
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's 
Reports - Open 

Dissertations, Master's Theses and Master's 
Reports 

2011 

Planar magneto-photonic and gradient-photonic structures : Planar magneto-photonic and gradient-photonic structures : 

crystals and metamaterials. crystals and metamaterials. 

Zhuoyuan Wu 
Michigan Technological University 

Follow this and additional works at: https://digitalcommons.mtu.edu/etds 

 Part of the Physics Commons 

Copyright 2011 Zhuoyuan Wu 

Recommended Citation Recommended Citation 
Wu, Zhuoyuan, "Planar magneto-photonic and gradient-photonic structures : crystals and metamaterials.", 
Dissertation, Michigan Technological University, 2011. 
https://doi.org/10.37099/mtu.dc.etds/121 

Follow this and additional works at: https://digitalcommons.mtu.edu/etds 

 Part of the Physics Commons 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.mtu.edu%2Fetds%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.37099/mtu.dc.etds/121
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.mtu.edu%2Fetds%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages


 

 

 

PLANAR MAGNETO-PHOTONIC 

AND GRADIENT-PHOTONIC 

STRUCTURES: CRYSTALS AND 

METAMATERIALS 
   

 

 

 

By 

 

Zhuoyuan Wu 

 

 

 

A DISSERTATION 

Submitted in partial fulfillment of the requirement for the degree of 

DOCTOR OF PHILOSOPHY 

Engineering Physics 

 

 

MICHIGAN TECHNOLOGICAL UNIVERSITY 

 

2010 
 

 

 

 

 

 © 2010 Zhuoyuan Wu 

 

 

 

 

 

 



 

 

 

This dissertation, “PLANAR MAGNETO-PHOTONIC AND GRADIENT-PHOTONIC 

STRUCTURES: CRYSTALS AND METAMATERIALS” is hereby approved in partial 

fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY in the 

field of Engineering Physics. 

 

 

Department: 

Physics 

 

 

Signatures: 

 

Dissertation Advisor _______________________________________________ 

                                                               Dr. Miguel Levy  

 

Committee Members _______________________________________________ 

                                                               Dr. Ranjit Pati 

 

                                   _______________________________________________ 

                                                              Dr. Will Cantrell 

 

                                   _______________________________________________ 

                                                              Dr. Craig Friedrich 

 

                                    

 

Department Chair __________________________________________________ 

                                                               Dr. Ravi Pandey 



ABSTRACT 
 

In the field of photonics, two new types of material structures, photonic crystals and 

metamaterials, are presently of great interest. Both are studied in the present work, which 

focus on planar magnetic materials in the former and planar gradient metamaterials in the 

latter. These planar periodic structures are easy to handle and integrate into optical 

systems. The applications are promising field for future optical telecommunication 

systems and give rise to new optical, microwave and radio technologies. 

 

The photonic crystal part emphasizes the utilization of magnetic material based photonic 

crystals due to its remarkable magneto-optical characteristics. Bandgaps tuning by 

magnetic field in bismuth-gadolinium-substituted lutetium iron garnet (Bi0.8 Gd0.2 Lu2.0 

Fe5 O12) based one- dimensional photonic crystals are investigated and demonstrated in 

this work. Magnetic optical switches are fabricated and tested. Waveguide formulation 

for band structure in magneto photonic crystals is developed. We also for the first time 

demonstrate and test two- dimensional magneto photonic crystals optical. We observe 

multi-stopbands in two- dimensional photonic waveguide system and study the origin of 

multi-stopbands. 

 

The second part focus on studying photonic metamaterials and planar gradient photonic 

metamaterial design. We systematically study the effects of varying the geometry of the 

fishnet unit cell on the refractive index in optical frequency. It is the first time to design 

and demonstrate the planar gradient structure in the high optical frequency. Optical beam 

bending using planar gradient photonic metamaterials is observed. The technologies 

needed for the fabrication of the planar gradient photonic metamaterials are investigated. 

Beam steering devices, shifter, gradient optical lenses and etc. can be derived from this 

design. 
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CHAPTER 1  

INTRODUCTION 

This thesis concerns the interaction of photons with magnetic material structures and with 

metamaterials. Whereas electronics involves the control of electric charge, the subject 

matter of the present work involves the control of photons in matter, namely, photonics. 

In the field of photonics two new types of material structures are presently of great 

interest. These materials are photonic crystals (PhCs) and metamaterials. Both are studied 

in the present work, with a focus on magnetic materials in the former and planar-gradient 

metamaterials in the latter. 

 

The major difference between photonic crystals and metamaterials is that to form a 

photonic bandgap the atoms and the lattice constant ‘a’ in the PhCs have to be 

comparable in size with the wavelength ‘λ’, a ≈ λ, because the effect of the bandgap 

arises from diffraction. In the case of metamaterials artificial atoms (sub-units) and lattice 

constant have to be much smaller than the wavelength, a << λ, because diffraction should 

be avoided. The wavelength passing through a metamaterial has to feel only the effective 

parameters of the material, such as effective magnetic permeability, μ, and effective 

electric permittivity, ε. From the electromagnetic point of view it is the wavelength which 

determines if a collection of atoms or sub-units is a material. [1] 

 

The work on photonic crystals is developed in Michigan Technological University. Based 

on well developed planar magneto-photonic crystal (MPCs) waveguide studies in the 

Research Group of Professor M. Levy, this thesis extensively studies one dimensional 

magnetically-controllable optical switching phenomenona in magneto-photonic crystals. 

Band gap and polarization control in magneto-optic films are extensively investigated 

and reported on. Strong optical switching is demonstrated based on magnetic control of 

optical transmission in optical band gap structures. Theoretical studies of the optical 
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response in magneto-photonic crystal waveguides are developed and presented as part of 

the present work. Studies on two dimensional magneto-photonic crystals are also carried 

out. 

The work on metamaterials stems from a four-month project during the co-operative 

project with Toyota Technical Center, a research institution in Ann Arbor, Michigan. The 

goal of the project was to realize the planar gradient metamaterials in optical frequencies 

which can be used for optical lensing and IR imaging. We successfully design the planar 

gradient photonic matematerials and simulated the optical behavior passing through this 

planar slab. The key application of the prototypical design is to improve vehicle’s night 

vision by IR imaging. The fabrication and test possibility are investigated.  

 

The following sections include introductions to photonic crystals, metamaterials and spell 

out the organization of this thesis.  

 

1.1 Photonic crystals 

Photonic crystals, engineered periodic dielectric structures, are a new class of materials 

that provide novel capabilities for the control and manipulation of electromagnetic wave. 

In the same fashion as the phenomena of the electron in semiconductor, atomic lattices 

cause electrons to have energy bands and bandgaps, a periodic dielectric lattice causes 

photons to have frequency bands and frequency gaps in which photon can not travel 

through the structures. [2, 3] 

 

The field of photonic bandgap materials started to develop dynamically after two papers 

of S. John and E. Yablonovitch published both in the same volume of Phys. Rev. Lett. in 

1987. These two papers clearly address that in such periodic materials with varying 

refractive index, spontaneous emission could be suppressed and light could be localized. 

The propagation of light in PhCs is governed by Maxwell equation. [4,5] 
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Recently, photonic crystals have attracted considerable attention both from a fundamental 

as well as practical viewpoint, due to their unique optical properties and their potential 

use in optical devices. [2-5] Significant developments have occurred by realization of 

integrated optical circuits which produce multifunctional optical components onto a 

single chip. [6, 7] 

 

By using different materials with different dielectric constants such as piezoelectric 

PMN-PT crystals and iron garnets and by adjusting geometrical parameters, applied 

external electric and magnetic field, the propagation of light can be modified in a 

controllable manner. The scale invariant nature of the governing Maxwell’s equations 

enables the study of electromagnetic phenomena in the first place, without being held 

back by structural complexities. 

 

There can be one-dimensional, two-dimensional and three-dimensional PhCs. Fig. 1.1 [2] 

shows the simple example of schematic depiction for one, two and three dimensional 

PhCs.  

 

Figure 1.1 The schematic images for one, two and three dimensional photonic 
crystals. The different colors represents materials with different dielectric constants. 
Photonic crystals have the periodicity of dielectirc mateirals along one or more axes. 
[2] 
 
The dimension of the photonic crystals depends on the dimension of the periodic 

structures. If the periodic structure exists in only one-, two- or three- direction, the 

photonic band gaps will show up in the one-, two- or three- direction.  



 
4

The one dimensional PhCs are usually materials such as Bragg reflectors, interference 

filters which are generally manufactured by layer-by-layer deposition of materials with 

different refractive indices. Two-dimensional ones can be in the shape of dielectric pillars 

embedded in another dielectric material (e.g. air) or air columnar holes embedded in 

dielectric material [8, 9]. In my work, one dimensional PhCs are grating patterns on ridge 

waveguide which create multilayer material and air periodically arranged in one direction. 

Two dimensional PhCs are periodic air columnar holes embedded in the slab waveguide.  

Only the three-dimensional PhCs can have complete photonic bandgap (a direction and 

polarization independent). The first three-dimensional PhCs were obtained by 

Yablonovitch by drilling holes along their crystallographic axis of diamond in a material 

with high refractive index (now called Yablonovite) [10, 11]. A woodpile structure which 

shows the complete photonic bandgap was originally invented by Sokoulis [12]. It was 

miniaturized by Noda who used an advanced wafer-fusion technique to reduce the size to 

such dimensions that the bandgap was observed at the telecommunication wavelength ~ 

1.5 m . [13] 

 

1.1.1 Bandgap formation 

Wave optics is used to analyze these crystals. The description of light in PhCs must 

involve the solution of Maxwell’s equations in a periodic dielectric medium. This 

approach is more general and elucidates the structure of light within photonics crystal.  

 

The first step is to simplify Maxwell’s equations by assuming the absence of current and 

sources:  
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H(r) is the magnetic field of the photon, ε(r) is the macroscopic dielectric constant as a 

function of space in the media. 1/ε(r) is a periodic function. The solutions of   and H(r) 

are determined completely by the strength and symmetry properties of ε(r) as ε(r) = ε(r 
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+Ri), here Ri  represents the periodicity in all three dimensions (Ri =1, 2, 3), the solutions 

are in a form of )(,)( rkn
ri HerH  , k(r) with eigenvalues )(kn , where Hn,k(r) is a 

periodic envelope function satisfying: 
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leading to discrete eigenvalues labeled by n = 1, 2, … over a periodic structure. These 

eigenvalues  n(k) are continuous functions of k, forming discrete “bands” when plotted 

versus the latter, in a“band structure” or dispersion diagram.[14] 

 

For a uniform one dimensional system (   = 1), the plane wave eigensolution 

is ckk )( , as depicted in Fig. 1.2(left). The bands for |k| > a/ can be folded into the 

first Brillouin zone, as shown by the dashed lines in Fig. 1.2(left). The wave solutions 

with electric fields which is proportional to axe /  can be expressed as a linear 

combinations of )/cos()( axxe   and )/sin()( axxo   as shown in Fig. 1.2(inset). In 

the presence of such an oscillating “potential”, a bandgap appears at ak /  due to the 

degeneracy between )(xe  and )(xo . Given > 0, the field )(xe  is more concentrated in 

the higher   as its electric field peaks in the high dielectric (nhigh) so as to form the lower 

bandgap edge, while the field )(xo lies more in the lower ε as its electric-field peaks in 

the low dielectric (nlow) so as to form the higher bandgap edge.(see Fig. 1.2(right)). [14] 

This argument explains that any periodic dielectric structure in one dimension will result 

in bandgaps. 

 

The analysis of two-dimensional PhCs is similar to the one-dimensional case, except for a 

few additional complications. First, there are two vectors that determine the Bloch state, 

kx and ky. We can combine these two vectors in cylindrical coordinates, and make the 

Bloch state a function of kρ = kx + ky. In 2-D the Brillouin zones are area, for a square 

lattice, the first Brillouin zone is a square with sides of length 2π/a, where a is the spacing 

of the lattice. The irreducible Brillouin zone is a right triangle of base and height π/a. See 
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Fig. 1.3. The band diagram will be a 2-D surface plot. 1-D band-diagram can be obtained 

by plotting the band structure only at the edges of the irreducible Brillouin zone, i.e. from 

Γ to Χ to Μ. Thus dispersion diagram can be used to determine the photonic band-gaps. 

[15]  

 

 

Figure 1.2 Schematic diagrams for the dispersion relation between frequency   and 
wavenumber k in a one-dimensional medium. Left: a uniform medium; right: a 
physical periodic dielectric variation (inset) splits the band at the k = ±  /a 
Brillouin-zone boundaries, forming a photonic bandgap (in yellow). [14] 
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Figure 1.3 2-D Brillouin with irreducible Brillouin Zone shaded light blue. Γ, Χ and 
Μ are high symmetrical points at the coners of the irreducible Brilliouin zone. 
 
In order to realize 2d photonic-crystal phenomena in three dimensions, the most 

straightforward design is to simply fabricate a 2d-periodic crystal with a finite height: a 

photonic-crystal slab, as depicted in Fig.. 1.4. Such a structure can confine light vertically 

within the slab via index guiding, a generalization of total internal reflection—this 

mechanism is the source of several new tradeoffs and behaviors of slab systems 

compared to their 2d analogues. 

 

 

Figure 1.4 The schematic of a two dimensional photonic-crystal on a slab waveguide 
 

Γ X
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If the frequency of the propagating light is in the photonic bandgaps, photonic crystals, 

considered as ‘optical insulator’ can be utilized to build ultra-compact mirrors, cavities, 

super prisms with the refraction angle of the incident light 100 times to 1000 times of the 

normal prism; optical amplifier, filter, switcher and waveguides [16-19]. On the other 

hand, if the frequency is outside photonic bandgaps, it can be used as wavelength division 

multiplexing in broadband optical communication [18], beam steering and other 

applications. With the improvement in the fabrication technology, more potential 

applications will show up [19]. 

 

Scaling down is still a challenging issue before photonic crystals are in widespread use. 

The current available nanotechnology is hard to achieve the photonic crystal with the size 

suitable for visible light application. The variation of the periodicity of PhCs by 

modifying structure dimensions or indices remains as a challenge especially for higher 

dimensional PhCs. The crystal structures built on special material can be adjusted by an 

external force, electric field or magnetic field. These functional PhCs can be widely used 

as infrared laser modulators with micro-scale sizes for remote communication such as 

satellite communications. They can also offer potential features leading to new devices to 

detect chemical reactions involving radiation of interest for chemical production, 

pharmaceutical development and biotechnology. [20] 

 

1.1.2 Magneto-photonic crystals 

Most of research and development in PhCs are based on metal, polymer or semiconductor 

materials. Not much attention was paid to the investigation of PhCs made from magnetic 

materials, or to the influence of external magnetic fields on photonic bandgap effects in 

the first decade until Inoue et al.[23-26] first began the study of Magnet-optical(MO) 

effects in one dimensional multilayer stack magneto-photonic crystals in 1996. 

Subsequent early work involved investigations on multi-defect and waveguide MPC 

structures. [21-31] All these magnetic materials based PhC structures are called as 

Magnetic photonic crystals or Magnetophotonic crystals, abbreviated as MPCs as follows. 
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The early development of MPCs up to 2003 was discussed in a review paper [32] by 

Lyubchanskii et al.  

 

As the attraction of the unique magnetic-field-dependent effects such as nonreciprocity 

and unidirectionality[33] became widely recognized in recent years. However, there still 

exisit several unsolved issues in the multilayer structure MPCs. First, the high-quality 

films are hard to obtain as the number of layers increases. Second, it is hard to integrate 

the multi-layer structure into future optical integration circuit application. Last but not 

least, it is challenging to attain the miniaturization of external magnets in this multi-layer 

structure.  

 

Some work has been reported on photonic crystals made from magneto-optic materials 

that allow for tunability upon changing the external magnetic field in the optical 

wavelength range of the incident wave [34]. Photonic crystal structures in planar 

magnetic film waveguides can lead to the development of on-chip magneto-optical 

switches, sensors and isolators for photonic device integration [35]. During the past few 

years, much research effort has been devoted to the investigation of one-dimensional 

PhCs, including significant improvement in polarization rotation in magneto-optical 

photonic crystal gratings on planar ridge waveguides studied by our group [36].  

 

Our group proposed and developed MPC waveguide structures.[36, 37, 38-42] as shown 

in Fig. 1.5 to achieve one dimensional MPC instead of sputtering multilayer film 

structures. This alternative structure can obtain precise [36] control of the refractive index 

contrast by patterning a periodic relief structure on the surface of an optical waveguide. 

This structure also can easily used for integration in complex planar photonic and open 

up a way to connect with semiconductor based devices for optical integration circuit 

application. [43, 44]  
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Figure 1.5 Schematic of one dimensional photonic crystal on ridge 
 

The whole structure is based on a waveguide so that it is more suitable for the planar 

integration compared to stacked-film structure [36]. What’s more, stacked structures do 

not present birefringence since the propagation is normal to the plane of the film. The 

presence of birefringence and waveguide modes which naturally arises in this type of 

planar ridge waveguide structure introduces more interesting phenomena. The 

involvement of birefringence in MPCs system and the mechanism between polarization 

rotation and waveguide scattering modes have been deeply studied both in experiment 

and theory by R. Li and M. Levy, as well as By A. Jalali. Several discoveries have been 

made. [40, 41, 45-47]  

 

The photonic crystal part of the work presented in this dissertation concerns band gap 

tunability in magneto-photonic-crystal multi-mode waveguides.  Specifically, it addresses 

the magneto-optic response of one-dimensional PhCs fabricated in magnetic garnet films.  

Band gap tunability and on-off switching is demonstrated in band gaps formed by mode-

coupling between different-order waveguide modes.  The activation of TM-TM or TE-TE 

mode coupling upon the application of a magnetic field results in the on-off switching of 

optical band gaps. This device is successfully fabricated and demonstrated. What’s more, 

we investigate the properties of the waveguide band structure and its optical response 

beyond simple stack models, incorporating waveguide mode analysis and we extend this 
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treatment to two dimensional square lattice photonic crystal structures by simulations and 

experiments.  

 

1.2 Metamaterials 

As is well known, the permittivity  and permeability   of materials determine the 

response of an electromagnetic field of a system. We can classify a medium as shown in 

Table 1.1. Most naturally existing media have both positive permittivity and permeability 

( ,0 0 ). These materials are designated double positive (DPS) media. When 

permittivity is less than zero and permeability is greater than zero ( ,0 0 ), media 

are designated as epsilon-negative (ENG) media. In the infrared (IR) and visible 

frequency range, noble metals like silver and gold exhibit this characteristic. Media with 

positive permittivity and negative permeability ( ,0 0 ) are designated mu-

negative (MNG) media. Some gyrotropic materials exhibit this characteristic in certain 

frequency regime. A medium with both permittivity and permeability less than zero 

( ,0 0 ) are double negative (DNG) medium or Negative refractive index 

metamaterials (NIMs). [48] The refractive index of a medium is defined by n . 

 

Metamaterials which are known as electromagnetic and multifunctional artificial 

materials can extend the electromagnetic properties that can not be obtained with 

naturally existing materials [1]. They have effectively homogeneous structures whose 

structural average cell size is much smaller than the guided wavelength, which means this 

average size should be at least smaller than a quarter of wavelength. In this way, the 

refractive phenomena will dominate over scattering/ diffraction phenomena when a wave 

propagates inside the metamaterials. The structure behaves as a real material if the 

structure is effectively homogeneous. Thus, metamaterials are electromagnetically 

uniform along the direction of propagation. [49] The structure of the materials leads to 

the properties instead of the composition. Metamaterials have different characteristics. 

NIMs have attracted much attention and effort from scientific researchers. They are 
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characterized by simultaneously negative permeability, permittivity and index of 

refraction. [50] Some interesting optical imaging properties of NIM were already 

indicated by Veselago and later theoretically proven by Pendry [51].  The refractive index 

is the main parameters to characterize the electromagnetic response of materials. It is 

defined as n2= εμ. It has two components: electric permittivity, ε, and magnetic 

permeability, μ. A negative index is obtained by adjusting the permittivity and 

permeability to be negative simultaneously. 

Table 1.1 
The classification of a medium 

Material Permittivity   Permeability  Refractive index 
n 

DPS Material >0 >0 >0 

ENG Material <0 >0 >0 

MNG Material >0 <0 >0 

DNG Material <0 <0 <0 

 

Metamaterials gave rise to new phenomena and potential applications, ranging from 

negative refraction [52, 53], total external reflection [54], sub-wavelength waveguides, 

nanocircuits, antennas, and spectrally selective filters [55–59], to cloaking devices, wave 

concentrators and rotators [60–64]. 

 

1.2.1 The development of metamaterials 

Metamaterials can be composed of dielectric elements or structured metallic components. 

Traditional metamaterials are composed of continuous metallic wires and split ring 

resonators (SRRs) [65, 66]. Negative index metamaterials were first demonstrated for 

microwave frequencies. The sample consists of square copper split ring resonators and 

copper wire strips on glass circuit board material. The rings and wires are on opposite 

sides of the boards, and the boards have been cut and assembled into an interlocking 

lattice. [67] By measuring the scattering angle of the transmitted beam through a prism 
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fabricated from this material, the effective n, appropriate to Snell’s law can be directly 

measured. Negative refractive index was observed. 

 

The development of resonant metamaterials has dramatically expanded our view of 

electromagnetic material interactions and given rise to new optical, microwave and radio 

technologies. Photonic metamaterials are a type of electromagnetic metamaterials which 

are designed to interact with optical frequencies which are terahertz, infrared and 

eventually visible wavelength. As a type of metamaterials, the periodic structures are 

made up of single unit cell much smaller than the optical wavelength. The subwavelength 

period distinguishes the photonic metamaterial from photonic band gap or photonic 

crystal structures. This is because the special optical properties do not arise from photonic 

bandgaps, but rather from a subwavelength interaction with the light spectrum, which 

mimics atoms or ions. However, the periodic cells (meta-atoms) are fabricated on a scale 

that is magnitudes larger than the atom, yet smaller than the radiated wavelength. They 

have been designed and demonstrated to solve the materials issue at higher frequencies as 

terahertz and visible light. [68]  

 

Although negative permeability can be easily obtained in the microwave frequency range 

and a number of successful realizations of NIMs in the microwave and terahertz regime 

have been presented in recent years, it is more complicated to realize NIMs in the optical 

(visible and infrared) regime. [69, 70]It is not easy to fabricate such structure suitable for 

the optical frequency range due to the size limitation from the fabrication [71, 72]. 

Several structures have been suggestion as optical NIMs such as nano rods, nano strips 

and fishnet structures. [73, 74, 75] 

 
Engineers at Purdue University were the first researchers to create a material that has a 

"negative index of refraction" in the wavelength of light used for telecommunications, a 

step that could lead to better communications and imaging technologies. A double-

periodic array of pairs of parallel gold nanorods is shown in Fig. 1.6 [73]. When normal 

incident light has the electric field polarized along the rods and the magnetic field 
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perpendicular to the pair as shown in Fig. 1.8 (a), the electric and magnetic responses 

both can experience resonant behavior at certain frequencies. This resonance can be 

considered as a resonance in an optical LC circuit. The metal rods provide the inductance 

L and the dielectric gaps between the rods play the role of capacitive elements C. The 

circular current in the pair of rods can lead to a magnetic field opposing the external 

magnetic field of the light above the resonance frequency. This metamaterial has a 

negative refractive index in the optical range. Such behavior results from the plasmon 

resonance in the pairs of nanorods for both the electric and the magnetic components of 

light. [73]  

 

 

 (a)                                                       (b) 

Figure 1.6 The nanorode metamaterial. (a) Schematic for the array of nanorod pairs. 
(b) Field-emission scanning electron microscope images. [73] See Appendix A for 
documentation of permission to republish this material. Printed permission by OSA 
 
A family of coupled nanostrips with varying dimensions is demonstrated exhibiting 

\optical magnetic responses across the whole visible spectrum, from red to blue, which is 

referred to such a phenomenon as rainbow magnetism. The cross section and AFM 

images of this type of photonic metamaterials are shown in Fig. 1.7[74]. The 

experimental and analytical studies of such structures provide a universal building block 

and a general recipe for producing controllable optical magnetism for various practical 

implementations. [74] The general resonant properties of magnetic metamaterials 
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consisting of arrays of paired thin silver strips. The magnetism in such a structure has 

been discussed theoretically [76, 77].  

 

(a)                                                       (b) 

Figure 1.7 The nanostrip metamaterial.  (a) The cross-sectional schematic of arrays 
of coupled nano-strips; (b) The AFM image of a typical sample. [74] See Appendix 
A for documentation of permission to republish this material. Printed permission by 
OSA 
 
The double-wire sandwich structure in which a dielectric layer is sandwiched between 

two metal films, popularly known as a ‘fishnet’, has been demonstrated in optical 

frequencies by creating a nano-prism in the multilayered fishnet stack to realize the 

negative refraction [67, 75, 78].The magnetic response originates from the antiparallel 

current supported by the wire pairs. When combined with long metal wires shown, this 

structure is shown to have negative refraction for a particular polarization at optical 

frequencies. [78] Three-dimensional (3D) optical metamaterials have come into focus. 

They open up prospects for studies of 3D optical effects and applications associated with 

Negative-index metamaterials and zero-index materials such as reversed Doppler Effect, 

superlenses, optical tunneling devices, compact resonators, cloaking device and highly 

directional sources [1,75]. Negative refraction of surface plasmon was recently 

demonstrated but was confined to a two-dimensional waveguide. Three-dimensional (3D) 

optical metamaterials includes the realization of negative refraction by using layered 3D 
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optical metamaterial cascaded ‘fishnet’ structures.A nano-prism was created in the 

multilayer fishnet stack to demonstrate negative refractive index at optical frequencies. 

[75]  

 

1.2.2 Gradient metamaterials 

Researches relative to analyzing and designing gradient index elements in conventional 

dielectrics have been developed since 1962 [79]. Continuously graded index structures 

offers an additional degree of freedom in the design of the desired characteristics 

compared to conventional elements with homogeneous and/or step index profile.  

 

Most recent researches on metamaterial has been constructed from repeated unit cells 

containing identical elements. The averaged electromagnetic response does not vary over 

the structure due to the homogeneity of the structure. However, metamaterials with 

refractive index continuously varies in space can also be fabricated. A pattern of spatial 

dispersion can be introduced by a slight change in the properties of each successive 

element along a direction perpendicular to the direction of propagation. The averaged 

electromagnetic properties vary as a function of position. This forms a constant gradient 

index along this axis of the metamaterial, which can be confirmed by beam deflection 

experiments. This design increase practical usability in various applications, such as 

lensing and filtering. The gradient metamaterial represents an alternative approach to the 

development of gradient index lenses [80]. The use of metamaterial lenses instead of 

conventional positive index ones for the coupling with radioactive elements in high-gain 

antenna applications because of the reduced geometrical aberration profile in comparison 

to the conventional ones. [81] A gradient in the refractive index of the metamaterial is 

introduced by continuous tuning of a single parameter in the metamaterial element. 

Experimental studies of graded index metamaterials have been reported in millimeter 

wave and microwave. Some of these lenses make use of metamaterials operating in the 

positive index regime away from resonance to minimize losses. Fig. 1.8 is a picture of the 

gradient metamaterial slabs fabricated for millimeter wave. [1, 82, 83]  
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My research on photonic metamaterials combines gradient concepts with the optical 

fishnet structure for the purpose of extending gradient index metamaterials into the 

optical frequencies. We design the fishnet unit cell with optimum refractive index range 

by tuning the unit cell dimension. By appropriately placing these fishnet structures with 

different refractive indices on a planar slab, we can create gradient index on the slab. 

When light passes the planar slab, the deflection of light beam can be observed. This 

proposes the prototype for optical lensing and IR imaging.  

 

Figure 1.8 Planar gradient metamaterial slabs for millimeter wave and the inset is 
the magnified view 
 

1.3 Content of this thesis 

Chapter 1 provides the introduction of the work and the relevant background for the 

projects. 

 

Chapter 2 mainly discusses the basic theory background PhCs and metamaterials. 

Magneto-optic effect, Waveguide theory and Bandgap calculation method are included to 

understand the control of the guided waves in magnetic-photonic crystal. Optical 

properties of bulk materials is included to understand the material properties and the 

numerical background for metamaterials. 

 



 
18

Chapter 3 includes the experimental results and computation modeling on one and two 

dimensionally magnetio-photonic crystals. The fabrication techniques of PhCs and the 

measurement results of one photonic magneto-optic material Bismuth-Gadolinium-

substituted Lutetium Iron Garnet (BiLuIG) are presented and analyzed. These films are 

fabricated and provided by Vince Fratello and Intergrated Photonics. It specially 

addresses the magnetically activated switching phenomena in one dimensional magneto-

photonic crystals, as well as waveguide mode analysis. It thus extends the analysis 

beyond the stack model originally used by several authors to include waveguide mode 

analysis.  Some initial results on two dimensional PhCs are also investigated. The 

experimental results and the computation modeling are discussed. 

 

Chapter 4 demonstrates the simulation technique and numerical method utilized to design 

photonic metamaterial unit cell and the planar gradient photonic metamaterials and 

presents the results obtained by these techniques. The simulation and calculation results 

are presented. The fabrication technique and test possibility are also discussed in this 

thesis and provides plans for future research. 

 

Chapter 5 summarizes the major achievements of the research and provides plans for 

future research. 
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CHAPTER 2 

THEORETICAL BACKGROUND 

2.1 Magneto-optic effect 

A magneto-optic effect is one of a number of phenomena in which an electromagnetic 

wave propagates through a medium that has been altered by the presence of a quasistatic 

magnetic field. In such gyrotropic materials, left- and right-rotating elliptical 

polarizations can propagate at different speeds, leading to a number of important 

phenomena. When light is transmitted through a layer of magneto-optic material, the 

plane of polarization can be rotated. This phenomenon is known as the result Faraday 

Effect. [84] 

 

The properties of the material can be affected by the external field and these phenomena 

are advantageous in controlling integrated photonic crystal devices. The applied external 

fields for the optical manipulation include electric field, acoustic field and magnetic field. 

Potential applications include optical modulator, switch, light deflectors, isolators, 

amplifiers and radiation detectors. [20] 

 

2.1.1 Magneto-optical iron garnet material system  

Single crystal garnet thin films have been shown to be a good materials system for optical 

waveguides and devices [85].  The garnet material system is promising for device 

applications exploiting the magneto-optic effect. Among materials exhibiting a magneto-

optic effect, iron garnets stand out because they exhibit a high Faraday rotation (FR) and 

low optical losses in the near infrared region 1.3-5.5μm. Optical absorption coefficients 

as low as 0.03cm-1 can be achieved. In this spectral range garnets are the only materials 

discussed in optical communications to realize nonreciprocal devices such as optical 
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isolators. This property is very important from the practical point of view, because it is 

widely used for developing non-reciprocal and other magneto-optical devices [86]. 

 

The base crystal system for single crystal garnet technology is yttrium iron garnet, or 

YIG with the chemical composition Y3Fe2 (FeO4)3 or Y3Fe5O12 [87] YIG which was first 

discovered in 1957 at Bell Labs [88] is widely used in various microwave and optical-

communication devices and other applications mainly due to its suitable magnetic and 

magneto-optical properties. It shows low absorption of infrared wavelength and large 

Faraday Effect. [88-91] It has demonstrated such magnetic optic devices as temperature-

independent optical isolator, useful for eliminating feedback from laser optical system. 

[92] 

 

The garnet is characterized by a complex, but basically cubic crystal structure for one 

single formula unit with three main lattice site categories: tetrahedral sites, two 

octahedral and three dodecahedral plus oxygen atoms. One single formula unit of YIG 

contains these three main lattice sites as shown in Fig. 2.1[93]. In the YIG system, the 

tetrahedral sites and octahedral sites are both occupied by iron ions with +3 valences. The 

three dodecahedral are occupied by the yttrium ion with a valence of +3 or for a more 

complex garnet, these sites constrain the rare earth or bismuth ions. [91].  

 

Figure 2.1 Diagram of lattice sites in garnet crystal structure 
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The pure YIG has fairly low magneto-optic effect in the form of Faraday rotation which 

degrades the efficiency of the interaction. However, the garnet system is well suited to 

fine tuning properties by way of varying composition. Those three large and open sites 

can be easily substituted by other ions [94]. 

 

Rare earth elements proved to be ideal for substitution into the crystal sites usually 

occupied by the yttrium. Bismuth can also substitute into these sites [95]. The 

substitution of yttrium by bismuth drastically increasing the Faraday rotation was first 

discovered by Buhrer [96]. The rotation is 7.8°/μm [97] at a wavelength of 633nm if the 

Yttrium is fully substituted by bismuth while the rotation is 0.084°/μm [98] for YIG. The 

origin of this effect was identified first by Akselrad [99] and further explained by 

Wittekoek and Lacklison [89]. 

 

They explained that this effect can be caused by the mixing of the 6p orbital of the Bi3+ 

ion with the oxygen orbital as shown in Fig. 2.2[100].  

 

Figure 2.2 Schematic illustration of the iron garnet structure with bismuth 
enhanced electric dipole transition. Fe atoms replace O atom sites of octahedral and 
tetrahedral coordination and interact with each other through O [100].         
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Since the spin-orbit coupling for the 6p electrons of bismuth is about 17000cm-1 for the 

free ion [89], this mixing leads to a strong increase in the spin-orbit coupling of a 2p 

electron in O2-. A great strengthening of one or two transitions arising from the 

tetrahedral iron complex associates with this main effect. As a result, the Fe3+—O2-—

Fe3+ interaction might be increased [91].                                   

                                                                                                                                                                        

Lutetium is nonmagnetic as yttrium due to filled outer electron shells. With its smaller 

atomic size, it can balance out the lattice mismatch that occurs with simple bismuth 

doped YIG [101]. The bismuth is also nonmagnetic. This results in the iron ions being the 

only contributor to the magnetization of these films. The iron ions in the two coordination 

sites, the two octahedral and three tetrahedral sites, exhibit different spins and oppose 

each other in magnetizations due to super-exchange magnetic interaction. Therefore the 

net magnetic moments or a ferromagnetism result in the magnetic behavior. 

 

High quality single crystalline YIG or substituted YIG thin film can be produced by 

liquid phase epitaxy (LPE) or sputtering technology. In this work, bismuth-gadolinum-

substituted lutetium iron garnet films are mainly used for our device fabrication which 

requires low optical loss in the near infrared wavelength region. The films are grown by 

LPE on a transparent, paramagnetic garnet substrate, (100) gadolinium gallium garnet 

(GGG), which has a very good lattice match to the rest of the system [102]. The lattice 

constant for the GGG substrate is 12.383 
o

A  which is close to pure that of pure YIG. But 

bismuth ion is much larger than yttrium. The substitution of bismuth into the 

dodecahedral site results in lattice mismatching. Alternatively, one can reduce the lattice 

mismatch between YIG and GGG by substituting Y and Fe with Lu and Ga, respectively. 

The rare material lutetium is used to improve the lattice match. [101] 
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2.1.2 Faraday Effect overview 

Faraday Effect indicates that when light passing through certain materials is exposed to a 

magnetic field parallel to the propagation direction, the polarization of light rotates. It 

was first discovered by Michael Faraday in 1845 and was the first experimental evidence 

that light and electromagnetism are related. [103].  

 

The Faraday Effect occurs as a consequence of the interaction of light and the magnetic 

field in a dielectric material. The polarization of the light can be changed by the magnetic 

field depending on the direction and strength of the field. The rotation of the plane of 

polarization is proportional to the intensity of the component of the applied magnetic 

field in the direction of the beam of light.  

 

The relationship between the rotation of the ray and magnetic field is given as: 

θ=V·H·L                                                                         (2.1) 

The angle of rotation of the polarization is proportional to the magnetic field H and the 

distance L the light travels in a medium along the direction of the field. The rotation is 

linearly related to the magnetic field by the Verdet constant, defined as the rotation per 

unit path, per unit field strength. This empirical proportionality constant varies with 

wavelength and temperature.  

 

The most important property of the Faraday Effect is non-reciprocity. When the magnetic 

field direction is fixed, the polarization state keeps the same rotation direction. 

[21,104,105] The Fig. 2.3 shows the mechanism of the Faraday Effect non-reciprocity 

which is not feasible with the other effects.  

 

The direction of incident light is long the dash line as shown in Fig. 2.3. The magnetic 

field stays the same direction in both pictures. When the light propagation is the same 

direction as the magnetic field, the polarization of the light rotates   clockwisely as 

shown in Fig. 2.3(a). When the light reflects back, the light beam propagating into the 
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material has the   off-set polarization rotation. Even the light travels in the opposite 

direction to the magnetic field, light still rotates anther   clockwisely. The final output 

light is not the same as the original input; instead, it rotates 2 . Thus, the rotation angle 

accumulates when the light travels back and forth in the materials if the magnetic field 

stays the same direction. However, if the light propagates in the same direction, the  

rotation of polarization can be changed by reversing the magnetic field direction. 

 

  
(a)                                                              (b) 

Figure 2.3 Faraday Effect overview (a) Schematic illustration of the Faraday Effect; 
(b) Non-reciprocity character of the Faraday Effect. 
 
 

2.1.2.1 Dielectric tensor 

The propagation of electromagnetic waves in a material can be characterized by their 

electric and magnetic permeability tensors ε and μ. The dielectric tensor is the best 

description for magneto-optical effect and it is the bridge between theory and experiment 

since it relates the observable quantities, such as refractive index, absorption and FR, etc. 

When magnetic field is applied along the direction of light wave propagation (z axis), the 

dielectric tensor can be written as: 
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The imaginary part of the diagonal elements describes absorption and the real part 

describes the propagation indicated. Gyrotropic effects, such as magnetic circular 

birefringence (Faraday Effect), polar Kerr effect and magnetic circular dichroism are 

described by the imaginary part of the off-diagonal element  , which is the only element 

that depends linearly on magnetization. The diagonal elements are related to the normal 

refractive index n.  

 

In the optical wavelength regime, the permeability of a birefringent uniaxial 

magnetooptic medium is very close to the permeability of vacuum 0 , its relative 

permeability close to unity. The materials we used in our work are transparent to light 

with optical wavelength. We can assume no absorption of the light in the medium. The 

diagonal elements are real values.  The relative permittivity tensor ~ of the medium for 

magnetization along the z-axis can be expressed as: 
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This shows that all components of the relative permittivity are real and yyxx   is not 

assumed. By solving the wave equation upon normal incidence of a monochromatic plane 

wave with time dependence )exp( ti  propagating parallel to the z axis on a birefringent 

magnetooptic medium, one obtains eigenmodes:  
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corresponding to the refractive indices 

222 ~
xyn                                                              (2.5) 

Here, 2/)(~
zzyy   , 2/)( zzyy    and xy /)2tan(   

The propagation constant in the medium is defined as:   n
c

 , c is the speed of light 

in the vacuum [106] 

 

2.1.2.2 Magnetic circular birefringence 

For linear electric and magnetic materials, the Maxwell equation wave equation can be 

expressed as: 

0
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E
E


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                                                      (2.6) 

Here, 0  and 0  are the magnetic and electric permeability of vacuum respectively. 


 is 

the dielectric tensor for the material. Considering the electromagnetic wave propagate in 

the z direction, we can insert the plane wave expression 
)

2
(

0

tnzi
eEE









into the wave 

equation, the updated wave equation can be expressed without the divergence operator 

and time derivatives as:  

0)
2

( 2
00

2  EEn






                                            (2.7) 

By substituting 22
00 )

2
(

   into the equation, we obtained 02  EEn


 . 

Taking dielectric tensor and )0,,( yx EEE 


 into consideration, we can rewrite the wave 

equation into: 

0)( 2  yxyxxx EiEn                                               (2.8) 

0)( 2  yxxxxy EnEi                                           (2.9) 

Finally, we get two modes corresponding to right and left circular polarizations. 
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These two modes have different refractive indices. This phenomenon is the effect of 

magnetic circular birefringence or Faraday Effect. [47] 

 

Faraday rotators are magneto-optic nonreciprocal systems, characterized by two 

circularly polarized modes having opposite helicities, which is known as circular 

birefringence. The rays can be considered to re-combine upon emergence from the 

medium; however, owing to the difference in propagation speed they do so with a net 

phase offset, resulting in a rotation of the angle of linear polarization. [107]. 

 

These normal modes travel at different speeds in the material and their phase difference 

gives rise to an angular rotation in the polarization of incident linearly polarized light.  

 

The Faraday rotator is magnetized along the direction of propagation, with the 

magnetization vector pointing either in the forward or backward direction. Considering 

the effect of magnetic circular birefringence on the transmission of an electromagnetic 

wave through a magneto-optic material, circular birefringence is exhibited with applying 

magnetic field parallel to the path of light. 

 

In lossless isotropic material, birefringent materials decompose the incident linearly 

polarized light into left-hand circular polarized light and right-hand circular polarized 

(RCP and LCP) light with the same amplitude shown as Fig. 2.4.  

 

Different indices of refraction n exist for the left and right circularly polarized rays. As a 

result, these rays propagate at different speeds through the medium. The two rays 

combine at the end, yielding a ray that is offset compared with polarization from the 

incident ray. This split into opposite-helicity modes traveling at different speeds gives the 

system its nonreciprocal character, as the magnetization breaks the symmetry between 

forward and backward propagation. 
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Figure 2.4 Mechanism of Faraday rotation. The diagram of an input linearly-
polarized light composed into right- and left-circularly polarized eigenmodes, and 
its output polarization rotation due to the different experienced speeds of each 
eigenmodes. 
 
 
For linearly polarized light passing through a length L of the material under the influence 

of a B field, the two circular polarization components suffer different refractive indices 

and therefore propagate in the medium with different phase shift. The relative phase shift 

is denoted as: 

        





)(2 
nnL

                                                       (2.11) 

 

The recombination of these two circular polarized light leads to a polarization rotation 

which is the rotated angle compared to the incident linear polarization. The Faraday 

rotation angle will be: 


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F                                             (2.12) 
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2.1.2.3 Linear Birefringence 

In the waveguide system, the difference of the refractive indices between transverse 

electric (TE) and transverse magnetic (TM) modes induces a linear birefringence, defined 

as TMTE nnn  . There are three types of origins giving rise to the total linear 

birefringence in epitaxial film waveguides: geometrical or shape birefringence, stress-

induced birefringence and growth-induced birefringence. [108] Geometrical 

birefringence appears when the film thickness is comparable to the wavelength. It is 

positive and decreases with the increasing of film thickness. There is a different 

birefringence for each pair of modes in the multimode films. Higher order modes have 

larger geometrical birefringence. The lattice constant difference between epitaxial film 

and substrate results in the stress-induced birefringence. Compression or tension in the 

film leads to negative or positive birefringence respectively. Growth-induced 

birefringence is observed in garnet bulk crystals and epitaxial films and is introduced 

during the film growth process. Proper post processing such as high-temperature 

annealing can reduce this effect to zero.[109] The total linear birefringence can be 

reduced to zero by carefully balancing the various contributions from geometric (positive 

value) and stress-induced (negative value) birefringence. [47, 88].  

 

The linear birefringence plays a very important role in the study of the Faraday Effect in 

waveguide structures utilized in my research. The linear birefringence arises naturally in 

the fabrication of planar waveguide structure and generates both the preferential direction 

and ellipticity for light polarization while it is almost negligible effect in stacked films 

magneto-photonic crystal structures as the light is incident normal to the film plane 

without asymmetric boundary conditions. The linear birefringence suppresses Faraday 

rotation and degrades it from linear polarization. The term “polarization rotation” is used 

to describe the rotation of the semi-major axis of the elliptical polarization as a 

consequence of the combination of Faraday rotation and linear birefringence.  
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2.1.2.4 Magnetic elliptical birefringence 

Magneto-optic films grown by various deposition techniques and subject to lattice 

mismatch and differential thermal expansion with the substrate will acquire linear 

birefringence [42, 110, 111]. In optical channels formed on the film, transverse electric 

(TE) and transverse magnetic (TM) modes will generally possess different effective or 

modal refractive indices, hence linear birefringence. The combination of circular and 

linear birefringence results in elliptically polarized modes. [112]. 

 

Birefringent magneto-photonic crystals arise naturally in the fabrication of PhCs in 

magnetic films for on-chip waveguide applications. A theoretical framework for 

understanding the polarization response of one-dimensional magneto-photonic crystals in 

magnetic media possessing simultaneous linear and magnetic circular birefringences is 

presented. The model elucidates the polarization responses of waveguide magneto-

photonic crystals. Analytical expressions for the normal mode vector field amplitudes and 

their transmittance through the PhCs are obtained. The model predicts a significant 

nonreciprocal rotation in the presence of linear birefringence levels that would normally 

suppress the Faraday rotation in ordinary optical channels. [112] 

 

Upon entering a transparent magnetic circular birefringent medium magnetized along the 

direction of propagation, linearly polarized light breaks up into two counter-rotating 

circularly polarized modes traveling at different speeds. The phase difference between 

these modes at the exit point is responsible for the Faraday rotation in the optical signal. 

In a medium possessing both linear and magnetic circular birefringences, the two 

components of circular polarization experience different refractive indices, therefore, 

each emerges from the medium with a different phase and amplitude.  The normal modes 

of the system inside the material are, in fact, no longer circularly polarized but become 

elliptically polarized.  So the material is no longer circularly birefringent but elliptically 

birefringent.  Each elliptical normal mode has a different refractive index and the 

birefringence.  These elliptically polarized modes propagate unchanged through the 
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medium except for a phase factor but with different refractive indices. [112] The 

amplitudes of the emergent beams may be denoted by a+ and a-, and their phase 

difference by Δφ, shown as Fig. 2.5.   

 

The optical loss of the iron garnet material used in my work is negligible in the infrared 

range ~1.5 [113, 114]. The birefringence is the main reason to cause this phenomenon 

instead of the amplitude variation from the absorption. 

 

Based on the reference [112], how to deduce the normal modes and how they propagate 

in a birefringence magneto-photonic crystal is discussed in the following section. 

 

In the lossless medium, if Faraday rotation per unit length for the medium and the linear 

birefringence retardation per unit length are donated by   and   respectively. The x and 

y coordinates denote the normal mode axes of linear birefringence retardation. The 

transformation matrix P(z) for propagation of polarized light in medium with combined 

linear and circular birefringence can be expressed as: 
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To obtain the normal modes of the propagation matrix, we solve the eigenvalue equation: 
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Figure 2.5 Mechanism of polarization rotation. Birefringence of the material causes 
ellipticity in both eigenmodes. The final output light exhibits a rotated elliptic 
polarization. 
 

 is a scalar quantity determined by equating the following determinant to zero: 
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The solution to the determinant is: 

)exp()sin()cos(1)(cos)cos( 2 ibzbzibzbzbz             (2.15) 

Thus the phase factors for normal modes are i )
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So the elliptical normal modes are characterized by the following relations between there 

semimajor and semiminor electric field amplitude components. 
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Considering the response of the system to an input signal inE  linearly polarized along the 

x direction, we can express input electrical field as: 
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The light travels through the PhCs, the output signal are given as 
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The direction   of the semi-major axis of the output polarization ellipse is given by: 
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Based on this equation, when input light is horizontally polarized, the polarization 

rotation can be calculated from the Faraday rotation and linear birefringence. In the 

following chapters, this equation is used to obtain the plots of polarization rotation as a 

function of linear birefringence. Thus, we can obtain how many power stays as TE 

propagation and how many power transfers to TM propagation when light passes through 

the waveguide with certain distance.  
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2.2 Waveguide theory 

A waveguide is a structure that confines and directs wave propagation, in particular, 

electromagnetic waves at optical frequencies. According to their geometry, optical 

waveguides can be classified as planar waveguides, strip waveguides or fiber waveguides. 

Based on mode structure, it is divided into single-mode and multi-mode waveguide. It 

can also categorized by refractive index distribution as step or gradient index). 

 

The optical planar waveguide is an optical thin film based structure for carrying the light 

wave. It has advantage in high density integration and low price mass production 

[115].Basically, a waveguide contains a region of higher refractive index, compared to 

surrounding medium. Particularly in a thin film planar waveguide, the thin film is 

deposited on a transparent dielectric substrate and used as optical waveguide if the film 

index is higher than the substrate index. Planar waveguide based devices involve new 

phenomena including birefringence and mode related polarization rotation, which cannot 

be seen in stacked structure magneto-photonic crystals.  

 

The basic structure contains cladding layer (top), guiding layer (middle), and substrate 

(below). The waveguide in Fig. 2.6 (a) is called a slab waveguide or 2-D waveguide 

because light is confined only in the y direction. The waveguide in Fig. 2.6 (b) is called a 

ridge waveguide or 3-D waveguide because light is transversely confined in the x 

direction in addition to confinement along y direction. The cladding layer in Fig. 2.6(b) is 

air. In the slab waveguide, the ray-optical method can be used to introduce basic guided 

mode concepts. The light beam propagates along the z-direction. The critical angle for 

total internal reflections at both upper and lower interfaces, are respectively 
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The light can be guided only if the index of each layer satisfies the condition: nf > ns and 

nf > nc. Here: nf ,  ns and nc are refractive index of guiding layer, substrate and cladding 

layer respectively. Otherwise, the light leaks into cladding or substrate layer.[116] 

 

The modes of light propagation supported in waveguide structure depend on the 

dimensions of the waveguiding region and the refractive index contrast defining the 

waveguiding region. In general, the guided modes can only be confined above a certain 

film thickness which is defined as cut-off thickness. It happens when the effective index 

is equal to the index of the substrate. The thickness T of the guiding layer should be 

larger than the critical thickness. A particular mode of propagation is characterized by 

“effective” refractive index and is determined by the angle (θ) that the propagation vector 

makes with the normal to the cladding and waveguide interface.  The specific multiple 

values of  supported by a particular slab waveguide are determined by the integral 

relationship that must be maintained between the thickness of the waveguide, T, and the 

y-component of the mode wave vector ky. The most general waveguide is thus a 

“multimode” waveguide. 

 

            (a)                                           (b) 
 

Figure 2.6 Schematic of waveguide structure. (a) slab waveguide; (b) ridge 
waveguide 

 
Electromagnetic waveguides are analyzed by solving Maxwell's equations, or the 

electromagnetic wave equation, with boundary conditions determined by the properties of 

the materials and their interfaces. These equations have multiple solutions, or modes, 
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which are eigenfunctions of the equation system. Each mode is therefore characterized by 

an eigenvalue, which corresponds to a cutoff frequency below which the mode cannot 

exist in the guide. Waveguide propagation modes depend on the operating wavelength 

and polarization and the shape and size of the guide. The longitudinal mode of a 

waveguide is a particular standing wave pattern formed by waves confined in the cavity. 

The transverse modes are classified into different types: TE modes have no electric field 

in the direction of propagation. TM modes have no magnetic field in the direction of 

propagation. TEM modes (Transverse Electromagnetic) have no electric or magnetic 

field in the direction of propagation. Hybrid modes have both electric and magnetic field 

components in the direction of propagation. [117] In our work, we mainly study the 

effects from the TE and TM input polarization light. 

 

In an isotropic, lossless dielectric media, Maxwell’s equations are [116, 118, 119]:          
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where n is the refractive index of the media. In the Cartesian (x, y, z) coordinates 

(see in Fig. 2.6(b), when the plane wave propagates along the z direction with the 

propagation constant k, the solutions for (6) are 
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Here, the angular frequency 2 /c   . 

 

Two different modes with mutually orthogonal polarization exist in a 2-D slab waveguide 

[120]. One is TE mode which consists of the field components Ey, Hx, and Hz. The other 

is TM mode, which has Ex, Hy, and Ez. The propagation characteristics of TE and TM 

modes are determined by the field solutions and the boundary conditions.  

 

The wave equations of TE and TM mode can be expressed as: 

TE mode 
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From the boundary conditions, he continuity conditions at the interfaces (x = -T and x 

=0) should be satisfied. The eigenvalue equations that determine the propagation modes 

of TE and TM are generated by the field solutions. The two orthogonal TE and TM 

modes must be distinguished to discuss dispersion characteristics of the guided modes. 

But the analysis is the same. Here we discuss the analysis for TE mode.  

From equation 
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 The field solutions are written in the as equation (2.24) in different layers. 
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Where the propagating constants in x direction are written in terms of the effective index 

N which is defined as 
0
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From the boundary condition, the tangential field components Ey and Hz are also 

continuous at the interface x=0 and x =T. This yields the equations: 
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The eigenvalue equation is generated by eliminating arbitrary. So for TE mode, we have 

equation 
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Similarly, for TM mode, we have equation: 
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Here T is the thickness of the waveguide, m is the mode number, equal to 0, 1 2…, and 

yk  shows that light propagates in the y direction. sinfnN   is effective index, 


2

0 k  is a constant known as the free space wave number, θ is the angle of 

propagation for a supported mode, and λ is the wavelength of the light. γs relates the 

substrate layer to the effective index, γc relates the cladding layer to the effective index. N 

must be discreet values in the range of ns<N<nf because the mode number is positive 

integer.  By numerically solving the equations, we can evaluate the dispersion 

characteristics of guided mode. For a given wavelength and waveguide structure, the 

number of existed modes is certain. The more modes we can obtain as the film thickness 

increases. Several propagation mode, indicated as fundamental mode, first order mode, 
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second order mode and so one corresponding to different m number can coexist in the 

waveguide.  

 

When the indices of the waveguide material and the guide thickness T are given, ky   and 

the effective index N can be obtained from equation (2.29) and (2.30) for TE and TM 

modes. There is a minimum thickness for the film to support at least one mode. This 

point is the cut-off point of the guided modes. However, there is no cut-off thickness for 

symmetric waveguide with nc=ns. 

 

The optical electric field and intensity distributions of various waveguide modes are 

demonstrated in Fig. 2.7 which is simulated by beam propagation method (BPM) using 

commercial simulation software RSOFT. The dark lines on each pictures are electric filed 

distributions Ey(x) obtained by equation (2.28). 

 

For a further detailed understanding of light guiding properties, the power P carried by 

the propagating wave is introduced. The power P carried by a TE mode per unit 

waveguide width is written as: dxxHxEP xy )()(



  

 

The power carried by a TM mode per unit waveguide width is written as: 

dxxHxEP yx )()(



                                          (2.33)

                                

TE mode and TM mode can use similar analysis. Considering TE mode situation, the 

electric field amplitude is normalized so that a unit power is carried by the guided mode. 

 

The preceding power equation can be expressed in the form: 

effff THEP ..
2

1


                                                            (2.34)
 

The guided mode is essentially confined to the thickness Teff because it spreads 

somewhere into the substrate and the cover.  
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The cladding and substrate indices are different so that the light leaking out at the 

interfaces exhibits asymmetric exponential decay with distance. This explains that the 

effective waveguide thickness is larger than the film thickness due to the spreading wave 

energy into the cladding and substrate layer. The effective thickness is defined as: 

cs
eff TT


11


                                                             (2.35)

 

 

 

Figure 2.7 The energy distribution of the propagation modes in waveguides. 
 

Here, where cs,  are the optical field decay constants in the substrate and cover, 

respectively.  So 
s

1
   and 

c
1

    are the length that wave penetrates to substrate and 

cladding.   

 

The effective waveguide thickness of the TM guided mode can be obtained in the same 

analysis as TE mode. It can be expressed as: 

ccss
eff qq

TT

11


                                                     (2.36)

 

Where the quantity qs and qc are defined as: 
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Overall, the Teff depends upon the mode number. The higher order guided mode has, the 

larger the effective waveguide thickness is.  

 

For a 3-D waveguide as ridge waveguide, analytical solutions are obtained by 

approximate analysis. Marcatili’s method and the effective index method can be sued for 

approximate analyses when the guided mode is far from the cut off or the aspect ratio of 

the ridge waveguide width to thickness is larger than unit. [108, 121] BeamPROB 

component of RSOFT is used for the study of beam propagation in the ridge waveguide 

in our work.  

 

2.3 Magneto-Photonic Crystals 

When the constitutive materials of photonic crystals are magnetic, the resultant PhCs 

exhibit very unique optical and magneto-optical properties. Novel functions, such as band 

Faraday Effect, magnetic super-prism effect and non-reciprocal or magnetically 

controllable photonic band structure, are predicted to occur theoretically. [122-130]All 

the unique features of the media arise from the existence of magnetization in media, and 

hence they are called magneto-photonic crystals providing the spin-dependent nature in 

PhCs. [122] The last decade has witnessed a growing interest in optical propagation and 

polarization effects in magneto-photonic crystals. [123-131] Nonreciprocity and 

gyrotropy (Faraday Effect) have been motivating factors for the study of photonic band 

gap structures in magnetic materials. This activity has generated a number of interesting 

experimental results and theoretical predictions. Thus, photon trapping in magneto-optic 

nonreciprocal resonant cavities has been shown to lead to significant Faraday rotation 
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enhancement. [25, 29 123, 124]  Electromagnetic unidirectionality and time-reversal 

symmetry breaking have also been predicted in nonreciprocal media.[33, 125] 

 

The introduction of crystalline or waveguide-induced anisotropy in magneto-photonic 

band-gap structures adds a level of complexity and appeal to these systems. Magneto-

photonic crystal waveguides and linearly birefringent layers embedded in magneto-optic 

stacks are examples of such systems. [127-131] Prior work has studied band gap 

formation and near band-edge polarization rotation in birefringent waveguides, 

demonstrating strong magneto-optic polarization effects. [126, 128] 

 

Bloch states in birefringent magneto-photonic layered stacks have also been examined 

theoretically by M.Levy and co-workers.[127-131] This analysis has looked at layered 

stacks supporting elliptically-birefringent local normal modes, namely elliptically-

polarized states with different refractive indices for opposite helicities.[106, 128,131] 

Different local normal-mode elliptical polarization states characterize adjacent layers. 

Other work also examined alternating layers with circular and linear birefringence in 

adjacent layers, a limiting case of the alternating elliptical birefringence. [127, 130] 

 

The coupling of different local normal modes brought about by the boundary conditions 

at the layer interfaces leads to interesting band gap effects. Bloch states of the system are 

no longer transverse-electric, transverse-magnetic or circularly polarized.  They are rather 

linear combinations of differently polarized states yielding states with spatially-

dependent elliptical polarization.[106, 129-131]  The coupling of such Bloch states at 

points of wave-vector and frequency degeneracy (cross-over points in a band structure 

plot) can lead to the formation of new types of band gaps.[127-131] Such band gaps, 

resulting from the hybridization of different Bloch modes, have been theoretically shown 

to lead to polarization degeneracy at the band edges, and to the rejection of arbitrarily-

polarized light.[127] These are called gyrotropic degenerate band gaps.[106, 128, 129] 
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Although one-dimensional layered magneto-photonic crystals are easily calculated and a 

widespread modeling structure has been advanced, [110, 124, 127-131] there are 

important disadvantages to such systems. First of all, to observe the formation of 

gyrotropic degenerate band gaps in such systems one must use natural anisotropic 

material with significant anisotropy. There are only few such materials at optical 

frequencies. Secondly, in order to avoid additional coupling between ordinary and 

extraordinary waves, one should control the directions of the optic axes in all anisotropic 

layers with extremely high accuracy. Otherwise the gyrotropic degenerate band gaps will 

be smoothed over by the appearance of band gaps such as in periodical Šolc filters, where 

band gap formation is induced by the periodic misalignment of anisotropy axes between 

adjacent layers. [132] It is hard to create those types of gyrotropic structures by simple 

sputtering technology because usually the symmetry of the atomic cells is different for 

anisotropic and magneto-optical materials. All these disadvantages lead to the search for 

structures where one may control anisotropy properties carefully. 

 

In my research topic, we present an experimental realization of such structures in 

magneto-optical waveguide photonic crystals. Indeed, waveguide structures already 

support geometry-induced birefringence between TE and TM polarized waves.  Hence 

natural anisotropy is not required to engender linear birefringence. Also important is that 

it is possible to prepare these birefringent gyrotropic waveguides from homogeneous 

magneto-optical materials, thus it is not necessary to stack material layers of different 

atomic cell symmetry and one may control the direction of the anisotropy axes by 

controlling the waveguide shape. 

 

Full analytical expression are obtained and analyzed for the dispersion relation and Bloch 

modes and the conditions for formation of band gap is examined in a one dimensional 

layered stack PhCs. [131] The approach can also be used analyze the properties of two-

dimensional magneto-photonic crystals. 
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2.3.1 Birefringent periodic stack magneto-photonic crystals 

A full analytical formulation for the band structure and Bloch modes in a layered-stack 

photonic crystal and their properties are analyzed. The model incorporates both the 

effects of gyrotropy and linear birefringence generally present in magneto-optic thin-film 

devices. It demonstrates a useful tool in the analysis and design of photonic crystal 

bandgap systems. [131] It is found that local normal-mode polarization-state differences 

between adjacent layers lead to mode coupling and affect the wave-vector dispersion and 

the character of the Bloch states of the system. This coupling produces extra terms in the 

dispersion relation not present in uniform circularly birefringent magneto-optic stratified 

media. Normal-mode coupling lifts the degeneracy at frequency band crossover points 

under certain conditions and induces a magnetization-dependent optical bandgap. This 

study examines the conditions for bandgap formation in the system. It shows that such a 

frequency split can be characterized by a simple coupling parameter that depends on the 

relation between polarization states of local normal modes in adjacent layers. [106] 

 

2.3.1.1 Degenerate Gyrotropic Band Gaps 

Gyrotropic degenerate bandgaps have recently been predicted for elliptically birefringent 

magneto-photonic crystals of the type encountered in magnetic garnet waveguide media 

by M. Levy, A. M. Merzlikin and A. A. Jalali. [106, 130, 131] The combination of 

anisotropy, gyrotropy, and periodicity can result in the formation of gyrotropic 

degenerate band gaps. These band gaps appear inside the Brillouin zone as a result of the 

Bragg resonance between local normal modes having different polarization states. 

Elliptical birefringence results from a disparity in refractive indices between elliptically 

polarized local normal modes, and occurs naturally in planar magneto-photonic crystal 

waveguides. The possibility to excite different waveguide modes lends added richness to 

the class of phenomena that can be probed in such systems. Bandgaps have been 

observed where the Bragg reflection mechanism links forward-going fundamental 

waveguide modes to high-order backscattered ones. The coupling between different 
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waveguide modes travelling in opposite directions leads to particularly interesting 

phenomena. [127, 128] 

 

2.3.1.2 Theoretical Model for periodic stack magneto-photonic crystal 

Plane waves are normally incident on a periodic stack structure consisting of alternating 

elliptically birefringent magneto-optic layers. The basic geometry of the periodic stack 

model is depicted in Fig. 2.8. )(nd  is the thickness of the layer n. This structure captures 

many of the essential features of the waveguides under consideration. In particular an 

alternating system of elliptical birefringent states is introduced in adjacent layers. The 

bloch states for this system can be expressed as a linear combination of local mornal 

modes. [128]The layers have different average dielectric constants   and are not 

assumed to have the same linear birefringence terms , or gyrotropic components xy .  

Here 2/)( yyxx   , 2/)( xxyy   .  

 

Figure 2.8 Schematic diagram of a one-dimensional birefringent magneto-photonic 
crystal with period of . The MPCs extends indefinitely in the x and y directions. A 
plane wave is incident normally to the layered structure. A unit cell spans the region 
between zn-1 and zn+1. 

(n-1) (n) (n+1)

d(n) d(n+1)
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The elliptical birefringence parameters of adjacent layers may differ, but the anisotropy 

axis are aligned. The Bloch states for this system can be expressed in terms of local 

normal modes. The use of local normal modes in coupled mode theory is discussed by 

Dietrich Marcuse in his book on the theory of dielectic optical waveguide [134] Thus in 

the nth layer the optical electric field a linear combination of the elliptical eigenvectors 

and can be written as: [106,131] 
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Here )4,...,1(( )(
0 iE n

i are the complex amplitudes of the partial waves corresponding to 

each normal mode and )()( nn n
c  
  are the wave vectors. As described in detail in prior 

publications by Levy and Jalali [106, 131], it allows the backward-propagating local 

normal modes to differ in refractive index and polarization state from the forward-

travelling modes. Because the satering mechanism responsible for the formation of 

multiple stropbands in one-dimensional magnetophotinc crystals waveguide, a 

mechanism that connects different waveguides modes through contradirectional 

coupling. . [128] 

 

Then the bloch mode in layer n is rewritten as: 
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Here f and b strand for forward and backward with propagationg along z- direction.  

 

The Bloch states for this system satisfy the Floquet–Bloch theorem through the following 

eigenvalue equation: 

)exp()1,1(  iKET nn                                                      (2.41) 
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Where the transfer matrix )1,1(  nnT  relates the four eigenmode amplitudes E in the 

second layer of a unit cell which is the region between  )2(nz and  )1(nz  to 

the corresponding amplitudes in the second layer of the adjacent unit cell which is the 

region between  )1(nz and  nz . K is the Bloch wave vector, and   is the period 

of the periodic structure. The unit cell transformation matrix )1,1(  nnT  depends on the 

relative elliptical birefringence parameters and the individual normal mode propagation 

constants for each layer. When the elliptical birefringence is equal to zero, there is no 

admixture of the local modes which means that transverse electric (TE) and transverse 

magnetic TM waves or right- and left- circularly polarized waves remain uncoupled. 

When there is elliptical birefringence, the Bloch states require an admixture of local 

normal modes. The strength of the coupling depends on the elliptical birefringence. This 

elliptical birefringence parameterizes the degree of admixture of the normal modes.  

 

 

2.3.2 Magneto-photonic crystals on planar waveguides 

In planar magneto-photonic crystal waveguides elliptical birefringence occurs naturally. 

For a one-dimensional ridge waveguide, the band gaps form as a result of the coupling 

between forward-propagating fundamental modes with backscattered modes of different 

orders.   

 

The light is back-reflected at stop bands obeying the Bragg 

condition KforwardBackward


  , where grating vector 




2
K  and wavevector n


 2

 , 

with n equal to the effective index of the corresponding propagating mode.  Backward 

waves correspond to high-order waveguide modes.  [133] Fig. 2.9 shows the vector 

diagram above shows the requirements for the Bragg reflector.  
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Figure 2.9 The vector diagram above shows the requirements for the Bragg 
condition for photonic crystals. 
 
In the Bragg reflector, as the incident wave propagates in the forward direction, it 

encounters many fringes of the grating and each fringe reflects a small fraction of the 

incident wave. The reflected waves are distributed over the entire grating pattern. As the 

frequency of incident wave is uniquely determined by grating vector K and 

backscattering wavevectors  , this frequency is called the “Bragg frequency”, which 

forbids light propagate. 

 

The fundamental modes (TE and TM) have small linear birefringence, and where the 

higher-order modes have significant birefringence the separation in frequency between 

different bandgaps in more pronounced for the higher order modes.  This is a situation not 

too different from the case in many of our magneto-photonic crystal waveguides.  

 

 

 


 f = b +   
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2.3.2.1 Gyrotropic bandgap formations in one dimensional grating 

structures 

Considering the phase matching condition for an optical guided wave characterized by a 

propagation wave-vector 


, incident upon a grating region having grating vector K


, 

where 



2

K


 and grating period  , we see that a space harmonic Kq


 , 

for ,...,,q 210  which is the order of coupling can propagate as a mode as long 

as mKq 


 , for some mode m with wave-vector m


. The relations can be depited as 

a wave vector diagram with vectors 


, m


 and K. Such diagrams can be used to 

determine the combinations of waves involved in the coupling. [116] 

 

The gratings can exhibit wavelength dispersion. The dispersion of a grating in a 

waveguide structure can be illustrated by using the Brillouin diagram. Fig. 2.10 shows the 

Brillouin diagram for a waveguide without a grating or photonic crystal structures. There 

exist no mode couplings. The bold solid curves indicate the guided modes.  

 

Figure 2.10 Brillouin dispersion diagram for guided modes without a grating 
structure.  
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This plot is obtained from the simple dispersion relation for waveguide modes, where one 

plots frequency versus mode wave-vector.  It is taken here from [116].  The curves for the 

qth order space harmonics yielded by a grating can be obtained by shifting the curves by 

qK along the β  axis. This is a typical plot for TE and TM modes.  In the presence of 

waveguide birefringence the branches for TE and TM modes of a given order are shifted 

relative to each other but there is no coincidence.  The guided mode branches fall 

between the lines fn
c
ω

and sn
c
ω

, where nf and ns stand for the film and substrate indices. 

 

In a photonic crystal waveguide the phase-matching condition mKq ββ
rrr

=+ can be 

displayed graphically by shifting the dispersion plot by K and looking for the cross-over 

points.  Fig. 2.11 shows the Brillouin diagrams for waveguide grating structures where 

the interactions are the fundamental order codirectional and contradirectional coupling, 

respectively.  [116] 

 

(a)                                                           (b) 

Figure 2.11 Brillion diagrams for guided wave goupling by a grating structure. The 
coupling occurs at a wavelength corresponding to c/ω  indicated by *. (a) is for 
codirectional coupling; (b) is for contradirectional coupling.  

 
When no couplings occur, the diagrams exactly match the superposition of the curves for 

the space harmonics. When there are intersections of these curves which are the phase 

matching points, the dispersion curves are varied by coupling as shown in the enlarged 
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insets. Panel (a) shows the plot for first order Bragg co-directional coupling. The co-

directional coupling yields two normal close   value modes. Coupling can be considered 

as the interference between the propagation of these two normal modes. Panel (b) in the 

figure below shows the plot for first-order Bragg contra-directional coupling. The graph 

is separated into upper and lower curves. The stopband can appear and the wave can not 

propagate substantially along the z direction.  This occurs when K is large enough to 

allow cross-over between forward and backward propagating guided modes. 

 

In the presence of linear birefringence, i.e. when 
mm TMTE   the cross-over between 

the fundamental mode and mode m looks schematically as follows in Fig. 2.12. This plot 

has exaggerated the difference between TE and TM branches for the sake of clarity. 

 

Figure 2.12 Schematic dispersion diagrams for exaggerated TE and TM branches. 
The difference between TE and TM branches is obvious. 

Due to phase matching a band gap opens up at the cross-over points.  For fundamental 

TE or TM modes no band gap would open up at the cross-over with the corresponding 

high-order orthogonal polarization state. Since TE and TM wave are orthogonal to each 

other, there are no band gaps for TE to TM cross-over.  However, in the presence of 

gyrotropy, for circularly or elliptically polarized forward modes, a band gap opens up at 

the cross-over with TE and with TM, or more generally, elliptical backward waves.  This 

is generally true for coupled TE-TM polarized modes which are elliptical modes in non-

waveguide configurations. This is shown in Fig. 2.13.  
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Figure 2.13 Band gap opens up due to the coupling between different elliptically 
polarized modes traveling in the forward and backward directions. 
 

It should be understood that in the language of waveguide optics, circular or elliptically-

polarized modes are described in terms of coupled TE-TM modes.  There are two types 

of coupling.  The first type is the coupling due to the gyrotropy.  This occurs even in the 

absence of the photonic crystal and couples TE and TM modes to form circularly- or 

elliptically-polarized modes.  The second type is the coupling that occurs at cross-over 

points for a PhCs.  This type of coupling yields gyrotropic band gaps. 

 

The band gaps away from the Brillouin zone edge correspond to the coupling between 

elliptically polarized modes travelling in the forward and backward directions. The 

elliptical forward polarized modes decomposed into quasi-TE and quasi-TM mode and 

couple with quasi-TE or quasi-TM backward modes, respectively. The reflection of the 

circularly polarized forward modes into TE backward modes is activated first for 

increasing frequency or decreasing wavelength as one approaches the band gap from the 

schematic Fig. 2.13. This means that forwards circular to TE backward modes couple 

first. It is reasonable to assume that this type of coupling will reflect back some or most 

of TE component out of the circularly polarized forward wave. What remains from the 

forward circularly polarized wave is mostly TM component depending on how much TE 
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is reflected back. Hence the polarization is rotated. TM mode cross over has been shifted 

away due to linear birefringence.  

 

2.3.2.2 Coupled mode theory 

In a lossless waveguide system with uniform structure in propagation direction, various 

waveguide modes coexist along the propagation direction. These normal eigenmodes are 

determined by the waveguide structure and its boundary conditions. Each of them 

propagates independently without mutual coupling. The following analysis for the 

coupling mode theory is taken from ref. [116] 

 

In perturbed or grated waveguide structure, those normal modes are no longer 

independent, and become mutually coupled. In order to analyze the optical wave 

propagation in a pertuerbed waveguide system, we can either use Maxwell equation to 

compute the normal modes of the waveguide or express the perturbed wave behavior by 

summation of normal modes in the unperturbed waveguide system. The second gives 

approximate solutions but more straightforward and simple compared to solving Maxwell 

equation. This method is known as coupled mode theory. 

 

Under a perturbation, the original normal modes are no longer eigenmodes of the system, 

and instead, two new normal modes ψa and ψb couple each other and propagate along a 

waveguide. ψa and ψb are expressed as: 
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where fa and fb are field distribution functions normalized by power flow over a cross 

section. A and B are mutually dependent: 
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where κab and κba are coupling constant between two modes. When κab = κba = 0, the 

solutions reduce to A(z)=A0 (constant) and B(z)=B0, and ψa and ψb are reduced to the two 

original waves. 

 

The coupling constant is a measure of the spatial overlap of normal modes over dielectric 

constant increments Δε and is calculated by the following integral: 

dxdyffC baab    *                                                     (2.44) 

where the integration range is across section of waveguide, and C is a constant related to 

the normalization of ψa and ψb. The coupling constant is proportional to the overlap 

integral between the incident, scattered mode fields and the transversal spatial 

distribution of the grating refractive index perturbation n . When the incident mode is 

fundamental mode, the forward fundamental mode is able to couple into backscattered 

higher order modes. The field amplitude distributions of high order modes have higher 

density near the interfaces than lower order modes. If there are the gratings at the top 

surface, the higher coupling constant resulted from this larger overlap integral causes 

stronger backscattering from the coupling between the forward fundamental mode to 

backward high order modes. [126]  

 

The coupling due to gyrotropy is described in terms of coupled mode equations of the 

form

)2exp(
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TMxy
TE

, where TETM  2  is the phase mismatch.  

These forward propagating waves couple to backward propagating modes satisfying the 

phase matching condition b
TMTE

f
TMTE Kq ,, 


 , where the backward waves correspond to 

high-order waveguide modes. Here *
xyyx   is a function of the gyrotropy parameter 

and equals zero if 0xy . Development of this coupled-mode analysis should yield 

appropriate waveguide branches for right- and left-circularly or elliptically polarized 
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waveguide modes.  For example the corresponding wave-vectors should look 

like   n

 2

, where 222
xyn   . 

 

In this work, we take TE polarization is mostly along the x-direction and TM is mostly along 

the y-direction.  

 

2.3.2.3 Bandgap calculation method 

Given the coupling coefficients   for a relief grating used in our magneto-photonic 

crystal waveguides can calculate the power-transfer efficiency and the amplitude of the 

backward propagating TE and TM waves, which gives us a way of calculating the 

amplitudes of the reflected and transmitted waves in the photonic crystal. 

The expression for the TE-TE and TM-TM coupling coefficient between modes n and m 

when the grating groove depth h is much smaller than the film thickness T is  
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where Nn is the effective index for the mode n; nf  is the film index; and Teff are the 

effective thicknesses.  a gives the fraction of the period external to the groove in the relief 

grating (i.e. the ridge of the grating).  

The effective thickness is defined as in equation (2.35). The parameter qcn is defined as  
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The power transfer efficiency between forward and backward propagating modes is a 

function of the coupling coefficients between the specific modes in question and the 

phase mismatch )( qKfb   .  This power transfer efficiency is given by 
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where L is the length of the grating. 

 

We thus have a way of calculating the amplitudes of the reflected and transmitted waves 

in the PhCs. These equations can be used to calculate the transmittance spectrum 

discussed in Chapter 3. 

 

2.4 Optical properties of bulk materials 

A material is often considered as having some constant value of the permittivity and 

permeability. However, these material properties are frequency dependent. Several 

materials models have been constructed to describe the frequency response of materials. 

For high frequency simulations, different material models are used in order to interpret 

material properties more precisely. In this thesis, the Drude model is used to describe the 

properties of the metals for photonic metamaterial design.  

 

2.4.1 Lorentz Oscillator model for dielectrics 

One of the most well-know material models is the Lorentz model. It is derived by a 

description of the electron motion in terms of a driven, damped harmonic oscillator. 

[48]When a traveling EM wave passes through a medium, its behavior will depend on the 

properties of the medium and the light. For many materials, including most metals, 

dielectrics and even plasmas, can describe optical interactions in terms of a simple model 
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of the material consisting of negatively charged electrons tied to relatively massive 

positively-charged nuclei through a “spring force” (electrical attraction). Motion of an 

electron bound to a positively charged nucleus is analogous to the motion of a mass on a 

spring in many aspects. Fig.2.14 illustrates this concept and compares it to the traditional 

mechanical model of a spring and damper system.  

 

Provided that the charges are allowed to move in the same direction as the electric field, 

the Lorentz model describes the temporal response of a component of the polarization 

field of the medium to the same component of the electric field as: 

                         iLiiLi EPP
dt

d
P

dt

d  0
2
02
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                                                       (2.49) 

 

The terms on the left side of equation account for the acceleration of the charges, the 

damping mechanisms of the system with damping coefficient  L  and the restoring 

forces with the characteristics frequency  2/00 f , respectively. The right side of 

equation is the driving term exhibiting a coupling coefficient L . The response in the 

frequency domain is expressed as 
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When the material loss is small, the polarization and the electric fields are related to the 

electronic susceptibility as  
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The permittivity is obtained as 

)](1[)( ,0  LorentzeLorentz                                            (2.52) 
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This equation is referred to as the Lorentz model for dielectrics and predicts with 

surprisingly accurate electromagnetic behavior of bulk materials. The Lorentz model 

predicts high absorption near resonance and tapering to zero away from resonance. In 

reality, most of materials exhibits multiple resonances of many types and are best 

described by a linear sum of Lorentz oscillators.  

 

 

Figure 2.14 Comparisons between traditional mechanical Lorentz oscillator model 
of a spring and damper system and the motion of electron cloud bound to a 
positively charged nucleus. (a) and (b) are Lorentz oscillator model under 
equilibrium and unequilibrium states respectively; (c) and (d) are electron cloud 
and nucleus system before and after applying electric field; (d) shows electron cloud 
displacement and exhibit material polarization. 
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2.4.2 Drude model for metals 

The Lorentz model can be extended to metals. As thin metal film shows anomalous 

optical behavior in the visible spectral region, it is worthwhile to investigate the origin of 

this behavior for further utilization of metallic nano structures. This is special case for 

Lorentz model is known as Drude model. The Drude model also provides impressive data 

fits for the dielectric function measured by Johnson and Christy. The conventional free 

electron Drude model suitably explains the optical dielectric properties of metals [135]  

In metals, the electrons are unbound or ‘free’, they experience zero restoring force which 

leads to zero resonance frequency 00  .Then the equation (2.49) and (2.51) can be 

rewritten as  

iLiLi EP
dt

d
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d  02
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Here, p  is the plasma frequency. It is typically introduced for metals in ultraviolet 

region. The coupling coefficient is generally represented by the plasma 

frequency 2
pD   . At frequencies lower than plasma frequency, dielectric constant is 

mostly imaginary and metals behave like good conductors. Metals are very lossy when 

they are in the near plasma frequency region due to the large value of real and imaginary 

parts of the dielectric constant. On the other hand, the imaginary part of the dielectric 

function is very small above the plasma frequency. This indicates that metals have low 

absorption. The Drude model can yield a negative real part of the permittivity over a wide 

spectral range for )( 22
Dp   .  

 

In the similar fashion, the magnetic response models can be obtained. The corresponding 

magnetization field components iM and the magnetic susceptibility m  equations are 
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obtained from the polarization and electric susceptibility expressions with the 

replacements ii HE  , ii MP 0/ . The permeability is given as: 

)](1[)( 0  m                                                 (2.55) 

 

2.5 Metamaterials 

The electromagnetics of metamaterials is a whole branch of modern science. A long 

period of accumulation of knowledge resulted recently in a large number of publications 

on metamaterials. The developed concepts of negative refractions, artificial dielectrics, 

artificial magnetics, and artificial plasma are considered as founders of these directions in 

applied electromagnetics. [49] Theoretical studies proved that in principle any 

combinations of ε and μ can be realized if the materials are properly engineered. With the 

the recent progress in nanofabrication, we are able to fabricate metamaterials for 

millimeter wave, microwave, infrared and even visible light frequency ranges. In 

metamaterials, such engineering is considered as metaatoms that substitute natural atoms 

and molecules. Metaatoms are engineered structures significantly larger than natural 

atoms but small compared to the wavelength of incoming radiation. Their electric and 

magnetic properties can be carefully designed and tuned by changing the geometry, size 

and other characteristics of meta-atoms [136–138].  

 

The history of metamaterials started in 1967 with the visionary speculation on the 

existence of ‘substance with simultaneously negative values of   and ’ by the Russian 

physicist Viktor Veselago [50] Left hand materials was used to express the fact that they 

would allow the propagation of electromagnetic waves with the electric field, the 

magnetic field and the phase constant vectors building a left handed triad, compared with 

conventional materials where this triad is know to be right handed. After more than 30 

years, the first left handed material was conceived and demonstrated experimentally. An 

artificial effectively homogeneous structure was proposed by Smith and colleague at 

university of California, San Diego. This structure was inspired by the pioneering works 
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of Pendry which introduced the plasmatic-type negative-  /positive-  and positive-  

/negative-   structures shown in Fig. 2.15 [65] which can be designed to have their 

plasmonic frequency in the microwave range. 

                                   

                                (a)                                 (b) 

Figure 2.15 First negative-  /positive-  and positive-  /negative-  metamaterials 
which constituted only by standard metals and dielectrics, proposed by Pendry. (a) 
Thin-wire structure exhibiting negative-   /positive-   if E z; (b) The split-ring 

resonator (SRR) Structure exhibiting positive-  /negative-  if H  y [65] 
Both of these structures have an average cell size much smaller than the guided 

wavelength and are effectively homogeneous structure. [49] 

 

2.5.1 Artificial plasma 

Artificial plasma, known as a medium with negative permittivity   has been introduced 

since 1962 due to works of J. Rotman [139] and J. Brown [140]. The metal thin wire 

structure as shown in Fig. 2.15 is one artificial plasma presently studied. It is usually a 

square lattice of thin parallel wires which can be considered at microwaves as perfectly 

conducting medium. Double and triple wire media were also studied in [139]. Many new 

interesting features about these lattices have been discovered.  

 

When the wave propagates normally with respect to the wire, the elicitation electric field 

E is parallel to the axis of the wires (E z). If the electric field E is perfectly parallel to 

the axis of the wires, a maximum of effect is obtained. If it is exactly perpendicular to the 

wires, a situation of cross polarization is obtained which produce no effect. When the 
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electric field is oblique with respect to the wires, a reduced effect occurs which 

decreasing with the angle with the wires increases. With the E parallel to the wires, it 

induces a current along the wires and generates equivalent electric dipole moments; this 

effective permittivity of the artificial plasma obeys a so-called Drude-model of electric 

(nonmagnetized) plasma. [49]This metamaterials exhibits a plasmatic-type permittivity 

frequency function of the form [141] 
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Here pe  is the electric plasma frequency, and  is the damping factor due to metal 

losses. Apparently, when 222   pe , Re )( r < 0 is obtained; if 0  and pe  , 

we get 0r .  

 

Permeability is simply 0   because no magnetic material is present and no magnetic 

dipole moment is generated.  

 

2.5.2 Artificial magnetics 

Split-ring resonators have been known as a artificial material generating magnetism 

without magnetic constituents as shown in right picture in Fig. 2.16. This structure can 

have and positive ε and negative μ. A formular for magnetic polarizability of an 

individual SRR element indicates the Lorentz frequency behavior of the element. The 

artificial magnetism is significantly enhanced in the resonant frequency range in lattices 

of SRRs. Particles with metal loops of various shapes were studied. One single ring in the 

unit cell produces qualitatively identical effects, but the magnetic activity effective 

permeability and bandwidth, is enhanced by the presence of a second ring due to larger 

overall current and slighly different overlapping resonances. So double SRRs shows 

strong capacitive coupling between loops and more appropriate for the artificial 

magnetism. The strong coupling of two loops allowed one to obtained the magnetic 

resonance at lower frequencies which is low enough to consider the lattice of SRRs as a 
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continuous medium. It is a very practical ways of creating artificial magnetism at 

microwaves. [49] 

 

If the excitation magnetic field H is perpendicular to the plane of the ring ( H  y) , it can 

induce resonating currents in the loop and generate equivalent magnetic dipole moments. 

Similar to E, if the H is perfectly permendicular to axis of the plane y, a maxium effect is 

obtained; if the H is parallel to the plane y, we have a situation of a cross polarization, 

where there is no effect. This metamaterial exhibits a plasmonic-type  permeability 

frequency function of the form [65] 
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Here, F= 2)/( pa , ‘a’ is the inner radius of the smaller ring and p is the periodicity of 

the lattice. m0  is a magnetic resonance frequency.  is the damping factor due to metal 

losses. So SRR structure has a magnetic response despite the fact that it does not include 

magnetic conducting materials due to the presence of artificial magnetic dipole moments 

provided by the right resonators. In the lossless situation ( 0 ), when 

pm
m

m
F




 



1

0
0 , it appears that 0r . Here, pm  is the magnetic plasma 

frequency. The resonance of the structure originates from permeability of SRRs. The 

equivalent circuit of a SRR is shown Fig. 2.16 [49]. For a single ring configuration, the 

circuit model is the simplest RLC resonator with resonant frequency LC/10  . 

 

The dimensions of the two rings are very close to each other so that LLL  21   and 

CCC  21 . The double SRR is basically equivalent to the single SRR when mutual 

coupling is weak. A combined resonance frequency is close to that of a single SRR with 

the same dimensions but a larger magnetic moment due to higher current density.  
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Figure 2.16 Equivalent circuit model of SRRs. Left is a double SRR configuration 
and right is a single SRR configuration. 
 
Smith et al. combined the thin wire (TW) structure and SRR structures into the composite 

structure which presented the first experimental LH metamaterials prototype. [138]They 

designed a TW structure and a SRR structure with overlapping frequency range s of 

negative permittivity and permeability and combining these two structures into a 

composite TW-SRR structure. If the launched electromagnetic wave is in the frequency 

range of interest, the constitutive parameters are simultaneously negative. This structure 

is widely used in microwave frequency region [49]. 

 

2.5.3 Photonic metamaterials 

A majority of naturally existing optical materials are non-magnetic. However, it has been 

recognized for some time that magnetism at optical frequencies may lead to new 

fundamental physics and novel applications. Metamaterial is one of the most remarkable 

new classes of materials enabled by bringing magnetism to an optical frequency range. In 

the last three years several approaches to the realization of optical NIMs structures have 

been developed by several groups worldwide. One of the first metamaterials with a 

negative index of refraction at optical frequencies was demonstrated using pairs of 

metallic nanorods. [142] 

 

A double-periodic array of pairs of parallel gold nanorods is shown to have a negative 

refractive index in the optical range. Such behavior results from the plasmon resonance in 
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the pairs of nanorods for both the electric and the magnetic components of light. This 

resonance can be thought of as a resonance in an optical LC circuit, with the metal rods 

providing the inductance L and the dielectric gaps between the rods acting as capacitive 

elements C. [73]  

 

The excitation of the surface waves, known as surface plasmon polaritons on the metal 

air interface results in the electric resonances of individual nanorods.  Such surface 

plasmon polaritons can be excited in the finite size nanorods not with the plane wave in a 

semi-infinite medium. The symmetric and anti-symmetric plasmon polariton waves can 

be supported in a paired nanorod configuration. The electric field parallel to the nanorods 

induces parallel currents which generate symmetric Plasmon polariton wave in both 

nanorods, leading to the excitation of a dipole moment. The magnetic field perpendicular 

to the plane of the nanorods excites antiparallel currents which generates anti-symmetric 

plasmon polariton wave in the pair of nanorods. Combined with the displacement 

currents between the nanorods, they induce a resonant magnetic dipole moment. When 

the wavelength of an incident light is above the resonance, the excited moments are co-

directed with the incident field. When wavelengths are below the resonance, the excited 

moments are counter-directed to the incident fields. The resonant response of the 

refractive index is originated from the excitation of such plasmon resonances for both the 

electric and magnetic field component. In particular, the refractive index can become 

negative at wavelengths below the resonance. [143]. 

 

Considering the electromagnetic properties for the nanorods, these metal rods basically 

conduct current, producing an effect called optical inductance, while a material between 

the rods produces another effect called optical capacitance. The result is the formation of 

a very small electromagnetic circuit, but this circuit works in higher frequencies, which 

include the infrared and visible light. So this structure that works as an optical circuit and 

interacts effectively with electrical and magnetic field components of light. 
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A family of coupled nanostrips with varying dimensions is demonstrated exhibiting 

optical magnetic responses across the whole visible spectrum, from red to blue, which is 

referred to such a phenomenon as rainbow magnetism. The experimental and analytical 

studies of such structures provide a universal building block and a general recipe for 

producing controllable optical magnetism for various practical implementations.[74] The 

general resonant properties of magnetic metamaterials consisting of arrays of paired thin 

silver strips. The magnetism in such a structure has been discussed theoretically [76, 77]. 

 

The double-wire sandwich structure in which a dielectric layer is sandwiched between 

two metal films, popularly known as a ‘fishnet’, has also been demonstrated in optical 

frequencies. The magnetic response originates from the antiparallel current supported by 

the wire pairs. When combined with long metal wires shown in Fig. 2.17, this structure is 

shown to have negative refraction for a particular polarization at optical frequencies. The 

metamaterial can be viewed as composed of two sets of sub-circuits or “atoms”: (i) A coil 

with inductance L in series with two capacitors with net capacitance C as an LC circuit, 

providing a magnetic resonance at the LC resonance frequency. (ii) Long metallic wires, 

acting like a diluted metal below the effective plasma frequency of the arrangement. The 

negative magnetic permeability from (i) and the negative electric permittivity from (ii) 

lead to a negative index of refraction. [78] 

 

Figure 2.17 Scheme of the metamaterial and polarization configuration. 
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2.5.4 Gradient index metamaterial 

Gradient-index optics is the branch of optics covering optical effects produced by a 

gradual variation of the refractive index of a material. Mirage of a pool of water 

appearing on the road on a hot day is a common example of gradient index optics. 

Because of the weather, hot and less dense air is at surface of the road while the denser 

cool air is above and the variation in temperature of the air causes a gradient in its 

refractive index.  The light rays are refracted from their normal straight path due to the 

index gradient. This bending effect is exploited in a gradient-index (GRIN) lens. This is a 

device with a radially-decreasing refractive index (usually a parabolically shaped index 

profile). A slab of this material acts like a conventional converging lens, but does not 

need to be shaped like one, simplifying the mounting of the lens. [144] 

 

For a conventional lens, an incoming light ray is first refracted when an incident light 

enters the shaped lens surface; the light ray is refracted because of the abrupt change of 

the refractive index from air to the homogeneous material. It passes the lens material. 

When it emerges through the exit surface of the lens, it is refracted again because of the 

abrupt index change from the lens material to air. The reason that the rays can be focused 

on a spot and to create the image is because a well-defined surface shape of the lens 

causes. The high precision required for the fabrication of the surfaces of conventional 

lenses aggravates the miniaturization of the lenses and raises the costs of production. 

Gradient indexlenses represent an interesting alternative since the lens performance 

depends on a continuous change of the refractive index within the lens material, instead 

of complicated shaped surfaces plane optical surfaces. The light rays are continuously 

bent within the lens until finally they are focused on a spot. The simple geometry allows 

us a very cost-effective production and simplifies the assembly of your product 

essentially. Varying the lens length implies an enormous flexibility at hand to fit the lens 

parameters as, e.g., the focal length and working distance to your special requirements 

without high research and development efforts and costs. [145] 
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The most popular production method of the glass-made GRIN lens is ion exchange. Thus 

the sample obtains a gradient material structure and a corresponding gradient of the 

refractive index. [49] Metamaterials, known as artificially structured materials give an 

alternative way to fabricate gradient materials. Recently, most of metamaterials have 

been constructed from identical element. However, we can also fabricate metamaterials 

with averaged electromagnetic properties vary as a function of position.  

 

Continuously graded index structures offer a number of advantages over conventional 

elements with homogeneous and/or step index profile since they offer an additional 

degree of freedom in the design of the desired characteristics. The gradient index 

metamaterial use may be anticipated in a wide range of applications, e.g. as an alternative 

to conventional GRIN lenses and similar passive elements for electromagnetic beam 

shaping and directing, for high efficiency antireflection structures, etc. [81] 

 

Electromagnetic metamaterials with refractive index continuously varying in space have  

the graded profiles in a wide frequency range and thus promise increased practical 

usability in various applications such as  lensing and filtering. [76, 77]. Ramakrishna 

described a spherical perfect lens composed of media with permittivity and permeability 

graded as ~1/r [146]. Smith et al [80] proposed the use of metamaterial lenses instead of 

conventional positive index ones for the coupling with radiative elements in high-gain 

antenna applications because of the reduced geometrical aberration profile in comparison 

to the conventional ones. Experimental studies of graded index LHM have been reported. 

 

For the situation that index on a planar metamaterial slab varies linearly in a direction 

perpendicular to incident radiation, a constant gradient metamaterial can be confirmed by 

observing the deflection of a normal incident beam. To calculate this deflection, two 

normally incident but offset rays enters a gradient index planar slab of thickness t as 

shown in Fig. 2.18.  
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Since the phase fronts are uniform within the material for a thin film, a simplified 

analysis can be applied strictly to thin samples.  

 

The rays will acquire different phase advances as they propagate through the slab. When 

the two rays enter at locations x and x+Δx along the slab face and Φ(x) is the phase shift 

across a slab of arbitrary thickness. The acquired phase difference of the two beams 

traversing the slab must equal to L which is the phase advance across the path length. 

This acquired phase difference can be expressed as  
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which shows that for a material with a constant spatial gradient in index, the beam is 

uniformly deflected. Here, δ(x) is the depth of cut as a function of distance along the slab. 

The phase shift per unit cell is equivalent to the beam deflection that will be produced by 

a gradient index metamaterial slab one unit cell thick in the propagation direction. [77] 

 

Figure 2.18 Diagram showing the deflection of a wave by a structure whose 
refractive index possesses a gradient that is constant. [80] 
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CHAPTER 3  

ONE- AND TWO-DIMENSIONAL MAGNETO-

PHOTONIC CRYSTALS 
Magneto-photonic crystals are spatially periodic dielectric composites with at least one of 

the constitutive components being a magnetically polarized material. Magnetic 

polarizations are always associated with nonreciprocal circular birefringence (Faraday 

rotation). Qualitatively new features are brought to the electrodynamics of photonic 

crystals due to the Faraday rotation.  

 

Appropriate design and advanced simulation and fabrication technique allow us to 

demonstrate multifunctional magneto-photonic crystals theoretically and experimentally. 

In this chapter, one- and two-dimensional magneto-photonic crystals have been 

investigated. We discuss their patterning on magnetic material bismuth-gadolinium-

substituted lutetium iron garnet Bi0.8 Gd0.2 Lu2.0 Fe5 O12 (BiLuIG) thin film. The 

fabrication process of these two types of photonic crystals is similar. 

 

The following section contains a discussion of the fabrication process of waveguide 

photonic crystals. Results and analysis of one-dimensional and two-dimensional photonic 

crystals are discussed respectively after the fabrication section. 

 

3.1. Experiment and setup 

3.1.1 Film preparation 

Many methods are used to prepare iron garnet films such as liquid phase epitaxy (LPE), 

pulsed laser deposition (PLD), reactive ion beam sputtering (RIBS), radio-frequency 

sputtering (RFS), electron cyclotron resonance sputtering (ECRS) and metal organic 

chemical vapor deposition (MOVCD).[98, 147,148] The bismuth substituted iron garnet 
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films used in this work are single crystalline films (monocrystals) grown on (100) plane 

of GGG (Gd3Ga5O12) substrate by the method of LPE, supplied by H. Dötsch (University 

fo Osnabruck, Germany) and V. Fratello (Integrated Photonics, Inc, New Jersey). 

 

Liquid phase epitaxy is a commercialized iron-garnet growth method. A single crystal 

GGG substrate is submerged at certain rotation speed into a supersaturated, metastable 

melt and a well stoichimetrical monocrystal garnet film is able to be formed on the 

substrate. [147] The films produced by LPE are single-crystal and of high quality. 

However, since this growth process occurs under thermodynamic equilibrium, high 

concentrations for Bi and Ce which can enhance the Faraday rotation significantly and 

keep the low absorption cannot be incorporated. Meanwhile, the growth rate is relatively 

high (1μm/min) so that subsequent etching process is needed to adjust the film thickness.  

 

The high-quality films intended for use in this work have the following properties. First, 

they have high Faraday rotation performance which results from the proper substitution 

of bismuth. However, doping Bi can also increase the uniaxial anisotropy which makes 

the magnetization out of plane. The film condition can be properly adjusted by 

substituting Nd, or Sr and Ga for the position of Y or Fe, respectively in order to result a 

good planar magnetization for magneto-optical device applications. [116], including 

intrinsic material absorption, scattering loss, reflection and coupling loss in the final 

waveguide devices. Last, they have a high refractive index contrast to the substrate. The 

refractive index of iron garnet film used in my work is n = 2.3095 and its contrast to 

GGG substrate (n = 1.9375) is generally large enough for photonic crystal applications. 

 

3.1.2 Measurement of film indices and thickness 

Prism coupling is an accurate and reliable technique used in this work to measure the 

refractive indices and thickness of epitaxial films. The background theory was presented 

by Ulrich and Torge. [149] A Metricon model 2010 prism coupler with ±0.001 for film 
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index and ±50
o

A  for film thickness accuracy was used. The scheme of this method is 

shown in Fig. 3.1. 

 

Before the fabrication of ridge waveguides, the refractive indices and thickness of the 

slab waveguides are determined.  A Metricon 2010 prism coupler is equipped with He-Ne 

(632.8 nm) and infrared (1503nm) laser source. The measurement at 632.8 nm give a 

more accurate thickness, while the modal indices measured at 1503 nm are required for 

the photonic crystals fabrication. Because the photonic crystals fabricated in my work are 

functional for infrared electromagnetic wave.  

 

When laser light is incident on a prism and then the sample, reflection occurs at the 

interface between the prism and the sample. The prism and the sample are mounted to a 

rotated stage. The incident angle for the laser light changes as the rotation of the stage. 

The intensity of the light out coming out of the prism is recorded by a photo detector 

attached to the stage. The light can be coupled into the slab film at a certain angle when 

the laser light wavevectors are equal to the waveguide wavevectors. Meanwhile, the 

detector at the other side of the prism senses the sharp intensity drop.  

 

The incident angle corresponds with a waveguide mode can be converted to effective 

refractive index. The computer can calculate the refractive index and the film thickness 

directly after one scan by  using equations (2.31) and (2.32) for TE and TM mode 

respectively. . 
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The refractive indices of TE and TM modes can be obtained by setting the polarization of 

laser light to TE and TM. In order to obtain both information of index and thickness, the 
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film must be thick enough to permit propagation of at least two modes in the waveguide. 

The index contrast of the film to substrate is crucial for fabrication of the photonic crystal 

structure in the waveguide since the light propagation depends on the selection of path 

with high index. The photonic crystals fabricated in our lab are using surface relief 

method which lowers the average effective index in its film section so the light may 

transmit into the substrate if the effective index becomes lower than the substrate index. 

Multiple measurements are made to get the average values for effective index for each 

mode and the film thickness.   

 

Fig. 3.1 Schematic illustration of the prism coupling method. 

 

3.1.3 Fabrication Process 

In this work, one-dimensional periodic gratings and two-dimensional periodic air holes 

were fabricated on ridge waveguides and slab waveguides respectively on magnetic iron 

garnet films. Fig. 3.2 shows the top view waveguides fabricated for photonic crystals. For 
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the two dimensional photonic crystal fabrications, the ridge waveguide is used to guide 

the light from the laser resources to slab waveguide.  

     

                        (a)                                                  (b) 

Figure 3.2 This is the top view waveguides before photonic crystal patterning. (a) is 
ridge waveguides used to fabricate one dimensional grating. (b) is used to fabricate 
two dimensional air holes. Photonic crystals are patterned on the slab waveguide. 
Ridge waveguide is used to guide light into slab waveguide. 
 
Fig. 3.3 shows the schematic of the overall structures for our one and two dimensional 

photonic crystal devices. Waveguides fabricated by photolithography and dry etching. 

Photonic crystals are patterned using a focused ion beam (FIB) system which has high 

precision and fast performance.  

 

Figure 3.3 Schematics photonic crystals fabricated in this work. (a) One dimensional 
photonic crystals grating structures fabricated on ridge waveguide; (b) Two 
dimensional photonic crystal air hole structures fabricated on slab waveguide. 
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Our major fabrication work is based on this technology now. Mechanical polishing of the 

facets is used to reduce the loss from waveguide facet and propagation in the slab 

waveguide. 

 

3.1.3.1 Fabrication of the waveguides 

Standard photolithography is used to fabricate the waveguides in our work. 

Photolithography is the process of transferring geometric shapes on a mask to the surface 

of a substrate by means of optical illumination in the ultraviolet. The typical steps 

involved in the photolithographic process are substrate cleaning; photoresist layer 

formation by spinning; soft baking; mask alignment; exposure; development and hard-

baking. 

 

The substrate is soaked in the acetone, methanol, and DI water sequentially in order to 

remove dust and organic impurities on the surface. Then N2 is used to blow the H2O 

residue. 

 

Positive photoresist S1827 from MicroChem Company is used in this work. It is a type of 

resist that the region exposed to light dissolve faster in developer. Hexa-methyl-dislizane 

(HMDS) is spinned on the substrate in order to promote better adhesion of the photoresist 

to substrate and then photoresist is dispensed on the HMDS with the spinner. The 

thickness of the photoresist after spinning is normally determined by the spin speed and 

acceleration. Generally the higher the spin speed the thinner the coating layer. The 

photoresist-coated substrate is set to hot plate for soft baking at 100 ℃ for 90s in order to 

dry off the extra solvent.  

 

An EVG 620 aligner is used to expose a 1~2μm thick positive photoresist in 10-15 

seconds in order to transfer the structure on the clean chromium mask onto the 

photoresist layer. Then the substrate is soaked in the developer for some time to remove 
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the exposed photoresist. All positive photoresist can be removed by alkaline developers 

such as KOH dissolved in water. MICROPOSIT MF-319 is used in this work. Then the 

substrate undergoes hard baking for 5-10 minutes at 120 ºC to solidify and stabilize the 

remaining photoresist to better serve as a protecting layer in future plasma etching. S1827 

from MicroChem Company is 2.7µm thick at a spin speed of 4000RPM. [127] Fig. 3.4 

shows an optical image of photoresist waveguide lines patterned on the BiLuIG slab 

waveguide sample. 

 

Figure 3.4 Photoresist waveguides patterned using the UV-photolithography process. 
The inset is the magnified image for the black rectangular region. 
 
Chemically-assisted-ion-beam-etching (CAIBE) is used to remove materials by exposing 

them to ion bombardment (normally plasma of N, Cl or BCl3). The waveguide structure 

is transferred to the substrate by dry etching. A ‘RIBETCH 156 ECR LL’ dry etching 

machine is used in this work. Photoresist is utilized as the mask to protect the region from 

bombardment. There are major three parameters: a) the gaseous ions used for etching, b) 

the current density of the beam, and c) the accelerating voltage applied to the ions control 

the etch rates of the samples.  

 

Argon ions are generated from argon gas by the application of microwave power in the 

presence of a magnetic field using an Electron Resonance (ECR) Source in the CAIBE 
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plasma chamber. The argon ions are extracted from the plasma by applying the 

accelerating voltage and are propelled toward the sample. After the application of the 

accelerating voltage, the plasma density focused on the sample is increased. Dry etching 

using the ECR source is preferred over the DC and RF sources because of higher ion and 

free radical densities [150]. 

 

The plasma current densities vary with Argon flow rates. When the Argon flow rate is 

decreased from 20 SCCM to 5 SCCM, the current densities raise significantly from170 

µA/cm2 to 290µA/cm2. [151]A flow rate of 10 to 15 SCCM is used in my work. Due to 

the high current density at lower flow rates, the temperature of the sample rapidly rises 

and often charring of the photoresist is observed.  

 

First, the sample is bonded onto a mounting fixture using Apiezon high vacuum grease 

and is loaded into the loadlock chamber. The grease also serves as a thermal contact for 

the heat dissipation. After attaining vacuum levels of ~ 10-6 Torr, the sample is 

transferred into the main chamber and is locked onto a Peltiercooled table during the dry 

etching process, since the BiLuIG film used in our work are stable at several hundreds of 

degrees but the photoresist cannot sustain at temperature higher than 100oC. This cooling 

system allows the sample to cool down without overheating the photoresist. The sample 

is tilted normal to the plasma source and Argon plasma is ignited at a flow rate of 10-15 

SCCM, with vacuum stabilizing at pressures of ~ 10-4 Torr. The stage is set to rotate 

during etching to give us uniform etching results. Fig. 3.5 [151] shows the etch rates of 

various samples used in the research laboratory. 

 

After waveguide fabrication, the sample is cut by diamond saw dicing to suitable size for 

further FIB milling. The mechanical polish is used to polish both input and output facet to 

small roughness which is good for optical coupling and reducing losses. 

 
A MultiPrep semi-automatic polishing machine with 30μm, 15 μm, 9 μm, 3 um, 1 μm 

diamond lapping films is used to polish facets of the samples. The lapping films are used 
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from larger to smaller particle size in order. Polishing with the subsequent lapping films 

is done to remove the material in microns at least twice the grit size of the preceding 

diamond lapping. The samples are examined under an optical microscope to ensure 

consistency in polishing after polishing with each lapping. After polishing, the surface 

and facets of the sample are thoroughly cleaned using cotton swabs in acetone, IPA and 

DI water. The ridge waveguide with polished facet can be seen in Fig. 3.7.   

 

 

Figure 3.5 Etch rates of various samples using the dry etching machine (CAIBE). 
This result is taken out by colleague Raghav. 
 

The overall view of standard photolithographic and plasma etching process to make ridge 

waveguides is shown in Fig. 3.6. 
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Figure 3.6 Photolithographic processes to make ridge waveguides. 
 

 

Figure 3.7 Optical microscope picture of the polished facet and the inset is the SEM 
image for a ridge waveguide. 
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3.1.3.2 Fabrication of Photonic Crystals 

Focused ion beam milling, mainly used in this work for photonic crystals fabrication, 

performs a mask-free, high precision, friendly interface and efficient milling/deposition 

processes.  A Hitachi FB-2000A system is used for scanning the surface topography and 

the pattern process. Unlike Scanning Electronic Microscope (SEM) for topography which 

uses the collected electron signal to display image, gallium ions are the source in FIB. 

Gallium is commonly used as the energy source due to its low melting point which is 

29.8 °C, low volatile nature leading to longer source life and its superior mechanical, 

electrical and vacuum characteristics. The ion beam is characterized with brightness in 

the order of 106 A/cm2/Sr, current densities greater than 10 A/cm2 and a beam diameter of 

less than 10 nm [152].  

 

A focused beam of Ga ions is accelerated to an energy of 5-50keV by an accelerating 

voltage 30keV. The gallium beam scans and rasters over the sample to create nanoscale 

patterns. The aperture controls the gallium beam current and the spot size. The beam 

diameters and beam current densities are varied through apertures with diameters ranging 

from 6-500μm. The interaction of the ion beam with the sample results in ejection of 

atoms from the surface. The production of secondary electrons and ions enables us to 

observe the image of the surface and fabricate the structures as designed. 500 
o

A  high 

resolutions is obtained. Fig. 3.8 [153] shows the detailed FIB configuration. 

 

There are several operation mode settings in the FIB. According to the balance among the 

process time, milling depth and the pattern dimensions listed in Table 3.1, M1 and M0 

are the two beam modes usually used in our patterning process. 

 

M1 is working beam mode for patterning and M0 is observation beam mode for imaging. 

The typical milling time for the grating and air hole structures used in my research is at 

least 40 minutes. The beam is required to be stable to guarantee the uniformity of the 

photonic crystals. Based on the balance between the milling time and desired depth, we 
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choose M1-100 for milling beam.  M0-50 is used for imaging and examination the 

structure considering the clarity of the image and less demagnification on the sample 

surface.  

 
Table 3.1 

Standard beam current for each aperture and beam diameter 
 Beam Mode M1 Beam Mode M2 

Aperture 
)( m  

Beam 
Current 

(nA) 

Beam 
diameter 

(nm) 

Beam current 
(nA) 

Beam 
Diameter 

(nm) 
6 0.001-0.005 35 0-0.002 10 

20 0.015-0.004 35 0.004-0.01 20 

50 0.1-0.3 40 0.02-0.05 60 

100 0.4-0.8 60 0.1-0.3 250 

200 2-3.5 120 0.4-0.8 800 

300 4-8 250   

500 11-15 1000   

 

The Hitachi FB 2000A is equipped with onboard CAD software. However, the resolution 

of the patterns created using this software is not sufficient for the nano size photonic 

crystal pattern. The Nano Pattern Generation System (NPGS) from J. C. Nabity Company 

controlling the single-ion beam was connected to our FIB system is utilized as the finer 

software control for the design and fabrication of the nano size patterns.  

 

The depths of milling structure can be adjusted by different milling parameters: line dose, 

beam current, line width. The characterization of the relationship of the milling depth and 

the line dose of ion beam on different films with 100nm CAD-designing groove width is 

shown in the Fig. 3.9 [20], which was done by the previous group members Rong Li, 

Xiaoyue Huang and Ziyou Zhou. The method has been developed and used in 

experiments to calibrate the depths through FIB and SEM by pattern the grooves on the 

edge of the polished facets. We can measure the groove depth under SEM by observing 
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the facet views of the samples. The plot is obtain by experiments. Different materials may 

have specific trend. The depth begins to saturate at high line dose due to the substantial 

redeposition and backscattering the Ga ions to the side walls of the narrow grooves or 

holes. However, if multiple beams scan the thin films in the horizontal and vertical 

direction alternatively, re-deposition effect can be reduced and grooves can be deeper and 

straighter down. [153] 

 

Figure 3.8 Schematic illustration of a single beam FIB model configuration with 
NPGS system. See Appendix A for documentation of permission to republish this 
material. Copyright permitted by Xiaoyue Huang 
 

Since surface implantation and redeposition occur due to the ion milling, acid post-

treatment is used to remove the residue which can reduce the optical scattering loss. In 

this work, the fabricated sample is soaked in a solution of orthophosphoric acid 

maintained at 75°C for 10~15 seconds. 
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Figure 3.9 The characterization of FIB milling depth and line dose. This result is 
taken out by colleague Ziyou Zhou. 
 
Fig. 3.10 and Fig. 3.11 show SEM images for one dimensional grating and two 

dimensional air holes fabricated on a ridge waveguide and a slab waveguide respectively 

by FIB milling system.  

 

 

Figure 3.10 The SEM image of one dimensional photonic crystals on a ridge 
waveguide.  
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Figure 3.11 The SEM image for the overall topography of two dimensional photonic 
crystals on a slab waveguide. The inset is the magnified image of the square air holes. 
 

3.1.4 Optical measurement setup 

The sample undergoes optical test after fabrication. The optical response of the system 

including transmittance spectrum, beam spot profile and Faraday rotation of magneto-

photonic crystals are measured by end-fire fiber coupling from a 1480nm-1540nm 

tunable laser source. The setup of the optical test is set on a free space bench-top to 

prevent possible variation as illustrated as Fig. 3.12 [153].  

 

The input optical beam is generated from a tunable laser source (Ando AQ4321A) with 

wavelength range from 1480nm-1540nm. The step size is adjustable with 0.001 nm 

wavelength resolution, 7.9mW (9dBm) maximum, 0.079mW (-11dBm) minimum output 

power. The light from laser is guided to a polarization controller (Agilent 11896A) 

through fiber and the polarization of the light is adjusted to transverse electric or 

transverse magnetic polarization light. Then the polarized light is coupled into sample 
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through single mode lensed fiber with diameter about 3.3µm. The sample is placed on a 

stage with x, y, and z controls and light coupling into the waveguide is achieved by 

carefully adjusting the x, y, z stage controls. The output laser beam from the waveguide is 

focused by a 10 × microscope objective and goes through an aperture to reduce the 

background light. A 50 % non-polarizing beam splitter is used to divides the beam into 

two halves. One beam is used for intensity detection. The record of output intensity is 

synchronized with the laser wavelength. The other beam is used to monitor the beam 

profile and check the shape of output light. As the wavelength of input light is tuned, the 

optical intensity through the waveguide is simultaneously recorded over a fixed duration 

to obtain the transmission spectrum as a function of the wavelength. When the motor-

controlled polarizer (Newport Universal motion controller, Model ESP100) is inserted 

and rotates 360o with constant speed, the spatial intensity spectrum of the output light 

polarization can be plotted. The intensity in terms of angle can be calculated. The 

polarization rotation angle is determined by taking the angular difference between the 

directions of the semi-minor axes of the polarization spatial spectra for opposite 

directions of applied magnetic field and dividing by two. The schematic illustration of the 

optical measurement setup is shown in Fig. 3.13 [153]. 

 

 

Figure 3.12 Optical setup for the transmission and Faraday rotation measurements. 
See Appendix A for documentation of permission to republish this material. 
Copyright permitted by Xiaoyue Huang. 
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Figure 3.13 Schematic of the optics bench setup for the end-fire measurements. See 
Appendix A for documentation of permission to republish this material. Copyright 
permitted by Xiaoyue Huang. 
 

3.2 Waveguides Loss 

Losses in optical waveguide are important criteria affecting the performance of the 

optical waveguide based devices. The major reasons for the losses in the waveguide are 

intrinsic material absorption, scattering loss, reflection loss and coupling loss. Absorption 

losses arise due to light absorption phenomena occurring due to interband absorption, 

carrier absorption, material absorption etc. Scattering losses can also arise due to 

imperfections in the waveguide structure. These losses can be reduced by improving the 

fabrication processes such as reducing the surface roughness, reducing the sidewall 

roughness etc. Mode conversion losses arise due to the conversion of an excited mode to 

other modes. Radiation losses arise due to out-of-plane scattering and in-plane scattering. 

[151] 

 

3.2.1 Absorption Loss 

Magnetic garnets have very low optical absorption in the infrared window between 1.2 

and 5 µm wavelengths. The garnet films grown by LPE show a rather strong additional 
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absorption due to impurity ions like Pb2+, Pb4+ and Pt4+ incorporated into the film, which 

can be explained by the mechanism of Verwey conductivity involved with non-three-

valent ions. The electron is excited first to a higher energetic level and then falls back to 

any one of the different centers with an equal probability. Because of the 

‘photodetachment’, the non-three-valent ions such as Fe2+ are the origin of the photon 

absorption.  The absorption properties of doped crystals are determined by  The 

probability of the photons absorbed by an Fe2+ center and the population distribution of 

the centers on different octahedral sites [147, 154, 155] A very low optical absorption 

film can be obtained by a charge compensation controlling these impurity ions during 

growth process. [156]  

 

3.2.2 Surface Scattering Loss 

Subsurface scattering (SSS) is a mechanism of light transport in which light penetrates 

the surface of a translucent object, is scattered by interacting with the material, and exits 

the surface at a different point.[157]Surface scattering takes place on the border surface 

between two different homogeneous media. Tien has derived an expression for scattering 

loss due to surface roughness. [158] 

 

In our final waveguide structures, the scattering loss includes the surface roughness and 

sidewall effect resulted from the fabrication process. The appropriate etching process is 

used to reduce the scattering loss by removing the residue and smoothing the surfaces.   

 

The details about the etching process to improve waveguides and photonic crystals will 

be given in the section fabrication process. 
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3.2.3 Reflection and Coupling Losses 

Reflection and coupling losses happen when the light is coupled from the fiber to the 

waveguide. It is the ratio of the power guided in the waveguide over the total power 

emitted from the fiber. 

 

Both reflection and refraction of the light occur when light moves between media of 

different refractive indices. The reflection of light that the equations predict is known as 

Fresnel reflection. When light moves as near-normal incidence to the interface from a 

medium of a given refractive index n1 into a second medium with refractive index n2, the 

reflection coefficient are given by:  
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For the film with refractive index equal to 2.3095 used in our work, the reflection loss is 

about -8.05dB. 

 

The coupling loss mainly results from the waveguide geometry and the mismatch 

between fiber and waveguide in our study. This study was done by colleague Rong Li 

through Rsoft simulation [127]. When the output spot from the fiber is comparable to the 

waveguide profile, the loss takes place at beginning and the power tends to reach a stable 

value which is about 0.7 times of the input power. This loss results from the geometry 

mismatch. So the coupling loss is 10log (0.7) = -1.55dB to the input power. [127]  

 

3.3 One dimensional magnetically-activated gyrotropic 

photonic crystals 

This section concerns band gap tunability in magneto-photonic-crystal multi-mode 

waveguides. It reports the formation of magnetically-controlled band gaps in one-

dimensional magneto-photonic crystal waveguides fabricated on bismuth-gadolinium-
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substituted lutetium iron garnet films (Bi0.8Gd0.2Lu2.0Fe5O12). Specifically, it addresses 

the magneto-optic response of one-dimensional photonic crystals. Magnetic activation of 

new band gaps and polarization selectivity are demonstrated. These band gaps form as a 

result of the coupling between forward-propagating fundamental waveguide modes with 

backscattered modes of different orders. Hybridization of counter-propagating modes of 

different gyrotropy-induced polarization states is established by the magneto-photonic 

crystal. A rich field of phenomena opens up by the simultaneous introduction of 

periodicity, gyrotropy and modal birefringence in multi-mode waveguides. In the absence 

of gyrotropy transverse-electric and transverse-magnetic modes do not couple. But the 

introduction of gyrotropy in birefringent waveguides enables the hybridization of 

differently polarized counter-propagating waves, carrying different polarization 

ellipticities and consisting of a superposition of out-of-phase TE and TM modes. Stop-

band widening and the selective transmission of various partial-wave components in the 

gap is predicted and observed. 

 

3.3.1 Introduction 

The present work examines the coupling between Bloch modes with spatially-dependent 

elliptical polarization and their magnetization dependence. These modes are formed by 

the activation of TE-TM mode coupling in birefringent gyrotropic systems upon 

longitudinal magnetization. [127-131] Partial back-reflection of these modes is observed 

experimentally and reported on. Band structure analysis in waveguide geometry is 

advanced to analyze the response of fabricated crystals. The coupling of different 

elliptically-polarized waves leading to gyrotropic band gap formation is observed and 

discussed.   

 

This section is devoted to a theoretical and experimental investigation of band gaps in 

one-dimensional magneto-photonic crystals with elliptical birefringence in waveguide 

geometries. The existence of high-order waveguide modes in addition to the fundamental 

mode results in a rich complex of dispersion curves and qualitative changes in band gap 
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formation. The character and polarization response of these band gaps is analyzed, as 

well as their dependence on magnetization direction. This analysis goes beyond the stack 

model predictions discussed in prior work, experimentally studying the optical response 

of these systems and incorporating waveguide mode band structure and magnetization 

dependence calculations. [128-130] We show that the multi-mode regime, a regime not 

encountered in layered stacks, plays an important role in the system under consideration, 

partially breaking the gyrotropic degeneracy reported by Merzlikin and co-workers [127] 

and leading to wave-vector and frequency splitting for each fundamental to high-order 

mode scattering process. This particular type of splitting permits magnetically-controlled 

transmittance and the possibility of magneto-photonic-crystal-based magnetic switches 

and filters. 

 

3.3.2 Experimental Background 

3.3.2.1 Sample preparation 

In this section, epitaxial bismuth and gadolinium substituted lutetium iron garnet BiLuIG 

planar thin films grown on (100) oriented gadolinium gallium garnet Gd3Ga5O12 

substrates by liquid phase epitaxy is used in our experiments.  These films are grown 

commercially.  The lattice parameter is matched to within ±0.001
o

A . The films are grown 

from a small melt and so may have a fair number of defects.  In terms of composition and 

properties the thin planar films used are all approximately equal. The saturation induction 

4 Ms is 1800G. The Gd reduces it some and the Bi increases it some by increasing the 

Curie temperature so they balance. The actual in-plane anisotropy is difficult to measure 

with the saturation magnetization so high. But the extrapolated perpendicular saturating 

field is similar the saturation magnetization. The films are grown from a small melt and 

so may have a fair number of defects. Additional cleaning is necessary before film 

characterization and further fabrication. 
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Magneto-photonic crystals are fabricated in multi-mode waveguides. The slab waveguide 

film is 2.75  0.05 µm thick with a composition Bi0.8 Gd0.2 Lu2.0 Fe5 O12 and a measured 

specific Faraday rotation of 83/mm at 1510 nm. The specific Faraday rotation in the film 

was determined by measuring the polarization rotation across the film thickness.  The 

Faraday measurement is done by a standard rotating polarizer method, [128] correcting 

for the diamagnetic contribution to the rotation imparted by the substrate. It is the 

referential Faraday rotation per unit length as measured perpendicular to the film to avoid 

linear birefringence induced distortions in the measurements. The rotation spectra 

measured from waveguide structures include the combination effect from Faraday 

rotation and birefringence.  This film is grown by LPE on a (100) GGG substrate, with 

planar magnetic anisotropy and in-plane coercivity of a few Oe. [47, 158] The measured 

refractive index of GGG substrate in my samples is 1.9357, which is used for further 

confirmation and calculation of effective indices of waveguide modes on BiLuIG thin 

film.  The dielectric tensor in the film at 1510 nm wavelength, excluding absorption, is 

given by  
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There is a small stress-induced birefringence caused by lattice mismatch between the film 

and the underlying GGG substrate. The stress birefringence is extracted from the prism-

coupler data of refractive indices in the un-patterned slab waveguide.  

 

The dielectric tensor  for the material now contains non-zero xy and yx off-diagonal 

components given by  /ni F . Here n is the average refractive index )(
2

1
TMTE nn  , 

F  is the specific Faraday rotation and   is the wavelength in vacuum. At wavelength 

 =1510 nm, the off-diagnal components of the dielectric tensor can be obtained by 

substituting F =83o/mm and n =2.3095. Absorption effects introduce a neglectable 

imaginary contribution to the diagonal components.  
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The dispersion of the waveguide modes is characterized by prism coupling and by 

analyzing the wavelength dependence of the stop bands induced by the photonic crystal. 

Four TE and TM modes are allowed in the slab waveguide for transverse magnetization 

(in-plane perpendicular to the waveguide ridge axis).  

Waveguide ridges are patterned on the film by standard photolithography procedure and 

plasma etching. An EVG620 aligner is used to expose a 1~2 um thick positive 

photorestist S1827 in 10 to 15 second. Chemical assisted ion beam etching is used to 

create waveguide structure on the film with a ridge height varies depending on Ar-ion 

beam etching parameters setup. Table 3.2 shows the major CAIBE etching process 

parameters used to fabricate ridge waveguide on the thin film. For BiLuIG materials, 

under the same etching parameter setups, the ridge height varies from 0.5um to 1.2um 

depending mainly on the etching time. Fig. 3.14 shows the etch rate of the CAIBE on the 

BiLuIG sample. The height of the ridge waveguides used to fabricate photonic crystals is 

600 nm which takes about 35 minutes in plasma etching process. 

 

 

Figure 3.14 The etch rate of the BiLuIG in the dry etching machine. 
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BiLuIG samples are non-conductive so samples need to be coated with conductive layers 

to prevent any charging effect. A proper charge dissipation is accomplished by sputter 

coating the samples with 100nm Cr and 100nm Au using a Hummer sputtering machine. 

The coating of Cr and Au is the necessary conductive layer during the ion milling. The 

coated waveguide samples are ready for FIB processing. A one-dimensional photonic 

crystal is formed by FIB milling followed by a 75C 10sec bath in orthophosphoric acid 

to remove sidewall damage.  

 
Table 3.2 

The CAIBE etching process parameters 
Process parameters Set Value 

Accelerating voltage(V) 80 

Beam Voltage (V) 70 

Microwave (W) 410 

Magenet (G) 1200 

Argon (SCCM) 15 

Current Density (µA/cm2) 180-200 

Chamber Pressure (Torr) 10-4 

Base chamber pressure (Torr) 7102   

 

For the one-dimensional photonic crystals, all the tested samples are fabricated under 

similar conditions. The parameter setups are the same for FIB. The M1-100 milling beam 

is chosen for sample milling. The line dose affects the depth of grooves. And directly 

influences the strength of photonic crystals. It is very important to be able to precisely 

control this milling depth parameter. The characterization of the relationship of the 

milling depth and the line dose of ion beam on BiLuIG film with 100nm CAD-designing 

groove width is shown in the Fig. 3.15. 
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The depth increases by increasing the line dose. When ion milling happens deeper into 

the grooves, substantial backscattering ions redeposit on the groove side walls. The 

groove depth can not be deeper. 120 µC/cm line dose is used to fabricate one dimensional 

photonic crystals. The grating grooves on the samples used for further characterization 

are 720 ± 25 nm-deep.  

 

 

Figure 3.15 The dependence of groove depth with line dose based on BiLuIG thin 
film. The point (120, 720) shows the line dose used to fabricate 720 nm deep grooves. 
 

The scanning electron micrographs of the top view and the cross section of the one 

dimensional grating structure on ridge waveguide are shown in Fig. 3.16 and Fig. 3.17 

respectively.  
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The cross sectional images of the grooves show narrowing down structure with depth 

increament. The grating period is 343.4 ± 0.3 nm corresponding to fundamental and 

higher order mode stopbands in the wavelength range from 1480 to 1540 nm.  

 

 

Figure 3.16 The SEM image of topview for the one dimensional photonic crystal on 
a 5 µm wide BiLuIG ridge waveguide. 
 

 

Figure 3.17 The SEM image of cross section for grating grooves patterned on the 
BiLuIG ridge waveguide. 
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The thickness of the film at the tip of the grating ridges is reduced by about 100nm due to 

overlap milling shown in Fig. 3.18.  

 

Figure 3.18 Scaniing-electron-micrograph (SEM) image showing overlapping 
milling. This overlapping milling reduces the thickness in the grating region. 
 
So the effective mode indices on the grating region are different from the effective 

indices on the ridge waveguide without grating. Both these mode indices can be 

calculated by the Beam propagation component in Rsoft. Ridge waveguides are 1.2 mm-

long with the photonic crystal structure (200 µm in length) positioned 100 µm away from 

one of the facets. The latter are prepared by polishing both input and output ends of the 

waveguide. A schematic depiction of the structures the ridge waveguide with photonic 

crystal near one facet is shown in Fig. 3.19. 

 

Figure 3.19 A schematic description for one-dimensional magneto-photonic crystal 
structures on BiLuIG ridge waveguides.   
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3.3.2.2 Transverse and longitudinal magnetization 

Waveguide modes in the structure are characterized by analyzing the wavelength 

dependence of the stop bands induced by the photonic crystal. In a nonmagnetized state, 

the slab waveguide supports four TE and TM modes. Patterning of the ridge waveguide 

and photonic crystal slightly modifies the character and effective indices of the 

waveguide modes. The resulting modes are quasi-TE and quasi-TM with dominant in-

plane (quasi-TE) or out-of-plane (quasi-TM) polarization for transverse magnetization. 

Confinement of the light beam in the asymmetric optical channel generates a geometry-

induced birefringence, not arising from natural anisotropy of the material. 

 

An interesting point about the magnetic response is that waveguide birefringence causes 

quasi-TE and quasi-TM modes to resonate at different wavelengths, thus engendering 

different stop bands.  This is clearly seen for the case of transverse magnetic field, i.e., 

magnetic field applied perpendicular to the direction of propagation.  In that case there is 

no magneto-optic coupling between TE and TM modes and the stopbands corresponding 

to light polarized in the vertical and horizontal directions (relative to the plane of the 

film) occur at different wavelengths. 

 

Let us consider mode dispersion in transverse magnetization, along the y-direction in Fig. 

3.19. The patterning of a ridge structure on the slab slightly modifies the effective index 

and character of the allowed waveguide modes, resulting in modes with dominant in-

plane (quasi-TE) or out-of-plane (quasi-TM) polarizations.  When the magnetization 

points in the transverse planar direction, perpendicular to the ridge axis, vertically- 

(quasi-TM) or horizontally- (quasi-TE) polarized light remain in their original 

polarization state. The input polarization does not rotate as there is no coupling between 

TE and TM modes. At the same time TE-TE coupling (or respectively TM-TM coupling) 

between modes of different orders is brought about by the grating at those wavelengths 

satisfying the Bragg condition. 
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Upon a change of magnetization direction to collinear with the waveguide axis the 

stopbands reconfigure as a result of the coupling between quasi-TE and quasi-TM modes.   

 

Activation of the gyrotropy (Faraday Effect) upon longitudinal magnetization along the 

ridge waveguide axis (z-direction in Fig. 3.19) couples the quasi-TE and quasi-TM 

modes. This coupling yields elliptically polarized Bloch modes with spatially-dependent 

elliptical polarization in the photonic crystal region. Thus a magnetic field along the 

waveguide axis induces the opening up of a TM bandgap for light originally launched as 

TE, and vice-versa.  The magneto-optic response of the system engenders the formation 

of a new bandgap where none existed before for transverse magnetic fields.Thus light 

coupled into the far-end facet to the grating (from right to left in Fig. 3.19) undergoes 

significant polarization rotation upon longitudinal magnetization before reaching the 

photonic crystal structure.  The 0.9 mm-long region before light enters the photonic 

crystal is referred to here as a feeder section. Based on the polarization rotation equations 

discussed in Chapter 2.3, we can obtain the polarization rotation as a function of 

birefringence before entering the photonic crystal region, shown in Fig. 3.20. The 

propagation light rotates about 76o in the feeder section before entering photonic crystal 

with the linear birefringence 0.0005.  

 

Figure 3.20 Polarization rotation before light enters the photonic crystal from the 
far-end feeder section as a function of birefringence. The point marked in the plot is 
the rotation for the approximated birefringence 0.0005 in our structure.  
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3.3.2.3 Transmittance measurements 

Vertical and horizontal linearly-polarized light is inserted through the input facet by end-

fire coupling from a lensed fiber.  The light has a beam waist diameter of 2 µm at the 

focal point, and the working distance between fiber tip and waveguide facet is adjusted 

for maximum insertion power. Fig. 3.21 shows the light output from a typical 5µm wide 

ridge waveguide. We can only observe fundamental mode from the experiments. 

 

There are four modes that can propagate in the ridge waveguide geometry in this work. 

Rsoft is used to simulate these mode profiles in the waveguide. The mode profiles fro the 

fundamental, first, second and third order modes are illustrated in Fig. 3.22. 

 

When the light is launched into the waveguide, the total power distributes itself into 

different modes. In our experiments, the output light we detect with an infrared camera 

has the mode-shape of the fundamental mode. Power distribution into different modes is 

calculated by beam-propagation (BeamPROP) simulation by Rsoft, which has been a 

commercial available photonic and network design software since 1994. BeamPROP is 

the industry-leading design tool based on the Beam Propagation Method (BPM) for the 

design and simulation of integrated and fiber-optic waveguide devices and circuits. 

 

 

Figure 3.21 Image of the light output from ridge waveguide. 
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Figure 3.22 The simulated mode profiles for fundamental, first, second and third 
order modes in a ridge waveguide.  
 

As the experiment measurement setup, the input light is coupled into the center of ridge 

waveguide. Fig. 3.23 shows the beam distribution profile.  

 

 

Figure 3.23 The beam distribution profile. The relative power of fundamental mode 
is 14 while the first order mode is 0.3. Forward propagation light mainly stays as 
fundamental mode.  
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When linearly polarized light is launched into the ridge waveguide centered on the input 

facet, the relative power into the fundamental waveguide mode is 97.9% as the first order 

mode is 2.1% calculated by the BeamPROP. No higher order modes appear in the 

computed mode spectrum. Thus, more than 95% of the power that propagates in the 

guide in the forward direction resides in the fundamental mode.   

 
Transmittance spectra are recorded by scanning the wavelength with a tunable Ando laser 

source between 1480 nm and 1540 nm for both input polarizations. Data are acquired for 

optical insertion from both input facets, at the near- and far-ends from the photonic 

crystal.  An average insertion loss of 4.4 dB is measured between the optical fiber output 

and the photonic crystal waveguide output away from the stop bands. The power coming 

out from fiber directly is about 180um and the power after the light propagating through 

photonic crystal waveguide is about 65um. By using the insertion loss equation 

Insertion Loss (dB) = )(log10 10
out

in

P

P
                                     (3.2) 

Here Pin and Pout are the power from the fiber directly and the power after light passing 

through photonic crystal waveguide.  

 

Transmittance from the near-end facet corresponds to insertion polarization into the 

grating close to the input quasi-TE or quasi-TM for longitudinal magnetization. Based on 

the calculations on the polarization rotation as a function of birefringence, the Fig.3.24 

shows the polarization when the light travels in the feeder section for 100 µm. Since the 

Faraday Effect (modulated by waveguide birefringence) has only rotated the electric 

component of the field by 8.28 at the point of insertion into the photonic crystal.  
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Figure 3.24 The polarization rotation before light enters the photonic crystal from 
the near- end feeder section as a function of birefringence. The point marked in the 
plot is the rotation for the approximated birefringence 0.0005 in our structure.  
 
Experimentally measured transmittance spectra for transverse magnetization are shown in 

Fig. 3.25. Gray is for horizontal and black is for vertical input polarization.  The spectra 

are normalized to the output power of a ridge waveguide without photonic crystal pattern.  

Notice that the quasi-TE and quasi-TM stop bands are shifted relative to each other for 

high-order backscattering.  The spectra correspond to two different waveguides on the 

same sample. 

 

However, transmittance from the far-end corresponds to more strongly rotated 

polarization having significant quasi-TE and quasi-TM components at the point of 

insertion into the photonic crystal. From the polarization rotation equation discussion in 

Chapter 2.3, we can also obtain the plots of the power of quasi-TE and quasi-TM 

components at the point into the photonic crystals as a function of birefringence as shown 

in Fig. 3.26. Here the feeder section is 900 µm long.  
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Figure 3.25 Transmission spectra for transverse magnetization.  The gray and black 
spectra are corresponding to horizontal and vertical input polarization. Here are the 
spectra for two different waveguides on the same samples. 
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Figure 3.26 Power distributions of quasi-TE and quasi-TM components at the point 
into the photonic crystals as a function of birefringence. The points marked in the 
plot are the quasi-TM power for the approximated birefringence 0.0005 and 0.001.  
 
Thus when the birefringence is relatively small (<0.001)for the fundamental mode, we 

can estimate that for a longitudinal magnetization the power transfer from quasi-TE to 

quasi-TM mode is more than 65% in the 900 µm waveguide feeder section before 

entering the photonic crystal. Especially the birefringence in the feeder section is 0.0005 

for our film; the transferred power from quasi-TE to quasi-TM is about 85%. Data were 

collected for 10 different photonic crystal waveguides in three different samples, with 

similar results. Fig. 3.27 shows stopband spectra obtained experimentally for transverse 

magnetization (gray) and longitudinal (black) magnetization for horizontal input 

polarization.  The spectra correspond to two different waveguides on the same sample. 

The opening up of a quasi-TM bandgap for light originally launched as horizontal 

polarization.   
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Figure 3.27 Transmission spectra for horizontal input polarization.  The gray and 
black spectra are corresponding to transverse magnetization and longitudinal 
magnetization respectively. Here are the spectra for two different waveguides on the 
same sample. 
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3.3.3 Effective mode indices analysis 

The patterning of a ridge structure on the slab slightly modifies the effective index and 

character of the allowed waveguide modes.  Focused Ion Beam milling of the grating on 

the waveguide ridge reduces the average thickness of the optical channel and further 

modifies the mode indices. The mode index is the average quantity depending on the 

grooves depth, height of ridge waveguide and the film thickness for the grating region. 

The index is not a simple linear average of the film index and the air index; instead, it is 

very complicated to calculate for the exact value for the gratings especially with the V 

shape cross section. For approximation, the average thickness the grating area is used to 

calculate the effective indices for the region. The average grating region thickness is the 

film thickness with modification from the FIB overlapped milling deducting a half of the 

grooves depth.  

 

Effective indices of the quasi-TE and quasi-TM modes in the grating region are 

determined by numerical simulation in conjunction with Bragg-reflection data analysis. 

Cross-comparison with the transverse-magnetization stop band spectrum Fig. 3.25 is 

exploited for this purpose.  

 

3.3.3.1 Stopband spectral analysis 

Wave-vector and frequency degeneracy occur upon phase matching between counter-

propagating waves in different polarization states. Considering the phase matching 

condition for an optical guided wave characterized by a propagation wave-vector 


, with 

n

 2




 incident on a grating region having grating vector K


, where 



2

K


 and 

grating period . In the grating, a space harmonic Km


 , for 2,1,0 m  and etc. can 

exist. We see that waves with wave-vector K


  will be coupled by the grating. These 

can propagate as a mode as long as mK 


 , for some mode m with wave-vector m


. 
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Considering counter propagating wave coupling, the phase matching condition can be 

written as  

Kmfb


                                                                          (3.3) 

Here 



 b
b

n2
  and




 f
f

n2
 .  This equation describes the coupling of the forward 

propagating incident mode and the backward propagating mode in Bragg gratings. In the 

case of m=-1, the equation changed to  

)( bf nn                                                             (3.4) 

Due to the grating scattering, the light propagating in the forward fundamental mode can 

be coupled into fundamental or higher order modes in the backward direction. The stop 

band positions depend on the Bragg conditions. The Bragg conditions: 

 )( TE
b

TE
f nn                                                    (3.5) 

 )( TM
b

TM
f nn                                                  (3.6) 

where nf
TE and nf

TM are the mode indices of the forward propagating light and nb
TE and 

nb
TM, the mode indices of the backscattered light for quasi-TE and quasi-TM polarizations, 

respectively. 

 

The indices can be obtained by the experimental results and the equation above. There 

are four stop-bands for quasi-TE and quasi-TM transmittance respectively in Fig. 3.24. 

The center wavelength positions of the first three stop bands clearly show within 1480nm 

to 1580 nm range. They are listed in Table 3.3. 

 
Table 3.3 

The center positions of stopbands for Quasi-TE and Quasi-TM 
transmittance spectra 

 
Fundamental 

0 (nm) 
First-order 

1 (nm) 
Second-order 

2 (nm) 

     Quasi-TE 1572.09 1552.06 1521.6 
Quasi-TM  1570.16 1547.97 1512.34 
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Considering the forward fundamental mode stop-band first couples with high order 

backscattering mode, the Bragg conditions for each stop bands can be expresses as the 

following equations.  

For quasi-TE: 

 

                                                       )( 000
TETETE nn  

                             )( 101
TETETE nn                                             (3.7) 

                                                       )( 202
TETETE nn  

Substituting the data in table 3.3, we obtain the effective indices for quasi-TE 

fundamental, first and second order modes are 2.289, 2.2309 and 2.141.  

 

For Quasi-TM: 

                                                        )( 000
TMTMTM nn  

  )( 101
TMTMTM nn                                         (3.8) 

                                                        )( 202
TMTMTM nn  

 

Substituting the data in Table 3.3, we obtain the effective indices for quasi-TE 

fundamental, first and second order modes are 2.2862, 2.2215 and 2.1148. These indices 

are obtained by the experimental results. 

 

3.3.3.2 Mode indices calculation 

Mode indices are computed by beam-propagation analysis of a simulated ridge 

waveguide having the same width, average grating thickness, ridge height and material 

index as the fabricated structure.  
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In these calculations the average grating thickness is allowed to range within the 

experimentally determined uncertainty in measured thickness. Account is also taken of 

the grating groove-depth and its uncertainty since this also impacts the average film 

thickness in the grating region. The material film indices for TE and TM waves are 

determined by prism-coupler measurements on the un-patterned slab waveguide film. 

However an adjustment of 0.9% in their value is allowed to fit the measured stop band 

spectrum. This is within the experimental uncertainty in the prism-coupler data. The 

simulation makes use of the correlation method to extract mode indices, comparing the 

calculated propagating field amplitude against the input field. Minor adjustments to the 

measured average grating thickness and ridge height (within experimental uncertainty) 

are made to fit the experimentally measured stop band spectrum.  

 

The mode indices in the ridge waveguide section outside the grating region are calculated.  

By the same correlation method, the ridge waveguide height is modified to match the 

average film thickness for the grating area in order to approximate the effective mode 

indices for the grating region. The ridge width, height and TE, TM material film indices 

are those of the fabricated ridge waveguide.   

 

Fig. 3.28 shows the geometry of the ridge waveguide structure. W, H and Tf are the final 

simulated data for the ridge width, ridge height and the thickness of the film respectively. 

Table 3.4 lists the properties of the ridge waveguides. These parameters are used in the 

beam propagation simulation to calculate the effective mode indices for both waveguide 

region and photonic crystal region. From the dielectric tensor of the film, the refractive 

indices for TE and TM mode are 2.31049 and 2.3095 respectively. The effective index 

for GGG substrate is 1.9357. They are the same for both geometries. The pure waveguide 

region with grating is referred to here as a feeder section.  
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Figure 3.28 The geometry for ridge waveguide 
 

The Fig. 3.29 Contour map and the computed fundamental mode profile of the 

waveguide geometry of feeder section at 1550 nm. The Fig. 3.30 Contour map and the 

computed mode profile of the waveguide geometry of the photonic crystal region at 1550 

nm. 

Table 3.4 
Ridge waveguide dimensions 

 
Ridge Width 

W(µm) 
Ridge Height 

H (µm) 
Film thickness 

Tf (µm) 

Photonic crystal 5 0.6 2.33 

Feeder 5 0.6 2.75 

 
 

Table 3.5 and 3.6 show refractive indices for the different waveguide modes in the 

photonic-crystal region and feeder sections for transverse magnetization at 1550 nm 

wavelength. 

T

H 

Film 

Substrat

W
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Figure 3.29 Beam Propagation analyses for ridge waveguide for feeder section. (a) 
Contour map of transverse index profile; (b) Computed transverse fundamental 
mode profile. 

 
 

 

Figure 3.30 Beam Propagation analyses for ridge waveguide for photonic crystal 
region. (a) Contour map of transverse index profile; (b) Computed transverse 
fundamental mode profile. 

 
Table 3.5 

Refractive indices for the different waveguide modes in the photonic crystals  
Mode order Fundamental First Second Third 
Quasi-TE 

mode index 
2.2877 

 
2.2301 

 
2.1336 

 
1.9989 

 
Quasi-TM 
mode index 

2.2863 
 

2.2219 
 

2.1145 
 

1.9720 
 

Linear 
Birefringence 

0.0014 
 

0.0082 
 

0.0191 
 

0.0269 
 

 
 
 

(b) (a) 

(b) (a) 
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Table 3.6 
Refractive indices for the different waveguide modes in feeder sections  

Mode order Fundamental First Second Third 
Quasi-TE 

mode index 
2.2930 

 
2.2497 

 
2.1781 

 
2.0765 

 
Quasi-TM 
mode index 

2.2925 
 

2.2450 
 

2.1661 
 

2.0555 
 

Linear 
Birefringence 

0.0005 
 

0.0047 
 

0.0120 
 

0.0210 
 

 

These calculated effective indices show very good agreement with those obtained from 

Bragg condition equations based on the experimental results.  It appears that the 

discrepancy in the calculated experimental and theoretical effective indices increases with 

mode order in the comparison. But these differences are still within experimental 

uncertainty. 

 

The fundamental mode has low linear birefringence in the feeder section and is hence 

susceptible to TE-TM mode coupling due to the gyrotropy of the magneto-optic film.  

Fundamental mode linear birefringence in the ridge waveguide region outside the 

photonic crystal pattern is 0.0005.  Thus light coupled into the far-end facet to the grating 

undergoes significant polarization rotation upon longitudinal magnetization before 

reaching the photonic crystal structure.  From Fig. 3.26, we can estimate that for a 

longitudinal magnetization the power transfer from quasi-TE to quasi-TM mode is 85% 

in the 900 µm waveguide feeder section before entering the photonic crystal. For higher 

orders the large linear birefringence strongly suppresses TE-TM coupling, although the 

modes are no longer the same quasi-TE and quasi-TM as for transverse magnetization but 

are rather elliptically polarized. 

 

3.3.4 Results and Analysis 

Previous work has analyzed theoretically the band structure of layered stacks. [153-155] 

It is shown there that alternating gyrotropic layers with different elliptical birefringence 
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in adjacent layers can lead to the formation of band gaps arising from the coupling of 

Bloch modes of opposite helicities. This point is significant because unlike circularly-

polarized waves, where opposite helicity modes are orthogonal and do not couple, the 

model predicts that spatially-dependent elliptically polarized modes of opposite helicities 

do couple, leading to the formation of new types of band gaps. These band gaps form 

away from the Brillouin zone edge ( K , where K is the Bloch wave-vector), and 

can be made to reject arbitrarily-polarized light. [127] Levy et. al. extended this 

theoretical model to allow linear combinations of elliptically-polarized modes having 

different elliptical polarizations in opposite propagation directions, but still within a 

layered-stack framework.[128] The model predicts the formation of nearly-degenerate 

pairs of gyrotropic band gaps away from the Brillouin zone edge.[128] 

 

The present study looks at this type of band gap formation in waveguide geometries in 

elliptically birefringent systems. The structure of these band gaps and the effect of 

magnetization direction on the gyrotropic band gaps are analyzed. These waveguide 

structures constitute a physical realization of the model where oppositely traveling 

elliptically-birefringence waves correspond to waveguide modes of different order. The 

study demonstrates the existence of nearly-degenerate gyrotropic band gaps, formed by 

elliptically polarized Bloch modes. These gyrotropic band gaps are realized by the 

hybridization of elliptically polarized waveguide modes of different order. Band gap 

activation in response to an applied magnetic field is also demonstrated.  

 

In a photonic crystal waveguide the phase-matching condition mK 


 , where m is 

the mode order and 



2

K


 for grating period  , can be displayed graphically by 

shifting the dispersion plot by K and looking for the cross-over points.  Due to phase 

matching a band gap opens up at the cross-over points. For fundamental quasi-TE or 

quasi-TM modes no band gap opens up at the cross-over with the corresponding high-

order orthogonal polarization state.  However, in the presence of gyrotropy, for circularly 
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or elliptically polarized forward modes, quasi-TE modes (or quasi-TM modes) acquire 

quasi-TM (or quasi-TE) components, partially activating the latter band gaps. 

 

This band structure is calculated using beam-propagation simulation to find the effective 

indices for a ridge waveguide with an effective ridge height equal to the average 

thickness in the presence of the grating grooves. The mode effective indices for each 

wavelength are calculated. The selected values for the mode indices for quasi-TE and 

quasi-TM for different wavelength are listed in Table 3.7. ‘WL’ in the table stands for 

wavelength.  

 

Fig. 3.31 plots frequency versus waveguide-mode wave-vector for quasi-TE and quasi-

TM bands computed for ridge waveguides of the same ridge width, ridge height, 

thickness and material refractive indices as the fabricated one used in our experiments.  

For the forward propagation waves, wavevector is f
0 and the x axis values can be 

expressed as f
0 ; for the backward propagation waves, due to the space harmonic 

requirement for light to propagate in the grating region, the wavevectors are b
nK   and 

the x axis values can be expressed as  )( b
nK  . Here n is equal to 1, 2, 3 and etc for 

higher order modes. 

 

 

Fig. 3.31 shows the band structures for both quasi-TE and quasi-TM bands. Cross-over 

points between these bands show that waveguide modes of different order become 

degenerate at specific wavelengths and can couple. This coupling satisfies the phase 

matching condition and leads to band gap formation. Due to the very small birefringence 

between quasi-TE and quasi-TM fundamental modes, the band structures for fundamental 

forward and backward quasi-TE and quasi-TM are very close to each other. The inset is 

an example of forward fundamental band couple with backward second order bands. 

When we apply transverse magnetization, we only obtain either TE or TM band gaps as 
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the left figure in the inset. When we apply longitudinal magnetization, previous TE and 

TM bands are transformed into elliptical bands. Two additional bandgaps opened up due 

to the rotational modes coupling.  

 
Table 3.7 

Calculated quasi-TE and quasi-TM mode indices for different wavelength 
WL 
(nm) 

TE0 TE1 TE2 TE3 TM0 TM1 TM2 TM3 

1480 2.2894 2.2369 2.1475 2.0228 2.2883 2.2292 2.1306 1.9973 
1482 2.2893 2.2362 2.1471 2.0220 2.2882 2.2290 2.1302 1.9965 
1485 2.2893 2.2359 2.1465 2.0210 2.2882 2.2287 2.1295 1.9955 
1490 2.2892 2.2355 2.1455 2.0193 2.2880 2.2281 2.1283 1.9937 
1500 2.2889 2.2346 2.1435 2.0157 2.2877 2.2273 2.1260 1.9902 
1474 2.2886 2.2333 2.1407 2.0108 2.2873 2.2256 2.1228 1.9848 
1476 2.2885 2.2331 2.1403 2.0103 2.2873 2.2254 2.1224 1.9841 
1480 2.2884 2.2328 2.1396 2.0089 2.2872 2.2250 2.1215 1.9826 
1482 2.2884 2.2326 2.1391 2.0082 2.2871 2.2248 2.1210 1.9819 
1485 2.2883 2.2323 2.1385 2.0072 2.2870 2.2246 2.1202 1.9810 
1495 2.2880 2.2314 2.1366 2.0037 2.2867 2.2234 2.1180 1.9773 
1505 2.2878 2.2305 2.1346 2.0003 2.2864 2.2223 2.1152 1.9736 
1508 2.2877 2.2302 2.1339 1.9992 2.2864 2.2220 2.1147 1.9725 
1510 2.2877 2.2301 2.1335 1.9988 2.2863 2.2218 2.1145 1.9719 
1512 2.2876 2.2299 2.1331 1.9979 2.2862 2.2215 2.1142 1.9710 
1515 2.2875 2.2296 2.1325 1.9968 2.2861 2.2213 2.1132 1.9702 
1525 2.2873 2.2287 2.1305 1.9934 2.2859 2.2202 2.1109 1.9665 
1530 2.2872 2.2282 2.1295 1.9916 2.2857 2.2196 2.1098 1.9647 
1531 2.2871 2.2281 2.1293 1.9920 2.2852 2.2197 2.1095 1.9644 
1532 2.2871 2.2280 2.1291 1.9910 2.2856 2.2195 2.1093 1.9642 
1533 2.2871 2.2279 2.1289 1.9912 2.2856 2.2193 2.1091 1.9638 
1540 2.2869 2.2273 2.1274 1.9883 2.2854 2.2186 2.1075 1.9613 
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Figure 3.31 Band structure of the magneto-photonic crystal for transverse 
magnetization. The inset is an example of forward fundamental band couple with 
backward second order bands.  
 
This band structure is calculated for transverse magnetization by numerical simulation.  

Mode indices are computed on the basis of the correlation method for propagating modes 

and plotted against frequency. These indices are evaluated as a function of wavelength 
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for a ridge waveguide structure of the same dimensions as our fabricated waveguides 

with 600 nm-waveguide ridge step and 5µm-ridge-width for all waveguide modes.  The 

film height is determined from scanning-electron micrographs of the ridge waveguide 

cross section for an average film top near the mid-point between a grating groove ridge 

tip and trough.  Excellent correspondence is obtained between the measured mid-point 

values of TE and TM stop bands for all waveguide modes and the cross-over points of 

fundamental and backscattered mode bands. The calculated mid-band wavelengths are 

obtained from the plot, listed in Table 3.8. 

Table 3.8 
Rsoft calculation of mid-band wavelengths 

 
Fundamental 

0 (nm) 
First-order 

1 (nm) 
Second-order 

2 (nm) 

Quasi-TE 1572.5 1552.3 1520.8 
      Quasi-TM  1570.3 1548.1 1513.8 

 
 

Very good agreement with the experimentally measured spectra is obtained as can be 

seen by comparing compared to experimental data listed in Table 3.3and 3.7. The 

differences are within the experimental uncertainty. The accuracy of the calculated cross-

over wavelengths as compared to the measured mid-band wavelengths equals 
10

1
  of the 

experimental bandwidth for TE stop bands and  
5

1
for TM stop bands.  The experimental 

bandwidth scale is taken to be the width of the stop band centered at 1522 nm for TE 

gaps and at 1515 nm for TM gaps. 

 

For the samples used in this work, the grating groove depth h=720nm is much smaller 

than the film thickness d =2.7µm.  According to equations 2.45 and 2.46, the TE-TE and 

TM-TM coupling coefficient between modes n and m for first-order Bragg reflection can 

be calculated.  
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Given the coupling coefficients   for a relief grating used in our magneto-photonic 

crystal waveguides corresponding to different modes coupling, we compute the power-

transfer efficiency and the amplitude of the backward propagating TE and TM waves.  

 

The power transfer efficiency between forward and backward propagating modes is a 

function of the coupling coefficients between the specific modes in question and the 

phase mismatch )( Kfb    according to equation 2.48. Calculated stopbands for 

both TE and TM coupling between different-order are shown in Fig. 3.32.  Very good 

agreement with the experimentally measured spectra is obtained as can be seen by 

comparing Fig. 3.25 and Fig. 3.32.  

The accuracy of the calculated cross-over as compared to the measured mid-band 

wavelengths equals 0.48 nm for the TE stop bands and 0.2 nm for TM stop bands. 

Fig. 3.25 shows the experimental transmittance for vertical and horizontal input 

polarizations for a transverse magnetic field.  Notice that for high-order mode 

backscattering quasi-TE and quasi-TM bands form spectrally separate depending on the 

input polarization.  The activation of Faraday rotation gyrotropy by switching the 

magnetization to the longitudinal direction induces a polarization rotation and band gap 

activation.  Thus, for a TE input, for example, the TM stop band is accessible for 

longitudinal magnetic fields due to TE-TM mode coupling.  These results show that 

quasi-TE and quasi-TM stop bands can be activated by enabling or disabling gyrotropic 

mode coupling through magnetic field control. 

 

The band structure depicted in Fig. 3.31 shows that for the present photonic crystal 

waveguides, gyrotropic band gaps form between asymmetrically coupled forward and 

backscattered modes.  Moreover, gyrotropic mode splitting leads to degeneracy lifting of 

the band gap edges.  The gyrotropic degenerate bandgaps predicted in [128] are thus 

partially split in the present configuration leading to a widening of the band gaps for 

elliptically-polarized Bloch modes upon longitudinal magnetization, as observed in Fig. 

3.27. 
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Figure 3.32 Calculated stop bands for both TE and TM coupling between different-
orders.  Gray color shows TE stop bands, black shows TM stop bands. 
 
 

Polarization-degenerate band gaps of the type predicted by Merzlikin et.al., [128] that is, 

band gaps that reflect arbitrarily-polarized light suffer the following transformation in the 

waveguide system investigated here.  First the quasi-TE and quasi-TM component-mode 

gaps appear in adjacent and possibly overlapping spectral regions, as displayed for first- 

and second-order mode back-reflection in Fig. 3.27. Thus, upon longitudinal 

magnetization the stop bands become wider, as they now encompass back-reflection of 

both types of polarization states (quasi-TE and quasi-TM).  Secondly, the optical power 

is only partially reflected inside the gap, depending on the power distribution between 

different polarization components incident on the photonic crystal. Hence gyrotropic 

degenerate band gaps become gyrotropic quasi-degenerate band gaps, since arbitrary 

polarization is back-reflected but only partially (Fig. 3.27) or in adjacent but not fully 

overlapping spectral regions. This is the waveguide manifestation of gyrotropic 

degenerate band gaps.   
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3.3.5 Application: gyrotropic photonic crystal waveguide 

switches 

Functional photonic crystals fabricated in iron garnet films are shown to provide 

magnetically-controllable optical switching. Transverse-electric and transverse-magnetic 

stop band separation in conjunction with optical gyrotropy are utilized to selectively 

block and transmit near-infrared light in waveguide geometries. Geometrical 

birefringence allows the simultaneous low- and high-birefringence in different modes 

necessary to create band gap separation and effective magneto-optic gyrotropy in a single 

device. This section introduces magneto-photonic crystal optical switches fabricated on 

chip in Bi0.8Gd0.2Lu2.0Fe5O12 films with a specific Faraday rotation of 83°/mm at 1510 

nm.  

 

To produce the optical switches, one-dimensional magneto-photonic crystals are 

fabricated into multimode waveguides can be considered as a functional optical switch. 

This design was discussed in the last section. Single-mode waveguides are not required. 

Rather, the devices work best in a multimode configuration. 

 

The switch consists of a feeder section, 900 µm in length, followed by the photonic 

crystal, as shown in Fig. 3.33. The waveguide feeder acts as a magnetically-activated 

polarization rotator, as the fundamental mode in this section has very low linear 

birefringence. 

 

The optical switch operates as follows. Light is coupled into the fundamental mode from 

the input facet on the far side to the photonic crystal to allow for sufficient polarization 

rotation due to TE-TM mode coupling upon longitudinal magnetization. No TE-TM 

coupling occurs for transverse magnetization. Ideally the device should impart 90° of 

Faraday rotation in the feeder section, without any linear birefringence. Birefringence-

free Faraday rotator waveguides have already been demonstrated in magnetic garnet 

films. End-fire coupling centered on the input facet delivers better than 95% of the 
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guided power into the fundamental mode in the multimode waveguide. Power 

distribution into different modes is calculated by beam-propagation simulation.  

 

Based on the Table 3.5 and 3.6, it is the large linear birefringence of the non-fundamental 

modes that enables the selective transmission and reflection required for optical 

switching in this device, as quasi-TE and quasi-TM band gaps are spectrally separate. 

The mode indices and birefringence in the feeder are different from the photonic crystal 

region due to the lower effective thickness of the grating section as compared to that of 

the feeder.  

 

 

Figure 3.33 Schematic depiction of gyrotropic waveguide-switch with one 
dimensional magneto-photonic crystal. A magneto-optic feeder section precedes the 
band gap structure. A scanning-electron micrograph of the magneto-photonic 
crystal on the ridge waveguide is also shown. 
 

It is well known that anisotropy may suppress the magneto-optic rotation.[104] But in our 

case the fundamental mode birefringence parameter nn  in the feeder section is smaller 

than the magnitude of the off-diagonal component of the dielectric tensor  /nF


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because the small stress birefringence is of opposite sign to the geometrical birefringence 

and lowers the fundamental mode birefringence n  to 0.0005  0.0003 in the feeder. 

This allows for effective quasi-TE to quasi-TM coupling (Faraday rotation) for 

longitudinal magnetization along the ridge waveguide axis. Here n


 is the average 

refractive index )(
2

1
TMTE nn  , TMTE nnn   and F is the specific Faraday rotation.  

 

A comparison of the mode birefringence parameter n)/(   with the specific Faraday 

rotation 0.00145 radians/µm shows that TE-TM mode coupling operates for the 

fundamental mode, with n)/(   equal to 0.00105 per m at 1550 nm wavelength, and 

is progressively suppressed at higher-order modes with n)/(  =0.0097, 0.0244, and 

0.0426 per µm for first, second, and third-order modes, respectively. 

The top picture in Fig. 3.34 shows the transmittance spectrum for transverse 

magnetization for a vertical and horizontal polarization inputs, evincing that quasi-TE 

and quasi-TM stop bands are separate in high-order back reflection. The bottom picture 

in Fig. 3.34 displays the measured transmittance of a typical device for transverse in-

plane (gray spectrum) and longitudinal (black spectrum) magnetization for horizontal (in-

plane) input polarization. Longitudinal magnetization is collinear with the waveguide 

axis.  

 

In all cases most of the forward propagating power is in the fundamental waveguide 

mode. The spectra are normalized to the output power of a ridge waveguide (magnetized 

in the corresponding direction) without a photonic-crystal pattern, of the same ridge-

width on the same sample. 

 

Notice that the quasi-TE (horizontal-polarization input) and quasi-TM (vertical-

polarization input) stop bands occur at different wavelengths for high-order backscatter 

modes. Hence quasi-TE light will be transmitted efficiently at the quasi-TM stop band 

and vice-versa. Fig. 3.35 shows the output image for longitudinal (a) and transverse (b) 
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magnetization at 1522.8 nm wavelength for a horizontally-polarized input. A small 

electromagnet pictured in Fig. 3.36 is used to switch the magnetization.  

 

Figure 3.34 Transmittance spectra for transverse (gray) and longitudinal (black) 
magnetization for horizontally polarized input. The top picture displays 
transmittance spectra for transverse magnetization and vertical input (quasi-TM) 
and horizontal input (quasi-TE), showing separation of the corresponding stop 
bands. The spectra are normalized to the transmittance of a ridge waveguide 
without photonic crystal pattern. 
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The magnetic field is generated and controlled by a set of homemade magnetic coils 

equipped on the sample stage. Both longitudinal and transversal magnetic field can be 

generated by applying current through different sets of copper coils. A programmable 

power supply (Instek PSM-3004) is used to generate a self-stabilized step current with 

1mA precision. Tests on ten different magneto-photonic crystal devices fabricated on 

three different samples exhibit similar spectra. 

 

 

Figure 3.35 Transmitted light through the magneto-photonic crystal optical switch 
at 1482.8 nm wavelength. The input polarization is horizontal. (a) is for longitudinal 
magnetization; (b) is for transverse magnetization. 
 

 

Figure 3.36 The electromagnet on sample holder used to switch the applied 
magnetic field from collinear to transverse relative to the ridge waveguide axis. 
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For a TE input and longitudinal magnetization the optical power transmitted at the quasi-

TE stop bands is significantly higher than for transverse magnetization, due to the 

polarization rotation induced by the gyrotropy. We estimate that for a longitudinal 

magnetization the power transfer to the quasi-TM mode is 85% in the 900 µm waveguide 

feeder section before entering the photonic crystal. This rotation activates the optical 

transmission through the quasi-TE stop band, corresponding approximately to the 

observed transmittance in the band.  

 

Both quasi-TE and quasi-TM light are back-reflected at the Bragg condition for the 

corresponding modes. For a horizontal-polarization input and transverse-magnetization, 

optical transmission is blocked with 11.5 dB efficiency in the fabricated devices at the 

quasi-TE stop bands, excluding losses in the grating section. This provides a measure of 

the dark-state of the switch. Grating losses are about 1 dB at 1530 nm. Upon switching to 

a longitudinal magnetization direction the optical polarization rotates as a result of the 

Faraday effect modified by the linear birefringence since forward propagating light is in 

fundamental mode, with low linear birefringence. Upon Faraday rotation the forward 

propagating mode passes through the quasi-TE stop band for a transmission state. Fig. 

3.35 shows light and dark images obtained upon switching the magnetization from 

longitudinal to transverse directions at a wavelength of 1522.8 nm, corresponding to 

fundamental to second-order backscattering. 

 

The overall efficiency of the device can be characterized by the ratio of transmitted 

power in the “on” and “off” states. We estimate this number to be about nine at 1522.8 

nm. Improvements can be achieved by better tuning the birefringence to zero in the 

fundamental mode, adjusting the length of the waveguide feed section to achieve full TE 

to TM conversion in the longitudinal-field configuration before the light enters the 

photonic crystal, and enhancing the grating coupling constant for stronger light rejection 

at extinction. The insertion loss of a typical device in transmission is estimated at 5.4 dB. 
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This figure includes Fresnel reflection, absorption and grating losses and radiation losses 

due to fiber to ridge waveguide mode mismatch. 

 

3.3.6 Transmission measurement and analysis on additional 

samples 

According to the previous data and analysis, functional magnetically-controllable optical 

switches can be fabricated. The stop band positions depend on the Bragg condition, 

which means the periodicity of the photonic crystal has also a major effect on the 

bandgap positions. Besides the controllability through the magnetic field, we can also 

fabricate photonic crystals on the magnetic thin film with different periodicities to control 

the stopband positions. In this way, the same switching phenomena can be observed on 

these samples at different frequencies. We can design and fabricate magnetically 

controlled photonic crystals switches according to frequency switching requirement. In 

the following paragraphs, transmittance analysis for grating structures with different 

periods is demonstrated. 

 

Magneto-photonic crystals were fabricated in multi-mode waveguides with the same 

conditions as the sample used in the previous demonstrations. The slab waveguide film is 

2.75  0.05 m thick with a composition Bi0.8 Gd0.2 Lu2.0 Fe5 O12.Waveguide ridges with 

600 nm ridge height are patterned on the film by standard photolithography and plasma 

etching. A one-dimensional photonic crystal is formed by focused ion beam milling with 

grating grooves are 720 ± 25 nm-deep. Ridge waveguides are 1.2 mm-long with the 

photonic crystal structure (200 m in length) positioned 100 m away from one of the 

facets. Thus the feeder section and photonic crystal region have the same refractive index 

parameters as listed in Table 3.5 and 3.6. However, the one dimensional magneto-

photonic crystals used for the following transmittance measurement have different 

periodicities.  
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Figure 3.37 Stop band spectra obtained experimentally for both transverse and 
longitudinal magnetization on the photonic crystal with a period of 345 0.3 nm. 
With transverse magnetization, black is for horizontal and gray is for vertical input 
polarization.  With horizontal input polarization, black is for transverse 
magnetization and the red is for longitudinal magnetization.  The spectra 
correspond to two different waveguides on the same sample. 
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When the grating has a period of 345.15 ± 0.3 nm, multiple transmittance spectra are 

measured under different conditions, as shown in Fig. 3.37.  Experimentally measured 

transmittance spectra for transverse magnetization are shown as gray and black spectra in 

Fig. 3.37. Black is for horizontal and gray is for vertical input polarization.  The spectra 

are normalized to the output power of a ridge waveguide without photonic crystal pattern.  

Notice that the quasi-TE and quasi-TM stop bands are shifted relative to each other for 

high-order backscattering. 

 
Fig. 3.37 also evinces stopband spectra obtained experimentally for transverse 

magnetization (black) and longitudinal (red) magnetization for horizontal input 

polarization.  The spectra correspond to two different waveguides on the same sample. 

The opening up of a quasi-TM bandgap for light originally launched as horizontal 

polarization is observed at different frequencies.   

 

When the grating has a period of 347.45 ± 0.3 nm, multiple transmittance spectra are 

measured under different conditions, as shown in Fig. 3.38.  The opening up of a quasi-

TM bandgap for light originally launched as horizontal polarization is observed at 

different frequencies.   

 

The center-wavelengths of the stopbands for quasi-TE and quasi-TM transmittance on 

these two photonic crystals with different periods are different from previous data. 

According to Fig. 3.37 and 3.38, the center wavelength positions of the stop bands clearly 

shown within 1480nm to 1580 nm range are listed in Table 3.9 and Table 3.10 

respectively. 

Table 3.9 
The center positions of stopbands for Quasi-TE and Quasi-TM  

transmittance spectra 

 
Fundamental 

0 (nm) 
First-order 

1 (nm) 
Second-order 

2 (nm) 

     Quasi-TE 1579.2 1559.1 1526.2 
Quasi-TM  1578.23 1523.5 1518.61 
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Figure 3.38 Stop band spectra obtained experimentally for both transverse and 

longitudinal magnetization on the photonic crystal with a period of 347.45 0.3 nm. 

With transverse magnetization, black is for horizontal and gray is for vertical input 

polarization.  With horizontal input polarization, black is for transverse 

magnetization and the red is for longitudinal magnetization.  The spectra 

correspond to two different waveguides on the same sample. 
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Table 3.10 
The center positions of stopbands for Quasi-TE and Quasi-TM  

transmittance spectra 

 
First-order 

1 (nm) 
Second-order 

2 (nm) 
Third-order 

3 (nm) 

     Quasi-TE 1569.48 1528.63 1487.27 
Quasi-TM  1559.54 1516.59 N/A 

 
The same analysis as discussed in section 3.3.3 can be applied. These experimental 

results also show good agreement with the Bragg condition and calculated effective 

indices.  Discrepancies fall within the experimental uncertainty. The opening up of a 

quasi-TM bandgap for light originally launched as horizontal polarization can be 

observed at different frequencies.   

 

The purpose of this section is to demonstrate the period dependence of the photonic 

bandgaps and the on-off switching phenomena. The functional magnetically controlled 

optical switches can be used to control the on and off state of light propagation at 

different frequencies based on the period of the structures. 

 

3.3.7 Conclusion 

In conclusion, the multi-stopbands in transmission spectrum of a MPC on the waveguide 

are observed, according the Bragg condition of forward fundamental mode coupled to 

backward fundamental and higher order waveguide modes. The number of stopbands 

corresponds with the number of modes supported by the waveguide. This character is not 

present in the stack model. The waveguide mode indices for different wavelength are 

calculated by BeamPROP simulation. The band structures are plotted based on these data. 

The corresponding wavelength of intersection points for forward and backward bands 

have good agreement with the mid-bandgap positions from experiments.  
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This section also studies and analyzes the magnetic control of band gap activation in one-

dimensional photonic crystals. Different forward-propagating waveguide modes are built 

up by enabling or disabling the gyrotropic coupling between quasi-TE and quasi-TM 

polarization states.  These forward propagating waves hybridize with high-order 

backscattered modes at different wavelengths satisfying the Bragg condition for 

asymmetric coupling. The band gaps thus formed reject or partially allow the 

transmission of different polarization states depending on the direction of the applied 

magnetic field.  Geometrical birefringence plays an important role in the magneto-optic 

response of these photonic crystals partially breaking the gyrotropic degeneracy reported 

for stacked gyrotropic photonic crystals. [128]  

 

A magnetically controlled optical switch based on TE/TM band gap separation in 

magneto-photonic crystal waveguides has been demonstrated. Fundamental mode 

Faraday rotation upon longitudinal magnetization together with back-scattering into high-

birefringence non-fundamental modes for transverse magnetization is shown to 

selectively block and transmit infrared light. Functional photonic crystals fabricated in 

iron garnet films are shown to provide magnetically-controllable optical switching. 

According the different periodicities for the structure, this switching property can be 

demonstrated at different frequencies.  

 

3.4 Two dimensional magneto-photonic crystals 

Most early works dealing with magneto-photonic crystals have been either devoted to 

study of one dimensional structures [24, 25] or quasi-one-dimensional models [150]. The 

potential impact of magneto-optical activity in two- or three-dimensional periodic 

systems remains rather unexplored. [159, 160] The purpose of this project is to initiate an 

investigation and begin to fill in the gap in understanding of the basic properties of two-

dimensional magneto-photonic crystals (MPC). Two-dimensional MPC structures were 

successfully fabricated as part of the work reported here through FIB milling technology 
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on the substituted iron garnet waveguide. Some initial work such as optical transmission 

and Faraday rotation response has been tested on the samples. Obvious multi-stopbands 

and enhancement of Faraday rotation effect are observed experimentally. In this section 

we present a simulation study to analyze band structures for two dimensional magneto 

photonic crystals on slab waveguide as well as the results of fabrication and testing 

structures.  

3.4.1 Experimental background 

Epitaxial bismuth and gadolinium substituted lutetium iron garnet BiLuIG planar thin 

films grown on (100) oriented gadolinium gallium garnet Gd3Ga5O12 substrates by liquid 

phase epitaxy is used in these experiments.  In terms of composition and properties the 

thin planar films used are all approximately similar to the ones used for one dimensional 

photonic crystal fabrication. The approximate composition is Bi0.8Gd0.2Lu2.0Fe5O12. We 

characterize the BiLuIG planar thin film by prism coupler measurement. The film 

thickness is 2.77µm and film index is 2.315. Prism-coupling measurements on the slab 

before surface patterning reveal modal indices 2.301, 2.26066, 2.19108 and 1.965 for the 

fundamental, first-, and second-, third-, forth-order TE modes, at 1503nm wavelength, 

respectively. And the modal indices are 2.346, 2.258, 2.1825, 2.0741 and 1.94 for the 

fundamental, first-, and second-, third-, forth-order TM modes, at 1503nm wavelength, 

respectively.  The Faraday rotation per unit length in the material is about 137°/mm.  

 

The most straightforward design is to simply fabricate a 2d-periodic crystal on a slab 

waveguide. A schematic depiction of the design is shown in Fig. 3.39. The two 

dimensional photonic crystals are periodic along x and z directions. This crystal can have 

photonic bandgaps in the xz plane. Unlike one-dimensional photonic crystals, this two 

dimensional photonic crystal strcuture can prevent light from propagating in any 

direction within the plane. Such a structure can confine light vertically within the slab via 

index guiding, a generalization of total internal reflection—this mechanism is the source 

of several new tradeoffs and behaviors of slab systems compared to their 2D analogues. 
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Ridge waveguides on the magnetic iron garnet films which is used to guide light from 

laser source into slab waveguide are fabricated by photolithography and dry etching. 

Photonic crystals are patterned on the slab waveguide by focused ion beam milling. Fig. 

3.40 is an SEM image of two dimensional photonic crystal patterns fabricated on 

magnetic garnet slab waveguides. Mechanical polishing is used to polish the output facet 

close to photonic crystal region in order to reduce the scattering loss from facet roughness 

and the propagation loss in the slab waveguide. 

 

 

Figure 3.39 Sketch of the mechanism for design. 
 

 

Figure 3.40 Top view of two dimensional photonic crystal on slab waveguide. 
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The input light travels through a ridge waveguide of width from 7µm to 10µm and length 

around 1mm. Then the light couples into the two-dimensional photonic crystal. The 

photonic crystal interacts with the light and controls the light propagation. Output light 

can be detected by the optical setup and precise measurements of transmittance and 

Faraday rotation can be effected. 

 

A top view of the structure is shown in Fig. 3.41. The red dots are square air holes with 

adjustable side length. The orange arrows show the light scattered in the photonic crystal 

structure. The total dimensions of the structure are determined by light scattering after the 

ridge waveguide in order to make sure the light can propagate in the photonic crystal 

structures in the slab waveguide. The approximated dimensions can be calculated. For 

approximation,  =1.5µm is used which is within the wavelength used in the optical test.  

L

WW

W 2
tan 12

1




                                                     (3.9) 

Here, W1 is the width of ridge waveguide. W2 and L are the width and length of the 

photonic crystal respectively. Using this equation, the approximated size of the photonic 

crystals can be decided. 

 

 

Figure 3.41 Schematic top view of design 2D structure. 

 

3.4.2 Measurement results and analysis 

We initiated actual measurements of transmittance and polarization rotation on these two 

-dimensional photonic crystals. The multi-stopbands and Faraday rotation responses are 

observed in the magneto-photonic crystals.  
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In order to make sure the response is coming from the MPC structures instead of slab 

waveguide itself a null test was performed. Fig. 3.42 shows the transmittance (black) and 

polarization rotation (gray) for light passing through a 6 um waveguide without the two-

dimensional photonic crystal at the end.  In other words, this is a null test.  It shows no 

stopbands and no special polarization rotation features, except for fringes.   

 

The polarization rotation is defined as the position of the semi-major axis of the 

polarization ellipse at the output.  The rotation is magneto-optically active in the sense 

that it reverses sign when the magnetic field is reversed (all these data are taken with a 

magnetic field in the direction of propagation or opposite to it).  The reversal is not 

always perfectly symmetrical:  The data in the presence of the photonic crystals below 

give the rotation for both magnetization directions.  The input polarization is linear and 

oriented at zero degrees to the horizontal (TE).    
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Figure 3.42 Transmittance spectrum and Polarization rotation response for pure 
waveguide. The gray line is for Polarization rotation and the black curve is 
transmittance spectrum. 
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Tests on two-dimensional magneto-photonic crystals were carried out on three photonic 

crystal structures with slightly different dimensions. Multi-stopbands are present on all 

these samples.  

 

Similarly to the analysis done for one-dimensional photonic crystals, the patterning on 

the slab slightly modifies the effective index and character of the allowed waveguide 

modes.  Focused-ion-beam milling of the holes on the waveguide reduces the average 

thickness of the optical channel and further modifies the mode indices. The mode index is 

the average quantity depending on the hole-depth and film thickness for the patterned 

region. Approximately the average thickness the photonic crystal area is used to calculate 

the effective indices for the region. The average thickness is the film thickness as 

modified by the FIB milling. By the same correlation method, the slab waveguide height 

is modified to match the average film thickness for the grating area in order to 

approximate the effective mode indices for the grating region. 

 

Effective thickness and effective indices for the TE modes in the photonic crystal region 

are determined by numerical simulation in conjunction with Bragg-reflection data 

analysis. Mode indices are computed by beam-propagation analysis of a simulated slab 

waveguide having the effective film thickness and material index as the fabricated 

structure.  

 

Considering the hole depth, the average effective thickness is allowed to range within the 

experimentally determined uncertainty in measured thickness. Since the hole-depth could 

be vary from 300 nm to 1000nm. The effective thickness of the film on the photonic 

crystal region can be varied from 2.27 µm to 2.52 µm. Minor adjustments in the thickness 

values are allowed to fit the experimentally measured stop band. 
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3.4.2.1 Test and analysis on one 2D MPC 

Fig. 3.43 shows normalized transmittance spectra on a two-dimensional photonic crystal.  

The light is launched from an 8µm wide ridge waveguide. The size of the square air hole 

is 250 nm X 250nm.  Normalization is to the output of a waveguide without photonic 

crystals. 

 

Mode indices and band structure are calculated using beam-propagation simulation to 

find the effective indices for a slab waveguide with the same material index and an 

effective slab height equal to the average thickness in the presence of the photonic 

crystals. In these calculations the average thickness is allowed to range within the 

experimentally determined uncertainty in measured thickness. For a better agreement 

between experimental and simulated data, cross-comparison with the transverse-

magnetization stop band spectrum shown in Fig. 3.43 is used to determine the average 

thickness of photonic crystal region and the real period of the structure. The effective 

film thickness is chosen to be 2.27 um which is within the effective thickness variation.  
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Figure 3.43 Normalized transmittance spectra for the first sample. 
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The mode effective indices for each wavelength are calculated. The selected values for 

the mode indices for TE and different wavelength are listed in Table 3.11. The band 

structures for TE bands from simulation are shown in Fig. 3.44. Cross-over points 

between these bands show that waveguide modes of different order become degenerate at 

specific wavelengths and can couple. This coupling satisfies the phase matching 

condition and leads to band gap formation. The period for photonic crystal in the 

propagation direction is 340.92 nm.  

Table 3.11 
Calculated TE mode indices for different wavelength 

WL 
(nm) 

TE0 TE1 TE2 TE3 

1480 2.291818 2.237394 2.145284 2.015257 
1490 2.2916 2.236521 2.143301 2.01213 

1500 2.291381 2.235644 2.14131 2.008651 

1505 2.291271 2.235205 2.140307 2.006636 

1510 2.291161 2.234764 2.139309 2.005272 
1520 2.290941 2.23388 2.137304 2.001815 
1530 2.290719 2.232992 2.135273 1.998542 
1535 2.290607 2.232547 2.13426 1.996361 
1540 2.290496 2.2321 2.133243 1.994789 
1545 2.290384 2.231654 2.13223 1.993521 
1550 2.290272 2.231205 2.131206 1.991521 
1555 2.29016 2.230756 2.130188 1.989846 
1560 2.290047 2.230306 2.129166 1.988149 
1565 2.289935 2.229855 2.128141 1.986267 

 

Both Fig. 3.43 and Fig. 3.44 display three discernible stopbands. The center wavelengths 

of the first three stop bands clearly show within 1480nm to 1540 nm range. They are 

listed in Table 3.12. 

Table 3.12 
The center positions of stopbands for experimental and calculated data. 

TE 
Fundamental 

0 (nm) 
First-order 

1 (nm) 
Second-order 

2 (nm) 

     Experimental 1561.61 1542.06 1510.61 
Calculation  1561.5 1542.3 1510.2 

Difference 0.11 0.24 0.41 
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Very good agreement with the experimentally measured spectra is obtained. The 

accuracy of the calculated cross-over as compared to the measured mid-band 

wavelengths equals 
10

1
  of the experimental bandwidth 5.53nm. This experimental 

bandwidth scale is taken to be the width of the stop band centered at 1510.61 nm. For 

better comparison, the transmittance and rotation are plotted together in Fig. 3.45. The 

gray is transmittance spectrum. Pink and red lines are polarization rotation tested 

applying a magnetic field in opposite directions.  

 

Figure 3.44 Band structure of the magneto-photonic crystal for transverse 
magnetization. The intersection points of bands are the mid-bandbap positions. 
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Figure 3.45 Transmittance spectra and Polarization rotation with different magnetic 
field directions. 
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3.4.2.2 Test and analysis on more 2D MPCs 

Two dimensional photonic crystals of different sizes were fabricated in order to study 

how the size of the air hole affects width of the stopbands. The sample has the side length 

of the square air holes 280nm and the width of guiding ridge waveguide is 10µm. Fig. 

3.46 shows the normalized transmittance spectra on this two-dimensional photonic 

crystals.  For better comparison, the rotation spectra are plotted together in this figure. 

The gray is transmittance spectrum. Pink and red lines are polarization rotation tested 

applying magnetic field in opposite directions. The band width of this structure is slightly 

larger than that of the last sample. The largest rotation at the peak is around 20 degrees 

bigger than those outside stopband. 

 

From the cross-comparison analysis, the effective thickness of photonic crystal region is 

the same as the first sample 2.27 µm. The band structures for TE bands from simulation 

are shown in Fig. 3.47. Cross-over points between these bands show that forward and 

backward waveguide modes coupling satisfy the phase matching condition and lead to 

band gap formation. The period for photonic crystal in the propagation direction is 

340.23 nm.  

 
Figure 3.46 Transmittance spectra and Faraday rotation with different magnetic 
field directions. 
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Figure 3.47 Band structure of the magneto-photonic crystal for transverse 
magnetization. The intersection points of bands are the mid-bandbap positions. 
 
Both Fig. 3.46 and Fig. 3.47 display three discernible stopbands. The center wavelength 

positions of the first three stop bands clearly show within 1480nm to 1540 nm range. 

They are listed in Table 3.13. 

 
Table 3.13 

The center positions of stopbands for experimental and calculated data 

TE 
Fundamental 

0 (nm) 
First-order 

1 (nm) 
Second-order 

2 (nm) 

     Experimental 1558.78 1539.73 1507.23 
Calculation  1558.5 1539.3 1507.6 

Difference 0.28 0.43 0.37 
 

Very good agreement with the experimentally measured spectra is again obtained. The 

accuracy of the calculated cross-over as compared to the measured mid-band 

wavelengths equals 
20

1
  of the experimental bandwidth 12.06nm. This experimental 

bandwidth scale is taken to be the width of the stop band centered at 1507.23 nm. 
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Another two dimensional photonic crystal was fabricated using a lower line dose as 

compared to the previous two samples. The side length for the square air hole is 250nm. 

The ridge waveguide to launch light is 7µm wide. Fig. 3.48 shows normalized 

transmittance spectra on this two dimensional photonic crystals together with rotation 

spectra. The gray is transmittance spectrum. Pink and red lines are polarization rotation 

tested applying magnetic field in opposite directions. The Faraday rotation appears 

almost symmetrically spectrum with different magnetic field directions and the largest at 

the peak is about 20 degrees bigger compared to that outside the stopband. 

 

Figure 3.48 Transmittance spectra and Faraday rotation with different magnetic 
field directions. 
 
From the cross-comparison analysis, the effective thickness of photonic crystal region is 

the same as the first sample 2.50 µm. This is reasonable. Because with less line dose, the 

thickness reduced by overlapped milling and the hole depth are less than those with larger 

line dose, the overall effective thickness should be larger. The mode effective indices for 
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each wavelength are calculated. The selected values for the mode indices for TE and 

different wavelength are listed in Table 3.14.  

Table 3.14 
Calculated TE mode indices for different wavelength 
WL 
(nm) 

TE0 TE1 TE2 TE3 

1485 2.294558 2.248457 2.170489 2.059633 
1490 2.294465 2.248084 2.169642 2.058098 
1495 2.294372 2.247711 2.168794 2.056695 
1505 2.294185 2.246962 2.167091 2.053534 
1520 2.293902 2.245832 2.16452 2.048996 
1525 2.293807 2.245454 2.16366 2.04745 
1530 2.293713 2.245075 2.162796 2.046029 
1535 2.293618 2.244695 2.161929 2.044379 
1545 2.293427 2.243934 2.16019 2.041384 
1555 2.293235 2.243169 2.158444 2.038042 
1560 2.293139 2.242785 2.157571 2.036747 
1570 2.292947 2.242015 2.155817 2.033682 
1575 2.29285 2.241629 2.154939 2.032002 
1580 2.292753 2.241242 2.154058 2.030506 

 

The band structures for TE bands from simulation are shown in Fig. 3.49. The period for 

photonic crystal in the propagation direction is 343.7 nm.  

 
Figure 3.49 Band structure of the magneto-photonic crystal for transverse 
magnetization. The intersection points of bands are the mid-bandbap positions. 
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Both Fig. 3.48 and Fig. 3.49 display four discernible stopbands. The center wavelength 

positions of the first three stop bands clearly show within 1480nm to 1540 nm range. 

They are listed in Table 3.15. 

 

Table 3.15 
The center positions of stopbands for experimental and calculated data. 

TE 
Fundamental

0 (nm) 
First-order 

1 (nm) 
Second-order 

2 (nm) 
Third-order 

3 (nm) 

Experimental 1577.13 1559.06 1528.73 1494.2 

Calculation  1576.5 1559.5 1531.1 1495.2 

Difference 0.63 0.44 2.37 1 

 

Again very good agreement with the experimentally measured spectra is obtained. The 

accuracy of the calculated cross-over as compared to the measured mid-band 

wavelengths equals 
6

1
  of the experimental bandwidth 13 nm. This experimental 

bandwidth scale is taken to be the width of the stop band centered at 1494.2 nm. 

 

3.4.3 Conclusions and possible improvement in 

fabrication and future work 

Two dimensional MPC structures in the substituted iron garnet waveguide have been 

successfully fabricated through FIB milling technology. The optical measurements 

including optical transmission and Faraday rotation response have been tested. Obvious 

multi-stopbands and enhancement of Faraday rotation effect are observed experimentally. 

The observation of multi-stopband in different sample makes sure photonic crystals play 

the role of modifying the propagation of light in the slab waveguide. The origin of the 

multi-stopbands is the couplings between forward and backward waveguide modes. The 

Bragg condition is used to analysis the stopband positions. Very good agreement for the 

stopband positions between experimental and simulation is obtained.  
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Experimentally, the method of launching the light into the hole-array pattern can be 

improved. For the work I have done so far, 7µm to 10µm wide ridge waveguides are used 

to launch the beam onto a two-dimensional hole-array patterned on BiLuIG slab 

waveguides. There exist diffraction effects after the light leaves the ridge waveguide and 

strikes the photonic crystals. Considering the diffraction into the theoretical analysis, 

presents additional complications. If a planar collimated beam is launched, the analysis 

can be simplified. In order to launch a planar collimated beam in the slab and measure 

transmittance and polarization response, an adiabatic taper can be patterned by 

photolithography on the slab to collimate the beam. The beam can be collimated by 

adiabatically tapering out a waveguide to avoid lateral multi-modes. Design of an 

adiabatic taper has been done by taper simulation which is available in commercial 

optical simulation software. Fig. 3.50 shows how light propagates in such a taper. Fig. 

3.51 shows the light intensity of light propagation through taper structure and keep 

collimated after coupling into space.   

 

Figure 3.50 Light propagation in the taper simulated in Rsoft. 
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Figure 3.51 The light intensity of light propagation through taper. 

  

Based on simulation results, there are several taper structures which can launch a planar 

collimated beam in the slab waveguide. Fig. 3.52 and Table 3.16 display the designs. 

 

Figure 3.52 Schematic of taper structure 
 

Table 3.16 Parameters of Taper dimensions 

W1(µm) 40 40 40 50 50 50 50 60 60 60 60 

L2(µm) 190 210 240 190 210 230 250 190 200 230 240 

 
A mask with all these taper structures has been designed and prepared by this project. In 

future experimental work, adiabatically taper can be fabricated on a planar magnetic thin 

film first. This step can reduce the uncertainty introduced by the diffraction of light after 

ridge waveguide into slab waveguide with photonic crystals. 

 

Theoretically, both the transmittance, ellipticity and polarization rotation (a mixture 

effect of Faraday rotation and birefringence) spectra have been carefully studied and 
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examined for one dimensional magneto-photonic grating structure. The MPC structure 

highly increases the polarization rotation within stopbands in spite of a reduction in 

polarization linearity and spectra distortion (with appearance of doublets or offsets) due 

to the presence of linear birefringence.  

 

Some initial work such as optical transmission and Faraday rotation response has been 

tested on two dimensional magneto-photonic crystals. Obvious multi-stopbands and 

enhancement of Faraday rotation effect are observed experimentally. In order to study the 

properties two-dimensional magneto-photonic crystals, there are more features needed to 

be analyzed such as the tunability of the bands; the dimensionality of the polarization 

response; the bandwidth of the polarization rotation, transmittance in the bandgaps, 

photonic crystals with central magnetic optical defect and how different design affects 

these properties. 
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CHAPTER 4  

PLANAR GRADIENT PHOTONIC 

METAMATERIALS 

Metamaterials operating at optical frequencies, referred as optical metamaterials or 

photonic metamaterials, require the feature fabricated at subwavelength scale from 50 nm 

to 1000nm. Planar gradient index metamaterials are designed and demonstrated in the 

optical frequencies by numerical simulation through finite-difference time domain 

method in conjunction with electromagnetic retrieval technique. We confirm the gradient 

by simulating the deflection of a light beam by multilayer silver (Ag) and magnesium 

fluoride (MgF2) slab featured with specially designed nano rectangular holes. The planar 

gradient index optical metamaterial we propose can be fabricated by available nano-

fabrication technologies. Optical tests can be performed since the designs are also based 

on the consideration of frequency range available for evaluation. 

 

In this section, we discuss how we combine gradient concept with the fishnet structure 

for the purpose of extending gradient index metamaterials into optical frequencies. We 

design the fishnet unit cell with optimum refractive index range by tuning the unit cell 

dimension. A commercial software package CST MICROWAVE STUDIO (CST), the 

specialized tool for the fast, accurate simulation of high-frequency problems, is mainly 

used to calculate transmission and reflection coefficients, known as S-parameters. A 

standard material parameter retrieval algorithm is developed to determine effective 

refractive index from transmission and reflection coefficients [161, 162]. Refractive 

indices as a function of unit cell geometry are used to the map index profile to the 

variation of unit cells. The electric field mapping simulation shows the beam forming 

mechanism. The light beam deflection from planar gradient metamaterial consisting of a 

multilayer Ag-MgF2-Ag sandwich slab featured with specially designed and arranged 

fishnet unit cells is demonstrated. Unlike most of previous metamaterial gradient index 
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designs, first, this is designed to operate in positive index regime away from resonance to 

minimize losses; second, all of the patterned elements are planar which does not require 

volumetric unit cell; third, it is for optical frequencies.   

 

4.1 Simulation techniques 

A variety of theoretical and numerical methods have been employed to study the 

propagation of electromagnetic waves in LH materials. These numerical modeling tools 

are utilized to calculate the transmission properties of finite LH slabs and help gain better 

understanding of the engineered material behavior in the optical wavelengths. A 

background in suitable numerical methods is helpful. 

 

4.1.1 General Considerations for Numerical Modeling 

For electromagnetic simulations, finite-element methods and finite-difference methods 

are attractive, particularly when metals are incorporated. Finite Element Method cuts a 

structure into several elements (pieces of the structure, and then reconnects elements at 

“nodes” as if nodes were pins or drops of glue that hold elements together. It uses the 

concept of piecewise polynomial interpolation. By connecting elements together, the field 

quantity becomes interpolated over the entire structure in piecewise fashion. . In the 

finite-element method, a distributed physical system is often divided into a large number 

of discrete elements. The complete system may be complex and irregularly shaped, but 

the individual elements are easy to analyze. This process results in a set of simultaneous 

algebraic equations. [163] 

For 2D simulations, the finite-difference frequency-domain (FDFD) method is accurate, 

simple to implement, and excellent for modeling complex structures of finite size [164]. 

The transfer matrix method [165] is popular for 2D and 3D structures, especially when 

they contain metals. 
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The main power of this method is its ability to calculate the stationary scattering 

properties such as the complex transmission and reflection amplitudes of finite slabs of 

LH materials. However, this method requires the discretization of the unit cell which 

introduces some numerical artifacts and some constraints into the shape and size of the 

components inside the unit cell. 

 

Finite-difference time-domain (FDTD) [166, 167] is a very powerful tool for modeling 

finite sized devices, large scale structures, and characterizing devices over very broad 

frequency range. It is excellent for the study of transmission through finite slabs since it 

can model almost arbitrary materials combinations and microstructure configuration. It 

has been used in many systems containing dielectric or metallic components.  

 

4.1.2 Scattering Parameters 

S-parameters or scattering are measured by sending a single frequency signal into the 

network or “black box” and detecting what waves exit from each port.  The term 

'scattering' is more common to optical engineering than RF engineering, referring to the 

effect observed when a plane electromagnetic wave is incident on an obstruction or 

passes across dissimilar dielectric media. S-parameters change with the measurement 

frequency so this must be included for any S-parameter measurements stated, in addition 

to the characteristic impedance or system impedance. [168] S-parameters are complex. 

They have magnitude and angle because both the magnitude and phase of the input signal 

are changed by the network, frequency, load impedance and source impedance. 

 

Two ports S parameters are defined by considering a set of incident wave propagating 

through a system. They are defined and measured with the ports terminated in 

characteristic reference impedance. A portion of wave is transmitted through the system 

and a portion is reflected back toward to the source, shown in Fig. 4.1.For a wave 

incident on Port 1, some part of this signal reflects back out of that port and some portion 
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of the signal exits other ports. S11 refers to the signal reflected at Port 1 for the signal 

incident at Port 1. 

 

S21 refers to the signal exiting at Port 2 for the signal incident at Port 1. S11 is the 

reflection coefficient and S21 describes the forward transmission coefficient responding 

port 1. Generally, the transmitted and the reflected wave have the same frequency as the 

incident wave. However, the amplitude and phase of the transmitted and reflected wave 

are changed compared with the incident wave.  

 

Figure 4.1 The mechanism of S parameter. 
 

4.1.3 Preliminary simulations by Finite Element Method (HFSS, 

COMSOL) 

HFSS™, a commercial finite element method solver for electromagnetic structures from 

Ansoft Corporation. The acronym originally stood for high frequency structural simulator. 

It is one of the most popular and powerful applications used for antenna design, and the 

design of complex RF electronic circuit elements including filters, transmission lines, and 

packaging.[169]  

 

It is the industry-standard simulation tool for 3D full-wave electromagnetic field 

simulation. HFSS provides- and H-fields, currents, S-parameters and near and far 

radiated field results. Fig. 4.2 shows the design flowchart.  [170] Since metamaterials are 

periodic structure, I only need to design and simulate unit cell structures. First, solution 

types are chosen based on the purpose of our design. Second, the geometry and material 

parameters are chosen. After boundary conditions are applied to the model and the source 

 Port Port 
Incident 

Reflected 
Transmitted 
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ports are excited, we set up solutions and run simulations. By looking into the simulation 

results, we can adjust the set up to optimize the results and designs  

 

 

Figure 4.2 Design flow chart for HFSS simulation 
 

Previously, in order to simulate periodic structures for millimeter wave and microwave, a 

combination of PEC (Perfect Electric Conductor or Perfect E) and PMC (Perfect 

Magnetic Conductor or Perfect H) boundary conditions is used to create a waveguide that 

will force the incident wave on the unit cell to be a plane wave. As shown in Fig. 4.3, it is 

the setup for transmission simulation with unit cell of the periodic structures. The front 

and back of the waveguide are set to be perfect magnetic conduct boundaries; the left and 

right sides are set to be perfect electric conductor boundary conditions; the top and 

bottom are set to be wave ports.   By using PEC and PMC boundaries in this manner, the 

unit cell is effectively "mirrored" to create an infinite array due to the mirroring effect of 

perfect conductors. Once the boundary conditions are setup the model can be excited by 

using waveports. This method works well for millimeter and microwave frequencies. 
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However, when the structure scales down the structure in to nano size structure which 

works in optical frequencies, the software gives meshing errors and aborts simulations.  

 

Figure 4.3 The set up for Waveport method with perfect E and H boundary 
condition  
 
To overcome this issue, a Floquet port in HFSS is exclusively used with planar periodic 

structure and is also suitable for nano-scale simulations. Floquet modes are plane waves 

with propagation direction set by the frequency, phasing and geometry of the periodic 

structure. The analysis of the infinite structure is accomplished by analyzing a unit cell. 

Unit cells for frequency selective surface (FSS) simulations may be constructed using 

Master/Slave boundaries and two Floquet ports, with one port above the plane of the 

structure and one port below as shown in Fig. 4.4.  The reflection and transmission 

coefficient known as S-parameters are direct results. Both magnitude and phase of the 

transmission and reflection coefficients are obtained. References [171, 172] give detail 

steps and examples about how to use Floquet mode. 
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For the millimeter and micrometer dimension structures, both Waveport method and 

Floquet mode method can give accurate results. When it comes to nano size unit cell 

geometry, waveport is not functional. Here is an example of S-parameter calculation for a 

nano-size fishnet structure by Floquet port in HFSS. Fig. 4.5 is the fishnet unit cell 

geometry. The periods in the x- and y-directions are ax = ay = 860nm, the cut-wire pair 

length is Wx = 565nm and the wire width is Wy = 265nm. The structure consists of 

alternating layers of 30nm silver and 50nm alumina. Fig. 4.6 is the transmission and 

reflection coefficients calculated for this structure. The inset is the unit cell dimension.  

 

 

Figure 4.4 The set up for Floquet simulation method 
 
 

Even though HFSS has optical application note, it has some limitations. First, fast 

frequency sweep is not supported in this application note. Interpolating sweep is mostly 

used for frequency information. Second, for optical frequency, the electromagnetic 

properties for metal are no longer the same as bulk metal. We need to set the suitable 

permittivity and permeability for metal. There is no in-built optical material model such 

as Drude-model in HFSS. We are able to find mathematic equations for different material 
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model, but it takes extra efforts to do this while these models are already available in 

simulation software like CST.  

 

 

Figure 4.5 Fishnet unit cell dimension description. ax and ay are the period in x and 
y direction. Wx and Wy are the cure wire length and width. 

 
  

 

Figure 4.6 S-parameters simulated by Floquet port in HFSS. 

ax
ay

Wx

Wy 
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Modeling periodic nanostructures with COMSOL multiphysics is widely applied, as one 

can see from the large number of COMSOL-based papers [173] COMSOL is used to 

calculate reflection, transmission and absorption spectra of periodic perforated nano-film 

in 3D using S-parameters. We can set up a simulation with periodic "Floquet" boundary 

conditions to calculate normalized reflectance, transmittance and absorbance for periodic 

structure. Electromagnetic wave application mode in RF module is used.  S-parameters 

can be obtained by following the instructions. But overall, more complicated steps are 

involved in order to get the unit cell geometry, set boundaries and ports, plot the results 

and all other settings and it is not as convenient to use as HFSS and CST.  

 

4.1.4 Electromagnetic simulation by Finite Different Time 

Domain (CST) 

CST MICROWAVE STUDIO, the specialized tool for the fast, accurate simulation of 

high-frequency problems. CST MWS It enables the fast and accurate analysis of high 

frequency (HF) devices such as antennas, filters, couplers, planar and multi-layer 

structures and SI and EMC effects. It quickly gives you an insight into the EM behavior 

of your high frequency designs. It is exceptionally user friendly and has very flexible way 

to create the shape in the CAD design interface. Many different options exist to create the 

desired models. CST currently offers different kinds of solver modules.[174] Frequency 

Domain solver and Transient Solver are mainly used for planar metamaterial unit cell 

design and full gradient structure design, respectively. 

 

Frequency domain solver delivers electromagnetic near and farfields as well as S-

Parameters, the main task for the frequency domain solver module on my research is to 

calculate S-parameters. It features a special periodic boundary implementation, which 

automatically creates the boundaries for arbitrarily shaped unit cells. The ports are 

equipped with Floquet-mode solvers for highly accurate and fast simulation, and the easy 

analysis of polarization and mode type. [175] 

 



 
157

Once unit cell geometry is created in the CAD window, unit cell boundary conditions are 

set to combine with open boundary conditions in the z-direction; the open boundaries will 

be automatically realized by a Floquet port that allows excitation of a plane wave. The 

list of ports and modes to excite then contains the Floquet ports "Zmin" and "Zmax" as 

well as the names of the Floquet modes, such as "TE (0, 0)" and "TM (0, 0)" for the plane 

waves. Frequency range is set up for the frequency sweep. The list of frequency samples 

allows you to easily define the number, interval, and sampling method of frequency 

domain solver simulation points by entering values in the corresponding columns. 

Frequency domain calculation starts and the 1-D and 2 or 3 D plot results can be found 

from the navigation tree.  

 

In order to study the same structure with different parameter sets, a higher level 

parameter study or optimization can be performed by using parameter sweep component 

in CST.  All the S-parameter with different unit cell dimensions. All these S-parameter 

data: magnitude and phase with different unit cell dimensions are calculated and saved 

for retrieval effective index. 

 

The Transient Solver of CST MWS is a general purpose 3D EM simulator. Real time 

domain simulation is particularly interesting to study the field propagating through a 

component. It transient Solver is a very flexible time domain simulation. Electromagnetic 

field distributions at various frequencies for the full gradient structure and nano-prism 

structure shown in Fig. 4.7 are monitored by transient solver. It stimulates the structure at 

a previously defined port using a broadband signal.  

 

Broadband stimulation enables to receive the S-parameters for entire desired frequency 

range and, optionally, the electromagnetic field patterns at various desired frequencies 

from only one calculation run. Additional information on the electromagnetic field 

distribution inside structure is obtained. Open boundary conditions are set on each side 

wall and the lower boundary in z direction is set as waveguide port which allows 
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excitation of a plane wave. The number of modes to excite can be defined such as "TE (0, 

0)" and "TM (0, 0)" for the plane waves. 

 

  

                     (a)                                   (b) 
Figure 4.7 Light beam deflection setups in the CST. (a) Simulation setup for planar 
gradient structure; (b) Simulation setup for nano-prism made from  photonic 
metamaterials 
 
 

After a calculation, you can observe electric field monitors by selecting them in the 

navigation tree and visualize the field mapping results. 

 

4.2 Retrieving the constitutive effective parameters of 

metamaterials 

The effective refractive index n and impedance z can be obtained by S parameters 

calculated from a wave incident normally on a slab of metamaterial. The slab of the 

metamaterials is characterized as an effective homogeneous slab. The permittivity   and 

permeability µ are then directly calculated from µ  =nz and   =n/ z. This retrieval 

process may fail under certain circumstances, for instance, when the thickness of the 

effective slab exhibits bulk properties and is not accurately estimated or when reflection 

S11 and transmission S21 data are very small in magnitude [161, 176,177]. 
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An improved method to retrieve the effective constitutive parameters (permittivity and 

permeability) of a slab of metamaterial from the measurement of S parameters has ben 

proposed in ref. [162] 

 

The effectiveness and robustness has been proved by applying to various metamaterials 

and successful retrieval results. 

 

When a plane wave incident normally on a homogeneous slab, we can retrieve the 

permittivity and permeability from the reflection S11 and transmission S21 data. When a 

slab is thickness d, S11 is equal to the reflection coefficient and S21, is related to the 

transmission coefficient T can be expressed as by S21=Teik0d, where k0 denotes the wave 

number of the incident wave in free space. The S parameters are related to refractive 

index n and impedance z by [178, 179] 
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where )1/()1(01  zzR  

Combining the relations µ =nz and   =n/ z, the refractive index n and the impedance z 

are calculated from inverting Eqs. (4.1) and (4.2): 
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The signs in Eqs. (4.3) and (4.4) are determined by the requirement: 
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0)Re( z                                                                       (4.5) 

0)Im( n                                                                       (4.6) 

The value of refractive index n can be determined from Eq. (4.4) as 
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Here m is an integer related to the branch index of Re(n). The imaginary part of n is 

uniquely determined, but the real part is complicated by the branches of the logarithm 

function. 

 

The impedance of a homogeneous slab of material does not depend on its thickness. If the 

boundaries of the slab are well defined and the S parameters are accurately known, we 

can use Equations (4.3) and (4.4) to obtain the impendence and effective index directly. 

However, a metamaterial is not homogeneous; two issues need to be carefully addressed. 

First, the location of the two boundaries of the effective slab needs to be determined to 

ensure constant impedance for various slab thicknesses. Second, the numerically 

calculated and experimentally measured S parameters are noisy. This can cause the 

retrieval method to fail, especially at those frequencies where z and n are sensitive to 

small variations of S11 and S21.  

 

When a plane wave is incident on metamaterial, currents will be induced on the metals 

creating a scattered field. The field produced by the induced currents is not uniform. It is 

strongest around the metal and decay at a certain distance. The first effective boundary is 

located where the reflected wave behaves like a plane wave. It has to be determined in 

order to obtain accurate data for reflection S11 and transmission S21.  

 

When Re(z) and Im(n) are close to zero, a little perturbation of S11 and S21 from 

experimental measurements or numerical simulations, may change the sign of Re(z) and 

Im(n), making it unreliable to apply the requirement of Eqs. (4.5) and (4.6) as discussed 

in Ref. [16]. However, we can use the relation between z and n to determine the signs in 
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Eqs.(4.3) and (4.4). When zz )Re( , where z  is a positive number, we apply Eq. (4.5). 

In the other hand, when zz )Re(  the sign of z is determined so that the corresponding 

refractive index n has a non-negative imaginary part, where n is derived from Eqs. (1a) 

and (4.2): 
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Based on the method mention above, we can calculate effective refractive index from the 

S parameters obtained from CST simulations.  

 

4.3 Result and analysis 

Two major achievements have been reached in this work. First, a pioneering achievement 

is correctly simulating the metamaterials on optical frequencies and obtaining the 

relations between the effective refractive index and dimension of unit cell structure. 

Second, a further and extensive study has been carried on the subject of achieving the 

electric beam deflection by planar gradient photonic metamaterial structure to achieve the 

electric beam deflection.  

 

4.3.1 Theoretical background and simulations 

Fig. 4.8 shows the fishnet structure with the polarization configuration. The incident light 

is polarized along one of the gratings. The fishnet metamaterial can be considered as 

composed of pairs of short slabs with continuous wires which are physically connected. 

A capacitance formed by a pair of finite width metal stripes parallel to the direction of 

magnetic field separated by a dielectric layer. The magnetic response originates from this 

antiparallel current metal pair which leads to the negative permeability. The array of thin 

metallic wires along the direction of electrical field is physically connected with the 

continuous metal stripes that provide the plasmonic electric response which results in the 

negative electric permittivity. This fishnet structure is shown to have negative refraction 
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for a particular polarization at optical frequencies. [161, 171-173]  Silver is chosen as the 

metal layer because it is known to introduce low losses in optical frequencies. The optical 

material parameter refractive index of dielectric layer MgF2 is taken as 1.38. The 

electromagnetic properties for metals in optical frequencies are no longer the same as 

bulk metals. The Drude model is sufficient to describe actual silver optical properties by 

setting the plasma frequency equal to 1.37 × 1016/s and damping or collision frequency 

equal to 9×1013/s at the frequencies of interest here. [174]. 

 

Figure 4.8 Scheme of the fishnet metamaterial and polarization configuration. 
 

The transmission simulations with normal incident wave have been performed using the 

finite integration technique, employed through the commercial software CST. The 

reflection and transmission coefficients are direct results. In this paper, Frequency 

Domain solver and Transient Solver are used for the planar metamaterial unit cell design 

and the full gradient structure design, respectively. 

 

Frequency domain solver is employed to calculate S-parameters. Once the unit cell 

geometry is created, unit cell boundary conditions are set to combine with open boundary 

conditions in the z-direction and periodic boundary conditions along the lateral directions. 

The open boundary will be automatically realized by a Floquet port that allows excitation 

of a plane wave. Transient Solver is used to map the electric beam deflection. 

Electromagnetic field distributions at various frequencies for the full gradient structure 
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are monitored.  Broadband stimulation enables to receive the S-parameters for entire 

desired frequency range and the electromagnetic field patterns at various desired 

frequencies. The information on the electromagnetic field distribution inside structure is 

obtained. Fig. 4.9 (a) is S-parameter simulation setup. Plane waves are excited from 

Floquet ports ‘Zmin’ and ‘Zmax’ and the fishnet structure is realized by periodic 

boundary condition which allows to create infinite array of unit cell structure in x and y 

direction. (b) is the fishnet unit cell geometry with parameter indicated. The periodicity in 

the x- and y-directions is ‘a’, the grating length along the magnetic field direction is Wx 

and the grating length along the electric field direction is Wy.  

 

Figure 4.9 Unit cell simulation in CST. (a) The fishnet unit cell with simulation 
setup; (b) Top view   of the unit cell with geometrical parameters indicated. 
 
Fig. 4.10 shows the simulation setup for the transient solver. Open boundary conditions 

are set on each side wall and the lower boundary in z direction is set as waveguide port 

which allows excitation of a plane wave. 

 

In order to design gradient structure, we vary the unit cell geometrical dimensions and 

simulate S-parameters corresponding to each design. All these S-parameter data: 

magnitude and phase are saved to be used for retrieval effective index. Refractive index 

versus geometry function is used to map index profile to variation of unit cell. The unit 

cell designs with optimum effective refractive indices range are chosen to be utilized for 

gradient metamaterial design.  
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Figure 4.10 Transient solver simulation setup for the planar gradient metamaterial 
design. 
 
 

Researchers have been working on retrieving their effective permittivity and permeability 

to better characterize metamaterials [161,175,176]. From S parameters calculated from a 

wave incident normally on a slab of metamaterials, the effective refractive index n and 

impedance z are first obtained [162, 177]. A robust method for extraction effective 

parameters: impedance and effective refractive index of a slab of metamaterials from 

transmission and reflection data is implemented. The real and imaginary parts of 

refractive indices are retrieved based on this algorithm [170].  

 

We first investigate the fishnet structure with geometrical parameters indicated as: lattice 

constant a = 300 nm, Wx = 102 nm, Wy = 68 nm, t = 40 nm, s = 17 nm. Here, t is the 

thickness of Ag and s is the thickness of MgF2. The simulations are executed in optical 

frequency from 350 THz to 430 THz. The periodic structure in the x-y plane is with the 

scales comparable to the wavelength. The dimension of the metamaterials in the z-

direction is just the physical thickness of the three layers 97nm. Fig. 4.11 shows 

calculated S-parameters for a three layer fishnet structure and corresponding refractive 

indices retrieval results based on the geometry.  
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Parameter sweep is used to calculate the S-parameter with different unit cell dimensions. 

Fig. 4.12 shows the simulated transmission reflection spectra with different grating width 

along the direction of electric field Wy while all other parameters are the same as those 

used to calculate Fig. 4.11.  The transmission decreases as Wy becomes larger due to 

metal polarizer effects. When Wy is small, the resonance is characterized by a dip in the 

transmission. With increasing of Wy, a peak in the transmittance can be formed. All these 

S-parameter data: magnitude and phase are going to be used for retrieval effective index. 

This gradient metamaterial is designed to operate in positive index regime away from 

resonance to minimize losses. The real part of refractive indices is what we concern. 

 

Figure 4.11 S-parameters calculated from CST and the corresponding real and 
imaginary parts of effective refractive indices. 
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Figure 4.12 Transmission and reflection spectra with different Wy from 0 nm to 68 

nm. 

 

To retrieve the effective refractive index from the reflection and transmission coefficients, 

we obtain refractive index as a function of frequency. For a certain structure, the 

refractive index goes up and down dependent on wavelength, especially changes trend 

near the resonance.  Fig. 4.13 demonstrates the refractive index as functions of frequency 

for different unit cell dimensions. The grating along the electric field direction Wy varies 

from 8nm to 38nm. The other parameters for simulation are the same as those used in Fig. 

4.11. In order to make reliable gradient design, we need to operate the design within the 

frequency range which the refractive index has the same increasing or decreasing 
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tendency. We can tune and design the unit cell dimensions based on the desired operating 

frequency. 

 

Figure 4.13 Effective refractive index is a function of frequency with different unit 
cell dimensions. 
 

4.3.2 Analysis and gradient index structure design 

Refractive index versus geometry function is used to map index profile to the variation of 

unit cell. An index gradient can be introduced by continuous tuning of a single parameter 

in the metamaterial element. Refractive index as functions of different unit cell geometry 

elements is demonstrated. Planar gradient photonic matamaterial are designed by varying 

fishnet unit cell dimensions along a certain direction on the Ag-MgF2-Ag slab.  

 

The chosen wavelengths for parameter retrieval are away from resonance to reduce the 

metamaterial losses and also within the laser range available in the lab which gives us 

future optical test possibility. We have different methods to play around with the 

geometrical dimension of the unit cell to map the function of refractive index versus a 

single parameter of the unit cell at certain frequencies. 
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When the geometry parameters are lattice constant a=175nm; Wx = 102nm; t = 40nm; s = 

17 nm, we can obtain the plot of refractive index profile to the variation of Wy  at 

wavelength equal to 698 nm and 750 nm, shown in Fig.4.14. The insets demonstrate the 

schematic varied unit cells and enlarged view for refractive index profile with Wy in the 

range from 20nm to 60 nm. When Wy is smaller than 20nm, refractive index decreases 

rapidly with Wy. When Wy is lager than 20nm, refractive index decreases slightly with 

the increasing of Wy. The operating range of changing Wy is narrow, less than 20nm. It 

is also a fabrication challenge to obtain grating size less than 20nm. We increase the 

periodicity a of the unit cell to make the design available for the current fabrication 

technique. When the geometry parameters are lattice constant a=300nm and the rest 

parameters are the same as those used for Fig. 4.14, we can obtain the plot of refractive 

index profile to the variation of Wy  at wavelength equal to 669nm, shown in Fig. 4.15.  

Refractive index decreases with increasing Wy from 18nm and 88nm obviously. This 

design gives wide range to tune Wy to obtain the refractive index profile. It is possible to 

fabricate with larger Wy.    

 

Figure 4.14 Refractive index as a function of grating length Wy with the periodicity 
equal to 175nm. 
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Figure 4.15 Refractive index as a function of grating length Wy with the periodicity 
equal to 300nm. 
 
Refractive index can be also presented as a function of periodicity of the unit cell. Fig. 

4.16 and 4.17 show two designs based on the variation of periodicity.  

 

Figure 4.16 Refractive index is a function of periodicity with fixed Wx, Wy and the 
slab thickness. 
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In the Fig. 4.16, geometrical parameters are Wx=102, Wy=68nm, s=17nm and t=40nm. 

The refractive index decreases while periodicity increases at wavelength equal to 698nm 

and 667 nm. The fishnet structure is periodical and it can be interpreted as a multilayer 

slab with rectangular holes, shown in Fig. 4.17, the size of the holes is fixed with 232 nm 

in x direction and 198 nm in y direction. By increasing the periodicity, the refractive 

index decreases at wavelength equal to 612 nm and 571 nm. The insets show the varied 

unit cell geometries. 

 

Figure 4.17 Refractive index is a function of periodicity with fixed rectangular hole 
size and the slab thickness. 

 

The planar gradient photonic metamaterial is designed to be a Ag-MgF2-Ag multilayer 

slab with fishnets structure with different unit cell along one direction. In this way, the 

slab consists of the photonic metamaterials with gradually changed refractive index 

which makes the slab able to deflect the light beam in the propagation direction. Fig. 4.18 
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is the display of slab design by varying Wy in the x direction. From the refractive index 

profile to the variation of Wy, the refractive index of the slab decrease along electric field 

direction due the increasing of Wy. The inset is the top view which clearly shows the size 

of Wy decreasing along x direction.  

Information on the electromagnetic field distribution inside structures at various 

frequencies is monitored in order to understand how light beam passing through different 

structured slabs. Electric field mapping of four different slab layouts were studied.  

 

 

 

Figure 4.18 Display of gradient slab design with Wy decreasing along the electric 
field x direction. The inset is the topview of the design. 
 
Fig. 4.19 shows two structures which do not deflect light beam when light passes though 

the structure. (a) is solid either a dielectric or a metal slab with holes with different sizes. 

(c) is the fishnet structure without varying unit cell dimensions. When normal incident 

light passes these two structures, there is no beam deflection for these two structures. 

This result is what we expect, since the light can not sense the phase different across the 

slab to produce the deflection. 
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Figure 4.19 Structures without beam deflection simulations. (a) and (b) show a solid 
slab with different rectangular hole dimensions and its corresponding electric field 
mapping result; (c) and (d) shows a fishnet structure with the same unit cell 
geometry on the slab and its corresponding electric field mapping result 
 
Comparison of 2-D Electric Field Map Results between metamaterial gradient slab and 

nano-prism are demonstrated in Fig. 4.20. (a) is a multilayer slab with fishnet structures 

with varying Wy along x direction. The sizes of the holes are the same as those used in 

Fig. 4.19 (a). (c) is nano-prism made from a fishnet structure with the same unit cell 

dimension as Fig. 4.19 (c). When normal incident light passes through these structures, 

for gradient matematerial slab, the gradient introduce a phase difference across slab 

which results in deflection of incident beam; for nano-prism, the prism geometry leads to 

the bend. The refraction angle depends on the phase gradient that light beam experiences 

when refracted from angled output surface, appropriate to Snell’s law. The mechanism 

for how the fishnet naso-prism works can be found in Ref. 2.   
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Metamaterials with gradient show beam deflection are comparable to metamaterial nano-

prism structure. Gradient index represent an interesting alternative light deflection 

phenomena depends on a continuous change of the refractive index within the planar slab, 

instead of shaped optical surfaces. 

 

 

Figure 4.20 Structures with beam deflection simulations. (a) and (b) show a fishnet 
structure with varying unit cell dimensions along the x direction on the slab and its 
corresponding electric field mapping result; (c) and (d) show a metamaterial nano-
prism and its corresponding electric field mapping result. The black lines on the 
electric field mapping plots approximately show the light beam propagation 
direction. 
 

4.4 Conclusions and discussions 

In conclusion, this chapter discuss the metamaterial design goes beyond previous work 

on gradient metamaterials since we design and demonstrate the planar structure in the 

high optical frequency. This work systematically studies the effects of varying the 
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geometry of the fishnet unit cell on the refractive index in optical frequency. Planar 

gradient index photonic metamaterials which can deflect light beam are designed and 

demonstrated. By tuning a single parameter of fishnet unit cell, the refractive index varies 

as a function of this parameter. The fishnet structures with different dimensions are 

specially designed on a planar slab to realize the gradient refractive index along a certain 

direction. The proposed gradient metamaterals include a few nanometers to few hundred 

nanometers size structure so that it can be fabricated by available nano-fabrication 

technologies. Electron beam evaporation system can be applied to produce multilayer 

metal-dielectric stacks. The role of material deposition rate in the performance of optical 

plasmonic metamaterials is studied. A lower deposition rate results in a better quality 

metallic surface and a lower loss experimentally. [178] Focused ion beam system can be 

used to fabricate the fishnet structure on multilayer samples with capability to mill spot 

size in order of nanometers. Field Emission Scanning Electron Microscopy can be used to 

study the hole size and help refine the feature variation from fabrication.  
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CHAPTER 5  

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

A magnetically controlled optical switch based on one-dimensional magneto-photonic 

crystal waveguides has been successfully fabricated and tested. According the different 

periodicities for the structure, this switching property can be demonstrated at different 

frequencies. Functional photonic crystals fabricated in iron garnet films are shown to 

provide magnetically-controllable optical switching. The band gaps formed reject or 

partially allow the transmission of different polarization states depending on the direction 

of the applied magnetic field.   

 

We also successfully fabricated two- dimensional MPC structures in the substituted iron 

garnet slab waveguide through FIB milling technology for the first time. The optical 

measurements including optical transmission and Faraday rotation response have been 

tested. Obvious multi-stopbands and enhancement of Faraday rotation effect are observed 

experimentally. The multi-stopbands in transmission spetra on these MPC is because the 

forward propagating wave hybridizes with high-order backscattered modes at different 

wavelengths satisfying the Bragg condition. 

 

We developed a waveguide mode analysis. It gives good agreement between simulation 

and experimental results and explains the multi-stopbands in transmission spectra. It is 

beyond multilayer stack model and can be applied to one-and two- dimensional photonic 

crystals on waveguide structures. 

 
For the second major aspect of the dissertation, planar gradient index photonic 

metamaterials which can deflect light beam are designed and demonstrated for the first 

time. This work involved carefully engineering and optimizing fishnet unit cell 
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dimensions and a thorough understanding of the planar gradient metamaterial design by 

using a commercial software CST modeling with FDTD method. The robust method to 

retrieve the constitutive effective parameters of metamaterials is successfully utilized to 

obtain the refractive indices of photonic metamaterials. The fishnet structures with 

different dimensions are specially designed on a planar slab to realize the gradient 

refractive index along a certain direction.  

 

5.2 Future work 

This dissertation succeeds several goals but it also raises further questions. More projects 

especially in two- dimensional photonic crystals and photonic metamaterials fabrication 

can be investigated.  

 

A. In order to study the properties two-dimensional magneto-photonic crystals, there are 

more features needed to be analyzed such as the tunability of the bands; the 

dimensionality of the polarization response; the bandwidth of the polarization rotation, 

transmittance in the bandgaps, photonic crystals with central magnetic optical defect and 

how different design affects these properties. 

 

B. The proposed gradient metamaterals include a few nanometers to few hundred 

nanometers size structure so that it can be fabricated by available nano-fabrication 

technologies. Electron beam evaporation system can be applied to produce multilayer 

metal-dielectric stacks. The role of material deposition rate in the performance of optical 

plasmonic metamaterials is studied. A lower deposition rate results in a better quality 

metallic surface and a lower loss experimentally. Focused Ion Beam System can be used 

to fabricate the fishnet structure on multilayer samples with capability to mill spot size in 

order of nanometers. Field Emission Scanning Electron Microscopy can be used to study 

the hole size and help refine the feature variation from fabrication. We can use the 
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techniques mentioned above to fabricate the planar gradient photonic metamaterials and 

investigate how to set up the optical test.  
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