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ABSTRACT 

 Bacterial infections continue to be a problem at the site of an indwelling medical 

device, and over the years, various bacterial strains have become more resistant to current 

antibiotic treatments. Bacterial infection at an indwelling medical device can be 

dangerous and affect the performance of the medical device which can ultimately lead to 

the failure of the device due to bacterial resistance to treatment. 

Nitric Oxide (NO) has been shown to possess antibacterial properties to prevent 

and inhibit bacterial growth. NO releasing coatings on indwelling medical devices could 

provide a reduction in bacterial infections that occur at the device site such as for use in a 

urinary catheter. This work demonstrated that 1.7 x 10-8 moles of NO delivered over 18 

hours prevented the growth and proliferation of Staphylococcus epidermidis, 

Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Escherichia coli 

using S-Nitroso-N-acetyl-D-penicillamine linked to polydimethylsiloxane (SNAP-

PDMS). It was also demonstrated that this effect is highly localized, with NO affecting 

bacteria only directly touching the polymer films. This localization should prevent 

systemic effects commonly observed with oral antibiotics when fabricating devices such 

as urinary catheters.  
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CHAPTER 1 

INTRODUCTION 

 Since the 1940s, antimicrobial agents have been used to fight infections [1]. The 

success of antibiotics over the years has aided in the reduction of illness symptoms and 

has decreased the number of deaths due to infectious diseases. Over time, bacteria have 

evolved, developing a resistance to some commonly used antibiotics. These drug resistant 

bacteria are more difficult to treat, and according to the CDC, “at least 2 million people 

become infected with bacteria that are resistant to antibiotics and at least 23,000 people 

die each year as a direct result of these infections” in the United States [1]. Additionally, 

these antibiotic-resistant illnesses cost $20 billion per year in the United States [1]. The 

current trend is to develop new antibiotics to treat the antibiotic-resistant bacteria, 

however the bacteria continue to evolve and adapt, and thereby generating new resistance 

to the developed drugs. Because of this continuous adaptation cycle, there is a need for a 

new approach that can counteract the growing population of antibiotic-resistant bacteria.  

 The ability to treat bacterial infections is crucial for human survival. If antibiotics 

continue to fail against evolving bacteria, there will likely be an increase in mortality as a 

result of bacterial infections. One promising approach to battling the antibiotic-resistant 

bacteria epidemic is the use of nitric oxide (NO). Nitric oxide is a highly reactive, 

endogenously produced molecule that is capable of killing bacteria. The aim of the work 

described herein is to demonstrate that NO releasing polymers can produce the 

appropriate surface flux to inhibit and prevent bacterial growth in vitro.  
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1.1 PROBLEMS WITH INDWELLING MEDICAL DEVICES 

The human body is a very complicated machine; it can be predictable as well as 

unpredictable. When an indwelling medical device is placed within the body, the body 

cannot discriminate whether the device is there as an aid or is an assault on the 

homeostasis of the body. Typically, the implantation procedure causes injury and a 

cascade of tissue responses will occur, such as inflammatory and immune responses [2]. 

The body can recognize the device as foreign and stimulate foreign body reactions or 

fibrous encapsulation of the device [2]. Therefore, rejection by the body is one problem 

with indwelling medical devices.  

Another key problem with indwelling medical devices is device associated 

infection. Infections on medical devices can lead to serious complications such as failure 

of the device or the need for early removal. The infection can become chronic or 

untreatable and lead to an assortment of secondary complications as extreme as 

amputation or death. In the United States, out of the roughly 2 million annual hospital-

acquired infections, fifty percent take place at the site of an indwelling medical device 

[3]. One example of an indwelling medical device is the catheter, specifically urinary 

catheters, which have been noted to cause urinary tract infections. There are nearly 100 

million Foley catheters sold worldwide per year, and approximately 25 million of those 

are sold in the United States [4]. The most frequent healthcare-associated infection in the 

United States is catheter-associated urinary tract infection [5]. These catheter-associated 

urinary tract infections cost at least $600 per episode, and a minimum of $2800 per 

incident if the infection leads to bacteremia or infection within the blood [5], rendering 
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the need for interventions that can prevent bacterial infections on indwelling medical 

devices. 

1.1.1 DEFINITION OF BACTERIAL INFECTION  

Bacteria are prokaryotic organisms. The majority of bacteria fall into one of two 

classes: gram-positive or gram-negative. The gram-positive bacteria have a thicker cell 

wall, also referred to as a peptidoglycan layer. On the contrary, gram-negative bacteria 

have a thin cell wall (peptidoglycan layer), but have an extra layer surrounding their cell 

wall referred to as an outer membrane [6]. Figure 1.1 represents a basic comparison of 

the structural differences between gram-negative and gram-positive bacteria. In the case 

of gram-positive bacteria, the thicker peptidoglycan layer provides some protection 

against both the immune response and antibiotics because of the physical barrier whereas 

the extra layer to gram-negative bacteria also serves as an additional barrier for immune 

cells and antibiotics to penetrate before being effective. The outer membrane present on 

gram-negative bacteria is hard to penetrate and in general makes them harder to kill than 

gram-positive bacteria.  

The human body is covered with thousands of bacteria both internally and 

externally. Several bacteria are considered part of normal body flora or bacteria naturally 

found on or within the body. Bacteria are also present throughout the environment; there 

are bacteria on various surfaces, in the air, on food, and within drinks [6]. For the most 

part, these bacteria do not lead to infection or disease. Complications arise when bacteria  
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Figure 1.1. Generalized images comparing the structural differences between gram-
negative (A) and gram-positive (B) bacteria. Gram-negative bacteria have 
a thin peptidoglycan layer and an additional layer referred to as the outer 
membrane. Gram-positive bacteria have a thick peptidoglycan layer and 
no outer membrane. 
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invade locations they are not naturally found. For example, when bacteria located on the 

surface of the skin get pushed within the lower layers of tissue due to a cut or injury, an 

infection may occur. Most human diseases are caused by endogenous infections, which 

are defined as when one’s normal bacterial flora invade locations they are not normally 

found [6].  

When implanting a medical device, there are a variety of sources for bacterial 

infection such as the operating room, surgical materials, and bacteria present on the 

patient’s skin or already residing in the body [7]. Indwelling medical devices are subject 

to infection once bacteria are adhered to the surface of the medical device. The adhered 

bacteria then spread, grow, and propagate, with certain bacterial strains capable of 

forming a biofilm on the device [7].  

1.1.2 BIOFILM FORMATION 

Not all bacteria have the ability to produce a biofilm, but many bacteria can. 

Depending on the medical device and time within the body, biofilms can arise from a 

single bacterial strain or multiple bacterial strains [8]. Biofilms form in several stages. 

The first stage is rapid attachment of bacteria to the device surface. Once attached, 

bacteria proliferate and attach to one another [7]. The attached bacteria begin secreting an 

exopolysaccharide matrix that serves to protect the bacteria [3]. Figure 1.2 visually 

represents the stages of biofilm formation. The biofilm effectively serves as a barrier to 

retain nutrients and allow the bacteria to thrive, and also as a barrier to components of the 

body’s immune response to infection [3]. The biofilm is essentially a physical barrier 
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Figure 1.2. Visual representation of bacterial biofilm formation stages: 1) reversible 
adhesion of bacteria, 2) irreversible adhesion of bacteria, 3) initial 
production of exopolysaccharide matrix, 4) maturation of biofilm, and 5) 
dispersion of planktonic bacteria. Printed from Park [9]. 
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between the bacteria and the host. Not only do biofilms prevent immune cells from 

entering, but they can also prevent antibiotics from reaching the bacteria. Research has 

shown that it can take up to a thousand times the necessary antibiotic dose to kill bacteria 

in a biofilm than those not protected by the biofilm [10]. Figure 1.3 represents a scanning 

electron micrograph of a biofilm present on the luminal surface of an indwelling catheter. 

The slime-like biofilm protects the gram-positive cocci Staphylococcus aureus bacteria 

from the host response as well as antibiotics. 

Knowing the negative effects of bacterial infection on an indwelling medical 

device, it is important to take steps to prevent an infection. One key step is to prevent 

biofilm formation, which is most efficiently done by preventing bacteria from initially 

adhering to the surface of the device. 

1.1.3  CURRENT APPROACHES TO PREVENTING DEVICE INFECTION 

Due to the complications that arise from bacterial adhesion on medical devices, 

there has been a significant amount of research focused on preventing bacterial adhesion. 

Proper sterilization and cleaning is one of the first preventative measures taken to 

minimize the risk of infection, however, considering the presence of bacteria almost 

constantly in the environment, such as within the air or on the surrounding surfaces, more 

needs to be done to prevent infection from bacteria that make it past the standard 

sterilization protocols.  

There are a variety of different approaches to preventing bacterial infection, while 

the primary treatment for a bacterial infection is to prescribe antibiotics. As previously 



8 
 

 

 

 

 

 

 
 

Figure 1.3. Scanning electron micrograph of Staphylococcus aureus biofilm found on 
the luminal surface of an indwelling catheter. Photograph by Janice Carr, 
Centers for Disease Control and Prevention, Atlanta, GA USA. 
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stated, bacteria have the ability to evolve and develop resistance to antibiotics. Because 

of the growing number of strains of antibiotic-resistant bacteria, intense broad spectrum 

antibiotics are used to bombard the body, which not only kill the infectious bacteria, but 

also destroy the body’s normal flora or bacteria present but does not cause disease. Thus, 

there is a continued need for development of new antibiotics. To break the cycle of 

bacteria becoming resistant to new antibiotics, research has been undertaken to develop 

different treatments for bacterial infection.  

In order to deal with this issue, research has been focused on developing measures 

that can prevent an infection from occurring through the use of modified or specialized 

coatings on medical devices. An example of one of these approaches is through the use of 

passive coatings such as hydrophilic polyurethanes. This type of coating reduces bacterial 

adhesion, but cannot kill bacteria that manage to adhere. This is due to the fact that 

hydrophilic surfaces tend to absorb fewer proteins than hydrophobic surfaces, and protein 

absorption promotes bacterial adhesion. Therefore, limiting protein absorption would 

reduce bacterial adhesion. [11]. It only takes a low level of healthy bacteria to ultimately 

lead to device infection [3]. Another approach is active coatings, which release 

antibacterial agents directly [3]. Examples of active coatings can release “antibiotics, 

silver ions, bioactive antibodies, and NO” [3]. These types of coatings can reduce 

adhesion as well as kill bacteria that still adhere. However, there are many downfalls with 

the use of active agents. Silver ions can lead to permanent skin discoloration and silver-

resistant bacteria have occurred in addition to the expense of using silver [10]. Another 

current approach is the use of povidone iodine, but this antiseptic has presented to be 
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toxic to fibroblasts along with a significant occurrence of recorded allergic reactions [10]. 

Each approach has success in one aspect, and failure in another. The ideal preventative 

measure has not yet been found. 

1.2 NITRIC OXIDE AS ANTIBACTERIAL AGENT 

Nitric oxide (NO) is essential in many processes throughout the body. 

Physiologically, NO not only inhibits platelet adhesion and aggregation, but also hinders 

smooth muscle cell growth and proliferation. It serves as a neurotransmitter and NO is 

also involved in mediating the inflammatory response toward implanted medical devices. 

Additionally, NO has been shown to inhibit bacterial growth as well as prevent bacterial 

adhesion [12]. Because of the vast array of physiological functions of NO, there has been 

a significant amount of research reported with the focus of either releasing or generating 

NO. There are numerous applications where controlled NO release is beneficial and the 

ability to control release is essential for determining the amount of NO needed to prevent 

bacterial adhesion, and ultimately prevent bacterial infection. 

1.2.1 BENEFITS TO NITRIC OXIDE AS ANTIBACTERIAL AGENT 

Nitric oxide is “a diatomic free radical produced by macrophages as part of the 

natural immune response to bacterial infection” [3]. The body utilizes NO to fight 

infection naturally, so using an NO releasing material to mimic this natural response may 

be an effective strategy to fight bacterial infections including bacteria that are resistant to 

antibiotics. The half-life of NO is on the order of seconds in both blood and tissue [13]. 

The short half-life means treatment with NO is localized and will not systemically affect 
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areas other than the target for treatment (i.e., the negative side effects of a broad spectrum 

antibiotic treatment that kills natural flora will not take place). Antibiotics as a treatment 

for infection are typically not localized because the antibiotics are dissolved in tissues 

and fluids and circulate throughout the body until they encounter bacteria. 

1.2.2 MODE OF ACTION OF NITRIC OXIDE ON BACTERIA 

Nitric oxide is a part of the body’s immune response against infection specifically 

by the macrophages. Macrophages also produce other components including acid, 

glutathione, cysteine, hydrogen peroxide, and superoxide. All of these products 

contribute to enhancing the antibacterial properties of NO in the presence of an infection 

[14].  

Nitric oxide has many modes of action in preventing growth and proliferation of 

bacteria. One effect NO has on bacteria is inhibiting bacterial adhesion by altering cell 

membrane adhesion proteins that mediate cell-substrate interactions [13]. Preventing 

bacterial adhesion is essential to preventing infection. NO has been shown to stimulate 

the breakdown of biofilms [13]. Disrupting biofilm formation is crucial because it breaks 

down the physical barrier protecting bacteria. Once the barrier is broken down, the 

bacteria are more easily destroyed. One mechanism through which NO destroys bacteria 

is by destroying the bacterial membrane, which can be achieved by lipid peroxidation by 

NO-derived peroxynitrite [13]. Other mechanisms include damaging the bacterial DNA 

beyond repair and inhibiting crucial metalloproteins that are part of the bacterial 

respirator reactions [13]. Figure 1.4 represents the various antibacterial mechanisms NO 
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Figure 1.4. Schematic demonstrating the various antibacterial mechanisms of nitric 
oxide (NO) and its byproducts (A). Atomic force microscopy images show 
the decreased bacterial viability surfaces (B) after subject to these 
mechanisms compared to a control surface (C). Printed from Carpenter 
[15] with permission of The Royal Society of Chemistry. 
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and its byproducts have on bacteria [15]. Because of NO’s natural approach to being a 

bactericide, it is less likely for bacteria to become resistance to NO like they have become 

resistant to current antibiotics.  

1.2.3 NO RELEASING MATERIAL 

Over the years, there has been a great deal of effort focused on the development 

of NO releasing polymers. One such class of material is the development of polymers 

that contain S-nitrosothiols (RSNOs), an endogenously produced class of NO donors that 

are able to release NO under fairly mild conditions. One pathway for which NO can be 

released from RSNOs is via photoinitiated decomposition [16]. This is important to note 

because it allows the possibility of having an on/off switch to control NO release when 

needed through the use of light, assuming other NO release triggers can be avoided, such 

as metal ion and/or ascorbate mediated decomposition [16]. Frost et al. developed a 

photoinitiated NO releasing polymer material by covalently linking S-Nitroso-N-acetyl-

D-penicillamine to polydimethylsiloxane (SNAP-PDMS) [12]. The RSNOs present give 

the polymer its green color [12]. Figure 1.5 provides a visual comparison of SNAP-

PDMS films to RTV3140 (PDMS) films. It is important to note that the base material for 

the NO releasing polymer is PDMS, which allows for the polymer to be easily 

sandwiched between two outer layers of medical grade PDMS. This helps make the 

polymer more stable and resistant to uncontrolled NO release. Another benefit to having 

PDMS as a base material is that it is easily adaptable as a coating to various medical 

devices such as urinary catheters. 
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Figure 1.5. Comparison of SNAP-PDMS (A) to RTV3140 (B) cast and cured films. 
SNAP-PDMS appears a green color whereas RTV3140 is more 
transparent and clear. Printed from Frost [12]. 
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Due to the light-controlled NO releasing property of SNAP-PDMS, it is a 

desirable polymer to use in determining the appropriate surface flux of NO needed to 

prevent bacterial adhesion. SNAP-PDMS remains relatively inert until it interacts with 

light, therefore, NO release can be initiated with the use of a light emitting diode (LED) 

[12]. Different intensities of light and period of exposure affect the NO surface flux. 

Controlling the surface flux of NO is critical to determine the required NO surface flux 

needed to inhibit bacterial adhesion. Once the necessary NO surface flux needed to 

prevent bacterial adhesion is determined, other NO releasing materials can be used to 

deliver the NO, such as a material that does not need light to cause NO release. One 

example is a material that utilizes diazeniumdiolate as the NO donor, these types of 

materials release NO over time depending on the amount of donor blended in the polymer 

or the overall thickness of polymers containing covalently linked diazeniumdiolate 

functional groups [17]. These types of materials are important because, as in the example 

of use in a catheter, it would be difficult to add a light source to initiate the NO release 

from the polymer when there are other NO donating polymers that release by proton or 

thermal degradation mechanisms. 

1.3 STATEMENT OF PURPOSE 

Indwelling medical devices are subject to a variety of complications such as 

rejection from the body or the development of bacterial infection. There are several 

precautionary measures in place to limit the chance of a bacterial infection. Some of these 

preventative measures include proper sterilization of medical tools, hand washing, sterile 

gloves and apparel, regular operating room cleaning, etc. Given that bacterial infections 
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at indwelling devices still occur; new approaches need to be taken to further prevent 

bacterial infection. Research has shown that NO has antibacterial properties and can be 

harnessed into applications to fight infection. With the use of a light-controlled NO 

releasing polymer, it is believed that the necessary surface flux of NO needed to prevent 

bacterial adhesion can be determined. This is important because several indwelling 

medical devices can benefit from an antibacterial coating.  

Depending on the type and location of the indwelling medical device, different 

types of bacteria are responsible for infection. The main target application envisioned to 

demonstrate the utility of this approach for coating medical devices is for use in a urinary 

catheter. In order to be an effective treatment in preventing bacterial infection, bacterial 

strains that are common culprits of urinary tract infections were chosen: Staphylococcus 

epidermidis, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and 

Escherichia coli. Using a method similar to the screening of antibiotics for effectiveness, 

the antibacterial properties of NO can be quantified. The goal of this research is to 

determine the necessary NO surface fluxes needed to prevent bacterial growth as well as 

prevent bacterial adhesion. 

To be characterized as an effective antibacterial treatment, a standard of testing 

was developed to be comparable to current antibacterial treatments. It was shown that 

with an increase in NO surface flux there is a greater inhibition on bacterial growth. 

Testing was done to determine the NO surface flux needed to prevent bacterial growth on 

a bacteria coated surface. Adjustments to the NO surface flux were made with the use of 

photoinitiated NO release. A second characterization was done to determine the 
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necessary NO surface flux required to prevent bacterial adhesion when a material was 

submerged in bacteria rich solution. 

The NO releasing polymer was shown to provide localized treatment to bacterial 

infection, only affecting bacteria on or in very close proximity to the polymer. This is 

very beneficial in the treatment of bacterial infections specifically at the site of medical 

devices rather than systemically affecting patients (i.e., disruption of normal gut and 

intestinal bacteria that results from administration of oral antibiotics). 
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CHAPTER 2 

BACTERIAL GROWTH INHIBITION WITH NITRIC 

OXIDE 

 As was previously discussed, catheter associated urinary tract infections (UTIs) 

are the most frequent healthcare-associated infection in the United States [1]. There is a 

growing increase in antibiotic-resistant bacterial species, and therefore a need for a new 

approach to minimize, as well as treat, bacterial infections without the use of antibiotics. 

Current literature indicates that nitric oxide (NO) possesses the ability to treat bacterial 

infections [2]. With the use of the NO releasing polymer developed by Frost et al., the 

effectiveness of NO as a viable treatment option against common culprits of infection can 

be evaluated.  

2.1 SELECTION OF BACTERIA 

Of the wide array of known bacterial species, four species that possess different 

characteristics and that are known to be significant sources of healthcare associated 

infections were selected to serve as the test organisms. Each strain of bacteria had 

qualities and virulence factors that made them ideal choices for testing growth inhibition 

due to NO. The four bacterial strains to be evaluated were Staphylococcus epidermidis (S. 

epidermidis), Staphylococcus aureus (S. aureus), methicillin-resistant Staphylococcus 

aureus (MRSA), and Escherichia coli (E. coli). S. epidermidis, S. aureus, and MRSA are 

three of the most common species associated with human diseases [3], and of all the  
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community-acquired UTIs, 80% are the result of E. coli [3].  

2.1.1 GRAM-POSITIVE COCCI 

  S. epidermidis, S. aureus, and MRSA are all gram-positive cocci species of 

bacteria, and are all opportunistic pathogens. S. epidermidis is part of the normal skin 

flora and has the ability to produce a biofilm. On the other hand, S. aureus is part of the 

normal skin and nasal passage flora. S. epidermidis can be referred to as the most 

recovered staphylococcus because it is extremely sticky and tends to adhere to medical 

devices such as catheters. This stickiness is due to the ability to produce adhesins to allow 

attachment to host matrix proteins including collagen and fibronectin, but most 

importantly the production of adhesins that promote attachment to synthetic medical 

devices [4]. S. aureus, referred to as the golden staphylococcus for its color [3], is 

becoming more resistant to various antibiotics hence the evolution of MRSA which is a 

S. aureus strain resistant to a once effective broad spectrum antibiotic, methicillin. S. 

aureus continues to grow in antibiotic resistance. One common treatment to MRSA 

strains is the antibiotic vancomycin, but there are now strains of S. aureus referred to as 

VRSA due to their resistance to vancomycin.  

2.1.2 GRAM-NEGATIVE RODS 

 E. coli is characterized as a gram-negative rod strain of bacteria. Out of the whole 

Escherichia genus, E. coli is considered the most common and important [3], and can be 

found as part of the normal intestinal flora. E. coli strains responsible for gastroenteritis 

have been subdivided into five groups, with each group possessing specialized virulence 
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factors that include adhesins and exotoxins. The adhesins are used for attaching to areas 

other than intestines, while the toxins are used to damage host tissue [3]. As previously 

stated, E. coli is responsible for a large majority of UTIs which can be attributed to its 

virulence factors in addition to convenience based on close proximity to the urethra on 

the human body, especially for women. 

2.2 EXPERIMENTAL SETUP 

To begin the evaluation of the use of NO as a preventative and treatment option 

for bacterial infection, positive and negative control materials were also used for 

comparison purposes. In total, four materials were used: three different controls and the 

NO releasing polymer. 

2.2.1 SELECTION OF MATERIALS 

 Two known antimicrobial controls (Ioban2 and levofloxacin) and one positive 

control (RTV3140 surgical grade silicone rubber) that allow bacterial growth to occur 

were selected. Ioban2 is a type of antimicrobial film incision drape developed by 3M (St. 

Paul, MN) that releases the antimicrobial agent iodophor, a known skin antiseptic and 

bactericide [5]. The purpose of the drape is to create a broad sterile surface surrounding 

and abutting the wound edges. The second negative control was paper disks saturated 

with the potent broad spectrum antibiotic, levofloxacin, which is part of the quinolones 

family. Levofloxacin is an effective antibiotic against all four strains of bacteria being 

tested. The antibiotic works by inhibiting DNA gyrase and topoisomerase IV, two 

important enzymes for DNA replication and transcription [6]. The positive control chosen 



23 
 

was RTV3140, a surgical grade silicone rubber. RTV3140 was chosen because not only 

is it the base material of the NO releasing polymer, but it is also commonly used in 

medical devices. It possesses no inherent antimicrobial properties. 

 S-Nitroso-N-acetyl-D-penicillamine linked to polydimethylsiloxane (SNAP-

PDMS) is a proprietary polymer developed by Frost et al., and as previously discussed, 

was chosen for its controlled release of NO. The controlled release of NO is important for 

determining the effective NO surface flux needed to prevent and treat bacterial adhesion. 

2.3 DISK SUSCEPTIBILITY TESTING 

 Antibiotic susceptibility testing was undertaken to evaluate the effectiveness of 

NO as an inhibitor of bacterial growth, in addition to comparing results with standard 

materials being used to prevent bacterial infection. 

2.3.1 PREPARATION OF MATERIALS 

Specific bacterial strains were chosen based on their use in similar current 

literature: S. epidermidis (ATCC 12228), S. aureus (ATCC 29213), MRSA (ATCC 

33591), and E. coli (ATCC 11775), and were purchased from Microbiologics, Inc. (St. 

Cloud, MN) in single strain LYFO DISK pellets. 

Ioban2 surgical drapes were donated by Dr. Jennifer Bow, while the levofloxacin 

disks used for antimicrobial susceptibility testing were purchased from Hardy 

Diagnostics Inc. (Santa Maria, CA). The levofloxacin disks are a 6mm diameter filter 

paper with a known concentration of 5μg of antibiotic loaded onto them. Ioban2 disks 
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were punched out of the drape with a 4mm diameter cork borer. Dow Corning RTV3140 

was purchased from Ellsworth Adhesives (Germantown, WI). SNAP-PDMS was 

synthesized in the laboratory [7]. Both the RTV3140 and SNAP-PDMS materials were 

solution cast into large tri-layer films approximately 30mm in diameter. RTV3140 

solution was made with a 1:10 weight percentage RTV3140 coating to toluene which was 

purchased from Sigma Aldrich (St. Louis, MO). Once the RTV3140 and SNAP-PDMS 

films were completely cured, smaller disks were cut from the parent film. For the Kirby-

Bauer method for disk testing and 10 day testing, the same 4mm diameter cork borer was 

used to obtain sample disks of the same sizes. For the quantitative streak testing, 8mm 

diameter disks were punched with a cork borer then a 4mm diameter disk was cut from 

the center of the 8mm disks. 

2.3.2 LIGHT BOARD SETUP 

 A light board was assembled in order to reproducibly illuminate the SNAP-PDMS 

to control NO release from the polymer. The system was created to shine light from the 

bottom to the samples. A black Delrin board (3/8” x 12” x 12”) was fitted to hold four 

100mm media plates in a square design. Poly(vinyl chloride) (PVC) tubing of 101.6mm 

(4in) diameter was purchased from the hardware store and cut down to four rings of 

60mm (2.36in) height. Each ring was drilled with three 6.35mm (0.25in) diameter holes 

to create a level plane of 20mm (0.807in) from the top where shelf pegs were inserted to 

hold the media plates at a level and equal height. Holes were drilled into the Delrin board 

to fit nuts and bolts in place to hold the PVC rings in the same location between different 

experiment batches.  
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SNAP-PDMS is a light-controlled releasing polymer, so holes were placed in the 

board to allow the placement of light emitting diodes (LEDs) to stimulate NO release. 

Each ring placement possessed four locations for LEDs epoxied in a similar square 

design. The 460nm VAOL-5GSBY LEDs were purchased from Mouser Electronics, Inc. 

(Mansfield, TX). The distance between the LEDs was 32mm to an adjacent LED to 

assure no overlap in the focal point of the LEDs. The LEDs were connected in series with 

an RS-200 series resistance substitution box purchased from IET LABS Inc. (Roslyn 

Heights, NY) and a 2 amp multi-output power supply purchased from Circuit Specialists 

(Tempe, AZ).  

PVC tubing was used to shield individual plates from neighboring light and 

affecting one another, as well as to provide a shelf to hold the media plates at the same 

distance from the LEDs. A consistent height above the LEDs was essential for 

uniformity, and to keep the focal points of each LED the appropriate size such that they 

did not overlap with one another. Figure 2.1 provides a visual of the light board setup 

from the side (A) and a view from the top of the board (B).  

2.3.3 STOCK PLATE PREPARATION 

 Before any experimental testing could proceed, stock plates of the bacteria were 

created; the same procedure was used for each type of bacteria. To start, Mueller-Hinton 

28ml filled 15x100mm media plates, sterile disposable 1ul inoculating loops, and sterile 

cotton swabs were purchased from Hardy Diagnostics Inc. (Santa Maria, CA). The 

Mueller-Hinton plates were used in testing to be discussed later.  
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Figure 2.1. Visual representation of designed light board setup in its entirety from the  

side (A), and an image from the top of setup (B). 
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The media plates and LYFO-DISK bacterial pellets were removed from storage in 

the refrigerator and allowed to acclimate to room temperature. Instructions provided from 

Microbiologics Inc. were followed. A sterile test tube was filled with 0.5ml of sterile 

water, and then a single bacterial pellet was aseptically added to the test tube. The pellet 

was then crushed with a sterile cotton swab and stirred until the solution was 

homogeneous. Excess liquid was removed along the inside of the test tube before 

inoculating approximately one third of the media plate. Bacteria were then streaked for 

isolation using sterile, disposable loops. The inoculated plate was then sealed and placed 

inverted in the incubator at 37˚C and allowed to grow. The excess solution in the tube 

was incubated for 18-24 hours before removal and storage in the refrigerator. 

2.3.4 KIRBY-BAUER METHOD FOR LIGHT VERSUS DARK TESTING 

 The Kirby-Bauer disk susceptibility testing method was the chosen foundation for 

experimental setup. The Kirby-Bauer test is used to determine the sensitivity of bacteria 

to antimicrobial compounds [8]. In the simplest of terms, a controlled density of bacteria 

is lawned over a Mueller-Hinton media plate then antibiotic disks are placed on the plate. 

The antibiotic disks are filter paper with a known drug concentration that will diffuse in 

the media and affect the bacterial growth. Therefore, it is important to place the antibiotic 

disks with enough space between one another such that there is no overlap between 

diffused antibiotic. The plates are then incubated for 18-24 hours, depending on the 

bacteria being tested. The circular area of inhibition (if present) is measured (diameter) 

and compared to a standard table to determine if the strain of bacteria is resistant or 

sensitive to the antibiotic being tested. 
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As a control test, light and dark testing was done. The purpose of the light versus 

dark testing was to determine whether or not there was a change in bacterial growth when 

placed on the light board setup and exposed to maximum LED light (12V power supply) 

or no light. The Kirby-Bauer disk susceptibility test protocol was adapted to fit 

experimental needs by following a similar setup with the exception of no placement of 

disks on the inoculated plates.  

Mueller-Hinton media was the standard media chosen for susceptibility testing. 

Mueller-Hinton 28ml filled 15x100mm media plates were purchased from Hardy 

Diagnostics. Bacterial suspensions were created to the equivalent 0.5 McFarland 

standard. To verify the appropriate cell density UV-VIS spectroscopy was used to 

determine an absorbance between 0.08 and 0.13 at 625nm wavelength which is 1x108 and 

2x108 (CFU/ml). Bacterial solutions were created by adding 2ml of sterile 0.85% saline 

to a sterile, disposable cuvette, and isolated bacterial colonies from a stock plate were 

added and stirred until uniform clarity. Depending on the UV-VIS absorbance reading, 

more bacteria or more saline was added until the desired absorbance occurred. Using a 

sterile cotton swab, the Mueller-Hinton media plates were inoculated with the bacterial 

suspension, covering the plate’s entirety. The plates were sealed with parafilm and placed 

inverted in the incubator at 37˚C for 24 hours. For the light testing, the decade box was 

set to 130ohms and voltage set to 12V. For the two conditions, maximum light (12V) and 

minimal light (dark), four plates each were tested. Bacterial density colonies were imaged 

with ViTiny Pro10 Plus Portable Digital Microscope 10x - 200x purchased from Oasis 

Scientific, Inc. (Greenville, SC) and compared with MATLAB analysis. 
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To begin the analysis the images were scaled and aligned with one another; the 

center of each plate was aligned before converting to greyscale. The plates were then 

sectioned into twelve 12 x 12mm squares; however, given the presence of physical 

markings on the plate, such as the tick mark, one square was eliminated from each plate 

as seen in Figure 2.2. The sections were then converted to black and white. Finally, a 

MATLAB script was written to compare the percentage of black area to white area which 

was related to the area of the plate covered by bacteria. It was these areas and percentages 

that were used to compare bacterial density when exposed to light and dark conditions. 

2.3.5 KIRBY-BAUER METHOD FOR DISK TESTING 

As for the remaining testing, the procedure stated above was followed except after 

inoculation of the plates, the four materials being tested were placed on the media plate. 

A template was made to control sample disk placement. The four material disks were 

placed aseptically on each plate. Each media plate consisted of an Ioban2, levofloxacin, 

RTV3140, and SNAP-PDMS disk sample. Lastly, the plates were sealed with parafilm 

and placed inverted in the incubator at 37˚C. Pictures were taken at 18 hours, and 

bacterial growth under each disk sample was compared qualitatively both with and 

without disks present. 

2.3.6 KIRBY-BAUER METHOD FOR 10 DAY TESTING 

For the ten day testing, MRSA was lawned over Mueller-Hinton media plates 

following the Kirby-Bauer method. Instead of the four different material disks being 

placed, one RTV3140 and one SNAP-PDMS disk were placed on the plate. The disks  
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Figure 2.2. MATLAB images of the four S. epidermidis dark testing plates. Each plate 
was sectioned into twelve 12 x 12mm squares with one square eliminated 
due to physical properties on the plate i.e. the tick mark used for scaling.  
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were imaged every day for ten days before being removed. The plates were returned to 

the incubator for an additional day, and the voids of the disks were imaged. 

2.3.7 QUANTITATIVE STREAK TESTING 

 Quantitative streak testing was a combination testing method based on the 

previously discussed Kirby-Bauer method for disk testing and the urine streak—semi 

quantitative method to assess bacterial viability on RTV3140 disks compared to SNAP-

PDMS disks. The urine streak test is designed to quantify bacterial species responsible 

for urinary tract infections. This method utilizes a volumetric loop calibrated to hold 

either 0.001ml or 0.01ml of a sample. The basic procedure for this testing is taking a 

loopful of urine and streaking it across the diameter of a blood agar plate. Using the same 

loop, the plate is turned 90˚ and streaked again in a zigzag pattern to uniformly distribute 

the bacteria over the entire surface area of the plate. After the plate is allowed an 

appropriate incubation period, the original cell density (OCD) can be calculated by 

counting the colony forming units (CFU) and dividing that value by the loop volume 

(0.001ml or 0.01ml). OCD is reported as colony forming unites per milliliter (CFU/ml) 

[9]. 

 The four bacterial species used in the previous testing (S. epidermidis, S. aureus, 

MRSA, and E. coli) were used for this method. Based on the Kirby-Bauer method, 

bacteria of an appropriate density was lawned onto Mueller-Hinton plates. Using two 

Mueller-Hinton plates, three polymer samples were placed on each plate: three RTV3140 

and three SNAP-PDMS. Each polymer sample consisted of an 8mm diameter ring with a 
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concentric 4mm diameter disk punched from the center. The plates were incubated at 

37˚C for 18 hours in dark conditions at which point they were imaged both with and 

without the center disks present using a ViTiny Pro10 Plus Portable Digital Microscope 

10x - 200x purchased from Oasis Scientific, Inc. (Greenville, SC). The removed disks 

were placed in sterile 2ml Cryo.s Cryogenic Storage Vials purchased from VWR 

International (Radnor, PA) along with 1ml of prepared tryptic soy broth (TSB) #2 

dehydrated culture media purchased from Hardy Diagnostics Inc. (Santa Maria, CA).  

 The submerged disks were again incubated at 37˚C with gentle shaking on a 

VWR Mini Shaker 15 purchased from VWR International (Radnor, PA) for 90 minutes. 

Streak plates based on the urine streak method were done from 1:10 dilutions of the TBS 

used to bathe the center disks in the previous step with sterile TSB of each incubated vial 

after 5 minutes and 90 minutes of incubation. The streak plates were sealed and incubated 

at 37˚C for 24 hours. Lastly, plates were imaged and the bacterial colonies present on 

each streak plate were counted and OCD was determined to compare RTV3140 disks to 

SNAP-PDMS disks. 

2.3.8 NITRIC OXIDE RELEASE MEASUREMENTS 

 A Sievers Nitric Oxide Analyzer (NOA) 280i (GE Instruments, Boulder, CO) was 

calibrated and used to evaluate the NO release for the SNAP-PDMS materials. Individual 

SNAP-PDMS disks from the same polymer film batch used in experiments were 

analyzed to determine the NO surface flux at 37˚C with ambient air sweep gas. For the 

Kirby-Bauer method for disk testing a sample size of N=7 was used. For the quantitative 
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streak testing, SNAP-PDMS disks were from a different batch and a sample size of N=3 

was used for analysis. Total NO released was measured over 18 hours and the average 

NO surface flux over the final 10 minutes was reported. 

2.4 RESULTS  

 To evaluate the effectiveness of SNAP-PDMS as a treatment and preventative 

approach to bacterial infection, experimental testing was completed to assess both the 

localization and effective dose needed to inhibit bacterial growth by comparing different 

levels of NO release and different known antimicrobial agents. 

2.4.1 LIGHT VERSUS DARK TESTING 

The first variable tested was to determine if the light itself used to initiate NO 

release from SNAP-PDMS causes changes in bacterial growth and proliferation. Plates 

were lawned with S. epidermidis and placed in both light and dark conditions for 24 

hours. Figure 2.3 shows images of the plates after the 24 hour incubation period. The 

images were analyzed as described for density of bacteria present. Table 2.1 lists the 

percentage of plate covered with bacteria by zone along with standard deviations and 

variances for all eight plates exposed to light or dark conditions. The comparison of 

bacterial density on the plates incubated in the dark compared to plates incubated with 

light exposure showed no significant difference between the percentage bacterial 

coverage (N=8) using one-way ANOVA. Table 2.2 shows the critical F values for a 5% 

confidence level for the corresponding degrees of freedom as well as the observed F 

value calculated with MATLAB ANOVA One-Way testing. By comparing the F critical 
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Figure 2.3. MATLAB images of all eight plates from light versus dark S. epidermidis  

after 24 hours of incubation at 37˚C. The left column is the four light 
plates that were exposed to maximum light for the light board setup in 
order from P-1 to P-4 down the page. The right column is the four dark 
plates in the same order down the page. 
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Table 2.1. Comparison of S. epidermidis density based on overall coverage of the  

media plate with the use of MATLAB output values for percentages for all 
eight plates in the light versus dark testing along with additional statistical 
information. 
 

Comparison of Bacterial Density for Light and Dark Testing 
 by Percent Coverage 

% No 
Bacterial 
Coverage 

Light Plate 1-Plate 4 Dark Plate 1-Plate 4 

Zone 1 44.24 41.90 46.89 42.17 45.63 37.16 44.93 46.94 
Zone 2 40.72 43.53 44.91 44.91 41.96 46.63 45.40 45.58 
Zone 3 42.90 44.26 41.54 45.54 39.04 37.16 45.58 37.68 
Zone 4 47.67 40.35 42.91 43.09 47.68 51.60 46.96 47.15 
Zone 5 41.17 44.33 43.04 42.60 47.86 42.46 46.43 38.69 
Zone 6 41.57 41.74 42.55 47.36 46.21 46.43 51.91 45.80 
Zone 7 45.12 48.01 47.89 42.27 46.71 43.61 46.50 39.19 
Zone 8 43.48 38.23 40.61 44.10 38.86 46.95 42.44 43.41 
Zone 9 41.56 41.98 41.27 41.13 43.23 45.97 42.78 44.81 
Zone 10 40.56 47.93 42.71 42.66 45.37 42.10 39.14 41.12 
Zone 11 40.60 46.76 45.15 45.40 49.44 48.22 40.82 39.19 

Average % 
of all Zones 42.70 43.55 43.59 43.75 44.71 45.31 44.81 42.69 

Standard 
Deviation 4.64 8.86 4.96 3.18 3.37 3.64 3.30 3.43 

Variance 2.15 2.98 2.23 1.78 11.33 13.71 10.89 11.73 
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Table 2.2. Comparison of critical F values at α=0.05 to the observed F value  

generated from MATLAB ANOVA one way testing. 
 

ANOVA One Way Comparison of F Values at α=0.05  
Critical Values Observed Value Prob>F 
F7,60=2.1665 FO=1.02 PO=0.4217 
F7,120=2.0868   
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and F observed values, there is no statistical difference between all eight sets of data (four 

light and four dark) because F observed (1.02) is less than F critical (2.0868) as well as P 

observed (0.4217) is greater than 0.05 confidence level. 

2.4.2 DISK SUSCEPTIBILITY TESTING 

 Figure 2.4 illustrates that all bacterial strains were sensitive to Ioban2 and 

levofloxacin. Figure 2.5 shows images of all four bacterial strains with RTV3140 and 

SNAP-PDMS disks present. It was seen that bacteria appear unaffected by RTV3140 

whereas there is a slight density change and colony size difference next to the SNAP-

PDMS disks. The true evidence to SNAP-PDMS being antimicrobial is detected when 

the polymer disks are removed, as seen in Figure 2.6. It was then that there was a cloud 

of bacterial smear under the RTV3140 disks whereas under the SNAP-PDMS disks the 

media was clear and bacteria free. Lastly, Figure 2.7 demonstrates whether or not MRSA 

bacteria were able to regrow in the voids left behind from the disks. Ioban2, RTV3140, 

and SNAP-PDMS had bacterial regrowth while levofloxacin had stunted bacterial 

regrowth as the streak got closer to the center of where the disk was placed. Streak data 

was done for the other three bacteria, but not pictured. 

2.4.3 TEN DAY RTV3140 AND SNAP-PDMS DISK TESTING 

Figure 2.8 represents a series of enlarged photos showing bacterial growth around 

RTV3140 and SNAP-PDMS disks after one day (24hrs), five days (120hrs), and ten days 

(240hrs). It is observed that with RTV3140 disks the S. epidermidis bacteria grew 

uninhibited, and the colonies were of uniform size and blended together. On the other  
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Figure 2.4. Images of Ioban2 (left disks) and levofloxacin (right disks) disks for plate 
2 of S. epidermidis (A), S. aureus (B), MRSA (C), and E. coli (D) after 18 
hours of incubation at 37˚C in dark conditions. Each image was converted 
to grayscale in MATLAB to improve contrast. 
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Figure 2.5. Images of RTV3140 disks (left) compared to SNAP-PDMS disks (right) 

for S. epidermidis, S. aureus, MRSA, and E. coli strains at dark conditions 
after 18 hours of incubation at 37˚C for plate 2. 
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Figure 2.6. Images of RTV3140 disks (left) compared to SNAP-PDMS disks (right) 

for S. epidermidis, S. aureus, MRSA, and E. coli strains at dark conditions 
after 18 hours of incubation at 37˚C for plate 2 after polymer disks were 
removed. 
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Figure 2.7. Images taken of MRSA plate 2 streaks through disk voids after incubation 

at 37˚C for 24 hours in dark conditions: A) the entire plate, B) Ioban2 
(left) and levofloxacin (right), C) SNAP-PDMS (left) and RTV3140 
(right), D-G) magnified Ioban2, levofloxacin, SNAP-PDMS, and 
RTV3140, respectively. 
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Figure 2.8. Images taken of MRSA ten day disk testing comparing RTV3140 (left) to 

SNAP-PDMS (right) after one, five, and ten days incubation at 37˚C in 
dark conditions. 
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hand, bacteria around the SNAP-PDMS disk had smaller bacterial colonies close to the 

disk and as distance increased away from the polymer the bacteria blended together as 

seen near the RTV3140 disk. As seen in Figure 2.9, after the ten days of incubation, both 

polymer disks were removed and voids imaged. It was observed that there are fewer 

bacteria present under the SNAP-PDMS disk compared to the RTV3140 disk. 

2.4.4 QUANTITATIVE STREAK TESTING 

 Figures 2.10-2.13 are visual representations of magnified images comparing 

RTV3140 to SNAP-PDMS after the center disks were removed for S. epidermidis, S. 

aureus, MRSA, and E. coli, respectively. Qualitatively, there are fewer bacteria present 

under the SNAP-PDMS disks compared to the RTV3140 disks for all four bacterial 

strains tested. Figure 2.14 and Figure 2.15 are streak plates for S. epidermidis after 5 

minutes submersion and 90 minutes, respectively. Quantitatively there are no bacteria 

present for the SNAP-PDMS streaks whereas RTV3130 streaks have a significant 

amount of bacteria present. Next, Figures 2.16-2.21 reveal the streak results after 5 

minutes and 90 minutes for S. aureus, MRSA, and E. coli, respectively. For all RTV3140 

streaks there is an abundance of bacteria whereas for the SNAP-PDMS streaks there are 

minimal to no bacteria present which validates NO inhibiting bacterial adhesion. Lastly, 

Table 2.3 compares the OCD (density) for all bacterial strains tested along with averages 

and standard deviations providing quantitative results revealing the inhibitory effect of 

NO against bacterial growth. 
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Figure 2.9. Images taken after RTV3140 (left) and SNAP-PDMS (right) disks were 

removed for ten day MRSA testing. 
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Figure 2.10. Images taken after disks 1 through 3 for both RTV3140 (left) and SNAP-

PDMS (right) were removed for S. epidermidis quantitative testing. 
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Figure 2.11. Images taken after disks 1 through 3 for both RTV3140 (left) and SNAP-

PDMS (right) were removed for S. aureus quantitative testing. 
 
 
 
 
 
 



47 
 

 
 
 
 

 
 

 
Figure 2.12. Images taken after disks 1 through 3 for both RTV3140 (left) and SNAP-

PDMS (right) were removed for MRSA quantitative testing. 
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Figure 2.13. Images taken after disks 1 through 3 for both RTV3140 (left) and SNAP-

PDMS (right) were removed for E. coli quantitative testing. 
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Figure 2.14. Images taken of 1:10 dilution streaks 1 through 3 for both RTV3140 (left) 

and SNAP-PDMS (right) for S. epidermidis after 5 minutes. 
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Figure 2.15. Images taken of 1:10 dilution streaks 1 through 3 for both RTV3140 (left) 

and SNAP-PDMS (right) for S. epidermidis after 90 minutes. 
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Figure 2.16. Images taken of 1:10 dilution streaks 1 through 3 for both RTV3140 (left) 

and SNAP-PDMS (right) for S. aureus after 5 minutes. 
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Figure 2.17. Images taken of 1:10 dilution streaks 1 through 3 for both RTV3140 (left) 

and SNAP-PDMS (right) for S. aureus after 90 minutes. 
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Figure 2.18. Images taken of 1:10 dilution streaks 1 through 3 for both RTV3140 (left) 

and SNAP-PDMS (right) for MRSA after 5 minutes. 
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Figure 2.19. Images taken of 1:10 dilution streaks 1 through 3 for both RTV3140 (left) 
and SNAP-PDMS (right) for MRSA after 90 minutes. 
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Figure 2.20. Images taken of 1:10 dilution streaks 1 through 3 for both RTV3140 (left) 

and SNAP-PDMS (right) for E. coli after 5 minutes. 
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Figure 2.21. Images taken of 1:10 dilution streaks 1 through 3 for both RTV3140 (left) 

and SNAP-PDMS (right) for E. coli after 90 minutes. 
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Table 2.3. Quantitative streak testing results comparing bacterial density present on 

RTV3140 and SNAP-PDMS disks for all four bacterial strains tested. 
 
 

Quantitative Comparison of Bacterial Density Adhered to RTV3140 and 
SNAP-PDMS Disks 

Bacterial Density, x 106 CFU/ml 

  Disk # RTV3140 SNAP-PDMS 
 
 
 
S. 
epidermidis 

 
5 

minutes 

1 3.50 0.00 
2 3.34 0.00 
3 3.78 0.00 

Average 3.54 ± 0.223 0.00 ± 0.00 
 

90 
minutes 

1 8.06 0.00 
2 5.29 0.00 
3 14.0 0.00 

Average 9.11 ± 4.44 0.00 ± 0.00 
 
 
 
S. aureus 

 
5 

minutes 

1 13.7 0.030 
2 14.6 0.0 
3 11.1 0.080 

Average 13.1 ± 1.79 0.0367 ± 0.0404 
 

90 
minutes 

1 10.2 0.130 
2 9.60 0.0 
3 10.2 0.600 

Average 9.97 ± 0.323 0.600 ± 0.316 
 
 
 
MRSA 

 
5 

minutes 

1 7.11 0.00 
2 7.59 0.00 
3 9.91 0.00 

Average 8.20 ± 1.50 0.00 ± 0.00 
 

90 
minutes 

1 8.55 0.00 
2 11.1 0.00 
3 7.7 0.030 

Average 9.11 ± 1.75 0.010 ± 0.017 
 
 
 
E. coli 

 
5 

minutes 

1 5.88 0.050 
2 11.0 0.080 
3 6.76 0.010 

Average 7.89 ± 2.75 0.0467 ± 0.0351 
 

90 
minutes 

1 6.06 0.020 
2 6.74 0.060 
3 7.41 0.090 

Average 6.74 ± 0.675 0.0567 ± 0.0351 
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2.4.5 NITRIC OXIDE RELEASE MEASUREMENTS 

 For the Kirby-Bauer method for disk testing, Figure 2.22 is NOA results of NO 

released over 18 hours for Samples 1 through 4, and Figure 2.23 is results of NO surface 

flux over 18 hours for Samples 1 through 4. Visually, the results overlap and appear to be 

similar. Table 2.4 compares the NO released and NO surface flux for all samples as well 

as averages and standard deviations after 18 hours. There was an average total NO 

release of 3.9±0.69 x 10-8 moles and 1.1±0.19 x 10-10 moles/(cm2·min). 

 Respectively, Figure 2.24 and Figure 2.25 represent NOA results of NO released 

and NO surface flux over 18 hours for samples analyzed for the quantitative streak 

testing. Table 2.5 provides comparison of NO released and NO surface flux for each 

sample along with averages and standard deviations after 18 hours. Results reveal an 

average total NO release of 7.5±1.3 x 10-8 moles and a final average surface flux of 

2.2±0.46 x 10-10 moles/(cm2·min). 

2.5 DISCUSSION 

 The qualitative images presented in this work demonstrate that NO is an effective 

bacterial inhibitor and can be utilized in polymer form (SNAP-PDMS). For all four 

bacterial strains tested, SNAP-PDMS established a negative effect on bacterial growth. 

2.5.1 LIGHT VERSUS DARK TESTING 

 From a qualitative perspective, the bacterial growth appeared equivalent between 

the light and dark plates of S. epidermidis tested. If there was a drastic effect due to the 
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Figure 2.22. Plot representation of nitric oxide release from SNAP-PDMS disks over 
an 18 hour period for samples 1 through 4 used in disk susceptibility 
testing. 
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Figure 2.23. Plot representation of nitric oxide surface flux from SNAP-PDMS disks 
over an 18 hour period for samples 1 through 4 from disk susceptibility 
testing. 
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Table 2.4. Comparison of total nitric oxide released and nitric oxide surface flux for 
all seven samples including average and standard deviation over an 18 
hour period for disk susceptibility testing. 
 

NOA Measurements for Disk Susceptibility Testing, T=18 hr 
Sample # Total NO released, 

moles 
NO Surface Flux, 
moles/(cm2·min) 

1 4.5 x 10-8 1.3 ± 0.063 x 10-10 

2 3.3 x 10-8 1.0 ± 0.035 x 10-10 
3 3.7 x 10-8 1.1 ± 0.057 x 10-10 
4 2.8 x 10-8 0.84 ± 0.031 x 10-10 
5 4.1 x 10-8 1.2 ± 0.057 x 10-10 
6 4.8 x 10-8 1.4 ± 0.060 x 10-10 
7 4.1 x 10-8 1.1 ± 0.061 x 10-10 

Average ± Standard Dev. 3.9 ± 0.69 x 10-8 1.1 ± 0.19 x 10-10 
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Figure 2.24. Plot representation of nitric oxide release from SNAP-PDMS disks over 
an 18 hour period for all three samples used in quantitative streak testing. 
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Figure 2.25. Plot representation of nitric oxide surface flux from SNAP-PDMS disks 
over an 18 hour period for all three samples from quantitative streak 
testing. 
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Table 2.5. Comparison of total nitric oxide released and nitric oxide surface flux for 
all three samples including average and standard deviation over an 18 hour 
period for quantitative streak testing. 
 
NOA Measurements for Quantitative Streak Testing, T=18 hr 

Sample # Total NO released, 
moles 

NO Surface Flux, 
moles/(cm2·min) 

1 9.0 x 10-8 2.7 ± 0.055 x 10-10 

2 6.6 x 10-8 1.8 ± 0.048 x 10-10 
3 6.9 x 10-8 2.1 ± 0.049 x 10-10 

Average ± Standard Dev. 7.5 ± 1.3 x 10-8 2.2 ± 0.46 x 10-10 
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LED light, there would be hot spots of either excessive or moderate bacterial density in 

the focal point areas from each LED. After image analysis, it was confirmed that based 

on percentage of plate covered, there was no significant difference between the eight 

plates tested. It was important to validate that the LED light has no effect on bacterial 

growth to eliminate it as a potential contributing factor while testing of bacterial 

inhibition from NO released with the light-controlled SNAP-PDMS disks. S. epidermidis 

bacteria was selected for this testing because it was considered the less virulent (weakest) 

of the four bacterial strains [10], meaning if there was an effect to bacterial growth due to 

LED the S. epidermidis growth would have shown the strongest effect.  

2.5.2 DISK SUSCEPTIBILITY TESTING 

 When comparing the effectiveness of Ioban2 and levofloxacin, both displayed the 

anticipated inhibitory properties on S. epidermidis, S. aureus, MRSA, and E. coli, which 

were the bacterial strains used for testing the NO releasing SNAP-PDMS, see Figure 2.4. 

It was essential to test these controls because they are current approaches used in the 

medical field to prevent or treat bacterial infections. It can be observed that there is a halo 

or ring around the Ioban2 disks for each bacteria as well as a much larger zone of 

inhibition around the levofloxacin disks. Because Ioban2 is not a potent antimicrobial and 

levofloxacin is a powerful broad spectrum antibiotic, the difference in size of inhibition 

zones was expected. Although not all images are shown, the effects of the two controls 

were consistent between the four plates for each strain of bacteria tested. 

 After assessing and comparing the RTV3140 results to the SNAP-PDMS results, 
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there is inhibition of bacteria at the SNAP-PDMS disks but no effect from the RTV3140. 

Although there was some variance in potency between different bacterial strains, all the 

SNAP-PDMS disks were from the same batch of films and released a similar NO surface 

flux. As seen in Figure 2.5, there is more inhibition against S. epidermidis as compared to 

E. coli. There is a faint halo of a smaller density of S. epidermidis around the SNAP-

PDMS disk, whereas on the E. coli plate, bacteria grow at a uniform density up to the 

disk edge. 

 Additionally, Figure 2.6 shows the amount of bacterial growth under the disks 

after aseptic removal. Due to the softness of the media after incubation and thinness of 

the polymer disks, tweezer marks are observed in the images from removal. They are the 

markings opposite one another that disturb the center circular form. When comparing the 

density of bacteria under the disks, it can be concluded that there are much more bacteria 

under the RTV3140 disks and minimal to no bacteria under the SNAP-PDMS disks for 

each bacterial strain evaluated. It is also important to point out that when looking at these 

images, bacteria can be easily seen under the RTV3140 disks due to their transparency 

whereas the SNAP-PDMS disks are opaque.  

 Lastly, bacteria were streaked through each void after removal of the test disk and 

allowed to grow for 24 hours. Figure 2.7 is representative of one MRSA plate; the other 

plates for MRSA and the other three bacteria showed similar and consistent results. It 

was observed that bacteria can easily regrow in the Ioban2, RTV3140, and SNAP-PDMS 

voids. As for the levofloxacin void, bacteria readily grow, but as the streak gets closer to 

the center of the inhibition there is a reduction in bacterial regrowth. This is due to the 
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increase in concentration of antibiotic left in the media as distance gets closer to the 

center of the zone. This regrowth and the size of the halos observed indicate that bacterial 

growth is inhibited at the disk itself and a distance away from the disk. The SNAP-PDMS 

disks clearly demonstrate the effect of NO on bacterial growth and reveal it is a highly 

localized inhibitory effect.  

 It is important to note that all bacteria were tested in dark conditions with no 

exposure to LED light. This is relevant because the surface flux of NO needed to inhibit 

bacterial growth was found to be 1.1±0.19 x 10-10 moles/(cm2·min) and was much lower 

than initially predicted. The SNAP-PDMS disks thermally degrade at 37°C to release NO 

without photo stimulation from an LED. This was an unexpected result. The average 

surface flux of NO due to thermal degradation (1.1±0.19 x 10-10 moles/(cm2·min)) was 

much lower than the average surface flux resulting from light initiated release ((3.1 to 

4.9) x 10-10 moles/(cm2·min) for 4.5V and 6V, respectively) [7]. The dose required to 

inhibit bacteria was much lower than initially anticipated. In conclusion, from these 

experiments, it is confirmed that NO released from SNAP-PDMS disks is a bacterial 

growth inhibitor. The lack in inhibition zone size is important to note because of NO’s 

short diffusion distance due to its short half-life. This along with the positive bacterial 

regrowth in the void under the SNAP-PDMS disks validates NO release as a highly 

localized treatment for bacterial infections. 

2.5.3 TEN DAY RTV3140 AND SNAP-PDMS DISK TESTING 

Ten day testing was performed to assess SNAP-PDMS effectiveness over a longer 
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period of time. Only RTV3140 and SNAP-PDMS were utilized for this testing. These 

experiments revealed a continuous lack of inhibition at the RTV3140 disk and positive 

inhibition for the SNAP-PDMS disk against MRSA. MRSA was chosen as the testing 

bacteria due to it becoming increasingly more problematic in the healthcare field, as it 

continues to become more virulent and resistant to antibiotics. 

 Figure 2.8 shows that over time the RTV3140 disk has no inhibitory effect on 

bacteria grown while SNAP-PDMS inhibits bacteria for at least ten day. The inhibition is 

defined by the individual and smaller colonies observed around the SNAP-PDMS disk 

whereas MRSA colonies essentially blend together coating the plate up to and under the 

RTV3140 disk. Once the disks were removed, comparisons were made for the 

corresponding void spaces (see Figure 2.9). The RTV3140 void is a cloud of smeared 

bacteria, and disk was difficult to remove because of all the bacteria under the disk. On 

the other hand, there was minimal bacterial smear under the SNAP-PDMS disk, which is 

partially due to the pulling in of bacteria as the disk was removed. Although bacterial 

smear is present under the SNAP-PDMS disk, it was inferred from a qualitative 

inspection that there are fewer bacteria present than under the RTV3140 disk. 

2.5.4 QUANTITATIVE STREAK TESTING 

 The quantitative streak testing was essential in quantifying the antimicrobial 

effects SNAP-PDMS has on bacteria compared to the control, RTV3140 for S. 

epidermidis, S. aureus, MRSA, and E. coli. As stated from the qualitative disk testing, 

bacteria readily grew up to and under the RTV3140 disks. On the other hand, bacteria 
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grew up to the edge of the SNAP-PDMS disks, but qualitatively were not present under 

the disks. Because of the likelihood of bacteria adhering to the edge of the polymer disks 

during disk removal, disks were designed such that the center of the polymer could be 

removed, eliminating the possibility of bacterial adherence due to proximity.  

 Figures 2.10-2.13 are images of the voids after the center disks were removed for 

S. epidermidis, S. aureus, MRSA, and E. coli comparing RTV3140 (left) to SNAP-PDMS 

(right). Similar to the previous disk testing and from a qualitative perspective, there 

appears to be a plethora of bacteria present under the RTV3140 disks for all four bacterial 

strains. Whereas, there appears to be minimal to no bacteria present under the SNAP-

PDMS disks. Figure 2.14 and Figure 2.15 are streak results for S. epidermidis after 

suspension in sterile TSB for 5 minutes and 90 minutes, respectfully. Figure 2.16 through 

Figure 2.21 are similar images for S. aureus, MRSA, and E. coli. The purpose of using 

two time intervals was to test whether there was a difference at initial suspension and 

after sufficient time to allow bacteria to get into solution. For all bacterial strains tested, 

there was a significant decrease in bacteria present under the SNAP-PDMS disks 

compared to RTV3140 disks. Table 2.3 reveals the breakdown for bacterial density under 

each disk for all four bacteria tested. It is important to note that for S. epidermidis 5 

minutes and 90 minute streaks as well as MRSA 5 minutes streaks there were no bacteria 

present. Although there were some bacteria present for the SNAP-PDMS streaks for the 

90 minutes MRSA and all S. aureus and E. coli streaks, there were significantly fewer 

bacteria than the RTV3140 counterparts. Overall, there was a greater than 1600% 

reduction in bacterial density for SNAP-PDMS samples. Lastly, Table 2.4 reveals that an 
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average total NO release of 7.5±1.3 x 10-8 moles and average NO surface flux of 

2.2±0.46 x 10-10 moles/(cm2·min) are sufficient doses to inhibit bacterial growth and 

adhesion.  

2.5.5 SUMMARY 

Taking into account all of the experimental data collected, it is confirmed that NO 

is a bacterial growth inhibitor. The NO utilized here was released from SNAP-PDMS. 

Experimental results confirm that S. epidermidis, S. aureus, MRSA, and E. coli were all 

inhibited by SNAP-PDMS under dark conditions. Qualitatively, the level of inhibition 

varied slightly between differing strains of bacteria, but all were inhibited by the SNAP-

PDMS disks that had an average total NO release of 3.9±0.69 x 10-8 moles and an 

average surface flux of 1.1±0.19 x 10-10 moles/(cm2·min) at the end of 18 hours. The ten 

day testing established lasting effectiveness of SNAP-PDMS against MRSA. 

Quantitatively, an average total NO release of 7.5±1.3 x 10-8 moles and average NO 

surface flux of 2.2±0.46 x 10-10 moles/(cm2·min) at the end of 18 hours does inhibit 

bacterial growth for all four bacterial strains. There was complete inhibition for S. 

epidermidis and a greater than 1600% reduction for S. aureus, MRSA, and E. coli. 

  



71 
 

2.6 REFERENCES 

1. Saint, S., et al., Catheter-associated Urinary Tract Infection and the Medicare 
Rule Changes. Annals of internal medicine, 2009. 150(12): p. 877-884. 

2. Charville, G.W., et al., Reduced bacterial adhesion to fibrinogen-coated 
substrates via nitric oxide release. Biomaterials, 2008. 29(30): p. 4039-44. 

3. Murray, P.R., K.S. Rosenthal, and M.A. Pfaller, Medical microbiology. 6th ed. 
2009, Philadelphia: Mosby/Elsevier. x, 947 p. 

4. O’Gara, J.P. and H. Humphreys, Staphylococcus epidermidis biofilms: 
importance and implications. Journal of Medical Microbiology, 2001. 50(7): p. 
582-587. 

5. Fairclough, J.A., D. Johnson, and I. Mackie, The Prevention of Wound 
Contamination by Skin Organisms by the Pre-Operative Application of an 
Iodophor Impregnated Plastic Adhesive Drape. Journal of International Medical 
Research, 1986. 14(2): p. 105-109. 

6. Van Bambeke, F., et al., Quinolones in 2005: an update. Clin Microbiol Infect, 
2005. 11(4): p. 256-80. 

7. Gierke, G.E., M. Nielsen, and M.C. Frost, S-Nitroso-N-acetyl-D-penicillamine 
covalently linked to polydimethylsiloxane (SNAP–PDMS) for use as a controlled 
photoinitiated nitric oxide release polymer. Science and Technology of Advanced 
Materials, 2011. 12(5): p. 055007. 

8. Hudzicki, J., Kirby-Bauer disk diffusion susceptibility test protocol. Am Soc 
Microbiol, 2009. 

9.  Leboffe, M.J. and B.E. Pierce, A Photographic Atlas for the Microbiology 
Laboratory. 2011: Morton Publishing Company. 

10. John Jr, J.F., R.J. Davidson, and D.E. Low, Staphylococcus epidermidis and other 
Coagulase-Negative Staphylococci. 

 

 

 

 

 

 

 

 



72 
 

CHAPTER 3 

LOCALIZED BACTERIAL GROWTH INHIBITION WITH 

SNAP-PDMS 

 As discussed previously, the number of antibiotic-resistant bacteria are increasing 

at a rapid frequency, and therefore are recognized as a key problem for the treatment of 

infections [1]. As a result, there is need for a new approach to treating bacterial 

infections. One of the current approaches for fighting an infection is through the use of 

oral antibiotics [2]. In general, these antibiotics can be in pill, tablet, or capsule form, and 

are absorbed into the bloodstream from the small intestine. Once the antibiotic is in the 

bloodstream, the drug circulates the body and destroys bacteria as it comes in contact 

with it. 

 One issue with these types of antibiotics is that the antibiotics cannot distinguish 

healthy bacteria from infectious bacteria. For example, Escherichia coli (E. coli) is an 

opportunistic pathogen meaning the intestines have E. coli present as part of the normal 

body flora, but E. coli is not a part of the urinary tract (UT) flora and therefore if present 

in the UT, is infectious. Additionally, it is believed that the over prescription of 

antibiotics [3], as well as improper use by patients (i.e. failure to complete the course of 

the prescription), contributes to the growing antibiotic resistance problem worldwide. In 

2009, the United States had approximately $42 billion of antibiotic sales [4]. The overuse 

and misuse of antibiotics are another reason for developing a new and more localized 

treatment to fight infection. 
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There are several benefits to having a localized treatment for bacterial infection. 

One benefit is preventing the destruction of normal bacterial flora as well as damage to 

surrounding healthy tissues. Localized treatment leads to lower dosing and decreased 

toxicity which in turn reduces side effects and prevents resistance [2]. As discussed in the 

previous chapters, nitric oxide (NO) has a short half-life which supports its use for a 

localized treatment to infection. S-Nitroso-N-acetyl-D-penicillamine covalently linked to 

polydimethylsiloxane (SNAP-PDMS) can be used to show the localized treatment against 

bacterial growth. Two batches of experiments were completed. The first was through the 

use of a gradient strip of increased NO concentration, while the second set of experiments 

were multiple SNAP-PDMS disks at varying distances from one another in order to test 

cross-talk between disks. 

3.1 SELECTION OF BACTERIA 

Staphylococcus epidermidis (S. epidermidis) was chosen for the following 

experiments because it readily sticks to indwelling medical devices such as a catheter. 

Also, S. epidermidis is considered the most frequently isolated species responsible for 

infection [5]. S. epidermidis (ATCC 12228) was purchased from Microbiologics, Inc. (St. 

Cloud, MN) in single strain LYFO DISK pellets. 

3.2 PREPARATION OF MATERIALS 

 SNAP-PDMS was again utilized to reveal the localized release of NO to inhibit 

bacterial growth in disk and strip form. The following sections describe the synthesis of  
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the SNAP-PDMS to be used for each experiment. 

3.2.1 KIRBY-BAUER METHOD FOR GRADIENT STRIP TESTING 

Gradient strips were developed to demonstrate the effect of an increase in NO 

surface flux to bacterial growth. The surface flux of released NO in the gradient strips 

consisted of increase concentration of SNAP-PDMS ranging from 0% SNAP-PDMS 

(RTV3140), 1% SNAP-PDMS, 10% SNAP-PDMS, 100% SNAP-PDMS, and back to 0% 

SNAP-PDMS (RTV3140) as seen in Figure 3.1. The gradient strips were created by 

spray coating each range of the silicone rubber strip with different concentrations of 

SNAP-PDMS and masking regions during spraying to control polymer deposition.  

A 2.25 x 5in PDMS film was purchased from McMaster Carr Co. (Elmhurst, IL) 

and used as the base material. First, 1ml of SNAP-PDMS (0.05 g/ml) was sprayed over 

the 100% region. Next, a 1ml solution of 0.1ml SNAP-PDMS (0.05g/ml) and 0.9ml of 

RTV3140 (0.05 g/ml) was sprayed over the 10% and 100% regions. Thirdly, a 1ml 

solution of 0.01ml SNAP-PDMS and 0.99ml of RTV3140 (0.05 g/ml) was sprayed over 

the 1%, 10%, and 100% regions. The overlap between regions was necessary to ensure a 

more uniform release of NO at the boundaries of the different SNAP-PDMS 

concentrations. Lastly, the entire area including both RTV3140 ends and the SNAP-

PDMS regions were top coated with 2ml of RTV3140 (0.05 g/ml). Toluene was used as 

the solvent for all the above solutions. The strips were allowed to cure overnight in the 

dark, and then a sterile razor blade was used to cut 0.635cm (0.25in) wide, alternating 

strips from the bulk polymer. The strips were alternated such that strip one was used for 
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Figure 3.1. Visual representation of the gradient strip design for four strips from left 
to right showing the increase in SNAP-PDMS concentration down the 
strip as well as the capping of each strip with RTV3140. 
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bacterial testing and the following strip was used for analyzing the amount of NO 

released then the next strip would go to bacterial testing and so on. 

3.2.2 KIRBY-BAUER METHOD FOR CROSS-TALK TESTING 

 As described in section 2.3.1, SNAP-PDMS solution was synthesized and cast 

into films. Disks were then punched from the cured films using a 4mm diameter cork 

borer. This testing was done to evaluate the localized effect of NO release on bacterial 

growth by placing multiple disks at various distances from one another. The goal was to 

determine at what distance the SNAP-PDMS disks begin to cross-talk with one another 

while on the same media plate. 

3.3 EXPERIMENTAL SETUP 

Stock plates of bacteria were created as described in Chapter 2. The Kirby-Bauer 

disk susceptibility testing method described in the previous chapter was also followed in 

regards to lawning the appropriate density of S. epidermidis onto the media plates. 

3.3.1 KIRBY-BAUER METHOD FOR GRADIENT STRIP TESTING 

After inoculating the media plates, the gradient strips described above were 

placed on the plates. Between three inoculated plates, eight gradient strips were applied. 

The plates were then sealed with parafilm and incubated for 18 hours in dark conditions 

before being imaged with and without gradient strips present using a ViTiny Pro10 Plus 

Portable Digital Microscope 10x - 200x purchased from Oasis Scientific, Inc. 

(Greenville, SC). 
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3.3.2 KIRBY-BAUER METHOD FOR CROSS-TALK TESTING 

 For these experiments, three Mueller-Hinton media plates were inoculated with S. 

epidermidis per the Kirby-Bauer method. Three different clusters of seven SNAP-PDMS 

disks were placed on each plate in a circular pattern; one disk in the middle surrounded 

by six other disks a uniform radial distance away. The distances chosen were 1.25cm, 

1.00cm, and 0.75cm measured from the center of one SNAP-PDMS disk to the center of 

a directly neighboring SNAP-PDMS disk. Additionally, two #8 zinc plated flat washers 

were then added to void space on the plate to provide scaling in images. See Figure 3.2 

for a template display of plate setup. After SNAP-PDMS disks and washers were added, 

the plates were sealed and incubated at 37˚C for 24 hours before being imaged with and 

without the SNAP-PDMS disks present. Data is not shown for when disks were placed as 

close to one another with no overlap (Distance=0.4cm) because there was clear cross-talk 

and minimal bacterial growth from the outermost edge in.  

3.3.3 NITRIC OXIDE RELEASE MEASUREMENTS 

Nitric oxide release measurements were taken using a Sievers Nitric Oxide 

Analyzer (NOA) 280i (GE Instruments, Boulder, CO). For the gradient strip testing, five 

corresponding strips were analyzed. Each strip was cut into 0.635 x 0.635cm (0.25 x 

0.25in) squares at the border between the differing concentrations to determine the total 

NO released over an 18 hour period for each stair step increase in SNAP-PDMS 

concentration. Additionally, the surface flux for each stair step increase in SNAP-PDMS 

concentration was measured by averaging the surface flux over a 10 minute interval after 
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Figure 3.2. Template design used for placing SNAP-PDMS disks and washers on a  

100mm media plate for Kirby-Bauer method for cross-talk experiment. D 
is the center to center distance from one SNAP-PDMS disk to another. 
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1 hour, 4 hours, 13 hours, and 18 hours of release.  

As for the cross-talk experiment, the SNAP-PDMS disks were analyzed similarly 

to the previous chapter. The total NO released and NO surface flux was measured for 

three SNAP-PDMS disks over a 24 hour period. The NO surface flux was measured over 

a 10 minute interval at the 24 hour mark. Both measurements were tabulated for 

comparison on top of averages and standard deviations calculated. 

3.4 RESULTS  

The above experiments were completed to indicate the highly localized effect NO 

has against bacterial growth. SNAP-PDMS was utilized in gradient strip form to show 

what happens to bacterial growth as there is a stair step increase in SNAP-PDMS 

concentration. The cross-talk experimental setup was done to test at what distance the 

SNAP-PDMS disks begin to cross-talk with one another. 

3.4.1 KIRBY-BAUER METHOD FOR GRADIENT STRIP TESTING 

Figure 3.3 is the qualitative results of two of the eight gradient strips tested 

against S. epidermidis, with and without the gradient strip present. At the point where 

SNAP-PDMS concentration is highest, there is a void of bacterial growth under the strip. 

As the gradient strip increases in SNAP-PDMS (left to right), bacterial density decreases 

before going back up at the far right, which, as described above, is RTV3140. 
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Figure 3.3. Images taken of S. epidermidis entire gradient strips #4 (top) and #3 

(bottom) with strip (left) and without strip (right) after 18 hours incubation 
at 37˚C in dark conditions. SNAP-PDMS increases from left to right along 
the strip with the end capped with control RTV3140. 
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3.4.2 KIRBY-BAUER METHOD FOR CROSS-TALK TESTING 

 Figure 3.4 represents qualitative results of one set of SNAP-PDMS disks used for 

the cross-talk experiments. At the furthest distance of D=1.25cm, there is no overlap in 

growth inhibition caused by the SNAP-PDMS disks, contrarily, at the shortest distance of 

D=0.75cm, there is an overlap in inhibition zones because visually there is a lower 

density of bacteria between the center SNAP-PDMS disk and the outer disks. Figure 3.5 

reveals that once the disks are removed, from a qualitative perspective, there is no 

bacterial growth under the SNAP-PDMS disks. 

3.4.3 NITRIC OXIDE RELEASE MEASUREMENTS 

 Figure 3.6 is an example plot of NO released with respect to time for one gradient 

strip for a full 18 hours. It can be seen that the higher the concentration of SNAP, the 

higher the amount of NO released. Similarly, Figure 3.7 reveals that as SNAP 

concentration increased along the strip, there is an increase in NO surface flux. Table 3.1 

shows total NO released per section of strip for all five strips tested after 18 hours. The 

strips were most effective at 100% SNAP concentration, and the average total NO 

released for that portion of the gradient strips was 17±6.7 x 10-9 moles. Additionally, 

Table 3.1 compares the NO surface flux for each strip at all three concentrations after 1 

hour, 4 hours, 13 hours, and 18 hours, as well as the averages and standard deviations. 

The average NO surface flux after 1 hour of release was 28±9.7 x 10-12 moles/(cm2·min) 

for the 100% SNAP-PDMS stair step. 
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Figure 3.4. Images taken of S. epidermidis cross-talk experiment of plate 2 after 24  
hours incubation at 37˚C in dark conditions with SNAP-PDMS disks 
present. SNAP-PDMS disks were placed at various distances from one 
another: 1.25cm (top), 1.00cm (middle), and 0.75cm (bottom). 
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Figure 3.5. Magnified image taken of S. epidermidis cross-talk experiment of plate 1 

after 24 hours incubation at 37˚C in dark conditions without SNAP-PDMS 
disks present. The distance between disks was 0.75cm. 
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Figure 3.6. Plot representation of nitric oxide release over an 18 hour period for 

gradient strip #2 comparing the release for all three SNAP concentrations.  
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Figure 3.7. Plot representation of nitric oxide surface flux over an 18 hour period for 

gradient strip #2 comparing the surface flux for all three SNAP 
concentrations. 
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Table 3.1. Comparison of total nitric oxide released and nitric oxide surface flux for 
all five gradient strip samples including averages and standard deviations 
over an 18 hour period. 

 

Nitric Oxide Analyzer Results for Gradient Strip 
Samples 

Total Nitric Oxide Released, x 10-9 moles 
 Sample 100% SNAP 10% SNAP 1% SNAP 

 
 

T=18 hours 

#1 20 1.4 0.71 
#2 26 1.5 1.5 
#3 16 0.72 1.2 
#4 14 1.9 2.0 
#5 8.2 3.6 3.2 

Average 17 ± 6.7 1.8 ± 1.1 1.7 ± 0.95 
 

Nitric Oxide Surface Flux, x 10-12 moles/(cm2·min) 
 Sample 100% SNAP 10% SNAP 1% SNAP 

 
 

T=1 hour 

#1 31 ± 2.0 0.91 ± 1.1 2.5 ± 0.86 
#2 41 ± 1.8 5.2 ± 1.4 5.2 ± 1.4 
#3 26 ± 1.2 3.7 ± 0.79 2.3 ± 0.68 
#4 27 ± 2.0 10 ± 1.7 2.5 ± 1.4 
#5 14 ± 0.84 4.8 ± 0.69 3.6 ± 0.66 

Average 28 ± 9.7 4.9 ± 3.3 3.2 ± 1.2 
 
 

T=4 hours 

#1 27 ± 2.1 2.9 ± 1.5 0.0069 ± 0.10 
#2 38 ± 1.9 4.3 ± 1.4 4.3 ± 1.4 
#3 23 ± 1.2 1.6 ± 0.74 2.4 ± 0.67 
#4 18 ± 1.8 2.5 ± 1.4 1.5 ± 1.2 
#5 11 ± 0.82 5.0 ± 0.70 3.6 ± 0.71 

Average 23 ± 10 3.3 ± 1.4 2.4 ± 1.7 
 
 

T=13 hours 

#1 17 ± 1.9 0.18 ± 0.51 0 ± 0 
#2 24 ± 1.7 0.0042 ± 0.062 0.078 ± 0.37 
#3 15 ± 1.1 0.00076 ± 0.019 0.82 ± 0.59 
#4 12 ± 1.7 0.22 ± 0.56  1.9 ± 1.3 
#5 7.5 ± 0.80 3.4 ± 0.68 3.7 ± 0.69 

Average 15 ± 6.2 0.76 ± 1.5 1.3 ± 1.5 
 
 

T=18 hours 

#1 13 ± 1.8 0.0010 ± 0.026 0 ± 0 
#2 17 ± 1.5 0 ± 0 0.028 ± 0.18 
#3 9.8 ± 0.98 0 ± 0 0.46 ± 0.48 
#4 14 ± 1.7 0 ± 0 1.7 ± 1.3 
#5 6.1 ± 0.72 2.2 ± 0.69 2.5 ± 0.68 

Average 12 ± 4.2 0.44 ± 0.98 0.94 ± 1.1 



87 
 

 Figure 3.8 represents total NO released for the three SNAP-PDMS disks 

measured, and Figure 3.9 is NO surface flux measurements for all three of the SNAP- 

PDMS disks. Table 3.2 compares the total NO released and NO surface flux for the three 

samples in addition to averages and standard deviations. The average total NO released 

and average surface flux after 24 hours was 2.1±0.058 x 10-7 moles and 5.0±0.38 x 10-10 

moles/(cm2·min), respectively. 

3.5 DISCUSSION 

The results of the gradient strip and cross-talk experiments further validate NO as 

an effective bacterial growth inhibitor. The two experiments also demonstrate the 

localized treatment effect of NO against bacterial growth. 

3.5.1 KIRBY-BAUER METHOD FOR GRADIENT STRIP TESTING 

 The most crucial characteristic of the gradient strip testing was to expose the 

effects of increased NO concentration which is related to the amount of SNAP-PDMS 

present to determine the minimal dose of NO required to inhibit bacterial growth in a 18 

hour period. Both ends of the strip were capped with RTV3140 to show that viable 

bacteria had the capability to grow readily and uninhibited along the length of the strip. In 

a stair step fashion, the concentration of SNAP-PDMS increased through the middle of 

the strips. Figure 3.3 shows that with an increase in SNAP-PDMS, there is an increase in 

bacterial inhibition. Again, S. epidermidis strain was selected for its ease of use and high 

sensitivity to NO from SNAP-PDMS.  
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Figure 3.8. Plot representation of nitric oxide release from SNAP-PDMS disks over a 

24 hour period for samples 1 through 3 from cross-talk experiment. 
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Figure 3.9. Plot representation of nitric oxide surface flux from SNAP-PDMS disks 

over a 24 hour period for samples 1 through 3 from cross-talk experiment. 
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Table 3.2. Comparison of total nitric oxide released and nitric oxide surface flux for 

all three samples including averages and standard deviations over a 24 
hour period. 
 

NOA Measurements for Disk Susceptibility Testing, T=24 hr 
Sample # Total NO released, 

moles 
NO Surface Flux, 
moles/(cm2·min) 

1 2.1 x 10-7 5.3 ± 0.010 x 10-10 

2 2.1 x 10-7 5.2 ± 0.096 x 10-10 
3 2.0 x 10-7 4.6 ± 0.010 x 10-10 

Average ± Standard Dev. 2.1 ± 0.058 x 10-7 5.0 ± 0.38 x 10-10 
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The gradient strips were important to aid in determining the effective SNAP-

PDMS concentration required to inhibit bacteria which was found to be 28±9.7 x 10-12 

moles/(cm2·min) at 100% SNAP-PDMS after 1 hour. With the use of the NOA, the 

necessary average total NO release needed to inhibit bacterial growth was 17±6.7 x 10-9 

moles. A student t-test with a 95% confidence level concluded that there was a statistical 

difference between both 100% SNAP-PDMS and 10% SNAP-PDMS as well as between 

100% SNAP-PDMS and 1% SNAP-PDMS. But, there was no statistical difference 

between 10% SNAP-PDMS and 1% SNAP-PDMS. The gradient strips also validated the 

highly localized treatment of SNAP-PDMS against bacteria. After the highest 

concentration of SNAP-PDMS, the strips were capped by a section of RTV3140 as 

described above, and bacteria under the RTV3140 sections was uninhibited by the high 

concentration of SNAP-PDMS next to it. 

3.5.2 KIRBY-BAUER METHOD FOR CROSS-TALK TESTING 

 The purpose of the cross-talk experiment was to determine the distance at which 

the SNAP-PDMS disks began to cross-talk with one another. This is important to show 

that the treatment is localized and does not spread affecting other areas. Furthermore, 

finding the distance at which cross-talk begins to occur can aid in more efficient future 

testing. For example, future experiments could be done with a greater number of SNAP-

PDMS disks per inoculated media plate. 

From Figure 3.4 it can be seen that, as the disks go from 1.25cm to 0.75cm there 

is some cross-talk between disks occurring. At the greatest distance of 1.25cm it can be 
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seen that there is no cross-talk between the disks as there is no change in bacterial density 

between disks versus surrounding space from a qualitative perspective. At the nearest 

distance of 0.75cm, there is some cross-talk. Even though, bacteria still grow between the 

disks, there are some spaces between disks where bacterial density appears to be less than 

that of the surrounding density. At the middle distance of 1.00cm, bacteria appear to 

grow between the disks at a similar density to that of the surrounding space. Taking this 

into account, it can be concluded that a distance of 1.00cm can be used as the minimum 

required distance between disks to prevent cross-talk between SNAP-PDMS samples that 

have an average total NO release of 2.1 ± 0.058 x 10-7 moles and average NO surface flux 

of 5.0±0.38 x 10-10 moles/(cm2·min) after 24 hours of release. 

As seen with Figure 3.5 qualitatively there is no bacterial growth under the disks. 

Considering the experiment results in the previous chapter, this confirms NO release as a 

feasible, localized treatment and preventative measure to bacterial infection from medical 

devices. 

3.5.3 SUMMARY 

The gradient strip experiments created a visual representation relating SNAP-

PDMS concentration to S. epidermidis inhibition, and allowed the determination of the 

appropriate dose needed. It can be seen that an increase in SNAP-PDMS concentration 

produces an increase in bacterial growth inhibition. It is important to note that bacteria 

were uninhibited under RTV3140 when next to an effective concentration of SNAP-

PDMS. As for the cross-talk experiment, SNAP-PDMS disks provided a highly localized 
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effect on bacterial growth. Although, there was some cross-talk as the disks got closer, 

bacteria were still able to grow between the disks just at a lower density. 

  



94 
 

3.6 REFERENCES 

1. Wright, G.D., Bacterial resistance to antibiotics: enzymatic degradation and 
modification. Adv Drug Deliv Rev, 2005. 57(10): p. 1451-70. 

2. Stebbins, N.D., M.A. Ouimet, and K.E. Uhrich, Antibiotic-containing polymers 
for localized, sustained drug delivery. Adv Drug Deliv Rev, 2014. 78: p. 77-87. 

3. Shehadeh, M., et al., Knowledge, attitudes and behavior regarding antibiotics use 
and misuse among adults in the community of Jordan. A pilot study. Saudi Pharm 
J, 2012. 20(2): p. 125-33. 

4. Xiong, M.H., et al., Delivery of antibiotics with polymeric particles. Adv Drug 
Deliv Rev, 2014. 78: p. 63-76. 

5. O'Gara, J.P. and H. Humphreys, Staphylococcus epidermidis biofilms: importance 
and implications. Journal of Medical Microbiology, 2001. 50(7): p. 582-587. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



95 
 

CHAPTER 4 

BACTERIAL ADHESION INHIBITION WITH SNAP-PDMS 

DISKS IN SOLUTION 

Continuing with the previous chapters, bacterial adhesion is of current concern to 

the medical field. In fact, the number one reason for failure of medical devices is 

biomaterial-associated infections [1]. This is of extreme concern because it can lead to 

removal of the device which is not only costly, but can be traumatic to the patient [2]. 

Adding to concerns, there are approximately one million implant-associated infections 

each year, and traditional antibiotics are no longer a sufficient treatment in many of those 

cases [3]. Because of the growing antibiotic resistance problem, one of the simplest ways 

to prevent infection is by inhibiting bacterial adhesion. 

As previously stated, certain bacteria have the ability to form a biofilm which are 

more difficult to treat. One factor in biofilm development is whether or not the bacteria 

are allowed to adhere long enough to where they become irreversibly attached [4]. The 

biofilm makes the infection harder to treat by obstructing treatment from the host as well 

as traditional antibiotics [2]. Again, one way to prevent implant-associated infection is to 

prevent bacteria from adhering in the first place which would limit biofilm formation. 

S-Nitroso-N-acetyl-D-penicillamine covalently linked to polydimethylsiloxane 

(SNAP-PDMS) was once again utilized for its antibacterial properties. SNAP-PDMS 

provides a highly localized release of nitric oxide (NO) which has been shown to inhibit 
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bacterial growth. Experiments were completed to test whether bacteria adhered to SNAP-

PDMS and RTV3140 disks when submerged in various bacterial broth solutions. The 

solution experiments served to compare whether or not SNAP-PDMS had an inhibitory 

effect on bacterial adhesion prior to being plated on media plates. 

4.1 SELECTION OF BACTERIA 

For the broth experiments, three different bacterial strains were tested: 

Staphylococcus epidermidis (S. epidermidis), Staphylococcus aureus (S. aureus), and 

methicillin-resistant Staphylococcus aureus (MRSA). As described in Chapter 2, all three 

bacterial strains are prevalent causes of infections as well as are becoming harder to treat 

with traditional antibiotics due to their growing antibiotic resistance. Specifically, the 

most frequently recovered bacteria are S. epidermidis, and S. aureus is often considered 

the most important staphylococcus [5]. Due to S. aureus virulence factors, antibiotic-

resistant strains have developed, and MRSA is one of the most popular superbugs due to 

its multidrug resistance [6]. S. epidermidis (ATCC 12228), S. aureus (ATCC 29213), and 

MRSA (ATCC 33591) were purchased from Microbiologics, Inc., (St. Cloud, MN) in 

single strain LYFO DISK pellets. 

4.2 PREPARATION OF MATERIALS 

Similar to the disk susceptibility and cross-talk experiments, SNAP-PDMS was 

again used to test whether the localized release of NO had an inhibitory effect on 

bacterial adhesion. SNAP-PDMS and RTV3140 disks were submerged in bacteria  
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inoculated tryptic soy broth (TSB) and then plated on Mueller-Hinton plates. 

As described in section 2.3.1, SNAP-PDMS and RTV3140 films were 

synthesized and disks punched out using a 4mm diameter cork borer. This testing was 

completed to determine whether or not bacteria adhered to the polymer after being 

submerged in bacterial broth solution. The goal was to investigate the inhibitory effects 

SNAP-PDMS has on bacterial adhesion. 

Mueller-Hinton 28ml filled 15x100mm media plates and tryptic soy broth #2 

dehydrated culture media were purchased from Hardy Diagnostics Inc. (Santa Maria, 

CA). TSB was prepared by dissolving the dehydrated media into deionized water. For 

every 100ml of water, 3000mg of dehydrated media was added; lastly, the TSB was then 

sterilized in an autoclave. 

4.3 EXPERIMENTAL SETUP 

Stock plates of each bacterial strain were created as described in Chapter 2 with 

Mueller-Hinton media plates. VWR SuperClear 50ml centrifuge tubes, sterile 5ml Cryo.s 

Cryogenic Storage Vials, and a VWR Mini Shaker 15 were purchased from VWR 

International (Radnor, PA). 5-0 chromic gut on a RB-1 sutures were donated by Portage 

Health (Hancock, MI). 

4.3.1 TRYPTIC SOY BROTH 

The sterile TSB was removed from storage, and 25ml was pipetted into a 50ml 
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centrifuge tube (one per bacterial strain) where the TSB was then allowed to acclimate to 

room temperature. For each bacterial strain tested, six vials were used in total: three for 

RTV3140 and three for SNAP-PDMS. Two disks were placed in each vial; for example, 

vials #1-3 would have a RTV3140 disk placed at the bottom as well as an additional disk 

was suspended approximately half way down the vial. Therefore, six RTV3140 disks and 

six SNAP-PDMS disks were required per bacterial strain evaluated. The disks were 

suspended by stitching a suture through the polymer disk and then attaching the 

additional suture on the outside of the vial near the top. This allowed the second disk to 

be hanging down the middle of the vial. Figure 4.1 is a visual representation for one 

RTV3140 vial and one SNAP-PDMS vial. 

Once the disks were in place, isolated bacterial colonies were added to the TSB 

filled centrifuge tube from the appropriate stock plates until there were approximately 108 

colony-forming-units (CFU) per ml. According to literature, the appropriate density can 

be established through the use of UV-VIS spectroscopy and evaluating absorbance values 

at a given wavelength. For S. epidermidis and S. aureus there should be an absorbance of 

0.2 at a wavelength of 600nm [7]. After isolated colonies were added to the TSB, the 

solution was stirred thoroughly until it was a homogeneous solution. Similar to previous 

experiments, 2ml of the TSB with bacteria was pipetted from the centrifuge tube into a 

disposable cuvette and put into the UV-VIS. Depending on the UV-VIS reading, the 

cuvette was emptied back into the centrifuge tube and more bacteria or TSB was added 

until the desired absorbance was reached. 
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Figure 4.1. Visual representation of TSB experimental setup for one RTV3140 (left) 
vial and one SNAP-PDMS (right) vial. 
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Once the appropriate bacterial concentration was achieved, the TSB bacterial 

solution was divided among all six vials. This was done by pipetting 4ml of the TSB 

bacterial solution per vial. The vials were loosely capped and placed in a test tube holder 

which was placed on top of the mini shaker table set to 50rpm inside the incubator at 

37˚C for 90 minutes in dark conditions. 

4.3.2 PLATED RTV3140 AND SNAP-PDMS DISKS 

After the 90 minutes of incubation, the TSB bacterial vials were removed from 

the incubator. The disks were removed one by one and rinsed before being plated on 

Mueller-Hinton media plates. To begin, three sterile 150ml beakers were filled with 

approximately 100ml of sterile water. RTV3140 disks were removed first. Each disk was 

submerged and removed from one beaker and moved to the next until it was rinsed by all 

three beakers to remove any loosely adhered bacteria. Sterile tweezers were used between 

each beaker as well as before plating each disk to minimize contamination from bacteria 

moving from one beaker to another. After all six RTV3140 disks were rinsed and plated, 

the same procedure was used for the SNAP-PDMS disks. 

At the end of the three rinses, each disk was placed on a Mueller-Hinton media 

plate. The media plate was sectioned into six wedges, so that one plate could be used for 

RTV3140 disks and one plate for SNAP-PDMS disks. After all RTV3140 and SNAP-

PDMS disks were appropriately plated and sealed with parafilm, the two plates were 

inverted and placed in the incubator at 37˚C for 18 hours in dark conditions. Additionally, 

a third Mueller-Hinton plate was sectioned into six wedges. Using a sterile loop per vial, 
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bacteria were inoculated onto the plate from each TSB bacterial vial to show the presence 

of bacteria in solution. The plate was again sealed, inverted, and placed in the incubator 

at the same conditions to the plates with disks. 

After 18 hours of time had elapsed, all three plates were removed from the 

incubator and imaged with a ViTiny Pro10 Plus Portable Digital Microscope 10x - 200x 

purchased from Oasis Scientific, Inc. (Greenville, SC). Multiple images were taken at 

various magnifications both with the RTV3140 and SNAP-PDMS disks present as well 

as after the disks were removed. 

4.3.3 NITRIC OXIDE RELEASE MEASUREMENTS 

A Sievers Nitric Oxide Analyzer (NOA) 280i (GE Instruments, Boulder, CO) was 

used for NOA measurements. The SNAP-PDMS disks used in the TSB bacterial solution 

experiments were from the same batch as the disks used for the Kirby-Bauer disk 

susceptibility testing done in Chapter 2. Therefore, the data collected from the previous 

experiment was used to quantify NO released and surface flux for these experiments. 

4.4 RESULTS 

The TSB experiments were done to compare the bacterial adhesion of RTV3140 

disks to SNAP-PDMS disks when suspended in bacterial solutions. From a visual 

perspective, there was no difference seen between bacterial adhesion from samples 

placed at the bottom of the vial and those in suspension. As seen in Figure 4.2, RTV3140 

disks visually have much more bacteria present around and under the disks as compared  
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Figure 4.2. Half plate images taken of S. epidermidis tryptic soy broth bacterial 
adhesion testing. The top row is images with polymer disks present 
whereas the bottom row is after the disks are removed after 18 hours 
incubation at 37˚C in dark conditions. The left column represents the 3 
RTV3140 disks in suspension whereas the right column is the SNAP-
PDMS disks on the bottom of the vial. 
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to the SNAP-PDMS disks for the S. epidermidis experiment. Figure 4.3 is one RTV3140 

and one SNAP-PDMS disk example which further validates bacterial adhesion inhibition 

for S. epidermidis. Figure 4.4 and Figure 4.5 are single disk representations of S. aureus 

and MRSA, respectively. Although there are some bacteria present around the edge of the 

disks, qualitatively there are fewer bacteria present beneath the disks. Lastly, Figure 4.6 

represents the bacterial streaks made from each vial for S. aureus. It can be seen that 

there were plenty of bacteria within the TSB solution. 

Because the SNAP-PDMS disks were punched from the same batch of polymer 

used for the disk susceptibility testing in Chapter 2, the results of the total NO released 

and surface flux for the seven disks can be found in Table 2.3. The average NO released 

was 3.9±0.69 x 10-8 moles while the average NO surface flux was 1.1±0.19 x 10-10 

moles/(cm2·min). 

4.5 DISCUSSION 

Presented in this work are qualitative images further proving that NO is an 

effective bacterial adhesion inhibitor. The SNAP-PDMS used in these experiments 

produces enough NO to have a negative effect on bacterial adhesion for all three strains 

of bacteria evaluated. 

4.5.1 TRYPTIC SOY BROTH ADHESION TESTING 

The purpose of these experiments was to demonstrate the effect NO has on 

bacterial adhesion, specifically NO released from SNAP-PDMS. RTV3140 was chosen  
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Figure 4.3. Images of RTV3140 (left) compared to SNAP-PDMS (right) for S. 
epidermidis for tryptic soy broth bacterial adhesion testing at dark 
conditions after 18 hours of incubation at 37˚C for vial #2 bottom disks. 
The top row is with disks present and the bottom is after disks are 
removed. 
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Figure 4.4. Images of RTV3140 (left) compared to SNAP-PDMS (right) for S. aureus 
for tryptic soy broth bacterial adhesion testing at dark conditions after 18 
hours of incubation at 37˚C for vial #3 top. The top row is with disks 
present and the bottom is after disks are removed. 
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Figure 4.5. Images of RTV3140 (left) compared to SNAP-PDMS (right) for MRSA 
for tryptic soy broth bacterial adhesion testing at dark conditions after 18 
hours of incubation at 37˚C for vial #2 bottom. The top row is with disks 
present and the bottom is after disks are removed. 
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Figure 4.6. Images taken of S. aureus bacterial streaks made from tryptic soy broth 
bacterial solutions after being incubated at 37˚C for 18 hours. A) Image of 
entire media plate showing all six vials bacteria was streaked from, B) 
Image of half media plate showing vials 1-3, and C) Image of half media 
plate showing vials 4-6. 
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as the control because it is surgical grade silicone rubber and readily allows bacteria to 

adhere to it and provides no antimicrobial properties. 

The disks in suspension were qualitatively compared to those placed at the bottom 

of the vials to evaluate whether gravity was a significant factor to increased bacterial 

adhesion. The theory was that there would be more bacteria present on the disks placed in 

the bottom because of gravity causing bacteria to settle on the polymer. However, the 

gentle stirring caused by the mini shaker allowed the bacteria to float and move around 

while suspended in the TSB. 

Figure 4.2 provides a bigger picture for comparison. It can be seen that 

qualitatively there are fewer bacteria around and under the SNAP-PDMS disks as 

compared the RTV3140 disks. Additionally, it is difficult to distinguish where the SNAP-

PDMS disks once were because there was minimal to no bacteria present for S. 

epidermidis. Figure 4.3 provides a closer look to one of the six disks evaluated against S. 

epidermidis adhesion. SNAP-PDMS did successfully prevent S. epidermidis adhesion as 

compared to RTV3140 to the point where there is almost no sign of where the disk once 

was. 

Further validating SNAP-PDMS as an effective bacterial adhesion inhibitor can 

be seen against S. aureus and MRSA which can be seen in Figure 4.4 and Figure 4.5, 

respectively. Although there are still bacteria present around the SNAP-PDMS disks, it 

can be seen there are fewer bacteria found after the disks are removed. There is some 

cloudiness present which can be partially due to the pulling in of bacteria from the edge 
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as SNAP-PDMS disks were removed. From a physical stand point, the RTV3140 disks 

were much harder to remove for all three strains of bacteria tested because there was an 

abundance of bacteria under the disk. This was observed by the disks being almost 

suctioned to the media plate. 

Figure 4.6 is the bacterial streaks from the vials after disks were plated for S. 

aureus experiments. This was important to show the presence of bacteria in the TSB 

solution while disks were submerged and suspended. Both S. epidermidis and MRSA had 

similar results displaying an abundance of bacteria within solution (images not shown). 

It is important to note that the disks were only in TSB solution for 90 minutes, 

and in that short window of time, there were copious levels of bacteria allowed to adhere 

to RTV3140 disks. Not only did all three bacteria types adhere, but they adhered well 

enough to not be rinsed off in the three submergences in sterilized water. On the other 

hand, for all three strains of bacteria (S. epidermidis, S. aureus, and MRSA) SNAP-

PDMS disks with an average NO release of 3.9±0.69 x 10-8 moles and average NO 

surface flux of 1.1±0.19 x 10-10 moles/(cm2·min) after 18 hours was adequate to inhibit 

bacterial adhesion. It should be noted that the minimal surface flux of NO that is required 

to inhibit adhesion of bacteria was not determined in this series of experiments. The 

minimal level of NO required may be less than 1.1±0.19 x 10-10 moles/(cm2·min). 

4.5.2 SUMMARY 

In conclusion, from a qualitative perspective, it can be seen that SNAP-PDMS 

disks did reduce bacterial adhesion as compared to the RTV3140 control disks for three 
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strains of bacteria that are frequent culprits to infection. The SNAP-PDMS disks most 

suggestively reduced S. epidermidis bacterial adhesion, as well as inhibited S. aureus and 

MRSA bacterial adhesion. Literature has shown NO to having an inhibitory effect on 

bacteria, but these results show that NO released from SNAP-PDMS disks directly 

provides a reduction in bacterial adherence. Based on NOA measurements, an average of 

NO release of 3.9±0.69 x 10-8 moles and NO surface flux of 1.1±0.19 x 10-10 

moles/(cm2·min) is needed to inhibit bacterial adhesion. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE DIRECTIONS 

 There is an abundance of research demonstrating that the problem of antibiotic- 

resistant bacteria is growing at an alarming rate. Research continues to develop more 

efficient and potent antibiotics to fight these virulent strains of bacteria, but there has also 

been new research into other possible approaches to fighting as well as preventing 

bacterial infection. As a result, research has been conducted assessing nitric oxide (NO) 

as a means to prevent bacterial infection. The results of this research have concluded that 

NO does possess the ability to inhibit bacterial growth, and thus it can be utilized in 

improving the use of a variety of medical devices such as a urinary catheter. 

  Currently, the majority of research focuses on an effective versus ineffective 

treatment against various bacterial strains. However, the success of NO as a means to 

fight bacterial infection has motivated further research into the necessary dose or surface 

flux of NO needed to inhibit bacterial growth as well as an assortment of delivery 

materials. Additionally, whether or not the amount of NO needed to prevent infection is 

different amongst various strains of bacteria has yet to be determined. Answering some of 

these questions could improve the success of a several medical devices by preventing 

their failure due to an untreatable bacterial infection. S-Nitroso-N-acetyl-D-penicillamine 

covalently linked to polydimethylsiloxane (SNAP-PDMS) can be utilized to determine 

the NO dosage and surface flux necessary to inhibit bacterial growth because of its 

controlled NO release due to its photosensitivity.  
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 The experiments shown in this work have further validated NO at a surface flux 

of 0.28 x 10-10 moles/(cm2·min) as an effective treatment for preventing bacterial growth 

and adhesion specifically for Staphylococcus epidermidis, Staphylococcus aureus, 

methicillin-resistant Staphylococcus aureus, and Escherichia coli. SNAP-PDMS has been 

shown to deliver a highly localized level of NO which through a total NO release of 1.7 x 

10-8 moles has an inhibitory effect on bacterial growth. Not only did SNAP-PDMS 

prevent bacterial growth on media plates and adhesion in solution, it also produced 

lasting effects on a virulent strain of bacteria over a ten day period.  

 Future work based on the results presented here can be done to further determine 

whether it is the total amount of NO delivered or the specific surface flux that is 

responsible for inhibiting bacterial growth. Additionally, through the use of SNAP-

PDMS, it can be studied whether the type of dosage has an effect on bacterial inhibition. 

For example, whether a high initial NO release for a short period of time is just as 

effective as a lower initial NO release over a longer period of time. 

 With SNAP-PDMS determining the necessary dosage and surface flux of NO to 

impede bacterial growth, it can be utilized for use in a specific medical device to improve 

success rates. Considering the base material of urinary catheters and SNAP-PDMS, a 

transition into the development of an NO releasing urinary catheter could provide great 

success because of the vast amount of catheter-associated urinary tract infections 

occurring each year. The success of this work validates NO as an extremely localized 

treatment which is beneficial to the fight against the growing number of antibiotic-
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resistant bacteria which can require high doses of potent drugs that can have serious side 

effects. 
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APPENDIX 

COPYRIGHT PERMISSIONS 

Figure 1.2 is in an open access journal and reuse is allowed. 
http://www.mdpi.com/about/openaccess 

Figure 1.3 is in the CDC public health image library and a part of the public domain. 
 

  
  
 

http://phil.cdc.gov/phil/details.asp 

Figure 1.4 is reprinted from Carpenter [15] with permission of The Royal Society of 
Chemistry.  
https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=121e5ddc-8127-4488-99ba-
606e6c4ca0cc 

Figure 1.5 is in an open access journal and reuse is allowed. 
http://iopscience.iop.org/1468-6996/page/Scope 
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