York 3.16 17.53 
Pennsylvania 3.28 14.12 
East North Central   
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Illinois 3.14 11.81 
Indiana 4.21 11.11 
Michigan 4.00 14.58 
Ohio 3.94 12.61 
Wisconsin 4.295 13.83 
West North Central   
Iowa 4.40 10.61 
Kansas 4.57 12.29 
Minnesota 4.53 11.77 
Nebraska 4.79 9.68 
North Dakota 5.01 8.84 
South Dakota 5.23 10.27 
Missouri 3.78 10.39 

South Atlantic   

Delaware 4.00 13.45 
District of Columbia 4.23 13.34 
Florida 4.99 11.49 
Georgia 4.74 10.22 
Maryland 4.47 14.67 
North Carolina 4.71 10.96 
South Carolina 5.06 12.05 
Virginia 4.31 10.98 
West Virginia 3.65 10.43 
East South Central   
Alabama 4.23 11.23 
Kentucky 4.94 10.34 
Mississippi 4.44 11.16 
Tennessee 4.37 10.40 
West South Central   
Arkansas 4.69 9.51 
Louisiana 4.63 8.70 
Oklahoma 4.99 9.00 
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Texas 4.92 11.33 
Mountains   
Arizona 6.36 10.75 
Colorado 4.87 11.44 
Idaho 4.70 9.64 
Montana 3.99 10.42 
Nevada 5.98 12.41 
New Mexico 6.77 11.36 
Utah 5.26 10.56 
Wyoming 6.06 10.57 
Pacific Contiguous   
California 4.77 17.3 
Oregon 3.72 10.39 
Washington 3.57 9.19 
Pacific NonContiguous   
Alaska 3.55 19.6 
Hawaii 6.02 26.86 
 

Using equation 1 and the input data discussed above, the LCOE was calculated for plug 
and play PV systems in each state. Figure 13 shows the effects of varying the capital cost 
of plug and play solar PV module, varying solar irradiation received, which consequently 
affects the capacity factor in the U.S. states on the LCOE of the solar plug and play solar 
PV system. The LCOE of the system is determined at different discount rates of 1%, and 
7% and for a life span of 25 years with 0.5%/year degradation rate.  The capital cost of 
the plug and play solar PV module is varying from $0.25-1.25/W. The states chosen in 
the graphs were representative of the principal solar flux viewed in the continental U.S. 

Figure 13 A is for Michigan, which falls in the region that receives a minimum solar 
irradiation ranging between 4.00 - 4.50 kWhr/m2/day with a minimum capacity factor of 
16.7%. Figure 13 B shows New Jersey, which has between 4.50 – 5.00 kWhr/m2/day with 
a minimum capacity factor of 17.5%. Figure 13 C represents South Carolina which falls 
in the region which receives 5.00- 5.50 kWhr/m2/day with a minimum capacity factor of 
21.1%. Figure 13 D shows data for Nevada, which falls in the region which receive solar 
irradiation ranging from 5.50 – 6.00 kWhr/m2/day with a minimum capacity factor of 
24.9%. Figure 13 E represents Wyoming, which falls in the region with 6.00 - 6.50 
kWhr/m2/day with a minimum capacity factor of 25.3%.  Figure 13 F represents Arizona 
with solar irradiation above 6.50 kWhr/m2/day with a minimum capacity factor of 26.5%. 
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It can be observed from the Figure 13 A-F that the capital cost of the system is directly 
proportional to the LCOE and dominates the electricity costs.  For example, in Figure 13 
A the LCOE of the system with 1% discount rate and capital cost $0.25/W is $0.006/kWh 
whereas for capital cost $1.25/W is $0.028/kWh. 

The discount rate of the system affects the LCOE of the system to a great extent. It can be 
observed from Figure 13 A-F that as the discount rate of the system increases the LCOE 
of the system increases with capital cost and life span maintained constant. For example 
from Figure 13 D the discount rate of the system increases from 1% to 7% the LCOE of 
the system also increases from $0.004/kWh to $0.008/kWh at $0.25/W and life span of 
25 years.  

 

 

 

 

 

 

    

                        Figure 13 A-Michigan          

 

 

 

 

 

 

 

                  Figure 13 B- New Jersey  
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                 Figure 13 F- Arizona 

 

Figure 13 A-F: LCOE of the plug and play solar PV systems at discount rates 1% and 7% 
for varying capital cost of the system ($0.25/W to $1.25/W) and varying capacity factor 
depending on geographical locations (16.7% to 25.3%). The life span of the system is 25 
years with 0.5%/year degradation rate. 

It can be seen from Figure 13 that the capital cost of the plug and play solar PV system 
affect the LCOE of the system by a significant amount. Even a small change in the value 
of capital cost was having a considerable amount of impact of the LCOE of the system.  
It can be observed that for all the states that as the capital cost of the system was reducing 
the LCOE of the system was decreasing. It can also be observed from the Figure 13 that 
discount rate also has a considerable amount of impact on the LCOE of the system. It can 
be observed that the LCOE of the system increases with increase in discount rate (1%-
7%) for the system with same capital cost. 

Figure 14 shows a geographic representation of the savings gained by installing such a 
plug and play PV system in all the states of the U.S., which depends on the LCOE of the 
solar plug and play solar PV system and current electricity rates for the residential sector 
for each state (equation 2).  The LCOE of the system is determined at different discount 
rates of 1% and 7% and for a life span of 25 years with 0.5%/year degradation rate and 
where the capital cost of the system is considered to be $1.25/W.   
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Figure 14A. The geographical representation of saving with 1% discount rate 

Figure 14B. The geographical representation of saving with 7% discount rate 

 

 

Figure 14 Prosumer savings obtained by installing the solar plug and play system at A) 
1% and B) 7% discount rate respectively. Assumptions- the capital cost of the system is 
considered as $1.25/W and life span of the system is 25years with 0.5%/year degradation 
rate and current electricity rates for residential sector. 

 

In Figure 14 the United States is divided into 5 regions depending upon the ranges of 
savings in which the state falls. From the Figure 14A it can be observed that the prosumer 
has a considerable amount of savings after installing such a system of 1kW even though 
the escalation rate of the electricity cost is considered to be 0% and capital cost of the 
system is considered to be at its maximum $1.25/W. The largest potential savings can be 
found in states such as Alaska, Hawaii, and variable states in the northeast region, with a 
range between $0.17-$0.26/kWh. The lowest potential savings, with a range of $0.02-
$0.06/kWh can be found in states such as Washington. Total savings range from $0.02-
$0.26/kWh.  
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Also from the Figure 14B it can be observed that the prosumer has a considerable amount 
of savings after installing such a system of 1kW even though the escalation rate of the 
electricity cost is considered to be 0% and capital cost of the system is considered to be at 
its maximum $1.25/W. Comparing Figure 14 A with B it can be observed that the 
prosumer savings for maximum number of states reduces with increase in the discount 
rate. For example the savings obtained by installing such a system in Utah (UT) with 
discount rate 1% lies in that range $0.07/W to $0.11/W and with discount rate 7% lies in 
the range $0.02/W to $0.06/W. Also the savings obtained by installing such a system in 
Alaska (AK) with discount rate 1% lies in that range $0.17/W to $0.21/W and with 
discount rate 7% lies in the range $0.22/W to $0.26/W. Again, the largest potential savings 
can be found in states such as Alaska, Hawaii, and variable states in the northeast region 
and across the U.S., with a range between $0.12-$0.26/kWh. The lowest potential savings, 
with a range of $0.02-$0.05/kWh can be found in states such as Washington, Oregon, 
Louisiana, Arkansas, Missouri, Ohio, West Virginia. Total savings range from $0.02-
$0.26/kWh.  

 

It is striking that the BOS savings made possible by plug and play PV systems enable 
economic savings for essentially the entire U.S. Thus Z in equation 4 and 5 becomes 1. 
Applying the conservative estimates to the market for households of renters and owners 
amounts to about 13GW and 44GW, respectively.  Following equation 3 this results in a 
total potential U.S. market for plug and play PV systems of over 57 GW. Moreover, the 
total U.S. market for plug and play solar systems ranges from $14.3 billion – $71.7 billion 
depending on the capital cost of plug and play solar systems ($0.25-$1.25/W). 

 

Following equation 6, these plug and play PV systems would generate approximately 
108,417 thousand MWh per year, which is roughly 4 times the electricity generated from 
solar in the U.S. in 2015 (EIA, 2015). With the average cost of electricity in the U.S being 
about $0.12/kWh this represents roughly $13 billion/year in electricity cost savings for 
prosumers. 

 

4.4  Discussion 

A straightforward methodology for calculation of LCOE of plug and play solar PV 
systems and the savings prosumers would accrue from installation has been presented to 
determine the economic viability of such a system. The results from applying this 
methodology indicate that plug and play solar PV systems are profitable for prosumers if 
installed in any state in the U.S. The results from Figure 13 provide a quantitative view of 
the effects on the LCOE with changes in various input factors like capital cost, discount 
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rate and capacity factor. The results from Figure 14 provide an overview understanding 
of prosumer savings that can be obtained after installing such a system. 

 

The installation of such a system for residential sector irrespective of the geographical 
location in United States gives considerable amount of prosumer savings. From Figure 14 
it can been seen that there is considerable amount of savings obtained by prosumer for 
both the discount rates (1% and 7%) with maximum capital cost and 0% escalation rate 
of the electricity cost for all the states in United States. It can also be observed that the 
savings are high with less discount rate (1%) as compared to the one with higher discount 
rates (7%). 

 

The results of both the LCOE of the system (Figure 13) and the prosumer savings obtained 
by installing the system (Figure 14) provide decision makers with clear guides for the 
economic benefits of installation of plug and play solar photovoltaic systems. The lower 
LCOE costs and a considerable amount of prosumer savings obtained by installing the 
plug and play solar PV systems offers support to preliminary analysis that indicate a bright 
future for installation of plug and play solar PV system at residential or small commercial 
business levels. 

 

4.4.1 U.S. Market and Employment 

 

According to SEIA, residential solar installation has increased by 66% between 2014 and 
2015 and reached 2GW of total residential solar PV installations (SEIA-Q4, 2015). The 
U.S. market analysis conducted in this paper shows homeowners or renters can install 
plug and play solar systems, ultimately expanding the potential market. Installation of 
such a system of just 1kW per residence can raise the residential solar installation on the 
U.S. market to over 57GW. Thus, the total residential solar installation in U.S. could be 
expanded by a factor of more than 28 if plug and play solar PV is legalized.   

 

According to NSJC, solar industry employment has grown by 123% between 2009 and 
2015, resulting in nearly 115,000 domestic living-wage jobs from solar (2015). Moreover, 
the total solar industry employment was around 208,859 in Nov 2015 showing an increase 
of 20.2% from Nov 2014-2015 (NSJC, 2015). Solar employment is sub divided into 
various components out, of which manufacturing, sales and distribution, installation, and 
project development constitutes 80% of the total employment. Overall solar installation 
was around 1GW in year 2010 which, raised to 7.43GW installation in year 2015 (740% 
increase), whereas solar employment has increased approximately from manufacturing 
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(20,000 from 30,000 or 50%), sales and distribution (10,000 to 25,000 or 150%), 
installation (40,000 to 120,000 or 300%), and project development (15,000 to 25,000 or 
<50%) (NSJC, 2015). The relatively small employment percentage increases for 
manufacturing and project development are due to importing of PV components and 
standardization of installs, respectively. Only for plug and play solar PV only the jobs 
associated with manufacturing and sales and distribution are expected to increase with 
plug and play installations. The largest increase would be expected in sales and 
distribution as, companies previously unassociated with the PV market (e.g. both brick 
and mortar retail stores like Wal-Mart and online retailers like Amazon) have the potential 
to acquire significant profits from the shares of a new market that is estimated to be 
between $14.3 billion – $71.7 billion. 
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5.1 Conclusion 
 

5.1.1 Overview 
 
The research work was directed towards technical as well as economical analysis 
of new technologies for residential solar PV systems. The new technologies 
which are analyzed in the work can not only increase PV penetration level in the 
U.S but also increase environmentally responsible electric generation which, can 
eventually result in electricity cost savings. The following are the conclusions 
that can be drawn from the respective studies: 
 

5.1.1.1    LCOE of hybrid system: 
 

A new method to calculate the LCOE of a complex PV+battery+CHP system 
was presented. A case study for residential electricity and thermal demand in an 
extreme worst case environment (Houghton, Michigan) showed that with 
reasonable economic assumptions and current costs such off-grid hybrid systems 
already provide a potential source of profit for grid defectors.  
 
A sensitivity analysis for LCOE of such a hybrid systems  on the capital cost of 
the three energy sub-systems, capacity factor of PV and CHP, efficiency of the 
CHP, natural gas rates, and fuel consumption of the CHP provide decision 
makers with clear guides to the LCOE of distributed generation with off-grid 
PV+battery+CHP systems.   
 
The most important factors for determining LCOE of hybrid system are system 
cost, financing, operation and maintenance cost, fuel cost, loan-term and 
lifetime. With favorable financing terms, declining of the initial system cost due 
to advancement in the technology, and grid electricity rate escalation, such a 
hybrid system can become an economically advantageous source for fulfilling 
the electricity demand along with contributing for the thermal demand of the 
residential units throughout a wide collections of geographic locations. 
 
The results offer support to the preliminary analysis that indicated a potential 
increase in grid defection in the U.S. in the near future as it is clear that 
PV+battery+CHP is already economically feasible in some locations and as 
markets for the distributed generation technologies continue to mature 
economics without subsidies will provide incentives for grid defection and assist 
in increasing PV penetration levels in the U.S. 
 

5.1.1.2    Technical Review of plug and play solar in U.S.: 
 

This study investigated the potential technical hurdles for prohibiting the 
installation of plug-and-play solar PV for residential and small commercial use. 
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Relevant codes and standards from the National Electric Code, local 
jurisdictions and utilities for PV with a specific focus on plug-and-play solar 
were reviewed and discussed along with the current net metering and 
interconnection application procedure and the time required. Commercially 
available microinverters and AC modules on the market were found to be 
technically and safety compliant for use in plug-and-play PV systems.   
 
The analysis also exposed the redundancy of the utility accessed AC disconnect 
switch for residential and small commercial grid connected solar PV.  It is clear 
that the AC disconnect switch is not technically necessary and thus imposing it 
is an economic barrier to grid entry for solar PV systems with UL listed 
microinverters.  
 
A streamlined application with only technical requirements was generated to 
reduce the time required for interconnection process. In addition, a free and open 
source streamlined application webpage is provided to ease utility 
implementation.  
 
Finally, the advantages of supporting plug-and-play solar PV with UL certified 
microinverters is made clear because of greater uptake and PV penetration 
levels, improved prosumer economics, reduced installation costs and more 
environmentally responsible electric generation.  
 

5.1.1.3    U.S. Market Analysis for plug and play solar: 
 
A new method to calculate the LCOE and potential savings for prosumers of a 
plug and play solar photovolatic system was presented.  

A sensitivity analysis of such a system on the capital cost of the system, the 
discount rates and the capacity factor depending on the geographical location for 
each state in U.S. was carried out. The results show that for available costs, plug 
and play PV systems are economic throughout the U.S. already.  

If plug and PV is legalized in the U.S. the results show the total potential U.S. 
market is over 57 GW, which represents an opportunity for sales for retailers of 
a new product from $14.3 billion – $71.7 billion.  

Such a mass deployment of distributed PV systems would generate over 100,000 
thousand MWh per year, which is roughly four times the electricity generated 
from solar in the U.S. in 2015. This distributed solar energy would provide 
prosumers approximately $13 billion/year in electricity cost savings, which 
would be expected to increase by about 3% per year for the 20 year lifetime of 
the plug and play solar PV systems. 
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5.2 Future Work 
 

5.2.1 Overview 
 
The research work is directed towards technical as well as economic analysis of new 
technologies for residential solar PV systems. In this research work just preliminary 
analysis is carried out for such systems. Hence, there are certain limitations that can 
be addressed and the work can be carried out further. The followings are the 
limitations and future work that can be performed for the respective studies: 
 

5.2.1.1    LCOE of hybrid system: 
 

It should be pointed out here that Houghton should not be considered representative 
of the U.S. in any way.  It has more severe winters (and thus higher heating costs 
and less solar flux) than most of the rest of the U.S. In addition, Houghton electric 
rates are particularly high for the U.S. because of the geographic (and thus grid) 
isolation in the upper peninsula of Michigan and the mining-centric nature of the 
electric loads. However, some of the same circumstances that drive higher utility 
rates also increase the installed cost of PV as compared to the U.S. national average. 
Thus this case study should only be considered as an example of the methodology 
and future work is needed to evaluate representative locations in each region of the 
country as demarcated by solar flux, natural gas prices and electricity prices. 
 
This study focused on the LCOE and thus the cost of electricity from a hybrid 
system. The analysis is inherently conservative as it does not include the additional 
value of the heat from the CHP unit. However, the thermal demand that will be 
satisfied by the CHP module in the hybrid system is 18 MMBTU/year (i.e. 20% of 
the total annual demand in the case study region). The remaining 80% is to be 
satisfied with a conventional heater or furnace unit. The natural gas utilized by the 
heater and its corresponding cost can be taken into account and can be considered 
for future work for a complete economic analysis of such hybrid systems. In 
addition, future work could investigate modeling larger CHP systems to satisfy not 
only the electrical demand, but also the thermal demand of a residential building.  
 
The CHP project, while not free of greenhouse gas emissions, is a least cost option 
to back up the PV system that also offers a reduction of approximately 60% in source 
energy and carbon versus a coal plant and creates approximately as many jobs as a 
wind or solar project of similar capacity (Quinn, James, Whitaker, 2013). CHP offers 
reductions in total primary fuel consumption on the order of 30% to 35%, which 
means equivalent CO2 emissions reduction if the same fuel is consumed (Quinn, 
James, Whitaker, 2013). Thus, to further improve the work done the GHG emission 
rates can be considered. 



 
 

113 
 

 
An absorption chiller can be added to the CHP output to utilize the maximum amount 
heat energy available, thus raising the efficiency further. Such systems are known as 
trigeneration systems or CCHP (combined cooling heating and power) and have 
been investigated technically and appear promising (Pearce, 2009; Nosrat, & Pearce; 
2011; Li, & Ogden, Pearce, 2011; Nosrat, Swan, & Pearce, 2013; Nosrat, Swan, & 
Pearce, 2014). Tri-generation, being one of the most promising technologies, allows 
the efficient simultaneous production of heat, cooling and power with all the three 
potential benefits technical, economic and environmental (Jradi, Riffat, 2014). 
Future works is needed to couple the cost of cooling into a complete life cycle cost 
analysis of such complex systems over a range of geographical locations and local 
climates. 
 
In addition, optimizing such hybrid systems for GHG emission reductions can be 
considered in the future using dynamic life cycle analysis that reduced life-cycle 
carbon emissions (Kenny , Law , & Pearce ; 2010). One way to do this is with 
biomass-fueled CHP systems, which can produce heat and power with reduced net 
GHG emissions, and thus can be much more climate-friendly than systems fueled 
with fossil natural gas, coal, or oil. Biomass can be considered as renewable with 
low carbon emission and increasingly cost competitive alternative to traditional 
fossil fuels for heat and/or electric power generation (Salomón et.al; 2011). By 
substituting biomass for fossil fuel, carbon emissions from non-renewable, fossil 
fuels can be avoided (Fact Sheet: Combined Heat and Power, 2013). Finally, in some 
areas it may be possible to use a solar-only trigeneration systems for even more 
aggressive GHG emission cuts (Magalhães et. al., 2012). Again, further work is 
needed to provide a complete economic analysis of these types of systems. 
 
 
It should be noted that although this case study was for the U.S., the details of the 
hybrid system economics reviewed in this study are valid elsewhere. The primary 
differences between the systems would be ensuring they meet the standards of the 
local regulators. For example, in Europe the guidelines set forth by EURELECTRIC, 
may influence dispatch strategies (Pierre et.al., 2011). 
 
Historically, the quantity of output power from the distributed generation sources 
was restricted by the local demand load; however now bi-directional power flow 
between distribution system and transmission systems can be used due to new 
system structures allowing distributed grid to export power when local generation 
exceeds the consumption (L'Abbate et.al, 2007; European Smartgrid Technology 
Platform-Vision and Strategy for Europe’s Electricity Networks of the Future, 
2006; SWECO, 2015). This has resulted in higher complexity in the management 
of distribution systems and thus the skills of the electrical engineers responsible for 
the grid. At the same time, it has offered new possibilities to optimize the overall 
system by allowing distribution networks and distributed renewable energy to 
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participate actively in the system operation (Electric Power Research Institute, 
2014). It should be noted that in some parts of Europe, particularly in the southern 
region of Germany the, output from distributed generation technologies on 
distribution networks is already exceeding the local load demand (SWECO, 2015; 
Electric Power Research Institute, 2014; The German Energiewende, 2015). As 
distributed renewable energy matures throughout the world, this could be the new 
normal rather than the exception. 

 
5.2.1.2    Technical Review of plug and play solar in U.S.: 

 
Using the approach described in the study and the review of plug-and-play PV 
regulations in other countries only 1kW can be put in a given circuit. Larger plug-
and-play PV systems, may cause power stability issues and safety concerns 
depending upon the amp rating of the circuit.  
 
A more detailed investigation is needed for larger plug-and-play PV systems to 
determine the maximum power able to reach for a given circuit and a streamlined 
method to make this maximum easily determined by the prosumer.  
 
Future work is also needed to determine the ability of Americans to purchase plug-
and-play PV systems and that sensitivity to income distribution. This would need to 
be compared to utility rates and solar flux availability at a granular scale across the 
country to gauge how plug-and-play PV could be put on the grid and the likely 
impacts as it scales.  
 
To encourage greater plug-and-play PV system adoption a full scale LCOE could be 
run for individuals with granularity at the utility/State level and this could be coupled 
to financing plans and sales from PV vendors. 
 

 
5.2.1.3    U.S. Market Analysis for plug and play solar: 

 
 

For the LCOE calculations performed for each state in this paper the minimum solar 
flux data for that state was taken into consideration, which results in the 
conservative maximum estimated LCOE for the state.  

Thus the savings for particular prosumers in a given state from this analysis may 
be greatly underestimated as the solar flux in some states varies considerably. For 
example, Arcata, CA average solar flux yearly is 3.93 kWhr/m2/day whereas for 
Santa Maria, CA average solar flux yearly is 5.2 kWhr/m2/day.  

Similarly the representative costs of the electricity for each state may also create a 
source of error as these values range widely for different utilities within a state. 
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 Future work is needed to do a more granular investigation of both the solar flux 
and the utility rates, although results presented here and the conclusion drawn from 
them are overall representative. A more granular approach could assist vendors 
target the most lucrative areas of the country with plug and play PV first.  

Moreover, the shading varies for each house and this affects the energy being 
generated by the system. The assumptions used here again were conservative, but 
the error associated with the unshaded residences could be quantified using 
established techniques for the entire U.S. (Nguyen and Pearce, 2012; Nguyen et al., 
2012; Liang, et al., 2014). Thus, a far better estimation could be made if such a 
system is to be installed for a particular house at a particular place. 

As introduced in the discount rate section, low and middle income U.S. households 
do not have a rate of time preference over 100%, yet it appears that they do in 
energy efficiency studies because they simply make ununiformed purchasing 
decisions. Maybe we need better research to understand how purchasing decisions are 
made and what does influence costumers, but we know education isn’t it (Willis, 2008; 
Lusardi, 2008; Pearce, et al., 2009; Hasting, Madrian & Skimmyhorn; 2013). In 
regards to this issue for plug-and-play solar PV, it is apparent that the large market 
estimated in this study is only possible with an education campaign targeted at 
consumers to understand the rates of return for such systems so they could compare 
them to their other investment options. 

 

5.3 Reference 
 
Quinn J, James F, Whitaker C. Combined Heat & Power, 2013: Are We There Yet? 
American Council for an Energy-Efficient-Economy-Summer Study on Energy 
Efficiency in Industry. 
 
Pearce. J.M. Expanding photovoltaic penetration with residential distributed 
generation from hybrid solar photovoltaic and combined heat and power systems. 
Energy, 2009; 34(11), 1947–1954. 

 
Nosrat A., & Pearce J. M. Dispatch strategy and model for hybrid photovoltaic and 
trigeneration power systems. Applied Energy, 2011; 88(9), 3270-3276. 
 
Li X., & Ogden, J. M. Pearce. Understanding the design and economics of 
distributed tri-generation systems for home and neighborhood refueling—Part I: 
Single family residence case studies. Power Sources, 2011; 196(4), 2098-2108. 
 
Nosrat A. H., Swan L. G., & Pearce J. M. Improved performance of hybrid 
photovoltaic-trigeneration systems over photovoltaic-cogen systems including 
effects of battery storage. Energy, 2013; 49, 366-374. 



 
 

116 
 

 
Nosrat A. H., Swan L. G., & Pearce J. M. Simulations of greenhouse gas emission 
reductions from low-cost hybrid solar photovoltaic and cogeneration systems for 
new communities. Sustainable Energy Technologies and Assessments, 2014; 8, 34-
41. 
 
Jradi M, Riffat S. Tri-generation systems:Energy policies,prime movers,cooling 
technologies,configurations and operationstrategies. 2014. Renew. Sustainable 
Energy Rev., 2014; 32, 396–415. 
 
Pierre I, Achermann H,  Arias A, Janikowski J; Leber F, Mousa F, Opdenacker P, 
Schilcher H, The role of CHP in the proposed Energy Efficiency Directive 
(COM(2011) 370 Final). A EURELECTRIC policy paper. Dépôt légal: 
D/2011/12.205/14, Kohopaa A. October-2011. 
 
L'Abbate A, Fulli G, Starr F, Peteves S.D. Distributed Power Generation in Europe: 
technical issues for further integration. JRC Scientific and Technical report, 2007. 
 
European Smartgrid Technology Platform-Vision and Strategy for Europe’s 
Electricity Networks of the Future. Directorate-General for Research Sustainable 
Energy Systems. Luxembourg: Office for Official Publications of the European 
Communities, 2006, ISBN 92-79-01414-5. 
 
Study on the effective integration of Distributed Energy Resources for providing 
flexibility to the electricity system. Final report to The European Commission by 
SWECO, 2015, Proj no: 54697590000. 
 
The Integrated Grid Realizing the Full value of Central and Distributed Energy 
Resources. Electric Power Research Institute, 2014. 

 
How is Germany integrating and balancing renewable energy today? Energy 
Transition-The German Energiewende, Feb 2015 Available at: 
http://energytransition.de/2015/02/how-germany-integrates-renewable-energy/ 
 
Kenny R., Law C., & Pearce J. M. Towards real energy economics: energy policy 
driven by life-cycle carbon emission. Energy Policy, 2010; 38(4), 1969-1978. 
 
Salomón M, Savol T, Martin A, Fogelholmb C.J, Fransson T. Small-scale biomass 
CHP plants in Sweden and Finland. Renew. Sustainable Energy Rev., 2011; 15, 
4451– 4465. 
 



 
 

117 
 

Magalhães P., Martins J., Joyce A., Coelho L., Tavares N., & Pereira R. Solar 
Trigeneration System Model for Off-Grid Residential Applications. In 
Technological Innovation for Value Creation, Springer Berlin Heidelberg, 2012; pp. 
375-384. 
 
Fact Sheet: Combined Heat and Power: Pathway to Lower Energy Costs, Reduced 
Emissions, Secure and Resilient Energy Supply . May 2013. Environment and 
Energy study Institute. 
 
Nguyen, H.T.; and Pearce, J.M.; 2012. Incorporating shading losses in solar 
photovoltaic potential assessment at the municipal scale. Solar Energy, 86(5), 
pp.1245-1260. doi:10.1016/j.solener.2012.01.017 
 
Nguyen, H.T.; Pearce, J.M.; Harrap, R.; and Barber, G.; 2012. The application of 
LiDAR to assessment of rooftop solar photovoltaic deployment potential in a 
municipal district unit. Sensors, 12(4), pp.4534-4558. doi:10.3390/s120404534 
 
Liang, J., Gong, J., Li, W. and Ibrahim, A.N., 2014. A visualization-oriented 3D 
method for efficient computation of urban solar radiation based on 3D–2D surface 
mapping. International Journal of Geographical Information Science, 28(4), pp.780-
798. 
 
Willis, L.E.; 2008. Evidence and Ideology in Assessing the Effectiveness of 
Financial Literacy Education. Faculty Scholarship, 2008, Paper 197.  
 
Lusardi, A.; 2008. Financial Literacy: An Essential Tool for Informed Consumer 
Choice? National Bureau of Economic Research. 
 
Pearce, J.M., Denkenberger, D. and Zielonka, H., 2009. Accelerating applied 
sustainability by utilizing return on investment for energy conservation 
measures. International Journal of Energy, Environment and Economics, 2009, 
17(1), p.61.  
 
Hastings, J.S.; Madrian, B.C.; and Skimmyhorn, W.L.; 2013. Financial Literacy, 
Financial Education and Ecomic Outcomes. National Institute of Health, Public 
access, Annu Rev Econom, 2013, 5, pp. 347–373. doi:10.1146/annurev-economics-
082312-125807 
 

 


	TECHNICAL AND ECONOMICAL ANALYSIS OF RESIDENTIAL SOLAR PHOTOVOLTAIC SYSTEMS
	Recommended Citation

	Chapter 2 is “Levelized cost of Electricity for Solar Photovoltaic, Battery and Cogen Hybrid Systems” published in the journal Renewable and Sustainable Energy Reviews (http://dx.doi.org/10.1016/j.rser.2015.12.084). This article was written by A. Mund...
	[75] Solar Panels – Price Survey.  Available at: http://www.ecobusinesslinks.com/surveys/free-solar-panelprice-survey/
	[76] Calhoun K, Morris J. Can the Cost of Solar in the U.S. Compete with Germany? Report by Rocky Mountain Institute (RMI). Dec 5 2013.
	3.1 Introduction
	3.2 A Review of PV Codes, Standards and Utility Grid-Interconnection Application
	3.2.1. U.S. National Electrical Codes
	3.2.1.1. Section 690.5: Ground fault protection
	3.2.1.2. Section 690.9: Overcurrent protection

	24. Growing Political Support Powers Renewable Energy into the Mainstream. Woldwatch Institute-Vision for Sustainable Energy, Washington, D.C.
	47. U.S. Energy Information Administration. Net Generation from Renewable Sources: Total (All Sectors), 2005. U.S. Energy Information Administration (EIA) 2015. Available at: http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_1_1_a (a...
	55. Branker, K.; Shackles, E.; Pearce, J. M. Peer-to-peer financing mechanisms to accelerate renewable energy deployment. Journal of Sustainable Finance & Investment 2011, 1, 2, pp. 138-155,doi: 10.1080/20430795.2011.582325
	60. U.S. Energy Information Administration. How much electricity does an American home use? U.S. Energy Information Administration (EIA) 2015. Available at: http://www.eia.gov/tools/faqs/faq.cfm?id=97&t=3  (accessed on 18 Dec. 2015).

	116.  Nilsiam, Y. Streamlined Interconnection Application. GitHub-mtu-most/Net-Meter-Solar-App 2015. Available at: https://github.com/mtu-most/Net-Meter-Solar-App (accessed on 18 Dec. 2015).
	Branker, K.; Shackles, E.; Pearce, J. M., 2011. Peer-to-peer financing mechanisms to accelerate renewable energy deployment. Journal of Sustainable Finance & Investment, 1, 2, pp. 138-155. doi: 10.1080/20430795.2011.582325


