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Abstract 

 

Carbon nanotube (CNT) is a one dimensional (1-D) nanostructured material, which has 

been the focal point of research over the past decade for intriguing applications ranging 

from nanoelectronics to chemical and biological sensors. Using a first-principles 

gradient corrected density functional approach, we present a comprehensive study of the 

geometry and energy band gap in zig-zag semi-conducting (n,0) carbon nanotubes 

(CNT) to resolve some of the conflicting findings. Our calculations confirm that the 

single wall (n,0) CNTs fall into two distinct classes depending upon n mod 3 equal to 1 

(smaller band gaps) or 2 (larger gaps). The effect of longitudinal strain on the band gap 

further confirms the existence of two distinct classes: for n mod 3 = 1 or 2, changing Eg 

by ~ ±110 meV for 1% strain in each case. We also present our findings for the origin 

of metallicity in multiwall CNTs. 
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Chapter 1 

Introduction 

Since the beginning of civilization, materials have defined substantially periods of 

history that brought about insurmountable changes through the use of certain materials. 

Archeologists broadly classify prehistory into three eras: the Stone Age, the Bronze 

Age, and the Iron Age [1]. Each period is known for advancements enabled by the 

efficient use of materials as tools that shaped the contemporary world. The Stone Age is 

characterized by the use of tools crafted from stone that assisted primitive civilizations 

to hunt and gather food. The Bronze Age was dominated by the use of copper and 

bronze and was led to the inception of metalworking. The Iron Age is marked by the 

widespread use of cast iron tools for various activities. It is undisputable that materials 

play a vital role in the advancement of the quality of human life. The evolution of 

global connectivity has heavily relied on the use of solid-state devices in various 

electronics.  

 

One of the primary focuses of contemporary research is to understand matter from a 

fundamental standpoint that can potentially lead to designing many novel devices and 

structures. Nanoscience refers to the study of matter at the atomic or molecular scale 
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(typically 100 nm or smaller). Nanoscience has opened doors to many fields of inter-

disciplinary research spanning the entire spectrum from basic sciences to engineering. 

In 1959, Nobel laureate Richard P. Feynman delivered a talk at the American Physical 

Society at Caltech titled “There’s plenty of room at the bottom”[2]. This lecture was a 

solicitation to the innumerable opportunities in the uncharted area of nanoscience.  

 

1.1 CARBON NANOMATERIALS 

 

Nanomaterial is a term used broadly for materials that have been synthesized to possess 

a certain characteristics by design at the namometer scale to achieve certain desired 

properties. In 1985, a group of five scientists from Rice University discovered a new 

carbon allotrope known as “C60: Buckminsterfullerene”[3]. This work was awarded the 

Nobel prize in Chemistry in 1996 [4]. Following the discovery of “fullerenes”, in 1991 

a Japanese scientist discovered carbon nanotube (also considered an allotrope of 

carbon) [5]. A Carbon nanotube (CNT) is a one dimensional (1-D) nanostructured 

material, which has been the focal point of research over the past decade for intriguing 

applications ranging from nanoelectronics to chemical and biological sensors. The 

geometry of the carbon nanotube is uniquely described by a chiral vector 

(C
→

): C n a m b
→ → →

= + , denoted by a pair of indices (n, m) that connect the two 

crystallographically equivalent sites on the graphene sheet (a single layer of graphite). 

CNTs can be classified based on the chiral indices (n,m) that define its geometry. When 
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either n or m is equal to zero, rolling a graphene sheet results in a “zig-zag” CNT. In 

cases, when n = m, the resultant CNT is known have an “armchair” configuration, all 

the other cases when (n ≠ m) is referred to as “chiral” structure. Figure 1.1 is a graphic 

representation of the various kinds of CNT based on its geometry. In addition to C60 and 

CNT, other forms of carbon include diamond, graphite, and amorphous carbon.    

 

 

Figure 1.1 A graphic representation of different kinds of CNT based on its chiral indices 
(n,m) (accessed on July 10, 2008; Copyright - Michael Ströck, Wikimedia Commons, 

2006, distributed under GFDL, refer Appendix A for permission) [6] 
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1.2 APPLICATIONS OF CARBON NANOTUBES 

 

It was reported that depending on the chirality of the CNT its electronic properties 

change. It was also found that it possessed exceptional mechanical, electrical and 

optical properties that made it an excellent candidate for numerous applications that 

spawned a great interest in this form of carbon.  

 

A. Structural Applications 

Due to their chemical structure honeycomb arrangement of the carbon atoms and a 

extremely high degree of symmetry CNTs possess excellent mechanical properties. It is 

found that the strength and stiffness of this material far exceeds that of steel and ability 

to withstand much larger strains to failure resulting is extremely tough behavior [7-9]. 

Also, carbon nanotubes are much lighter than steel making them ideal for 

reinforcements in polymer matrix composites [10-15]. Some interesting application for 

CNT have suggested in view of its exceptional mechanical properties such as the space 

elevator.  

 

B. Electronics Applications 

 CNTs posses’ unique characteristics in terms of their electronic properties, the chilarity 

of a CNT determines its eventual properties. This unique dependence makes it 

conducive to certain applications in nanoscale electronics or molecular electronics. In 

addition, it has also been shown that CNT can be used a capacitor that has potential for 
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commercial batteries [16]. Researchers have also found excellent field emission 

(emission of electrons from surface in presence of high electric fields) properties for 

CNT making it ideal for microelectronic devices and certain advanced microscopy 

techniques [17]. It is also tolerant to faults without significant impact on its performance 

when compared to silicon. 

 

C. Chemical and Biological Applications 

Single walled CNTs show significant changes in their electrical properties when 

exposed to certain chemical environments making them suitable for chemical sensing. It 

was also reported that these devices exhibit much higher sensitivity than the current 

solid-state sensors used for the application [18].  

 

An understanding of binding of certain molecules to specific proteins can pave the road 

for deigning novel medicine or molecular medicine. An extremely high aspect ratio of 

the CNT provides a large surface area for effective detection of certain biomolecules 

even at a very low concentration making it ideal for applications such as drug delivery 

[19]. The applications of CNT in biology are not restricted to sensing, self powered 

artificial muscles and prosthetics are envisioned to be potential applications [20]. It has 

been reported that CNT based artificial muscles for robotics applications can be 

manufactured from sheets of CNT that can store energy while not in use due its function 

as a capacitor [21].  
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1.3 OBJECTIVE 

 

One of the central requirements for a device to operate according to predetermined 

design relies on apriori accurate knowledge of the characteristics of the components. 

Numerous applications for CNTs rely on its novel electrical properties and experimental 

determination of their chiralities and measurement of their diameters has been a 

challenge. These characteristics are crucial to its overall performance as they can vary 

significantly. A third of the single walled CNTs are metallic while the rest are 

semiconducting. It is extremely difficult to control the chiralities of the CNTs as grown 

in laboratory. A vital part of the manufacture process is characterization of the 

synthesized tubes. The experimental measurements fall within the accuracy of the 

measuring techniques making it extremely difficult to make a unique characterization. 

However, apriori information of their properties can aide in design of reliable and 

efficient characterization as well as purification processes. Computational solid-state 

physics provides the tools to probe the properties of these materials with minimal 

experimental data. Computational studies in conjunction with experiments can help 

exploit the potential of CNTs. The objective of the current research is to explore 

certain aspects of the electronic properties of CNTs via first-principles simulations. 

First, the exact dependence of chirality of a zig-zag semiconducting CNT on its 

energy band gap will be explored. And second, the role of the electronic properties 

of individual wall of a multiwall CNT on its overall behavior will be presented.  
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Chapter 2 

First-Principles Simulation 

Techniques 

 

Condensed matter physics is a field of physical science that is used to describe the study 

of matter in its “condensed” state generally associated with solids and liquid phase 

materials. One of the categories in this area that strives to understand matter in solid 

phase is known as solid-state physics. This discipline of science relies on a large 

number of experimental, theoretical and computational techniques to probe the 

properties to better understand materials. An area that involves extensive use of 

computational techniques is exploring electronic properties of solid state matter. 

Electronic properties can be studied at various length scales spanning from macro-scale 

to sub-atomic scales with distinct characteristics at every length scale. Many physical 

and chemical properties manifested at the macroscale can be related back to the 

arrangement of electrons at the atomic scale.  

 

In the beginning of the 20th century, physicists were struggling to explain certain 

experimentally observed phenomenon as black body radiation and spectrum of certain 
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atoms using classical or Newtonian mechanics. Classical mechanics is extremely 

successful in describing the working of the macroscale however; these rules were 

violated at the smaller length scale and anomalies were observed. This behavior of 

matter at atomic and sub-atomic scales demanded the formulation of a theory that is 

capable of describing experimentally results. Over the next few decades a number of 

physicists have been able to comprehend experimental observations based on “quantum 

mechanics”. Quantum mechanics is a probabilistic description of mechanical systems at 

the atomic and subatomic scales.  

 

2.1 SCHRÖDINGER EQUATION 

 

One of the corner stone’s of quantum mechanics is the Schrödinger equation, which a 

fundamental description of time evolution of quantum state of a system. This opened 

doors to a more comprehensive understanding of physical and chemical properties of 

matter. Equation (2.1) represents a time independent Schrödinger equation. In the 

context of electrons, Schrödinger equation represents a wavefunction. Equation (2.2) is 

the Hamiltonian for a many body problem neglecting the relativistic effects. Despite its 

ability to explain many interesting phenomenon, the Schrödinger equation cannot be 

solved in closed form beyond one-electron systems severely restricting its application. 

Most solids are rather large systems with multiple molecules that are made of atoms that 

in turn consist of numerous electrons. The solution of Schrödinger equation for such 

systems holds the key to its properties, this many body problem does not have an 
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analytic solution. To circumvent this problem, one has to rely on approximate solutions 

to the Schrödinger equation.  

^
H EΨ = Ψ  (2.1) 

where, 
^

H  is the Hamiltonian operator, E is the energy eigenvalue of the system and 

Ψ  is the electron wave function. For a general case where Ψ represents a N-electron 

wavefunction ( )1 2, , , Nr r rΨ = Ψ
  

 . 

^
2 2

,

1 1 1
2 2

K K L
i K

i K i K i j K LK i ji K K L

Z Z ZH
M r rr R R R> >

= − ∇ − ∇ − + +
−− −

∑ ∑ ∑ ∑ ∑  

 


   (2.2) 

where, the terms involving 2∇ represent the kinetic energies of the electrons and nuclei 

for the subscript i and K respectively. Z represents the number of protons in the nuclei; r 

and R are the position vectors for the nuclei and the electron respectively. M is the mass 

of the nucleus. 

 

2.2 BORN-OPPENHEIMER APPROXIMATION 

 

The Schrödinger equation in its time-independent non-relativistic form involves the 

kinetic energy of the nuclei of the physical system. It is well known that the mass of an 

atom is primarily concentrated in its nucleus and the electrons constitute a very minor 

percentage of the overall mass of the atom. In most cases, the speeds which the 

electrons orbit the nucleus is much higher than the speed at which the nucleus is 

moving. In light of these observations, it can argued that the kinetic energy of the nuclei 
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have a very negligible contribution to the overall energy of the system and hence can be 

ignored. In the absence of nuclear kinetic energy, equation (2.2) can be written as. 

^ ^ ^

eH T J= +  (2.3) 

where, 
^

eT is the kinetic energy of the electrons in the system and 
^
J represents the 

Coulombic interactions including electron-electron, nucleus-nucleus and nucleus-

electron interactions. 

 

In essence, Born-Oppenheimer approximation freezes the nuclei in space and thereby 

creating a constant potential. Equation (2.3) reduces the complexity of the many body 

problem, however, it still does not lend itself to be solved in closed form, many 

approximations have been proposed and are required for a solution to this highly 

coupled problem. Some of the widely accepted methods are discussed in the following 

sections. 

 

2.3 HARTREE-FOCK METHOD 

 

The solution of the Schrödinger equation to these complex physical systems can be 

obtained from various methods. Each of these methods provide certain strengths and 

weakness making them suitable for specific applications and the level of complexity 

involved in applying these methods also varies. Soon after the Schrödinger proposed the 

wave equation in 1926, Douglas Hartree introduced a numerical procedure to solve the 
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Schrödinger’s equation; he proposed that the many body wavefunction can be written as 

a product of the hydrogen like wavefunctions. It is analogous to the linear combination 

of atomic orbitals (LCAO) methodology employed in some calculated today. This came 

to be known as the Hartree product and the procedure was termed the self-consistent 

field method. However, it did not take the principle of anti-symmetry (put forth by 

Wolfgang Pauli for fermions) of the electron wavefunction into account. It was later 

shown that if the one particles wavefunctions are assembled in a matrix form, the 

resulting wavefunction satisfied the requirements of Pauli’s exclusion principle. This 

came to be known as the ‘Slater determinant’. The Slater determinant for an N electron 

system can be written as follows: 

 

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 2 1 1

1 2 2 2 2
1 2

1 2

1, , ,
!

N

N
N

N N N N

r r r
r r r

r r r
N

r r r

ψ ψ ψ
ψ ψ ψ

ψ ψ ψ

 
 
 Ψ =
 
 
  

  



  



  



   

  



   (2.4) 

where ( )i jrψ  are the single electron wavefunctions.  

Further simplification of the above equations was performed under the assumption to 

account for the electron-electron interaction. It was assumed that every electron will 

experience only a mean-field due to the rest of the electrons in the system, this gives 

rise to the simplification of the many electron Hamiltonian in equation (2.2) to a single 

electron Fock operator given by, 

( ) ( )21
2

HFK
i i i

K i K

Zf r V r
r R

= − ∇ − +
−

∑ 





 (2.5) 
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where ( )if r is the Fock operator, and VHF is the mean field experienced by an electron. 

The potential VHF is depedent on the other electrons all the single electron equations are 

essentially coupled and have to be solved numerically in a self-consistent manner. This 

iterative procedure has to be carried out until the wavefunction and the mean fields are 

self-consistent. This forms the basis of the Hartree-Fock method.  

 

Hartree-Fock method is essentially a variational formulation, in which the trial 

wavefunction (basis set) is chosen that serves as the starting point for further 

optimization. From variational theorem, we know that the any trial wavefunction will 

estimate the energy higher or equal to that of the true ground state, Hartree-Fock 

provide an upper limit of the expected ground state energy. The best possible solution 

(wavefunction) can be achieved from a trial wavefunction by varying parameters until a 

minimum energy is obtained. The energy of the system can be expressed as,  

 

( )

^

|

H
E

Ψ Ψ
Ψ =

Ψ Ψ
 (2.6) 

where,  denoted the expectation of the operator. 

 

A notable accomplishment of Hartree-Fock method is it implements exact exchange 

interaction. However, it suffers a major drawback, which is the complete absence of 

electron correlation which is a consequence of the use of the mean field approximation 
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to account for electron-electron Coulombic interaction. Many methods were proposed 

to overcome this drawback and can be collectively categorized as Post Hartree-Fock 

methods.   

 

2.4 POST HARTREE-FOCK METHOD 

 

It was realized that the absence of the electron correlation can allow two electrons to get 

extremely close to each other without a penalty to the overall energy of the system. One 

of the primary objectives of the post Hartree-Fock methods is to account for the electron 

correlation that is implemented as an average repulsion in the Hartree-Fock (HF) 

method. Many ideas were put forth for this purpose and a few of the widely used 

methods will be discussed in brief in this section.  

 

A. Configuration Interaction (CI) 

In order to account for the electron correlation in the HF framework, CI uses a sum of 

Slater determinant as opposed a single determinant used in HF.  

 

0 0
, ,

a a ab ab

r r rs rs

r a r s a b
c c c

< <

Ψ = Ψ + Ψ + Ψ +∑ ∑  (2.7) 

where r
aΨ  is formed by replacing the spin-orbital a by r in the Slater 

determinant 0Ψ . These additional determinants are also known as the excitations from 

the reference HF Slater determinant. Each of these additional determinants in equation 
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(2.7) are known as “configurations”, therefore the method is termed as “configuration 

interaction”. The strength of CI lies in its general form that can be extended to excited 

states of a given system. However, this method is computationally very exhaustive 

rendering its application restricted to very small systems. If the expansion includes all 

possible types of configurations are employed, then it is known as “Full CI”. Many 

variations and improvements are developed for CI and are used in specific cases; 

however they are built on a common principle. 

 

B. Møller-Plesset Perturbation (MP) Theory 

MP treats the exact Hamiltonian of a system that includes electron correlation as the 

sum of the HF Hamiltonian and a small perturbation to it. It can be written as, 

^ ^ ^

0H H Hλ ′= +  (2.8) 

where λ is an arbitrary parameter and 
^ ^ ^

0, ,H H H ′are the exact, unperturbed and 

perturbation Hamiltonian. The corrections are obtained through the application of 

Rayleigh- Schrödinger perturbation theory. These corrections are added to the HF 

energies to obtain exact energies that include electron correlation.  

 

C. Coupled Cluster (CC) 

CC also utilizes multiple Slater determinants for account for the electron correlation. 

Unlike CI, CC relies on an exponential ansatz, to write the exact wavefunction as 

follows: 
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^

0
TeΨ = Ψ  (2.9) 

Where 
^
T is an excitation operator or the cluster operator, that produces excited Slater 

determinant, thus making the exact Ψ  a linear combination of the HF wavefunction 

( 0Ψ ). The exponential term can be expanded in terms of Taylor’s series to improve 

on the accuracy of the calculation. Inclusion of higher order terms however, comes with 

a huge computational cost. Also, variations of the CC have been proposed.  

 

2.5 DENSITY FUNCTIONAL THEORY (DFT) 

 

In 1927, immediately after Schrödinger proposed his wave equation, Thomas and Fermi 

developed a model to approximate the electron distribution in an atom. The model was 

proposed for a non-interacting uniform electron gas in phase space. This conceptual 

leap reduced the 3N degrees of freedom of a many body problem to 3, significantly 

reducing the order of complexity of the technique. They have shown that the kinetic 

energy of a many body system can be expressed a functional of the number density of 

electrons, 

( ) ( )
5 33

TF FT n r C n r d r=   ∫  (2.10) 

 where TTF is the kinetic energy, n(r) is the density of electrons and CF is a constant that 

depends on the Fermi energy. Coulombic interactions were implemented from classical 
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terms in the Thomas-Fermi model. Corrections to the kinetic energy functional were 

proposed by Weizsäcker in 1935, 

( ) ( ) ( )
( )

2
25 33 1

8F

n r
T n r C n r d r dr

m n r
∇

= +   ∫ ∫
    (2.11) 

 

A. Hohenberg-Kohn Theorems 

The true foundations of the DFT can be dated back to Hohenberg-Kohn theorems 

proposed by Pierre Hohenberg and Walter Kohn in 1964,  

Theorem I: “The external potential ( )extV r  , and hence the total energy, is a unique 

functional of the electron density ( )n r .”[22] 

( ) ( ) ( ) ( )ˆ
êxtE n r F n r n r V r d r= +       ∫

      (2.12) 

where, ( )F̂ n r  
  is a functional of ( )n r only, and ( )E n r  

 is the energy of the system. 

And ( )F̂ n r  
  in equation (2.12) can be written as, 

( )ˆ ˆ
êeF n r T V= +  

  (2.13) 

where, T̂ is the kinetic energy and êeV  is the electron-electron potential. 

 

Theorem II: “The ground state energy can be obtained variationally: the density that 

minimises the total energy is the exact ground state density.”[22] 

As a consequence of equation (2.12), we can write, 

( ) ( ) ( )0 0
ˆE n r n r H n r= Ψ Ψ          

    (2.14) 
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B. Kohn-Sham Approach 

Although, Hohenberg-Kohn theorems provide a firm footing for DFT, it does not offer 

a practical way for solution to the many body problem. The Kohn-Sham formulation 

transforms a real fully interacting system with a fictitious non-interacting system with 

an effective potential that accounts for the real interactions. We can rewrite the 

Hohenberg-Kohn theorem with the constraint on number of electrons as follows,  

( ) ( ) ( ) ( )( )

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( )

ˆ 0

,
ˆ

ˆ

1
2

ext

ext H XC

H KS

KS ext H

F n r n r V r d r n r d r N

where

F n r
V r a n dF n r T n r E n r E n r

n r

T n rn r n r
E n r drdr and V n r

r r n r

V n r V n r V

δ µ

δ
µ

δ

δ
µ

δ

 + − − =   

  = + = + +              

 ′  ′= = +      ′−

= +      

∫ ∫

∫∫

     



    





 

   

  

  ( ) ( )

( ) ( )
( )
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+      
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 
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
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   

   

(2.15) 

Assuming a non-interacting electron gas the wavefunction KSΨ can be written as, 

( ) ( ) ( ) ( )1 1 2 2 3 3
1 det

!KS N Nr r r r
N

ψ ψ ψ ψΨ =   
   

    (2.16) 

Ground state density can be obtained by solving, N single electron Schrödinger 

equations, 
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( ) ( ) ( )21
2 KS i i iV r r rψ ε ψ − ∇ + =  

    (2.17) 

where, εi is a lagrange multiplier that ensures orthonormality of single electron 

wavefunctions ( )i rψ  , the density is constructed from ( )i rψ   as, 

( ) ( ) 2
i

i
n r rψ= ∑   (2.18) 

The above substitution into Schrödinger equations will lead to solution for energy and 

electron wavefunction but ( )XCE n r  
  is unknown at this point. The exact form of the 

exchange-correlation are unknown, so with the aid of approximation one can attempt to 

solve the equation (2.17). The following sections will deal with some of the widely used 

approximations in DFT. 

 

C. Local Density Approximation (LDA) 

LDA is the simplest approximation that works well for solid systems, it was proposed 

by Hohenberg and Kohn. The exchange-correlation (EXC) is approximated from an 

equivalent homogenous electron gas with a density ( )n r . The exchange was proposed 

by Dirac for Thomas-Fermi model and the correlation is calculated from interpolation 

of known extremes of high and low density values obtained from quantum monte carlo 

calculations. EXC is given by, 
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( ) ( ) ( )

( )

hom

1
3

2

,

3 9 1
4 4

LDA
XC xc

X
s

E n r n r n r d r

where

n r
r

ε

ε
π

=      

 = −      

∫
   



 (2.19) 

where, hom
XCε  is the exchange-correlation for a homogenous gas, and sr  is the wigner-

seitz radius and ( )x n rε   
  is the exact exchange as given by Dirac.   

 

D. Generalized Gradient Approximation (GGA) 

GGA is an improvement over LDA and assumes that EXC depends on density and its 

gradient, an analytic term the correction or the gradient term is also known as an 

enhancement factor. Equation (2.20) shows the functional form of GGA and as an 

example the exchange term in PW91 is also shown,  

( ) ( ) ( ) ( ) ( )

( )
( ) ( )

( )

2

hom

100 2

91
1 4

,

,

1 0.19645 sinh 7.7956 0.2743 0.15084

1 0.19645 sinh 7.7956 0.004X

GGA
XC xc XC

s

PW

E n r n r n r F n r n r d r

where

s s e s
F n r

c s s

ε

−

−

= ∇          

+ + −
=   + +

∫
     



   (2.20) 
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Chapter 3 

Electronic Properties of Zig-Zag 

Carbon Nanotubes 

 

Using a first-principles gradient corrected density functional approach, we present a 

comprehensive study of the geometry and energy band gap in moderate-gap zig-zag 

semi-conducting (n,0) carbon nanotubes (CNT) to resolve some of the conflicting 

findings. Up to (8,0), curvature induced distortions leads to a strong deviation in energy 

band gap (Eg) derived from a simple zone folding picture of grapheme based on tight 

binding calculation.  From (10,0) onwards, the gap dependence on the radius of the tube 

can be explained surprisingly well with the zone-folding scheme of the graphene 

bandstructure, if the trigonal shape of the equi-energy lines around the K-point is 

properly taken into account. Our extensive first principle calculations confirm that the 

(n,0) CNTs fall into two distinct classes depending upon n mod 3 equal to 1 (smaller 

band gaps) or 2 (larger gaps).  The amplitude of the gap oscillations, arising from σ - π 

mixing, decreases from n = 10 to n = 17. From n = 19 onwards, the gap follows a 1
d

 

behavior predicted from the simple tight binding π – model with decaying amplitude.  

The effect of longitudinal strain on the band gap further confirms the existence of two 
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distinct classes: for n mod 3 = 1 or 2, changing Eg by ~100 meV for 1% strain in each 

case.   

 

3.1 INTRODUCTION 

 

A Carbon nanotube (CNT) is a one dimensional (1-D) nanostructured material, which 

has been the focal point of research over the past decade for intriguing applications 

ranging from nanoelectronics to chemical and biological sensors. The geometry of the 

carbon nanotube is uniquely described by a chiral vector ( C
→

): C n a m b
→ → →

= + , denoted by 

a pair of indices (n, m) that connect the two crystallographically equivalent sites on the 

graphene sheet.  Soon after their discovery and characterization [5], the potential of this 

tubular structure was realized by theoretical work [23-27] , which showed that the 

single wall CNT can be categorized into three types; metallic, small gap 

semiconducting, and moderate gap semiconducting based on their chirality’s. It was 

proposed that the single wall CNT would exhibit metallic character if 
3

n m− 
 
 

 is an 

integer, and a moderate gap semiconductor in all other cases.  Furthermore, these early 

tight-binding based theoretical calculations also predicted that the Eg in a moderate gap 

semiconducting carbon nanotube (SCNT) is inversely proportional to its diameter [28] 

and monotonically decreases with the increase of diameter of the tube. This unique 

dependence of electronic properties of CNT on their diameter and chirality’s, which has 

spawned great interest in this material, was confirmed later by the pioneering 
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experimental work that measured electronic properties of CNT [29-32] . These 

experiments used scanning tunneling microscope to probe the explicit dependence of 

chirality’s and diameter on the electronic properties reported by theory. Both the 

experiments confirmed the earlier theoretical predictions with accuracy of ± 0.05 nm in 

measured diameter, and ± 0.3 eV in measured Eg. It should be noted that the band gap 

in SCNT is expected to be of the order of ~ 0.5 eV. 

 

However, over the years, conflicting relationships have been reported on the exact 

dependence of the Eg of the SCNT on its diameter. Previous conclusions about 

monotonic 1
d

dependence law in SCNT have been corrected. For smaller n the trigonal 

shape of the equi-energy lines around the K-point of the graphene Brillouin zone (BZ) 

("trigonal warping" [33]) needs to be taken into account. Yorikawa et. al. [34] have 

shown that a third order Taylor expansion of the energy dispersion relation around K-

point leads to the equation for Eg, which depends on the chirality of the tubes (more 

general analytic expression have been given later by Reich et. al. [35]). In later papers, 

an empirical parameter (γ) was used to account for the curvature effect which changes 

not only the overlap between π orbitals but causes mixing between π and σ orbitals [36]. 

For a (n,0) SCNT, the energy band gap is given by:  

( ) mod 3
0 2

2 1 2 11
3 3

n
gE

n n
π πγ γ = + −  

  (3.1) 
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where, Eg is the energy band gap, γ0 (=2.53eV) is a parameter, n is the chiral index of a 

SCNT. 

 

Tight binding predictions formed the basis for identification of chirality’s of SCNT and 

interpretation of  experimental results [37]. Spectrofluorimetric measurements were 

used in conjunction with resonant Raman data [37] to show that SCNT follow two 

distinct trends depending on ( )n m−  mod 3 equal to 1 or 2 respectively. Following the 

experimental work, a first principle generalized gradient approximation study reported 

significant deviations from the simple tight binding predictions for tubes with radius 

smaller than 3.5 Å (n= 7,8), but confirmed results for larger n. The band gap for n mod 

3 equal 2 class is  higher than the other class [38]. D’yachkov and Hermann [39] used a 

linear augmented cylindrical wave (LACW) method to show that the band gap in 

SCNTs is oscillatory in nature depending on ( )n m−  mod 3 equal to 1 or 2 but reached 

opposite conclusions for the two classes: the n mod 3 =1 class has larger gaps than the n 

mod3 = 2.  Fantini et. al. [40, 41] determined the electronic transistion energies of 

several nanotubes with different chiralities using stokes and anti-stokes dependence of 

resonant Raman spectroscopy, and confirmed the existence of two classes of SCNT, 

depending on ( )2n m+  mod 3 equal to 1 or 2 respectively. Telg et. al. [42, 43]  reported 

the evidence of two classes of SCNT based on ( )n m−  mod 3; they interpreted their 

results based on three nearest neighbor tight binding model proposed by Reich et al. 

[44]. Again, very recently, Kozinsky and Marzari [45], have reported a different trend 
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in the band gap for SCNTs. They have used first-principles plane wave based density 

functional approach and found a monotonic decrease in Eg with the increase of diameter 

(from (10,0) to (17,0)) as suggested by early tight-binding work that did not account for 

the trigonal shape of equi-energy lines around K-point, in contrast to the non-monotonic 

variation of Eg with diameter reported by several groups in the last few years [35, 38, 

39]. Thus far, no consistent effort is made to resolve this important issue that is central 

to the assignment of chirality’s of CNT.  

 

3.2 METHODOLOGY 

 

In this study, we have used a consistent and systematic approach to address this 

controversial picture. Using exhaustive ab-initio density functional computations for 

SCNTs up to (41,0), we show that the energy band gaps in zig-zag SCNTs indeed 

deviate from a simple 1
d

 dependence to the diameter.  Our calculations are performed 

using periodic density functional method, which involves generalized gradient (GGA) 

approximation for the exchange and correlation within the framework of Perdew-Wang 

91 formalism [46, 47].  We have used the Vienna ab-initio Simulation Package (VASP) 

[48] to carry out the calculations. To construct the 1-dimensional (n,0) nanotube 

structure within the periodic approach, we placed the one unit cell of the (n,0) in a 

tetragonal lattice with the tube parallel to the z-axis. The longitudinal translational 

vector (along z- axis) was varied from 4.25 Å to 4.28 Å to find the optimal z-translation 
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based on minimal total energy. The other two sides of the unit cell are chosen in such a 

way that the inter-wall distance between the tubes for different diameter is kept fixed at 

~11 Å. This large inter-wall separation is used to ensure negligible interaction between 

the nanotube and its images along x, and y-direction. The geometries of the moderate 

gap SCNT are found to be sensitive to the number of k-points used to sample the 

Brillouin Zone (BZ), we have used 1x1x7 k-point mesh (Monkhorst-Pack) for 

optimization purposes. The minimum force criterion of 0.01 eV/Å is used for individual 

atom during the structural relaxation. The convergence threshold for energy is taken to 

be 10-6 eV. Wehave tested the convergence for Eg; for example, in the case of (8,0) 

SCNT, a 1x1x1 k-point (1 irreducible k-point) predicts a 0.7242 eV band gap, a 1x1x7 

k-point (4 irreducible k-points) mesh yielded 0.591 eV for the band gap, which is 

changed to 0.5904 eV with 1x1x11 k-point mesh (7 irreducible k-points). The plane 

wave cutoff is taken to be 286.74 eV and kept fixed for all SCNT with different 

diameters.   

 

3.3 RESULTS AND DISCUSSIONS 

 

First we comment on the stability of these SCNT, we have calculated the curvature 

energy per atom for optimized SCNT. Cohesive energy per atom is calculated as, 

( )NT NT
c

E E
E

N

∞−
=  where NTE  is energy of nanotube; NTE∞ is the energy of a CNT 

with ∞ diameter (graphene), and N is the total number of atoms in the nanotube. The 



 
 

33 
 

curvature energy is found to increase with the increase in diameter, saturating at ~ 25 Å 

diameter of the SCNT. These results are consistent with previous reported values 

obtained from ab-initio calculations as a measure of the stability of nanotubes [38].   

 

Figure 3.1 shows the results for Kohn-Sham direct energy band gap as a function of 

their diameter indicating deviation from a simple monotonic decrease in band gap with 

increase in diameter of the SCNT.  Up to (8,0), the strong curvature distortions change 

the simple picture derived from the properties of graphene.  From (10,0) on, the gap 

dependence on the radius of the tube can be explained surprisingly well with the simple 

relation derived from tight binding calculations and the zone-folding of the graphene 

that accounts for the trigonal shape of the equi-energy lines around the K-point. Our 

first-principles calculations confirm that the (n,0) SCNT fall into two classes depending 

upon n mod 3 equal to 1 (smaller band gaps) or 2 (larger gaps).  The amplitude of the 

gap oscillations, enhanced through the curvature induced σ - π mixing, decreases from 

(10,0) to (17,0). From n = 19 onwards, corresponding to a radius of ~15Å, the gap’s d-

dependence roughly follows the 1
d

 behavior predicted from the simple tight binding π – 

model with decaying amplitude of oscillations.   
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Figure 3.1 Energy band gap (Eg) as a function of the diameter of the SCNT, the circles 

show the predictions from density functional theory within GGA and the squares 

represent predictions from a tight binding model with a parameter γ = 0.43 
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A distinction in the trends of the two classes of SCNT is observed based on the values 

of n mod 3. Within each class of SCNT the band gap decreases monotonically with 

increasing diameter beyond the initial curvature dominated region (n < 8). Figure 3.2 

shows the energy band structures for three representative CNT’s. This figure confirms 

the band gap of the SCNT’s being oscillatory. Each energy band around the Fermi level 

in the Figure 3.2 is doubly degenerate.  

 

For smaller n (10 to 17) the trigonal shape of the equi-energy lines around the K-point 

of the graphene BZ ("trigonal warping" [33]) needs to be taken into account. Yorikawa 

et. al. [34] have shown that a third order Taylor expansion of the energy dispersion 

relation around K-point leads to the equation for energy band gap, which depends on 

the chirality of the tubes (more general analytic expressions have been given later by 

Reich et. al. [35]) :  

( ) ( )

( )

0 2

0 2

1 1 11 cos
12

2 1 1 2 11 cos( )
3 12 3

p
g C C

p

E d
r r

n n

γ θ

π πγ θ

−
 = + −  

 = + −  

   (3.2) 

 

where, Eg is the energy band gap, γ0 is a parameter, dC-C is the carbon-carbon bond 

length, n is the chiral index of a SCNT, θ is the chiral angle (θ=0° for zig-zag SCNT) 

and p = n mod 3. 
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Figure 3.2 Energy band structure of three representative SCNT (13,0), (14,0) and (16,0) 

respectively. The dotted line at zero represents the Fermi energy level  
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For zig-zag tubes (cosθ = 1), maximum trigonal warping effect is expected. In the 

presence of warping, equation (3.2) predicts that the energy band gap for "mod 1" class 

is reduced ( vick , the point in the projected BZ of grapheme closest to K-point which 

determines the gap in CNT, approaches K from the M-point outside the first BZ). In 

case of "mod 2" class the gap becomes larger ( vick approaches K from Γ-point). This 

same effect, of course, explains the splitting of the van Hove singularities in the n mod 

3 = 0 or metallic cases: vick coincides with K-point and leads to the metallic state; the 

energies at 
0 0

4 2
3vick
a na
π π

± = ±  are no longer the same and the corresponding van Hove 

singularities in the density of states split [33]. In later papers, it was suggested to 

replace 1
12

 in Equation (3.3) by a parameter γ [36].  A larger γ would increase the effect 

of gap reduction (mod 1 class) and gap increase (mod 2 class), thus defining the 

amplitude of these gap oscillations: 

 

( ) mod 3
0 2

2 1 2 11
3 3

n
gE

n n
π πγ γ = + −  

 (3.3) 

 

where γ would empirically take into account the curvature effect which changes not 

only the overlap between π orbitals but causes mixing between π and σ orbitals. 
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Figure 3.3 Band decomposed charge density at the Γ-point for (13,0), (14,0) and (16,0)  
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Figure 3.4 Energy band gap (Eg) as a function of the lattice parameter along the 

longitudinal axis (z-axis) of the CNT 

 

Yorikawa et. al. [36] showed that γ is determined by pp

pp

V
V

π

σ

 alone (where Vppπ and Vppσ 

are tight bindings parameters for π and σ bonding orbitals respectively), independent of 

the other tight binding parameters (see Figure 3.2 in [36]), and that the mixing between 

σ and π orbitals increases γ  to ~ 0.43 for pp

pp

V
V

π

σ

 = 3 from its π-orbital-only graphene 
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value of 1
12

(= 0.08333) and thus enhances the chirality dependence of the gap and the 

amplitude of the gap oscillations for between the “mod 1” and “mod 2” semiconductors. 

The predictions from this model are also plotted in Figure 3.1. 

 

The energy bands around the Fermi energy are primarily of π and π* in nature for the 

valence and conduction band respectively. We analyzed the band decomposed charge 

density at the Γ-point for the three SCNT’s (Figure 3.3). It can be seen from the Figure 

3.3 that the valence band in (13,0) and (16,0) show a bonding character with electron 

cloud smeared between atoms along the circumference which is more evident in  (16,0).  

The conduction band in this class (n mod 3 = 1) shows more of an anti-bonding 

character with electron clouds highly localized around the atoms. In case of (14,0) i.e. n 

mod 3 = 2 class show an opposite trend of localized electron cloud in the valence band 

and a more banding character in the conduction band.   

 

We have varied the lattice parameter along the axis of the SCNT (z-axis) from 4.25Å to 

4.28 Å, for all the SCNTs, to find the influence of longitudinal strain on the energy 

band gap (Figure 4). The band gap in the two different classes of SCNT found to exhibit 

opposite trends; the band gap for n mod 3 = 1 increases with increase in the z-axis 

translation. For n mod 3=2, the band gap found to decrease with the increase in z-

translation. Again this confirms two classes of SCNT. Furthermore, it also suggests an 

optimal z-translation is crucial for obtaining correct feature of the band gap oscillation. 
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We believe the absence of band gap oscillation reported by  Kozinsky and Marzari [45] 

could be due to this effect, which might have been overlooked during structural 

optimization.  

 

A study by Capaz et. al. utilizing frozen-phonon scheme to understand the temperature 

dependence of band gap in SCNT through electron-phonon coupling also reported the 

existence of two classes of SCNT [49]. This study has shown that the two classes arise 

from the difference in sign of the e-p coupling associated with low-energy optical 

phonons. The n mod 3 = 2 class of SCNT exhibits a non-monotonic relationship of the 

energy band gap (Eg) with increasing temperature. The existence of two classes of 

SCNT was also inferred from the electron-phonon (e-p) coupling matrix elements that 

indicate sign alteration [50] between the two classes. They have shown that the e-p 

coupling is stronger for zig-zag than for armchair nanotubes. A recent experimental 

study utilizing electron diffraction with Rayleigh scattering techniques to measure 

electronic and optical properties of CNT confirms the two family of SCNT based on (n-

m) mod 3 equal to 1 or 2 [51]. This study is the first experimental evidence of the 

distinct class behavior based on the n mod 3 values unlike the previous experimental 

work which relied on theoretical work for interpretation of data [51]. 

 

We have varied the lattice parameter along the axis of the SCNT from 4.25Å to 4.28 Å, 

to find the influence of longitudinal strain on the Eg (Fig. 3.4). The Eg in the two 

different classes of SCNT found to exhibit opposite trends; the band gap for n mod 3 = 
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1 increases with increase in the z-axis translation. For n mod 3=2, the band gap is found 

to decrease with the increase in z-translation. Again this reinforces the existence of two 

distinct classes of SCNT. It also suggests an optimal z-translation is crucial for 

obtaining correct feature of the Eg. We found that the longitudinal strain changes band 

gap by ±110 meV for 1% strain; for n mod 3=1, the gap increases, and for n mod 3=2, it 

decreases. These ab-initio results are in agreement with earlier tight binding predictions 

that report ( )03 1gE γ ν σ∆ = ± + , where σ is the fractional change in length along the 

strain axis and ν is the Poisson ratio of the material. For ν=0.2 and γ0=3eV, ΔEg = 

108meV for σ = 0.01 (1% strain). 

 

Table 3.1 summarizes the values reported in the literature for Eg for SCNT. The first 

row is the Eg calculated from the current study, which is in good agreement with the 

values reported for (7,0) to (14,0) of Ref. [38]; LDA result for (8,0) of Ref. [52]; (10,0) 

and (11,0) of Ref. [34, 36]. Also, our results match qualitatively for (10,0) to (14,0) of 

Ref. [23]. We believe the absence of band gap oscillation reported in Ref. [45] is a 

consequence of non-optimal z-translation leading to spurious strains in CNT. It should 

be noted that the trend in Eg obtained from a crude single k-point sampling of the BZ 

during structural optimization will yield persistent oscillations of Eg from n=11 

onwards, as observed in Ref. [39]. The discrepancy between the current results and the 

tight binding values reported for (7,0) and (8,0) [23, 36, 52] can be attributed to the 

strong curvature effect that is not included in these tight-binding models . The 

experimental values in Table 3.1 are calculated from a π-electron model that does not 
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account for σ−π mixing. At smaller diameters, the subtle deviation in values from Ref. 

[29] is due to the use of π-electron model for diameter assignment that does not account 

for trigonal shape of the equi-energy lines around the K-point. We see better agreement 

with results at larger diameters from Ref. [30] as the influence of σ−π mixing is 

negligible in this regime. It was reported that a strong curvature poses great difficulty in 

accurate measurement of the chiral angel in Ref. [30] and could be responsible for a 

significant deviation in Eg for (11,0). A recent experimental study utilizing electron 

diffraction with Rayleigh scattering techniques to measure electronic and optical 

properties of CNT confirms the two family of SCNT based on (n-m) mod 3 equal to 1 

or 2 [51].  

  

3.4 SUMMARY 

 

In summary, we have used ab-initio gradient corrected density functional computations 

to investigate the dependence of the energy band gap in zig-zag SCNT on the diameter 

of the tube. We confirm the existence of two classes of SCNT based on n mod 3 equal 

to 1 or 2. Within each class the band gap is found to decay monotonically with the 

increase of diameter. Up to (8,0), a strong curvature distortions lead to strong deviation 

from a simple picture derived from the properties of graphene.  From (10,0) on, the gap 

dependence on the radius of the tube can be explained surprisingly well with a simple 

relation derived from early tight binding calculations and the zone-folding of the 

graphene bandstructure. If the trigonal shape of the equi-energy lines around the K-
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point is properly taken into account, our extensive first principle calculations confirm 

that the zig-zag semi-conducting carbon nanotubes (n,0) fall into two classes depending 

upon n mod 3 equal to 1 (smaller band gaps) or 2 (larger gaps). The origin of strong 

oscillation arises from the alternating bonding and anti-bonding character of the valance 

bands between the two classes of SCNTs. We also found, the transition from semi-

conducting to metallic behavior occurs at ~ (43,0), with a gap of ~0.15 eV. This allows 

us to set a new upper limit for the diameter of the SCNT to ~40 Å, beyond which we 

would not observe any single wall zig-zag SCNT. 
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Table 3.1 Energy band gap (Eg) as a function of the chirality of zig-zag SCNT. The first row under ab-initio presents the data from 

the current study obtained from DFT-GGA 

 n 7 8 10 11 13 14 16 17 
Ab-initio 

Eg 0.19 0.59 0.78 0.92 0.65 0.72 0.56 0.56 
Ref. [45] 0.48 0.57 0.91 0.77 0.72 0.63 0.61 0.53 
Ref. [38] 

GGA 0.24 0.64 0.764 0.939 0.63 0.74 -  

Ref. [52] 
LDA 0.09 0.62 - - - - -  

Tight Binding 
Ref. [36] 1.11 1.33 0.87 0.96     
Ref. [52] 1.04 1.19 - - - - -  
Ref. [23] 1.0 1.22 0.86 0.89 0.69 0.7 -  

Experiment 
Ref. [29]   0.9±0.0.05a 0.78±0.07a     
Ref. [30]    1.9±0.05b   0.5±0.05b *0.55±0.05b 

a Data obtained from Figure 3 (c) of Ref. [29] Eg = 02 C Cd
d

γ −      

b Data obtained from Table I of Ref. [30] for d=1.4Å and chiral angle 30º (zig-zag), Eg calculated similar to a 

* Reported chiral angle 25º, with an accuracy of (~1º) 
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Chapter 4 

Origin of Metallic Behavior in 

Multiwall Carbon Nanotubes 

 

Following the discovery of CNT many applications have been proposed for its use, each 

relied on its unique electrical and mechanical properties. However, based on the 

structure, in particular, the presence of multiple concentric rolled up graphene sheets 

can be used to classify the nanotubes as SWCNT or multi-wall CNT (MWCNT). 

Chapter 3 provides a detailed study on the nature of the electronic properties of single 

walled zig-zag semi conducting (n,0) carbon nanotubes. It was found that the zig-zag 

(n,0) SWCNTs can be classified based on n mod 3 value. They are metallic if n mod 3 = 

0 and semiconducting otherwise. Also, the single walled SCNT can be further classified 

into two classes based on upon n mod 3 equal to 1 (smaller band gaps) or 2 (larger 

gaps). But semiconducting behavior for MWCNT (more than 3 concentric tubes) has 

been seldom reported in previous studies.  
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4.1 METHODOLOGY 

 

In this chapter, we report the results from extensive calculations of electronic properties 

of multiple wall CNTs. Using ab-initio density functional computations for various 

nanotubes, we show that the zig-zag MWCNT do not exhibit semiconducting behavior 

beyond three walls.  Our calculations are performed using periodic density functional 

method, which involves generalized gradient (GGA) approximation for the exchange 

and correlation within the framework of Perdew-Wang 91 formalism [46, 47].  We have 

used the Vienna ab-initio Simulation Package (VASP) [48] to carry out the calculations. 

To construct the 1-dimensional nanotube structure within the periodic approach, we 

placed the one unit cell of the concentric SWCNT in a tetragonal lattice with the tube 

parallel to the z-axis. It has been shown in previous studies that MWCNTs with 

intertube separation close to the interlayer separation in graphitic are more stable [53]. 

Some experiments have shown that different interlayer spacing is probable [54-56]; in 

the current study we restrict our study to MWCNT with separation close to ~ 3.5Å. The 

longitudinal translational vector (along z- axis) was varied from 4.25 Å to 4.28 Å to 

find the optimal z-translation based on minimal total energy. The other two sides of the 

unit cell were chosen in such a way that the inter-wall distance between the tubes for 

different diameter is kept fixed at ~11 Å. This large inter-wall separation is used to 

ensure negligible interaction between the nanotube and its images along x, and y-
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direction. The minimum force criterion of 0.01 eV/Å is used for individual atom during 

the structural relaxation.  

 

The convergence threshold for energy is taken to be 10-6 eV. We have tested the 

convergence for Eg; for example, in the case of (16;7,0)  which represents (7,0) inside 

(16,0) double-walled CNT (DWCNT), a 1x1x1 k-point (1 irreducible k-point) predicts a 

0.2069 eV band gap, a 1x1x5 k-point (3 irreducible k-points) mesh yielded 0.06 eV for 

the band gap, which is changed to 0.04 eV with 3x3x11 k-point mesh (16 irreducible k-

points). The plane wave cutoff is taken to be 286.74 eV and kept fixed for all MWCNT 

with different diameters. 

 

We have also tested the convergence with cohesive energy per atom for (16;7,0) and the 

results are plotted in Figure 4.1. It can be seen that a minimum of 3 irreducible k-points 

are required for accurate prediction in structure and related properties.  As discussed in 

detail in Chapter 3, the single wall (n,0) CNT fall into two classes depending on the 

value of n mod 3 = 1 or 2. We have calculated the energy band gap for various 

combinations of (n,0) SWCNT for inner and outer wall of DWCNT. Figure 4.2 – 4.8 

shows the energy band structure for various combinations of the SWCNT with different 

energy band gaps. Figure 4.2 and 4.3 show the band structure of DWCNT with (7,0) as 

the inner wall. A (7,0) is a semi-metallic SWCNT with Eg ~ 0.2eV, however, when it is 

the inner shell of a DWCNT leads to overall metallicity of the structure. 
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Figure 4.1 Cohesive energy per atom of (16;7,0) as a function of number of irreducible 

k-points used in structural optimization 

 

4.2 RESULTS AND DISCUSSIONS 

 

This section presents the results obtained from electronic structure calculation of 

DWCNT and MWCNT for different combinations. As described in Chapter 3, the 

SWCNT can be semi-conducting, semi-metallic or metallic. Different SWCNT such as 

(7,0), (8,0), (10,0) and (11,0) were chosen as the inner wall for the current. For the outer 

wall, (16,0), (17,0), (19,0), (20,0) and (26x0) were considered. The SWCNT 
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combination for DWCNT MWCNT was chosen to keep the interwall distance between 

the constituent shells close to the graphite interlayer distance.    
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Figure 4.2 Energy band structure of (7,0), (16,0) and (16;7,0) (left to right). The zero 
represents the Fermi energy 
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Figure 4.3 Energy band structure of (7,0), (17,0) and (17;7,0) (left to right). The zero 
represents the Fermi energy level. 
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Figure 4.4 Energy band structure of (8,0), (16,0) and (16;8,0) (left to right). The zero 
represents the Fermi energy level. 

-2

0

2

 

E(
k)

 (e
V)

(8,0)

XX

(17,0)

 

kz
Γ  

(17,0; 8,0)

 

 

Figure 4.5 Energy band structure of (8,0), (17,0) and (17;8,0) (left to right). The zero 
represents the Fermi energy level. 
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Figure 4.4 and 4.5 show the band structure with (8,0) inner wall and (16,0) and (17,0) 

being the outer wall respectively. It has been shown in Chapter 3 that (8,0) has an 

energy band gap of ~0.6 eV and the outer wall CNT ~ 0.55 eV. Both (8,0) and (16,0) 

are semi-conducting CNT that have a definite energy band gap. However, the DWCNT 

with these SWCNT as the constituents has a band gap of ~0.4 eV, this suggests the 

possibility of interwall interactions that could be responsible for the reduction in the 

energy band gap that occurred as a consequence of adding concentric SWCNT to (8,0). 

In case of (17,0) as the outer wall the energy band gap was reduced to ~0.25eV; again 

suggesting the net band gap of the overall structure is lower than any of its constituents. 

Figure 4.6 – 4.9 show the band structure of different combinations of DWCNT 

constructed from (10,0), (11,0) as the inner tubes and (19,0), (20,0) as the outer tubes 

respectively.  
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Figure 4.6 Energy band structure of (10,0), (19,0) and (19;10,0) (left to right). The zero 
represents the Fermi energy level. 
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Figure 4.7 Energy band structure of (11,0), (19,0) and (19;11,0) (left to right). The zero 
represents the Fermi energy level. 
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Figure 4.8 Energy band structure of (10,0), (20,0) and (20;10,0) (left to right). The zero 
represents the Fermi energy level. 
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Figure 4.9 Energy band structure of (11,0), (20,0) and (20;11,0) (left to right). The zero 
represents the Fermi energy level. 
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Figure 4.10 Energy band structure of (8,0), (18,0) and (18;8,0) (left to right). The zero 
represents the Fermi energy level. 
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Figure 4.11 Energy band structure of (8,0), (17,0), (17;8,0) and (26;17;8,0) (left to 
right). The zero represents the Fermi energy level.
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Table 4.1 Summary of the CNT band gap calculations 

CNT 
Cohesive Energy 

(Ec) 
No. of 
atoms 

Ec/atom 
(eV/atom) 

Lattice 
Parameter (Å) 

Band Gap 
(eV) 

7x0 -251.9108 28 -8.99681429 4.26 0.191 
8x0 -289.8749 32 -9.05859063 4.26 0.591 

10x0 -365.2914 40 -9.132285 4.27 0.7831 
11x0 -402.8091 44 -9.15475227 4.26 0.92 
16x0 -589.4975 64 -9.21089844 4.27 0.5573 
17x0 -626.6993 68 -9.21616618 4.27 0.5637 
19x0 -701.109 76 -9.22511842 4.27 0.4791 
20x0 -738.279 80 -9.2284875 4.26 0.4941 
25x0 -924.0033 100 -9.240033 4.27 0.3817 
26x0 -961.14223 104 -9.24175221 4.26 0.3768 

MWCNT 

16x7 -840.925809 92 -9.14049792 4.27 0.0602 
16x8 -877.684 96 -9.14254167 4.26 0.3942 
17x7 -878.47759 96 -9.15080823 4.27 0.0552 
17x8 -916.11003 100 -9.1611003 4.26 0.2479 
18x8 -953.557807 104 -9.16882507 4.27 0.001 

19x10 -1065.8518 116 -9.18837759 4.27 0.4686 
19x11 -1101.93459 120 -9.18278825 4.27 0.354 
20x10 -1140.38461 120 -9.19320508 4.26 0.4509 
20x11 -1140.47256 124 -9.19735935 4.26 0.5165 

26x17x8 1876.723061 204 -9.199622848 4.26 0.1668 
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Based on the results, Figure 4.2-4.11 and Table 4.1, we can conclude that the band gap 

for a MWCNT is always equal to the lowest or lower than the band gap of any of its 

constituent SWCNT. In case of (20;11,0)  the band gap of the DWCNT is nearly the 

same as that of the (20,0). In particular, it is to be noted that the band gap for any 

MWCNT which has any semi-metallic or metallic SWCNT as one of its wall is always 

metallic.  

 

In the current study, we have considered two cases; first the inner wall to be metallic or 

low band gap (7,0) and  semiconducting outer walls (16,0) and (17,0) respectively.  

Second, the outer wall to be metallic (18,0) and the a semiconducting inner wall (8,0). 

From Figure 4.2, 4.3 and 4.10 it can be seen that the band gap closes at the Γ−point 

indicating that changes have occurred in this region of the BZ. To gain some insight 

into this behavior, we have investigated into the band decomposed charge density of 

(16;7,0) DWCNT at the Γ−point. Figure 4.12 shows the results of the wavefunction 

based charge density.  It is known that the curvature effects in (7,0) is responsible for 

the lower band gap as can be seen from Figure 4.12 indicating significant σ−π mixing. 

In case of (16,0) a small degree of σ−π mixing can be seen, however in (16;7,0) 

DWCNT this effect is further enhanced leading to closure of band gap. This can be 

attributed to the perturbation in charge induced from the inner wall. It is also interesting 

to note that at the Γ−point of the (16;7,0) DWCNT the conduction band is almost 

entirely contributed from the inner wall (7,0) where as the valence band is contributed 

from the outer wall (16,0).  
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The reduction n the band gap in with the addition of concentric walls can be explained 

as a consequence of the following factors. The π orbitals on each of the constituent wall 

of the MWCNT are along the direction of the normal at the corresponding atomic sites 

with the exception of very small diameters where π prbital also has a σ contribution that 

leads to some deviation from a simple π picture. Regardless of the diameter of the CNT 

there is atleast a lobe of π like orbital that is normal to its circumference at the atomic 

sites. In case of multiple walls in a CNT these π orbitals interact with each other, this 

can be understood from the picture of two atomic orbitals of equal energy when brought 

together which would otherwise be degenerate states lift degeneracy by splitting of the 

energy levels and this splitting leads to lowering of the energy band gap in these 

MWCNT. The splitting of the energy levels in case of π orbitals is of the order of 

200meV that is consistent with the observation in case of the MWCNT studied for the 

current research. The interwall interaction can be further confirmed by analyzing the 

atomic charges on individual carbon atoms that reveals a small charge transfer from 

inner to the outer wall. In certain cases there is negligible interaction between the walls 

of the CNT leading to overall energy band gap being the lowest energy band gap of the 

constituent walls.  
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Figure 4.12 Band decomposed charge density at the Γ−point for (7,0), (16,0) SWCNT 

and (16;7,0) DWCNT  
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In order to understand the behavior of MWCNT we have studied the electronic 

properties of a three wall zig-zag CNT (26;17;8,0), the inner most wall being (8,0) and 

the middle wall (17,0) and the outer wall (26,0). The individual band gaps of these 

SWCNT are listed in Table 4.1. Figure 4.5 and 4.11 show the band structure of the 

DWCNT (17;8,0) and the MWCNT  (26;17;8,0), it is interesting to observe that the 

band gap of the MWCNT is further reduced from the DWCNT and there by inducing a 

semi-metallic behavior of the MWCNT. It has been shown in Chapter 3 that there exists 

an upper limit ~40Å beyond which one will not observe semi-conducting behavior in 

SWCNT. This observation in conjunction with current finding that the band gap for a 

MWCNT is always smaller than the band gap of the constituent SWCNT leads us to the 

conclusion that MWCNT with more than two walls will be either show semi-metallic or 

metallic behavior. The origin of this metallicity can be described based on the 

perturbation of charge on the individual walls leading to band gap closure.  
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Chapter 5 

Conclusions and Recommendations 

One of the central requirements for a device to operate according to predetermined 

design relies on apriori knowledge of the characteristics of the components. Numerous 

applications for CNTs rely on its novel electrical properties and experimental 

determination of their chiralities and measurement of their diameters has been a 

challenge. These characteristics are crucial to its overall performance as they can vary 

significantly. A third of the single walled CNTs are metallic while the rest are 

semiconducting. It is extremely difficult to control the chiralities of the CNTs as grown 

in laboratory. A vital part of the manufacture process is characterization of the 

synthesized tubes. The experimental measurements fall within the accuracy of the 

measuring techniques making it extremely difficult to make a unique characterization. 

However, apriori information of their properties can aide in design of reliable and 

efficient characterization as well as purification processes. Computational solid-state 

physics provides the tools to probe the properties of these materials with minimal 

experimental data. Computational studies in conjunction with experiments can help 

exploit the potential of CNTs. 

 



 
 

62 
 

 

5.1 SWCNT 

 

Using a first-principles gradient corrected density functional approach, we present a 

comprehensive study of the geometry and energy band gaps in moderate-gap zig-zag 

semi-conducting (n,0) carbon nanotubes (CNT) to resolve some of the conflicting 

findings. Up to (8,0), a strong curvature distortions leads to a strong deviation in energy 

band gap (ΔEg) derived from a simple zone folding picture of grapheme based on tight 

binding calculations.  From (10,0) on, the gap dependence on the radius of the tube can 

be explained surprisingly well with the zone-folding scheme of the graphene 

bandstructure, if the trigonal shape of the equi-energy lines around the K-point is 

properly taken into account. Our extensive first principle calculations confirm that the 

(n,0) CNTs fall into two distinct classes depending upon n mod 3 equal to 1 (smaller 

band gaps) or 2 (larger gaps).  The amplitude of the gap oscillations, arising from σ - π 

mixing, decreases from n = 10 to n = 17. From n = 19 onwards, the gap follows a 1
d

 

behavior predicted from the simple tight binding π – model with decaying amplitude.  

The effect of longitudinal strain on the band gap further confirms the existence of two 

distinct classes: for n mod 3 = 1 or 2, changing ΔEg by ~100 meV for 1% strain in each 

case. 
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5.2  MWCNT 

 

In order to understand the behavior of MWCNT we have studied the electronic 

properties of a three wall zig-zag CNT. It is interesting to observe that the band gap of 

the MWCNT is always lower than the its constituent SWCNT band gap there by 

inducing a metallic behavior of the MWCNT. It has been shown in Chapter 3 that there 

exists an upper limit ~40Å beyond which one will not observe semi-conducting 

behavior in SWCNT. This observation in conjunction with current finding that the band 

gap for a MWCNT is always smaller than the band gap of the constituent SWCNT leads 

us to the conclusion that MWCNT with multiple walls will be metallic. The origin of 

this metallicity can be described based on the perturbation of charge on the individual 

walls leading to band gap closure 

 

5.3 RECOMMENDATIONS 

 

The currents study primarily focused on zig-zag carbon nanotubes and their electronic 

properties, it has shown unambiguously the existence of two classes of SCNT. 

However, it has been proposed by other groups that the family behavior is not restricted 

to the z-g-zag CNTs. This also needs to be rigorously tested from ab-initio calculations 

to put it on firm footing. Also, the mechanism for such behavior in chiral CNTs could 

be different that the one found in zig-zag SCNT. The changes in these properties lie 
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within the experimental uncertainty that calls for alternate sources of verification such 

as Tight Binding models and accurate computational modeling.        
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Appendix A 

The next 14 pages are the copyright permission for Figure 1.1 distributed under GFDL.  
 

GNU Free Documentation License (GFDL) 
Version 1.2, November 2002 

Copyright (C) 2000,2001,2002  Free Software Foundation, Inc. 
51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA 

  

Everyone is permitted to copy and distribute verbatim copies of this license document, 

but changing it is not allowed. 

 

0. PREAMBLE 

The purpose of this License is to make a manual, textbook, or other functional and 

useful document "free" in the sense of freedom: to assure everyone the effective 

freedom to copy and redistribute it,with or without modifying it, either commercially or 

noncommercially. Secondarily, this License preserves for the author and publisher a 

way to get credit for their work, while not being considered responsible for 

modifications made by others. 

 

This License is a kind of "copyleft", which means that derivative works of the document 

must themselves be free in the same sense.  It complements the GNU General Public 

License, which is a copyleft license designed for free software. We have designed this 

License in order to use it for manuals for free software, because free software needs free 
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documentation: a free program should come with manuals providing the same freedoms 

that the software does.  But this License is not limited to software manuals; it can be 

used for any textual work, regardless of subject matter or whether it is published as a 

printed book.  We recommend this License principally for works whose purpose is 

instruction or reference. 

 

1. APPLICABILITY AND DEFINITIONS 

This License applies to any manual or other work, in any medium, that contains a notice 

placed by the copyright holder saying it can be distributed under the terms of this 

License.  Such a notice grants a world-wide, royalty-free license, unlimited in duration, 

to use that work under the conditions stated herein.  The "Document", below, refers to 

any such manual or work.  Any member of the public is a licensee, and is addressed as 

"you".  You accept the license if you copy, modify or distribute the work in a way 

requiring permission under copyright law. 

 

A "Modified Version" of the Document means any work containing the Document or a 

portion of it, either copied verbatim, or with modifications and/or translated into another 

language. 

 

A "Secondary Section" is a named appendix or a front-matter section of the Document 

that deals exclusively with the relationship of the publishers or authors of the Document 

to the Document's overall subject (or to related matters) and contains nothing that could 
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fall directly within that overall subject.  (Thus, if the Document is in part a textbook of 

mathematics, a Secondary Section may not explain any mathematics.)  The relationship 

could be a matter of historical connection with the subject or with related matters, or of 

legal, commercial, philosophical, ethical or political position regarding them. 

 

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as 

being those of Invariant Sections, in the notice that says that the Document is released 

under this License.  If a section does not fit the above definition of Secondary then it is 

not allowed to be designated as Invariant.  The Document may contain zero Invariant 

Sections.  If the Document does not identify any Invariant Sections then there are none. 

 

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover 

Texts or Back-Cover Texts, in the notice that says that the Document is released under 

this License.  A Front-Cover Text may be at most 5 words, and a Back-Cover Text may 

be at most 25 words.  

 

A "Transparent" copy of the Document means a machine-readable copy, represented in 

a format whose specification is available to the general public, that is suitable for 

revising the document straightforwardly with generic text editors or (for images 

composed of pixels) generic paint programs or (for drawings) some widely available 

drawing editor, and that is suitable for input to text formatters or for automatic 

translation to a variety of formats suitable for input to text formatters.  A copy made in 
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an otherwise Transparent file format whose markup, or absence of markup, has been 

arranged to thwart or discourage subsequent modification by readers is not Transparent. 

An image format is not Transparent if used for any substantial amount of text.  A copy 

that is not "Transparent" is called "Opaque".  

 

Examples of suitable formats for Transparent copies include plain ASCII without 

markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly 

available DTD, and standard-conforming simple HTML, PostScript or PDF designed 

for human modification.  Examples of transparent image formats include PNG, XCF 

and JPG.  Opaque formats include proprietary formats that can be read and edited only 

by proprietary word processors, SGML or XML for which the DTD and/or processing 

tools are not generally available, and the machine-generated HTML, PostScript or PDF 

produced by some word processors for output purposes only.  

 

The "Title Page" means, for a printed book, the title page itself, plus such following 

pages as are needed to hold, legibly, the material this License requires to appear in the 

title page.  For works in formats which do not have any title page as such, "Title Page" 

means the text near the most prominent appearance of the work's title, preceding the 

beginning of the body of the text.  

 

A section "Entitled XYZ" means a named subunit of the Document whose title either is 

precisely XYZ or contains XYZ in parentheses following text that translates XYZ in 
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another language.  (Here XYZ stands for a specific section name mentioned below, 

such as "Acknowledgements", "Dedications", "Endorsements", or "History".)  To 

"Preserve the Title" of such a section when you modify the Document means that it 

remains a section "Entitled XYZ" according to this definition.  

 

The Document may include Warranty Disclaimers next to the notice which states that 

this License applies to the Document.  These Warranty Disclaimers are considered to be 

included by reference in this License, but only as regards disclaiming warranties: any 

other implication that these Warranty Disclaimers may have is void and has no effect on 

the meaning of this License. 

 

2. VERBATIM COPYING 

You may copy and distribute the Document in any medium, either commercially or 

noncommercially, provided that this License, the copyright notices, and the license 

notice saying this License applies to the Document are reproduced in all copies, and that 

you add no other conditions whatsoever to those of this License.  You may not use 

technical measures to obstruct or control the reading or further copying of the copies 

you make or distribute.  However, you may accept compensation in exchange for 

copies.  If you distribute a large enough number of copies you must also follow the 

conditions in section 3.  
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You may also lend copies, under the same conditions stated above, and you may 

publicly display copies.  

 

3. COPYING IN QUANTITY 

If you publish printed copies (or copies in media that commonly have printed covers) of 

the Document, numbering more than 100, and the Document's license notice requires 

Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all 

these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on 

the back cover.  Both covers must also clearly and legibly identify you as the publisher 

of these copies.  The front cover must present the full title with all words of the title 

equally prominent and visible.  You may add other material on the covers in addition. 

Copying with changes limited to the covers, as long as they preserve the title of the 

Document and satisfy these conditions, can be treated as verbatim copying in other 

respects. 

 

If the required texts for either cover are too voluminous to fit legibly, you should put the 

first ones listed (as many as fit reasonably) on the actual cover, and continue the rest 

onto adjacent pages. 

 

If you publish or distribute Opaque copies of the Document numbering more than 100, 

you must either include a machine-readable Transparent copy along with each Opaque 

copy, or state in or with each Opaque copy a computer-network location from which the 
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general network-using public has access to download using public-standard network 

protocols a complete Transparent copy of the Document, free of added material. If you 

use the latter option, you must take reasonably prudent steps, when you begin 

distribution of Opaque copies in quantity, to ensure that this Transparent copy will 

remain thus accessible at the stated location until at least one year after the last time you 

distribute an Opaque copy (directly or through your agents or retailers) of that edition to 

the public. 

 

It is requested, but not required, that you contact the authors of the Document well 

before redistributing any large number of copies, to give them a chance to provide you 

with an updated version of the Document.  

 

4. MODIFICATIONS 

You may copy and distribute a Modified Version of the Document under the conditions 

of sections 2 and 3 above, provided that you release the Modified Version under 

precisely this License, with the Modified Version filling the role of the Document, thus 

licensing distribution and modification of the Modified Version to whoever possesses a 

copy of it.  In addition, you must do these things in the Modified Version:  

 

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the 

Document, and from those of previous versions (which should, if there were any, be 
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listed in the History section of the Document).  You may use the same title as a previous 

version    if the original publisher of that version gives permission. 

B. List on the Title Page, as authors, one or more persons or entities responsible for 

authorship of the modifications in the Modified Version, together with at least five of 

the principal authors of the Document (all of its principal authors, if it has fewer than 

five), unless they release you from this requirement. 

C. State on the Title page the name of the publisher of the Modified Version, as the 

publisher. 

D. Preserve all the copyright notices of the Document. 

E. Add an appropriate copyright notice for your modifications adjacent to the other 

copyright notices. 

F. Include, immediately after the copyright notices, a license notice giving the public 

permission to use the Modified Version under the terms of this License, in the form 

shown in the Addendum below. 

G. Preserve in that license notice the full lists of Invariant Sections and required Cover 

Texts given in the Document's license notice. 

H. Include an unaltered copy of this License. 

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating 

at least the title, year, new authors, and publisher of the Modified Version as given on 

the Title Page.  If there is no section Entitled "History" in the Document, create one 

stating the title, year, authors, and publisher of the Document as given on its Title Page, 

then add an item describing the Modified Version as stated in the previous sentence. 
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J. Preserve the network location, if any, given in the Document for public access to a 

Transparent copy of the Document, and likewise the network locations given in the 

Document for previous versions it was based on.  These may be placed in the "History" 

section. You may omit a network location for a work that was published at least four 

years before the Document itself, or if the original publisher of the version it refers to 

gives permission. 

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of 

the section, and preserve in the section all the substance and tone of each of the 

contributor acknowledgements and/or dedications given therein. 

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in 

their titles.  Section numbers or the equivalent are not considered part of the section 

titles. 

M. Delete any section Entitled "Endorsements".  Such a section may not be included in 

the Modified Version. 

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title 

with any Invariant Section. 

O. Preserve any Warranty Disclaimers. 

If the Modified Version includes new front-matter sections or appendices that qualify as 

Secondary Sections and contain no material copied from the Document, you may at 

your option designate some or all of these sections as invariant.  To do this, add their 

titles to the list of Invariant Sections in the Modified Version's license notice. These 

titles must be distinct from any other section titles. 
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You may add a section Entitled "Endorsements", provided it contains nothing but 

endorsements of your Modified Version by various parties--for example, statements of 

peer review or that the text has been approved by an organization as the authoritative 

definition of a standard. 

 

You may add a passage of up to five words as a Front-Cover Text, and a passage of up 

to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified 

Version.  Only one passage of Front-Cover Text and one of Back-Cover Text may be 

added by (or through arrangements made by) any one entity.  If the Document already 

includes a cover text for the same cover, previously added by you or by arrangement 

made by the same entity you are acting on behalf of, you may not add another; but you 

may replace the old one, on explicit permission from the previous publisher that added 

the old one. 

 

The author(s) and publisher(s) of the Document do not by this License give permission 

to use their names for publicity for or to assert or imply endorsement of any Modified 

Version.
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5. COMBINING DOCUMENTS 

You may combine the Document with other documents released under this License, 

under the terms defined in section 4 above for modified versions, provided that you 

include in the combination all of the Invariant Sections of all of the original documents, 

unmodified, and list them all as Invariant Sections of your combined work in its 

license notice, and that you preserve all their Warranty Disclaimers. 

 

The combined work need only contain one copy of this License, and multiple identical 

Invariant Sections may be replaced with a single copy.  If there are multiple Invariant 

Sections with the same name but different contents, make the title of each such section 

unique by adding at the end of it, in parentheses, the name of the original author or 

publisher of that section if known, or else a unique number. Make the same adjustment 

to the section titles in the list of Invariant Sections in the license notice of the combined 

work. 

 

In the combination, you must combine any sections Entitled "History" in the various 

original documents, forming one section Entitled "History"; likewise combine any 

sections Entitled "Acknowledgements", and any sections Entitled "Dedications".  You 

must delete all sections Entitled "Endorsements".  
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6. COLLECTIONS OF DOCUMENTS 

You may make a collection consisting of the Document and other documents released 

under this License, and replace the individual copies of this License in the various 

documents with a single copy that is included in the collection, provided that you follow 

the rules of this License for verbatim copying of each of the documents in all other 

respects.  

 

You may extract a single document from such a collection, and distribute it individually 

under this License, provided you insert a copy of this License into the extracted 

document, and follow this License in all other respects regarding verbatim copying of 

that document. 

 

7. AGGREGATION WITH INDEPENDENT WORKS 

A compilation of the Document or its derivatives with other separate and independent 

documents or works, in or on a volume of a storage or distribution medium, is called an 

"aggregate" if the copyright resulting from the compilation is not used to limit the legal 

rights of the compilation's users beyond what the individual works permit. When the 

Document is included in an aggregate, this License does not apply to the other works in 

the aggregate which are not themselves derivative works of the Document. 

 

If the Cover Text requirement of section 3 is applicable to these copies of the 

Document, then if the Document is less than one half of the entire aggregate, the 
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Document's Cover Texts may be placed on covers that bracket the Document within the 

aggregate, or the electronic equivalent of covers if the Document is in electronic form. 

Otherwise they must appear on printed covers that bracket the whole aggregate. 

 

8. TRANSLATION 

Translation is considered a kind of modification, so you may distribute translations of 

the Document under the terms of section 4. Replacing Invariant Sections with 

translations requires special permission from their copyright holders, but you may 

include translations of some or all Invariant Sections in addition to the original versions 

of these Invariant Sections.  You may include a translation of this License, and all the 

license notices in the Document, and any Warranty Disclaimers, provided that you also 

include the original English version of this License and the original versions of those 

notices and disclaimers.  In case of a disagreement between the translation and the 

original version of this License or a notice or disclaimer, the original version will 

prevail. 

 

If a section in the Document is Entitled "Acknowledgements", "Dedications", or 

"History", the requirement (section 4) to Preserve its Title (section 1) will typically 

require changing the actual title. 
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9. TERMINATION 

You may not copy, modify, sublicense, or distribute the Document except as expressly 

provided for under this License.  Any other attempt to copy, modify, sublicense or 

distribute the Document is void, and will automatically terminate your rights under this 

License.  However, parties who have received copies, or rights, from you under this 

License will not have their licenses terminated so long as such parties remain in full 

compliance.  

 

10. FUTURE REVISIONS OF THIS LICENSE 

The Free Software Foundation may publish new, revised versions of the GNU Free 

Documentation License from time to time.  Such new versions will be similar in spirit 

to the present version, but may differ in detail to address new problems or concerns.  

See http://www.gnu.org/copyleft/.  

 

Each version of the License is given a distinguishing version number. If the Document 

specifies that a particular numbered version of this License "or any later version" 

applies to it, you have the option of following the terms and conditions either of that 

specified version or of any later version that has been published (not as a draft) by the 

Free Software Foundation.  If the Document does not specify a version number of this 

License, you may choose any version ever published (not as a draft) by the Free 

Software Foundation. 

 

http://www.gnu.org/copyleft/�
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ADDENDUM: How to use this License for your documents  

To use this License in a document you have written, include a copy of  the License in 

the document and put the following copyright and license notices just after the title 

page: Copyright (c)  YEAR  YOUR NAME. Permission is granted to copy, distribute 

and/or modify this document  under the terms of the GNU Free Documentation License, 

Version 1.2 or any later version published by the Free Software Foundation;  with no 

Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the 

license is included in the section entitled "GNU Free Documentation License". 

 

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the 

"with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, 

with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. 

 

If you have Invariant Sections without Cover Texts, or some other combination of the 

three, merge those two alternatives to suit the situation.  

 

If your document contains nontrivial examples of program code, we recommend 

releasing these examples in parallel under your choice of free software license, such as 

the GNU General Public License, to permit their use in free software. 
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