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DISSERTATION ABSTRACT 

Anthropogenic activities continue to drive atmospheric CO2 and O3 concentrations to levels higher 

than during the pre-industrial era.  Accumulating evidence indicates that both elevated CO2 and 

elevated O3 could modify the quantity and biochemistry of woody plant biomass.  Anatomical 

properties of woody plants are largely influenced by the activity of the cambium and the growth 

characteristics of wood cells, which are in turn influenced by a range of environmental factors.  

Hence, alterations in the concentrations of atmospheric CO2 and / or O3 could also impact wood 

anatomical properties.  Many fungi derive their metabolic resources for growth from plant litter, 

including woody tissue, and therefore modifications in the quantity, biochemistry and anatomical 

properties of woody plants in response to elevated CO2 and / or O3 could impact the community 

of wood-decaying fungi and rates of wood decomposition.  Consequently carbon and nutrient 

cycling and productivity of terrestrial ecosystem could also be impacted.  Alterations in wood 

structure and biochemistry of woody plants could also impact wood density and subsequently 

impact wood quality.  This dissertation examined the long term effects of elevated CO2 and / or 

O3 on wood anatomical properties, wood density, wood-decaying fungi and wood decomposition 

of northern hardwood tree species at the Aspen Free-Air CO2 and O3 Enrichment (Aspen FACE) 

project, near Rhinelander, WI, USA.  Anatomical properties of wood varied significantly with 

species and aspen genotypes and radial position within the stem.  Elevated CO2 did not have 

significant effects on wood anatomical properties in trembling aspen, paper birch or sugar maple, 

except for marginally increasing (P < 0.1) the number of vessels per square millimeter.  Elevated 

O3 marginally or significantly altered vessel lumen diameter, cell wall area and vessel lumen area 

proportions depending on species and radial position.  In line with the modifications in the 

anatomical properties, elevated CO2 and O3, alone, significantly modified wood density but effects 

were species and / or genotype specific.  However, the effects of elevated CO2 and O3, alone, on 

wood anatomical properties and density were ameliorated when in combination.  Wood species 

had a much greater impact on the wood-decaying fungal community and initial wood 

decomposition rate than did growth or decomposition of wood in elevated CO2 and / or O3.  
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Polyporales, Agaricales, and Russulales were the dominant orders of fungi isolated.  Based on 

the current results, future higher levels of CO2 and O3 may have moderate effects on wood quality 

of northern hardwoods, but for utilization purposes these may not be considered significant.  

However, wood-decaying fungal community composition and decomposition of northern 

hardwoods may be altered via shifts in species and / or genotype composition under future higher 

levels of CO2 and O3. 
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CHAPTER 1: Introduction 

The atmospheric concentration of CO2 has increased to 394 ppm (NOAA, July 2012), which is 

about the highest in the last 25 million years (Pearson and Palmer 2000).  At the same time, the 

concentration of tropospheric O3  has increased by 38% within the last century (IPCC 2007).  

Both greenhouse gases are predicted to rise further due to anthropogenic activities such as fossil 

fuel combustion and changing land use systems (IPCC 2007).   

Both CO2 and O3 have been observed to modify growth rates and the biochemical composition of 

northern hardwood tree species (Karnosky et al. 2003; Kaakinen et al. 2004; Parsons et al. 2004; 

Liu et al. 2005; Karnosky et al. 2007; Kubiske et al. 2007; Liu et al. 2007; Kostiainen et al. 2008; 

Parsons et al. 2008; Liu et al. 2009; Zak et al. 2011).  Wood density largely depends on wood 

anatomical properties, which in turn are influenced by growth and biochemical characteristics of 

woody plants (Panshin and Zeeuw 1980; Barnett and Jeronimidis 2003; Grabner et al. 2005).  

Hence the rising concentrations of atmospheric CO2 and O3 could impact wood density, which is 

a measure of wood quality for a variety of wood product uses.  Additionally, the quantity, 

anatomical properties and chemical constituents of woody litter can influence the growth of wood-

decaying basidiomycete fungi (Rayner and Boddy 1988; Sinsabaugh et al. 1993; Hattenschwiler 

et al. 2005; Cornwell et al. 2008; Cornwell et al. 2009; Weedon et al. 2009; Freschet et al. 2012; 

Talbot et al. 2012).  Therefore, alterations in the production, chemical constituents and 

anatomical properties of woody plant biomass growth in elevated CO2 and / or O3 could cause 

changes in the wood-decaying basidiomycete fungal community and decomposition rates of 

woody litter.  As a result, nutrient and carbon cycling and productivity in terrestrial ecosystems 

could also be impacted.  

Studies on the effects of elevated CO2 and / or O3 on fungal community composition and function 

(Larson et al. 2002; Chung et al. 2006; Edwards and Zak 2011), and wood properties including 

density and anatomy have been accumulating (Telewski et al. 1999; Beismann et al. 2002; 

Kaakinen et al. 2004; Kostiainen et al. 2008; Kostiainen et al. 2009).  Although wood density and 
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anatomical properties vary with position along the stem (Panshin and Zeeuw 1980; Zobel and 

Buijtenen 1989; Dickison 2000; Barnett and Jeronimidis 2003), the majority of studies focused on 

the lower portions (breast height, 1.37 m, or lower).  Additionally, many of the studies were either 

performed on seedlings and saplings in greenhouses or in growth chambers for short periods 

(Rogers et al. 1983; Conroy et al. 1990; Hattenschwiler et al. 1996; Maherali and DeLucia 2000; 

Beismann et al. 2002; Ceulemans et al. 2002; Atwell et al. 2003; Kilpelainen et al. 2005; Qiao et 

al. 2008; Kostiainen et al. 2009).  Results of these experiments have provided useful information, 

but they may not be applicable to naturally grown trees, since evidence from FACE studies has 

shown that some physiological processes of trees change during their ontogeny (Leakey et al. 

2009; Norby and Zak 2011; Zak et al. 2012). 

Furthermore, effects of elevated CO2 and / or O3 on wood-decaying fungal community 

composition and wood decomposition have received little or no attention.  To our knowledge, no 

studies have investigated the specific impacts of elevated CO2 and / or O3 on wood-decaying 

basidiomycete community composition, despite their key role in nutrient and carbon cycling.  

Instead, decomposition studies have focused on leaf litter rather than wood (Norby et al. 2001a), 

even though the tissues differ in structure and composition.  In addition, most decomposition 

studies were not performed in the environment in which the litter was produced (i.e. under 

elevated CO2 and / or O3) (Norby et al. 2001a), therefore, application of results to potential future 

field situations may not be appropriate. 

The Aspen FACE project provided a more realistic field approach and an exceptional opportunity 

for investigating the long term effects of elevated CO2 and /or O3 on wood properties, wood 

decaying basidiomycete fungal community composition, and decomposition rates of wood from 

common northern hardwood tree species.  Aspen FACE was located in Harshaw, near 

Rhinelander, WI.  It was a unique, long term experiment evaluating the impact of elevated CO2 

and O3, alone and in combination, on northern forest trees on a very large scale (Dickson et al. 

2000).  At Aspen FACE, an increase and a decrease in forest tree growth have been observed 

under elevated CO2 and elevated O3, respectively (Karnosky et al. 1996; Isebrands et al. 2001; 
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Karnosky et al. 2003; King et al. 2005; Kubiske et al. 2007).  Additionally, alterations in wood 

anatomical properties and biochemistry of wood and leaf litter of aspen and birch under elevated 

CO2 and O3 have been observed (Kostiainen et al. 2004; Parsons et al. 2004; Liu et al. 2007; 

Kostiainen et al. 2008; Parsons et al. 2008).  Alterations in soil and forest floor microbial 

community composition under elevated CO2 and O3 at the Aspen FACE site also have been 

documented (Chung et al. 2006; Andrew and Lilleskov 2009; Edwards and Zak 2011).  Evidence 

of increased N-acetylglucosaminidase and cellobiohydrolase activity under elevated CO2 and 

reduced cellobiohydrolase activity in soil under elevated O3 has been reported (Larson et al. 

2002; Chung et al. 2006; Edwards and Zak 2011).  

The general goal of this dissertation was to evaluate the impact of elevated CO2 and / or O3 on 

the wood properties of common northern hardwood tree species (four Populus tremuloides Michx. 

clones, including three relatively O3 tolerant (8, 216, 271) and one relatively O3 sensitive (42 ) 

genotypes; Acer saccharum Marshall var. saccharum; and Betula papyrifera Marshall) after 

exposure for 12 growing seasons at the Aspen FACE experimental site to elevated CO2 (ambient 

+ 200 ppm), elevated O3 (1.5 × ambient), and elevated CO2 with elevated O3.  Additionally, the 

effects of twelve years of forest and soil development under elevated CO2 and /or O3 on the 

composition of the wood-decaying fungal community as well as initial rates of wood 

decomposition of aspen and birch were investigated under FACE conditions.  

In Chapter 2, the long term effects of growth under elevated CO2 and / or O3 on wood density of 

three genotypes of trembling aspen and paper birch were examined.  To capture the entire 

variation in wood density of the trees species, wood density was determined at five different 

positions along the longitudinal axis of the main stem.  To our knowledge, this is the first time the 

combined long term effects of growth under elevated CO2 and O3 on wood density are being 

reported for these species. 

In Chapter 3, the effects of 12 years of forest and soil development under elevated CO2 and / or 

O3 on the composition of the wood-decaying fungal community as well as initial rates of wood 
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decomposition of trembling aspen and paper birch were investigated.  In line with the accruing 

evidence from Aspen FACE,  we hypothesized that: (1) wood species effects would be observed 

in the wood-decaying basidiomycete fungal community composition and decomposition rates; (2) 

modification of soil and forest floor microbial communities resulting from alterations in the quantity 

and biochemistry of aspen and birch trees grown under elevated CO2 and / or O3 for 12 years 

would cause significant alterations in the wood-decaying basidiomycete fungal community; (3) 

elevated CO2 and / or O3 fumigation environment would have no direct impact on wood 

decomposition rates; and (4) rates of decomposition of  aspen and birch wood produced under 

elevated CO2 and O3 would decrease significantly. 

Chapter 4 examined the long term effects of growth under elevated CO2 and /or O3 on the wood 

anatomical properties of paper birch, sugar maple, and four clones of trembling aspen.  Based on 

evidence from Aspen FACE, the following hypotheses were examined: (1) wood species /clonal 

effects would be observed in the wood anatomical properties of birch, sugar maple, and aspen  

(2) wood anatomical properties of birch, sugar maple and aspen  were altered during growth 

under elevated CO2 and O3; and (3) the combined treatment (elevated CO2 + elevated O3) would 

have no effects on anatomical properties of birch, sugar maple and aspen. 

Finally, a comprehensive synthesis of the dissertation findings, conclusions, implications, and 

limitations of the study and recommendations for future investigations are presented in Chapter 5. 

The three distinct but strongly related investigations of this dissertation will contribute to an ability 

to predict wood quality and understand the dynamics and patterns of carbon storage and nutrient 

immobilization and mobilization in the woody detritus of forest ecosystems in the face of ever 

rising atmospheric CO2 and O3 concentrations. 
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CHAPTER 2: Effects of elevated atmospheric CO2 and / or O3 on wood density 

of paper birch and trembling aspen1  

ABSTRACT 

Current background concentrations of CO2 and O3 are about 40% higher than during the pre-

industrial era.  Mounting experimental evidence indicates that these greenhouse gases have 

opposing effects on the growth, biochemistry and wood structure of northern hardwood tree 

species.  Wood density depends on the cellular structure of wood, but the effects of elevated CO2 

and / or O3 on wood density of northern hardwoods are not well understood.  We evaluated the 

effects of elevated CO2 and O3 on the wood density of birch (Betula papyrifera Marshall) and 

three aspen (Populus tremuloides Michx.) clones in 12 year old trees grown at the Aspen Free Air 

CO2 and O3 Enrichment (Aspen FACE) project near Rhinelander, WI, USA.  Elevated CO2 

significantly decreased wood density of aspen clone 271, compared with trees grown under 

ambient conditions.  In contrast, elevated O3 increased wood density of aspen clone 42 and birch 

compared to the ambient.  The combined effects of elevated CO2 and elevated O3 did not have 

any statistically significant impact on wood density across all species and clones investigated.  

However, the wood density of aspen clone 42 and birch tended to increase in either ambient or 

elevated O3 in the presence of elevated CO2.  Our results were largely consistent with the 

differential growth patterns, biochemistry and structural changes which have been reported during 

the 12-year long Aspen FACE experiment.  Based on our results, we hypothesize that wood 

density response of northern hardwood tree species to future higher levels of atmospheric CO2 

and /or O3 will be species and / or genotype dependent. 

INTRODUCTION 

Atmospheric CO2 concentration is currently higher than in any period in the last 25 million years 

(Pearson and Palmer 2000) and about 40% higher than during the pre-industrial era.  It is 

                                                      
1 Manuscript, in progress 
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predicted to increase further at the rate of 14-19 ppm every 10 years (IPCC 2007).  The 

continuous increase in the background concentration of CO2 is attributed to anthropogenic 

activities such as fossil fuel combustion (IPCC 2007).  Atmospheric CO2 is an important raw 

material for photosynthesis in woody plants, and therefore affects their growth and physiology. 

Photosynthesis is catalyzed by rubisco (ribulose-1-5-bisphosphate carboxylase oxygenase).  In 

the presence of optimal supply of other environmental resources, elevated CO2 increases 

photosynthesis in C3 plants by enhancing carboxylation by rubisco and reducing 

photorespiration.  Generally, elevated CO2 improves photosynthetic nitrogen use efficiency, 

enhances carbon uptake, increases water use efficiency and stimulates plant growth in young 

forests with adequate soil resources (Karnosky et al. 2003; Norby et al. 2005; Leakey et al. 2009; 

Norby and Zak 2011).  However, the concomitant rising of tropospheric O3 concentration may 

offset the stimulating growth effects of CO2 (Karnosky et al. 2003) and reduce tree growth and 

carbon sinks in the future (Sitch et al. 2007; Wittig et al. 2009). 

Volatile organic compounds and nitrogen oxides (NOx) from fossil fuel combustion undergo 

photochemical reactions with oxygen to form O3.  This process is the major driving force for 

tropospheric O3 increase (Fowler et al. 1999).  The concentration of tropospheric O3 has 

increased by 38% within the last century (IPCC 2007), and it is predicted that about a half of the 

Earth’s forests will experience O3 concentrations higher than 60 nL L-1 by 2100 (Fowler et al. 

1999; IPCC 2007).  Unlike CO2, ozone is injurious to woody plants (Karnosky et al. 1996; 

Karnosky et al. 2003; Karnosky et al. 2007).  Ozone first enters the stomata and forms cytotoxic 

compounds such as aldehydes, peroxides and assorted radicals, which disrupt important 

physiological processes (Fuhrer and Booker 2003; Wittig et al. 2007; Wittig et al. 2009; Lindroth 

2010; Street et al. 2011).  This can reduce stomatal conductance and photosynthesis, induce leaf 

senescence (Karnosky et al. 1996) and lead to an overall reduction in plant growth and 

productivity (Karnosky et al. 2007; Wittig et al. 2009).  Current concentrations of O3 are causing 

reductions in biomass production of northern temperate and boreal forests by an estimated 7%, 
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and this reduction is expected to increase further to 11% and 17% by 2050 and 2100, 

respectively (Wittig et al. 2009). 

The growth patterns of woody plants have long been recognized to influence wood quality (Zobel 

1985; Zobel and Buijtenen 1989).  Evidence from Aspen FACE has shown that 12 years of 

exposure of northern hardwood species to elevated O3 and CO2, alone,  significantly affects 

growth (Karnosky et al. 2003; King et al. 2005; Kubiske et al. 2007; Norby and Zak 2011; Zak et 

al. 2011; Zak et al. 2012).  The concurrent rising concentrations of atmospheric CO2 and O3 could 

impact wood quality via their effects on growth patterns.  Consequently, evidence of the effects of 

rising concentrations of CO2 and / or O3 on wood quality are accumulating (Conroy et al. 1990; 

Telewski et al. 1999; Beismann et al. 2002; Kaakinen et al. 2004; Kostiainen et al. 2004; 

Kostiainen et al. 2006; Kostiainen et al. 2008; Kostiainen et al. 2009). 

An easy-to-measure and reliable quality indicator of wood quality in the timber and pulp and 

paper industries is density (Barnett and Jeronimidis 2003).  Wood density also has ecological 

importance (e.g. for use in biomass estimation).  A growing number of studies have examined the 

effects of rising concentrations of greenhouse gases on wood density of conifers and hardwoods 

(Telewski et al. 1999; Beismann et al. 2002; Kostiainen et al. 2009).  However, conifers appear to 

be more studied than hardwoods.  Additionally, a majority of the studies were either carried out 

on seedlings and saplings in greenhouses or in growth chambers for short periods (Rogers et al. 

1983; Conroy et al. 1990; Hattenschwiler et al. 1996; Maherali and DeLucia 2000; Beismann et 

al. 2002; Ceulemans et al. 2002; Atwell et al. 2003; Kilpelainen et al. 2005; Qiao et al. 2008; 

Kostiainen et al. 2009).  Results of these experiments have provided useful information, but they 

may not be applicable to naturally grown trees, since evidence from FACE studies has shown 

that physiological processes of trees change during their ontogeny (Leakey et al. 2009; Norby 

and Zak 2011; Zak et al. 2012).  Perhaps such ontogenic changes are the major underlying 

cause for the accumulating contradictory results both within and among different species.  For 

example, elevated CO2 had no significant effects on wood density of Pinus taeda after exposure 

for one year (Rogers et al. 1983) as well as four years (Telewski et al. 1999).  Likewise, the wood 
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density of Pinus sylvestris did not change significantly after three (Ceulemans et al. 2002) and six 

(Kilpelainen et al. 2005) years of elevated CO2 exposure in growth chambers.  Beismann et al. 

(2002) and Kostiainen et al. (2009) reported no effects of elevated CO2 on the wood density of 

Picea abies in four-year long open top chamber and three-year long whole tree chamber 

experiments, respectively.  Similarly, the wood density of Pinus ponderosa seedlings were not 

affected after being exposed to elevated CO2 for a 24 month period (Maherali and DeLucia 2000).  

However, wood density was significantly enhanced in juvenile stems of Pinus radiata (Conroy et 

al. 1990; Atwell et al. 2003) and Picea abies (Hattenschwiler et al. 1996) grown under elevated 

CO2.  In contrast, Abies faxoniana seedlings exposed to elevated CO2 in closed top chambers 

exhibited significantly lower wood density when compared to ambient conditions (Qiao et al. 

2008).  In a FACE experiment, elevated CO2 reduced wood density of Picea abies when nutrient 

levels were improved via fertilization (Oren et al. 2001). 

In contrast to conifers, there are very few experimental reports on the effects of either elevated 

CO2 or O3 on hardwoods.  Elevated CO2 significantly increased wood density of Liquidambar 

styraciflua in an open top chamber experiment with seedlings (Rogers et al. 1983), but no effects 

were observed when same species was tested under FACE conditions (Norby et al. 2001b).  

Similarly, elevated CO2 had no observable effects on wood density of three species of Populus 

grown under FACE conditions (Calfapietra et al. 2003), seedlings of Quercus ilex grown in the 

greenhouse (Gartner et al. 2003) and saplings of  Fagus sylvatica (Beismann et al. 2002) grown 

using open top chambers.  

Although O3 and CO2 co-occur naturally, there are virtually no studies on the effects of elevated 

O3, alone, or in combination with CO2, on wood density for either hardwoods or softwoods. 

Moreover, wood anatomical and chemical properties which are known to influence wood density 

greatly (Panshin and Zeeuw 1980; Zobel 1981; Zobel and Buijtenen 1989; Dickison 2000; Barnett 

and Jeronimidis 2003), are reported to be significantly influenced by elevated O3 and CO2 alone 

or in combination (Kaakinen et al. 2004; Kostiainen et al. 2004; Kostiainen et al. 2006; Kostiainen 

et al. 2008; Kostiainen et al. 2009; Street et al. 2011). 
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The objective of this study was to determine the effects of elevated CO2 and / or O3 on wood 

density of paper birch and three clones of aspen (42, 216, and 271) after 12 years growth at 

Aspen FACE, near Rhinelander, WI, USA.  To our knowledge, this reports the longest duration 

effects of elevated O3, alone and in combination with elevated CO2, on wood density of common 

northern hardwood tree species. 

MATERIALS AND METHODS 

Site description 

Materials for this study were sampled from the Aspen Free-Air CO2 and O3 Enrichment (Aspen 

FACE) project (for detailed description of the site and experimental design for Aspen FACE, 

please see Dickson et al. (2000)).  Aspen FACE research was conducted on a 32 ha USDA 

Forest Service Experimental Farm at Harshaw, near Rhinelander, in Wisconsin, USA (longitude 

45.6o N, latitude 89.5o W).  Potatoes and small grains were cultivated on the site for more than 50 

years before the Forest Service acquired the land in 1972 to serve as a forest research station.  

Prior to the onset of the Aspen FACE research in 1997, the site was planted with poplar clones 

and larch.  However, all the poplar clones and larch were cleared and stumps removed in 1996.  

The study site is nearly flat and the soil type is sandy loam.  A thorough soil analyses was done 

for all treatment plots in 1997 and no significant differences were observed except for mean 

percent carbon and nitrogen, which were significantly greater in CO2 rings than CO2 + O3 rings 

(Dickson et al. 2000). 

The Aspen FACE experiment was a 22 factorial, randomized complete block design with each 

treatment level replicated three times, once each in the northern, central and southern blocks of 

the site.  The main and crossed treatment factors were CO2, O3 and CO2 + O3, respectively.  The 

four treatments were ambient CO2 and O3 as the control, elevated CO2 (ambient + 200 ppm), 

elevated O3 (1.5 × ambient), and elevated CO2 with elevated O3. The treatments were applied to 

twelve 30-m diameter rings, located at least 100 m apart (Appendix figure 2-1).  Each ring was 

partitioned into east and west sections. The eastern portion was planted with five Populus 
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tremuloides Michx. (aspen) clones (8L, 42E, 216, 259 and 271) in random order with a planting 

spacing of 1 m × 1 m.  The western portion was further divided into north and south subplots.  

The northwest and southwest subplots were mixed plantations of aspen clone 216 and Acer 

saccharum Marshall var. saccharum (sugar maple) and Betula papyrifera Marshall (paper birch), 

respectively.  All planting was completed in 1997, and exposure of treatment rings to elevated 

CO2 and O3 was done during the growing seasons of 1998 to 2009 between 0700 hrs and 1700 

hrs each day, unless foliage was wet. 

Sampling and laboratory analysis 

All trees in all treatment rings were harvested during the winter of 2009 / 2010.  Six trees each of 

birch and aspen clones 271, 216 and 42E from each of the 12 rings were randomly selected from 

the harvested trees.  From each sample tree, five 25-mm thick discs were removed at intervals of 

0.5 m from the base of the tree.  To prevent the wood discs from drying, they were placed in 

plastic bags and frozen at Michigan Technological University (MTU) until laboratory analysis was 

performed. 

Wood density was determined from the discs using a water displacement method (Williamson 

and Wiemann 2010).  The wood discs were suspended, completely immersed, in a water bath 

placed on an electronic balance, and the displacement of water, as indicated by the increase in 

mass measured by the balance, was taken as volume of the wood.  Then the samples were oven 

dried at 105oC to a constant mass and the density computed as oven dry mass divided by the 

volume of sample (Williamson and Wiemann 2010). 

Analysis of data 

The experiment was considered a complete randomized design.  Data analysis was carried out 

using the GLM procedure of SAS software version 9.2 (SAS Institute Inc., Cary, NC, USA).  

Descriptive statistics (means and standard errors) were computed for wood density.  In addition, 

data were examined for the normality and homogeneity of variance assumptions of analysis of 

variance (ANOVA), before repeated measures two-way ANOVA was employed to determine the 
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effects of the main factors (CO2, O3, and CO2 + O3) on the wood density of birch and the three 

aspen clones (42, 216 and 271).  Position of wood along the tree stems and their interactions with 

either main factor and or clone were considered as the within-subject factors.  When significant 

interactions were detected between species / clones and any of the treatment main factors, a 

separate analysis was done for each species / clone to identify the species / clone which 

exhibited statistically significant main treatment factor effects (Appendix table 2-1 to 2-3).  

Treatment effects were considered significant when the P-value of ANOVA F-test was less than 

0.05. 

RESULTS 

Effects of species / clones and tree stem position on wood density 

Independent of treatment and position along tree stems, wood densities of birch and aspen 

clones were significantly different (P = 0.0001).  Birch and aspen clone 42 had the highest and 

lowest overall mean densities of 515.8 ± 4.3 and 360.2 ± 2.3 kg / m3, respectively, while overall 

mean wood density for aspen clones 216 and 271 were 409.2 ± 3.5 and 398.4 ± 3.3 kg / m3, 

respectively.  Wood density varied considerably along the stem positions, being significantly 

higher and lower (P = 0.0001) at the lower and upper stem positions, respectively, in all species.  

With regards to position, overall mean wood density ranged from 509.5 ± 4.9 to 523 ± 4.9 kg / m3 

in birch; 398.3 ± 3.9 to 427.2 ± 6.2 kg / m3 in clone 216; 384.3 ± 5.7 to 421.1 ± 4.4 kg / m3 in 

clone 271 and 350.9 ± 3.9 to 381.9 ± 4.7 kg / m3 in clone 42, independent of treatments. 

Effects of elevated CO2 and / or O3 on wood density 

Compared to the control, elevated CO2 with ambient O3 significantly reduced overall mean wood 

density in aspen clone 271 (P = 0.0041) but had no significant effects in birch and aspen clones 

216 and 42 (Fig. 2-1).  In contrast, elevated O3 (with ambient CO2) significantly increased wood 

density in birch (p = 0.0208) and aspen clone 42 (P = 0.0012) but had no significant effects in 

aspen clones 216 and 271, when compared to the control (Fig. 2-2).  The combined treatment of 

elevated CO2 and elevated O3 did not have statistically detectable effects on overall wood density 
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across all species / clones, compared to the control.  However, overall wood density of birch and 

aspen clone 42 tended to increase compared to the control (Fig. 2-3). 

Elevated CO2 with ambient O3 treatment tended to increase wood density along the stems of 

birch and aspen clone 42 but the converse was true for aspen clones 216 and 271, compared to 

control treatment (Figs. 2-4 to 2-7).  There was a marginal significant interactions effect between 

elevated CO2 treatment and position (P = 0.0606) for all species.  This was as a result of the 

marginal interactions (P = 0.0780) between position and elevated CO2 treatment in aspen clone 

42 (Appendix table 2-1), resulting in a marginal increase and decrease in wood density at the 

upper and lower positions, respectively in aspen 42 (Fig. 2-7).  Elevated O3 tended to increase 

wood density along tree stem positions in all species / clones without any significant interactions 

between position and treatment (Fig. 2-4 to 2-7; Appendix table 2-2).  There was no significant 

interaction between position and the combined elevated CO2 and O3 treatments (Figs. 2-4 to 2-7). 

DISCUSSION 

This study demonstrates that elevated CO2 and / or O3, which have been known to influence 

growth and biochemistry of xylem (wood) cells, also impact wood density.  Density is regulated by 

wood structure.  Wood structure is determined by the activities of cambium and the 

developmental characteristics of wood cells.  Available evidence indicates that the growth of 

wood cells can be affected by changing abiotic factors such as CO2 and O3 that in turn may affect 

wood density. 

Effects of species / clones and tree stem position on wood density 

Wood density is strongly under genetic control (Zobel and Buijtenen 1989; Zobel and Jett 1995; 

Barnett and Jeronimidis 2003).  This may explain the statistically significant differences in the 

overall mean wood density of birch and aspen clones 42, 216 and 271, independent of treatment 

and tree stem positions.  In agreement with our observation, Calfapietra et al. (2003), also 

reported significant differences among three Populus species grown under elevated and ambient 
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CO2, with overall mean density ranging between 348 and 409 kg / m3.  These values are 

comparable to the wood densities of the current study’s  aspen clones. 

Tree stem position significantly influenced wood density in all species and clones.  Typically, 

wood density varies considerable along the radial and longitudinal axis of the tree stems due to 

variations in age and physical and biochemical properties of individual cambial cells which control 

wood formation (Dickison 2000; Barnett and Jeronimidis 2003).  In line with the wide inherent 

variability within woody plants, it is important that as much of this variation as possible is captured 

during sampling of woody plants for density studies.  Hence the decision to sample five different 

positions along each tree stem of all species / clones for determination of the overall effects of 

elevated CO2 and / or O3 on wood density in this study. 

Effects of elevated CO2 and / or O3 on wood density 

The wood density of birch, aspen 42 and aspen 216, under elevated CO2 was not different from 

the control.  Calfapietra et al. (2003) also reported no effects of elevated CO2 on wood density for 

three Populus species.  Several studies also have shown no significant effects of elevated CO2 

for many woody plants species.  For example elevated CO2 had no influence on wood density of 

seedlings of Quercus ilex grown in the greenhouse (Gartner et al. 2003), saplings of  Fagus 

sylvatica (Beismann et al. 2002) grown in open top chambers and Liquidambar styraciflua tested 

under FACE conditions (Norby et al. 2001b).  However, the wood density of aspen 271 was 

significantly reduced under elevated CO2 compared to the control in this study.  Accruing 

evidence from the Aspen FACE experiment could help to explain the reduction in the wood 

density of aspen 271 under elevated CO2.  A persistent 26 % increase in ecosystem net primary 

productivity (NPP) occurred under elevated CO2 fumigation during the 12 year long experiment.  

The sustained increase in NPP was partly attributed to enhanced microbial metabolism rates 

mediating rapid cycling of growth limiting nitrogen (Zak et al. 2011).  Additionally, Zak et al. (2011) 

reported that elevated CO2 increased NPP of the aspen clones community by 24-35% during the 

10th-12th years of fumigation.  The enhanced ecosystem productivity was attributed to the 

belowground competitive advantage of aspen clones 271 and 42 over the other congeners for the 
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growth limiting nutrient nitrogen (Zak et al. 2007a; Zak et al. 2012).  This observation parallels 

evidence from  Aspen FACE study, that growth of the aspen clones (8, 42, 216, 259 and 271) 

responded differentially to elevated CO2 (Karnosky et al. 1996; Isebrands et al. 2001; Karnosky et 

al. 2003; King et al. 2005; Kubiske et al. 2007; Norby and Zak 2011; Zak et al. 2011; Zak et al. 

2012), that aspen clones 271 and 42 grew faster than their congeners under elevated CO2 

(Isebrands et al. 2001; Kubiske et al. 2007), and that aspen 271 had the largest cumulative 

biomass production (Kubiske et al. 2007).  Growth rates of woody plants influence wood quality 

including wood density (Zobel 1985; Zobel and Buijtenen 1989; Zobel and Jett 1995; Barnett and 

Jeronimidis 2003).  The reduction in wood density of aspen 271 under elevated CO2 therefore 

confirms the general notion that faster growth of woody plants could result in significant changes 

in anatomical characteristics and corresponding reductions in wood density and mechanical 

strength properties of wood.  Aspen clone 271 was reported to have the largest fiber lumen 

diameter amongst all the clones under investigation (Kaakinen et al. 2004).  Data pooled for all 

the clones of aspen showed that fiber lumen tended to increase under elevated CO2 after 3 

(Kaakinen et al. 2004) and 5 years (Kostiainen et al. 2008) of exposure at Aspen FACE.  These 

observations suggest that the increase in growth of aspen clone 271 under elevated CO2 

(Isebrands et al. 2001; Kubiske et al. 2007; Zak et al. 2011) did not result from corresponding 

increases in cell wall materials but from an increase in the frequency of the vessel and fiber  

tissues (Kaakinen et al. 2004; Kostiainen et al. 2008) via enhancement of cambial activity (Yazaki 

et al. 2005).  Luo et al. (2005) reported that elevated CO2 alone either increased vessel diameters 

or reduced cell wall thickness in three Populus species, but nitrogen fertilization alone and in 

combination with elevated CO2 significantly reduced cell wall area in all three Populus species. 

Yazaki et al. (2001) also observed increasing trends in cell lumen diameter of Larix sibirica grown 

under elevated CO2 and enhanced nutrient availability.  It is therefore likely that elevated CO2 

‘fertilization effects’ coupled with high acquisition of growth limiting nitrogen stimulated longer 

duration of rapid cell division and expansion rather than cell wall deposition by aspen 271, 

thereby resulting in increased void space and subsequent reduction in wood density. 
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Another mechanism which might have contributed to reductions in wood density of aspen 271 

under elevated CO2 could be changes in its wood chemistry (Kaakinen et al. 2004; Kostiainen et 

al. 2008).  Under elevated CO2 there was a significant increase in labile sugars and a reduction in 

-cellulose concentrations in all aspen clones after 3 years of exposure at the Aspen FACE 

(Kaakinen et al. 2004).  Additionally, after 5 years of exposure to elevated CO2 aspen 271 was 

reported have reduced uronic acid (a constituent of hemicellulose) and significant increases in 

starch content (Kostiainen et al. 2008).  The reduction in cellulose and increase non-structural 

carbohydrates suggests that the products of photosynthesis were being used for storage and 

growth rather than cell wall development. 

Wood density response to 12 years of elevated O3 fumigation at the Aspen FACE experiment 

was genotype and species specific.  Wood density of aspen clones 216 and 271 was unaffected 

by elevated O3 treatment but significantly increased in birch and aspen clone 42 under elevated 

O3 compared to the control.  The increase in wood density of birch and aspen clone 42 is in 

agreement with previous studies at the Aspen FACE.  Elevated O3 significantly reduced diameter 

growth of all the aspen clones at the end of 3rd and 7th years of fumigation, but birch was not 

different from the control (Isebrands et al. 2001; Kubiske et al. 2007).  Likewise, Kaakinen et al. 

(2004) and Kostiainen et al. (2008) also observed reduction in radial growth and growth rings of 

aspen clones at the end of the 3rd and 5th  year of elevated O3 fumigation.  They also reported a 

decrease and increase in the cell lumen and cell wall areas, respectively in aspen clones 

(Kaakinen et al. 2004; Kostiainen et al. 2008).  Implying that elevated O3 may have stimulated cell 

wall thickening and dampened cell division and expansion during xylem cell development, 

resulting in reduction in radial growth (Isebrands et al. 2001; Karnosky et al. 2003; Kaakinen et al. 

2004; Kubiske et al. 2007; Kostiainen et al. 2008) and significant increase in wood density of 

aspen 42.  Vessel lumen diameter of birch grown under elevated O3 from Aspen FACE 

decreased marginally compared to the control (Chapter 4, this dissertation). Therefore changes in 

cellular structure in birch in response to elevated O3 (Street et al. 2011) might have contributed to 

the observed increase in birch wood density.  Kostiainen et al. (2006) observed a decrease in 
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vessel percentage  and an increase in percentage of cell wall area in silver birch clone 80 but not 

in birch clone 4 in response to elevated O3 compared to the control.  Typically, wood density 

increases with an increase in cell wall area and reduction in void space.  The increase in total 

lignin, extractives and starch, as observed in birch under elevated O3 at the same experimental 

site (Kaakinen et al. 2004; Kostiainen et al. 2008), may have also contributed to the increase in 

birch wood density.  Lignin, extractives, and accumulation of starch in the ray parenchyma 

positively influence wood density (Grabner et al. 2005). 

Previous investigations at the Aspen FACE site on the combined effects of elevated O3 and 

elevated CO2 on growth parameters (Isebrands et al. 2001; Kubiske et al. 2007; Zak et al. 2011; 

Zak et al. 2012) and anatomical structure (Kaakinen et al. 2004; Kostiainen et al. 2008) on birch 

and aspen clones 42, 216 and 271 observed no effects.  In line with this study, there was no 

statistically significant effect of elevated CO2 in combination with elevated O3 on wood density 

compared to the control for birch and the three aspen clones under investigation.  Implying that, 

the effects of either elevated CO2 or elevated O3 alone on wood density of birch and aspen 

clones are counteractive when in combination.  Nonetheless, wood density of birch and aspen 

clone 42 tended to increase marginally in ambient O3 and was largely enhanced in the elevated 

O3 in combination with elevated CO2 with a more pronounced impact in aspen 42 than birch.  This 

observed trend suggest that lower concentrations (ambient) of O3 have the tendency to influence 

cellular structure and / or biochemistry of birch and aspen clone 42, thereby causing slight 

increases in their density.  Earlier investigations by Kaakinen et al. (2004) from same Aspen 

FACE site observed interaction effects of elevated CO2 and elevated O3 on biochemistry of the 

wood of aspen and birch.  They reported that the combined effects of elevated CO2 and elevated 

O3 significantly increased aspen wood nitrogen by 15%, but in elevated CO2 alone had no effects 

on aspen wood nitrogen.  Likewise, Kostiainen et al. (2006) indicated that elevated O3 alone 

reduced vessel proportion, but in combination with elevated CO2 led to significant increases of 

vessel percentage in the wood of silver birch clone 80.  To our knowledge, only these 

observations (Kaakinen et al. 2004; Kostiainen et al. 2006) have shown significant effects of a 
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combination of elevated O3 and elevated CO2 on wood chemistry and structure.  In conjunction, 

with the tendency for ambient or elevated O3 combined with elevated CO2 to increase wood 

density of birch and aspen 42, is it possible for the concomitant rising of greenhouse gases to 

influence wood properties?.  Perhaps more data and longer duration studies are needed to 

confirm or reject this reasoning. 

Conclusions 

Wood density is a very important wood quality parameter in the pulp and paper and timber 

industries and can aid in the wise use of wood resources.  However wood density is largely 

influenced by xylem structure and cell growth.  Secondary xylem cell development is in turn 

influenced by both biotic and abiotic environmental factors.  Accumulating evidence indicates that 

wood structure could be affected by the concomitantly rising concentrations of CO2 and O3. 

Hence knowledge in the effects of these gases on wood density could aid in the planning 

processes of future wood industries. 

In agreement with mounting evidence, this study has demonstrated that mean wood density 

response to elevated CO2 and / or O3 was species and genotype specific after the 12-year-long 

fumigation at Aspen FACE.  The wood density of aspen clone 216 was relatively stable across all 

treatments.  Under the elevated CO2 treatment, wood density of aspen clone 271, which showed 

the fastest growth during the 12 years long Aspen FACE experiment, decreased significantly, 

compared to the control.  In contrast, under elevated O3, mean wood density of birch and aspen 

clone 42 increased significantly compared to the control.  No statistically significant alterations 

were observed in the mean wood densities of all aspen clones and birch grown under elevated 

CO2 in combination with elevated O3 compared to the control.  This suggests that the effects of 

elevated O3 and elevated CO2 are nullified when in combination.  Interesting is the tendency for 

the wood of aspen clone 42 and birch to increase independent of the level of O3 concentrations 

(ambient or elevated). 
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Figures 

       

Figure 2-1 Wood density of B. papyrifera (birch) and P. tremuloides clones (aspen 216, 271 and 
42) grown under either ambient CO2 (control) or elevated CO2 (eCO2) for 12 years.  Values 
shown are means ± SE, (n=6). 
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Figure 2-2 Wood density of B. papyrifera (birch) and P. tremuloides clones (aspen 216, 271 and 
42) grown under either ambient O3 (control) or elevated O3 (eO3) for 12 years.  Values shown are 
means ± SE, (n=6). 
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Figure 2-3 Wood density of B. papyrifera (birch) and P. tremuloides clones (aspen 216, 271 and 
42) grown under either ambient CO2 + O3 (control) or elevated CO2 + O3 (eCO2 + eO3) for 12 
years.  Values shown are means ± SE, (n=6). 
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Figure 2-4  Wood density of B. papyrifera (birch) with respect to position along the stem, grown 
under either ambient CO2 + O3 (control) or elevated CO2 (eCO2), elevated O3 (eO3) and elevated 
CO2 + O3 (eCO2 + eO3) for 12 years.  Values shown are means (n=6). 
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Figure 2-5 Wood density of P. tremuloides clone (aspen 216) with respect to position along the 
stem, grown under either ambient CO2 + O3 (control) or elevated CO2 (eCO2), elevated O3 (eO3) 
and elevated CO2 + O3 (eCO2 + eO3) for 12 years.  Values shown are means (n=6). 
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Figure 2-6 Wood density of P. tremuloides clone (aspen 271) with respect to position along the 
stem, grown under either ambient CO2 + O3 (control) or elevated CO2 (eCO2), elevated O3 (eO3) 
and elevated CO2 + O3 (eCO2 + eO3) for 12 years.  Values shown are means (n=6). 
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Figure 2-7 Wood density of P. tremuloides clone (aspen 42) with respect to position along the 
stem, grown under either ambient CO2 + O3 (control), or elevated CO2 (eCO2), elevated O3 (eO3) 
and elevated CO2 + O3 (eCO2 + eO3) for 12 years. Values shown are means (n=6). 
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CHAPTER 3: Effects of elevated CO2 and O3 on wood decomposition and wood-

decaying fungal community composition2 

ABSTRACT 

Anthropogenic activities continue to drive atmospheric CO2 and O3 concentrations to levels higher 

than in the pre-industrial era.  Accumulating evidence indicates that both elevated CO2 and 

elevated O3 could modify the productivity and biochemistry of terrestrial woody plants.  Many 

fungi derive their metabolic resources for growth from plant litter, including woody tissue.  Thus 

modifications in the production and biochemistry of woody plants in response to elevated CO2 

and / or O3 could impact the community of wood-decaying fungi and rates of wood 

decomposition.  Consequently carbon and nutrient cycling and productivity of terrestrial 

ecosystem could also be impacted.  Although effects of elevated CO2 and / or O3 on soil microbial 

and forest floor fungal communities and functions have been studied, their effects on wood-

decaying fungi and wood decomposition remain uncertain.  We therefore examined the effects of 

elevated CO2 and / or O3 on the wood-decaying basidiomycete fungal community and initial rates 

of wood decomposition at the Aspen Free-Air CO2 and O3 Enrichment (Aspen FACE) project near 

Rhinelander, WI, USA.  Stem sections from two genotypes of Populus tremuloides Michx. (aspen) 

and Betula papyrifera Marshall (paper birch), produced under elevated CO2 and / or O3 for 12 

years, were reciprocally transplanted and fumigated with elevated CO2 and / or O3 at Aspen 

FACE.  At the end of one growing season, initial wood decomposition rates were determined 

relative to initial wood density and wood-decaying basidiomycetes were isolated from the stem 

sections and identified via DNA sequencing.  Polyporales, Agaricales, and Russulales were the 

dominant orders of fungi isolated.  The wood-decaying basidiomycete fungal communities in 

aspen and birch wood were significantly different.  Although, elevated CO2 and / or O3 fumigation 

tended to reduce the number of fungal species, the fungal communities under elevated CO2 and / 

or O3 were not statistically different from the fungal communities under the ambient conditions.  

                                                      
2 Manuscript, in progress 
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Independent of origin of wood production and elevated CO2 and / or O3 fumigation, birch showed 

higher initial decomposition rate than the aspen clones.  However, elevated CO2 and / or O3 

fumigation environment and origin of wood production did not have significant impacts on wood 

decomposition.  Our results suggest that wood species has a much greater impact on wood-

decaying fungal community composition and initial wood decomposition rate than do either 

growth or decomposition of wood in elevated CO2 and / or O3. 

INTRODUCTION 

Atmospheric concentration of CO2 has increased to 394 ppm (NOAA, July 2012), about the  

highest it has been in the last 25 million years (Pearson and Palmer 2000).  At the same time, the 

concentration of tropospheric O3  has increased by 38% within the last century (IPCC 2007).  

Both greenhouse gases are predicted to rise further due to anthropogenic activities including 

fossil fuel combustion and changing land use systems (IPCC 2007). The general body of 

evidence indicates that elevated CO2 has stimulating effects on photosynthesis leading to 

increased biomass production (Ainsworth and Long 2005; Norby et al. 2005; Leakey et al. 2009; 

Dawes et al. 2011; Norby and Zak 2011).  Unlike elevated CO2, elevated O3 disrupts important 

physiological processes (Fuhrer and Booker 2003; Wittig et al. 2007; Wittig et al. 2009; Lindroth 

2010; Street et al. 2011), injures  woody plants (Karnosky et al. 1996; Karnosky et al. 2003; 

Karnosky et al. 2007) and induces an overall reduction in plant growth and productivity (Karnosky 

et al. 2007; Wittig et al. 2009).   

Furthermore, elevated CO2 and / or O3 are known to cause significant alterations in the chemical 

composition of leaf tissues (Parsons et al. 2004; Liu et al. 2005; 2007; Parsons et al. 2008; Liu et 

al. 2009)  and woody tissues (Kaakinen et al. 2004; Kostiainen et al. 2004; Kostiainen et al. 2006; 

Kostiainen et al. 2008).  For example, Liu et al. (2005) observed a significant increase in the C:N 

ratio and tannin concentration under elevated CO2 and O3, respectively, in the leaf tissues of 

northern hardwoods ( aspen and paper birch).  Lignin concentration of the wood of aspen and 
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birch increased after 3 years (Kaakinen et al. 2004), but decreased in birch after 5 years of 

exposure to elevated O3 (Kostiainen et al. 2008). 

Wood litter constitutes a substantial amount of the total detrital inputs in many terrestrial 

ecosystems (Vogt et al. 1986).  Compared to leaf litter, the annual nutrient release to the 

terrestrial forest ecosystem from decaying wood litter can be very small, but it is essential in the 

long term storage of carbon and nutrients (Rayner and Boddy 1988).  The carbon and nutrients 

are made available to the ecosystem largely via wood-decaying basidiomycete fungi (Rayner and 

Boddy 1988; Boddy and Watkinson 1995).  Therefore, wood-decaying basidiomycete fungi play 

an essential role in the retention and mobilization of carbon and growth limiting nutrients in forest 

ecosystems.  The quantity and chemical constituents of wood-litter influence the growth of wood-

decaying basidiomycete fungi (Rayner and Boddy 1988; Sinsabaugh et al. 1993; Hattenschwiler 

et al. 2005).  Alterations in the production and chemical composition of woody plants due to the 

effects of elevated CO2 and / or O3 could cause changes in wood-decaying basidiomycete fungal 

community and decomposition rates of wood litter.  As a result, nutrient and carbon cycling and 

productivity in terrestrial ecosystems could be impacted. 

Evidence on the potential effects of global change, including the ever rising  CO2 and / or O3 

concentrations, on soil microbial communities and physiological activities is accumulating 

(Kilronomos et al. 1997; Klamer et al. 2002; Larson et al. 2002; Strnadova et al. 2004; Chung et 

al. 2006; Finzi et al. 2006; Parrent et al. 2006; Lesaulnier et al. 2008; Andrew and Lilleskov 2009; 

Edwards and Zak 2011; Gange et al. 2011; Norby and Zak 2011; Zak et al. 2011).  Kilronomos et 

al. (1997) observed increased and decreased sporulation of depending on fungal species under 

elevated CO2.  Sporocarp biomass of ectomycorrhizal fungi increased under elevated CO2 and 

decreased under elevated O3 compared to the control (Andrew and Lilleskov 2009).  

Ectomycorrizhal fungal community composition was significantly altered under elevated CO2 and 

elevated O3 but the effects diminished with time (Andrew and Lilleskov 2009). 
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Strnadova et al. (2004) observed no effect of elevated CO2 on the saprotrophic fungal 

community.  Likewise, Chung et al. (2006) did not detect significant effects of elevated CO2 on 

fungal community composition, but found it was significantly modified under elevated O3 at the 

Aspen FACE experiment.  They also found no effects of either elevated CO2 and / or eO3 on the 

relative abundance of soil fungi.  More recent results from Aspen FACE by Edwards and Zak 

(2011) indicated that plant communities and soil horizons appear to have greater impacts on 

fungal community composition and function than elevated CO2 and elevated O3.  The metabolism 

of plant and fungal cell walls was augmented significantly under elevated CO2 (Larson et al. 

2002; Phillips et al. 2002; Chung et al. 2006) in the early years of Aspen FACE.  Later in the 

experiment, however, plant cell wall metabolism was not affected by elevated CO2 (Edwards and 

Zak 2011) but was significantly reduced by elevated O3 (Larson et al. 2002; Phillips et al. 2002; 

Chung et al. 2006; Edwards and Zak 2011), and fungal cell wall metabolism was not affected by 

either elevated CO2 or O3 (Edwards and Zak 2011). 

The outcomes of investigations aimed at evaluating the effects of the rising CO2 and / or O3 on 

litter decomposition have also had divergent results (Norby et al. 2001a; Lindroth 2010).  For 

example, Strain and Bazzaz (1983) suggested that elevated CO2 will result in production of poor 

quality litter and reduced decomposition rates.  Accordingly, there was reduction in decomposition 

rates of leaf litter of Betula papyrifera (Parsons et al. 2004; Parsons et al. 2008) and Populus 

species (Cotrufo et al. 2005; Parsons et al. 2008) grown under elevated CO2.  Contrarily, 

elevated CO2 had no effect on decomposition rates of leaf litter of similar species (Liu et al. 

2009), twig and branch litter of Fagus sylvatica (Cotrufo and Ineson 2000) and leaf litter of some 

northern species (Finzi et al. 2001; Hall et al. 2006).  Additionally, a meta-analysis of 33 species 

grown under elevated CO2 showed no significant effects on litter decomposition (Norby et al. 

2001a). 

The effects of elevated ozone on decomposition also show contrasting results.  Elevated O3 

increased decomposition rates in litter of Betula papyrifera (Parsons et al. 2008).  However, 

elevated O3 significantly reduced decomposition rates in aspen and birch (Kasurinen et al. 2006; 
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Parsons et al. 2008; Liu et al. 2009).  No changes in decomposition rates were observed in 

needle litter of Pinus seedlings and saplings and leaves of Liriodendron tulipifera seedlings grown 

under elevated O3 (Scherzer et al. 1998; Kainulainen et al. 2003). 

The most important group of organisms that influences wood decomposition in the terrestrial 

environment are fungi (Rayner and Boddy 1988; Boddy and Watkinson 1995).  Three classes of 

wood-decaying fungi are recognized based on the nature of their impact on wood: soft, brown 

and white rot fungi (Rayner and Boddy 1988; Boddy and Watkinson 1995; Worrall et al. 1997; 

Schmidt and Czeschlik 2006).  White rot fungi decompose all components of wood, including 

lignin, but brown rot and soft rot fungi attack simple carbon-containing compounds and 

holocellulose, with minimal effects on lignin.  Consequently, decomposition patterns vary with 

wood-decaying fungal species (Worrall et al. 1997) and richness (Chi et al. 2007; Rajala et al. 

2010).  Species richness may have retarding or stimulating effects on wood decomposition 

(Boddy 2000; Fukami et al. 2010; Rajala et al. 2010). 

Until now, specific effects of elevated CO2 and / O3 on wood-decaying white-rot basidiomycete 

community composition remain uncertain, in spite of their key role in nutrient and carbon cycling. 

Meanwhile, Edwards and Zak (2011) showed that the effects of elevated CO2 and O3 could have 

different impacts on different groups within fungal communities and that the effects could fluctuate 

with time.  Furthermore, most decomposition studies were not done in the same environment in 

which the litter was produced (Norby et al. 2001a), rendering applicability of results to field 

situations uncertain.  The Aspen FACE project provided an in vivo field approach for such 

investigations.  Aspen FACE was located in Harshaw, near Rhinelander, WI.  It was a unique, 

long term experiment (about 13 years) evaluating the impact of elevated CO2 and O3 and their 

interaction on northern forest trees on very large scale.  At Aspen FACE, a persistent 26% 

increase in net primary productivity was observed under elevated CO2 for 12 years (Isebrands et 

al. 2001; Karnosky et al. 2003; King et al. 2005; Kubiske et al. 2007; Zak et al. 2011), and a 

reduction in productivity under elevated O3 was also observed (Isebrands et al. 2001; Karnosky et 

al. 2003; King et al. 2005; Kubiske et al. 2007).  Additionally, alterations in the biochemistry of 
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wood and leaf litter of aspen and birch produced under elevated CO2 and elevated O3 have been 

observed at Aspen FACE.  Elevated CO2 increased levels of condensed tannins, C:N. and 

lignin:N ratios in aspen and birch leaves (Parsons et al. 2004; Liu et al. 2005; 2007; Parsons et al. 

2008; Liu et al. 2009).  Elevated O3 increased levels of lignin in aspen leaves, decreased C:N and 

lignin:N in birch leaves (Parsons et al. 2004; Parsons et al. 2008) and increased levels of soluble 

phenolics and condensed tannins in aspen and birch leaves (Liu et al. 2005; 2007; Liu et al. 

2009).  No statistically significant effect of elevated CO2 and / or O3 on the C:N and lignin:N levels 

were reported in birch and aspen wood (Kostiainen et al. 2008).  However, concentrations of 

extractives in aspen wood increased and decreased under elevated CO2 and O3, respectively, 

and increased in birch wood under either elevated CO2 or O3 (Kostiainen et al. 2004; Kostiainen 

et al. 2008).  Concomitant with the alterations in the production and biochemistry of litter, 

microbial community composition modifications have also be observed under elevated CO2 and 

O3 at the Aspen FACE site (Chung et al. 2006; Andrew and Lilleskov 2009; Edwards and Zak 

2011).  Evidence of increased N-acetylglucosaminidase and cellobiohydrolase activity under 

elevated CO2 and reduced cellobiohydrolase activity in soil under elevated O3 has been reported 

(Larson et al. 2002; Chung et al. 2006; Edwards and Zak 2011).  Elevated CO2 and / or O3 

fumigation environment had no direct impact on aspen and birch leaf litter decomposition rates.  

However, decomposition rates of leaf litter of aspen and birch produced under elevated CO2 

decreased significantly, while that of birch and aspen leaf produced under elevated O3 increased 

and decreased respectively, after up to 23 months of field incubation (Parsons et al. 2004; 

Parsons et al. 2008).  A longer duration study (up to 735 days) by Liu et al. (2007) suggested that 

the effects of elevated CO2 and / or O3 on decomposition rates via changes in biochemistry of leaf 

litter of aspen and birch could be transient.  In line with the aforementioned evidence from Aspen 

FACE, we hypothesized that: (1) wood species effects would be observed in the wood-decaying 

basidiomycete fungal community composition and decomposition rates; (2) modification in soil 

and forest floor microbial communities resulting from alterations in the quantity and biochemistry 

of aspen and birch litter produced under elevated CO2 and  /or O3 for 12 years would cause 
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significant alterations in the wood-decaying basidiomycete fungal communities; (3) elevated CO2 

and / or O3 fumigation environment would have no statistically significant direct impact on wood 

decomposition rates; and (4) rates of decomposition of  aspen and birch wood produced under 

either elevated CO2 or O3 would be significantly different than those for wood produced under 

ambient control conditions. 

MATERIALS AND METHODS 

Site description 

Stem segments used in the study were obtained from the Aspen Free-Air CO2 and O3 Enrichment 

(Aspen FACE) project (for a detailed description of the site and experimental design of Aspen 

FACE see Dickson et al. (2000)).  Aspen FACE research was conducted on a 32 ha USDA 

Forest Service Experimental Farm at Harshaw, near Rhinelander, in Wisconsin, USA (longitude 

45.6o
 N, latitude 89.5o W).  Potatoes and small grains were cultivated on the site for more than 50 

years before the Forest Service acquired the land in 1972 to serve as a forest research station.  

Prior to the onset of the Aspen FACE research in 1997, the site was planted with poplar clones 

and larch.  However, all the poplar clones and larch were cleared and stumps removed in 1996.  

The study site is nearly flat and the soil type is sandy loam.  An initial soil analyses conducted for 

all treatment plots in 1997 showed no significant differences except for mean percent carbon and 

nitrogen, which were significantly greater in CO2 rings than CO2 + O3 rings (Dickson et al. 2000).   

The Aspen FACE experiment was a 22 factorial randomized complete block design with each 

treatment level replicated three times, once each in the northern, central and southern portions of 

the experimental site.  The main and crossed factors were CO2, O3 and CO2 + O3, respectively.  

The treatment levels were ambient CO2 and O3 as the control and elevated CO2 (ambient + 200 

ppm) and elevated ozone (1.5 × ambient), respectively.  The treatments were applied to twelve 

30-m diameter rings, located at least 100 m apart (Appendix fig. 2-1).  Each ring was partitioned 

into east and west regions.  The eastern region was planted with five Populus tremuloides Michx. 

(aspen) clones (8L, 42E, 216, 259 and 271) in random order, with a 1 m × 1 m spacing.  The 



53 
  

western region was further divided into north and south subplots.  The northwest and southwest 

subplots were mixed plantations of aspen clone 216 and Acer saccharum Marshall var. 

saccharum (sugar maple) and Betula papyrifera Marshall (paper birch), respectively.  All planting 

was completed in 1997, and exposure of treatment rings to elevated CO2 and O3, was done 

during the growing seasons of 1998 to 2009 between 0700 hrs and 1700 hrs each day, when 

foliage was not wet.  In 2010, after the original experimental plantings had been harvested, CO2 

and O3 treatments were continued for one growing season for the regenerating forest composed 

of aspen root suckers and maple and birch stump sprouts. 

Sampling and laboratory analysis 

All trees in all treatment rings were harvested during the winter of 2009/2010 (Fig. 3-1).  Six trees 

of birch and aspen clones 271 and 42E from each treatment level were randomly sampled.  From 

the lower stem of each tree, five 25-mm wide disc subsamples were cut at intervals of 0.5 m from 

the base to the top of the stem section.  The four 0.5 m-log sections in between the discs together 

with the five 25-mm discs from all sampled trees were transported to Michigan Technological 

University for refrigeration and laboratory analysis. 

The discs were used to determine initial wood density using a water displacement method 

(Williamson and Wiemann 2010).  The wood discs were completely suspended under water in a 

beaker placed on an electronic balance, and the mass of displaced water was used to estimate 

volume of the wood. The samples were then oven dried at 105oC to a constant mass, and density 

was computed as oven dry mass divided by the moist volume of sample. 

In early May 2010, all the 0.5 m log segments of birch and aspen clones 271 and 42 were 

redeployed onto the soil surfaces of the rings in a reciprocal transplanting manner and allowed to 

begin decaying (Table 3-1).  Logs grown under each treatment were placed on the soil surface of 

every treatment in a full factorial design, with two logs per species / clone from each of the four 

treatments placed in each ring (Table 3-1).  The rings were then fumigated with elevated CO2, O3 

and CO2 + O3 at concentrations similar to the description above during the entire growing season 
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(May-October 2010).  One log per species / clone and treatment from each ring (144 log samples 

in total) were removed from the rings in early May 2011 and frozen at MTU pending laboratory 

analysis.   

To determine the effects of the treatments on fungal communities and rate of wood 

decomposition, one end of each 0.5 m-long log was first cleaned by cutting off a 6-mm disc.  

Then a 25-mm thick disc was sampled from all 144 samples from the cleaned edge.  The 25-mm 

disc samples were then divided into two half discs.  One half disc was used to estimate final wood 

density and the other for fungal isolation investigations.  A water displacement method was used 

to measure final wood density as described above.  The percent loss in 

density:
   × 100 was used as a measure of initial decomposition rate 

(Fukasawa et al. 2009b; 2009a; Rajala et al. 2010). 

The sample for fungal isolation studies was further subdivided into two sub-samples.  From each 

of the fresh surfaces three wood chips of approximately 2 mm3 were aseptically removed and 

placed into three separate agar plates of two different media.  One plate contained malt extract 

agar of 2% malt and 1.5% agar.  The other two plates had malt extract agar containing benomyl 

(2 mg L-1) and streptomycin (40 mg L-1).  The benomyl and streptomycin were added to suppress 

the growth of micro-fungi and bacteria, respectively (Eaton and Hale 1993).  The plates were then 

incubated in the dark at room temperature and monitored for fungal growth.  Pure culture isolates 

were transferred to 2% malt agar for long term storage and characterization.  Characterizations 

were based on morphological (growth rate, nature of mat) and anatomical (propagative 

structures, nature of hyphae, presence or absence of clamps) features (Stalpers 1978; Rayner 

and Boddy 1988).  Pure cultures were transferred to 2% malt agar slants and transported to the 

mycology lab of the USDA Forest Service at Madison, USA, for DNA sequencing and 

identification.  A fungal species was recorded as present or absent in a 0.5 m log segment.  
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Analysis of data 

Fungal community composition data analysis was done using R, version 2.15.0 (R Development 

Core Team 2012).   Fungal species with frequency occurrence of less than 3 were excluded from 

analysis as recommended by McCune and Grace (2002) for multivariate analysis.  Non-metric 

multidimensional scaling (NMDS) graphs of fungal community composition for the four treatments 

(control, elevated CO2, elevated O3 and elevated CO2 + elevated O3) and between birch and 

aspen were created using Bray Curtis distance measures.  The NMDS graphs were done 

separately for aspen clones and the birch species independent of treatments.  The minimum 

number of axes for the NMDS plots, were determined from scree plots, with the lowest amount of 

stress.  Due to the multiple factors under investigation, permutational multivariate analysis of 

variance (PerMANOVA) was used to determine statistically significant effects of species and 

elevated CO2 and / or O3 on fungal community composition.  PerMANOVA is a multi-response 

permutation procedure (MRPP) and requires neither the normal distributions nor equal variances 

of the general ANOVA assumptions (Anderson 2001; McCune and Grace 2002). 

Split-split-plot ANOVA (Montgomery 2009) was used to analyze the data on initial wood 

decomposition rates using the GLM procedure of SAS software version 9.2 (SAS Institute Inc., 

Cary, NC, USA).  Each of the fixed main treatment factors of CO2 (ambient vs. elevated CO2); O3 

(ambient and elevated O3), and CO2 + O3 (ambient vs. elevated CO2 + elevated O3) were 

considered as the whole plot factor, species (birch, aspen clones 42 and 271) as the sub-plot 

factor, and source of log (i.e. logs produced under ambient conditions, elevated CO2 and / or O3) 

as the sub-sub-plot factor.  There were three replicate rings / blocks along the north, central and 

southern regions of the experimental site.  The analyses were carried out separately for each 

main treatment factor on all species / clones and log sources.  Error terms for testing block and 

main treatment effects were block × treatment with 2 degrees of freedom, where treatment was 

elevated CO2 and or / O3.  The error term for testing for species, and species × treatment effects 

was block × species-nested-within-treatment, with 8 degrees of freedom.  The error term for 

testing the effects of log source and its interaction with species and /or treatment was the total 
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error term of the split-split-plot ANOVA model, with 36 degrees of freedom (Appendix tables 3-4 

to 3-6).  Descriptive statistics (means and standard errors) were computed for each parameter.  

In addition, data were examined for the normality and homogeneity of variance assumptions of 

analysis of variance before analysis was performed.  Data in percentages were arcsine 

transformed before the split-split-plot analysis was implemented. 

RESULTS 

Fungal community  

A total of 123 out of the 144 log samples (85%) produced wood-decaying basidiomycete isolates. 

The remaining 21 log samples (15%) were either sterile or contaminated with bacteria and / or 

micro-fungi.  A total of 14 wood-decaying basidiomycete were isolated and 13 were identified 

either to species or genus levels, with one isolate unidentified (Table 3-2).  All isolated fungi were 

from the phylum Basidiomycota and class Agaricomycetes consisting of the orders Agaricales, 

Polyporales, Russulales and Cantharellales (Kirk et al. 2011).  Five species were from two 

families of Polyporales (Meruliaceae, Polyporaceae); four species from two families of Russulales 

(Peniophoraceae, Stereaceae); three species from three families of Agaricales (Cyphellaceae, 

Physalacriaceae, Schizophyllaceae) and one species from the family Hydnaceae of the order 

Cantharellales (Table 3-2).  Independent of treatment type, 11 and 13 fungal species were 

present in the aspen clones and birch logs, respectively (Table 3-3).  The NMDS biplots 

separated the fungal community composition between the aspen clones and birch species along 

axis one (Fig. 3-2).  A PerMANOVA further confirmed that the difference in fungal composition of 

aspen and birch logs was statistically significant (P = 0.0009, Table 3-4).  An indicator species 

analysis revealed that Bjerkandera,adusta, Stereum rugosum and Trametes versicolor were 

significant species indicators of the aspen logs (P = 0.002; P = 0.010; P = 0.048, respectively).   

All 14 fungal species were present in the ambient rings with 10 each recorded under elevated 

CO2 and elevated O3, and 12 species present in their combination, independent of species of log 

(Table 3-3).  The aspen logs under ambient conditions, elevated CO2, elevated O3 and elevated 
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CO2 + O3 had 11, 9, 8 and 8 fungal species, respectively.  In addition the birch logs under 

ambient conditions, elevated CO2, elevated O3 and elevated CO2 + elevated O3 had 13, 5, 6 and 

6 fungal species, respectively (Table 3-3).  NMDS biplots did not separate the fungal community 

composition under the ambient and elevated CO2 and / or O3 for the aspen or birch logs (Figs. 3-

3 and 3-4).  The trends revealed by the NMDS biplots were confirmed by PerMANOVA (Table 3-

4). There was no significant difference between fungal community compositions under ambient 

and either elevated CO2 and / or O3 for aspen (P = 0.1279) or birch logs (P = 0.2438). 

Wood decomposition 

Birch and aspen clone 271 exhibited the highest and lowest percent density loss, respectively, at 

the end of the study.  Mean wood density across all treatments decreased from 518.1 ± 1.7 to 

449.9 ± 4.7 kg / m3 with percent loss of 13.2 ± 1.1 in birch; (Table 3-5); from 357.4 ± 2.2 to 317.8 

± 4.9 Kg / m3 with percent loss of 11.1 ± 0.8 in aspen 42 (Table 3-6) and from 398.2 ± 8.2 to 

363.8 ± 7.9 Kg / m3 with percent loss of 8.6 ± 0.1 in aspen 271 (Table 3-7).  The observed 

differences in the percentage loss of wood density in birch and aspen clones 42 and 271 were 

statistically significant, independent of elevated CO2 and / or O3 fumigation and growth source of 

log (Table 3-8, Appendix tables 3-4 to 3-6).  Independent of wood source, elevated CO2 and /or 

O3 fumigation (microenvironments) did not have any statistically significant impact on percent 

wood density loss in birch or aspen logs (Tables 3-8; Appendix tables 3-4 to 3-6) compared to the 

control.  Independent of the differential microenvironments created by elevated CO2 and / or O3 

fumigations, birch or aspen logs originally produced under either ambient conditions or elevated 

CO2 and / or O3 (source of wood) also did not show any statistically detectable effects on percent 

wood density loss compared to the control (Tables 3-5 to 3-8).  There was a nearly significant 3-

way-interraction effect among species, source of wood and elevated CO2 treatment (P = 0.1001).  

This was the result of percent density loss in birch and aspen 271 wood produced under elevated 

CO2 tending to decrease and that of aspen 42 wood produced under elevated CO2 tending to 

increase elevated CO2 treatment compared to the control.  
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DISCUSSION  

We hypothesized that: (1) wood species effects would be observed in the wood-decaying 

basidiomycete fungal community composition and decomposition rates; (2) modification in soil 

and forest floor microbial communities resulting from alterations in the quantity and biochemistry 

of aspen and birch detritus produced under elevated CO2 and / or  O3 for 12 years would cause 

significant alterations in wood-decaying basidiomycete fungal community (3)  elevated CO2 and / 

or O3 fumigation environment would have no statistically significant direct impact on wood 

decomposition rates; and (4) rates of decomposition of aspen and birch wood produced under 

elevated CO2 and O3 alone would be significantly different than those for wood produced under 

ambient control conditions .  Our results supported hypotheses 1 and 3 but not 2 and 4. 

Fungal community 

Three major orders, Polyporales, Agaricales and Russulales, dominated the isolated wood-

decaying basidiomycetes fungi.  Additionally one species of Cantharellales (Sistotrema 

brinkmannii) was isolated, but occurred only once.  All isolated species are known to cause white 

rot except Sistotrema brinkmannii, which is known for causing brown rot on northern hardwoods 

in America (Lindsey and Gilbertson 1978; Gilbertson and Ryvarden 1986).  The NMDS biplots 

separated the fungal community composition associated with birch and aspen clones logs along 

axis one, regardless of FACE treatment.  A PerMANOVA analysis further indicated that fungal 

composition of aspen clones and birch logs were significantly different from each other. The 

difference was attributed to the greater relative abundance of Bjerkandera adusta, Trametes 

versicolor and Stereum rugosum in the aspen clones logs across all treatments.  Additionally, 

Chondostereum purpureum and Stereum sp were very rare in the birch logs and one unknown 

species (unidentified sp) also tended to be very rare in the aspen logs.  An earlier study at the 

same research site also identified plant community to be the major cause for differences in fungal 

community composition (Edwards and Zak 2011).  A higher number of ascomycetes and 

basidiomycetes genotypes were reported for the aspen clones community than for the aspen-
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birch mixed community (Edwards and Zak 2011).  The importance of log species type on fungal 

community composition may be attributed to substrate-specificity effects of the different wood-

decaying fungi occurring (Lodge and Cantrell 1995; Lindahl et al. 2007). 

Elevated CO2 and / or O3 tended to reduce the number of wood-decaying fungal genotypes in 

both the aspen clones and aspen-birch communities.  However, separate NMDS biplots for the 

two plant communities showed no clustering of wood-decaying fungal composition of the various 

treatments (Fig. 3-3 and 3-4).  A PerMANOVA analysis also confirmed that elevated CO2 and / or 

O3 did not show statistically detectable effects on wood-decaying fungal communities in the 

aspen and the birch logs compared the control.  Strnadova et al. (2004) also observed no 

significant effects of elevated CO2 on saprotrophic micro-fungal community composition at the 

Swiss FACE experiment. 

At Aspen FACE a number of studies on the effects of elevated CO2 and /or O3 on forest floor and 

soil microbial communities and function have been carried out.  In one assessment, elevated CO2 

had no effect on soil fungal communities, but elevated O3 did (Chung et al. 2006).  Earlier in the 

Aspen FACE experiment the overall soil microbial community under elevated CO2 was found to 

be different from ambient, but elevated O3 diminished the effect (Phillips et al. 2002).  Recent 

investigations indicated that different functional groups of fungi inhabiting the forest floor or soil 

responded differently to elevated CO2 and / or eO3 treatments (Edwards and Zak 2011).  For 

example, elevated CO2 and O3 significantly altered ectomycorrhizal and Agaricomycetes fungal 

communities in the soil, but the Pezizomycotina fungal community in the forest floor and soil were 

not altered.  Additionally elevated CO2 altered the Agaricomycetes fungal community in the forest 

floor compared to ambient CO2.  Different fungal functional groups occupy different ecological 

niches (Lodge and Cantrell 1995; Lindahl et al. 2007; Edwards and Zak 2011) and respond 

differently to elevated CO2 and / or O3 (Edwards and Zak 2011).   

Ectomycorrhizal fungi occupying the deeper depth of the soil are more efficient in harvesting 

nitrogen than carbon, but the Agaricomycetes occupying forest floor and litter are efficient in 
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depolymerizing carbon (Lindahl et al. 2007).  Saprobic fungi, including wood-decaying 

basidiomycetes, utilize dead biological materials via the production of extracellular enzymes 

(Rayner and Boddy 1988; Baldrian 2008).  Cellobiohydrolase and N-acetylgluccosaminidase 

(NAG) are two major extracellular enzymes that saprobic fungi use in the degradation of plant cell 

wall (lignin) and fungal cell wall (chitin) materials, respectively.  The activities of these two 

enzymes in soil were followed for ten years at Aspen FACE (Larson et al. 2002; Chung et al. 

2006; Edwards and Zak 2011).  Larson et al. (2002), reported an increased in cellobiohydrolase 

and N-acetylgluccosaminidase activities under elevated CO2, with no effects under elevated O3 

after three years of fumigation.  At the end of five years of fumigation, elevated CO2 was 

observed still to increase cellobiohydrolase and N-acetylgluccosaminidase activities, while 

elevated O3 reduced cellobiohydrolase and  had no effect on N-acetylgluccosaminidase activities 

(Chung et al. 2006).  After ten years of fumigation, the effects of elevated CO2 and O3 on 

cellobiohydrolase and N-acetylgluccosaminidase activities appeared to have dampened and were 

no longer statistically significant compared to the control (Edwards and Zak 2011).   

Cellobiohydrolase and N-acetylgluccosaminidase activities may reflect the presence of certain 

fungi (Baldrian 2008).  For example, Chung et al. (2006), reported reduction of cellobiohydrolase 

activities with simultaneous alterations in fungal community composition under elevated O3.  It is 

therefore reasoned that the diminishing effect of elevated CO2 and O3 on cellobiohydrolase and 

N-acetylgluccosaminidase activities after ten years of fumigation (Edwards and Zak 2011) is in 

agreement with the current studies observation which was conducted after the 12th year of Aspen 

FACE.  To our knowledge, this is the first time effects of elevated CO2 and / or O3 on the wood 

decaying fungal community has been investigated.  Woody litter input to the experimental site 

was virtually absent during the study, except for small tree mortality and branch loss during the 

experiment.  Additionally, this study was performed after all trees were harvested and little 

canopy existed.  As a result there were greater chances that fungal spores may have been blown 

or circulated in the experimental area and contributed to our current observation of no treatment 

effects on the wood decaying fungal community.  Furthermore, fungal community development in 
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temperate decaying hardwood occurs in successional stages (Frankland 1998; Boddy and 

Heilmann-Clausen 2008), with the suite of fungal species changing over time (Eaton and Hale 

1993; Boddy and Heilmann-Clausen 2008). This study was conducted after a relatively short 

period of decay (May 2010 – May 2011.  As a result, most of the fungal species isolated, 

Chondostereum purpureum, Trametes spp, Stereum spp, Peniophora sp, Cylindrobassidium sp, 

Bjerkandera adusta, and Schizophyllum commune, are from the primary or secondary 

successional stages of wood decomposition (Boddy and Heilmann-Clausen 2008).  It is therefore 

suggested that our observations should be interpreted with caution since we are not certain how 

a longer term study and a tertiary suite of fungal species would respond to elevated CO2 and / or 

O3 fumigations.  

Wood decomposition  

Wood species had a detectable impact on wood decomposition rates after one year at the Aspen 

FACE site, with birch decomposing faster than aspen.  This is consistent with previous reports for 

a variety of tissues from the same species.  At the Aspen FACE experiment, leaf litter of birch 

was found to decay faster than that of aspen (Liu et al. 2007; Parsons et al. 2008).  Similarly, a 

lab decomposition assay found higher wood decay rates in birch than aspen wood from Aspen 

FACE (Richter, unpublished data).  Species differences have long been recognized to have 

strong impact on wood decomposition (Rayner and Boddy 1988; Boddy and Watkinson 1995; 

Hattenschwiler et al. 2005; Freschet et al. 2012).  Wood decomposition is influenced by species 

due to species specific variation in wood physical, chemical and anatomical characteristics 

(Panshin and Zeeuw 1980; Boddy and Watkinson 1995; Cornwell et al. 2008; Cornwell et al. 

2009; Weedon et al. 2009; Freschet et al. 2012).  For example, the relatively higher percentage of 

lignin in aspen (Kaakinen et al. 2004) could cause it to decay at a slower rate than birch.  Lignin is 

a recalcitrant chemical compound and known to decompose at a slower rate (Eaton and Hale 

1993; Talbot et al. 2012). 

Independent of source of aspen or birch wood, elevated CO2 and / or O3 fumigation did not have 

any significant impact on percent density loss.  This implies that elevated CO2 and / or O3 
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fumigation environment did not have direct effects on initial decomposition rates of birch and 

aspen wood.  Elevated CO2 and / or O3 fumigation environment also did not alter rates of 

decomposition of aspen and birch leaf litter after 12 and 23 months of exposure at Aspen FACE 

(Parsons et al. 2004; Parsons et al. 2008).   

Generally, elevated CO2 and / or O3 are expected to impact decomposition rates via changes in 

the biochemistry / quality of plant litter (Strain and Bazzaz 1983).  Typically, poor quality litter (low 

N, P; high phenolics and extractives content) decomposes slowly and high quality litter (high N, P, 

low phenolics and extractives) decomposes at faster rates.  Low quality litter induces agents of 

decomposition to divert metabolic resources into synthesizing enzymes for acquisition of growth 

limiting macronutrients such as N and P from exogenous sources and constrains the production 

of lignin and cellulose degrading enzymes, thereby dampening decomposition rates in poor 

quality substrates (Sinsabaugh et al. 1991; Sinsabaugh et al. 1992; 1993; Sinsabaugh and 

Linkins 1993).  Plant litter, mainly leaf tissues produced under elevated CO2, tended to have high 

C:N, lignin:N and condensed tannins (poor quality) and significant reductions in decomposition 

rates relative to litter generated under ambient conditions.  Plant litter generated under elevated 

O3 tended to have low C:N (high quality), but tannin or lignin concentrations also tended to 

increase, thereby reducing decomposition rates (Parsons et al. 2004; Liu et al. 2005; Parsons et 

al. 2008).  Note however that Liu et al. (2007) indicated that the effects on decomposition rates 

could be transient.  In contrast, beech wood (Fagus sylvatica L) generated under elevated CO2 

resulted in high C:N and lignin:N but did not result in reduction of decay rates (Cotrufo and Ineson 

2000).  Likewise, meta-analysis of 33 species grown under elevated CO2 showed no significant 

effects on plant litter decomposition (Norby et al. 2001a).   

We also did not find any statistically significant effects of the growth environment of wood on 

rates of decomposition in this study.  The birch and aspen wood used in this study were grown 

under Aspen FACE conditions for 12 years, implying that biochemical changes in the wood of 

aspen and birch generated under elevated CO2 and / or O3 were minor with regard to those 

needed to alter decomposition.  Percent density loss in aspen 271 produced under elevated CO2 
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tended to decrease when placed in the elevated CO2 treatment compared to the control.  

Surprisingly, percent density loss of aspen 271 produced under ambient or elevated CO2 tended 

to increase under ambient, suggesting that the observed reduction in percent density loss in 

aspen 271 produced under elevated CO2 and placed in elevated CO2 treatment may not be 

directly explained by either source of wood (substrate quality) or elevated CO2 fumigation 

environment.   

Wood decomposition is influenced by the complex interactions of environment and decomposer 

fungal species, which may vary temporally and spatially (Rayner and Boddy 1988; Boddy and 

Watkinson 1995; Hattenschwiler et al. 2005).  Additionally the anatomical, physical and chemical 

characteristics of the plant litter could also impact decomposition rates (Cornwell et al. 2008; 

Cornwell et al. 2009; Weedon et al. 2009).  Leaf litter of birch and aspen clone 216 under native 

placement (fumigation environment same as during growth) at same experimental site (Aspen 

FACE, Rhinelander) exhibited significant trends in decomposition rates (Parsons et al. 2004; 

Parsons et al. 2008), which were comparable to the trends in percent density loss in aspen 271 

and birch wood observed in this study.  Under native placement, rates of decomposition of aspen 

leaf litter decreased significantly in all treatments, but those of birch of decreased significantly 

under elevated CO2 and increased under elevated O3 and CO2+O3 (Parsons et al. 2008).  They 

attributed the differential decomposition rates to differences in the biochemistry of the birch and 

aspen leaf litter.  Although, data on the biochemistry of aspen and birch wood were not 

determined in this study, earlier reports from Aspen FACE showed that C:N tended to increase 

under elevated CO2 and lignin and extractives increased and decreased, respectively, under 

elevated O3 in aspen.  In birch, wood extractives increased under elevated CO2 and elevated O3 

and C:N tended to decrease in all treatments (Kaakinen et al. 2004; Kostiainen et al. 2008).  The 

relatively high C:N and lignin may have contributed to the decreasing trends in percent wood 

density loss in aspen 271 under elevate CO2 native placement in this study.  The low C:N in birch 

may explain high percent wood density loss under elevated O3 and elevated CO2 + elevated O3 
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and high extractives may have contributed to the lower percent wood density loss under elevated 

CO2.   

Compared to leaf tissue, wood is inherently poor in quality and typically decomposes much more 

slowly.  Additionally, mean moisture content at the end of the experiment for aspen 271, 42 and 

birch were 72, 68 and 61% respectively (data not shown).  These levels were still high enough to 

potentially discriminate against the primary agents of wood decay (wood-decaying fungi).   Wood-

decaying basidiomycetes fungi are typically intolerant to high moisture content, but micro-fungi 

(Ascomycetes) are tolerant to high levels of moisture (Eaton and Hale 1993).  Ascomycetes and 

early basidiomycetes do not forage on cellulose but on labile sugars and therefore do not cause 

appreciable wood mass loss.  

Although, elevated CO2 and / or O3 did not have direct significant impacts on wood 

decomposition, species / aspen clone exhibited significant effects on wood decomposition rates. 

At Aspen FACE, changes in forest community composition (relative proportions of birch, maple 

and aspen genotypes) have occurred due to differential growth response to elevated CO2 and 

elevated O3 (Kubiske et al. 2007).  Hence because wood decomposition varies with species or 

genotype, it is possible that future high levels of elevated CO2 or elevated O3 will affect 

decomposition via changes in species or genotype composition of natural stands and changes in 

the total amount of woody detritus produced due to effects on stand productivity. 

Conclusions 

Fungal community composition of aspen and birch logs were significantly different.  Independent 

of treatments, birch logs had a significantly higher rate of initial decomposition than aspen logs. 

However, growth or decomposition in elevated CO2 and / or O3 had no significant effects on 

fungal community composition or decomposition rates of aspen and birch logs, compared to the 

control.  Nevertheless, because the growth of northern hardwood species responds to elevated 

CO2 and / or O3 differentially, it is reasoned that, future higher levels of atmospheric CO2 and O3 

will impact fungal community and decomposition via shifts in species and / or genotype 
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composition of forests.  The experiment was done in an open canopy increasing the chance that 

fungal spores may have been blown or circulated in the experimental area and contributed to our 

observations.  Furthermore, fungal community development in temperate dead hardwoods occurs 

in successional stages (Frankland 1998; Boddy and Heilmann-Clausen 2008), with a variable 

suite of fungal species shifting over time (Eaton and Hale 1993; Boddy and Heilmann-Clausen 

2008).  The duration for this study was relatively short (one year), and most of the fungal species 

isolated were primary or secondary successional stage members (Boddy and Heilmann-Clausen 

2008).  It is therefore suggested that our observations should be interpreted with caution since we 

are not certain how a longer term and tertiary suite of fungal species would respond to elevated 

CO2 and / O3 fumigations. 
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Figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure. 3-1 A fully harvested treatment ring (Left) and stump in the ring (Right) 
 
 

    

Figure 3-2 NMDS plot of wood-decaying basidiomycete fungal community composition, at Aspen 
FACE.  Communities are displayed with respect to aspen logs and birch logs across all treatment 
rings and blocks. An ellipse is a 95% confidence level for each fungal community. The open 
circles and the red triangle represent aspen logs and birch logs respectively. 
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Figure 3-3 NMDS plot of wood-decaying basidiomycete fungal community composition for birch  
logs, at Aspen FACE.  Communities are displayed with respect to ambient (open circle), elevated 
CO2 (red triangle), elevated O3 (green +) and elevated CO2 + elevated O3 (blue ×) across all 
treatment rings and blocks.  An ellipse is a 95% confidence level for each fungal community. 
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Figure 3-4 NMDS plot of wood-decaying basidiomycete fungal community composition for aspen 
logs, at Aspen FACE.  Communities are displayed with respect to ambient (open circle), elevated 
CO2 (red triangle), elevated O3 (green +) and elevated CO2 + elevated O3 (blue ×) across all 
treatment rings and blocks. An ellipse is a 95% confidence level for each fungal community. 
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Tables 

Table 3-1  Experimental design of the reciprocal transplanting of the 0.5 m log segments  of 
aspen clones 42, 271 and birch produced or decomposing under elevated CO2 and /or O3.  A 
total of 288 logs were deployed on the soil surface of the treatment rings. There were three 
replicates for each treatment factor. The plus symbol (+) indicates presence of two logs each for 
aspen 42, 271 and birch logs, one of which was removed for this study. 

 Treatment Assigned for Log Decomposition  

Log Growth 
Source 

 Ambient  Elevated CO2 Elevated O3 Elevated CO2 + O3 

Ambient  + + + + 

Elevated CO2  + + + + 

Elevated O3  + + + + 

Elevated  
CO2 + O3 

 + + + + 
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Table 3-2 Taxonomic description of the isolated wood-decaying basidiomycete fungi.  All isolated 
fungi were of the phylum Basidiomycota and class Agaricomycetes. 

 Fungus Species Genus Family Order 
 Bjerkandera adusta Bjerkandera Meruliaceae Polyporales  

 Cerrena unicolor Cerrena Polyporaceae Polyporales 

 Chondrostereum 

purpureum 

Chondrostereum Cyphellaceae Agaricales 

 Cylindrobasidium laeve Cylindrobasidium Physalacriaceae Agaricales 

 Irpex lacteus Irpex Meruliaceae Polyporales 

 Peniophora aurantiaca Peniophora Peniophoraceae Russulales 

 Peniophora sp Peniophora Peniophoraceae Russulales 

 Schizophyllum commune Schizophyllum Schizophyllaceae Agaricales 

 Sistotrema brinkmannii Sistotrema Hydnaceae Cantharellales 

 Stereum rugosum Stereum Stereaceae Russulales 

 Stereum sp. Stereum Stereaceae Russulales 

 Trametes gibbosa Trametes Polyporaceae Polyporales 

 Trametes versicolor Trametes Polyporaceae Polyporales 

 Unidentified sp unknown unknown unknown 

Total 14 8 7 3 
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Table 3-3 Fungal species present (1) or absent (0) with respect to elevated CO2 and / or O3 
treatments and log species.  

 Aspen logs Birch logs 

 Treatments Treatments 

 

Fungal species 

Ambient CO2 O3 CO2 

+ 

O3 

Ambient CO2 O3 CO2 

+ 

O3 
Bjerkandera adusta 1 1 1 1 1 1 0 0 

Cerrena unicolor 0 0 0 0 1 1 1 0 

Chondrostereum purpureum 1 1 1 1 1 0 0 0 

Cylindrobasidium laeve 1 1 1 1 1 1 1 1 

Irpex lacteus 1 1 0 1 1 0 0 1 

Peniophora aurantiaca 1 1 1 0 1 1 1 1 

Peniophora sp 1 0 1 0 1 0 1 1 

Schizophyllum commune 1 0 0 0 0 0 0 0 

Sistotrema brinkmannii 0 0 0 0 1 0 0 0 

Stereum rugosum 1 1 1 1 1 0 0 0 

Stereum sp. 1 1 1 1 0 0 0 1 

Trametes gibbosa 1 1 0 1 1 1 1 0 

Trametes versicolor 1 1 1 1 1 0 1 0 

Unidentified sp 0 0 0 0 1 0 0 1 

Fungal species per 
treatment              

11 9 8 8 12 5 6 6 

 
Fungal species per 
community 

 
Aspen logs = 11 

 
Birch logs = 13 

 
Total number of isolated fungal species independent of treatments and wood species = 14 
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Table 3-4  PerMANOVA P-values for effects of wood species and elevated CO2 and / or O3 on 
wood-decaying basidiomycete fungal community composition. Highlighted P-value is significant 
(P-values  0.05). 

Parameter Fungal community 
 

Wood species 0.0009 

Aspen logs:-   

  Elevated CO2 and / or O3 0.1029 

Birch logs:-  

  Elevated CO2 and / or O3 0.2567 
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Table 3-5  Mean density and percent density loss for birch in relation to log growth source and 
treatment environment assigned for log decomposition.  Elevated CO2 (= eCO2); elevated O3 
(=eO3). Values are mean (±1SE), n=3.  

   Density (Kg / m3)  

Species Log Source Treatment Initial Final Loss % Loss 

Birch Ambient Ambient 496.8 ± 11.5 430.9 ± 10.3 65.8 ± 1.2 13.3 ± 0.1 

 eCO2 Ambient 534.9 ± 7.4 480.2 ± 24 54.7 ± 31.4 10.1 ± 5.7 

 eO3 Ambient 534.4 ± 9.5 456.1 ± 20.8 78.3 ± 12.4 14.7 ± 2.6 

 eCO2 + eO3 Ambient 513.6 ± 16.3 432.7 ± 13.6 80.9 ± 12.4 15.7 ± 2.2 

 Ambient eCO2 489.3 ± 10.3 425.7 ± 16 63.6 ± 5.7 13.1 ± 1.5 

 eCO2 eCO2 528.9 ± 6.8 470 ± 1.5 58.9 ± 6.7 11.1 ± 1.1 

 eO3 eCO2 524.6 ± 12.5 471.6 ± 17.6 53 ± 7.8 10.2 ± 1.7 

 eCO2 + eO3 eCO2 511.9 ± 4.5 464.6 ± 6.3 47.3 ± 8.3 9.2 ± 1.6 

 Ambient eO3 514.4 ± 5.4 442.2 ± 3.5 72.2 ± 7.4 14 ± 1.3 

 eCO2 eO3 524.6 ± 12.3 465.7 ± 23.6 58.9 ± 11.7 11.3 ± 2.5 

 eO3 eO3 526 ± 16.9 451.6 ± 10.8 74.5 ± 17.7 14 ± 3.1 

 eCO2 + eO3 eO3 517.6 ± 3.1 449.4 ±  7.8 68.3 ± 7.7 13.2 ± 1.5 

 Ambient eCO2 + eO3 501.2 ± 4.9 418.1 ± 26.7 83.1 ± 23.3 16.6 ± 4.8 

 eCO2 eCO2 + eO3 507.8 ± 11.8 433.6 ± 22.8 74.1 ± 14.6 14.7 ± 3.1 

 eO3 eCO2 + eO3 540.8 ± 15.5 469.4 ± 15.7 71.4 ± 1 13.2 ± 0.4 

 eCO2 + eO3 eCO2 + eO3 523.3 ± 13.8 437.3 ± 17.7 86 ± 9.9 16.5 ± 2 

Across Treatments Means 518.1 ± 1.7 449.9 ± 4.7 68.2 ± 5.7 13.2 ± 1.1 
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Table 3-6  Mean density and percent density loss for aspen 42 in relation to log growth source 
and treatment environment assigned for log decomposition.  Elevated CO2 (= eCO2); elevated O3 
(=eO3). Values are mean (±1SE), n=3. 

   Density (Kg / m3)   

Species Source Treatment Initial Final Loss % Loss 

Aspen 42 Ambient Ambient 345.5 ± 1.9 312.1 ± 11.1 33.4 ± 9.6 9.7 ± 2.8 

 eCO2 Ambient 379.4 ± 14 333.9 ± 36.1 45.5 ± 22.1 12.5 ± 6.1 

 eO3 Ambient 356.8 ± 10.3 318.9 ± 7.4 38 ± 2.9 10.6 ± 0.5 

 CO2 + eO3 Ambient 359.4 ± 12.1 315.4 ± 23.8 44 ± 11.8 12.5 ± 3.6 

 Ambient eCO2 358.5 ± 8.7 307.5 ± 6.5 51 ± 14.3 14.1 ± 3.6 

 eCO2 eCO2 354.7 ± 4.5 319.7 ± 9.5 35 ± 10.8 9.8 ± 3 

 eO3 eCO2 366.3 ± 3.1 322.3 ± 1.9 44 ± 1.3 12 ± 0.3 

 CO2 + eO3 eCO2 353.9 ± 4.8 322.6 ± 13.6 31.2 ± 8.7 8.9 ± 2.6 

 Ambient eO3 349 ± 4.2 299 ± 6 50 ± 9.5 14.3 ± 2.5 

 eCO2 eO3 345.3 ± 8.9 299.8 ± 8.6 45.5 ± 1.6 13.2 ± 0.5 

 eO3 eO3 359.9 ± 8.5 322.2 ± 7.4 37.7 ± 8.6 10.4 ± 2.2 

 CO2 + eO3 eO3 351.5 ± 2.5 322.3 ± 8.9 29.2 ± 8.7 8.3 ± 2.5 

 Ambient CO2 + eO3 346.2 ± 3.8 314.2 ± 10.2 32 ± 8.5 9.3 ± 2.5 

 eCO2 CO2 + eO3 359.3 ± 7.9 321.8 ± 3.4 37.5 ± 4.6 10.4 ± 1.1 

 eO3 CO2 + eO3 374.2 ± 15.7 328 ± 15.6 46.2 ± 7.5 12.3 ± 1.9 

 CO2 + eO3 CO2 + eO3 357.9 ± 11.9 325.1 ± 14.7 32.8 ± 6 9.2 ± 1.7 

Across Treatments Mean 357.4 ± 2.2 317.8 ± 4.9 39.6 ± 2.8 11.1 ± 0.8 
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Table 3-7  Mean density and percent density loss for aspen 271 in relation to log growth source 
and treatment environment assigned for log decomposition.  Elevated CO2 (= eCO2); elevated O3 
(=eO3). Values are mean (±1SE), n=3. 

SPP Source Treatment 

Density (Kg / m3) 

% Loss Initial Final Loss 

Aspen 

271 Ambient Ambient 413.2 ± 30.5 371.1 ± 28.8 42 ± 6.1 10.2 ± 1.5 

 eCO2 Ambient 400 ± 13.7 347.9 ± 12 52 ± 14 12.9 ± 3.3 

 eO3 Ambient 399.6 ± 3.9 374.4 ± 16.2 25.2 ± 12.3 6.4 ± 3.1 

 eCO2 + eO3 Ambient 391.8 ± 33.4 359.6 ± 22 32.3 ± 15 7.8 ± 3.1 

 Ambient eCO2 412.4 ± 11.1 365.9 ± 28.4 46.5 ± 21.5 11.4 ± 5.2 

 eCO2 eCO2 390.1 ± 11.2 386.4 ± 10.9 3.7 ± 1.9 0.9 ± 0.5 

 eO3 eCO2 396.4 ± 3.5 359 ± 13 37.4 ± 9.8 9.5 ± 2.5 

 eCO2 + eO3 eCO2 384.4 ± 19.1 351.3 ± 10.5 33.2 ± 10.3 8.4 ± 2.3 

 Ambient eO3 403.8 ± 11.4 367.4 ± 13.9 36.5 ± 9.8 9 ± 2.3 

 eCO2 eO3 376.3 ± 8.6 340.4 ± 17.7 35.8 ± 13.1 9.6 ± 3.5 

 eO3 eO3 416.9 ± 25.6 376.2 ± 25.3 40.7 ± 4.4 9.8 ± 1.2 

 eCO2 + eO3 eO3 392.7 ± 18 351.2 ± 18.6 41.5 ± 4.5 10.6 ± 1.2 

 Ambient eCO2 + eO3 416.8 ± 11.3 384.3 ± 15.3 32.5 ± 9 7.8 ± 2.2 

 eCO2 eCO2 + eO3 388.7 ± 16.8 360.5 ± 26.4 28.1 ± 9.9 7.5 ± 2.7 

 eO3 eCO2 + eO3 401.7 ± 2.8 366 ± 18.2 35.7 ± 15.6 8.9 ± 3.9 

 eCO2 + eO3 eCO2 + eO3 386.5 ± 9.7 359.3 ± 10.5 27.2 ± 9.4 7 ± 2.3 

Across Treatments Means 398.2 ± 8.2 363.8 ± 7.9 34.4 ± 0.5 8.6 ± 0.1 
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Table 3-8 P-values for effects of elevated CO2 and / or O3 on percent wood density loss in birch 
and aspen clones 42, 271 (species).  Elevated CO2 (= eCO2); elevated O3 (=eO3).  Highlighted P-
values are either significant (P-values  0.05) or marginally significant (P-values  0.10).  
 

Parameter Percent wood density loss 

eCO2 0.4192 

Species 0.0334 

Source  0.31115 

eCO2 × Species 0.5257 

eCO2 × Source 0.4345 

Species × Source  0.9887 

eCO2 × Species × Source 0.1019 

eO3 0.4280 

Species 0.0929 

Source  0.9391 

eO3 × Species 0.9765 

eO3 × Source 0.9147 

Species × Source  0.6447 

eO3 × Species × Source 0.5113 

eCO2 + eO3 0.9525 

Species 0.0161 

Source  0.9843 

eCO2 + eO3 × Species 0.4933 

eCO2 + eO3 × Source 0.9552 

Species × Source  0.7490 

eCO2 +eO3 × Species × Source 0.7702 
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CHAPTER 4: Effects of elevated CO2 and O3 on wood anatomical properties of 

trembling aspen, paper birch and sugar maple3 

ABSTRACT 

Physiological functions of woody plants and quality of wood are related to their anatomical 

properties.  Anatomical properties of woody plants are influenced by the activity of the cambium 

and the growth characteristics of wood cells, which are in turn influenced by a range of 

environmental factors.  Current background concentrations of CO2 and O3 are about 40% higher 

than during the pre-industrial era.  The alterations in the background concentrations of 

atmospheric CO2 and / or O3 could impact wood anatomical structure and consequently impact 

wood quality.  We evaluated the effects of 12 years of growth under elevated CO2 and / or O3 on 

the wood anatomical properties of birch (Betula papyrifera Marshall), sugar maple (Acer 

saccharum Marshall var. saccharum) and four aspen (Populus tremuloides Michx.) clones (8, 42, 

216, and 271) at the Aspen Free Air CO2 and O3 enrichment (FACE) project near Rhinelander, 

WI, USA.  Wood anatomical properties varied significantly with species, aspen genotype and 

stem radial position.  Elevated CO2 did not have statistically significant effects on wood 

anatomical properties, except that it marginally increased the number of vessels per square 

millimeter in aspen 271 and birch, compared to the control (P = 0.0771).  Under elevated O3, 

mean vessel lumen diameter decreased significantly in maple and marginally in birch compared 

to the control.  Additionally, vessel lumen diameters were unaltered in all species and aspen 

genotypes at the inner and middle radial positions of growth rings, except for a significant 

decrease for maple in the middle radial position under elevated O3, compared to ambient.  

However, vessel lumen diameter decreased significantly at the periphery of the growth ring in all 

species and clones, except for aspen 8, under elevated O3.  Vessel lumen diameter was also 

significantly narrower at the periphery than the middle and inner radial positions of growth rings, 

independent of treatments.  As a result it is unclear if the reduction in vessel lumen diameter at 

                                                      
3 Manuscript, in progress 
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the peripheral radial position is solely due to elevated O3 or not.  The effects of elevated CO2 and 

O3, alone, on wood anatomical properties of aspen genotypes and birch were ameliorated when 

the gases were applied in combination.  Based on the results, it is predicted that future higher 

levels of elevated CO2 and / or O3 concentrations could have moderate impacts on wood quality 

of northern hardwoods, but for utilization purposes these likely would not be considered 

significant.  

INTRODUCTION 

Wood quality and physiological function of woody plants are closely related to their anatomical 

properties (Dickison 2000).  Anatomical properties of woody plants are influenced by the activity 

of the cambium and the growth characteristics of wood cells, which are in turn influenced by a 

range of environmental factors (Zobel and Buijtenen 1989; Dickison 2000; Barnett and 

Jeronimidis 2003).  For example, soil nutrient enrichment stimulates woody plant growth and can 

result in less dense wood due to increased production of thin-walled cells with larger lumens 

(Zobel 1981; Zobel and Buijtenen 1989; Dickison 2000; Barnett and Jeronimidis 2003).  The 

general body of evidence also indicates that elevated CO2 has stimulating effects on 

photosynthesis, leading to increased biomass production (Ainsworth and Long 2005; Norby et al. 

2005; Leakey et al. 2009; Dawes et al. 2011; Norby and Zak 2011).  However, unlike elevated 

CO2, elevated O3 disrupts important physiological processes (Fuhrer and Booker 2003; Wittig et 

al. 2007; Wittig et al. 2009; Lindroth 2010; Street et al. 2011), injures  woody plants (Karnosky et 

al. 1996; Karnosky et al. 2003; Karnosky et al. 2007) and induces an overall reduction in plant 

growth and productivity (Karnosky et al. 2007; Wittig et al. 2009).  Hence changes in the 

environment due to the rising concentrations of atmospheric CO2 and / or O3 (IPCC 2007) could 

impact wood anatomical properties and consequently affect wood quality for its intended use 

(Ceulemans et al. 2002; Kostiainen et al. 2004; Kostiainen et al. 2006; Kostiainen et al. 2008; 

Kostiainen et al. 2009). 
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A number of investigations have been initiated to provide scientific understanding of the influence 

of rising concentrations of atmospheric CO2 and / or O3 on wood anatomical properties, helping 

assess future wood quality (Telewski et al. 1999; Kaakinen et al. 2004; Kostiainen et al. 2004; 

Yazaki et al. 2005; Kostiainen et al. 2006; Kostiainen et al. 2008; Kostiainen et al. 2009).  

Nevertheless, accumulating evidence has been divergent.  For example, elevated CO2 

significantly decreased cell wall thickness and proportion of cell wall area and increased fiber 

lumen diameter and parenchyma proportions in three Populus species (Luo et al. 2005).  

Tracheid radial lumen diameter decreased in Picea abies L. grown under elevated CO2 without 

nutrient enhancement (Kostiainen et al. 2004).  Kostiainen et al. (2009) also observed a 

significant decrease in the cell wall thickness of earlywood and an increase in tracheid diameter 

of latewood in Picea abies grown under elevated CO2.  Similarly, tracheid walls and the 

proportion of resin canals decreased; and tracheid lumen increased in  Pinus sylvestris L. grown 

under elevated CO2 compared to the control (Ceulemans et al. 2002).  Vessel frequency and 

diameter increased in Quercus robur L., and cell wall thickness increased in Prunus avium L. 

grown under elevated CO2 (Atkinson and Taylor 1996).  Under elevated CO2, growth ring width 

increased in Picea abies L. (Kostiainen et al. 2004); Betula pendula Roth (Kostiainen et al. 2006); 

Pinus sylvestris L. (Ceulemans et al. 2002); Pinus taeda L. (Telewski et al. 1999); and Populus 

tremuloides Michx. (Kaakinen et al. 2004; Kostiainen et al. 2008).   

In contrast to the aforementioned reports, elevated CO2 did not have a significant effect on vessel 

and cell wall area proportions, vessel lumen diameter, fiber lumen diameter and fiber wall 

thickness in Populus tremuloides (Kaakinen et al. 2004; Kostiainen et al. 2008).  Wood 

anatomical properties responsible for water transport in Quercus mongolica and Alnus hirsute 

were also not affected by elevated CO2 (Watanabe et al. 2008).  Similarly, fiber length, vessel 

length, vessel lumen diameter, vessel area and cell wall area proportions in two clones of Betula 

pendula Roth were not affected by elevated CO2, but clone identity had significant effects 

(Kostiainen et al. 2006).  Cell wall thickness of Picea abies (L.) Karst. grown under elevated CO2 

was not significantly different from the ambient (Kostiainen et al. 2004).  Likewise, Telewski et al. 
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(1999) reported that the proportion of resin canals and cell wall:lumen area of Pinus taeda L. 

were not influenced by elevated CO2.  Elevated CO2 also did affect the wood anatomy of Larix 

kaempferi and Larix sibirica seedlings (Yazaki et al. 2001; Yazaki et al. 2004).   

A review of literature indicated that the response of wood anatomical properties of trees to 

elevated CO2 could be species, clone, environment and age dependent (Yazaki et al. 2005).  A 

more recent study by Watanabe et al. (2010) observed that the response of anatomical properties  

to elevated CO2 was species dependent.  They observed that elevated CO2 did not affect vessel 

anatomy of Quercus mongolica, Betula maximowicziana and Acer mono but significantly modified 

the vessel properties and cambial activity of Kalopanax septemtobus.  Luo et al. (2005) also 

observed elevated CO2 × genotype interactions, but Kaakinen et al. (2004) observed no such 

interactions.  However, variation in anatomical properties existed in different clones of Populus 

tremuloides (Kaakinen et al. 2004; Kostiainen et al. 2008). 

The impact of elevated O3 concentrations on wood anatomical properties has also been variable.  

Kurczynska et al. (1998) studied the effects of elevated O3 and soil nitrogen content on wood 

anatomical properties of Picea abies saplings in open top chambers.  They observed that tracheid 

frequency decreased and latewood tracheid diameter increased in the wood of Picea abies 

produced under elevated O3 on nitrogen enriched soils compared to the ambient environment.  

Independent of nitrogen level of the soil, sieve cell wall thickness increased under elevated O3, 

but sieve cell frequency and latewood tracheid diameter also decreased under elevated O3 in non 

N-enriched soil.  Likewise, Kaakinen et al. (2004) observed a significant reduction in the vessel 

lumen diameter and an increase in cell wall thickness in Populus tremuloides after 3 years of 

exposure, but after 5 years of exposure for the same species, anatomical properties were 

unaffected except for a slight decrease in vessel lumen diameter (Kostiainen et al. 2008).  A 

significant reduction in vessel proportion and increased cell wall proportion in Betula pendula 

Roth (silver birch) due to elevated O3 have been reported (Kostiainen et al. 2006).  Significant 

interactions of elevated O3 with genotype on some anatomical properties have been observed 

(Kaakinen et al. 2004; Kostiainen et al. 2006; Kostiainen et al. 2008).  Furthermore, reports of 
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combined impacts of elevated CO2 and O3 on wood structure are rare and have been shown to 

be insignificant (Kaakinen et al. 2004; Kostiainen et al. 2006; Kostiainen et al. 2008).  

Although evidence on the effects of elevated CO2 and / or O3 on wood anatomical properties is 

growing, a large number of the studies were conducted on saplings and seedlings in growth 

chambers and greenhouses exposed to the gases for relatively short durations (Telewski et al. 

1999; Yazaki et al. 2001; Ceulemans et al. 2002; Kostiainen et al. 2004; Yazaki et al. 2004; 

Kostiainen et al. 2006; Watanabe et al. 2008; Kostiainen et al. 2009; Watanabe et al. 2010).  

Additionally, those conducted in FACE experiments were conducted on immature trees (Kaakinen 

et al. 2004; Luo et al. 2005; Kostiainen et al. 2008).  Wood anatomical properties exhibit 

significant variation with respect to age, provenance, species and position along the radial and 

axial directions of the wood (Zobel 1981; Zobel and Buijtenen 1989; Dickison 2000; Barnett and 

Jeronimidis 2003; Yeh et al. 2006; Wheeler et al. 2007).  Nevertheless, the investigations on the 

effects of elevated CO2 and /or O3 were typically done on the lower portions of woody stems 

(Kaakinen et al. 2004; Kostiainen et al. 2004; Kostiainen et al. 2006; Kostiainen et al. 2008; 

Kostiainen et al. 2009).  The divergent reports suggest that further investigations with a different 

approach are necessary to improve understanding the effects of elevated CO2 and / or O3 on 

anatomy and quality of wood.  We therefore investigated the effects of elevated CO2 and / or O3 

on the wood anatomical properties of the upper portions of stems of birch, sugar maple and 

aspen clones 8, 42, 216 and 271 after twelve years of growth at the Aspen FACE site.   

The Aspen FACE project provides an in vivo field approach for further investigations on the 

effects of elevated CO2 and / or O3 on wood anatomical properties.  Aspen FACE is located at 

Harshaw, near Rhinelander, WI. It was a unique, long term experiment evaluating the impact of 

elevated CO2 and O3 and their interactions on northern forest ecosystems on a large scale.  

Measurements from the 12-year-long Aspen FACE experiment have shown a persistent 26% 

increase in net primary productivity (NPP) under elevated CO2; the aspen clones community 

alone increased by 24-35% during the 10th to 12th years (Zak et al. 2011).  However, growth of 

the individual tree species responded differently to elevated CO2 fumigation (Isebrands et al. 



90 
  

2001; King et al. 2005; Kubiske et al. 2007).  The differences in enhanced growth were attributed 

to the belowground competitive advantage of aspen clones 271 and 42 over other congeners for 

growth limiting nitrogen (Zak et al. 2007a; Zak et al. 2012).  This observation parallels accruing 

evidence from Aspen FACE, that growth responses under elevated CO2 differed among the 

aspen clones (8, 42, 216, 259 and 271) (Isebrands et al. 2001; Karnosky et al. 2003; King et al. 

2005; Kubiske et al. 2007; Norby and Zak 2011; Zak et al. 2011; Zak et al. 2012).  Aspen clones 

271 and 42 grew faster than their congeners under elevated CO2 (Isebrands et al. 2001; Kubiske 

et al. 2007), with the strongest response occurring for clone 271 (Kubiske et al. 2007).  The 

growth of sugar maple under elevated CO2, independent of O3 concentration, was not different 

from the ambient (Kubiske et al. 2007), but the diameter growth of birch was significantly 

enhanced under elevated CO2 (Kubiske et al. 2007). 

Aspen 271 was reported to have the largest fiber lumen diameter among the clones under 

elevated CO2 (Kaakinen et al. 2004).  Data pooled for all the aspen clones showed that fiber 

lumen tended to increase under elevated CO2 after 3 and 5 years of exposure at Aspen FACE 

(Kaakinen et al. 2004; Kostiainen et al. 2008).  Similarly, vessel diameter tended to increase 

under elevated CO2 (Kostiainen et al. 2008).  Additionally after 5 years of exposure to elevated 

CO2, aspen 271 was reported have reduced uronic acid (a constituent of hemicellulose) and a 

significant increase in starch content (Kostiainen et al. 2008).  Although diameter growth of birch 

and sugar maple under elevated O3 was not significantly different from the ambient, elevated O3 

significantly reduced diameter growth of all the aspen clones at the end of 3rd and 7th years with 

the exception of the less ozone sensitive clone 8, for which diameter growth increased (Isebrands 

et al. 2001; Kubiske et al. 2007).  Kaakinen et al. (2004) and Kostiainen et al. (2008) also 

observed a reduction in radial growth and growth rings of the aspen clones at the end of the 3rd 

and 5th  year of elevated O3 fumigation.  They reported a decrease in cell lumen area and an 

increase in cell wall area in aspen clones grown under elevated O3 (Kaakinen et al. 2004; 

Kostiainen et al. 2008). 
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Previous investigations at the Aspen FACE site, observed no effect of the combined elevated O3 

and elevated CO2 treatments on growth parameters of birch, sugar maple and aspen clones 

(Isebrands et al. 2001; Kubiske et al. 2007; Zak et al. 2011; Zak et al. 2012) or on anatomical 

structure of the five aspen clones, 8 42, 259, 261 and 271 (Kaakinen et al. 2004; Kostiainen et al. 

2008).  Based on the accruing evidences from Aspen FACE and other sources of information it 

was hypothesized that: 1) wood species / clonal effects would be observed in the wood 

anatomical properties of birch, sugar maple, aspen clones 8, 42, 216 and 271; 2) wood 

anatomical properties of birch, sugar maple and aspen clones would be altered under elevated 

CO2 and elevated O3 –  specifically, the growth ring width, fiber length, fiber lumen diameter, 

vessel lumen diameter, vessel lumen area proportions and number of vessels per mm2 (vessel 

frequency) would increase and cell wall area proportions would decrease under elevated CO2, 

and,the converse will hold for elevated O3, except for clone 8, which is less sensitive to O3, which 

would exhibit anatomical properties similar to the control; and 3) the combined treatment 

(elevated CO2 + O3) would have no effect on anatomical properties of birch, sugar maple and 

aspen clones 8, 42, 216 and 271. 

MATERIALS AND METHODS 

Site description 

Samples for this research were obtained from the Aspen FACE study during the summer of 2009 

(for a detailed description of site and experimental design of Aspen FACE see Dickson et al. 

(2000)).  Aspen FACE research was conducted on a 32 ha USDA Forest Service Experimental 

Farm at Harshaw, near Rhinelander, in Wisconsin, USA (longitude 45.6o N, latitude 89.5o W).  

Potatoes and small grains were cultivated on the site for more than 50 years before the Forest 

Service acquired the land in 1972 to serve as a forest research station.  Prior to the Aspen FACE 

research in 1997, the site was planted with poplar clones and larch.  However, all the poplar 

clones and larch were cleared and stumps removed in 1996.  The study site is nearly flat and the 

soil type is sandy loam.  A thorough soil analyses was done for all treatment plots in 1997 and no 
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significant differences were observed, except for mean percent carbon and nitrogen, which were 

significantly greater in CO2 rings than CO2 + O3 rings (Dickson et al. 2000). 

The Aspen FACE experiment was a 22 factorial randomized complete block design with each 

treatment level replicated three times, once each in the northern, central and southern portions of 

the site.  The main and crossed factors were carbon dioxide (CO2), ozone (O3) and CO2+O3 

respectively.  The treatment levels were ambient CO2 and O3 as the controls, elevated CO2 

(ambient + 200 ppm), and elevated O3 (1.5 × ambient).  The treatments were applied in twelve 

30-m diameter rings, located at least 100 m apart.  Each ring was partitioned into east and west 

sections.  The eastern portion was planted with five Populus tremuloides Michx. (aspen) clones 

(8L, 42E, 216, 259 and 271) in random order, with a planting spacing of 1 m × 1 m.  The western 

portion was further divided into north and south subplots.  The northwest and southwest subplots 

were mixed plantations of aspen clone 216, with Acer saccharum Marshall var. saccharum (sugar 

maple) and Betula papyrifera Marshall (paper birch) respectively.  All planting was completed in 

1997, and exposure of treatment rings to elevated CO2 and O3 was done during the growing 

seasons of 1998 through 2009 between 0700 hrs and 1700 hrs each day when foliage was not 

wet.  

Sampling and laboratory analysis 

For this study, two trees each of  12-year-old sugar maple, paper birch and four aspen clones 

(8L, 42E, 216, and 271) were randomly sampled from each of the 12 rings.  All the aspen clones 

were sampled from the eastern portion of the rings, while maple and paper birch were sampled 

from the northwestern and southwester sectors, respectively.  Total height and diameter at breast 

height for all sampled trees were measured.  A table saw was used to cut 4-cm thick discs at the 

midpoint of the 2004 height growth increment for anatomical analysis.  From these, 2-cm thick 

disc subsamples were prepared using a band saw. These samples were softened and preserved 

in vials containing ethanol and glycerol (1:1) and transported to Michigan Technological 

University for anatomical analysis. 
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About five transverse sections of thickness 15- -cm disc 

subsamples using a sliding microtome (Reichert-Jung, Heidelberg, Germany).  Half to full cross 

sections were made depending on the diameter of the disc.  The cut sections were first washed in 

distilled water and then stained in 1% safranin in 50% ethanol solution for about 10-20 minutes 

for contrast enhancement.  After staining, they were rinsed in distilled water and dehydrated in 

increasing concentrations of ethanol: 30, 50, 70, 85, 90, 100 and 100 %, and later mounted in 

Canada balsam.  All prepared slides were then dried at 60°C overnight.  Splits of matchstick size 

were also taken from the 2-cm disk subsamples and kept in separate vials containing mixtures of 

6% hydrogen peroxide and 97% acetic acid (1:1).  To obtain a complete maceration, the 

specimens were incubated at 60°C for about 24 hours.  Each macerated specimen was 

thoroughly rinsed in distilled water.  Portions of the macerated specimen were teased with a pin 

and mounted temporarily in dilute glycerol.  

Microphotographs were made from both permanent transverse sections and temporary 

macerated slides of the 2008 growth ring with a Leica digital camera attached to a Leica 

compound microscope.  Anatomical properties analysis was done on the microphotographs using 

ImageJ software (National Institute of Health, Bethesda,MD, USA).  Ten 3281 × 2461 μm size 

images at 20 x magnifications at 2048 × 1536 pixels resolution were captured randomly from 

each macerated specimen for fiber length measurements.  About 100 - 120 straight fibers were 

measured per sample.  Five 516 × 387 μm size images at 100 x magnification at 1600 × 1200 

pixels resolution were also captured randomly from the mid portion of the growth ring for vessel 

frequency (number of vessels per mm2) estimation.  Vessel lumen diameter was determined for 

the growth ring at three different radial positions (inner, middle and periphery) on 3282 × 2461 μm 

size images at  20 x magnification at 2048 × 1536 pixels resolution.  Additionally, three 328 × 246 

μm size images at 200 x magnification at 2048 × 1536 pixels resolution were taken randomly 

from the mid portion of each growthring for measurement of fiber lumen diameter and fiber lumen 

area, vessel lumen area, and ray parenchyma area proportions.  Cell wall area proportion per unit 

area (CWA %) were then estimated from the equation CWA % = 100 - (ray parenchyma area % + 
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vessel lumen area % + fiber lumen area %) by Luo et al. (2005).  Growth ring width 

measurements were done at three different positions on 16760 × 12570 μm size images at 15 × 

magnifications at 3264 × 2448 pixels resolution.  

Analysis of data  

Split-plot ANOVA (Montgomery 2009) was used to analyze all the wood anatomical parameters  

using the GLM procedure of SAS software version 9.2 (SAS Institute Inc., Cary, NC, USA).  The 

fixed main treatment factors of CO2 (ambient vs. elevated CO2); O3 (ambient and elevated O3), 

CO2 + O3 (ambient vs. elevated CO2 + elevated O3) were considered as the whole plot factor and 

species / aspen genotypes (birch, maple, aspen clones 8, 42, 216 and 271) as the sub-plot factor.  

There were three replicate rings / blocks along the north, central and southern regions of the 

experimental site.  The analyses were carried out separately for each main treatment factor on all 

species / aspen clones.  The error term for testing for each main treatment effect was block × 

main treatment with 2 degrees of freedom.  The error term for testing for block, species / aspen 

genotypes and species /aspen genotypes × main treatment effects was the total error term of the 

split-plot ANOVA model (block × species / aspen genotype-nested-within-treatment) with 20 

degrees of freedom (Appendix tables 4-2 to 4-6).  When significant interactions were detected 

between species and any of the main treatment factors (elevated CO2, elevated O3 or elevated 

CO2 + elevated O3), a separate one-way ANOVA analysis was done for each species / aspen 

clone to identify the species or aspen clone which exhibited statistically significant main treatment 

factor effects (Appendix tables 4-8 to 4-13).  Additionally, because vessel lumen diameter was 

sampled from three different radial positions of the growthring (inner, middle and periphery), a 

split-split-plot ANOVA was employed for analyzing the effects of main treatments, species and 

radial positions.  In this case, the radial position of the vessel lumen data was considered as the 

sub-sub-plot.  Hence the error term for testing for block and main treatment effects was block × 

treatment with 2 degrees of freedom.  The error term for testing for species / aspen genotypes, 

and species / aspen genotypes × treatment effects was block × species / aspen genotype-nested-

within-treatment with 20 degrees of freedom. The error term for testing the effects of radial 
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position on vessel lumen diameter and its interaction with species / aspen genotypes and /or 

treatment was the total error term of the split-split-plot ANOVA model with 48 degrees of freedom 

(Appendix tables 4-3, 4-5 and 4-7). 

Descriptive statistics (means and standard errors) were computed for each parameter.  In 

addition, data were examined for the normality and homogeneity of variance assumptions of 

analysis of variance before analysis was done.  Data in percentages were arcsine transformed 

before the split-plot analysis was implemented.  Tukey’s post-hoc test was used to compare 

dependent variable means among all treatments. The effect of a factor was considered significant 

at P = 0.05. 

RESULTS 

Species / genotypic effects  

Anatomical properties varied significantly among species and / or genotypes (Table 4-1).  Among 

the four aspen clones, 216 had the lowest mean growth ring width of 2.3 ± 0.3 mm (Table 4-1).  

Mean fiber length of the four aspen clones were not statistically different from each other.  Mean 

fiber lumen diameter of aspen 271 was statistically different from aspen 8, 42 and 216.  The 

mean vessel area proportion in birch and maple were similar but significantly less than the four 

aspen clones.  Likewise mean vessel proportions in aspen 216 and 271 were similar, but 

significantly lower than in aspen 8 and 42, which also were similar (Table 4-1).  Mean vessel 

diameter was widest in aspen 8 (55.8 ± 1.2 μm) and narrowest in aspen 216 (44.9 ± 1.1 μm), 

which was significantly different from aspens 42 and 271.  Additionally, vessel lumen diameter 

varied along the radial position within a growth ring and was significantly narrower at the 

periphery than the middle and inner radial positions of the 2008 growth ring (P = < 0.0001, Fig. 4-

2).  Aspen 216 and 271 had the highest and lowest mean number of vessels per square 

millimeter, with 154 ± 7 and 129 ± 4, respectively.  Mean cell wall area proportion also varied 

significantly among species and aspen genotypes (Table 4-1). 
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Effects of elevated CO2  

Compared to ambient conditions, elevated CO2 did not have statistically significant effects on 

mean growth ring width, mean fiber length, mean fiber lumen diameter, mean vessel area 

proportion, mean vessel lumen diameter, or mean cell wall area proportion in all species and 

aspen genotypes. Nonetheless, elevated CO2 had a marginally significant effect on mean number 

of vessels per square millimeter (p = 0.0771; Table 4-2).  The number of vessels per square 

millimeter tended to increase in aspen 8, 216, 271 and birch but not in aspen 42 and maple under 

elevated CO2.  There were no significant two-way-interactions between elevated CO2 and species 

/ aspen genotypes nor elevated CO2 and radial position of vessel lumen diameter for all 

anatomical parameters (Table 4-2; Table 4-3).  Additionally, no significant three-way-interaction 

was observed amongst elevated CO2, species / aspen genotypes and radial position of vessel 

lumen diameter (Table 4-3).  Elevated CO2 did not significantly affect vessel lumen diameter 

sampled at the inner, middle or periphery radial positions of the growth ring, compared to the 

control (Table 4-3). 

Effects of elevated O3 

The effects of elevated O3 on wood anatomical properties were species or genotype and radial 

position dependent (Tables 4-4 and 4-5).  Compared to ambient conditions, elevated O3 did not 

have significant effects on mean growth ring width, mean fiber length, mean fiber lumen diameter 

and mean vessels per square millimeter (Table 4-4).  However, significant or marginally 

significant two-way-interactions between elevated O3 and species / aspen genotypes were 

observed in mean growth ring width (P = 0.0499), mean vessel area proportion (P = 0.088), mean 

vessel lumen diameter (P = 0.0551), and mean cell wall area proportion (P = 0.0427).  The 

observed interactions were a result of mean growth ring width tending to increase under elevated 

O3 in aspen 8 and 42 but decrease in aspen 216 and birch, with no effect on aspen 271 and 

maple.  Mean vessel lumen area proportion tended to decrease in aspen 8, 42 and maple but 

increased in 216, 271 and birch under elevated O3.  Mean vessel lumen diameter tended to 

increase in aspen 8 but decrease slightly in aspen 42, 216, 271, birch and maple.  Mean cell wall 
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area proportion tended to increase in aspen 8 and 42, decrease in aspen 216, 271 and birch, and 

be unaffected in maple under elevated O3.   

A one-way ANOVA performed separately for each species / aspen genotype (Appendix tables 4-8 

to 4-12) showed that the effects of elevated O3 on mean growth ring width was not significant for 

any species / aspen genotype (P > 0.05) but was marginally significant for mean vessel lumen 

area proportion in aspen 8 (P = 0.0758); for mean cell wall area proportion in aspen 271 (P = 

0.0535); and for mean vessel lumen diameter in birch (P = 0.0985), and significant in maple for 

vessel lumen diameter (P = 0.0241), independent of radial position.  In addition, the effects of 

elevated O3 on vessel lumen diameter were radial position dependent, resulting in a significant 

interaction between radial position and elevated O3 (P = 0.0110).   

The interactive effect between radial position and elevated O3 on vessel lumen diameter was 

because the impact of elevated O3 on vessel lumen diameter was significant at the periphery (P = 

0.0026) and non-significant at the inner (P = 0.5485) and middle (P = 0.1304) radial positions.  A 

significant interaction between elevated O3 and species / aspen genotypes was also detected for 

vessel lumen diameter (P = 0.0232) sampled from the middle radial position only.  This was the 

result of vessel lumen diameter sampled from the middle radial position tending to increase in 

aspen 8 (P = 0.4736) and decrease for all other species and clones, significantly so for maple (P 

= 0.0127).  There were no significant 3-way-interactions among elevated O3, species / aspen 

genotypes and radial position for vessel lumen diameter (Table 4-5). 

Effects of elevated CO2 + O3 

Combined elevated CO2 + elevated O3 did not produce any statistically significant impact on 

growth ring width, fiber length, fiber lumen diameter, vessel area proportion, vessel lumen 

diameter, number of vessels per square millimeter, or cell wall area proportion in any species or 

aspen genotype, compared to ambient CO2 + O3 (Table 4-6).  However, there was a marginally 

significant interaction between the combined elevated CO2 + O3 and species / aspen genotype for 

mean vessel lumen area proportion (P = 0.0724; Table 4-6).  The interaction was the result of 
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mean vessel lumen area proportion tending to increase in aspen 216 and 271 and decrease in 

aspen 8, 42, birch and maple.  The effect of combined elevated CO2 + elevated O3 on vessel 

lumen diameter did not differ significantly from ambient CO2 + O3 when sampling was done at 

inner, middle or periphery radial positions for all species / aspen genotypes (Table 4-7). 

Nevertheless, combined elevated CO2 + elevated O3 tended to increase vessel lumen diameter in 

aspen 8 and tended to decrease it in aspen 42, 216, 271, birch and maple, more at the middle 

and periphery than the inner radial positions.   As a result there was a significant interaction 

between combined elevated CO2 + elevated O3 and radial position of vessel lumen diameter (P = 

0.0463).  Interaction between combined CO2 + O3 and species / aspen genotype were not 

significant (P = 0.4622), and those among combined CO2 + O3 and species / aspen genotype and 

radial position for vessel lumen diameter also were not significant. 

DISCUSSION  

In this study it was predicted that:  (1) wood species /clonal effects would be observed in the 

wood anatomical properties of birch, sugar maple, aspen clones 8, 42, 216 and 271;  (2) wood 

anatomical properties of birch, sugar maple and aspen clones would be altered under elevated 

CO2 and elevated O3, and under elevated O3, aspen clone 8 which is less sensitive to O3, would 

exhibit anatomical properties similar to the control; (3) the combined treatment (elevated CO2 + 

elevated and O3) would have no statistically significant effect on anatomical properties of birch, 

sugar maple and aspen clones 8, 42, 216 and 271.  Results of this study supported hypotheses 1 

and 3 and only occasionally portions of 2.  

Species and genotypic effects 

Species and aspen genotypes differed significantly in almost all anatomical properties 

investigated.  Maple had significantly narrower growth ring width, vessel and fiber lumen 

diameters, shorter fiber length, lower vessel lumen area proportion, lower vessel frequency and 

greater cell wall area than aspen and birch.  Birch had significantly longer fibers than aspen. 

Aspen had wider growth ring width, fiber lumen diameter, greater vessel area proportion and 
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vessel lumen diameter, higher vessels per square millimeter and lower cell wall area than birch 

and maple. These differences in the anatomical properties of aspen, birch and maple are 

consistent with existing reports (Panshin and Zeeuw 1980; Wheeler et al. 2007; Wheeler 2011).  

Differences in anatomical properties were also very conspicuous among aspen genotypes.  The 

widest and narrowest growth ring widths were observed in aspen 42 and 216, respectively.  But 

the differences in growth ring width of aspen 271, 42, and 8 were not statistically significant.  

Although slight differences were observed in the fiber length of the aspen genotypes, they were 

not significant.  Aspen 271 had a significantly wider fiber lumen diameter than aspen genotypes 

8, 42 and 216.  Vessel lumen area proportion was significantly higher in aspen 8 and 42 than 

aspen 216 and 271.  Aspen 216 had a narrower vessel lumen diameter and a greater number of 

vessels per square millimeter than the other aspen genotypes.  Aspen 8 had a significantly lower 

fiber cell wall proportion than clones 42, 216 and 271.  However, cell wall proportions in aspen 

216 and 271 were significantly greater than in aspen 42.  The observed anatomical properties 

differences in aspen genotypes are in agreement with earlier findings from Aspen FACE 

(Kaakinen et al. 2004; Kostiainen et al. 2008).  For example, Kaakinen et al. (2004) observed the 

widest fiber lumen diameter in aspen 271 and narrowest fiber lumen and vessel lumen diameter, 

lowest vessel proportion and highest cell wall area proportion in clone 216.  Differential growth 

and physiological patterns by species and aspen genotypes have also been observed at Aspen 

FACE (Isebrands et al. 2001; Karnosky et al. 2003; King et al. 2005; Kubiske et al. 2007; Norby 

and Zak 2011; Zak et al. 2011; Zak et al. 2012).   

In addition to species and genotypic differences, vessel lumen diameter was narrower at the 

periphery than the inner and middle radial positions of the growth ring.  Variations in the wood 

anatomical properties with respect to species / genotypes and positions along radial and axial 

directions have long been recognized (Panshin and Zeeuw 1980; Zobel and Buijtenen 1989; 

Zobel and Jett 1995; Dickison 2000; Barnett and Jeronimidis 2003; Wheeler et al. 2007) 
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Effects of elevated CO2 

The results of the current study showed no significant effects of elevated CO2 on wood 

anatomical properties investigated with the exception of a nearly significant effect of elevated CO2 

on number of vessels per square millimeter in relation to the ambient treatment.  In addition, 

vessel lumen diameter was not affected by elevated CO2 at the inner, middle and periphery radial 

positions of the growth ring, compared to the control, implying that effects of elevated CO2 on 

vessel lumen diameter are not radial position dependent.  The current observations are 

consistent with earlier reports (Kaakinen et al. 2004; Kostiainen et al. 2008), which indicated no 

significant effects of elevated CO2 on the wood anatomical properties of the same species and 

aspen genotypes at ages 3 and 5 at the Aspen FACE research site on samples taken from breast 

height (1.37 m) on the main stem.  Growing evidence also indicates no significant effects of 

elevated CO2 on wood anatomical properties for other wood species.  For example, fiber and 

vessel length, vessel lumen diameter, vessel area and cell wall proportions in two clones of 

Betula pendula were not affected by elevated CO2 (Kostiainen et al. 2006).  Cell wall thickness of 

Picea abies (L.) Karst. grown under elevated CO2 was not significantly different from the control 

(Kostiainen et al. 2004).  Likewise, Telewski et al. (1999) reported that cell wall:lumen area of 

Pinus taeda L. was not influenced by elevated CO2.  Elevated CO2 also did not have effects on 

the wood anatomy of Larix kaempferi and Larix sibirica seedlings (Yazaki et al. 2001; Yazaki et 

al. 2004).  

Although, elevated CO2 did not have significant effects on wood anatomical properties in the 

current study, there was a nearly significant effect of elevated CO2 for number of vessels per 

square millimeter.  Specifically, number of vessels per square millimeter tended to increase in 

aspen 8, 216, 271, and birch but was unaltered in aspen 42 and maple under elevated CO2, 

compared to the control.   In line with the current study, the number of vessels per square 

millimeter also increased in Quercus robur L. grown under elevated CO2 compared to the control 

(Atkinson and Taylor 1996).  At Aspen FACE elevated CO2 has been reported to increase 

diameter growth compared to the ambient treatment in aspen genotypes and birch (Isebrands et 
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al. 2001; Kaakinen et al. 2004; Kubiske et al. 2007; Kostiainen et al. 2008).  In addition net 

primary productivity increased by 26% persistently for about a decade under elevated CO2.  In 

this study, cell dimensions and cell wall area proportions were not significantly influenced by 

elevated CO2, but marginal increases occurred for number of vessels per square millimeter in 

aspen genotypes and birch.  It is therefore reasoned that the increase in growth parameters at 

Aspen FACE may have been due to increases in the number of cells of xylem tissues via rapid 

and prolonged cambial activity, rather than cell wall deposition and expansion (Yazaki et al. 

2005).  Secondly, xylem structure is determined by the activity of cambium and the 

developmental characteristics of wood cells, which are in turn influenced by environmental factors 

such as elevated CO2.  Elevated CO2 can affect wood structure and dimensions via duration and 

rate of cell division by cambium, cell expansion or cell wall deposition (Yazaki et al. 2005).  

Longer duration of rapid cell division, coupled with absence of cell wall deposition and / or cell 

expansion under elevated CO2 may increase radial growth but result in a decrease of wood 

density (Yazaki et al. 2005) due to increased void space (Barnett and Jeronimidis 2003).   

Effects of elevated O3 

The effects of elevated O3 on wood anatomical properties varied with species and radial position.  

Elevated O3 in the presence of ambient CO2 had no effect on mean fiber length, mean fiber 

lumen diameter and mean number of vessels per square millimeter for any species or aspen 

genotype, compared to the control.  At Aspen FACE, elevated O3 significantly increased cell wall 

proportion and decreased fiber lumen and vessel lumen diameter of aspen after 3 years of 

fumigation (Kaakinen et al. 2004), but the effects diminished after five years of fumigation 

(Kostiainen et al. 2008).  Similarly, elevated O3 had no effect on vessel lumen diameter, vessel 

and fiber length and growth ring width but had significant and opposing effects on cell wall and 

vessel lumen area proportions in two silver birch clones (Kostiainen et al. 2006).   

Although not statistically significant, mean growth ring width tended to increase in aspen 8, 

decrease in aspen 216 and birch and be unaffected in aspen 42 and 271 and maple, resulting in 

a significant interaction between elevated O3 and species and aspen genotype.  Growth ring 
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width has a strong positive correlation with tree volume growth.  Therefore the tendency for the 

mean growth ring width to increase in aspen 8; decrease in 216 and birch and be unaffected in 

aspen 42, 271 and maple under elevated O3 implies growth parameters for aspen 8 were 

stimulated and those of birch and aspen 216 were dampened whereas maple, aspen 42 and 271 

were unaltered under elevated O3. 

In line with this reasoning, diameter growth was reported to decrease in aspen 42, 216, 271, and  

birch but increase in aspen 8  and be unaffected in maple under elevated O3, compared to the 

control in earlier studies at the Aspen FACE (Isebrands et al. 2001; Kubiske et al. 2007).  

Furthermore, diameter from pith to bark and growth ring width tended to decrease in aspen after 

three  and five years of elevated O3 fumigation at Aspen FACE, respectively (Kaakinen et al. 

2004; Kostiainen et al. 2008).  The ozone-tolerance and greater competitive abilities of aspen 8 to 

mine growth limiting soil nitrogen relative to the other aspen clones under elevated O3 (Zak et al. 

2007b; Zak et al. 2012) might have contributed to its enhanced growth ring width and radial 

growth under elevated O3 (Kubiske et al. 2007).  In addition, the elimination of ozone-sensitive 

aspen clone 259 in the O3 treatment rings during the Aspen FACE experiment might have 

provided aspen 8 and the other congener’s greater growing space, resulting in enhanced radial 

growth and growth ring width under elevated O3. 

Mean vessel lumen area proportion tended to decrease in aspen 8 and cell wall area proportion 

tended to increase, whereas mean vessel lumen, fiber lumen diameter and vessel frequency 

remained unaltered.  These results suggest that radial growth increment tendency in aspen 8 

under elevated O3 might have been coupled with cell wall deposition.  As a result, it is likely for 

aspen 8 to have moderate gain in wood density under future projected increases in background 

ozone concentration.  In contrast, mean cell wall area proportion tended to decrease in aspen 

271 and mean vessel lumen area proportion and vessel frequency tended to increase, whereas 

fiber lumen and vessel lumen diameter remained unaltered under elevated O3 compared to 

control, which could contribute to slight reduction in wood density.  This is in agreement with the 

slight reduction in wood density observed at the 0.5 m and 1.5 m height levels of aspen 271 stem 
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( Chapter 2, this dissertation).  The anatomical study was performed on upper portions of tree 

stems.  Wood anatomy and density vary along and across tree stems.  

The effects of elevated O3 on vessel lumen diameter were species or genotype and radial 

position specific.  Compared to the control, mean vessel lumen diameter decreased significantly 

in maple and marginally in birch independent of radial position, under elevated O3.  Size of 

vessels correlates positively with stem size (Schume et al. 2004).  Reduction in growth of birch 

and maple has been observed under elevated O3 (Karnosky et al. 2005; Kubiske et al. 2007).  

The reduction in vessel diameter of birch may have reduced void space and contributed to the 

observed increased in wood density under elevated ozone compared to ambient as observed in 

the earlier study (Chapter 2).  With respect to radial position of vessels within the growth ring, 

vessel lumen diameter was not significantly modified at the inner and middle positions under 

elevated O3 compared to the control, except it decreased significantly in maple at the middle 

position.  Vessel lumen diameter decreased significantly at the peripheral radial position in all 

species, except for a slight increase in aspen 8 under elevated O3 compared to the ambient.  

However, vessel lumen diameter generally decreased at the periphery independent of treatment.  

The reduction in vessel lumen diameter at the periphery position corresponds to the late growing 

period, when soil moisture may be limited, and therefore reduced vessel lumen diameter could be 

a physiological strategy to avoid cavitation.  Wider vessel lumen diameters are more efficient in 

hydraulic conductivity but more vulnerable to cavitation, whereas narrower vessel lumen 

diameters are inefficient but less prone to cavitation (Hacke and Sperry 2001). It is therefore 

unclear if the reduction in vessel lumen diameter under elevated O3 at the periphery radial 

position is due solely to elevated O3 or not. 

Effects of elevated CO2 + O3 

No statistically significant effects of combined elevated CO2 + O3 were detected compared to the 

control for all anatomical properties in all species and aspen genotypes.  However, there was a 

nearly significant decrease in the vessel lumen area proportion in maple under elevated CO2 + O3 

compared to the control.  In agreement with the current results, Kaakinen et al. (2004) and 
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Kostiainen et al. (2008) also reported no effect of elevated CO2 + O3 on the wood anatomical 

properties of aspen genotypes (8, 42, 216, 259 271) at the 3rd and 5th year of fumigation, 

respectively, at the Aspen FACE research site.  Additionally, elevated CO2 + O3 had no significant 

impact on wood anatomical properties of two silver birch clones but caused a marginally 

significant increase in the vessel lumen area proportion in one silver birch clone, compared to the 

control (Kostiainen et al. 2006). These observations are parallel to accumulated evidence from 

the Aspen FACE research site, where no significant effect of elevated CO2 + O3 on growth 

parameters of the aspen genotypes, birch and maple were observed.  It appears elevated CO2 

counteracts the effects of elevated O3 on wood anatomical properties. 

Conclusions 

Species and genotype exhibited statistically significant effects on wood anatomical properties, 

independent of treatments.  Compared to the control, elevated CO2 did not have statistically 

significant effects on mean growth ring width, mean fiber length, mean fiber lumen diameter, 

mean vessel area proportion, mean vessel lumen diameter, or mean cell wall area proportion 

across all species and aspen genotypes.  Nonetheless, elevated CO2 marginally increased the 

number of vessels per square millimeter in aspen genotypes 8, 216, 271 and birch.  Elevated O3 

influenced growth ring, cell wall and vessel lumen area proportions and vessel lumen diameter, 

especially at the periphery radial position of a growth ring, but effects were species and genotype 

specific.  The effects of elevated CO2 and O3 alone on wood anatomical properties of aspen 

genotypes and birch were ameliorated when the gases were applied in combination.  However, 

elevated CO2 + O3 marginally reduced vessel lumen area proportion in maple.  Because wood 

density depends on wood anatomical properties, it is likely that future higher concentrations of 

CO2 and / or O3 could cause slight alterations in the strength of northern hardwoods, but for 

utilization purposes, the degree of changes would likely not be considered important based on the 

current anatomical data.  Due to the variation in responses of aspen genotypes, birch and maple 

to elevated O3, CO2 alone, and in combination, it is recommended that future management of 
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natural stands of northern hardwoods should promote mixed species and genotypes in order to 

offset the potential minor effects of elevated CO2 and / or elevated O3 on wood quality.   
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Figures 
 

 

 

 

 

 

Fig 4-1  Micrographs of aspen illustrating the 2008 growth ring (Arrowed line, left)  and a 
macerated wood sample for wood anatomical analyses (Right). 
 

      

Figure 4-2 Vessel lumen diameter of aspen clones 8, 42, 216, 271, birch and maple in relation to 
radial position, independent of elevated CO2 and / or O3 treatments at Aspen FACE.  Bars are 
means ± SE across all treatments and n =12. 
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Table 4-3 Effects of CO2 on vessel lumen diameter of aspen clones 8, 42, 216, 271, birch and 
maple, in relation to radial position within the growth ring, after 12 years of fumigation at the 
Aspen FACE research site compared to the ambient. Values are means (± 1SE). Highlighted P-
values are significant (P  0.05) and n = 3. Elevated CO2 (= eCO2). 

  Radial Position  

Species/clone Treatment Inner Middle Periphery Mean 

8 Ambient 56.7 ± 2.8 57.8 ± 2.3 50.3 ± 2.4 55 ± 2.5 

 eCO2 55.3 ± 3.7 56.0 ± 2.5 47.0 ± 2.5 52.8 ± 2.9 

42 Ambient 54.9 ± 2.3 58.6 ± 1.6 50.2 ± 3.5 54.6 ± 2.2 

 eCO2 58.6 ± 1.2 58.4 ± 2.6 48.9 ± 1.7 55.3 ± 1.8 

216 Ambient 47.0 ± 2.3 48.5 ± 2.5 42.4 ± 1.8 46.0 ± 2.1 

 eCO2 44.8 ± 3.0 47.0 ± 3.9 39.4 ± 2.0 43.7 ± 2.9 

271 Ambient 54.8 ± 1.5 55.0 ± 0.6 47.1 ± 0.2 52.3 ± 0.6 

 eCO2 57.8 ± 1.9 58.3 ± 1.7 48.7 ± 0.2 55.0 ± 1.2 

Birch Ambient 57.8 ± 2.4 60.0 ± 1.8 52.0 ± 1.8 56.6 ± 2.0 

 eCO2 54.0 ± 1.0 55.7 ± 3.0 48.1 ± 2.6 52.6 ± 1.8 

Maple Ambient 53.1 ± 2.0 53.1 ± 0.3 45.3 ± 0.5 50.5 ± 0.7 

 eCO2 50.3 ± 2.0 49.4 ± 2.0 42.3 ± 1.1 47.3 ±1.5 

P-values 
    

Species / clone 0.0004 0.0003 0.0003 0.0001 

eCO2 0.8092 0.4274 0.1218 0.4263 

eCO2 × species /clone 0.4137 0.5630 0.6857 0.5049 

Position    <0.0001 

eCO2 × position    0.2027 

Species / clone × position    0.5148 

eCO2 × species / clone 
×position 

   0.8565 
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Table 4-5 Effects of O3 on vessel lumen diameter of aspen clones 8, 42, 216, 271, birch and 
maple, in relation to radial position within the growth ring, after 12 years of fumigation at the 
Aspen FACE research site, compared to the ambient. Values are means (± 1SE).  Highlighted P-
values are either significantly (P  0.05) or marginally significantly different (P  0.10) and n = 3. 
Elevated O3 (=eO3). 

   Position   

Species / clone Treatment Inner Middle Periphery Mean 

8 Ambient 56.7 ± 2.8 57.8 ± 2.3 50.3 ± 2.4 55 ± 2.5 

 eO3 59.4 ± 2.0 61.5 ± 3.1 51.8 ± 1.9 57.6 ± 2.2 

42 Ambient 54.9 ± 2.3 58.6 ± 1.6 50.2 ± 3.5 54.6 ± 2.2 

 eO3 56.8 ± 0.8 57.8 ± 0.4 46.1 ± 0.2 53.6 ± 0.3 

216 Ambient 47.0 ± 2.3 48.5 ± 2.5 42.4 ± 1.8 46.0 ± 2.1 

 eO3 47.1 ± 0.6 45.9 ± 1.8 39.8 ± 1.6 44.3 ± 1.3 

271 Ambient 54.8 ± 1.5 55.0 ± 0.6 47.1 ± 0.2 52.3 ± 0.6 

 eO3 54.8 ± 1.3 53.3 ± 1.0 46.6 ± 0.9 51.6 ± 1.1 

Birch Ambient 57.8 ± 2.4 60.0 ± 1.8 52.0 ± 1.8 56.6 ± 2.0 

 eO3 53.2 ± 3.2 52.4 ± 3.8 45.6 ± 2.7 50.4 ± 3.2 

Maple Ambient 53.1 ± 2.0 53.1 ± 0.3 45.3 ± 0.5 50.5 ± 0.7 

 eO3 46.8 ± 1.3 44.8 ± 1.5 40.2 ± 1.5 43.9 ± 1.4 

P-values 
    

Species / clone <0.0001 <0.0001 <0.0001 <0.0001 

eO3 0.5485 0.1304 0.0026 0.1301 

eO3 × species /clone 0.1040 0.0232 0.1404 0.0551 

position    <0.0001 

eO3 × position    0.0110 

Species × position    0.0363 

eO3 × spp/clone ×position    0.1168 
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Table 4-7 Effects of CO2 + O3 on vessel lumen diameter of aspen clones 8, 42, 216, 271, birch 
and maple, in relation to radial position within the growth ring, after 12 years of fumigation at the 
Aspen FACE research site, compared to the ambient. Values are means (± 1SE). Highlighted P-
values are either significantly (P  0.05) or marginally significantly different (P  0.10) and n = 3. 
Elevated CO2 (= eCO2) and elevated O3 (=eO3). 

  Radial position  
Species / clone Treatment Inner Middle Periphery Mean 

8 Ambient 56.7 ± 2.8 57.8 ± 2.3 50.3 ± 2.4 55 ± 2.5 

 eCO2+ eO3 61.3 ± 2.1 60.6 ± 0.1 51.8 ± 2.0 57.9 ± 1.4 

42 Ambient 54.9 ± 2.3 58.6 ± 1.6 50.2 ± 3.5 54.6 ± 2.2 

 eCO2+ eO3 52.4 ± 1.3 53.6 ± 1.8 44.5 ± 0.9 50.2 ± 1.3 

216 Ambient 47.0 ± 2.3 48.5 ± 2.5 42.4 ± 1.8 46.0 ± 2.1 

 eCO2+ eO3 47.6 ± 3.0 47.6 ± 3.9 41.9 ± 2.5 45.7 ± 3.1 

271 Ambient 54.8 ± 1.5 55.0 ± 0.6 47.1 ± 0.2 52.3 ± 0.6 

 eCO2+ eO3 53.8 ± 1.5 53.1 ± 1.8 46.2 ± 1.2 51.0 ± 1.5 

Birch Ambient 57.8 ± 2.4 60.0 ± 1.8 52.0 ± 1.8 56.6 ± 2.0 

 eCO2+ eO3 58.8 ± 2.6 59.6 ± 2.4 50.9 ±1.5 56.4 ±2.1 

Maple Ambient 53.1 ± 2.0 53.1 ± 0.3 45.3 ± 0.5 50.5 ± 0.7 

 eCO2+ eO3 50.9 ± 1.0 48.9 ± 1.0 43.4 ± 1.0 47.7 ± 0.9 

P-values     

Species / clone 0.0003 <0.0001 0.0001 <0.0001 

eCO2 + eO3 0.9747 0.2182 0.2989 0.4374 

eCO2 + eO3 × species /clone 0.5909 0.4102 0.4761 0.4622 

position    <0.0001 

eCO2 + eO3 × position    0.0463 

Species × position    0.1200 

eCO2 + eO3 × spp / clone 

×position 

   0.8875 
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CHAPTER 5: Dissertation Synthesis 

Introduction 

Atmospheric CO2 and O3 concentrations have increased by about 40% since the onset of the 

industrial revolution and are predicted to rise further due to anthropogenic activities such as fossil 

fuel combustion and changing land use systems (IPCC 2007).  Available evidence indicates that 

elevated CO2 concentrations stimulate woody plant growth, but elevated O3 retards it (Karnosky 

et al. 1996; Karnosky et al. 2007; Kubiske et al. 2007; Norby and Zak 2011; Zak et al. 2011).  

Additionally the biochemistry of woody plants grown under elevated CO2 or O3 is altered 

(Kaakinen et al. 2004; Kostiainen et al. 2004; Parsons et al. 2004; Liu et al. 2005; Kostiainen et 

al. 2006; Kostiainen et al. 2008; Parsons et al. 2008).  Wood density, which is an important 

measure of wood quality, depends on wood anatomical properties, which in turn are influenced by 

cambial activity and cellular development (Dickison 2000).  Cambial activity and cellular 

development of woody plants are also largely influenced by a range of environmental factors 

(Dickison 2000; Barnett and Jeronimidis 2003).  Hence, changing concentrations of atmospheric 

CO2 and O3, could impact wood anatomical properties and quality.  Furthermore, because many 

fungi depend on plant detritus for growth and development, modifications in the structure and 

chemical properties of woody plants under elevated CO2 and / or O3 could affect the wood-

decaying fungal community and wood decomposition rates.  Subsequently carbon and nutrient 

cycling and terrestrial forest ecosystem productivity could be altered.  The general goal of this 

dissertation was therefore to investigate the long term effects of twelve years of ecosystem 

development under elevated CO2 and / or O3 on wood density, wood anatomical properties, 

wood-decaying fungal community composition and rates of wood decomposition for common 

northern hardwood tree species.  

Summary of Results  

Chapter 1 introduced the dissertation.  A brief overview of the theoretical framework and 

justification for the dissertation were provided.  The weaknesses in existing methodologies for 
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investigating the effects of elevated CO2 and / or O3 on wood properties and woody plant litter 

decomposition were highlighted and the general goal, objectives and hypotheses were outlined. 

The case was made that Aspen FACE provided a unique opportunity and more realistic approach 

for examining the long term effects of elevated CO2 and / or O3 on wood properties, wood-

decaying fungal community dynamics, and wood decomposition than the short-term use of 

seedlings and saplings in greenhouses and growth chambers. 

In Chapter 2, the long-term effects of elevated CO2 and / or O3 on wood density of birch and three 

clones of trembling aspen (42, 216 and 271) grown at Aspen FACE for twelve years were 

investigated.  It was observed that wood density of aspen clone 271 decreased significantly under 

elevated CO2 compared to the control.  In contrast, wood density of aspen clone 42 and birch 

increased significantly under elevated O3 compared to the control.  The wood densities of aspen 

or birch under combined treatments of elevated CO2 and O3 were not significantly different from 

the ambient control.  Species or clone effects on wood density were significant, with birch 

exhibiting a significantly higher wood density than aspen, independent of elevated CO2 and / or 

O3 treatments.  Among the aspen clones, aspen 42 had significantly lower density than clones 

216 and 271. 

Chapter 3 examined the effects of birch and aspen (clones 42 and 271) produced or 

decomposing in elevated CO2 and / or O3 on wood-decaying fungal community composition and 

initial decomposition rates.  Results indicated that production or decomposition of birch and 

aspen under elevated CO2 and / or O3 did not significantly alter wood-decaying fungal community 

composition or wood decomposition rates.  However, wood species had a clear impact on wood-

decaying fungal community composition and initial rates of wood decomposition.  Wood-decaying 

fungal community composition within decaying birch and aspen logs were significantly different, 

and birch decomposed faster than aspen.  A total of 14 wood-decaying basidiomycete fungal 

species, largely from the order Polyporales, Agaricales, and Russulales were isolated, 

independent of elevated CO2 and / or O3 treatments. 
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Wood anatomical traits are known to influence wood density, wood-decaying fungal community 

composition and decomposition rates (Eaton and Hale 1993; Dickison 2000; Barnett and 

Jeronimidis 2003; Cornwell et al. 2008; Cornwell et al. 2009; Weedon et al. 2009).  Hence, in 

Chapter 4, the long term effects of growth under elevated CO2 and / or O3 on wood anatomical 

properties of four trembling aspen clones (8, 42, 216, and 271), birch and maple were evaluated.  

Compared to the ambient, anatomical properties of birch, maple and trembling aspen were not 

significantly affected by elevated CO2, except for a marginal increase in number of vessels per 

square millimeter in one aspen genotype (271) and birch.  However, under elevated O3, vessel 

lumen diameter decreased significantly in maple and marginally in birch compared to the 

ambient.  The combined treatment of elevated CO2 and O3 did not have a significant effect on any 

of the anatomical properties compared to the ambient.  Species or genotype effects on all wood 

anatomical properties were very conspicuous.  Vessel lumen diameter was observed to be 

significantly lower at the periphery than the inner and middle radial positions of the growth ring, 

independent of elevated CO2 and / or O3 treatments. 

Conclusions / implications of study  

Information on the effects of elevated O3 alone and in combination with elevated CO2 on wood 

density is rare.  Nonetheless, mounting experimental evidence indicates that, elevated CO2 alone 

could enhance, reduce or  have no effects on wood density depending on species, genotype, age 

and soil nutrients status (Rogers et al. 1983; Conroy et al. 1990; Telewski et al. 1999; Maherali 

and DeLucia 2000; Oren et al. 2001; Beismann et al. 2002; Ceulemans et al. 2002; Atwell et al. 

2003; Calfapietra et al. 2003; Kilpelainen et al. 2005; Qiao et al. 2008).  Similarly, growing 

experimental evidence indicates that anatomical properties of woody plants grown under elevated 

CO2 or O3 alone could be modified or not depending on age, species or genotype (Telewski et al. 

1999; Kaakinen et al. 2004; Kostiainen et al. 2004; Luo et al. 2005; Yazaki et al. 2005; Kostiainen 

et al. 2006; Kostiainen et al. 2008; Kostiainen et al. 2009; Watanabe et al. 2010).  However, wood 

anatomical properties of woody plants grown under combined CO2 and O3 are not altered 

(Kostiainen et al. 2004; Kostiainen et al. 2006; Kostiainen et al. 2008).   
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In line with existing accumulating evidence, wood density and anatomical properties of common 

northern hardwoods (birch, maple and trembling aspen) responses to long-term growth under 

elevated CO2 and / or O3 were observed to be species or genotype specific in this study.  The 

reduction in wood density of aspen genotype 271 may be explained by the observed marginally 

significant increase in number of vessels per square millimeter under elevated CO2 compared to 

the control.  Additionally, the vessel and fiber lumen diameters of aspen 271 tended to increase 

under elevated CO2 compared to the ambient, confirming earlier reports from Aspen FACE 

(Kaakinen et al. 2004; Kostiainen et al. 2008).  As a result void space in aspen 271 increased 

under elevated CO2 compared to the ambient resulting in a significant reduction in wood density 

(Panshin and Zeeuw 1980; Dickison 2000; Barnett and Jeronimidis 2003).  Aspen genotype 271 

grew at a faster rate under elevated CO2 compared to the ambient at Aspen FACE (Isebrands et 

al. 2001; Kubiske et al. 2007).  Typically, fast growth of woody plants could cause modifications in 

anatomical properties and result in reduction in wood density.   

In contrast to elevated CO2 responses, wood density of aspen genotype 42 and birch increased 

significantly under elevated O3 compared to the ambient in this study. Moderate modifications in 

the anatomical properties of birch and aspen 42 observed under elevated O3, compared to the 

ambient, might have accounted for the increase in wood density.  There was a marginally 

significant decrease in vessel lumen diameter in birch and cell wall area proportion tended to 

increase in aspen 42 under elevated O3, compared to the ambient. This implies that void space in 

birch and cell wall area proportion in aspen genotype 42 decreased and increased, respectively, 

thereby causing significant increases in wood density under elevated O3 compared to the 

ambient.  Wood density is a measure of the ratio of cell wall material to void space (Barnett and 

Jeronimidis 2003).  Additionally, lignin, starch and extractives which influence wood density 

(Grabner et al. 2005), increased in birch under elevated O3 compared to the ambient at the same 

experiment site (Kaakinen et al. 2004; Kostiainen et al. 2008).  Hence chemical and cellular 

modifications which occurred in some aspen clones and birch under elevated CO2 or O3 may 

have resulted in the moderate modifications of wood density compared to ambient.  This 
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suggests that future higher concentrations of CO2 or O3 alone could modify anatomical structure 

and wood density and consequently wood quality of common northern hardwoods, but effects will 

be species or genotype specific.  Based on our results however, effects of elevated CO2 or O3 

alone on wood quality may not be considered significant for utilization purposes, since the density 

changes were relatively small and mean density values observed in this study were well within 

the utilization range density of 400 to 750 kg / m3 (Panshin and Zeeuw 1980).  The combined 

treatment of elevated CO2 and O3 did not show any significant effects on either wood density or 

anatomical properties.  Implying that, the effects of elevated CO2 or O3 alone on wood density 

and anatomical properties are ameliorated when in combination. 

Anatomical properties of birch and trembling aspen genotypes were moderately modified under 

elevated CO2 or O3 compared to the ambient, but growth or decomposition of birch and aspen 

wood in elevated CO2 and / or O3 did not have significant effects on wood-decaying fungal 

community composition or rates of wood decomposition.  To our knowledge, no studies have 

investigated the effects of elevated CO2 and / or O3 on the wood-decaying fungal community.  

The effects of elevated CO2 and / or O3 on the fungal community and plant litter decomposition 

are assumed to be mediated via modifications in litter quality (Strain and Bazzaz 1983)..  In this 

study, species / clone exhibited significant effects on wood-decaying fungal community 

composition and decomposition rates, while growth or decomposition of birch and aspen wood in 

elevated CO2 and / or O3 had only a minor effect.  At Aspen FACE, modifications in forest 

community composition (relative proportions of birch, maple and aspen genotypes) have occurred 

due to differential growth response to elevated CO2 and O3 (Kubiske et al. 2007).  Hence 

because wood-decaying fungal community and decomposition vary significantly with species or 

genotype, it is possible that future high levels of elevated CO2 or O3 will influence wood-decaying 

fungal community and decomposition via changes in substrate quality associated with alteration 

of the species / genotype composition of natural stands, as well as changes in the total amount of 

woody detritus produced due to effects of elevated CO2 and O3 on stand productivity. 
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Finally, because wood density, wood-decaying fungal community composition, and wood 

decomposition, and wood anatomical properties responses to elevated CO2 and or / O3 were 

species or genotype specific, it is important that the genetic resources of common hardwoods are 

conserved at all levels of stand management.  A prudent conservation of the genetic resources of 

northern hardwoods has an enormous potential to offset the effects of projected future higher 

levels of CO2 and / or O3. 

Limitations of study and future research  

In the wood density studies, density estimations were done for both bark and secondary xylem 

(wood).  The bark and secondary xylem (wood) tissues differ in structure and composition and 

may respond differently to elevated CO2 and / or O3.  Nevertheless, the results are reliable for 

stem density long term response to elevated CO2 and / or O3 of common northern hardwoods.  

Hence it is recommended that future research consider separating the effects of elevated CO2 

and / or O3 on bark and wood density. 

Although, the effects of CO2 and / or O3 on wood-decaying fungal community composition and 

wood decomposition were done in the source environment, they were performed after all trees in 

the Aspen FACE rings were cut and new canopy development was minimal.  It is therefore 

possible that fungal spores, which are airborne, could have circulated across all treatments.  

Additionally, wood detrital inputs during the 12 years of the Aspen FACE experiment prior to 

harvest were minor except small dead branches.  The duration of the wood decomposition study 

was relatively short (one year) relative to the inherent slow decomposition rates of wood.  Micro-

fungi and bacteria do not cause considerable mass loss of wood detritus during decay, but their 

presence modifies the micro- environment and therefore could affect the activities and 

composition for wood-decaying basidiomyecetes.  In this study, micro-fungi and bacteria were not 

our focus.  Also colonization and decay of wood occur in succession, and the isolated fungi 

showed that the colonization of the wood samples were from the primary and secondary stages. 

It is therefore not clear how the tertiary suite of wood-decaying fungi would respond to elevated 

CO2 and / or O3.  Furthermore, litter quality is presumed to influence fungal community and 
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decomposition of plant litter, but the biochemistry of the logs samples were not examined.  

Although, the biochemistry of the same species of earlier reports was referenced, they were done 

on saplings and could have changed by the time of this study.  To our knowledge, this is the first 

time the long term effects of CO2 and / or O3 on wood-decaying fungi and decomposition is being 

reported.  In spite of the aforementioned limitations, careful interpretation of the results could 

serve as valuable basis for future research.  It is recommended that future studies should have a 

longer decomposition period, consider micro-fungi response to elevated CO2 and / or O3, and 

possibly, the experiment could be performed under undisturbed canopy.  Additionally, a thorough 

evaluation of the biochemical constituents of the samples under investigation should occur to 

provide information on the effects of elevated CO2 and / or O3 on woody litter quality.  

Wood anatomical properties vary considerable between and within species, from pith to bark and 

along the longitudinal axis.  Only two trees of each of the six species / clones were sampled from 

each of the 12 treatment rings.  Additionally, anatomical measurements were done only on one 

growth ring in the upper portions of the trees.  In view of the limited sampling, it is likely that the 

total variations within and between the six species and clones were not captured.  However, our 

results are consistent with earlier experiments.  It is recommended that a more intensive 

sampling, which considers all growth rings at different height levels of the trees, is done in order 

to capture all variations with respect to the effects of elevated CO2 and / or O3 on wood 

anatomical properties. 
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APPENDIX  

 

Appendix Figure 2-1 Positions of the treatment rings and facilities at the Aspen FACE project 
site, Harshaw, WI, USA.  Total area of site is 32 ha (Dickson et al. 2000). 
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Appendix Table 2-1 Repeated measures analysis of variance for the effects of elevated CO2 on 
wood density of birch, aspen clones 216, 271 and 42. The first table is the combined analysis for 
all species/clones and the next four tables are the separate analysis for birch, aspen clones 216, 
271 and 42, respectively. 
 
All species / clones 
 

Source SS df MS F ratio P > F 

Between subjects      

Elevated CO2 108.304 1 108.30 0.09 0.7633 

Species 762157.97 3 254052.66 215.62 <0.0001 

Elevated CO2 × species 10476.77 3 3492.26 2.96 0.0435 

Error 47129.45 40 1178.24   

Within subjects      

Position 22132.29 4 5533.07 11.77 <0.0001 

Position × elevated CO2 4334.19 4 1083.55 2.30 0.0606 

Position × species 8187.81 12 682.32 1.45 0.1480 

Position × elevated CO2 × species 4476.11 12 373.01 0.79 0.6567 

Error 75215.58 160 470.09   
 
Birch 
 

Source SS df MS F ratio P > F 

Between subjects      

Elevated CO2 3611.7 1 3611.7 1.64 0.2293 

Error 22033.1 10 2203.3   

Within subjects      

Position 3663.1 4 920.8 3.93 0.0087 

Position × elevated CO2 197.2 4 49.3 0.21 0.9310 

Error 9363.2 40 234.1   
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Aspen 216 
 

Source SS df MS F ratio P > F 

Between subjects      

Elevated CO2 2387.7419 1 2387.7419 1.82 0.2068 

Error 13099.9696 10 1309.9970   

Within subjects      

Position 3430.75861 4 857.6897 1.19 0.3280 

Position × elevated CO2 3541.0958 4 1.23 1.23 0.3122 

Error 28714.4885 40    
 
Aspen 271 
 

Source SS df MS F ratio P > F 

Between subjects      

Elevated CO2 3738.8513 1 3738.8513 13.65 0.0041 

Error 2738.2846 10 273.8285   

Within subjects      

Position 17900 4 4475.0862 6.76 0.0003 

Position × elevated CO2 2452.1889 4 613.0472 0.93 0.4582 

Error 26466.6755 40 661.6669   
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Aspen 42 
 

Source SS df MS F ratio P > F 

Between subjects      

Elevated CO2 3611.7145 1 3611.7145 1.64 0.2293 

Error 22033.0886 10 2203.3087   

Within subjects      

Position 3683.1058 4 920.7765 3.93 0.0087 

Position × elevated CO2 197.2112 4 49.3028 0.21 0.9310 

Error 9363.2338 40 234.0808   
 
 
Appendix Table 2-2 Repeated measures analysis of variance for the effects of elevated O3 on 
wood density of birch, aspen clones 216, 271 and 42. The first table is the combined analysis for 
all species/clones and the next four tables are the separate analysis for birch, aspen clones 216, 
271 and 42, respectively. 
 
All species / clones 
 

Source SS df MS F ratio P > F 

Between subjects      

Elevated O3 8558.39 1 8558.39 8.52 0.0057 

Species 780333.45 3 260111.15 259.04 <0.0001 

Elevated O3 × species 8238.28 3 2746.09 2.73 0.0562 

Error 40165.27 40 1004.13   

Within subjects      

Position 11571.70 4 2892.93 7.80 <0.0001 

Position × elevated O3 2700.66 4 675.16 1.82 0.1272 

Position × species 3011.08 12 250.92 0.68 0.7718 

Position × elevated O3 × species 11041.68 12 920.14 2.48 0.0053 

Error 59304.81 160 370.66   
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Birch 
 

Source SS df MS F ratio P > F 

Between subjects      

Elevated O3 13041.3811 1 13041.3811 7.52 0.0208 

Error 17348.9504 10 1734.8950   

Within subjects      

Position 712.6555 4 178.1639 0.79 0.5381 

Position × elevated O3 1366.7048 4 341.6762 1.52 0.2158 

Error 9012.5154 40 225.3129   
 
Aspen 216 
 

Source SS df MS F ratio P > F 

Between subjects      

Elevated O3 17.5774 1 17.5774 0.01 0.906 

Error 11971.9014 10 1197.1901   

Within subjects      

Position 6345.5126 4 1586.3781 4.40 0.0048 

Position × elevated O3 912.6699 4 228.1675 0.63 0.6418 

Error 14414.4350 40 360.3609   
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Aspen 271 
 

Source SS df MS F ratio P > F 

Between subjects      

Elevated O3 256.4739 1 256.4739 0.28 0.6067 

Error 9081.9448 10 908.1945   

Within subjects      

Position 1660.7411 4 415.1853 0.73 0.5750 

Position × elevated O3 7704.3881 4 1926.0970 3.40 0.0174 

Error 22661.4965 40 566.5374   
 
Aspen 42 
 

Source SS df MS F ratio P > F 

Between subjects      

Elevated O3 13041.3811 1 13041.3811 7.52 0.0208 

Error 17348.9504 10 1734.8950   

Within subjects      

Position 712.6555 4 178.1639 0.79 0.5381 

Position × elevated O3 1366.7048 4 341.6762 1.52 0.2158 

Error 9012.5154 40 225.31289   
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Appendix Table 2-3 Repeated measures analysis of variance for the effects of elevated CO2 + 
O3 on wood density of birch, aspen clones 216, 271 and 42. The first table is the combined 
analysis for all species/clones and the next four tables are the separate analysis for birch, aspen 
clones 216, 271 and 42, respectively. 
 
All species / clones 
 

Source SS df MS F ratio P > F 

Between subjects      

Elevated CO2 + O3 1716.06 1 1716.06 1.69 0.2009 

Species/Clones 737649.83 3 245883.28 242.33 <0.0001 

Elevated CO2 + O3 × species 5157.25 3 1719.08 1.69 0.1836 

Error 40586.25 40 1014.67   

Within subjects      

Position 26511.75 4 6627.94 16.90 <0.0001 

Position × elevated CO2 + O3 1655.61 4 413.90 1.06 0.3805 

Position × species/clones 7671.98 12 639.33 1.63 0.0879 

Position × elevated CO2 + O3 × 

species 

5992.62 12 499.39 1.27 0.2390 

Error 62739.45 160 392.12   
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Birch 
 

Source SS df MS F ratio P > F 

Between subjects      

Elevated CO2 + O3 3136.5839 1 3136.5839 2.33 0.1575 

Error 13436.6039 10 1343.6604   

Within subjects      

Position 2383.1988 4 595.7997 2.58 0.0519 

Position × elevated CO2 + 

O3 

1266.7706 4 316.6927 1.37 0.2613 

Error  40    
 
Aspen 216 
 

Source SS df MS F ratio P > F 

Between subjects      

Elevated CO2 + O3 1317.2695 1 1317.2695 1.1 0.3160 

Error 11824.6303 10 1182.4630   

Within subjects      

Position 7937.7747 4 1984.4437 5.56 0.0012 

Position × elevated CO2 + 

O3 

15555.0811 4 388.7703 1.09 0.3751 

Error 14283.05233 40 357.0763   
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Aspen 271 
 

Source SS df MS F ratio P > F 

Between subjects      

Elevated CO2 + O3 1535.3192 1 1535.3192 1.15 0.3080 

Error 13304.8416 10 1330.4842   

Within subjects      

Position 15566.5145 4 3891.6286 6.22 0.0005 

Position × elevated CO2 + 

O3 

3944.9211 4 986.2303 1.58 0.1991 

Error 25012.8246 40 625.3206   
 
Aspen 42 
 

Source SS df MS F ratio P > F 

Between subjects      

Elevated CO2 + O3 3136.5839 1 3136.5839 2.33 0.1575 

Error 13436.6039 10 1343.6604   

Within subjects      

Position 2383.1988 4 595.7997 2.58 0.0519 

Position × elevated CO2 + 

O3 

1266.7706 4 316.6927 1.37 0.2613 

Error 9241.3493 40 231.0337   
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Appendix Table 3-1 PerMNOVA table for the effects of Species / Forest ecosystem community. 
(Permutations = 1,000) 
 

Source SS df MS F ratio P > F 

Species / forest ecosystem 1.24274 1 1.24274 7.7135 0.0009 

Error 3.5445 22 0.16111   

Total 4.7872 23    
 
 
Appendix Table 3-2 PerMNOVA table for the treatment effects of elevated CO2 and / or O3 on 
fungal community composition in aspen-birch forest ecosystem community only.   
(Permutations = 1,000) 
 

Source SS df MS F ratio P > F 

Treatment Effects 0.70352 3 0.2345 1.4024 0.2567 

Error 1.33775 8 0.16722   

Total 2.04127 11    
 
 
Appendix Table 3-3 PerMNOVA table for the treatment effects of elevated CO2 and / or O3 on 
fungal community composition in the aspen clones forest ecosystem community only.  
(Permutations = 1,000) 
 

Source SS df MS F ratio P > F 

Treatment Effects 0.51922 3 0.173072 1.8535 0.1029 

Error 0.74702 8 0.093377   

Total 1.26624 11    
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Appendix Table 3-4 Split-split-plot ANOVA table for the effects of elevated CO2 on percentage 
wood density loss in birch and aspen clones 42 and 271. Data were arcsine transformed. 
 

Source SS df MS F ratio P > F 

Elevated CO2 0.0037 1 0.0037 1.02 0.4192 

Block 0.0066 2 0.0033 0.90 0.5257 

Error - main 0.0073 2 0.0037   

Species 0.0286 2 0.0143 5.36 0.0334 

Elevated CO2 × Species 0.0037 2 0.0019 0.70 0.5257 

Error - subplot 0.0214 8 0.0027   

Source of wood 0.0146 3 0.0049 1.23 0.3115 

Elevated CO2 × Source 0.0111 3 0.0037 0.93 0.4345 

Species × Source of wood 0.0035 6 0.0006 0.15 0.9887 

Elevated CO2 × Species × Source of 

wood 

0.0459 6 0.0076 1.93 0.1019 

Error - sub - subplots  0.1423 36 0.0039   

Total 0.2888 71    
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Appendix Table 3-5 Split-split-plot ANOVA table for the effects of elevated O3 on percentage 
wood density loss in birch and aspen clones 42 and 271. Data were arcsine transformed. 

Source SS df MS F ratio P > F 

Elevated O3 0.0009 1 0.0009 0.97 0.4280 

Block 0.0231 2 0.0116 12.68 0.0731 

Error - main 0.0018 2 0.0009   

Species 0.0175 2 0.0088 3.24 0.0929 

Elevated O3 × Species 0.0001 2 0.0001 0.02 0.9765 

Error - subplot 0.0216 8 0.0027   

Source 0.0013 3 0.0004 0.13 0.9391 

Elevated O3 × Source 0.0016 3 0.0005 0.17 0.9147 

Species × Source 0.0136 6 0.0023 0.71 0.6447 

Elevated O3 × Species × Source 0.0171 6 0.0028 0.89 0.5113 

Error - sub - subplots  0.1149 36 0.0032   

Total 0.2136 71    
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Appendix Table 3-6 Split-split-plot ANOVA table for the effects of elevated CO2 + O3 on 
percentage wood density loss in birch and aspen clones 42 and 271. Data were arcsine 
transformed. 

Source SS df MS F ratio P > F 

Elevated CO2 + O3 0.00001 1 0.00001 0.00 0.9525 

Block 0.0069 2 0.0034 1.08 0.4802 

Error - main 0.0064 2 0.0032   

Species 0.0444 2 0.0222 7.23 0.0161 

Elevated CO2 + O3 × Species 0.0047 2 0.0024 0.77 0.4933 

Error - subplot 0.0246 8 0.0031   

Source 0.0006 3 0.0002 0.05 0.9843 

Elevated CO2 + O3 × Source 0.0013 3 0.0004 0.11 0.9552 

Species × Source 0.0136 6 0.0023 0.57 0.7490 

Elevated CO2 + O3 × Species × 

Source 

0.0129 6 0.0022 0.55 0.7702 

Error - sub - subplots  0.1422 36 0.0039   

Total 0.2575 71    
 

Appendix Table 4-1 One way- ANOVA table for the effects of species / clone on wood 
anatomical properties in aspen 8, 42, 216, 271, birch and maple. Data was pooled across all 
treatments, n = 12 
 
Growth ring width 
 

Source SS df MS F 
ratio 

P > F 

Species / clone 50013018.62   5 10002603.72  11.85   <0.0001 

Block  1756517.68   2 878258.84    1.04    0.3592 

Error 54023904.9   64 844123.5       

Total 105793441.2 71    
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Fiber length 
 

Source SS df MS F 
ratio 

P > F 

Species / clone 1346239.509   5 269247.902  58.63   <0.0001 

Block  29083.588 2 14541.794   3.17   0.0488 

Error 293927.967 64 4592.624   

Total 1669251.064 71    
 
Fiber lumen diameter 
 

Source SS df MS F 
ratio 

P > F 

Species / clone 240.7386831   5 48.1477366  90.97   <0.0001 

Block  1.6925578    2 0.8462789   1.60   0.2101 

Error 33.8741078   64 0.5292829   

Total 276.3053487 71    
 
Vessel lumen area proportion 
 

Source SS df MS F 
ratio 

P > F 

Species / clone 0.16127893  5 0.03225579  95.64   <0.0001 

Block  0.00181144  2 0.00090572  2.69    0.0759 

Error 0.02158472  64 0.00033726   

Total 0.18467508 71    
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Number of vessels per square millimeter 
 

Source SS df MS F 
ratio 

P > F 

Species / clone 48188.74940 5 9637.74988  36.45   <0.0001 

Block  1454.61382   2 727.30691   2.75   0.0714 

Error 16921.12976   64 264.39265   

Total 66564.49298 71    
 
Cell wall area proportion 
 

Source SS df MS F 
ratio 

P > F 

Species / clone 0.19949187  5 0.03989837   63.18   <0.0001 

Block  0.00060859  2 0.00030429   0.48    0.6199 

Error 0.04041572  64 0.00063150   

Total 0.24051619 71    
 
Vessel lumen diameter (pooled data for inner, middle and periphery) 
 

Source SS df MS F 
ratio 

P > F 

Species / clone 1077.566169   5 215.513234  18.63   <0.0001 

Block  74.162469    2 37.081234   3.21   0.0471 

Error 740.267434   64 11.566679   

Total 1891.996073 71    
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Appendix Table 4-2 Split-plot ANOVA table for the effects of elevated CO2 and species on wood 
anatomical properties: 

Growth ring width 

Source SS df MS F 
ratio 

P > F 

Elevated CO2  1915001.998   1 1915001.998   3.46    0.2037 

Error - main 1105357.03   2 552678.51          

Block 297419.57    2 148709.78    0.30    0.7447 

Species 27576032.57   5 5515206.51   11.10   <0.0001 

Elevated CO2 × Species 2673529.40   5 534705.88    1.08    0.4032 

Error - subplot 9939489.69   20 496974.48   

Total 43506830.25 35    
 
Fiber length  
 

Source SS df MS F 
ratio 

P > F 

Elevated CO2  59.25649420   1 59.25649420   0.20    0.6984 

Error - main 592.3726     2 296.1863       

Block 14226.8380   2 7113.4190    1.63    0.2215 

Species 681630.0946   5 136326.0189   31.18   <0.0001 

Elevated CO2 × Species 29234.2741   5 5846.8548    1.34    0.2893 

Error - subplot 87456.5597   20 4372.8280   

Total 813199.3955 35    
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Fiber lumen diameter 

Source SS df MS F 
ratio 

P > F 

Elevated CO2  0.13622690   1 0.13622690  1.08    0.4079 

Error - main 0.2523379    2 0.1261689     

Block 0.0680002    2 0.0340001   0.06    0.9443 

Species 117.6354272   5 23.5270854  39.76   <0.0001 

Elevated CO2 × Species 5.5281032    5 1.1056206   1.87    0.1452 

Error - subplot 11.8341141   20 0.5917057   

Total 135.4542094 35    
 
Vessel lumen area proportion 
 

Source SS df MS F ratio P > F 

Elevated CO2  3.1660226E-6   1 3.1660226E-6   0.00 0.9547 

Error - main 0.00154255     2 0.00077127       

Block 0.00066202     2 0.00033101     1.17 0.3309 

Species 0.07517757 5 0.01503551     53.11 <0.0001 

Elevated CO2 × Species 0.00218211     5  0.00043642     1.54 0.2219 

Error - subplot 0.00566159     20 0.00028308   

Total 0.08522900 35    
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Number of vessels per square millimeter 

Source SS df MS F 
ratio 

P > F 

Elevated CO2  596.7379252   1 596.7379252   11.49   0.0771 

Error - main 103.85931    2 51.92965       

Block 372.28963    2 186.14482    0.64    0.5359 

Species 23550.66703   5 4710.13341   16.29   <0.0001 

Elevated CO2 × Species 1487.03955   5 297.40791    1.03    0.4278 

Error - subplot 5784.54806 20 289.22740   

Total 31895.14150 35    
 
Cell wall area proportion 
 

Source SS df MS F ratio P > F 

Elevated CO2  0.00060184  1 0.00060184  2.76    0.2383 

Error - main 0.00043554  2 0.00021777    

Block 0.00137066  2 0.00068533  1.06    0.3645 

Species 0.11589780  5 0.02317956  35.91   <0.0001 

Elevated CO2 × Species 0.00412289  5 0.00082458  1.28    0.3123 

Error - subplot 0.01290922 20 0.00064546   

Total 0.13533794 35    
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Vessel lumen diameter (pooled data for inner, middle and periphery) 

Source SS df MS F 
ratio 

P > F 

Elevated CO2  16.89415275   1 16.89415275   0.98    0.4263 

Error - main 34.4354912   2 17.2177456       

Block 33.1948411   2 16.5974206   1.52    0.2424 

Species 493.1804286   5 98.6360857   9.05    <0.0001 

Elevated CO2 × Species 48.6282423   5 9.7256485    0.89    0.5049 

Error - subplot 218.0120680   20 10.9006034   

Total 844.3452241 35    
 
Vessel lumen diameter (Inner region only) 
 

Source SS df MS F 
ratio 

P > F 

Elevated CO2  3.15029245   1 3.15029245   0.08    0.8092 

Error - main 83.3582191   2 41.6791095     

Block 6.8249658    2 3.4124829    0.24    0.7899 

Species 550.3530758   5 110.0706152   7.70    0.0004 

Elevated CO2 × Species 75.4546616   5 15.0909323   1.06    0.4137 

Error - subplot 286.010163   20 14.300508   

Total 1005.151378 35    
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Vessel lumen diameter (middle region only) 
 

Source SS df MS F ratio P > F 

Elevated CO2  16.45057629   1 16.45057629   0.98    0.4274 

Error - main 33.7271525   2 16.8635763     

Block 54.4681425   2 27.2340712 1.92    0.1727 

Species 558.7392871   5 111.7478574   7.88    0.0003 

Elevated CO2 × Species 56.7135057   5 11.3427011   0.80    0.5630 

Error - subplot 283.721309   20 14.186065   

Total 1003.819973 35    
 
Vessel lumen diameter (Periphery region only) 
 

Source SS df MS F ratio P > F 

Elevated CO2  42.24885382   1 42.24885382   6.74    0.1218 

Error - main 12.5325876   2 6.2662938      

Block 53.5759688   2 26.7879844   2.61    0.0982 

Species 401.9100276   5 80.3820055   7.84    0.0003 

Elevated CO2 × Species 31.8247330   5 6.3649466    0.62    0.6857 

Error - subplot 205.1214461   20 10.2560723   

Total 747.2136170 35    
 

 

 

 

 

 

 

 



162 

 

Appendix Table 4-3 Split-split-plot ANOVA table for the effects of elevated CO2, species and 
position on vessel lumen diameter 
 

Source SS df MS F ratio P > F 

Elevated CO2  50.68245825  1 50.68245825  0.98    0.4263 

Block 99.58452340  2 49.79226170  0.96    0.5092 

Error - main 103.306474   2 51.653237      

Species 1479.541286  5 295.908257   9.05    0.0001 

Elevated CO2 × Species 145.884727   5 29.176945    0.89    0.5049 

Error - subplot 654.036204   20 32.701810      

Radial Position 1362.947315  2 681.473657   201.40   <0.0001 

Elevated CO2 × Position 11.167264    2 5.583632     1.65    0.2027 

Species × Position 31.461105    10 3.146110     0.93    0.5148 

Elevated CO2 × Species × Position 18.108173    10 1.810817     0.54    0.8565 

Error - sub - subplots  162.412753   48 3.383599   

Total 4119.132282 107    
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Appendix Table 4-4 Split-plot ANOVA table for the effects of elevated O3 and species on wood 
anatomical properties: 
 
Growth ring width 
 

Source SS df MS F 
ratio 

P > F 

Elevated O3 115411.7545   1 115411.7545   0.23    0.6773 

Error – main 992719.66    2 496359.83      

Block 1421607.05   2 710803.53    1.56    0.2339 

Species 31057534.12   5 6211506.82   13.67   <0.0001 

Elevated O3 × Species 6164252.75   5 1232850.55   2.71    0.0499 

Error – subplot 9090727.24   20 454536.36   

Total 48842252.58 35    
 
Fiber length  
 

Source SS df MS F ratio P > F 

Elevated O3  24209.24322  1 24209.24322   5.32    0.1475 

Error – main 9102.0491    2 4551.0245      

Block 29594.3439   2 14797.1720   3.68    0.0435 

Species 633124.5236  5 126624.9047   31.52   <.0001 

Elevated O3 × Species 34147.4396   5 6829.4879    1.70    0.1807 

Error – subplot 80353.1410   20 4017.6570   

Total 810530.7405 35    
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Fiber lumen diameter 
 

Source SS df MS F 
ratio 

P > F 

Elevated O3 0.05156205   1 0.05156205  0.15    0.7363 

Error – main 0.6897966    2 0.3448983     

Block 0.3474790    2 0.1737395   0.31    0.7342 

Species 113.1835066   5 22.6367013  40.88   <0.0001 

Elevated O3 × Species 3.1712808    5 0.6342562   1.15    0.3695 

Error – subplot 11.0746509   20 0.5537325   

Total 128.5182760 35    
 
Vessel lumen area proportion 
 

Source SS df MS F ratio P > F 

Elevated O3  0.00007193 1 0.00007193  0.60    0.5205 

Error – main 0.00024093  2 0.00012046    

Block 0.00009430  2 0.00004715  0.17    0.8430 

Species 0.07802007  5 0.01560401  57.02   <0.0001 

Elevated O3 × Species 0.00318975  5 0.00063795  2.33    0.0803 

Error – subplot 0.00547357  20 0.00027368   

Total 0.08709054 35    
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Number of vessels per square millimeter 
 

Source SS df MS F 
ratio 

P > F 

Elevated O3 24.70870342   1 24.70870342   0.17    0.7185 

Error – main 287.07978    2 143.53989      

Block 228.15066    2 114.07533    0.86    0.4393 

Species 20965.49771   5 4193.09954   31.52   <0.0001 

Elevated O3 × Species 1014.46453   5 202.89291    1.52    0.2268 

Error – subplot 2660.94742   20 133.04737   

Total 25180.84880 35    
 
Cell wall area proportion 
 

Source SS df MS F ratio P > F 

Elevated O3 0.00044672  1 0.00044672  1.10    0.4049 

Error – main 0.00081465  2 0.00040733    

Block 0.00006165  2 0.00003082  0.05    0.9524 

Species 0.11296340  5 0.02259268  35.86   <0.0001 

Elevated O3 × Species 0.00894562  5 0.00178912  2.84    0.0427 

Error – subplot 0.01260049  20 0.00063002   

Total 0.13583254 35    
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Vessel lumen diameter (pooled data for inner, middle and periphery) 
 

Source SS df MS F 
ratio 

P > F 

Elevated O3 45.97381877   1 45.97381877   6.22    0.1301 

Error – main 14.7758245   2 7.3879122      

Block 86.1608060   2 43.0804030   6.05    0.0088 

Species 555.9213366   5 111.1842673   15.62   <0.0001 

Elevated O3 × Species 93.6798614   5 18.7359723   2.63    0.0551 

Error – subplot 142.3813825   20 7.1190691   

Total 938.8930298 35    
 
Vessel lumen diameter (Inner region only) 
 

Source SS df MS F 
ratio 

P > F 

Elevated O3 9.62621580 1 9.62621580   0.51    0.5485 

Error – main 37.5986121   2 18.7993061     

Block 71.7023048   2 35.8511524   3.92    0.0366 

Species 516.7942258   5 103.3588452   11.31   <0.0001 

Elevated O3 × Species 97.2365044   5 19.4473009   2.13    0.1040 

Error – subplot 182.8153828   20 9.1407691   

Total 915.7732456 35    
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Vessel lumen diameter (middle region only) 
 

Source SS df MS F 
ratio 

P > F 

Elevated O3  74.31620230   1 74.31620230   6.20    0.1304 

Error – main 23.9540411   2 11.9770206     

Block 88.5148392 2 44.2574196   4.91    0.0184 

Species 762.0741029   5 152.4148206   16.90   <0.0001 

Elevated O3 × Species 151.2054427   5 30.2410885   3.35    0.0232 

Error – subplot 180.330752   20 9.016538   

Total 1280.395380 35    
 
Vessel lumen diameter (Periphery region only) 
 

Source SS df MS F ratio P > F 

Elevated O3  74.26819867  1 74.26819867  387.58   0.0026 

Error – main 0.3832357    2 0.1916179      

Block 102.0359390 2 51.0179695   7.25    0.0043 

Species 433.2955141  5 86.6591028   12.31    <0.0001 

Elevated O3 × Species 66.6754686   5 13.3350937   1.89    0.1404 

Error – subplot 140.8035449  20 7.0401772   

Total 817.4619010 35    
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Appendix Table 4-5 Split-split-plot ANOVA table for the effects of elevated O3, species and 
radial position on vessel lumen diameter 
 

Source SS df MS F ratio P > F 

Elevated O3 137.9214563  1 137.9214563  6.22    0.1301 

Block 258.4824180  2 129.2412090  5.83    0.1464 

Error – main 44.327473    2 22.163737      

Species 1667.764010  5 333.552802   15.62    <0.0001 

Elevated O3 × Species 281.039584   5 56.207917    2.63    0.0551 

Error – subplot 427.144147   20 21.357207      

Radial Position 1299.019381  2 649.509691   317.53   <0.0001 

Elevated O3 × Position 20.289160    2 10.144580    4.96    0.0110 

Species × Position 44.399833    10 4.439983     2.17    0.0363 

Elevated O3 × Species × Position 34.077831    10 3.407783     1.67    0.1168 

Error - sub - subplots  98.184612    48 2.045513   

Total 4312.649908 107    
 

 

 

 

 

 

 

 

 



169 

 

Appendix Table 4-6 Split-plot ANOVA table for the effects of elevated CO2 + O3 and species on 
wood anatomical properties: 
 
Growth ring width 
 

Source SS df MS F ratio P > F 

Elevated CO2  + O3 22176.58727   1 22176.58727   0.07    0.8186 

Error – main 651629.17    2 325814.59      

Block 2010146.24   2 1005073.12   1.38    0.2735 

Species 18353420.26   5 3670684.05   5.06    0.0037 

Elevated CO2 + O3 × Species 7177465.14   5 1435493.03   1.98    0.1262 

Error – subplot 14521761.85   20 726088.09   

Total 42736599.26 35    
 
Fiber length  
 

Source SS df MS F 
ratio 

P > F 

Elevated CO2 + O3  1180.045594   1 1180.045594   0.81    0.4639 

Error – main 2925.7160    2 1462.8580      

Block 3607.0407    2 1803.5203    0.44    0.6494 

Species 967457.9775   5 193491.5955   47.32   <0.0001 

Elevated CO2 + O3 × Species 16714.6614   5 3342.9323    0.82    0.5513 

Error – subplot 81771.642    20 4088.582   

Total 1073657.083 35    
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Fiber lumen diameter 
 

Source SS df MS F 
ratio 

P > F 

Elevated CO2  + O3 0.01311254   1 0.01311254  0.02    0.8915 

Error – main 1.1011001    2 0.5505500     

Block 0.7296098    2 0.3648049   0.58    0.5669 

Species 121.7715224   5 24.3543045  38.99   <0.0001 

Elevated CO2  + O3 × Species 2.0430645    5 0.4086129   0.65    0.6619 

Error – subplot 12.4927489   20 0.6246374   

Total 138.1511582 35    
 
Vessel lumen area proportion 
 

Source SS df MS F ratio P > F 

Elevated CO2  + O3 0.00011704  1 0.00011704  0.24    0.6704 

Error – main 0.00096060  2 0.00048030    

Block 0.00167510  2 0.00083755 3.64    0.0447 

Species 0.09891593  5 0.01978319  86.09   <0.0001 

Elevated CO2  + O3 × Species 0.00277291  5 0.00055458  2.41    0.0724 

Error – subplot 0.00459616 20 0.00022981   

Total 0.10903773 35    
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Number of vessels per square millimeter 
 

Source SS df MS F 
ratio 

P > F 

Elevated CO2  + O3 3.58103069   1 3.58103069  0.02    0.9109 

Error – main 447.31273    2 223.65636     

Block 1900.11650   2 950.05825   4.09    0.0324 

Species 29194.19636   5 5838.83927  25.15   <0.0001 

Elevated CO2  + O3 × Species 1071.80029   5 214.36006   0.92     0.4863 

Error – subplot 4642.73700   20 232.13685   

Total 37259.74391 35    
 
Cell wall area proportion 
 

Source SS df MS F ratio P > F 

Elevated CO2  + O3 0.00017088  1 0.00017088  2.26    0.2714 

Error – main 0.00015101  2 0.00007551    

Block 0.00094484  2 0.00047242  0.78    0.4711 

Species 0.12939285  5 0.02587857  42.83   <0.0001 

Elevated CO2  + O3 × Species 0.00572550  5 0.00114510  1.90    0.1403 

Error – subplot 0.01208523  20 0.00060426   

Total 0.14847031 35    
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Vessel lumen diameter (pooled data for inner, middle and periphery) 
 

Source SS df MS F 
ratio 

P > F 

Elevated CO2  + O3 8.96092945   1 8.96092945   0.93    0.4374 

Error – main 19.3469839   2 9.6734920      

Block 32.4635461   2 16.2317731   1.65    0.2165 

Species 520.7613237   5 104.1522647   10.61   <0.0001 

Elevated CO2  + O3 × Species 47.3827950   5 9.4765590    0.97    0.4622 

Error – subplot 196.3166421   20 9.8158321   

Total 825.2322203 35    
 
Vessel lumen diameter (Inner region only) 
 

Source SS df MS F ratio P > F 

Elevated CO2 + O3 0.01957684   1 0.01957684   0.00    0.9747 

Error – main 30.6826275   2 15.3413138     

Block 26.8404548   2 13.4202274   0.98    0.3922 

Species 556.0613906   5 111.2122781   8.13     0.0003 

Elevated CO2  + O3 × Species 51.7797785   5 10.3559557   0.76    0.5909 

Error – subplot 273.5292773   20 13.6764639   

Total 938.9131056 35    
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Vessel lumen diameter (middle region only) 
 

Source SS df MS F 
ratio 

P > F 

Elevated CO2  + O3  22.70821440   1 22.70821440   3.15    0.2182 

Error – main 14.4399064   2 7.2199532      

Block 45.2665346   2 2.6332673    2.06    0.1541 

Species 638.2534235   5 127.6506847   11.60   <0.0001 

Elevated CO2  + O3 × Species 58.4616720   5 11.6923344   1.06    0.4102 

Error – subplot 220.1402112   20 11.0070106   

Total 999.2699620 35    
 
Vessel lumen diameter (Periphery region only) 
 

Source SS df MS F ratio P > F 

Elevated CO2  + O3 18.96643498   1 18.96643498   1.93    0.2989 

Error – main 19.6210651   2 9.8105326      

Block 39.5350792   2 19.7675396   2.16    0.1411 

Species 405.3383229   5 81.0676646   8.87    0.0001 

Elevated CO2  + O3 × Species 43.0023154   5 8.6004631    0.94    0.4761 

Error – subplot 182.7750984   20 9.1387549   

Total 709.2383159 35    
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Appendix Table 4-7 Split-split-plot ANOVA table for the effects of elevated CO2  + O3, species 
and radial position on vessel lumen diameter 
 

Source SS df MS F ratio P > F 

Elevated CO2  + O3 26.88278835  1 26.88278835  0.93    0.4374 

Block 97.39063832  2 48.69531916  1.68    0.3734 

Error – main 58.040952    2 29.020476      

Species 1562.283971  5 312.456794   10.61    <0.0001 

Elevated CO2  + O3 × Species 142.148385   5 28.429677    0.97    0.4622 

Error – subplot 588.949926   20 29.447496      

Radial Position 1259.411159  2 629.705579   278.71   <0.0001 

Elevated CO2  + O3 × Position 14.811438    2 7.405719     3.28    0.0463 

Species × Position 37.369166    10 3.736917     1.65    0.1200 

Elevated CO2 + O3 × Species × 

Position 

11.095381    10 1.109538     0.49    0.8875 

Error - sub - subplots  108.448738   48 2.259349   

Total 3906.832542 107    
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Appendix Table 4-8 One way- ANOVA table for the effects of elevated O3 on growth ring width in 
aspen 8, 42, 216, 271, birch and maple. 
 
Aspen 8 
 

Source SS df MS F ratio P > F 

Elevated O3 4806166.707   1 4806166.707   3.83    0.1894 

Block  3092280.317   2 1546140.158   1.23    0.4479 

Error 2508765.20   2 1254382.60   

Total 10407212.22 5    
 
Aspen 42 
 

Source SS df MS F ratio P > F 

Elevated O3 177354.8500  1 177354.8500   0.99    0.4252 

Block  675271.9554  2 337635.9777   1.88    0.3474 

Error 359515.798   2 179757.899   

Total 1212142.603 5    
 
Aspen 216 
 

Source SS df MS F ratio P > F 

Elevated O3 698767.616   1 698767.616   1.90     0.3022 

Block  1449557.147   2 724778.573   1.97     0.3368 

Error 736113.296   2 368056.648   

Total 2884438.059 5    
 
 
 
 
 
 
 
 
 
 
 
 



176 

 

Aspen 271 
 

Source SS df MS F ratio P > F 

Elevated O3 4205.92441   1 4205.92441   0.02    0.9125 

Block  99314.51808  2 49657.25904   0.18    0.8460 

Error 545487.1846  2    

Total 649007.6271 5    
 
Birch  
 

Source SS df MS F ratio P > F 

Elevated O3 578843.685   1 578843.685   2.41     0.2607 

Block  1412604.122   2 578843.685   2.41     0.2607 

Error 480084.483   2 240042.241   

Total 2471532.290 5    
 
Maple  
 

Source SS df MS F ratio P > F 

Elevated O3 14325.71949  1 14325.71949   0.21    0.6903 

Block  11065.75328  2 5532.87664 0.08    0.9242 

Error 134994.1780  2 67497.0890   

Total 160385.6508 5    
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Appendix Table 4-9 One way - ANOVA table for the effects of elevated O3 on vessel lumen area 
proportion in aspen 8, 42, 216, 271, birch and maple. 
 
Aspen 8 
 

Source SS df MS F ratio P > F 

Elevated O3 0.00052254   1 0.00052254   11.71    0.0758 

Block  0.00023106   2 0.00011553   2.59     0.2787 

Error 0.00008928   2 0.00004464   

Total 0.00084288 5    
 
Aspen 42 
 

Source SS df MS F ratio P > F 

Elevated O3 0.00039420   1 0.00039420   2.45     0.2583 

Block  0.00004937   2 0.00002469   0.15     0.8672 

Error 0.00032229   2 0.00016114   

Total 0.00076586 5    
 
Aspen 216 
 

Source SS df MS F ratio P > F 

Elevated O3 0.00018022   1 0.00018022   0.67     0.4981 

Block  0.00087422   2 0.00043711 1.63     0.3797 

Error 0.00053510   2 0.00026755   

Total 0.00158954 5    
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Aspen 271 
 

Source SS df MS F ratio P > F 

Elevated O3 0.00150499 1 0.00150499   4.28     0.1743 

Block  0.00014839 2 0.00007419   0.21     0.8256 

Error 0.00070245 2 0.00035122   

Total 0.00235582 5    
 
Birch  
 

Source SS df MS F ratio P > F 

Elevated O3 0.00052445   1 0.00052445   0.51     0.5508 

Block  0.00038366 2 0.00019183   0.18     0.8439 

Error 0.00207490   2 0.00103745   

Total 0.00298301 5    
 
Maple  
 

Source SS df MS F ratio P > F 

Elevated O3 0.00039420   1 0.00039420   2.45     0.2583 

Block  0.00004937   2 0.00002469   0.15     0.8672 

Error 0.00032229   2 0.00016114   

Total 0.00076586 5    
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Appendix Table 4-10 One way- ANOVA table for the effects of elevated O3 on cell wall area 
proportion in aspen 8, 42, 216, 271, birch and maple. 
 
Aspen 8 
 

Source SS df MS F ratio P > F 

Elevated O3 0.00314394   1 0.00314394   6.52     0.1252 

Block  0.00023444   2 0.00011722   0.24     0.8045 

Error 0.00096469   2 0.00048235   

Total 0.00434308 5    
 
Aspen 42 
 

Source SS df MS F ratio P > F 

Elevated O3 0.00021245   1 0.00021245   0.31     0.6339 

Block  0.00175059   2 0.00087529   1.28     0.4394 

Error 0.00137230   2 0.00068615   

Total 0.00333533 5    
 
Aspen 216 
 

Source SS df MS F ratio P > F 

Elevated O3 0.00074993 1 0.00074993 1.29     0.3743 

Block  0.00008390   2 0.00004195   0.07     0.9328 

Error 0.00116543   2 0.00058271   

Total 0.00199926 5    
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Aspen 271 
 

Source SS df MS F ratio P > F 

Elevated O3 0.00150499   1 0.00150499   4.28     0.1743 

Block  0.00014839   2 0.00007419   0.21     0.8256 

Error 0.00070245 2 0.00035122   

Total 0.00235582 5    
 
Birch  
 

Source SS df MS F ratio P > F 

Elevated O3 0.00067364   1 0.00067364   1.44     0.3532 

Block  0.00329247   2 0.00164624   3.52     0.2214 

Error 0.00093643    2 0.00046821   

Total 0.00490254 5    

 
Maple  
 

Source SS df MS F ratio P > F 

Elevated O3 0.00000138   1 0.00000138   0.02     0.9064 

Block  0.00009835   2 0.00004918   0.63     0.6134 

Error 0.00015605   2 0.00007803   

Total 0.00025578 5    
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Appendix Table 4-11 One way- ANOVA table for the effects of elevated O3 on vessel lumen 
diameter in aspen 8, 42, 216, 271, birch and maple. 
 
Aspen 8 
 

Source SS df MS F ratio P > F 

Elevated O3 10.40974732  1 10.40974732   0.83    0.4586 

Block  40.16581672  2 40.16581672   1.60    0.3846 

Error 25.10313271  2 12.55156636   

Total 75.67869676 5    
 
Aspen 42 
 

Source SS df MS F ratio P > F 

Elevated O3 1.48361321   1 1.48361321   0.27     0.6559 

Block  19.25832951   2 9.62916475   1.74     0.3645 

Error 11.04350592   2 5.52175296   

Total 31.78544864 5    
 
Aspen 216 
 

Source SS df MS F ratio P > F 

Elevated O3 4.26885491   1 4.26885491   0.76    0.4757 

Block  26.65026675  2 13.32513338   2.37    0.2971 

Error 11.26210137  2 5.63105068   

Total 42.18122303 5    
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Aspen 271 
 

Source SS df MS F ratio P > F 

Elevated O3 0.79773352   1 0.79773352   0.22     0.6883 

Block  1.74016362   2 0.87008181   0.23     0.8099 

Error 7.41168166   2 3.70584083   

Total 9.94957880 5    
 
birch 
 

Source SS df MS F ratio P > F 

Elevated O3 57.62094531  1 57.62094531   8.68    0.0985 

Block  72.14669925  2 36.07334962   5.43    0.1555 

Error 13.2834791   2 6.6417396   

Total 143.0511237 5    
 
Maple  
 

Source SS df MS F ratio P > F 

Elevated O3 65.07278594  1 65.07278594   40.08   0.0241 

Block  12.00593746  2 6.00296873   3.70    0.2129 

Error 3.24689884   2 1.62344942   

Total 80.32562223 5    
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Appendix Table 4-12 One way- ANOVA table for the effects of elevated O3 on vessel lumen 
diameter in aspen 8, 42, 216, 271, birch and maple at the middle radial position. 
 
Aspen 8 (middle radial position) 
 

Source SS df MS F ratio P > F 

Elevated O3 20.57094562  1 20.57094562   0.77    0.4736 

Block  35.36010675  2 17.68005338   0.66    0.6028 

Error 53.6614623   2 26.8307311   

Total 109.5925147 5    
 
Aspen 42 (middle radial position) 
 

Source SS df MS F ratio P > F 

Elevated O3 0.95126479   1 0.95126479   0.30     0.6396 

Block  10.78058121   2 5.39029061   1.69     0.3715 

Error 6.37275235   2 3.18637618   

Total 18.10459836 5    
 
Aspen 216 (middle radial position) 
 

Source SS df MS F ratio P > F 

Elevated O3 10.24272356  1 10.24272356   1.04    0.4148 

Block  36.74230783  2 18.37115392   1.87    0.3486 

Error 19.66631227  2 9.83315614   

Total 66.65134366 5    
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Aspen 271 (middle radial position) 
 

Source SS df MS F ratio P > F 

Elevated O3 4.10504784   1 4.10504784   2.31     0.2680 

Block  4.43895093   2 2.21947547   1.25     0.4448 

Error 3.55666065   2 1.77833033   

Total 12.10065942 5    
 
Birch (middle radial position) 
 

Source SS df MS F ratio P > F 

Elevated O3 85.08805136  1 85.08805136   8.25    0.1028 

Block  87.81562961  2 43.90781480   4.26    0.1902 

Error 20.6211291   2 10.3105645   

Total 193.5248101 5    
 
Maple (middle radial position) 
 

Source SS df MS F ratio P > F 

Elevated O3 58.77682963  1 58.77682963   77.44   0.0127 

Block  32.65859078  2 16.32929539   21.51   0.0444 

Error 1.51805616   2 0.75902808   

Total 92.95347657 5    
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Appendix Table 4-13 One way- ANOVA table for the effects of elevated CO2 + O3 on vessel 
lumen area proportion in aspen 8, 42, 216, 271, birch and maple. 
 
Aspen 8 
 

Source SS df MS F ratio P > F 

Elevated CO2 + O3 0.00041666   1 0.00041666   2.85     0.2335 

Block  0.00096863   2 0.00048431   3.31     0.2320 

Error 0.00029254   2 0.00014627   

Total 0.00167783 5    
 
Aspen 42 
 

Source SS df MS F ratio P > F 

Elevated CO2 + O3 0.00002250   1 0.00002250   0.60     0.5187 

Block  0.00044972   2 0.00022486   6.03     0.1423 

Error 0.00007463   2 0.00003731   

Total 0.00054684 5    
 
Aspen 216 
 

Source SS df MS F ratio P > F 

Elevated CO2 + O3 0.00007626   1 0.00007626   3.50     0.2021 

Block  0.00066362   2 0.00033181   15.25    0.0615 

Error 0.00004352   2 0.00002176   

Total 0.00078339 5    
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Aspen 271 
 

Source SS df MS F ratio P > F 

Elevated CO2 + O3 0.00127293   1 0.00127293   2.29     0.2695 

Block  0.00052769   2 0.00026385   0.47     0.6783 

Error 0.00111277   2 0.00055638   

Total 0.00291339 5    
 
Birch  
 

Source SS df MS F ratio P > F 

Elevated CO2 + O3 0.00031122   1 0.00031122   0.74     0.4803 

Block  0.00206152   2 0.00103076   2.45     0.2898 

Error 0.00084125   2 0.00042062   

Total 0.00321399 5    
 
Maple  
 

Source SS df MS F ratio P > F 

Elevated CO2 + O3 0.00079038   1 0.00079038   11.37    0.0778 

Block  00005698 2 0.00002849   0.41     0.7092 

Error 0.00013900   2 0.00006950   

Total 0.00098636 5    
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