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Abstract

In econometrics and finance, variables are collected at different frequencies. If a

higher frequency variable can help predict a lower frequency variable, it would be of

interest to construct such regression models. One straightforward solution is to flat

aggregate the higher frequency variable to match the lower frequency. However, flat

aggregation may overlook useful information in the higher frequency variable. On the

other hand, keeping all higher frequencies may result in overly complicated models.

In literature, mixed data sampling (MIDAS) regression models have been proposed

to balance between the two. In this thesis the mixed frequency models are addressed,

and we propose a new model specification test that can help decide between the

simple aggregation and the MIDAS model.
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Chapter 1

Introduction

The mixed frequency models are regression models with variables sampled at different

time frequencies. The models can be used for forecasting. Often in financial and

econometric studies, variables are collected at different time frequencies. For example,

macroeconomic variables are often published at a lower frequency compared to the

financial variables’ frequency. It can be of interest to forecast a lower frequency

variable with a higher frequency variable. The mixed frequency can be pairs of, for

example, quarterly and monthly, monthly and daily, or monthly and intra-daily. One

way to incorporate variables of different frequencies in a model is to aggregate the

high frequency (HF) variable to match the low frequency (LF). A simple solution of

aggregation is to average the HF observations. This method is called flat aggregation

because the weights given to the HF observations are the same. A flat aggregation
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model is simple and relatively easy to compute. However, one concern could be a

potential loss of information in the HF variable when it is flat aggregated (Andreou

et al., 2010). There might be some important information stored in the HF, which

could be vital for forecasting.

Instead of assigning equal weights, the HF observations can be treated as individ-

ual predictors and their weights can be uniquely estimated. This might create a

forecasting model with high accuracy. However, if the frequency difference between

the dependent and the independent variables is large, for example yearly and daily,

then the number of parameters would also be very large. This model may not be an

efficient one, possibly introducing difficulties in estimations.

Ghysels et al. (2004), Ghysels et al. (2005), Ghysels et al. (2006), and Ghysels et al.

(2007) introduced a mixed data sampling (MIDAS) model. This model is able to

preserve information in the HF variable that could otherwise be lost in a flat aggre-

gation model. The key factor is a lag polynomial that distributes exclusive weights

to the HF observations while still keeping the model from having a large number of

parameters. However, a MIDAS model may not always forecast better than a flat

aggregation model. The forecasting efficiency depends upon the relationship between

the regressors and the regressand. If the MIDAS model is not doing better than the

flat aggregation model, which is the simpler model, then the flat aggregation scheme

is preferred to the MIDAS model. Thus, a specification test for determining the
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optimal model could be useful.

Andreou et al. (2010) addressed the model specification problem by introducing two

hypothesis tests which test for whether a flat aggregation model or a MIDAS model

should be chosen. Miller (2014b) also developed the idea further by using a variable

addition test similar to the second test given in Andreou et al. (2010). The test in

Miller (2014b) uses an ancillary regression that explores the possibility of dependence

between the fitted residuals from the flat aggregation model and linearly transformed

HF variable that is similar to the aggregation in a MIDAS model. Miller (2014b)

mentioned a possible test statistic with a heteroskedasticity autocorrelation consistent

(HAC) estimator. The HAC estimator, as described in Newey and West (1987)

and Andrews (1991), is dependent upon a user-chosen bandwidth parameter. Miller

(2014b) modified the test eliminating the need for a HAC estimator, but the test

still needs the model builder to chose a parameter that has a considerable effect on

the test’s size and power. In this thesis, we propose to extend the self-normalizing

approach as described in Shao (2010), to the mixed frequency model specification

test. The self-normalizing approach is free of any user-chosen values, providing a test

statistic with a pivotal limiting null distribution.

Chapter 2 overviews the mixed frequency models focusing on the MIDAS model and

its extensions. Chapter 3 reviews the specification tests for mixed frequency models

given in Andreou et al. (2010) and Miller (2014b). Chapter 4 presents our extension
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of the self-normalizing method to the mixed frequency specification test. In Chapter

5 multiple power analyses are shown for the different specification tests. In Chapter

6 a conclusion is provided.
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Chapter 2

Mixed Frequency Models

In order to illustrate the mixed frequency models, some notations have to be es-

tablished. Let the dependent series be denoted by yt which is measured at the

lowest frequency where t = 1, . . . , T . The independent predictor series xxx
(m)
t =

(xt, xt−1/m, . . . , xt−(m−1)/m)′ is measured m times more frequently than yt, i.e the

HF variable. For example, yt is observed at the end of quarter t and xxx
(3)
t is the vector

of monthly observations in quarter t. The entries in xxx
(3)
t are then xt−0/3 = xt the

third month, xt−1/3 the second month, and xt−2/3 the first month of quarter t. Note

that for the rest of the thesis the forecasting of the dependent variable will be done

with the use of only one regressor and for one period ahead, t + 1, unless something

else is specified.
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A classical solution for fitting two frequencies in one regression model is to use a

simple aggregation scheme on the HF variable to match the lower frequency. One

way is to distribute equal weights to the HF observations within one LF time unit.

The flat aggregation model distributes the weight 1
m

to each HF observations. This

means that the observations xt−i/m for all i = 0, . . . ,m − 1 are averaged over the

LF time unit t. The averaged HF observations can then be used as the explanatory

variable in a distributed lag model, which is given by

yt+1 = β0 + β1πππ
′xxx

(m)
t + εt+1, (2.1)

where β1 is the slope coefficient and πππ = ( 1
m
, . . . , 1

m
)′ is the m × 1 flat aggregation

vector. The model in (2.1) is only using one LF lag of the HF variable. However,

it is possible to add more low frequency lags. Let L be the LF lag operator. Then

Ljxxx
(m)
t = xxx

(m)
t−j is a vector of HF observations from t− j. There might also be the case

where yt is serially correlated. It would, therefore, be of interest to extend the model

in (2.1) to an autoregressive distributed lag (ADL) model (Andreou et al., 2011). The

ADL(p, q) model with p autoregressive terms in the yt and q LF lags of xxx
(m)
t is as

follows

yt+1 = β0 +

p∑
s=0

γsL
syt +

q∑
j=0

βjL
jπππ′xxx

(m)
t + εt+1, (2.2)

where γs are the autoregressive coefficients for the lagged yt−s, and βj are the slope

coefficients for the LF lagged πππ′xxx
(m)
t . Clearly, the number of parameters to estimate
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increases with the number of LF lags used.

There are also other types of simple aggregation that can be applied to the HF

variable. One that is mentioned in Miller (2014b) is the end-of-period sampling. This

implies that only the last HF observation in the time unit t will be given weight. In

other words, in (2.1) the vector πππ = (1, 0, . . . , 0)′. A distributed lag or an ADL(p, q)

model can also be used for this type of aggregation.

Flat aggregation models are easy to interpret. However, it is not always given that

the relationship between yt and xxx
(m)
t is a flat aggregation model. Hence, applying

unique weights to the HF observations is another possibility. A step-weighting model

is a model that distribute weights as slope coefficients for each of the HF observations.

This model was considered in Armesto et al. (2010), and with one LF lag of xxx
(m)
t and

lagged values of the LF it can be derived in this way

yt+1 = β0 +

p∑
s=0

γsL
syt +$$$′xxx

(m)
t + εt+1, (2.3)

where $$$ is a m × 1 vector with unique slope coefficients for each HF observations.

Therefore, the number of parameters is dependent upon the value of m and the

number of lags for the LF variable. Thus, if m is large, then the parameters in (2.3)

will increase drastically. The parameters will also multiply when LF lags are added

to the HF variable in (2.3) (Armesto et al., 2010). This makes the estimation of the
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model difficult and complex.

The introduction of the MIDAS model in Ghysels et al. (2004) gave a new solution

for how to estimate unique coefficients for the HF observations. The MIDAS model

is similar to the step-weighting model, but has less parameters to estimate. The

weights are given by a lag polynomial that is only dependent upon the placement

of the HF observation, i, and a parameter θθθ, where θθθ can be both a scalar or a

vector. The weights from the lag polynomial are stored in the m× 1 vector denoted

πππ(θθθ) = (π(0, θθθ), . . . , π(m− 1, θθθ))′. The basic MIDAS model can be derived as follows

yt+1 = β0 + β1πππ(θθθ)′xxx
(m)
t + εt+1. (2.4)

In order for the slope coefficient β1 to be uniquely estimated, we assume that∑m−1
i=0 π(i, θθθ) = 1. The model is parsimonious because β0, β1, and θθθ are the only

parameters that need to be estimated. There are especially two lag polynomials that

have been discussed in the literature. One is the two-parameter exponential Almon

lag polynomial. The individual weights from this lag polynomial are given as follows

π(i, θθθ) =
exp(θ1(i+ 1) + θ2(i+ 1)2)∑m
j=1 exp(θ1(j + 1) + θ2(j + 1)2)

, (2.5)

where θθθ = (θ1, θ2)
′ are the only parameters, regardless of the value of m. Note that

when θ1 = θ2 = 0, then the function in (2.5) equals 1
m

, which in turn transforms
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(2.4) to the flat aggregation model in (2.1). It is θθθ that decides the shape of the lag

function. The weights will decrease with the increase of the lags when θ2 ≤ 0. As

seen in Figure 2.1, the shape of the lag polynomials in (2.5) when θ1 = 0.08 and

θ2 = −0.008 and θ1 = 0.1 and θ2 = −0.03 are functions with a hump. This means

that lag 1 is given smaller weights than some of the larger lags. In the two other

examples in Figure 2.1, lag 1 has the largest weight.
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Figure 2.1: Examples of the exponential Almon lag polynomial for lags up
to 20 based on different options for θθθ

The other popular option for the lag polynomial is described as the beta lag speci-

fication (Ghysels et al., 2007). This polynomial has two parameters, and resembles
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the beta distribution. The weights for the HF observations are given as follows

π(i, θθθ) =
f
(
i+1
m
, θ1, θ2

)∑m
j=1 f

(
j
m
, θ1, θ2

) , (2.6)

where

f

(
i+ 1

m
, θ1, θ2

)
=

(i+ 1)θ1−1 (1− (i+ 1))θ2−1 Γ (θ1 + θ2)

Γ (θ1) Γ (θ2)
, (2.7)

and Γ(k) =
∫∞
0
xk−1e−xdx is the gamma function. Note that (2.7) is the probability

density function of the beta distribution. When θ1 = θ2 = 1, π(i, θθθ) = 1
m

in (2.6),

which is the flat aggregation weight. Examples of the beta lag specification are

presented in Figure 2.2. It shows that a hump shaped function occurs at θ1 = 3 and

θ2 = 8, and decreasing weights are observed for the other options of θθθ.

For the basic MIDAS model in (2.4) the lag polynomial is chosen by the user and the

parameters, β0, β1, and θθθ, are estimated by nonlinear least squares.

Since the introduction of the MIDAS model, several additions and extensions to the

model have been introduced. Ghysels et al. (2007) suggested the use of multiple

regressors. This option has been discussed in later articles as well (see Clements

and Galvão (2008), Clements and Galvão (2009), Andreou et al. (2010)). The model

is called a M-MIDAS model where M stands for multiple regressors (Clements and

Galvão (2008) and Clements and Galvão (2009)). The M-MIDAS model with n

10
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Figure 2.2: Examples of the beta lag polynomial for lags up to 20 based
on different options for θθθ

regressors is derived in this way

yt+1 = β0 +
n∑
j=1

βj,1πππj(θθθj)
′xxx

(m)
j,t + εt+1, (2.8)

where πππj(θθθj) is the lag polynomial for the j predictor for j = 1, . . . , n. Notice that

the frequencies for the regressors are the same in (2.8), but it is possible to construct

such model where the regressors have different frequencies.

It might be of interest to include an autoregressive term of yt in a MIDAS model.
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This type of model is called AR-MIDAS. This option was introduced in Ghysels

et al. (2007). In Clements and Galvão (2008), it was shown that adding the AR-

term straight into the model will create a spurious LF seasonal pattern in the xxx
(m)
t .

This event can be avoided if the autoregressive characteristic in yt is employed as a

common factor (Clements and Galvão, 2008). The following AR-MIDAS consists of

one autoregressive LF lag

yt+1 = β0 + λyt + β1πππ(θθθ)′(1− λL)xxx
(m)
t + εt+1, (2.9)

where λ is the AR coefficient and L is the LF lag operator for t − 1. If additional

autoregressive lags are necessary, then they can be included without difficulty (see,

Clements and Galvão (2008)).

In some situations observations of the HF variable might be available in the LF

time unit that is being forecast. Armesto et al. (2010) labeled this intra-period

forecasting. There are several different ways of incorporating the current available

HF observations. The following equation is partially based on the intra-period MIDAS

model given in Clements and Galvão (2009). Let s be the number of HF observations

accessible in the LF time unit t+ 1, which is being forecasted. Then xxx
(m)
t+s/m indicates

that the s HF observations from t + 1 shall also be included. For example, if s = 2

and m = 3 (months in a quarter), then t+ 1/3 is the first month of quarter t+ 1, and

t+ 2/3 is the second month of t+ 1. These are the intra-period observations that are

12



available for forecasting yt+1. The MIDAS model with intra-period forecasting is as

follows

yt+1 = β0 + β1πππ(θθθ)′xxx
(m)
t+s/m + εt+1, (2.10)

where πππ(θθθ) is a (m+ s)× 1 vector with weights from a chosen lag polynomial.

With a larger set of predictor variables, estimating a factor model can be benefi-

cial. Marcellino and Schumacher (2010) introduced a factor MIDAS model. They

discussed which factor estimation method is better, and three MIDAS variations are

also compared. We will only give a brief summary of the basic factor MIDAS model

given in Marcellino and Schumacher (2010). LetXXX t−i/m be an n×1 vector of n multi-

ple predictors that we wish to use in the forecasting. To reduce the dimensions of the

model, the predictors are used to estimate r ≤ N factors, which are stored in FFF t−i/m.

For the sake of simplicity assume r = 1 which means only one factor is necessary to

explain the variability among the predictors. Denote the vector of estimated factors

for time period t as f̂ff
(m)

t , then the estimated factors can replace the predictors in the

MIDAS as follows

yt+1 = β0 + β1πππ(θθθ)′f̂ff
(m)

t + εt+1. (2.11)

Similar to the M-MIDAS model in (2.8), the factor MIDAS model can include multiple

factors if that is applicable. A factor MIDAS with AR terms is also possible to

implement (Marcellino and Schumacher, 2010).
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Breitung and Roling (2015) introduced a nonparametric MIDAS model. They argue

that the use of, for example, exponential Almon lag or beta lag polynomial can create

a misconception of the true lag polynomial of the HF observations. The suggested

nonparametric MIDAS model is similar to the step-weighting model in (2.3). For

simplicity, the lagged values of the LF variable is not considered here. The difference

between the models is that the nonparametric MIDAS model uses a penalized least-

squares method to estimate$$$, the vector of the weights for the HF observations from

(2.3). The penalized least squares method utilizes the second differences of $i which

is defined as

52 $i = $i − 2$i−1 +$i−2 for i = 2, . . . ,m− 1. (2.12)

The coefficients in $$$ are assumed to be a smooth function of i where the absolute

value of 52$i are small (Breitung and Roling, 2015). Then the optimal estimate of

$$$ is the one that minimizes the penalized least square function which is derived as

S(β0,$$$) =
T∑
t=1

(
yt+1 − β0 −$$$′xxx(m)

t

)2
+ λ

m−1∑
i=2

(
52$i

)2
, (2.13)

where λ is the given smoothing parameter. Breitung and Roling (2015) suggested

using Akaike information criterion (AIC) to find the optimal λ.

It is also important to mention that alternatives to MIDAS model also exists. One of
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them is a mixed-frequency vector autoregressive (MF-VAR) model, which in Kuzin

et al. (2011) was compared to the MIDAS model. The MF-VAR model assumes

that the LF variable has missing observations. For example, if the LF variable is

published every quarter, then the potential observations in the months between t− 1

and t will be considered missing in the LF variable. Hence, the LF variable can

match the higher frequency by disaggregation. Kuzin et al. (2011) chose to describe

the disaggregation of the LF variable as shown in Mariano and Murasawa (2003) and

Mariano and Murasawa (2010). This equation links yt and its unobserved monthly

observations y∗t as described below

yt =
1

3
y∗t +

2

3
y∗t−1/3 + y∗t−2/3 +

2

3
y∗t−3/3 +

1

3
y∗t−1, (2.14)

where xt−i/3 and y∗t−i/m are from a vector autoregressive model with k autoregressive

lags (Kuzin et al., 2011). To forecast Kuzin et al. (2011) suggested to use a state space

model and the Kalman filter. The disaggregation method in (2.14) was also applied

in the factor analysis of the German GDP in Schumacher and Breitung (2008).

This review shows that the MIDAS model is diverse, and that there are many appli-

cations that can extend the basic MIDAS model in (2.4). However, there is a need to

investigate whether or not a forecasting regression model will benefit from a MIDAS

specification. The following chapter will discuss different hypotheses tests that will

try to answer this question.
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Chapter 3

Specification Tests

This chapter will give the details about existing model specification tests for mixed

frequency models. Andreou et al. (2010) gave two test methods for testing if the flat

aggregation model in (2.1) is a good fit. One of the tests is a variable addition test.

For simplicity, the variable addition test will be denoted AGK for Andreou, Ghysels

and Kourtellos. The variable addition approach was also used in Miller (2014b),

which will be denoted Miller’s test.

Some notations need to be introduced. Let Bq(·) be a (q)-vector of independent Brow-

nian motions. Let→D be convergence in distribution, and Op(1) denotes bounded in

probability. Also note that brT c is the integer part of rT .
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3.1 AGK’s Specification Tests

The flat aggregation model as given in (2.1), is one simple solution to regress LF

variables on HF frequency variable. However, as discussed earlier, the flat aggregation

model might not be a good fit for the data. Therefore, it can be interesting to perform

a test that can specify whether or not the flat aggregation model should be employed.

In Andreou et al. (2010) two hypotheses tests for flat aggregation versus a MIDAS

model were given. They developed a testing model which is an extension of the flat

aggregation model in (2.1). The model is divided into two parts. One part consists

of the flat aggregated HF observations, and the second part contains the MIDAS

specified HF observations. The model can can be written as follows

yt+1 = βββ∗′1 xxx
(m),FA
t + βββ∗′1 xxx

(m),NL
t (θθθ) + wt+1, (3.1)

where xxx
(m),FA
t = (1,xxx

(m)
t )πππ for πππ = ( 1

m
, . . . , 1

m
)′, and the second term is xxx

(m),NL
t (θθθ) =

(1,xxx
(m)
t )πππ(θθθ)−xxx(m),FA

t . Here FA stands for flat aggregation and NL stands for nonlin-

ear. The vector πππ(θθθ) contains the weights from the exponential Almon lag polynomial

given in (2.5).

The alternative model representation in (3.1) will be equal to the flat aggregation

model in (2.1) when θθθ = (0, 0)′. In this case xxx
(m),NL
t (θθθ) = 0, and (3.1) reduces to the

18



flat aggregation term βββ∗′1 x
(m),FA
t and the error terms wt+1. Hence, the hypotheses are

H0 : θθθ = (0, 0)′, flat aggregation

H1 : θθθ 6= (0, 0)′,MIDAS.

Note that βββ∗1 in (3.1) is still identified under the null, because it is restricted to be

the slope coefficient for both xxx
(m),FA
t and xxx

(m),NL
t (θθθ) (Andreou et al., 2010). It was

also mentioned in Andreou et al. (2010) that the least square estimate of the slope

coefficient β̂ββ
∗
1 will give an omitted variable bias when the flat aggregation is wrongly

fitted. The size of the bias is dependent upon how different the MIDAS specification

is from the flat weight scheme (Andreou et al., 2010). This bias will not exist when

E
(
xxx
(m),FA
t xxx

(m),NL
t (θθθ)′

)
= 0 or if the flat aggregation model is the better fit (Andreou

et al., 2010).

The first test that Andreou et al. (2010) employed was a simple Lagrange multiplier

(LM) test. The test looks at the difference between S0 = ε̂′t+1ε̂t+1 where ε̂t+1 are the

least squares residuals from (2.1), and S1 = ŵ′t+1ŵt+1 where ŵt+1 are the least squares

residuals from (3.1). The LM test is given by

LM =
S0 − S1

S0

, (3.2)

where LM →D χ2(2). Note that the degrees of freedom are dependent upon the

19



restrictions in (3.1). Since the model in (3.1) has two unknown parameters, namely

the parameters in θθθ, the LM test will have two degrees of freedom.

The second test Andreou et al. (2010) proposed is a Wu-Hausman (WH) test. This

test will be referred to as the AGK test. It tests for the omitted variable bias in (2.1),

and the null hypothesis is E(εt+1 | F (m)
t−1 ) = 0 where εt+1 is the errors form (2.1) and

F (m)
t−1 is the information set for the HF variable. The test requires an instrumental set

of the HF observations. Andreou et al. (2010) suggested using all the HF observation

in the instrumental vector zzzt =
(
xt, xt−1/m, . . . , xt−(m−1)/m

)′
. This vector will be

helpful because if the flat aggregation model is false, then wt+1 might be correlated

to xxx
(m),FA
t . The instrumental vector zzzt, on the other hand, will be correlated to

xxx
(m),FA
t , but uncorrelated to wt+1 in (3.1). The test needs two regression models to

be estimated. First, let xxx
(m),FA
t = PPPzzzt + vvvt, and E(vvvt | xxx(m),FA

t ) = 0. The second

model is yt+1 = β1xxx
(m),FA
t + εt+1. Then the fitted residuals v̂vvt and ε̂t+1 are retained,

and the test model will be

ε̂t+1 = γγγ′xxx
(m),FA
t + δδδ′vvvt + ξt+1, (3.3)

where E(ξt+1 | xxx(m),FA
t , v̂vvt) = 0. The null hypothesis is then δδδ = 000, and the test

statistic is as follows

WH = TR2, (3.4)

where R2 is the coefficient of determination for (3.3), and WH →D χ2(2). Andreou

20



et al. (2010) reported that both the LM and the WH test had good sizes and power,

but that the LM test showed better power. The problem with the AGK variable

addition test is the size of the instrument set, zzzt. The use of all the HF observations

might be preferred, but when m is large the dimension of the test model in (3.3)

will also be large and the test might be difficult to interpret. Andreou et al. (2010)

suggested to use a smaller set of the recent HF observations. The issue of large

number of instruments has been discussed further in Miller (2014b), and an alternative

solution to the issue was also given in Miller (2014b).

3.2 Miller’s Specification Test

A variable addition test similar to the AGK test was introduced in Miller (2014b).

However, a significant difference between the two methods is the choice of instrument

variables. While all the HF observations are used in the AGK method, Miller (2014b)

suggested using linear combinations of the HF variable where the number of combi-

nations should be less than m. This practice let the user keep the degrees of freedom

constant and uncorrelated to m.

For comparison to Miller’s test we will represent the test model similar to the one
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used in Miller (2014b). The model is as follows

yt+1 = βxxx
(m)′
t πππ + qqq′tηηη + εt+1, (3.5)

where πππ is a vector that contains the weight values for the HF observations, qqqt is the

nuisance terms, which can also be observed at a higher frequency. The model can be

a flat aggregation specification if πππ = ( 1
m
, . . . , 1

m
)′, then (3.5) will be similar to (2.1).

Miller (2014b) tested three different hypotheses sets. Test 1 and test 2, denoted τ1

and τ2, have the same null hypothesis

H0 : πππ is known and (3.5) is a flat aggregation model,

while the alternative hypothesis are different as shown below

H1,τ1 : πππ is a vector with unknown weights. The model in (3.5) is unrestricted

and

H1,τ2 : πππ is a vector with weights from a lag polynomial that is partially restricted,

as in a MIDAS model.

The third test, τ3, has hypotheses that are combinations of the hypotheses in the

other two tests. The null hypothesis is equal to the alternative hypothesis in τ2, while
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the alternative hypothesis is the same as the alternative in τ1. For the purpose of this

thesis, we will focus on τ2 because it proposes the alternative that a MIDAS model

should be employed. Also note that τ2 has the hypotheses that are similar to the ones

in Andreou et al. (2010) which are found in Section 3.1. The implementation for the

variable addition test for the three tests is based upon the specification test given in

Miller (2014a). However, τ3 is the only test investigated in that article.

The test consists of two steps. First, the model in (3.5) is estimated under the null

hypothesis by the least square method. This means that πππ = πππ0 = ( 1
m
, . . . , 1

m
)′,

which creates the flat aggregation model. Second, the fitted least square residuals

ε̂t+1 from (3.5) are saved. These are vital for the variable addition test because they

contain the information of whether or not the flat aggregation model is a good fit.

The fitted residuals ε̂t+1 from (3.5) should be regressed upon q + 1 different linear

transformations of the HF variable in this manner

ε̂t+1 = xxx
(m)′
t Υϕϕϕ+ et, (3.6)

where Υ is a m×(q+1) matrix where the first column is πππ0. The q remaining columns

are vectors that will linearly transform xxx
(m)
t . There are different opportunities for the

set up of Υ. Miller (2014b) suggested having columns which are related to the weights

given by lag polynomials as in (2.4). Another idea is to let Υ be an m×m identity

matrix. This will be similar to the AGK test where all the HF observations are used
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as instruments. The vector ϕϕϕ contains the coefficients of xxx
(m)′
t Υ.

The reason for this ancillary regression is to test whether or not the null model is the

right fit. If the flat aggregation model (the null model) is a good fit, then there should

be no correlation between ε̂t+1 and the q last elements of xxx
(m)′
t Υ (the first column is

disregarded since it relates to the null model). However, if the null hypothesis is false,

then the linear combinations of xxx
(m)
t , other than the flat weights, might have an effect

on the fitted residuals (Miller, 2014b). In that case, the ancillary regression model

could indicate that a MIDAS model for yt+1 and xxx
(m)
t might be a better choice. The

information for potential correlation between the HF variable and the fitted residuals

will be found in the q last slope coefficients in ϕϕϕ, corresponding to the q last columns

of xxx
(m)′
t Υ. In order to find the coefficient vector that only consists of these q elements,

let ϕϕϕ(q) = Aϕϕϕ where

A =



0 1 0 . . . 0

0 0 1 0 . . . 0

...
. . .

...

0 . . . . . . . . . 1


. (3.7)

Thus, the test will evaluate the significance of the coefficients in ϕϕϕ(q). The new null

hypothesis with ϕϕϕ(q) is as follows

H0 : ϕϕϕ(q) = 000, (3.8)

24



with the alternative hypothesis being

H1 : ϕϕϕ(q) 6= 000. (3.9)

The estimation of ϕϕϕ is done by the least-squares method as follows

ϕ̂ϕϕT = (Υ′M (T )
xx Υ)−1Υ′M (T )

xε , (3.10)

where M
(T )
xx = T−1

∑T
j=1xxx

(m)
j xxx

(m)′
j and M

(T )
xε = T−1

∑T
j=1xxx

(m)
j ε̂j+1. It follows that

ϕ̂ϕϕ
(q)
T = Aϕ̂ϕϕT . Miller (2014b) mentioned the possibility of using a Wald test statistic.

It is given by

VT = Tϕ̂ϕϕ
(q)′
T (Ω̂

(q)
T )−1ϕ̂ϕϕ

(q)
T , (3.11)

where Ω̂
(q)
T is a consistent estimator of Ω(q), the covariance matrix for ϕ̂ϕϕ

(q)
T . A consistent

estimation of Ω(q) requires a heteroskedasticity and autocorrelation consistent (HAC)

estimator (Andrews, 1991). In the context of the the ancillary regression in (3.6), Ω̂

has the following form

Ω̂ =(
1

T

T∑
j=1

xxx
(m)′
t ΥΥ′xxx

(m)
t

)−1{
T

T − q

T−1∑
j=−T+1

k

(
j

ST

)
Λ̂(j)

}(
1

T

T∑
j=1

xxx
(m)′
t ΥΥ′xxx

(m)
t

)−1
,

(3.12)
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where k(·) is a kernel function, ST is the bandwidth parameter which has to be chosen

by the user, and Λ̂(j) is the estimate of the autcovariance of etΥxxx
(m)
t where et are

the error terms from (3.6). The HAC estimator is very sensitive to the choice of

ST . In Andrews (1991) optimal choices for k(·) and ST were derived for a limited set

of data generating process, but the choice of ST is known to be difficult in general.

Hence, finding a test statistic that is not dependent upon the HAC estimator would

be interesting.

Miller (2014b) tested the statistic VT in (3.11) on xxx
(m)
t as a series integrated by order

0, I(0), and xxx
(m)
t as a series integrated by order 1, I(1). The results indicated that

VT →D χqq when T → ∞ under the null hypothesis when xxx
(m)
t is I(0). However,

the test statistic has a complicated limiting distribution under the null when xxx
(m)
t is

I(1). Therefore, Miller (2014b) modified the test statistic VT so that it would give a

standard limiting distribution under the null hypothesis for both I(0) and I(1) series

of xxx
(m)
t .

The modification of the test will be called Miller’s test. The main idea is to add more

white noise to et in (3.6). The fitted residuals, ε̂t+1, from the null model in (3.5) is

linearly transformed in this way

ε̂∗t+1 = ε̂t+1 + T εut, (3.13)
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where ut ∼ N(0, σ2
u) and are independent and identically distributed, and 0 < ε ≤

1/2. The new series ε̂∗t+1 is regressed on xxx
(m)′
t Υ as in (3.6) and ϕ̂ϕϕT is estimated by

least-squares. The new test statistic is denoted V ∗T . The reason for adding the error

term ut is to decrease the serial correlation and heteroskedasticity in ε̂t+1. The error

term will dominate because it is multiplied by T ε which increases with the increase of

ε. The test still concerns the q last elements of ϕϕϕ. However, the modified test statistic

V ∗T will transform to a q times an F-statistic for the null hypothesis H0 : ϕϕϕ(q) = 000

(Miller, 2014b). Hence, a linear regression model under the null hypothesis and a

linear regression model under the alternative hypothesis need to be built. Then V ∗T

will test for the difference between the sum of squares due to regression for the two

models. Miller (2014b) proved that for the tests τ1 and τ2, the V ∗T test will have the

limiting distribution χ2
q for both xxx

(m)
t as I(0) and I(1) under the null hypothesis. The

choice of ε determines the degree of modification. In Miller (2014b) ε̂∗t+1 was labeled

as unmodified when ε = 0 and over-modified when ε = 1/2. The modification has a

positive effect on the size of the test, but causes a loss in power.

Both Andreou et al. (2010) and Miller (2014b) showed that using a variable addition

test for specification testing is relatively simple. However, in the unmodified VT in

(3.11) there is a need to calculate a HAC estimator which will not work when xxx
(m)
t

is I(1). Miller (2014b) introduced a solution that can work when the HF variable is

I(1) without a direct estimation of Ω(q). However, this method includes a parameter

ε that needs to be chosen beforehand. As can be seen in the simulations in Miller
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(2014b), the choice of ε has a considerable impact on the size and power of the test.

Currently, there is no guide for finding the optimal value for ε. Therefore, finding an

alternative way for testing the hypotheses without user-chosen values is of interest.
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Chapter 4

Self-Normalizing Specification Test

In this chapter we will introduce our self-normalizing specification test. The set up

of test will follow the specification test in Miller (2014b). This includes the same

hypotheses and the use of an ancillary regression model.

In recent years a self-normalizing approach for conducting tests and constructing

confidence intervals in stationary time series, has been explored. Lobato (2001) first

introduced using a normalizing method to test whether or not a dependent process

is uncorrelated up to a certain lag. The test statistic was shown to be pivotal under

the null hypothesis. Shao (2010) took the idea of self-normalizing further to ap-

proximately linear statistics. The advantage of the self-normalizing approach is the
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absence of user-chosen values. The core of the method is the use of a normalizing ma-

trix using recursive estimates of the parameter being tested. The nuisance parameter

Ω is canceled out by the normalizing matrix, which in turn will serve as an incon-

sistent estimator for Ω in the test statistic. The self-normalizing approach is similar

to the fixed-b approach which was introduced in Kiefer and Vogelsang (2005) based

on the work done in Kiefer et al. (2000), Bunzel et al. (2001), Kiefer and Vogelsang

(2002a), and Kiefer and Vogelsang (2002b). The fixed-b scheme is a method where

the bandwidth parameter in the HAC estimator is set to be bT , where b is a fixed

constant. This creates an inconsistent HAC estimator of the variance matrix. Shao

(2010) pointed out that the self-normalizing method is similar to the fixed-b method

when b = 1 and the Bartlett kernel is used.

Since the generalization of the self-normalizing method in Shao (2010), developments

of the method to other statistical inference problems for time series have been studied.

The details of using self-normalizing method for change point detection was given in

Shao and Zhang (2010). In Zhou and Shao (2013) the self-normalizing method was

applied to linear regressions with fixed regressors and weakly dependent and station-

ary time series errors. The extension of the self-normalizing method to nonparametric

regression models was shown in Kim et al. (2015). The need for a trimming and a

bandwidth parameter is present, but the consistent estimation of the variance is still

absent in this self-normalizing approach (Kim et al., 2015). The self-normalizing

method has also been extended to functional time series (Shao, 2015). Using the
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method for change point detection in the mean function for functional time series

was developed in Zhang et al. (2011) as an extension of the univariate series case in

Shao and Zhang (2010). These examples reflect the flexibility of the self-normalizing

method in time series. For a full review of the self-normalizing method in other

statistical inferences, see Shao (2015).

With the encouragement of the success of implementing the self-normalizing method

to different types of inference problems in time series, we have examined the exten-

sion of the approach to the specification test of mixed frequency models. The main

structure of the test is similar to the variable addition test in Miller (2014b). The

hypotheses are the same as for the test τ2, which is mentioned in the beginning of

Section 3.2. The model in (3.5) is fitted under the null hypothesis, and the fitted

residuals are regressed upon q transformations of xxx
(m)
t stored in the columns of the

m × q matrix Υ. For the self-normalizing method, we need recursive estimates of ϕϕϕ

from (3.6). The least-square recursive estimates are given below

ϕ̂ϕϕt = (Υ′M (t)
xxΥ)−1Υ′M (t)

xε for t = q, . . . , T, (4.1)

where M
(t)
xx = t−1

∑t
j=1xxx

(m)
j xxx

(m)′
j and M

(t)
xε = t−1

∑t
j=1xxx

(m)
j ε̂j+1. At time T , the

estimate of ϕ̂ϕϕT is the same as the estimate given in (3.10). The subsampling will start

at time q, which is the number of columns in Υ, because that is the lowest value that

allows for Υ′M
(t)
xxΥ in (4.1) to be invertible.
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The recursive estimates of ϕ̂ϕϕt are the main building blocks of the normalizing matrix.

According to Shao (2010), the normalizing matrix can be derived as follows

WT = T−2
T∑

t=q+1

t2(ϕ̂ϕϕt − ϕ̂ϕϕT )(ϕ̂ϕϕt − ϕ̂ϕϕT )′. (4.2)

This statistic is not dependent upon any unknown parameter like a bandwidth pa-

rameter or a trimming value. WT is an inconsistent estimator of Ω and can replace

the HAC estimator in a Wald test statistic. One assumption has to be made before

the test statistic can be derived.

Let A [0, 1] be the space of functions on [0, 1] which are right continuous, have left

limits, and is defined on the Skorokhod metric (Billingsley, 1968). Also note that ⇒

denotes weak functional convergence in A [0, 1].

Assumption 4.0.1 Let ∆ be a q× q lower triangular matrix with nonnegative diag-

onal values and r ∈ (0, 1], assume

T−1/2brT c(ϕ̂ϕϕbrT c −ϕϕϕ)⇒ ∆Bq(r). (4.3)

According to Assumption 4.0.1, T 1/2(ϕ̂ϕϕT − ϕϕϕ) →D ∆Bq(1) when r = 1. Further, if

we let

Vq =

∫ 1

0

(Bq(r)− rBq(1))(Bq(r)− rBq(1))′dr, (4.4)
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then we can show by Assumption 4.0.1 and the continuous mapping theorem that

WT →D ∆Vq∆
′.

The self-normalized test statistic can now be found, and be used to test the null

hypothesis where φφφ = 000. The test statistic is similar to the Wald statistic VT in

(3.11), except Ω̂T is replaced by WT

KT = Tϕ̂ϕϕ′TW
−1
T ϕ̂ϕϕT . (4.5)

This test statistic can be used to test H0 : ϕϕϕT = 000. The knowledge of the convergence

of the parts in KT can be used to show that under the null hypothesis

KT →D Uq = Bq(1)′V −1q Bq(1). (4.6)

The distribution Uq is not standard and was first introduced in Lobato (2001), where a

table with the upper critical values for up to 20 degrees of freedom can be found. This

amount puts a restriction to the dimension of Υ. Thus, using all the HF observations

as instruments, as in the AGK test, is not possible if m > 20 without extending

Lobato’s table. The distribution Uq does not include any unknown parameters, so

KT is asymptotically pivotal.

As discussed in Section 3.2, Υ can have q + 1 columns where the first one is πππ0 and

the remaining q are other linear combinations. The null hypothesis will then be to
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test if ϕϕϕ
(q)
T = 000 where ϕϕϕ(q) = Aϕϕϕ and A was defined in (3.7). This scenario is still

functional under the self-normalizing method. The test statistic will be as follows

KT = Tϕ̂ϕϕ′TA
′W−1

T Aϕ̂ϕϕT

= Tϕ̂ϕϕ
(q)′
T W−1

T ϕ̂ϕϕ
(q)
T .

(4.7)

The limiting distribution is still Uq because

Uq = Bq+1(1)′A′(AVq+1A
′)−1ABq+1(1)

= Bq(1)′V −1q Bq(1).

(4.8)

This equality is not trivial, but it can be proved using similar argument in the proof

of Theorem 1 in Kiefer et al. (2000).

The following theorem proves the limiting distributions for KT .

Theorem 1 Let KT be the test statistic for τ2, and under Assumption 4.0.1 we have

that

1. Under H0, KT →D Uq

2. Under H1, KT = Op(T )

when T →∞
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Proof: Under H1, the test statistic will be

Tϕ̂ϕϕ′TW
−1
T ϕ̂ϕϕT =T (ϕ̂ϕϕT −ϕϕϕ)′W−1

T (ϕ̂ϕϕT −ϕϕϕ)

+ 2Tϕϕϕ′W−1
T (ϕ̂ϕϕT −ϕϕϕ)

+ Tϕϕϕ′W−1
T ϕϕϕ

(4.9)

Next step is to find how the three elements converges when T →∞. First,

T (ϕ̂ϕϕT −ϕϕϕ)′W−1
T (ϕ̂ϕϕT −ϕϕϕ)→D Uq = Op(1)

Second, let us divide the second term in (4.9) by
√
T and derive the convergence as

follows

(
1√
T

)
2Tϕϕϕ′W−1

T (ϕ̂ϕϕT −ϕϕϕ) = 2ϕϕϕ′
√
TW−1

T (ϕ̂ϕϕT −ϕϕϕ)→D 2ϕϕϕ′(Vq∆
′)−1Bq(1) = Op(1)

Thus, 2Tϕϕϕ′W−1
T (ϕ̂ϕϕT −ϕϕϕ) = Op(

√
T ). Third, let us divide the third term in (4.9) by

T , and the derive the convergence as follows

(
1

T

)
Tϕϕϕ′W−1

T ϕϕϕ→D ϕϕϕ
′(∆Vq∆

′)−1ϕϕϕ = Op(1).

Thus, Tϕϕϕ′W−1
T ϕϕϕ = Op(T ). Therefore, is KT = Op(T ) under H1. �

The theorem gives some encouraging results in terms of asymptotic size and power of

our method. The limiting distribution of our test statistic under the null hypothesis
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is the same as the one in Lobato (2001). Thus, the critical values are available for

testing, and Theorem 1(1) ensures that our test has asymptotically correct size. On

the other hand, if a MIDAS model fits the data better than the flat aggregation, it

would be easier to reject the null hypothesis because our test statistic, KT , would

have the same order as the sample size T . This implies our test has some power to

reject the null hypothesis under the alternative hypothesis.
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Chapter 5

Size and Power Analyses

In this chapter the results from size and power analyses are given to compare the

self-normalizing test KT in (4.5) to the AGK test, versions of Miller’s test V ∗T , and

the specification test VT in (3.11) with a HAC estimator. The set up of the analyses

will closely follow the small-sample analysis in Miller (2014b).

The data generating process (DGP) for the power analyses is inspired by the one

given in Miller (2014b). The data is generated at the higher frequency, and is as

follows

yt+1−i/m = βxt−i/m + εt+1−i/m, (5.1)
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where β = 10,

 εt+1−i/m

xt−i/m

 = B

 εt+1−(i+1)/m

xt−(i+1)/m

+ ut+1−i/m,

for which ut+1−i/m ∼ N

0,

 1 0.5

0.5 1


 and independent

and identically distributed, and B =
(
b1 0
0 b2

)
where (b1, b2) =

{(0, 0), (0, 0.3), (0.3, 0.3), (0.3,−0.3), (0, 0.5), (0.5, 0.5), (0, 0.8), (0.8, 0.8)} will make

the vector with εt+1−i/m and xt−i/m, a vector autoregressive variable. Since yt+1−i/m

is generated at a higher frequency, it needs to be aggregated to match the lower

frequency. This can be done by
∑m−1

i=0 yt−i/m/m for all t = 1, . . . , T , and for

these analyses T = 200. The high frequencies considered in these analyses are

m = {4, 20, 150}. Here m = 4 can represent the four quarters in a year, m = 20 can

be the trading days in a month, while m = 150 is used to test when m is relatively

large (Miller, 2014b).

The size and power of the tests are determined by lag functions in πππ in (3.5). The

lag function is given by

π(θ) =
(2− s/m)4θ∑m
s=1(2− s/m)4θ

, (5.2)

for s = 1, ...,m and where θ = {0, 0.1} which is the only parameter that is changing.

The size of the tests will be found when θ = 0, then π(θ) = 1
m

in 5.2 and πππ0 =
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( 1
m
, . . . , 1

m
), and (3.5) is equal to the model under the null. When θ = 0.1, the data

will be generated as under the alternative and the power functions of the tests will

be found. The cases where θ = 0.5, 1, 1.5, 2 have also been simulated. However, the

tests generate power close to 1.0 for these values of θ, and we choose not to display

them here. In Figure 5.1 the distribution of the weights from the lag function π(θ)

for select values of θ can be seen. The difference between the lag functions at θ = 0

and θ = 0.1 is not large. Therefore, discovering the power of the different tests at

θ = 0.1 will be interesting because it will tell us which test that can distinguish the

minor change from a flat aggregation model to a model with decreasing weights.

Miller (2014b) suggested to set q = 2. Thus, the dimensions of Υ are m × (2 + 1).

The first column is the vector πππ0, the flat aggregation vector. The two last columns

of Υ carry vectors of linear transformations for xxx
(m)
t , and following Miller (2014b) the

columns are 0.9s−1/
∑m

s=1 0.9s−1 and 2(m+ 1− s)/(m(m+ 1)), respectively.

The number of Monte Carlo simulations is set to 1000 and 5% significance level is used.

The Υ matrix given in Miller (2014b) and Υ as an m ×m identity matrix are used

in the self-normalizing specification test. They are denoted Υ1 and Υ2 respectively.

Note that Υ2 cannot be used for m > 20 as there is no available critical values for Uq

where q > 20. For comparison, the simulations are also done on three modifications

of Miller’s tests where ε = {0, 1/5, 1/2} and σ2
u = 1. The AGK test is also tested and

is set up as in Miller (2014b). All of the HF observations are used as instruments,
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Figure 5.1: The weights given to each lag by π(θ) = (2−s/m)4θ∑m
s=1(2−s/m)4θ

for

m = 4 and different options for θ

when an Υ with dimension m ×m, where the first column is πππ0 and the remaining

columns are equal to the m − 1 last columns of an m ×m identity matrix, is used.

Further, the AGK test is implemented as a V ∗T test with ε = 0 and the degrees of

freedom q = m− 1. Miller (2014b) described V ∗T as an unmodified test. In addition,

the specification test VT in (3.11) using a HAC estimator for Ω(2) is also computed.

Both Miller’s tests and the test with the HAC estimator employ Υ1.

In the following tables “Miller” stands for Miller’s test, “HAC” stands for the VT test

in (3.11), “AGK” stands for AGK test using the V ∗T with ε = 0, and “SN” stands for
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self-normalizing test KT in (4.5).

In Table 5.1 the DGP gives no autoregressive lags for either εt+1−i/m or xt−i/m. The

results show that for m = 4, all the tests regardless of the Υ are showing good size.

When m = 20, the self-normalizing test with Υ2 has an unacceptable size of 0.260.

This means that already at m = 20, there is an overparamterization. The AGK

test is doing better. However, AGK’s test has large size when m = 150, while the

self-normalizing test is doing well along side Miller’s tests. The power of the tests are

good, but for Miller’s test with ε = 0.5 the power is small especially for m = 20 and

m = 150.

In Table 5.2, Table 5.5 and Table 5.7, the results for when only xt−i/m is corre-

lated with its first lag are shown. All the tests display good size except for the

self-normalizing method with Υ2 when m = 20 and the AGK test when m = 150.

The tests also have good power except Miller’s test with ε = 0.5 for m = 20 and

m = 150

It is interesting to see in Table 5.3 when m = 4, the overmodification of Miller’s test

is needed for having an acceptable size. The self-normalizing method is only showing

good size when Υ2 is used. While in Table 5.4, the results show that when m = 4, both

self-normalizing tests have good sizes, but Miller’s test still needs overmodification to

find a size close to 0.05. For this data generating process the self-normalizing process

has an advantage since it is not dependent upon a user-chosen parameter compared to
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Miller’s test. This modification also has a negative effect on the power. At m = 150,

Miller’s test for ε = 0.5 has a very small power compared to the other tests.

When the DGP uses the autoregressive coefficients (0.5, 0.5), the results change based

on m (Table 5.6). For m = 4, all the tests have unacceptable high sizes. However,

when m = 20 and m = 150, Miller’s test and the self-normalizing test with Υ1 have

good sizes.

A similar pattern can be seen for when the autoregressive coefficients are (0.8, 0.8).

These results can be found in Table 5.8. When m = 4 and m = 20, all the tests have

sizes larger than 0.05, but when m = 150 all the tests preform well except the AGK

test.

Overall, the results indicate that the performance of the different tests vary based

on which version of the DGP is used. Clearly, there are multiple ways of generating

data, which in turn has its effect on the result of a test. The main conclusion that

we wish to draw is that the self-normalizing approach display similar sizes as Miller’s

test. The power of the self-normalizing test is overall good except for the case when

m = 4 and (b1, b2) = (0.8, 0.8). Therefore, may the self-normalizing test serve as a

competitor for the specification testing of mixed frequency models.
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Table 5.1
The size and power for the three options of higher frequency where the

diagonal entries of B are (b1, b2) = (0, 0)

Test θ = 0 θ = 0.1
m = 4 Miller, ε = 0 0.052 1.000

Miller, ε = 0.2 0.067 1.000
Miller, ε = 0.5 0.049 0.943
HAC 0.068 1.000
AGK 0.051 1.000
SN, Υ1 0.041 0.996
SN, Υ2 0.031 1.000

m = 20 Miller, ε = 0 0.044 1.000
Miller, ε = 0.2 0.050 1.000
Miller, ε = 0.5 0.049 0.350
HAC 0.062 1.000
AGK 0.053 1.000
SN, Υ1 0.058 0.996
SN, Υ2 0.260 1.000

m = 150 Miller, ε = 0 0.061 1.000
Miller, ε = 0.2 0.045 0.760
Miller, ε = 0.5 0.042 0.101
HAC 0.070 1.000
AGK 0.242 0.693
SN, Υ1 0.043 0.999
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Table 5.2
The size and power for the three options of higher frequency where the

diagonal entries of B are (b1, b2) = (0, 0.3)

Test θ = 0 θ = 0.1
m = 4 Miller, ε = 0 0.056 1.000

Miller, ε = 0.2 0.063 1.000
Miller, ε = 0.5 0.047 0.979
HAC 0.068 1.000
AGK 0.057 1.000
SN, Υ1 0.050 1.000
SN, Υ2 0.031 0.998

m = 20 Miller, ε = 0 0.035 1.000
Miller, ε = 0.2 0.058 1.000
Miller, ε = 0.5 0.050 0.584
HAC 0.054 1.000
AGK 0.056 1.000
SN, Υ1 0.051 1.000
SN, Υ2 0.260 1.000

m = 150 Miller, ε = 0 0.060 1.000
Miller, ε = 0.2 0.049 0.967
Miller, ε = 0.5 0.040 0.137
HAC 0.066 1.000
AGK 0.243 0.940
SN, Υ1 0.042 0.999
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Table 5.3
The size and power for the three options of higher frequency where the

diagonal entries of B are (b1, b2) = (0.3, 0.3)

Test θ = 0 θ = 0.1
m = 4 Miller, ε = 0 0.125 1.000

Miller, ε = 0.2 0.118 1.000
Miller, ε = 0.5 0.059 0.918
HAC 0.141 1.000
AGK 0.121 1.000
SN, Υ1 0.103 0.994
SN, Υ2 0.073 0.990

m = 20 Miller, ε = 0 0.053 1.000
Miller, ε = 0.2 0.057 1.000
Miller, ε = 0.5 0.052 0.540
HAC 0.064 1.000
AGK 0.064 1.000
SN, Υ1 0.055 0.997
SN, Υ2 0.264 1.000

m = 150 Miller, ε = 0 0.057 1.000
Miller, ε = 0.2 0.046 0.961
Miller, ε = 0.5 0.039 0.133
HAC 0.068 1.000
AGK 0.247 0.832
SN, Υ1 0.040 0.998
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Table 5.4
The size and power for the three options of higher frequency where the

diagonal entries of B are (b1, b2) = (0.3,−0.3)

Test θ = 0 θ = 0.1
m = 4 Miller, ε = 0 0.092 1.000

Miller, ε = 0.2 0.092 1.000
Miller, ε = 0.5 0.064 0.825
HAC 0.120 1.000
AGK 0.101 1.000
SN, Υ1 0.071 0.971
SN, Υ2 0.064 0.965

m = 20 Miller, ε = 0 0.059 1.000
Miller, ε = 0.2 0.055 0.989
Miller, ε = 0.5 0.056 0.214
HAC 0.079 1.000
AGK 0.059 0.970
SN, Υ1 0.059 0.949
SN, Υ2 0.257 0.960

m = 150 Miller, ε = 0 0.055 0.981
Miller, ε = 0.2 0.047 0.502
Miller, ε = 0.5 0.048 0.083
HAC 0.072 1.000
AGK 0.247 0.427
SN, Υ1 0.046 0.936
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Table 5.5
The size and power for the three options of higher frequency where the

diagonal entries of B are (b1, b2) = (0, 0.5)

Test θ = 0 θ = 0.1
m = 4 Miller, ε = 0 0.057 1.000

Miller, ε = 0.2 0.056 1.000
Miller, ε = 0.5 0.046 0.987
HAC 0.063 1.000
AGK 0.053 1.000
SN, Υ1 0.049 1.000
SN, Υ2 0.036 0.999

m = 20 Miller, ε = 0 0.041 1.000
Miller, ε = 0.2 0.057 1.000
Miller, ε = 0.5 0.047 0.825
HAC 0.056 1.000
AGK 0.052 1.000
SN, Υ1 0.048 1.000
SN, Υ2 0.258 1.000

m = 150 Miller, ε = 0 0.056 1.000
Miller, ε = 0.2 0.046 0.999
Miller, ε = 0.5 0.040 0.195
HAC 0.060 1.000
AGK 0.246 1.000
SN, Υ1 0.034 0.999
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Table 5.6
The size and power for the three options of higher frequency where the

diagonal entries of B are (b1, b2) = (0.5, 0.5)

Test θ = 0 θ = 0.1
m = 4 Miller, ε = 0 0.285 1.000

Miller, ε = 0.2 0.276 1.000
Miller, ε = 0.5 0.097 0.829
HAC 0.323 1.000
AGK 0.266 1.000
SN, Υ1 0.195 0.959
SN, Υ2 0.148 0.941

m = 20 Miller, ε = 0 0.079 1.000
Miller, ε = 0.2 0.072 1.000
Miller, ε = 0.5 0.056 0.765
HAC 0.086 1.000
AGK 0.069 1.000
SN, Υ1 0.058 0.999
SN, Υ2 0.282 1.000

m = 150 Miller, ε = 0 0.058 1.000
Miller, ε = 0.2 0.042 0.998
Miller, ε = 0.5 0.040 0.193
HAC 0.065 1.000
AGK 0.240 0.902
SN, Υ1 0.033 0.997
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Table 5.7
The size and power for the three options of higher frequency where the

diagonal entries of B are (b1, b2) = (0, 0.8)

Test θ = 0 θ = 0.1
m = 4 Miller, ε = 0 0.050 1.000

Miller, ε = 0.2 0.053 1.000
Miller, ε = 0.5 0.045 0.995
HAC 0.073 1.000
AGK 0.060 1.000
SN, Υ1 0.045 1.000
SN, Υ2 0.032 0.998

m = 20 Miller, ε = 0 0.044 1.000
Miller, ε = 0.2 0.052 1.000
Miller, ε = 0.5 0.045 1.000
HAC 0.057 1.000
AGK 0.049 1.000
SN, Υ1 0.052 1.000
SN, Υ2 0.255 1.000

m = 150 Miller, ε = 0 0.050 1.000
Miller, ε = 0.2 0.043 1.000
Miller, ε = 0.5 0.045 0.759
HAC 0.063 1.000
AGK 0.239 1.000
SN, Υ1 0.046 1.000
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Table 5.8
The size and power for the three options of higher frequency where the

diagonal entries of B are (b1, b2) = (0.8, 0.8)

Test θ = 0 θ = 0.1
m = 4 Miller, ε = 0 0.651 0.763

Miller, ε = 0.2 0.645 0.753
Miller, ε = 0.5 0.360 0.442
HAC 0.737 0.841
AGK 0.611 0.711
SN, Υ1 0.486 0.594
SN, Υ2 0.385 0.474

m = 20 Miller, ε = 0 0.301 1.000
Miller, ε = 0.2 0.286 1.000
Miller, ε = 0.5 0.123 0.970
HAC 0.323 1.000
AGK 0.197 0.998
SN, Υ1 0.205 0.979
SN, Υ2 0.407 0.983

m = 150 Miller, ε = 0 0.056 1.000
Miller, ε = 0.2 0.043 1.000
Miller, ε = 0.5 0.038 0.722
HAC 0.063 1.000
AGK 0.243 0.954
SN, Υ1 0.050 0.999
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Chapter 6

Conclusion

The variable addition test as a specification method for determining the best type of

model for mixed frequency data, has been shown to be a good approach in Andreou

et al. (2010) and Miller (2014b). The modification of the test introduced in Miller

(2014b) is easy to compute, but the test still requests the user to choose a value of

the parameter that determines the size of the modification. Therefore, we wish to

find a method that is without any user-chosen values, but is still a powerful test. The

self-normalizing approach is a simple and parameter free method. In this thesis, we

have successfully extended the self-normalizing approach to the specification test of

mixed frequency models. By following the set up of the test model in Miller (2014b),

we have developed a test statistic that utilizes a normalizing matrix. There is no

longer a necessity to estimate the variance matrix, since the normalizing matrix will
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be an inconsistent estimator. The need for user-chosen values is not present. The test

statistic is shown to follow a distribution that was introduced in Lobato (2001). This

paper provides a table with critical values that can be used for the hypotheses testing.

The nature of the self-normalizing test statistic makes it asymptotically pivotal under

the null. The power analysis gave the promising results that in the majority of the

DGPs used in this thesis, the self-normalizing specification test has good size and

is powerful when a reduced set of linear combinations of the HF variable is tested.

This is similar to the results of Miller’s test. Thus, we propose the self-normalizing

approach to the specification testing as a potential competitor to Miller’s test.

This thesis focused on stationary regressors. Therefore, we suggest that further re-

search can be done on DGPs with nonstationary regressors. In addition, conducting

the self-normalizing specification test on an empirical data set could also be of interest.
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