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Abstract

Direct imaging of extra-solar planets in the visible and infrared region has generated

great interest among scientists and the general public as well. However, this is a challenging

problem. Difficulties of detecting a planet (faint source) are caused, mostly, by two factors:

sidelobes caused by starlight diffraction from the edge of the pupil and the randomly scattered

starlight caused by the phase errors from the imperfections in the optical system. While the

latter difficulty can be corrected by high density active deformable mirrors with advanced

phase sensing and control technology, the optimized strategy for suppressing the diffraction

sidelobes is still an open question.

In this thesis, I present a new approach to the sidelobe reduction problem: pupil phase

apodization. It is based on a discovery that an anti-symmetric spatial phase modulation

pattern imposed over a pupil or a relay plane causes diffracted starlight suppression sufficient

for imaging of extra-solar planets. Numerical simulations with specific square pupil (side D)

phase functions, such as

φ(x, y) = a[ln(
(1 + ε) + 2x/D

(1 + ε)− 2x/D
· (1 + ε) + 2y/D

(1 + ε)− 2y/D
)]

demonstrate annulling in at least one quadrant of the diffraction plane to the contrast level

of better than 10−12 with an inner working angle down to 3.5λ/D (with a = 3 and ε =

10−3). Furthermore, our computer experiments show that phase apodization remains effective

throughout a broad spectrum (60% of the central wavelength) covering the entire visible light

range.

In addition to the specific phase functions that can yield deep sidelobe reduction on one

quadrant, we also found that a modified Gerchberg-Saxton algorithm can help to find small

sized (101 × 101 element) discrete phase functions if regional sidelobe reduction is desired.

Our simulation shows that a 101× 101 segmented but gapless active mirror can also generate

a dark region with Inner Working Distance about 2.8λ/D in one quadrant.

Phase-only modulation has the additional appeal of potential implementation via active

segmented or deformable mirrors, thereby combining compensation of random phase aberra-

tions and diffraction halo removal in a single optical element.
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Chapter 1

General Introduction

The nine planets of our solar system, including our own Earth, revolve around the Sun, which

is one of the hundreds of billions of stars in our galaxy. It is natural for one to ask: are there

any other planets revolving around their Suns beyond our solar system? Speculation about the

existence of other planets beyond our solar system can be traced back to the ancient Greeks

and has further triggered scientists’ investigations regarding the existence of life outside our

solar system. In 1950, Fermi asked the famous question “where is everybody?” and started

debates about the prevalence of extraterrestrial civilizations. In 1961, astronomer Frank

Drake presented his approach, the Drake equation, to estimate the number of technological

civilizations that may exist in our galaxy.

However, the existence of the extra-solar planets – which is an essential factor in Fermi’s

debate and in Drake’s estimation – was a mere speculation based on the non-uniqueness of

our solar system in the universe and has lasted for several centuries without being confirmed

by observations.

Recently, a series of detections of planet-like objects around a pulsar and Sun-like stars

have been reported [1, 2, 3, 4]. Till today there have been over 100 detection reports. The

burst of these new discoveries in the last 14 years resulted from the development of detection

ideas and technologies 1.

One of the principal techniques being applied in the search for extrasolar planets (and

the most successful to date in terms of the number of confirmed detections) is the so-called

1There are many academic websites introducing the basic concepts of these technologies, one of them being

http://planetquest.jpl.nasa.gov/
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Radial Velocity Measurements method, sometimes also called Doppler Spectroscopy method.

Consider a planet and Sun system which has an orbit plane aligned in such a way that it is

not perpendicular to our line of sight. Then, the Sun would have chance to move towards

or away from us periodically while it is circulating around their mass-center. If the Sun’s

motion toward or away from us is fast enough, then we would have chance to measure the

periodic Doppler effect (blue shift or red shift) in the star’s spectral lines. The magnitude of

this effect can enable us to estimate the unseen planet’s mass and orbit information. Jupiter,

for example, causes a movement of the Sun with an amplitude of 13 m/s and a period of 12

years while the earth can cause a small movement of about 10 cm/s amplitude over a period

of one year. Based on current technology with precision in the range 3-10m/s, Jupiter-like

planets would have a better chance to be detected by this method.

There are also many other promising detection methods that are being developed, such as

• Astrometry - this method is based on the precise measurement of the periodic and

slightly wobbling motion of the star. The unseen companions’ gravity will drag the

star to wobble around their mass center , so the star’s motion would not follow a

smooth trajectory across the sky if there are unseen companions around it. The precise

measurement of the position of star can be accomplished by measuring the relative

distances to the nearby background stars.

• Photometry - the brightness of the star will be slightly dimmed when a planet passes

between the star and the observer. The photometry method is a method to detect and

characterize extrasolar planets through the accurate quantitative measurement of the

periodic change of light. From the period and depth of the transit changes, the orbit

and size of the unseen companions can be calculated.

• Microlensing - This method is based on Einstein’s theory of general relativity. The light

beam will be bent and the propagating direction will be changed when the light beam

is passing through the space with a massive object nearby. When a planet is passing

in front of the star, its gravity will “attract” the star light passing by and behave like

a focusing lens and thus can cause a transitory change in the brightness and apparent

position of the star. By accurately measuring these changes, the properties of the planets
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can be calculated.

This brief sketch is not complete and a more comparative review of the methods for

extrasolar planet detection can be found in papers by Schneider [5] and Perrymann [6]. In

the remainder of this thesis, I will concentrate on the direct imaging method.

Direct imaging method

Along with the development of various indirect detection technologies, direct imaging methods

are also being studied intensively. Unlike the indirect methods introduced above, in which the

existence of a planet is demonstrated by the observation and measurement of the“wobbling”

motion or the periodic brightness change of their host stars, direct imaging of the planets will

allow us to capture the weak light signals from the planets and give a direct and visualized

proof of their existence. The discovery of the first Brown Dwarf Gliese 229B in 1995 was a good

demonstration of the power of the direct imaging method. Although there haven’t yet been

any successful imaging report of extrasolar planets, scientists’ efforts have not diminished. On

the contrary, this has become one of the hottest areas in astronomy and astrophysics. Why?

• Direct imaging can give an unambiguous answer to the presence of a planet once it is

detected.

• Direct imaging needs shorter detection time. To observe the periodic variations of

measured quantities (such as the doppler shift, the position, and the brightness), the

observation time for comparative analysis will have to last at leat one period which

could be a few days to a few years or even longer. However for direct imaging with new

technologies, the entire process could be complete in a few hours or less.

• Unlike the indirect methods which can provide only information about the mass and

orbits, direct imaging can provide additionally spectral information about the planetary

atmosphere’s chemical composition and biomarkers life right after the planet is imaged

[7, 8, 9, 10, 11].

The earlier strategy for imaging extra-solar planets was first proposed by Bracewell and

MacPhie in 1978 and 1979 [12, 13] whose method was based on the infrared interferometers
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and has been treated as one of the two most promising methods to date. Of the two methods

proposed, the infrared interferometer method has less optical requirements but its long base-

line and cost for deployment is making it still difficult. The other promising method is the

visible-light coronagraph in which only a single mid-sized monolithic telescope is needed.

This thesis will concentrate only on the latter approach and contribute a new method, pupil

phase-only modulation method, for achromatic imaging of extra-solar planets.
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Chapter 2

Technical Background

2.1 Challenges in direct imaging

Though promising, imaging extrasolar planets is difficult because their light signals, compared

with that of the nearby host stars, are too weak to be detected by regular space or ground

based telescopes. To speak more specifically, as studied in papers such as [14, 15, 7, 16, 17],

there are two main noise sources from the host star that are much larger than the signal of

planets and make the planet signal lost in the noise. One is the noise due to the scattering

effect of the phase errors induced by the imperfection of the optical mirrors or air turbulence.

The other is the shot noise induced by the strong diffraction side lobes of the star nearby.

2.1.1 Wave optics diffraction fundamentals

According to the scalar diffraction theory, the energy of a plane light wave, incident on a

telescope aperture, will be spread into a wide solid angle and form sidelobes. Specifically for

the near field, the Fresnel diffraction equation for propagation between two planes P0 and P1

separated by a distance z is given by:

Ẽ(η, ξ) = C̃

∫ ∞

−∞

∫ ∞

−∞
T̃ (x, y) · ei π

2λz
[(x−η)2+(y−ξ)2]dxdy (2.1)

where the (x, y) are the coordinates in the aperture (pupil) plane P0, (η, ξ) are the co-

ordinates in the observational plane (diffraction plane) P1 and the (̃·) indicates a complex

function.
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Adding a thin lens with focal length τ over the pupil plane is equivalent to adding a phase

shift − π
2λτ

(x2 +y2) to the incident wave. Then on the focal plane where z = τ , the diffraction

field would have the form of

Ẽ(η, ξ) = C̃

∫ ∞

−∞

∫ ∞

−∞
T̃ (x, y) · e−i 2π

λτ
(xη+yξ)dxdy (2.2)

which indicates that the diffraction field on the focal plane of a thin lens is just the Fourier

Transform of the light field on the aperture (pupil) plane. The intensity on the focal plane

then becomes

I(η, ξ) = |Ẽ(η, ξ)|2 (2.3)

2.1.2 Diffraction sidelobes of the star

For a round aperture telescope, the pattern of the diffraction field on the image plane can

be described by a Jinc function. The Jinc function [18] is defined as Jinc(x) ≡ 2·J1(x)
x

where

J1(x) is a Bessel function of the first kind and the factor 2 is used here so that Jinc(0) = 1.

The light intensity I0 of the ideal circular pupil diffraction pattern can be written as:

I0 (ρ) = Jinc(πρ)2 (2.4)

where ρ is the dimensionless field angle θ/θ0, θ0 = λ/D (D is the diameter of the ideal circular

pupil) and the central intensity is normalized to 1. This pattern has some ring like structures

described by the Left panel in Figure 2.1.

About 84% of the total energy is focused within the main lobe and the other 16% of the

light energy is spread into the sidelobes (rings).

Using the asymptotic form for the Bessel function, the ratio of the average sidelobe inten-

sity to the central intensity can be written as:[19]

I0(ρ)

I0(0)
≈ 4

π

1

(πρ)3
(2.5)

which means that on average the sidelobe intensity drops off as an inverse cube of the

dimensionless distance ρ. Due to the far distance between the star and the telescope, the
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Figure 2.1: Circular aperture diffraction pattern and comparison of relative intensity of an extra-solar

planetary system. Left: the ring-like diffraction pattern from a circular aperture, in log10 scale. Right:

comparison of the log10 relative intensity distribution of an Jupiter-Sun extra-solar planetary system, in

which the thin solid line represents the intensity distribution from the Sun and the thick solid line represents

the intensity distribution from the Jupiter. This comparison is based on a simulated observation made from

distance 10pc at wavelength 0.8µ through a space telescope similar to HST. One can see that the Jupiter

image is much fainter than the local diffraction sidelobes of the Sun.

star light entering the pupil can be treated as a plane wave and it will form a image pattern

described by equation 2.4 and 2.5, and so does the light from the planets.

Assume the planet’s brightness is q times of the brightness of the star and located at

dimensionless distance ρ′ from the star (which is located at ρ = 0). Then the light intensity

at the planet’s location would be estimated as the sum of the peak intensity of the planet

and the local sidelobe intensity due to the star 1, which is I0(0) × (q + 4
π

1
(πρ′)3 ). Based on

the Poisson statistical properties of the photon detection [20], the photon noise will be at the

level of
√

t× I0(0)× (q + 4
π

1
(πρ′)3 )/(hν) on per unit area, where t is the imaging time and ν

is the frequency of light. Therefore, for the unit detection area, the average signal to noise

ratio S/N can be estimated as (for q very small compared with the local sidelobe level):

S/N ∼ π2

2
×

√
t · I0(0)

hν
× q × ρ′3/2

(2.6)

Now let’s use the Sun-Jupiter system as an example. The brightness of the planet is only

1The presence of the host star image in the telescope is due to the fact that the planets are always associated

with a star nearby. We will have to use the star to guide us to places where we search for the planets.
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a factor of 109 less than the brightness of the star in the visible light [15]. If we observe such

a system at a distance about 10pc 2, the angular separation between the star and the planet

is about 0.5 arc seconds 3. In the case of observation such a planet around the wavelength

0.8µ using a space telescope which is similar in size to Hubble Space Telescope, the planet

will be located at about the 7th sidelobe ring of the star and the planet would be 10−5 fainter

than the sidelobe intensity, as shown in the Right panel in Figure 2.1. Assuming a 3.3m2

collecting area of the telescope with a 50% of bandwidth at the 0.8µ wavelength, the telescope

would receive 2×109 photons per second from a Sun-like star and about 2 photons per second

from the Jupiter-like planet. From equation 2.6, we can estimated that for reaching a signal

to noise ratio better than S/N = 1, the imaging time would have be at least 28 hours; for

achieving a detection with S/N better than 5, the imaging time would have to be at least

28× 52 hours or 29 days !

Apparently, in order to obtain an planet’s image with confidence and within a reasonable

time, the local sidelobes from the nearby star will have to be reduced at region where the

planets might be located. In practice, the local intensity level of the star diffraction sidelobes

should be equal or less than the intensity of the planet image core, therefore relative to the

intensity of the star image core, the sidelobes level should be reduced to 10−10 for imaging

earth-like planets and to 10−9 for imaging Jupitor-like planets. The physics and technologies

for reducing the sidelobes will be the main topic of this thesis, and the detailed discussions

will be presented in later chapters.

2.1.3 Scattering of phase errors

Phase errors are induced by the turbulence of atmosphere and the imperfections of the optical

elements. The phase errors will lead part of the star light energy to deviate from the original

propagation direction and form randomly distributed visible or invisible grain-like speckles in

a wide region on the image plane.

2pc, also called parsec, is an astronomical unit for large distance. 1pc is the distance at which 1 AU would

subtend a second of arc. AU, a short form the Astronomical Unit, is another distance unit for astronomy, in

which 1AU is the average distance between the Earth and the Sun. 1AU = 1.495978 × 1011meters, 1pc =

3.085678× 1016meters = 3.261633ly = 206265AU .
31 arc second is one 3600th of a degree, or equivalently 4.848×10−6 radians
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Imaging extra-solar planets places a much more stringent requirement on the phase errors

even in the cases that satisfy the Maréchal’s criteria used for so called “diffraction limited” in

practice. Marréchal’s criteria defines the Strehl ratio4 S > 0.8 as the condition of “diffraction

limited” and this is equivalent to phase errors less than λ/14 [21]. For example, HST (Hubble

Space Telescope) is diffraction-limited at wavelengths longer than λ > 0.33µ, but it is still not

sufficient to image Jupiter-like extra-solar planets even if the shot noise from the diffraction

sidelobes is not considered. [17]. Now let’s see an example of how a small phase error that

is from the imperfections of the reflecting mirror surface can affect the imaging of extra-solar

planets. Consider a optical system with small phase error 4φ(~x), which 4φ(~x) ¿ 1 and the

average of 4φ(~x) over pupil is zero, 4φ(~x) = 0. The light field on the pupil plane can be

written as T (~x) ·ei4φ(~x) ≈ T (~x) · [1 + i4φ(~x)], where T (~x) is the pupil function in the domain

of ~x. The light intensity I(~η) on the focal (image) plane would be

I(~η) ≈ |F{T (~x)}+ iF{T (~x) · 4φ(~x)}|2 (2.7)

where F{·} denotes the Fourier Transform.

If we choose the sinusoidal deformation along the y direction as an example of the small

phase error, 4φ(~x) = 2πh
λ
· cos(2πy

l0
) where h is the amplitude of the deformation of the

reflecting mirror and l0 is the spatial period of the deformation along the y direction, and if

we assume that the pupil function T (~x) is real and even (which is true for most cases), then

the light intensity expression, equation 2.7, would be simplified to

I(~η) ≈ T̂ 2(η, ξ) + (
πh

λ
)2 · [T̂ 2(η, ξ − l0) + T̂ 2(η, ξ + l0) + 2 · T̂ (η, ξ − l0) · T̂ (η, ξ + l0)] (2.8)

where T̂ (η, ξ) is the Fourier Transform of T (~x) which is real and even here. The T̂ 2(η, ξ)

becomes the I0(ρ) described in equation 2.4 if the pupil is a round pupil.

It can be seen that there are two small speckles at distance ±l0 with coefficient (πh
λ

)2 added

to both side of the ideal diffraction pattern symmetrically . Assume that h ∼ λ/80(which is

equivalent to h ∼ 10nm when λ = 800nm), then, as shown in Figure 2.2 the two speckles will

4Strehl ratio S is defined as the ratio of the central intensities of the aberrated point spread function and

the diffraction-limited point spread function. It is a quantity that relates phase aberration and image quality

in a high quality imaging system.
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Figure 2.2: Scattering effect from a small phase error. Left: the log10 PSF with sinusoidal phase error

4φ(~x) = 2πh
λ ·cos( 2πy

l0
) in which the sinusoidal error period l0 is one seventh of one aperture and error amplitude

h is λ/80. Right: comparison of the log10 relative intensity of an Jupiter-like planet with the scattering

background generated from the sinusoidal phase error as in the Left panel. The dotted line represents the

scattering background due to the phase error. The thick solid line represents the relative intensity distribution

of Jupiter. The thin solid line, as a reference, represents the relative intensity distribution of the Sun without

phase errors. This comparison is based on a simulated observation made from distance 10pc at wavelength

0.8µ through a space telescope similar to HST. One can see that even a small phase error, as the one illustrated

in the Left panel, can generate a strong scattering background and make the detection of a Jupiter-like planet

difficult.

have peak power of only 3 orders less than the brightness of the star and are one million times

brighter than the image of the Jupiter-like planets! So we can see that even small phase errors

can add a large (compared with the signal of the planets) background and make imaging of

even the Jupiter-like planets difficult. (Even in the case that these speckles are static and can

be removed by subtracting in the data processing, the remaining shot noise generated by the

speckles is still large within a reasonable time). Generally in practice for imaging extra-solar

planets, the local scattered light level is expected to be equal or less than the intensity of the

planets.

A more detailed and general description of the small surface error’s scattering effect on

Point Spread Function (the round pupil as an example)can be described as: [22, 23, 17, 24, 19]

I(ρ) ≈ [1− (
2π

λ
σrms)

2]× I0(ρ) + (
2π

λ
)2P (ρ) (2.9)

14



where I0(ρ) is the ideal PSF(Point Spread Function), I(ρ) is the perturbed PSF with small

phase errors, P (ρ) is the PSD(Power Spectrum Distribution) and σrms is the root-mean-

squared phase error in unit of distance. The PSD of the surface small errors is the Fourier

Transform of the autocovariance function which Glenn [25] determined as the form an expo-

nential function characterized by correlation length of the surface errors.

The phase errors caused by the atmospheric turbulence are large and vary with both time

and space over a very wide dynamic range. Long-exposure point object images obtained

through the ground-based telescopes will be blurred and have a wide halo around it. The

mechanism of the turbulence was first revealed by Kolmogorov and its influences on the wave

propagation were studied by Tatarski [26], Hufnagel and Stanley [27] and Fried [28] et al. A

comprehensive review can be found in Hardy’s book [29] and Roggemann and Welsh’s book

[30].

Obviously to reduce the scattered light, adaptive optics will have to be used to correct

these phase errors to some extent. Because of the high dynamic range of the turbulence

varying in time and space, it is extremely difficult to use a ground-based telescope to image

the extra-solar planets in the visible light although Angel [16], Sandler, Stahl and Angel [31]

and Labeyrie [32] have suggested different ways either using complex adaptive optics strategies

and fast control loops to take the extra-solar planets’ long-exposure image or finding the image

of extra-solar planets in multiple short-exposure images.

Space telescopes are not affected by atmospheric turbulence. Consequently, the phase

errors – due principally to polishing errors in manufacturing and strains from gravity and

temperature fluctuations – remain static. This allows use of a slow control loop and high

density active mirrors to make corrections for the phase error.

However, successful correction of the phase errors for the space telescope relies on the

accurate knowledge of the phase front information and precise control of the deformable

mirrors.

Many phase sensing techniques have been developed such as Shack-Hartmann sensors

[33] which measure the slope (gradient) of the wavefront, curvature sensors [34, 35] which

measure the curvature of the wavefront, interferometers and phase-retrieval methods which

include phase-diversity based [36, 37] parametric methods [38, 39, 40] and iterative methods
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[41, 42, 43], etc. These techniques have been widely used for estimating the optical misalign-

ment and calibration. Current studies are examining their potential to sense the small phase

errors at a precision of below λ/10, 000. Currently, two methods proposed in JPL have been

demonstrated by simulation to have such ability [43, 44].

There are two main issues regarding the ability of the deformable mirrors to compensate

for phase errors. The first one is the size of actuators required. Hudgin [45] studied the

relationship between the residue wavefront compensation error and the spacing of the finite

corrector-element and concluded that, due to the finite size of the corrector-element, correc-

tions can not be perfect and the residues are strongly related to the ratio of the size(spacing) to

the coherence length of the wavefront: a higher ratio would yield lower residues. Further simu-

lations [46, 47] show that the correction dynamic range (in spatial frequency) is limited by the

Nyquist limit determined by the number of actuators per aperture. 96×96 elements/aperture

would be sufficient to provide the required dynamic range (in spatial frequency) and suffi-

ciently low residue error for imaging Jupiter-like planets if the elements(actuators) can be

controlled precisely. The second issue is the stability of controlling the elements (or actua-

tors). JPL has demonstrated with an experiment that its deformable mirror driven by the

96×96 actuators can be controlled with the precision and stability at 0.01Å/hr and 1Å/100hr

[48] which will ensure the phase error requirement for imaging Jupiter-like planets in visible

light in a wide dynamic range.

2.2 Review of the coronagraphic solution

In the preceding section, the difficulties in direct imaging of extra-solar planets have been

explained and the current technologies in sensing and correcting the small phase errors for

space telescopes have been introduced. As briefly described, the background from the phase

error scattering can be reduced to the level of allowing imaging of the Jupiter-like extra-solar

planets. In this section, we will review some of the methods that can be potentially used for

reducing the diffraction sidelobes of the stars.
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2.3 Coronagraph

The notion of a coronagraph was a technique originally invented for observing the corona of

the Sun through the telescope at times other than during a solar eclipse. The inventer was

Lyot and he published his work in 1939 [49]. Figure 2.3 shows the basic configuration of the

Lyot coronagraph in which there are two key elements: the opaque mask (sometimes called

density mask or amplitude mask) on the first focal (image) plane and the Lyot stop on the

re-imaged pupil plane (sometimes called pupil relay plane).

Figure 2.3: Schematic coronagraph layout. P1 is the pupil plane where the aperture is located. P2 is the

first focal plane where the occulting mask is located. P3 is the re-imaged pupil plane, or called pupil relay

plane, where the Lyot stop is located. P4 is the final focal plane where the faint source images are obtained.

When the light energy of an on-axis star is focused on the first focal plane, the opaque

mask will cover the star image and part of the halo of it, and the remaining star halo light

that is not blocked by the mask will continue to propagate and form a ring like pattern

(around the edge of the re-imaged pupil) on the re-imaged pupil plane. The Lyot stop( an

opening slightly smaller than the image of the pupil) will block the ring, thus here the star

light experiences a second blockage and the starlight energy can be greatly reduced, forming

a very dim star image on the second focal plane. Light from any off-axis faint object whose

image is located outside the mask will not be blocked and will continue to propagate, forming

a complete image of the pupil on the re-imaged pupil plane. Because most of the energy can

pass the Lyot stop in this case, the image of these off-axis objects can be reproduced on the

second focal plane.
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Currently this technique has been refined and adapted for the purpose of imaging extra-

solar planets that are very close to the star. For example, instead of using the hard edge opaque

mask, an opaque mask tapered by, say, a Gaussian function will be used in new designs and a

tapered Lyot stop is also found to be helpful for deeper reducing and smoothing the starlight

halo background on the second focal plane. Some optimized designs of the mask and Lyot

stop size can lead to reduction of starlight by about 9 orders of magnitude [47] 5.

The simulation fundamentals in the coronagraph design

In recent years there are some other coronagraph techniques that have been developed and can

be classified into two types: the density mask coronagraph and the phase mask coronagraph.

The analysis of their performance are based on the following:

Assume the light field on plane P1, P2, P3 and P4 are Ẽ1, Ẽ2, Ẽ3 and Ẽ4 respectively, then

based on the Fourier Transform relations between the two adjacent planes in above, we have:

on P2

Ẽ2 = F{Ẽ1} (2.10)

on P3

Ẽ3 = F−1{M̃ · Ẽ2} (2.11)

where M̃ is the mask transmittance function, F−1{·} denotes the inverse Fourier Transform

operation.

on P4

Ẽ4 = F{L̃ · Ẽ3} (2.12)

where L̃ is the Lyot stop transmittance function.

Density mask coronagraph

The density mask is the mask that the transmittance rate is modulated by some functions

without modulating the phase. The Lyot coronagraph is a Density mask coronagraph in which

the mask transmittance rate is modulated by a Gaussian function or simply a binary function.

Other density mask coronagraphs include the Band-Limited mask coronagraph developed by

5Plots can also be found in Lyon’s work on:

http : //code935.gsfc.nasa.gov/cube Folder/OSCAR/pdf/Coron PR.pdf
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Kuchner and Traub in 2002 [50]. In their design, the mask transmittance function is designed

as a set of 1D or 2D functions, such as sin4(πεDλx/2) where Dλ is the diameter of the pupil

normalized to wavelength λ and ε is a non-zero parameter, so that the multiple pupil images

with specific phase relations can be generated. In effect, the nulling interference can happen

in the overlapped region and the starlight can be removed by adding a stop that has the shape

of the overlapped region.

Phase mask coronagraph

An interesting alternative to using the density mask is to use phase mask. The phase mask

is a mask that modulates only the phase, rather than the intensity transmittance rate. Here,

the mask transmittance function is a complex function in equation 2.12 with intensity trans-

mittance rate being 1 .

The first phase mask coronagraph was invented by Roddier in 1997 [51] in which the phase

mask is a round π phase shift retarder with diameter less than 0.53λ/D. The second phase

mask design 6 was proposed by Roaun et al in 2000 [52] in which the phase mask is divided

into four quadrants, each of which has a π phase shift relative to its neighbor quadrant. The

diagrams of the Rouan’s four-quadrant phase mask and the nulling effect on the pupil image

are shown in figure 2.4. The idea of reducing the starlight by these phase masks is realized

by separating the starlight into two beams and flipping the phase of one of the beam on the

first focal plane and then combining destructively the two light beams on the re-imaged focal

plane.

6A history fact here: exactly the same design was done at the end of year 1999 by Weidong Yang and

Christ Ftaclas of Michigan Tech. Unfortunately our work was not submitted for journal publication in

time. Our results were first posted at the departmental colloquium graduate poster section held around

Feb. of year 2000 (see http://www.phy.mtu.edu/colloquiums/gradposters/deptgradposter2000.html).

Our work was formally posted in the 197th AAS meeting of January 2001 (see

http://www.aas.org/publications/baas/v32n4/aas197/1172.htm), but it was about one and half month later

than the publication of the Rouan et al’s work. This mask design has now become one of the candidates for

the NASA’s TPF mission (see http://planetquest.jpl.nasa.gov/TPF/TPFrevue/FinlReps/JPL/tpfrpt1a.pdf).
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Figure 2.4: The four-quadrant phase mask and the annulling effect on the on-axis star light that can be

observed on the re-imaged pupil plane. Left: gray-scale illustration of the phase shift distribution on the phase

mask, the white quadrants have 0 phase shifts while the dark quadrants have π shifts. This mask divides

the on-axis star light into 2 beams which have π phase difference. Right: the light intensity image on the

re-imaged pupil plane, it can be seen that the destructive interference (annulling) happens inside the pupil

image while constructive interference happens outside the pupil image.

Discussion

All of these coronagraph designs have sufficient star image suppression effects for the purpose

of imaging extra-solar planets. However they have also many disadvantages:

1. They all are sensitive to the pointing errors. All the simulation is based on the ideal

case when the center of the star image core is right in the center of the mask. Breaking the

symmetry will induce the leakage of the star energy into the final focal plane and contaminate

the background. A pointing error sensing and correcting system will have to be used and it

should have the challenging control ability of about 1 milli arcsecond [53].

2. For the phase mask coronagraph, though it can provide a smaller inner working distance,

the π phase shift can only be realized for a certain wavelength. The reduced background will

be ∝ π2 · (Mλ
λ

)2

3. For the density mask coronagraph, the intensity transmittance noise on the scale of

∼ λ/D near the image core of the star is required to be less than 10−8 in order to avoid the

background’s being contaminated by the leaked starlight [54, 55], which is hard to realize.
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2.4 Pupil apodization

In the past a few years, pupil apodization has been intensively studied for the purpose of

imaging extra-solar planets. This method is based on the Fourier Transform relations between

the light field on the pupil plane and the light field on the focal plane.

In Greeks, “a-”means to take away and “podis-” means the foot [56]. The process of reduc-

ing the diffraction sidelobes is called apodization. Various methods were studied intensively

and comprehensively by Jacquinot about 40 years ago regarding the apodization in imaging

and radar radiation patterns. Recently apodization methods have been further developed so

that they can meet the stringent requirements in imaging extra-solar planets. Together with

coronagraph, apodization has been regarded as an important approach in the task of imaging

extra-solar planets and they will be briefly reviewed in this chapter.

Apodization can be further classified into two types also: Pupil Amplitude Apodization

and the Pupil Shape Apodization

2.4.1 Amplitude apodization

Pupil Amplitude Apodization is used to reduce the starlight sidelobes by modulating the

amplitude transmission function over the pupil. In 2001, P. Nisenson and C. Papaliolios

proposed using a sonine function to modulate the amplitude transmission function along x

and y direction for the square pupil, in which pupil amplitude transmission function T (x, y)

is

T (x, y) = {(1−(x/D)2)ν−1(1−(y/D)2)ν−1,|x/D|≤1,|y/D|≤1
0,else (2.13)

where the D is the side of the square pupil.Their simulations show that the maximum re-

duction happens along the diagonal line with IWD (Inner Working Distance7) about 4λ/D

for reduction level 10−10 when ν = 4. Larger ν can create smaller IWD at the expense of

throughput.

7The Inner Working Distance–IWD is defined, by Kasdin et al., as the smallest angular separation from

the star for which the sidelobes contrast with the PSF core reaches the required value, for example 10−10. It

is the closest position to the star at which a detection is possible.
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In 2003, Kasdin et al [57] and Gonsalves and Nisenson [37] described the effect of amplitude

modulation for the square and round pupil by prolate spheroidal functions. Their results

show that round pupil with amplitude modulated by the prolate spheroidal function can yield

full discovery space with IWD∼ 3.5λ/D and reduction level below 10−10. It is especially

noteworthy that Gonsalves and Nisenson [37] gave a general way to calculate the amplitude

apodiser for various pupils.

2.4.2 Binary pupil shape apodization

Binary pupil shape apodization is used to realize the sidelobe reduction by modulating the

shape of the pupil opening within which the transmission rate is 1.

The sidelobe reduction effect by different pupil shapes was described by Jacquinot and

Roizen-Dossier in 1964 [56]. Angel et al, in 1986, proposed using a ring-like binary pupil to

reduce the sidelobes at the position that a earth-like planet may be located [7]. The most

interesting binary pupil was the “eye-like” pupil which was first suggested to apply to imaging

extra-solar planets by Spergel in 2000 and then developed by Kasdin et al in 2003.

The “eye-like” pupil and the corresponding PSF are shown in figure 2.5. By Guyon’s

notation [58], the corresponding pupil function is defined as: the transmission function is 1 if

and only if the following relations are satisfied

y0(x) < |y| < y0(x) + yw(x) (2.14)

with

yw(x) = R(e−(αx
R

)2 − e−α2

) (2.15)

and ∫ y0(x)+yw(x)

y0(x)

y2dy = βyw(x) (2.16)

where α = 2 and β = 0.4R2 and transmission rate is 0 elsewhere. This binary pupil can help

reduce the sidelobes to below 10−10 along the x-axis with a IWD of about 4λ/D.

For the purpose of expanding the discover space, further developments on using multiple

“eye-like” openings and using “star-like” or multiple “ring-like” openings were also discussed

by Kasdin et al.
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Figure 2.5: “eye-like” binary pupil mask and the corresponding PSFs. (a)the “eye-like” binary pupil mask

inscribed in a round pupil. (b)the PSF of the mask in (a). (c)Six binary openings inscribed in an elliptical

pupil. (d)the PSF of the mask in (c).

Discussion

Compared with the density or phase mask coronagraph, pupil apodization methods won’t

suffer from the pointing errors. In addition, the pupil shape apodization method avoids the

stringent requirement on the errors in the amplitude transmission rate as it has for the case

of amplitude modulation.

However, making the pupil edge shape might be difficult. Besides, both of the amplitude

apodization and the shape apodization will cause the planet energy loss from about 50%−70%
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which is also expensive for detecting the planet’s signals and they can not be recovered. In

addition, it will require rotating the telescope in order to have wider discovery space.
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Chapter 3

One-sided achromatic

phase-apodization

3.1 Introduction

The search for extra-solar planets has generated great interest and shows no signs of subsiding.

While extra-solar planets may be detected by indirect methods such as an observation of a

small wobbling motion of a parent star, direct imaging can do so unambiguously. Furthermore,

direct imaging would allow spectroscopic analysis of the planetary/atmospheric composition,

possibly, leading to information about life, once the planet is detected [7, 9]. Yet, to date,

there have been no reports of direct extra-solar planet imaging.

The difficulty of such imaging stems from the close proximity of planets to their parent

stars, resulting in their faint signals being lost in the local “bright stellar halo”, which may be

millions (infrared) or billions (near infrared and visible) of times brighter. Brown and Burrows

[17] studied a figure of merit, Q, which is the contrast ratio between a best-case planet and

the background of scattered starlight and concluded that even in the case of the Hubble

Space telescope (HST), the “halos” caused by the light, scattered from figure errors of the

primary mirrors and diffracted from the pupil edge, render the HST unsuitable for extra-solar

planet detection. Among the current approaches to overcoming such difficulties, two general

directions appear particularly promising: (i) imaging based on infrared interferometers, along

the lines originally proposed by Bracewell and MacPhie [13]; (ii) visible light imaging based
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on the coronagraph concept (originally introduced by Lyot in 1939 in the solar physics context

[49]). Because of the longer wavelength, decreased angular resolution in the infrared region

must be overcome by spatial separation but in this chapter we shall confine ourselves to

monolithic telescopes.

Imaging in visible light allows a monolithic modest-sized telescope to reach a satisfactory

resolution angle. However, strict tolerances on the mirror surface figure errors (≤ 10−4λ) over

a wide dynamic range, the required diffraction side lobe levels below 10−9 [15, 14] and the need

for a small inner working of a few λ/D, are daunting. Nevertheless, recent developments in

phase sensing and control technology will enable the figure errors of up to 100 cycles/aperture

to be controlled under 1 Å per 100 hours [47, 44, 43]. Therefore, coronographic imaging in

the visible light region is feasible [46].

As to the diffraction side lobe removal, in addition to the Lyot coronograph, several promis-

ing approaches have been developed and intensively studied in the past few years. These can

be broadly classified into two types. The first is based on the modulation of the phase or

amplitude of the star diffraction pattern on a focal plane, which includes: Roddiers’ phase

mask [51], Rouan et al’s four quadrant phase mask [52], the Kuchner & Traub’s band-limited

mask [50], and the Kuchner& Spergel’s notch filter mask [54]. The second type is based on the

modulation of the amplitude transmission function of the pupil (pupil amplitude apodization)

[56] as well as pupil shape “apodization”. This field has undergone an explosion of activity

recently, which has included several exciting results incuding: Angel et al’s ring-like binary

mask [7]; Kadsdin et al’s “eye-like” shaped binary mask [57]; Vanderbei et al’s spider binary

mask [59]; Nisenson et al’s amplitude-apodized pupil mask [60]; Guyon’s amplitude pupil

apodization by beam reshaping [58]. Besides the specific mask designs mentioned above, the

papers by Gonsalves and Nisenson [37] and by Aime et al [61] addressed a general optimization

analysis for coronagraph-type systems.

While pupil shape and amplitude’s spatial distribution as well as focal plane amplitude and

phase masks have all been explored, to the best of our knowledge, the possibility of using pupil

phase apodization for high contrast imaging has not been considered. This is understandable.

For example, an early influential review of apodization techniques by Jaquinot and Roizen-

Dossier [56] contains a section, entitled “Impossibility of Apodising by a Pupil Phase Plate”.
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The argument presented there seems eminently reasonable and the proof relies on the fact

that a class of side-lobe optimization problems yields real functions. Nevertheless, in this

chapter we re-examine the question. Why?

High contrast imaging through pupil phase-only spatial modulation, if realizable, might

have the following advantages over the other techniques: (i) no loss of light energy when

going through the pupil, which shortens the integration time; (ii) it is easier with current

technology to sense and control the phase than it is to control the transmission rate, and the

phase errors caused by the phase modulation element can be corrected by active (that is, at

least slowly adaptive) optics; (iii) the strict tolerances on precise fabrication of specific shapes

and/or transmission control can be relaxed and the entire imaging system design simplified.

3.2 The Proposal

Henceforth, we shall interpret phase apodization more broadly than usual, that is, as a general

spatial phase modulation across the pupil plane which yields significant “improvement” in the

focal plane energy distribution for imaging of a faint companion. Thus, we shall allow main

lobe reduction and shift, asymmetric apodization, etc. A brief preliminary account of the

asymmetric phase apodization can be found in our paper in Physics Letter A[62].

Let us begin by asking whether phase apodization patterns exist which can remove the

side lobes only approximately but down to a sufficiently low level. In order to conduct a

systematic search with reasonable computational time, we chose the square pupil case be-

cause the separation of variables assumption renders the problem effectively one-dimensional

as detailed in the following section. We were further motivated by the recent work by Nisen-

son and Papaliolios [60] who “revived” the square pupil for extra-solar planet detection. In

addition, the pupil shape optimization work reported by Kasdin et al.[57] suggested to us the

idea of partial side lobe removal in a focal plane, at any given time. This led to consideration

of anti-symmetric (odd) phase functions which proved to be the key as detailed in the next

section. In summary then, our proposal consists of the following elements:

• consider phase-only spatial modulation pattern across the pupil

• consider square pupil and assume separation of variables so that effectively one-dimensional
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problem can be examined in a semi-analytic manner

• use odd (anti-symmetric) phase functions so that half of the one dimensional focal plane

pattern can be suppressed (the diffraction pattern can then be “switched” to another

quadrant in a sequential manner.)

The last “ingredient” is based on the mathematical observation concerning symmetry of

a certain class of Fourier transforms, as discussed next.

3.3 Theoretical Motivation

For the sake of simplicity, we begin with the one-dimensional case and generalize to the two

dimensions (square pupil) in later sections. Let us denote the spatial phase over the (1D)

pupil as φ(x) and the transmission function as T (x ). Then the light on the diffraction plane

would be [63]

E (η) = F{T (x )e iφ(x)} (3.1)

where x is the coordinate in the pupil plane, η is the coordinate in the diffraction plane,

and F{} denotes the Fourier Transform Operation.

An equivalent expression is

E (η) = F{T (x )} ⊗ {F{cos[φ(x )] + i sin[φ(x )]}} (3.2)

where ⊗ denotes the convolution. For a one-dimensional “pupil” of width D , the trans-

mission function T = 1 for |x| 6 D/2 and T = 0 otherwise. The Fourier Transform of T (x )

is Sinc(η) ≡ sin(πη)/πη which is an even and real function. As is well known from Fourier

analysis, if φ(x) is an even and real function, F{cos[φ(x)]} is also an even and real function

and, therefore, F{i sin[φ(x)]} yields an even and imaginary function. The light intensity on

the diffraction plane would be simply the sum of square of two real functions:

I (η) = {Sinc(η)⊗F{cos[φ(x )]}}2 + {Sinc(η)⊗F{sin[φ(x )]}}2 (3.3)
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Here one observes, that to generate a desired dark region (region of interest in a focal

plane) by using an even phase function requires such φ(x) that both of the Fourier Trans-

forms (T (x ) cos[φ(x )] and T (x ) sin[φ(x )]) in this region will have to nearly vanish separately.

However, when φ(x) is an odd function, F{cos[φ(x)]} is still an even and real function but

F{i sin[φ(x)]} yields an odd and real function. In this case, the light intensity in the diffrac-

tion plane would be square of the sum of two real functions (as opposed to the sum of the

squares):

I (η) = {Sinc(η)⊗F{cos[φ(x )]}+ Sinc(η)⊗F{i sin[φ(x )]}}2 (3.4)

This expression suggests that it might be possible to generate a dark region by using

odd phase functions and attempting “destructive interference” between Fourier Transforms

ofT (x ) cos[φ(x )] and T (x ) sin[φ(x )] in this region. Guided by this argument, we explored a

set of odd (anti-symmetric) phase functions and found some that yield sufficiently deep light

reduction on half of the x-axis.

3.4 1-D Examples of One-sided Phase Apodization

Because of exceptionally deep reduction ability and smaller inner working angles, let us con-

sider the following odd (anti-symmetric) phase functions

φ1(x) = a · tan[(0.5− ε) · 2πx/D ] (3.5)

φ2(x) = a · ln (1 + ε) + 2x/D

(1 + ε)− 2x/D
(3.6)

where ε is a small (positive) parameter, defined so that the phase value is finite at the

edge of the pupil. The shapes of these two phase functions are illustrated in Figure 3.1

where the parameters are set as a = 1 and ε = 0.005 for φ1(x) while for φ2(x), a = 3 and

ε = 0.001.(We shall defer discussion of computational devices needed to avoid severe aliasing

in the simulations and the selection of the a and ε parameters to a later section.)

The annulling effect by the destructive interference described in equation 3.4 is illustrated

in Figure 3.2 and Figure 3.3. The example of a diffraction pattern caused by phase function φ1
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Figure 3.1: Shapes of the 1-D phase delay functions over the pupil. The thinner solid line represents the

phase φ1(x) = a · tan[(0.5− ε) · 2πx/D ] with a = 1 and ε = 0.005; The thicker solid line represents the phase

φ2(x) = a · ln (1+ε)+2x/D
(1+ε)−2x/D with a = 3 and ε = 0.001.

with a = 1 and ε = 0.005 is shown in Figure 3.2. Similarly, Figure 3.3 displays the diffraction

pattern for the case of the phase function φ2 with a = 3 and ε = 0.001. In order to “zoom

in” and see the details, in Figure 3.4 we demonstrate the annulling effect on log10 scale. It

can be seen that for φ1, a reduction level region of lower than 10−4.5 can be obtained at about

3.5λ/D distance from the shifted peak and 10−5 can be obtained at about 4.5λ/D (thicker

solid line). The second example, φ2, produces an even sharper annulling effect, shown by the

dashed line. We see that the level of lower than 10−5.5 can be reached at distance only about

2.5λ/D from the shifted peak. (Jumping ahead a bit, we inform the reader that the reduction

effect is squared in two dimensions). It should be pointed out that the parameters used in

the above examples are not necessarily optimal and we now proceed to discuss the relations

between performance and the parameters.
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Figure 3.2: 1-D annulling effect due to the phase function φ1(x) = a · tan[(0.5− ε) · 2πx/D ] with a = 1 and

ε = 0.005. In the simulation, 12800 pixels are sampled over the pupil D and the amplitude is normalized to

peak amplitude without phase modulation. In (a), the Sinc(η)⊗F{cos[φ1(x)]} is represented in thicker solid

line, while the i · Sinc(η)⊗F{sin[φ1(x)]} is represented in thinner solid line. In (b), the solid line represents

the interference results of two terms in (a). One can see that the “destructive interference” occurs on the

negative half axis while “constructive interference” happens on the positive one.
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Figure 3.3: 1-D annulling effect due to the phase function φ2(x) = a · ln (1+ε)+2x/D
(1+ε)−2x/D with a = 3 and

ε = 0.001. In the simulation, 12800 pixels are sampled over the pupil D and the amplitude is normalized to

peak amplitude without phase modulation. In (a), the Sinc(η)⊗F{cos[φ2(x)]} is represented in thicker solid

line, while the i · Sinc(η)⊗F{sin[φ2(x)]} is represented in thinner solid line. In (b), the solid line represents

the interference results of two terms in (a). Again, the “destructive interference” takes place on the left half

axis while “constructive interference” is seen on the right.
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3.5 1-D Focal Plane Performance, Parameter Selection,

and Sampling
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Figure 3.4: 1-D logarithmic (base 10) relative intensity. The intensity is normalized to the peak intensity

without phase modulation. The thicker solid line represents the logarithm (base 10) relative intensity of the

annulling results due to φ1(x) = a ·tan[(0.5−ε) ·2πx/D ] with a = 1 and ε = 0.005. The dashed line represents

the logarithm (base 10) relative intensity of of the annulling results due to φ2(x) = a · ln (1+ε)+2x/D
(1+ε)−2x/D with a = 3

and ε = 0.001. The thinner solid line is, as a reference, the diffraction intensity without phase modulation.

One can see a sharper reduction in employing φ2 than that in employing φ1.

The performance of the above phase functions is described by the point spread functions

(PSFs) they produce. For example, it can be seen from Figure 3.4 that the peak is broadened,

shifted, and lowered, while the light on the left half axis is reduced. The reduced intensity

level along the negative half axis is not constant. To investigate the relation between this

level and the function parameters more generally, we define the relative reduced intensity

level as the maximum relative intensity value within the 25th λ/D and the 20th λ/D. The

corresponding curves are shown in Figure 3.5, labelled (a) and (c). The curve (a) corresponds

to φ1 while (c) corresponds to φ2. It can be seen that the reduced intensity level is strongly
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Figure 3.5: 1-D performances in reduction level and Strehl ratio and their relations with parameters. Panels

(a) and (b) are for the cases with phase modulation φ1(x) = a · tan[(0.5− ε) · 2πx/D ], in which (a) shows the

relation of logarithmic (base 10) relative intensity level around 20λ/D vs. ε at different values of a =0.5, 0.67,

1, 2 and 4 while (b) shows the relation of the Strehl ratio vs. ε at different values of a =0.5, 0.67, 1, 2 and 4.

Panel (c) and (d) are for the cases with phase modulation φ2(x) = a · ln (1+ε)+2x/D
(1+ε)−2x/D , in which (c) shows the

relation of logarithmic (base 10) relative intensity level around 20λ/D vs. ε at different values of a =2, 3, 6,

12 and 24 while (d) shows the relation of the Strehl ratio vs. ε at different values of a =2, 3, 6, 12 and 24.

dependent on the parameters a and ε. To examine the relation between the lowered peak

power and the parameters, we still use the term “Strehl ratio” to represent the ratio of the

lowered peak power to the peak power when no phase function is applied, despite the fact

that the peak shifts a bit. In Figure 3.5, the corresponding curves are labelled as (b) and (d),

where (b) is associated with φ1 and (d) with φ2.

Figure 3.6 shows relations between the shifted distance of the peak and the function
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Figure 3.6: 1-D relation between the shifted peak and the parameters. Panel (a): the shifted distance

of the peak in units of λ/D vs. ε at different values of a =0.5, 0.67, 1, 2 and 4 with phase modulation

φ1(x) = a · tan[(0.5− ε) ·2πx/D ]. Panel (b): the shifted distance of the peak in units of λ/D vs. ε at different

values of a =2, 3, 6, 12 and 24 with phase modulation φ2(x) = a · ln (1+ε)+2x/D
(1+ε)−2x/D . The step-like shape in the

curves is due to finite number of pixel points within each λ/D interval. In this calculation, there are 20.56

pixels within each λ/D interval.

parameters. It can be seen that the shifted distance has a strong and almost linear dependence

on the parameter a and a relatively weak dependence on the parameter ε, within the selected

ranges. The curves in the above Figure 3.5 and Figure 3.6 can be used in phase design based

on given specifications and will be used in a later section to give qualitative analysis on the

broad bandwidth performance.

In addition to anti-symmetry, the phase functions in equation 3.5 and equation 3.6 have

another common qualitative features: a substantial and rapid rate of change near the edge of

the pupil, as shown in Figure 3.1. This change of the phase near the edge contributes to the

annulling effect along the negative half of the diffraction axis. In order to adequately capture

this effect in the simulation, a large number of pixels over the pupil may have to be sampled.

We can obtain a crude bound by the following argument.

Let N pixels be sampled over the pupil D . Then, the sampling theory suggests choosing

the sampling rate N /D of, at least, twice the maximal spatial frequency of our phase functions.

If local frequency f = 1
2π
· dφ(x)

dx
is used to estimate the frequency, then it can be expected

that the N will have to satisfy N > D
π
· dφ(x)

dx
|max. Figure 3.7 shows the relationship between

the estimated minimum number of sampled pixels Nmin and the parameter ε for the phase
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Figure 3.7: 1-D relationship between parameter ε and Nmin/a, where Nmin is the estimated minimum

number of pixels sampled over the pupil D and a is the parameter in the phase functions. The thicker solid

line is for the case with phase modulation φ1(x) = a · tan[(0.5− ε) · 2πx/D ]. The thinner solid line is for the

case with phase modulation φ2(x) = a · ln (1+ε)+2x/D
(1+ε)−2x/D .

functions. For smaller ε, more sampling pixels are required over the pupil. To insure the

stability of the results in a rather large range, say, 2000 diffraction rings in 1-D and make the

code applicable for all a and ε used, in all of the above simulations, at least 12800 pixels were

sampled over the pupil D. (This is not to be confused with the issue of number of elements

needed to implement the results in, say, active optics - as we shall see below, a much smaller

number of elements is sufficient to attain required performance).

3.6 Phase Modulation for the Square Pupil

Separation of variables permits a straightforward application of our 1-D phase functions along

with the side lobe reduction results to the square pupil, which as we mentioned earlier, has
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already generated a great deal of interest in the field imaging of extra-solar planet imaging

[60, 57]. There are two ways to proceed to the square pupil. One way is to apply the 1-D

phase function along one axis only, where the light field over the 2-D square pupil would be

T (x )·T (y)·e iφ(x). The diffraction light intensity would then be given by I (η, ξ) = I (η)Sinc(ξ),

where I (η) is the 1-D diffraction field intensity determined by equation 3.4 in which the odd

phase delay is applied. For the phase functions φ1 and φ2, the contrast level of 10−10 is reached

when the observation position is about 15λ/D away from the optical axis as can be estimated

from Figure 3.4.

A better alternative, however, is to apply the phase function along both of the x and y

axes, in which case the light field over the 2-D square pupil becomes T (x ) ·T (y) · e i [φ(x)+φ(y)].

In this case, the diffraction light field intensity is given by I (η, ξ) = I (η) · I (ξ). The essential

advantage gained is that one quadrant of the diffraction plane can experience twice the 1-D

reduction and do so at a closer separation angle. This is illustrated in panel (a) of Figure

3.8 where we show logarithmic intensity image produced by the phase function φ1(x)+φ1(y).

The panel (b) of Figure 3.8 displays relative intensity along the diagonal. It can be seen that

a deep reduction region is obtained in the second quadrant and the 10−9 level can be reached

at distance 4.5λ/D and 10−12 at about 7λ/D . Panels (c) and (d) of Figure 3.8 demonstrate

that the level of 10−12 can be reached at the distance of about 3.5λ/D when φ2(x) + φ2(y) is

applied to the square pupil. These results are quite good but do they only hold for a single

wavelength? Fortunately, the method is robust as we now demonstrate.
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Figure 3.8: Light reduction effect on one quadrant of focal plane when phase function is applied along

x and y directions for the square pupil. Panel (a): Logarithmic (base 10) relative intensity image when

phase φ(x, y) = a · tan[(0.5 − ε) · 2πx/D ] + a · tan[(0.5 − ε) · 2πy/D ] with a = 1 and ε = 0.005 is applied

to a square pupil. Panel (b): The thicker solid line represents the logarithm (base 10) relative intensity

along the diagonal line crossing the second and the fourth quadrants in (a). Thinner solid line represents

the one without phase modulation. Panel (c): Logarithmic (base 10) relative intensity image when phase

φ(x, y) = a · ln[ (1+ε)+2x/D
(1+ε)−2x/D · (1+ε)+2y/D

(1+ε)−2y/D ] with a = 3 and ε = 0.001 is applied to a square pupil. Panel (d):

The thicker solid line represents the logarithm (base 10) relative intensity along the diagonal line crossing the

second and the fourth quadrants in (c). Thinner solid line represents the one without phase modulation. One

can see that light in the 1st, 2nd and 3rd quadrants has been greatly reduced and the reduction level of 10−12

can be reached at the distance of about 3.5λ/D in the second quadrant.

Bandwidth Tolerance

Let us consider the case where the required phase delay is realized by a reflecting mirror

or a transmission phase plate. If the phase plate has a uniform and homogenous refractive
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index n(λ) and a geometric thickness d(x), then it generates a phase delay of φ(x) = 2π
λ
·

[n(λ)− 1]d(x). If the reflecting mirror has a geometric shape h(x), then it generates a phase

delay of φ(x) = −2π
λ
· 2h(x). For notational simplicity, we shall use a common term G(λ)

to represent either the term [n(λ) − 1] for phase plate case or the term -2 for the reflecting

mirror, and H(x) to represent generally the geometric functions d(x) or h(x). Then, φ(x)

is expressed simply as φ(x) = 2π
λ

G(λ)H(x). To generate the phase function that works on

central wavelength λ0, we set the geometric function to H(x; λ0) = λ0

2πG(λ0)
φ(x), where the

2nd argument in H(x; λ0) indicates that the geometric function is designed for the central

wavelength λ0. When light of wavelength λ goes through this phase delay element, the

geometric function H(x; λ0) generates the phase delay given by

φ(x, λ) =
λ0

λ

G(λ)

G(λ0)
φ(x) (3.7)

and we see that the phase delay at the new wavelength equals the original phase function

φ(x) multiplied by a factor λ0

λ
G(λ)
G(λ0)

. This factor is, in fact, equivalent to the parameter a in

the phase function formulae 3.5 and 3.6. For phase plate with positive dispersion materials

or for the reflecting mirror, the term λ0

λ
G(λ)
G(λ0)

decreases with increasing λ. Therefore, based on

parameter relations of Figure 3.5, we see that a 50% ”red-shift” in wavelength causes less than

1 order of magnitude increase in the reduction level, while a 50% ”blue-shift” in wavelength

causes less than 1 order of magnitude decrease in the reduction level. This is why our phase

modulations tolerate 0.6λ0 bandwidth in the simulations shown in Figure 3.9 and still keep a

small inner working angle and low reduction level.

39



Distance in λ
0
/D

                       (c)                       

−20 −10 0 10 20

−20

−10

0

10

20
−20 −15 −10 −5 0 5 10 15 20

−16

−14

−12

−10

−8

−6

−4

−2

0

Distance in λ
0
/D along diagonal

                                        (d)                                      

Lo
g1

0 
re

la
tiv

e 
in

te
ns

ity

Distance in λ
0
/D

                       (a)                       

−20 −10 0 10 20

−20

−10

0

10

20
−20 −15 −10 −5 0 5 10 15 20

−16

−14

−12

−10

−8

−6

−4

−2

0

Distance in λ
0
/D along diagonal

(b)

Lo
g1

0 
re

la
tiv

e 
in

te
ns

ity

−16

−14

−12

−10

−8

−6

−4

−2

−14

−12

−10

−8

−6

−4

−2

Figure 3.9: Broad bandwidth light reduction effect on one quadrant of focal plane. The simulation is based

on a rectangular spectrum distribution with total bandwidth of 60%λ0 . Panel (a): Logarithmic (base 10)

relative intensity image when phase φ(x, y) = a · tan[(0.5− ε) · 2πx/D ] + a · tan[(0.5− ε) · 2πy/D ] with a = 1

and ε = 0.005 is applied to a square pupil. Panel (b): The thicker solid line represents the logarithm (base

10) relative intensity along the diagonal line crossing the second and the fourth quadrants in (a). Thinner

solid line represents the one without phase modulation. Panel (c): The logarithm (base 10) relative intensity

image when phase φ(x, y) = a · ln[ (1+ε)+2x/D
(1+ε)−2x/D · (1+ε)+2y/D

(1+ε)−2y/D ] with a = 3 and ε = 0.001 is applied to a square

pupil. Panel (d): The thicker solid line represents the logarithm (base 10) relative intensity along the diagonal

line crossing the second and the fourth quadrants in (c). Thinner solid line represents the one without phase

modulation. One can see that reduction level of 10−12 with a inner working distance of about 3.5λ0/D can

still be kept with a broad bandwidth of 60%λ0 in the second quadrant.

Phase and Shape Errors

The errors in the phase-only spatial modulation scheme are likely to come from two sources:

imperfections in the phase function and perturbations in the pupil boundary. Let us begin

40



with the former.

The phase errors caused, for example by imperfect manufacturing, scatter light into the

dark region and, in doing so limit the reduction level. Assuming that phase errors satisfy

δφ(x, y) ¿ 1, the light field E(η, ξ) on the focal plane is given by

E(η, ξ) ≈ F{T (x, y)·eiφ(x,y)[1 + iδφ(x, y)]} (3.8)

and the light intensity is a square of the sum of the ideal field and the noise field caused

by phase errors. However in the dark region, the ideal field is extremely low and the noise

field dominates. Then, the light intensity in the dark region is given by

δI(η, ξ) ≈ |Eideal(η, ξ)⊗F{δφ(x, y)}|2. (3.9)

and the integration of the noise intensity over the focal plane yields the phase error variance

over the pupil as follows (the transmission function T (x, y) over the pupil is a rectangular

unit step function):

∫ ∞

−∞

∫ ∞

−∞
δI(η, ξ)dξdη ≈

∫ D/2

−D/2

∫ −D/2

−D/2

|δφ(x, y)|2dxdy. (3.10)

Spectral content can be important in considering the phase error tolerance, e.g., phase

errors of spatial frequencies from 0.03-0.5 cycles per centimeter (about 5.4-90 cycles per aper-

ture for Eclipse design) are considered critical for imaging Jovian planets [47, 48] and the

expected noise intensity level (relative to the peak power) is under 10−9. Therefore, to esti-

mate the phase error requirement for the phase modulated square pupil (side D) by function

φ(x, y) = a · ln[ (1+ε)+2x/D
(1+ε)−2x/D

· (1+ε)+2y/D
(1+ε)−2y/D

] (a = 3 and ε = 0.001), we assume a flat noise inten-

sity level in the critical spatial frequency region. This results in integration from 5.4λ/D to

90λ/D (LHS of equation 3.10), and yields 10−9 · I0 · (λ/D)2 · (902 − 5.42) where I0 is the

light peak intensity with phase modulation. But, from panel (c) of Figure 3.5 we obtain

I0 ∼ 0.3 · [D2 · (D/λ)2] where D2 · (D/λ)2 is the peak power of the square pupil case without

phase modulation [21]. This results in phase errors within the critical spatial requency region

below 15.5×10−4rad rms or below 2.5×10−4 λ rms. This is feasible with current technology

as reviewed in the Introduction.
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Figure 3.10: Illustration of the actual pupil which is formed by the sum of the ideal pupil and the “peninsu-

las” and “bays” around the ideal pupil boundary. The ideal pupil is the region encircled by the dotted lines,

the actual pupil is the white region encircled by the solid lines.

Let us next address the precision requirements for the pupil shape. The rough edge (pupil

boundary) is illustrated in Figure 3.10 where the actual edge is formed by small concave

and convex perturbations around the ideal boundary, forming randomly sized and shaped

“peninsulas” and “bays”. The “bays” let more light pass through than in the ideal case. The

“peninsulas”, of course, block the light. The blocked light can be regarded as a superposition

of straight light and π-shifted light. Hence, one can view the peninsulas as letting more “π-

shifted” light through the pupil. Then, one can argue that light exiting the actual pupil is a

sum of the ideal pupil light and that due to a chain of “peninsulas” and “bays”. Therefore,

because of the Fourier transform additivity, the light field in the image plane is the sum

of the associated individual Fourier Transforms. To make further progress, let us invoke a

probabilistic argument.

Since the size of each of the chain elements is much smaller than the size of the pupil, the
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diffraction cores are wide-spread, and are much larger than that due to the ideal pupil, and

are randomly shifted in phase and position. Therefore, it is reasonable to treat the core light

from each of the “peninsulas” and the “bays” as uncorrelated noise sources. Then, this noise

intensity due to the chain can be estimated as the sum of the diffraction intensities from each

of the chain elements, neglecting the interference cross-terms between elements of the chain

because of the randomness in shape, size and π phase shift. This picture allows deduction of

a scaling rule by the following, rather general, argument.

Let the ideal pupil area be A and a circumference L. Then, the ideal pupil diffraction

peak power scales as ∼ A2/λ2. If the characteristic length of the chain elements is l, the

background noise, similarly, scales as ∼ L · l3/λ2. Based on this scaling, the background noise

n relative to the peak power of the ideal pupil diffraction peak is

n ∼ L · l3/A2 (3.11)

and, based on equation 3.11, we estimate that for a square pupil of, say, width 0.1 meter,

a requirement on the relative noise background of about 10−11 can be satisfied by confining

boundary errors to less than 10µm - a quite feasible task.

Diffraction-limited Planet Imaging by Combining Coronagraph and a Conjugate

Phase Plate

Figure 3.11: Schematic layout for restoring the diffraction limited images of the extrasolar planets.

As in most of the coronagraph and pupil amplitude apodization techniques, our phase-only

pupil modulation also lowers and broadens the core of the on-axis stellar image. Since the
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Figure 3.12: Comparison of the images of the planet before and after combination use of an occulting mask

and a conjugate phase element. The occulting mask covers the light in the 1st, 3rd and 4th quadrants. The

pair of conjugate phase is based on φ(x, y) = a · ln[ (1+ε)+2x/D
(1+ε)−2x/D · (1+ε)+2y/D

(1+ε)−2y/D ] with a = 3, ε = 0.001 and the

bandwidth= 0.6λ0. The planet locates at 10λ0/D angular distance with respective to the star along the

diagonal line in the 2nd quadrant and is 10−9 fainter than the star. Panels (a) and (b) show the logarithm

(base 10) relative intensity image and linear relative intensity image of the detected planet before using the

occulting mask and the conjugate phase element while (c) and (d) show the cases after using the occulting

mask and the conjugate phase element. One can see that diffraction limited image of the planet can be

restored.

phase modulation is applied in the pupil or relay plane, the image from an off-axis planet will

have the same structure as the on-axis stellar image. However, unlike the other techniques,

phase-only modulation conserves the light energy. Indeed, the light energy is not absorbed or

blocked but is spread into the quadrant where the constructive interference occurs as shown

in Figure 3.9. Is it possible to remove the unwanted parts and then use the principle of wave

front reversal (phase conjugation) to restore the desired parts of the image?
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One possibility of restoring the diffraction-limited image of the planet, is to use an occult-

ing mask to block the star image first, and then add a conjugate phase modulation element

on the next relay pupil plane to compensate (reverse) the phase. For example, consider a

schematic layout as shown in Figure 3.11, where two pupil relay planes are used to put the

conjugate pair of phase plates. Also, an occulting mask is placed in the first image plane

so that it can block the image of the star. The restored images can be obtained from the

final image plane. In Figure 3.12 we simulate and compare the detected planet’s image before

and after the combination of occulting mask and conjugate phase element. In the simulation,

the planet-to-star ratio is 10−9 and the planet image is located at 10λ0/D away from the

star along the diagonal. An occulting mask, covering the 3 quadrants of the image plane is

used. It can be seen that the conjugate phase element moves the light energy in the strong

side lobes back into the image main lobe and the broadened image is restored. It should be

noted that the peak power is not completely restored (a complete restoration should have the

peak power returned to 10−9 in this example). This is due to the mask that also covers some

amount of the broad side lobes from the planet, near the mask boundary. Redesigning the

mask may increase the restored peak power.

3.7 Concluding Remarks

We have proposed theoretically and provided specific numerical examples and simulations to

demonstrate the possibility of using phase-only spatial pupil modulation to reach the goal of

direct imaging the extra-solar planets. The results show that phase modulation can provide

an alternative method for high contrast imaging within a rather large dynamic range in

terms of both the observational field-of-view angle and the spectral bandwidth. It should be

emphasized that there might be a variety of odd phase delay functions that can be used for

this purpose. This flexibility implies likely tolerance of phase shape deviation and could help

reduce the difficulties in phase realization or manufacturing.

There may be several ways of implementing the phase delay function in a real system. In

previous sections, for the convenience in analysis, it is assumed that a fixed optical element,

such as a reflecting mirror or a phase plate, is used to generate the phase delay function.

However, the main difficulty is likely to be one’s ability to manufacture the shape precisely.
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Consider, for example, a 0.1 meter phase plate or mirror. Our phase curve of Figure 3.1

corresponds to the edge heights of a few microns and edge slopes on the order of 10−7 and

10−3 for φ1 and φ2, respectively (for visible light). Such a shape can be manufactured with

computer-controlled surface figuring techniques, e.g., Elastic Emission Machining [64], Fluid

Jet Polishing [65], Ion Beam Milling [66], Wet-Etch Figuring [67], etc. However, the precision

of the surface shape is, at best, on the order of a few nanometers and scattering due to

figure errors then limits the contrast to about 10−6. This is not sufficient for direct imaging

extra-solar planets by a moderate telescope in visible light.

Thus, as in all other coronagraph or pupil apodization approaches, reaching lower levels

will require employment of high density active mirrors. Based on experiments conducted at

JPL [47, 48, 68], one expects their deformable mirror driven by 96× 96 actuators to provide

10−9 contrast within the critical spatial frequency region. In our case of the modulating phase

plate, the high density active mirror, such as that of JPL, can, perhaps, be used to correct

the combined figure errors of the primary mirror and those of the phase modulating element.

The combined figure errors could be precisely sensed by subtracting off the theoretical phase

function from the actual one, retrieved by an iterative method, e.g., [43]. It is feasible, then,

to expect such a correction scheme to yield the reduction level sufficient for imaging Jovian

planets.

An appealing alternative to the phase plate design, is to use an active mirror itself to induce

the odd phase modulation pattern. Indeed, active mirrors are necessary for correcting the

random phase aberrations in all high contrast imaging telescopes. If the task of generating the

phase delay function can be integrated with that of correcting the random phase aberrations

of the primary mirror, then the whole system will, likely, require no phase plate on a pupil

relay plane, resulting in considerable simplification. In addition, such integration can ease

the sequential space searching because the rotation and repeated collimation might not be

necessary. Instead, one can reset the actuator stroke values and the dark region will move to

other quadrant.
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Chapter 4

Regional phase apodization via the

Gerchberg-Saxton Algorithm

4.1 Introduction

In resolving two adjacent point light sources that are far away in the presence of the phase

aberrations, adaptive optics or active optics can help obtain high contrast, diffraction limited

images of them. However if the brightness of one of the source is extremely faint compared

with the other, even in the absent of phase aberration, the faint resource is still hard to

detect because diffraction side lobes from the adjacent brighter source may cover the signal

from the faint one and the shot noise from diffraction local side lobes of the brighter source

can be larger than the signal of the fainter source within a tolerable integration time. This

problem may exist in the observation of the superfine structure in spectroscopy or sonar or

radar detections, but may be best exemplified in the imaging of extra-solar planets which

have appeal public interest in recent years [7, 16, 29].

The extra-solar terrestrial planets may be 1010 or even more fainter in the visible light

than the parent star and their separation angle with the parent star could be as close as 0.25

arcsecond which corresponds to a few diffraction ring of their parent star if it is intended to

be observed by a moderate sized telescope like Hubble Space Telescope. To detect such a

faint signal as the extra-solar planet in the vicinity of a bright star within a reasonable time,

the diffraction side lobes must be reduced to about the brightness level of the fainter planets,
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at least in the region of interest(the region where the planet might locate).

In diffraction side lobe reduction, many approaches such as coronagraph, shaped binary

pupil and pupil amplitude apodization methods have been developed and intensively studied

[49, 51, 52, 50, 54, 61, 7, 37, 58, 56, 57, 60, 59]. In the coronagraph approach, the signal of the

brighter light source is screened off by the combination use of a mask on the image plane and a

stop on the pupil relay plane while in shaped binary pupil and the pupil apodization approach,

the side lobe reduction is obtained by adjusting the shape of the pupil or the transmission

rate over the pupil to re-design the PSF(Point Spread Function). In spite of these approaches,

we found that the deep reduction of diffraction side lobes with broad bandwidth tolerance

can also be obtained if the phase over a square pupil is modulated by a series of specific odd

functions [69]. Side lobe reduction by phase modulation has many apparent advantages over

the other approaches: firstly, there is no loss of light energy in the phase modulation and

the “distorted” PSF due to the phase modulation can be compensated by applying a reversal

phase modulation, therefore the diffraction limited image of the extra-solar planets and a

shorter integration time can be obtained; secondly, realization of side lobe reduction can be

potentially controlled by active segmented mirror or deformable mirror, therefore the phase

error compensation and the diffraction side lobe reduction can potentially integrated into one

system.

Here we raise another question: are there any other phase functions for which the suffi-

ciently deep side lobe reduction can be generated in the region of interest very close to the

star,say, a few λ/D? We found that Gerchberg-Saxton algorithm [41], if it is modified, can

be used to find the phase functions for the side lobe reduction. The Gerchberg-Saxton’s al-

gorithm has widely been used to solve the phase retrieval problems in optical and electronic

metrology[70, 71, 72] and synthetic problems [73, 74, 75, 76, 77, 78] . In this paper we will

modify the method to solve the problem of how to find the phase function over the pupil that

can help to yield a deep reduction region which can satisfy the requirements in the example

case of extra-solar planet imaging.
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4.2 Modified Gerchberg-Saxton algorithm

As stated in the introduction, the Gerchberg-Saxton algorithm is widely used in the phase

retrieval problem and is based on the two or more known(or measured) intensity constraints

on both of the pupil plane and the focal (image)plane. During each iteration of forward and

backward Fourier Transform between the pupil plane and focal plane, the light amplitudes on

the pupil plane and the focal plane are replaced by the square root of the corresponding mea-

sured intensities while the phase parts are maintained. Assume the intensity measurements

on the pupil plane and focal plane are Ip and If respectively, then on the nth iteration, the

light field on the focal plane, denoted as En
f , and the light field on the pupil plane, En

p , are

constructed by the following way:

En
f = F{ En−1

p

|En−1
p | ·

√
Ip} (4.1)

En
p = F−1{ En

f

|En
f |
·
√

If} (4.2)

where the superscript n denotes the nth iteration, F and F−1 denotes the Fourier Transform

or Inverse Fourier Transform operation respectively.

In the phase retrieval problem, the constraints on the intensities can impose the iterations

to converge to a phase function that satisfies the constraint conditions even though the so-

lutions might not be unique. In the problem of diffraction side lobe reduction by phase-only

modulation over the pupil,however, we require different constraint conditions: over the pupil,

the amplitude be simply a binary function in which the values are 1 within the pupil opening

and are 0 outside the opening, while over the focal plane, the values are imposed to 0 within

the region of interest and are left unconstrained outside the region of interest. Based on this

modification, during each iteration, the light field on both of the pupil plane and focal plane

can be constructed as the following:

En
f = F{ En−1

p

|En−1
p | · P} (4.3)

En
p = F−1{En

f ·G} (4.4)

where P is the binary pupil function, G is also a binary function with 0 values in the region

of interest and 1 values outside the region of interest.
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Because the modified constraint condition for the area outside the region of interest is

loose, the iteration result for the phase and PSF is not unique and is strongly dependent on

the initial condition. For obtaining a PSF that is not changed much compared with the ideal

PSF except in the dark region of interest, the initial phase over the pupil should be set to

zero or another very small random phase values.

4.3 Examples

−11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

Figure 4.1: Modified Gerchberg-Saxton algorithm iteration results for generating different dark region of

interest on focal plane for round pupil cases. Left: the logarithm (base 10) image of the PSF without phase

modulation. Center: the logarithm (base 10) image of the PSF in which a round dark region with a radius

of 3λ/D and centered at 8λ/D is generated. Right: the logarithm (base 10) image of the PSF in which a

ring-like dark region with inner radius of 5λ/D and outer radius of 11λ/D is generated. The image intensities

are normalized to the peak power of their corresponding PSFs and share the same gray scale.

Based on the modified Gerchberg-Saxton algorithm described above, we first examined the

iteration results for the round pupil case when two different constraint functions G in formula

4.4 are used. The first constraint function we used is a round disk-like binary function in which

we expect a round dark region centered at 8λ/D with radius of 3λ/D can be generated, here

D is the diameter of the round pupil. The second constraint function we used is a ring-like

binary function and we expect to generate a PSF with a ring-like dark region which has

inner radius of 5λ/D and outer radius 11λ/D. To implement the Modified Gerchberg-Saxton

algorithm for these two cases, 51 pixels were sampled over the diameter of a round pupil and

a grid of 512 × 512 was used in calculation. As shown in Figure 4.1 and in Figure 4.2, both
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Figure 4.2: Slice plots of the logarithm(base 10)relative intensity distribution along y axis. The intensity

is normalized to the peak intensity without the phase modulation. The dotted curve represents the intensity

without the phase modulation. The thicker solid curve represents the intensity distribution described by the

center image in Figure 4.1. The thinner solid curve represents the intensity distribution described by the right

image in Figure 4.1.

of the expected dark regions have been generated and great portion of the light energy in the

dark regions have been moved outside.

It should be noted that reduction level shown in Figure 4.2 is about 10−7 which is not

yet sufficient for the purpose of extra-solar planet detection and the results were obtained

after 10, 000 iteration loops. To achieve deeper reduction, more iterations or more sampling

points across the pupil are probably needed. But, expanding the array in the FFT will slow

down the speed and our experience shows that the iteration converges very slowly after a few

hundred loops and the remaining loops (about 9,000 loops) are used to gain only about 1

more order of reduction in the above two calculations. In finding the phase for the purpose of

extra-solar planet detection, directly applying the Modified Gerchberg-Saxton algorithm in

2-D computation would be very expensive. However, 2-D square pupil allows for separating

the 2-D phase function into the sum of two 1-D phase functions as a consequence of which
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the 2-D PSF will be the product of two 1-D PSFs , therefore the problem of optimizing a 2-D

regional apodization is altered to a 1-D computation which is rapidly computed.

−11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

Figure 4.3: Modified Gerchberg-Saxton algorithm iteration results for generating different dark region of

interest on focal plane for square pupil cases. Left: the logarithm (base 10) image of the PSF without phase

modulation. Center: the logarithm (base 10) image of the PSF in which a square dark region with a side of

4λ/D and with a distance of 5.6λ/D to the core is generated in the fourth quadrant. Right: the logarithm

(base 10) image of the PSF in which four square dark regions (same size as the one in the center figure)

are generated in the all four quadrants. The image intensities are normalized to the peak power of their

corresponding PSFs and share the same gray scale.

Based on the idea of separating the 2-D phase function into the sum of two 1-D phase

functions, we then examined the PSFs constructed from two different constraint functions G

during the 1-D Modified Gerchberg-Saxton iteration and the results are shown in Figure 4.3

and Figure 4.4. The first 1-D constraint function is a binary function in which the values in

the region from 4λ/D to 8λ/D on one half of the axis are set to 0 while other region are set to

1, where D is the side of the square pupil. The constructed 2-D PSF based on this constraint

function has one square shape cross area which experiences twice the 1-D reductions and

reaches the level of about 10−13, as shown in the Center panel of Figure 4.3 and in the thicker

solid line in Figure 4.4. The second 1-D constraint function has two zero value regions on

the axis , each of which has the same distance to the center and the same size as the one in

the first constraint condition. As shown in the Right panel of Figure 4.3 and in the thinner

solid line in Figure 4.4, the constructed 2-D PSF based on this constraint function has four

square shape cross areas each of which experiences twice the 1-D reductions and reaches the

level of 10−13. In these calculations, the side of the square pupil was sampled 51 pixels and
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Figure 4.4: Slice plots of the logarithm(base 10)relative intensity distribution along the diagonal. The

intensity is normalized to the peak intensity without the phase modulation. The dotted curve represents the

intensity without the phase modulation. The thicker solid curve represents the intensity distribution described

by the center image in Figure 4.3. The thinner solid curve represents the intensity distribution described by

the right image in Figure 4.3.

the calculation was based on a 512× 512 grid.
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4.4 Application to imaging extra-solar planets by pupil

phase modulation on segmented active mirror

In the above examples, it can be seen that the Modified Gerchberg-Saxton algorithm does

help to optimize regional side lobe reduction and especially works well for the square pupil

because it allows for variable separation. In the square pupil examples, the contrast level of

below 10−11 can be obtained which is very suitable for extra-solar planet imaging. However, in

imaging extra-solar planets through a monolithic telescope like HST (Hubble Space Telescope)

in the visible light, stringent requirements such as smaller inner working distance and broader

bandwidth tolerance will be needed at the same time.
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Figure 4.5: The actuator displacement constructed from the 1-D unwrapped phase in which the constraint

function G has zero values from 1λ0/D to 24λ0/D. Left panel shows the image of the segmented mirror array

(101× 101) displacement in units of λ0. Right panel shows the slice plot of the displacement along the x-axis.

To investigate how small the inner working distance could be achieved by this method,

we choose the constraint function that starts the 0 values at 1λ/D, meanwhile for achiev-

ing broader bandwidth tolerance, the phase obtained directly from the Modified Gerchberg-

Saxton iteration will be unwrapped and forced to be zero-mean. Figure 4.5 and Figure 4.6

show the results obtained through this simulation strategy. Figure 4.5 shows the actuator

displacement map of the active mirror, assuming the pupil phase modulation is realized by

a 101 × 101 segmented but gapless active mirror. The displacement value of each of the ac-

tuators is assigned based on the unwrapped phase obtained from the 1-D iterations in which
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the constraint function on image plane has zero values from 1λ0/D to 24λ0/D. Figure 4.6

shows the broad bandwidth (20%λ0) logarithm (base 10) PSF which is the result of the phase

modulation by the segmented active mirror described in Figure 4.5. We can see that this

broad bandwidth PSF, which has a shifted peak of 0.45 (normalized to the peak power with-

out phase modulations), possesses a square dark region with contrast level of 10−10 and with

an inner working distance 2.8λ0/D which is sufficiently good for extra-solar planet imaging

in a moderate space telescope.
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Figure 4.6: The broadband (20%λ0) logarithm (base 10) PSF with the phase modulation shown in Figure

4.5. Left panel: the logarithm relative image of the PSF. Right panel: the thicker solid line represents the

slice plot of logarithm relative intensity distribution along the diagonal of the image in the Left panel. The

thinner solid line represent the case without phase modulation. The intensity is normalized to the peak power

without any phase modulation.

4.5 Conclusion

In previous sections, we modified the Gerchberg-Saxton algorithm and applied it, as a syn-

thetic tool, to the problem of the regional side lobe reduction. Our calculations show that

this Modified Gerchberg-Saxton algorithm can help find the phase functions that optimize the

regional side lobe reduction efficiently. By applying this method to the problem of imaging

extra-solar planet by a square pupil, we showed numerically that pupil phase modulation on a

101×101 segmented mirror can yield a dark region that is sufficiently good for direct imaging

of extra-solar planets.
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It should be pointed out that the performance of regional side lobe reduction by pupil

phase modulation(or called pupil phase apodization) is related to the number of descretized

phase elements on the pupil(or the size of the segmented mirror array). From the interference

point of view, the PSF of the phase modulated pupil is effectively the interfering results of

the focal image of these pupil phase elements. The dark region is generated when the Fourier

Transforms of these elements interfer destructively. The more of these elements we have, the

more chances we will have in arranging them to have a deeper or wider side lobe reduction.

56



Chapter 5

Summary and possible future work

In this thesis, by reviewing and analyzing the difficulties in direct imaging of extra-solar

planets in visible light and current coronagraph-type techniques, we proposed a new approach

for direct imaging of extra-solar planets in visible light—pupil phase apodization.

Through our analysis and the numerical calculations on examples of some specific con-

tinuous phase functions in Chapter 3 as well as the discrete phase functions obtained from

the Modified Gerchberg-Saxton synthetic algorithm in Chapter 4, we demonstrated that the

pupil phase apodization approach is achromatic and feasible.

It should be emphasized once again here that the phase modulation could be realized

by a high density deformable mirrors and thus has the potential of integrating the phase

error correction and sidelobe reduction into only one high density active mirror, therefore

simplifying the whole imaging system and relaxing the need for a separate coronagraph system

or making the density modulating mask or complicated binary mask.

Future work could include the experimental examination of the 1D pupil phase apodization

effect in a phase plate or reflecting mirror. As to the realization of phase modulation by the

high density deformable mirror, there is still much more work to be done. For example, we

will have to find the signals to control the stroke of the actual deformable mirror array. In our

simulations here, for simplicity, we used segmented and gapless active mirrors in which there

is no correlations between adjacent actuators. However, correlations exist in real deformable

mirrors. Therefore, how and how well can the actual deformable mirror be fitted into these

functions still needs to be investigated. Furthermore, a whole system performance simulation
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study could be another direction for future work which may include considering the phase

sensing, actuator controlling and noise, etc.

Finally, it should be pointed out that phase-apodization should have many applications

in other fields, such as radar detection and communication. For example, in the case of

airborne or spaceborne radar detection of rain over the tropical sea area, the radar cross-

section of the sea surface could be tens of times or even hundreds of times higher than the

radar cross-section of the rain, the un-apodized side-lobes could pick the sea surface signal and

the receiving antenna could misinterpret the sea signal as the rain signal. So reduction of the

radar side-lobes on the sea surface side is needed. More research regarding this phenomena

needs to be done.
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Appendix A

MATLAB code

THIS CODE IS FOR SIMULATING THE BROADBAND PERFORMANCE OF THE PUPIL PHASE MODULATION

TECHNIQUES

%This code is written by Weidong Yang, Physics Department of Michigan

%Technological University, 31. July. 2003

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

%The following part is for inputting data from keyboard

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

chosen_option=0 ;%a tag for checking the correct option is chosen or not , 0->no; 1->yes

while( chosen_option==0 )

disp(’PLEASE CHOOSE ONE OF THE PHASE DELAY FUNCTIONS : ’)

disp(’ 1. a*asin(x/r); suggested a be around 18’ )

disp(’ 2. tan(a*pi*x/r), with |a| <0.5 but close to 0.5; suggested a=0.490’)

disp(’ 3. a*(x/r)^b, with b odd int; suggested a ~ 30, b ~ 29 ’)

disp(’ 4. a*ln{(b+x/r)/(b-x/r)}, with b >1 ; suggested a ~ 3, b ~ 1.001’)

disp(’ 5. a*sinh(b*x/r); suggested a ~ 1.7, suggested b ~ 6.0’)

disp(’ ’)

phase_option=input(’YOUR PHASE DELAY OPTION IS :’);

if ( phase_option==1 | phase_option==2 | phase_option==3 |

phase_option==4 | phase_option==5 );

chosen_option=1;
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end;

end;

parameter_a=input(’PLEASE INPUT A PARAMETER, a=’);

if (phase_option==3 | phase_option==4 | phase_option==5)

parameter_b=input(’PLEASE INPUT B PARAMETER, b=’);

end

disp(’’)

bandwidth=input(’HALF BANDWIDTH IN DECIMALS= ’);

disp(’’)

obs_range=input(’HALF SIZE OF THE OBSERVATIONAL WINDOW IN LAMBDA/D =’);

disp(’’);

position_mask=input(’POSITION OF mask in unit of lambda/D=’);

disp(’’);

n_planets=input(’How many planets (including the star numbered 1 in following input)?=’);

disp(’’);

contrast_ratio=input(’how many order difference the planet is dimmer than star?=’);

disp(’’);

planet_cordn=zeros(2,n_planets);

planets_count=1;

while(planets_count <= n_planets);

disp(planets_count);

planet_cordn(1,planets_count)=input(’input_x_coordinate in units of lamda/D=’);

disp(planets_count);

planet_cordn(2,planets_count)=input(’input_y_coordinate in units of lamda/D=’);

planets_count=planets_count+1;

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

%The following part is for calculation

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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n=(2^7)*512; % define the total pixel numbers

n2=n/2;

rr_pupil0=(2^7)*50.0; %define the radius of the pupil in pixels

n_cut=fix(obs_range*n2/rr_pupil0); %convert the observational range to pixels

a=ones(1,n);

unit_vector=ones(n,1);

x=[-n2:1:n2-1];% x_axis

x_axis_diag=[-n_cut:1:n_cut]*1.414/(n/(2*rr_pupil0));

%define the diagonal line in unit of lambda/D

x_axis_bound=[-n_cut:1:n_cut]/(n/(2*rr_pupil0));

%define the x-axis in unit of lambda/D

mask1D=(x <= position_mask*n2/rr_pupil0);

sum_ideal_inten=zeros(2*n_cut+1,2*n_cut+1);

sum_mix_inten=zeros(2*n_cut+1,2*n_cut+1);

sum_mix_inten_f2=zeros(2*n_cut+1,2*n_cut+1);

for pln_count=1:n_planets;

for kkk=-10:10 ; %loop for the 41 sub wavelength components

ratio_lamda=1/(1+kkk*bandwidth/20); %define the ratio of the lambda change

rr_pupil=ratio_lamda*rr_pupil0; %define the virtual pupil size

pupil=a.*(abs(x) <= rr_pupil); %prepare a virtual pupil

if (pln_count == 1)

focal_ideal=(fftshift(fft(fftshift(pupil))));

%the complete aberration free PSF on the 1D focal

focal_ideal_x=focal_ideal(n2-n_cut:n2+n_cut);

%choose the data only within the observational range

focal_ideal2D=(focal_ideal_x’)*focal_ideal_x;

%calculate the 2-D light field of aberration free PSF

intensity_focal=(abs(focal_ideal2D)).^2;

%the 2D intenisty of the aberration free PSF

clear focal_ideal; clear focal_ideal2D; clear focal_ideal_x;

sum_ideal_inten=sum_ideal_inten+intensity_focal;

%accumulate the light intensity on different wavelength

clear intensity_focal;

end
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if (phase_option==1)

phs_func=(parameter_a*asin(x./rr_pupil)-0)*ratio_lamda;

phs_func_x=(parameter_a*asin(x./rr_pupil)-x*planet_cordn(1,pln_count)

*pi/rr_pupil)*ratio_lamda;

phs_func_y=(parameter_a*asin(x./rr_pupil)-x*planet_cordn(2,pln_count)

*pi/rr_pupil)*ratio_lamda;

end if (phase_option==2)

phs_func=(tan(parameter_a*pi*x./(rr_pupil))-0)*ratio_lamda;

phs_func_x=(tan(parameter_a*pi*x./(rr_pupil))-x*planet_cordn(1,pln_count)

*pi/rr_pupil)*ratio_lamda;

phs_func_y=(tan(parameter_a*pi*x./(rr_pupil))-x*planet_cordn(2,pln_count)

*pi/rr_pupil)*ratio_lamda;

end if (phase_option==3)

phs_func=(parameter_a*((x./rr_pupil).^parameter_b)-0)*ratio_lamda;

phs_func_x=(parameter_a*((x./rr_pupil).^parameter_b)-x*planet_cordn(1,pln_count)

*pi/rr_pupil)*ratio_lamda;

phs_func_y=(parameter_a*((x./rr_pupil).^parameter_b)-x*planet_cordn(2,pln_count)

*pi/rr_pupil)*ratio_lamda;

end if (phase_option==4)

temp001=((parameter_b+x/rr_pupil)./(parameter_b-x/rr_pupil+0.000000013))

.*(abs(x) <= rr_pupil)+(1-pupil);

phs_func=(parameter_a*log(temp001)-0)*ratio_lamda;

phs_func_x=(parameter_a*log(temp001)-x*planet_cordn(1,pln_count)*pi/rr_pupil)

*ratio_lamda;

phs_func_y=(parameter_a*log(temp001)-x*planet_cordn(2,pln_count)*pi/rr_pupil)

*ratio_lamda;

end if (phase_option==5)

phs_func=(parameter_a*sinh(parameter_b*x/rr_pupil)-0)*ratio_lamda;

phs_func_x=(parameter_a*sinh(parameter_b*x/rr_pupil)-x*planet_cordn(1,pln_count)

*pi/rr_pupil)*ratio_lamda;

phs_func_y=(parameter_a*sinh(parameter_b*x/rr_pupil)-x*planet_cordn(2,pln_count)

*pi/rr_pupil)*ratio_lamda;

end

pupil_temp1_x=pupil.*(cos(phs_func_x)+i*sin(phs_func_x));

%pupil function with phase aberrations along x
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pupil_temp1_y=pupil.*(cos(phs_func_y)+i*sin(phs_func_y));

%pupil function with phase aberrations along y

focal_x=(fftshift(fft(fftshift(pupil_temp1_x))));

%the 1D PSF on the f1 with phase aberrations along x

focal_y=(fftshift(fft(fftshift(pupil_temp1_y))));

%the 1D PSF on the f1 with phase aberrations along y

p2_x=fftshift(ifft(fftshift(focal_x.*mask1D)));

p2_y=fftshift(ifft(fftshift(focal_y.*mask1D)));

p2_temp1_x=pupil.*(cos(-phs_func)+i*sin(-phs_func));

% pupil function with conj phase aberrations along x

p2_temp1_y=pupil.*(cos(-phs_func)+i*sin(-phs_func));

% pupil function with conj phase aberrations along y

f2_x=(fftshift(fft(fftshift(p2_x.*p2_temp1_x))));

%the 1D PSF on the f2 with phase aberrations along x

f2_y=(fftshift(fft(fftshift(p2_y.*p2_temp1_y))));

%the 1D PSF on the f2 with phase aberrations along y

focal_x_tmp=focal_x(n2-n_cut:n2+n_cut);

%get the 1D PSF within the observational range along x

focal_y_tmp=focal_y(n2-n_cut:n2+n_cut);

%get the 1D PSF within the observational range along y

focal2D=(focal_y_tmp’)*focal_x_tmp; %get the 2-D light field

clear pupil_temp1_x;clear pupil_temp1_y;

inten_temp1=(abs(focal2D)).^2; %get the 2-D intensity

clear focal_x;clear focal_y; clear focal_x_tmp;clear focal_y_tmp;clear focal2D;

if (pln_count == 1)

sum_mix_inten=sum_mix_inten+inten_temp1;

%accumulate the intensity on f1 for different wavelength

end if(pln_count > 1)
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sum_mix_inten=sum_mix_inten+inten_temp1*10^(-contrast_ratio);

%accumulate the intensity on f1 for different wavelength

end;

clear inten_temp1;

f2_x_tmp=f2_x(n2-n_cut:n2+n_cut);% 1D PSF within the observational range on f2

f2_y_tmp=f2_y(n2-n_cut:n2+n_cut);% 1D PSF within the observational range on f2

f2_2D=(f2_y_tmp’)*f2_x_tmp;% get the 2-D light field on f2

clear p2_temp1_x;clear p2_temp1_y;

inten_temp_f2=(abs(f2_2D)).^2;%get the 2-D intensity

clear f2_x;clear f2_y; clear f2_x_tmp;clear f2_y_tmp; clear f2_2D;

if (pln_count == 1)

sum_mix_inten_f2=sum_mix_inten_f2+inten_temp_f2;

%accumulate the intensity on f2 for different wavelength

end if(pln_count > 1)

sum_mix_inten_f2=sum_mix_inten_f2+inten_temp_f2*10^(-contrast_ratio);

%accumulate the intensity on f2 for different wavelength

end;

clear inten_temp_f2;

end;

end;

sum_ideal=(sum_ideal_inten./(21*1))/(max(max(sum_ideal_inten./(21*1))));

sum_mix=(sum_mix_inten./(21*1))/(max(max(sum_ideal_inten./(21*1))));

sum_mix_f2=(sum_mix_inten_f2./(21*1))/(max(max(sum_ideal_inten./(21*1))));

clear sum_ideal_inten; clear sum_mix_inten;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

%The following part is for plotting

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure;plot(x_axis_diag,diag(log10(sum_ideal)),x_axis_diag,diag(log10(sum_mix)));
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ylim([-18 0]); title(’2-D intensity along diagonal’);

xlabel(’Angular distance in \lambda/D’); ylabel(’Log10 relative intensity’);

figure;plot(x_axis_diag,diag(log10(sum_ideal)),x_axis_diag,diag(log10(sum_mix_f2)));

ylim([-18 0]); title(’2-D intensity along diagonal’);

xlabel(’Angular distance in \lambda/D’); ylabel(’Log10 relative intensity’);

figure;colormap(hot);imagesc(x_axis_bound,x_axis_bound,log10(sum_mix));colorbar;

title(’2-D intensity distribution’);

xlabel(’Angular distance in \lambda/D’); ylabel(’Angular distance in \lambda/D’);

figure;colormap(hot);imagesc(x_axis_bound,x_axis_bound,log10(sum_mix_f2));

colorbar;

figure;colormap(hot);

imagesc(x_axis_bound(1:n_cut),x_axis_bound(1:n_cut),sum_mix_f2(1:n_cut,1:n_cut));

colorbar;

figure;colormap(hot);

imagesc(x_axis_bound(1:n_cut),x_axis_bound(1:n_cut),sum_mix(1:n_cut,1:n_cut));

colorbar;

figure;colormap(hot);

mesh(x_axis_bound(1:n_cut),x_axis_bound(1:n_cut),sum_mix_f2(1:n_cut,1:n_cut));

colorbar;

figure;colormap(hot);

mesh(x_axis_bound(1:n_cut),x_axis_bound(1:n_cut),sum_mix(1:n_cut,1:n_cut));

colorbar;

%this is the end of the code

%This code is written by Weidong Yang, Physics Department of Michigan

%Technological University, 31. July. 2003
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