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Abstract

Interest in the study of magnetic/non-magnetic multilayered structures took a giant leap

since Grünberg and his group established that the interlayer exchange coupling (IEC) is a

function of the non-magnetic spacer width. This interest was further fuelled by the dis-

covery of the phenomenal Giant Magnetoresistance (GMR) effect. In fact, in 2007 Albert

Fert and Peter Grünberg were awarded the Nobel Prize in Physics for their contribution

to the discovery of GMR. GMR is the key property that is being used in the read-head

of the present day computer hard drive as it requires a high sensitivity in the detection

of magnetic field. The recent increase in demand for device miniaturization encouraged

researchers to look for GMR in nanoscale multilayered structures. In this context, one di-

mensional (1-D) multilayerd nanowire structure has shown tremendous promise as a viable

candidate for ultra sensitive read head sensors. In fact, the phenomenal giant magnetoresis-

tance (GMR) effect, which is the novel feature of the currently used multilayered thin film,

has already been observed in multilayered nanowire systems at ambient temperature. Ge-

ometrical confinement of the supper lattice along the 2-dimensions (2-D) to construct the

1-D multilayered nanowire prohibits the minimization of magnetic interaction- offering a

rich variety of magnetic properties in nanowire that can be exploited for novel functional-

ity. In addition, introduction of non-magnetic spacer between the magnetic layers presents

additional advantage in controlling magnetic properties via tuning the interlayer magnetic

interaction. Despite of a large volume of theoretical works devoted towards the under-
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standing of GMR and IEC in super lattice structures, limited theoretical calculations are

reported in 1-D multilayered systems. Thus to gauge their potential application in new

generation magneto-electronic devices, in this thesis, I have discussed the usage of first

principles density functional theory (DFT) in predicting the equilibrium structure, stability

as well as electronic and magnetic properties of one dimensional multilayered nanowires.

Particularly, I have focused on the electronic and magnetic properties of Fe/Pt multilay-

ered nanowire structures and the role of non-magnetic Pt spacer in modulating the mag-

netic properties of the wire. It is found that the average magnetic moment per atom in the

nanowire increases monotonically with an ∼ 1
N(Fe) dependance, where N(Fe) is the num-

ber of iron layers in the nanowire. A simple model based upon the interfacial structure

is given to explain the 1
N(Fe) trend in magnetic moment obtained from the first principle

calculations. A new mechanism, based upon spin flip with in the layer and multistep elec-

tron transfer between the layers, is proposed to elucidate the enhancement of magnetic

moment of Iron atom at the Platinum interface. The calculated IEC in the Fe/Pt multilay-

ered nanowire is found to switch sign as the width of the non-magnetic spacer varies. The

competition among short and long range direct exchange and the super exchange has been

found to play a key role for the non-monotonous sign in IEC depending upon the width

of the Platinum spacer layer. The calculated magnetoresistance from Julliere’s model also

exhibit similar switching behavior as that of IEC. The universality of the behavior of ex-

change coupling has also been looked into by introducing different non-magnetic spacers

like Palladium, Copper, Silver, and Gold in between magnetic Iron layers. The nature of

xxii



hybridization between Fe and other non-magnetic spacer is found to dictate the inter layer

magnetic interaction. For example, in Fe/Pd nanowire the d-p hybridization in two spacer

layer case favors anti-ferromagnetic (AFM) configuration over ferromagnetic (FM) con-

figuration. However, the hybridization between half-filled Fe(d) and filled Cu(p) state in

Fe/Cu nanowire favors FM coupling in the 2-spacer system.
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Chapter 1

Introduction

1.1 Review of Current Understanding of Magnetic/non-

magnetic Heterostructures

Over the past years, the intense research focus on the magnetic and electronic properties of

magnetic multilayered structures for their multifunctional properties has lead to successful

applications of these heterostructures in a wide range of magneto-electronic devices such

as magnetic sensors and ultrahigh density memory devices. Research on the magnetic and

nonmagnetic heterostructure goes back to as early as 1986, when Grünberg et al.[1] estab-

lished for the first time the importance of interlayer exchange coupling (IEC) in Fe/Cr/Fe

layered structures. At zero magnetic field, it was shown that when a non-magnetic Cr
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layer of suitable thickness was sandwiched between a pair of magnetic Fe layers, the anti-

ferromagnetic(AF) coupling between the Fe layers favored over the ferromagnetic (FM)

coupling. The exchange interaction between the magnetic Fe layers mediated by the con-

duction electrons of the non-magnetic spacer was found to stabilize the AF configuration

by lowering the total energy of the system, which can be understood from Ruderman-

Kittel-Kasuya-Yosida(RKKY) interaction mechanism. The RKKY mechanism describes

the coupling of nuclear magnetic moments or localized inner d or f shell electron spins in a

metal via conduction electrons. Depending upon the separation between a pair of ions their

magnetic coupling can be ferromagnetic or antiferromagnetic. A magnetic ion induces a

spin polarization in the conduction electrons in its neighborhood. This spin polarization in

the itinerant electrons is felt by the moments of other magnetic ions within range, leading

to an indirect coupling.

The interaction between two magnetic impurities arise when they are close enough to have

appreciable overlap. If a second impurity is within the spin-down region of the first impu-

rity’s conduction electron polarization, it is favored to point oppositely to the polarization,

and thus ferromagnetically with the first impurity. If the second impurity is further away, in

the ring of spin-up (away from 1st ring of spin down), the second impurity prefers to point

down, thus antiferromagnetic coupling with the first impurity. Thus, there is an interaction

between two impurities induced by the spin-polarized conduction electrons with which they

interact. The interaction takes the same distance dependence as the spin polarization, but

is of opposite sign as shown in Figure. 1.1.
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Figure 1.1: RKKY interaction: the interaction of magnetic spins mediated by con-
duction electrons.

The RKKY exchange coefficient, J, oscillates from positive to negative as the separation

of the ions changes. It has the damped oscillatory nature. Subsequently, the discovery

of giant magneto resistive (GMR)effect[2, 3] in 1988 in a magnetic multilayered structure

revolutionized the interest in multilayered structures. In multilayer GMR, two or more fer-

romagnetic layers are separated by a very thin (about 1 nm) non-ferromagnetic spacer (e.g.

Fe/Cr/Fe). The electrical resistance of a device is normally higher is the anti-parallel case.

When the current is allowed to pass through a Fe/Cr/Fe layered structure, which favors

AF configuration at zero field, maximum resistance to the flow of electrons in encountered.

But when the applied magnetic field is increased, the spin of two magnetic layers reorient

with respect to each other giving a low resistance path to the flow of electron until it reaches

the saturation point. At a saturated applied magnetic field, Hs, the spin orientation of the

two magnetic layers reorient themselves to FM configurations giving a least resistance path

to the flow of current. A significant 80% change in resistance (10% at room temperature)

was found between FM and AFM configurations as shown in Figure. 1.2.
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Figure 1.2: GMR effect in Fe/Cr/Fe multilayered structure.(accessed on March 20,
2009; Copyright -Guillom , Wikimedia commons, 2007, distributed under GFDL,
refer Appendix C for permission)

This huge change in resistance is commonly refereed as GMR effect or spin valve effect,

which can be understood as follows. In a circuit, electrical resistance arises due to scattering

of electrons within the wire material. Depending upon the magnetic moment orientation,

a single domain magnetic material will scatter "up" and "down" spin electrons differently.

When the ferromagnetic layers in GMR structures are aligned anti-parallel, the resistance

is high because the "spin-up" electrons that are not scattered in one layer (low resistance)

can be scattered in the other layer (higher resistance). When the layers are aligned in

parallel, all the "spin-up" electrons will not scatter much (low resistance), regardless of

which ferromagnetic layer they pass through. This spin-dependent scattering phenomena

which given rise to GMR is illustrated in Fig. 1.3.
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Figure 1.3: Schematic representation of spin valve GMR effect(accessed on March
21, 2009; Copyright -Guillom , Wikimedia commons, 2006, distributed under
GFDL, refer Appendix C for permission)

The GMR effect and plays the key role in the read head sensor of modern hard drive disk

and other high sensitive magneto-electronic devices. Peter Grünberg and Albert Fert shared

recently (year 2007) the Nobel Prize in Physics for the discovery of this phenomenal GMR

effect. Following the discovery of the GMR effect, interesting phenomena such as long

(10-15 Å) and short (3-4Å) period oscillations of Interlayer exchange coupling (IEC) as

well as the oscillation of GMR were reported [4, 5, 6] in Fe/Cr layered structure. This

result was in contrast to the previously observed monotonically decreasing trend [2, 3]of

GMR with spacer layer thickness. The oscillation was not observed earlier as complete

control over the spacer thickness was not achieved. The magnitude of saturation field

was also found to oscillate with the same period as that of magneto resistance and thus
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explained the origin of IEC. The oscillation in GMR is caused by the alteration in the sign

of the interlayer exchange coupling between ferromagnetic layers. Moreover, the exchange

coupling is found to oscillate between ferromagnetic and anti-ferromagnetic depending

upon the magnetic moment of successive ferromagnetic layers. Taking Cu−Co as an

example, the largest value of GMR of 110% requires magnetic field of 20 KOe, whereas

50− 60% of the GMR can be achieved with few hundred Oe field range which further

drops down to field of few ten Oe to obtain 20% of the GMR. This controlled variation

of GMR is achievable by varying the IEC between the Co layers with different Cu layer

thickness.

Similar oscillations in GMR and IEC were also found when transition metal including Pt

and Nobel metals like Cu, Au were used as spacers in magnetic/non-magnetic multilayered

structures. This observed oscillatory behavior of magnetoresistance and IEC with the in-

crease in non-magnetic spacer layer thickness in different superlattice structures suggests

that this is a universal feature in magnetic and non-magnetic heterostructures. Such vary-

ing magnetoresistance values at room temperature makes the bulk multilayered structures

promising candidate for various alluring technological applications. This include the de-

tection of magnetic bits in a hard drive disc (read head sensor of computer) and detection of

magnetic field of a rotating object (anti-lock brake system in automobiles) and even appli-

cations in biomedical sensors. Different theoretical models were put forward to understand

the origin of exchange coupling and their oscillatory behavior with spacer thickness. A

clear explanation was given by quantum well model (QW) and the RKKY model. The
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RKKY model suggests that the exchange coupling between two impurity spins is medi-

ated by the spin polarized conduction electron of the non-magnetic spacer and the period

of oscillation depends upon the thickness of spacer material and its crystallographic ori-

entations. The amplitude ratio and phase of oscillation are also very well explained by

RKKY perturbation theory taking the topology of Fermi surface and the degree of con-

finement within spacer layer in to account. Based upon RKKY theory and taking other

important factors like surface roughness, thickness, geometry as well as the orientation of

spacer layer into account, a transparent, but a qualitative explanation [7, 8] was given for

the long periodic and multi-periodic oscillations of IEC observed in experiments. In ad-

dition, the thickness of magnetic layer is also found to have a bearing on the oscillations

in IEC. The other QW model based on the quantum confinement within the ferromagnetic

layers [72, 73, 74, 75] has also been successful in elucidating the observed oscillation of

magnetic coupling. However, all these qualitative explanations could not satisfactorily elu-

cidate the quantitative predictions like strength of the exchange coupling J, which signifi-

cantly depends upon the degree of matching of energy bands at the interface. The ab-initio

local spin density calculations based upon density functional theory [9, 10, 11, 12] was

able to estimate the coupling strength with precision from total energy calculations. The

calculated energy difference between FM and AFM configurations, which represents the

inter layer coupling energy J showed a slowly decaying oscillation with the spacer layer

thickness. Furthermore, this was proved to have greater accuracy with experimental results

[13, 14, 15] and was in good agreement with the RKKY model. All these seminal find-
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ings contributed to the understanding of IEC as well as GMR in bulk multilayer structures.

However, for the next generation ultra high density memory devices and magnetic sensors

in sub-micron dimensions, it is necessary to extrapolate the presently used thin film to a

new class of spintronic devices in submicron dimension.

One dimensional multilayered nanowire structures have shown tremendous promise in this

regards. They are constructed from bulk multilayered structure. The first question needs

to be answered is: Do these miniaturized multilayered structures exhibit GMR effect? The

answer is "Yes". Recently, one dimensional (1-D) magnetic/non-magnetic multilayered

nanowires exhibiting GMR effect at ambient temperature[16, 17, 18] is demonstrated cre-

ating a breakthrough for the future magneto electronic device application. For example,

using electro-deposition technique, Blondel et al. [16] have synthesized the Co/Cu multi-

layered nanowire, and have observed the GMR effect up to 14% in the nanowire at room

temperature. Other experimental groups like Katineet al.[19] have recently demonstrated

the dependence of GMR effect on spacer width in Co/Cu system. Liu et al. [20] have

reported the fabrication of Co/Cu nanowires of different diameter. Chien et al [21] have

shown the fabrication of Ni nanowires with the diameters in the range of 5 nm to 10 nm

using highly uniform diamond shaped nanopore template for their potential application

in biotechnology. Park has reported [22] the stress induced martenisitic phase transfor-

mation in Ni/Al hybrid nanowire, and has shown this nanowire can outperform the bulk

Ni/Al as a shape memory alloy due to recoverable inelastic tensile stress property. The

fabrication of Co/Cu multilayered nanowire with ∼ 350 repetitions of Co/Cu sequences
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have been reported [23]. Using a different approach based on lithography, Urazhdin et

al. [24] have reported the fabrication of Ni84Fe16/Cu(Pt)/Ni84Fe14 nanopillars and have

demonstrated current driven switching effect in the nanopillars. The fabrication of single

crystalline Ni−Cu alloy nanowire by electro-depositing through the hexagonally ordered

nanochanels has also been reported [25]. This Ni/Cu alloy nanowire has potential appli-

cations in magnetic recording device. Various experimental groups have also reported the

electronic and magnetic properties of Fe/Pt nanoparticles and nanoalloy [26, 27, 28, 29].

The fabrication of Fe/Pt multilayered nanowired structures [30, 31, 32] have also been

reported. But the precise fabrication of multilayered nanowires with the desired magnetic

and non-magnetic layer sequence is a serious challenge, which has been hindering their

practical applications. The magnetic and magneto transport properties of the multilayered

nanowires are highly dependent on their size, shape, crystallinity and spacer thickness.

Thus, the controlled fabrication of these 1D magnetic nano-materials are absolutely nec-

essary. In a pioneering effort, Choi et al. [33] have recently reported the mass fabrica-

tion of free standing 1D Co/Pt multilayered or barcode nanowires with well defined layer

thicknesses using programmable template-assisted deposition technique. In addition, using

electric pulse deposition technique for varying the magnetic and non-magnetic layer thick-

ness and applying magnetic field both along the axis and perpendicular to the axis of the

wire, different values of GMR (4 % and 10%) are reported [23]. Other experimental groups

have also reported controlled fabrication of Co/Pt multilayered nanowire [34], opening up

a new vista for their potential application in magneto-electronics or spintronics.
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1.2 Open questions

Despite this experimental progress in fabrication [15, 16, 17, 18] and characterization of

multilayered magnetic nanowire, only limited attention has been given to understand the

most crucial atomic scale structural heterogeneity of the magnetic multilayered nanowires

and its role in modulating the magnetic properties of the nanowire. Particularly, first princi-

ple theoretical calculations, which have been proved to have predictive capability, have not

been reported to understand the role of the non-magnetic spacer in modulating the mag-

netic properties of 1D multilayered nanowire structures. The challenge associated with the

first-principle calculations of isolated 1D multilayered nanowire lies in the fact that one

needs to consider a large supercell with sufficient vacuum to ensure negligible interaction

between the nanowire and its image, and to allow several spacer layers to be embedded in

the nanowire structures. This increases the computational time significantly considering

the spin-polarized nature of the problem. Furthermore, no a priori information is available

on the atomic structure or stability of these nanowires compounding a theoretical task of

obtaining the equilibrium structures, and hence the magnetic properties.
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1.3 My Contributions

My aim has been to use ab initio theory to develop a basic understanding of the role of the

nonmagnetic spacer layer in tuning the magnetic properties of these multilayered barcode

nanowires. The research is focused on addressing many fundamental questions: Are these

1D nanowires stable? Is is possible to tune the magnetic properties of the nanowires by

varying the thickness of the nonmagnetic spacers? Is it possible to tune the IEC in this 1D

nanowire structure by controlling the spacer layer thickness? Does the IEC depend upon

the nature of the spacer? Is the proposed model for the bulk multilayered systems (RKKY

model)valid for nanoscale multilayered structures? To address these important questions, a

variety of multilayered nanowire systems (Fe/Pt, Fe/Pd, Fe/Cu, Fe/Au, FeAg) are con-

sidered in this project. I have used first-principles approach to look into subtle change in

the magnetic and electronic properties of the wire with the change in the width of the non-

magnetic spacer. Particularly, I am addressing how the atomic level structural heterogeneity

at the interface affects their magnetic property. I have performed periodic density functional

calculation within the spin polarized local density functional approximation(LSDA) [35]

to probe the compositional dependent magnetic and electronic properties of the nanowires.

The Vienna ab initio simulation code (VASP) [38, 39] that uses plane wave basis function

and ultra-soft pseudo potential to describe the valance core interaction, is utilized for our

calculations. This thesis is organized as follows. The theoretical procedure used in this

study is described in Chapter II. Chapter III discusses about the ferromagnetism in multi-
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layered nanowire system. Chapter IV will be focused on "Controlling IEC with thickness

of the spacer width". Chapter V will compare IEC in different multilayered systems. In

Chapter VI, I will conclude my project with a brief summary and suggestions for future

work.
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Chapter 2

Quantum many-body theory for solid

state systems

2.1 Introduction

Solid state systems are quantum many-body systems comprised of large number of atoms

and electrons. Structural packing of atoms in a solid and nature of the electronic structure

dictate their electronic, magnetic, and optical properties. However, the exact determination

of the electronic structure of a many-electron interacting system is practically impossible.

Except for a system with one electron, the analytical solution does not exist. Computational

cost increases significantly with the increase of the number of electrons. Thus, a new model
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with approximations is absolutely necessary to address this complex many-body problem.

In the following Section, an overview of various approximations that are being used to

solve this computationally intractable many-body problem is presented.

2.2 Schrödinger Equation

The Schrödinger equation [40] named after Erwin Schrödinger is the fundamental equation

in physics. It describes the properties of any non-relativistic time independent quantum

many-body system using wave function representation of the electron and is represented

by:

Ĥ ψ (r1,r2, ..........rN) = E ψ (r1,r2, ......rN) (2.1)

Ĥ, ψ and E in eqn. 2.1 are the Hamiltonian, many body wave function, and the energy

eigen value of the system respectively. A many-body system consists of electrons as well

as nuclei, which interacts with each other. Thus, the Hamiltonian of such a system with M

number of nuclei and N number of electrons can be represented as:

Ĥ = − h̄2

2me

N
∑
i=1

52
i −∑

i,I

ZIe2

|ri−RI|
+

1
2 ∑

i6= j

e2

|ri− r j|
−

M
∑
I=1

h̄2

2MI
52

I +
1
2 ∑

I 6=J

ZIZJe2

|RI −RJ|
(2.2)

M, Z, and R are the mass, charge, and position vector of the nuclei; me, e and r rep-

resents mass, charge and position vector of electrons respectively. The first and fourth
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terms in eqn. 2.2 represent the kinetic energy contribution from electrons and nuclei. The

second, third, and fifth terms are the potential energy terms resulting from ion-electron

attraction, electron-electron repulsion, and ion-ion repulsion respectively. To predict the

accurate electronic and geometric structure of a many-body system, one first needs to solve

the Schrdinger equations and calculate the total energy of the system.Afterwords, the true

ground state energy is obtained by minimizing energy with respect to the optimized nuclear

and electronic co-ordinates. It is difficult to solve eqn. 2.2 without further approximations.

The first simplification of eqn. 2.2 is by Born and Oppenheimer [41] in 1927.

2.3 Born-Oppenheimer Approximation

This approximation stems from the fact that the mass of the nuclei are about 103 times

heavier than the mass of the electrons. Thus, classically, the electrons move much faster

as compared to nuclei and the nuclei appear stationary to electrons. Hence, the electrons

experience a fixed frozen-in potential due to the nuclei. This is sometimes referred to as

the adiabatic approximation. After adopting this adiabatic approximation, the eqn. 2.2 is

reduced to an electronic Hamiltonian:

Ĥ =
N
∑
i=1

52
i

2 +∑
i,I

Zi
|ri−RI|

+
1
2 ∑

i6= j

1
|ri− r j|

(2.3)

15



Atomic units are used in eqn. 2.3. Even after this simplification, solving the eqn. 2.3 is

still a complex problem because of the electron-electron interaction term. To decouple the

many-body problem to a solvable one electron problem, the many-electron Hamiltonian in

eqn. 2.3 needs to be reduced to an effective one electron Hamiltonian. This can be achieved

either by using Hartree-Fock theory [43] or Density Functional Theory (DFT). Beyond

these two theories, further approximations are necessary to deal with system having large

number of electrons. For example, a periodic system, which is the main focus of this thesis,

have infinite number of electrons. To deal with such a system I have used pseudo-potential

approximation for electron-nuclei interaction, and the supercell approach to deal with the

periodicity of the system. In the following Sections, I review various methods including

the Hartree-Fock approach for completeness.

2.4 Electron-electron interaction

2.4.1 Hartree-Fock Theory

This approximation proceeds with the assumption that each electron appears to move in the

average potential produced by other electrons in the presence of fixed nuclear charges. The

total electronic wave function is approximated by product of single particle orthonormal

orbitals taking anti-symmetry property of the wave function into account that leads to the
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exchange interaction. Slater [42] is able to represent the Hartree-Fock wave function in a

more efficient N ×N determinant form, known as Slater determinant, where orbitals are

subjected to orthonormal constraints,

∫

ψ∗
i (r)ψ j(r) dr = 〈ψi|ψ j〉 = δi j (2.4)

The, Slater determinant form of many electron wave-function ψ is expressed as:

ψ =
1√
N!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ1(r1) ψ2(r1) · · · · · · ψN(r1)

ψ1(r2) ψ2(r2) · · · · · · ψN(r2)

· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·

ψ1(rN) ψ2(rN) · · · · · · ψN(rN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.5)

ψ1(r1) ......ψN(rN) represent the spin molecular orbitals; 1√
N! is the normalization constant;

N represents the total number of electrons in the system. Now the many-electron Hamilto-

nian in eqn. 2.3 can be expressed as sum of one-electron Hamiltonian:

He = ∑
i

HHF(i) (2.6)

HHF(i) = H0(i)+ Ve(i) (2.7)
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Here H0(i) is the sum of electron kinetic energy and electron-ion interaction energies; Vi(i)

represents the average potential that the ith electron experiences due to the interaction with

the all other electrons in the system. The variational procedure is then adopted to deter-

mine the effective one electron Hamiltonian HHF(i) and hence the eigen value and eigen

function.

2.4.2 Correlation problem in Hartree-Fock approach

Hartree-Fock theory [43, 44] has its own draw back since the single determinant wave

function contains no correlation effect beyond the requirement by Pauli’s exclusion prin-

ciple. Only for a very weakly correlated system, the single determinant can represent the

true wave function. But in a real system, the electrons are strongly correlated than that

described by Hartree-Fock theory; the interaction energy missed by Hartree-Fock method

is the correlation energy Ec, given by:

Ec(i) = E0(i)− EHF (2.8)

E0 is the exact ground state energy and is always higher than the non-relativistic energy

i.e. EHF > E0. Thus, the correlation energy Ec is a negative quantity . In order to take the

correct correlation between the electrons into account, one needs to go beyond the Hartree-

Fock theory. The alternate approaches are Configuration interaction theory(CI), many-body
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perturbation theory(MBPT), and the Density functional theory(DFT). CI and MBPT are

only useful for atomic and simple molecular system with only few electrons. However, the

DFT approach, which includes correlation among electrons, can be adopted efficiently for

a larger system. Since DFT is used through out this thesis, a detailed discussion about this

theoretical approach is given in the next Section.

2.4.3 Density Functional Theory

The DFT, in principle, is an exact theory of electronic structure. It is based on the elec-

tron density distribution n(r), instead of the complicated many electron wave function

ψ (r1,r2, ..........rN). Over the past few years, DFT [45, 46, 47] has become the physi-

cist’s method of choice for understanding the electronic structure of molecules, clusters

and solids - any system consisting of nuclei and electrons. Here, I outlined the basic ideas

of DFT. The history of DFT begins with the work of Thomas and Fermi [49] in 1920.

2.4.3.1 Thomas-Fermi Model

This model makes a significant conceptual presumption by taking the much simpler elec-

tron density n(r) as the unknown variable rather than the N-electron wave function. It

reduces the 3N degrees of freedom problem to a simple 3 degrees of freedom system. In

this approximation, electrons are treated as independent particles and the electron-electron
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interaction energy is represented by the electrostatic (Columbic) energy Ees :

Ees[n(r)] =
1
2

∫

dr
∫

dr′ n(r)n(r′)
|r− r′| (2.9)

The electronic kinetic energy associated with the system of non-interacting electro,n T [n(r)]:

T [n(r)] =

∫

dr t[n(r)]

= C f

∫

n(r)
5
3 dr (2.10)

t[n] is the kinetic energy functional for the system of non-interacting electrons within a

homogeneous medium with density n(r); C f = 3
10(3π2)

2
3 . The derivation is given in the

App. 6.2. The classical electron-nucleus attraction energy is:

Eext =

∫

dr n(r) Vext

= −Z
∫ n(r)

r dr (2.11)

Thus the energy functional of the Thomas-Fermi N-electron atom in terms of electron den-

sity is given by:

ET [n(r)] = T [n(r)]+Ees[n(r)]+Eext[n(r)] (2.12)
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The energy functional ET [n(r)] is minimized under the constraint

∫

dr n(r) = N (2.13)

From the Lagrangian multiplier method:

ET [n(r)]+ µN = T [n(r)] +Ees[n(r)]+
∫

dr n(r)[Vext[n(r)]+ µ ] (2.14)

The ground state electron density t[n(r)] must satisfy the variational principle:

δ { ET [n(r)]−µ(

∫

n(r) dr − N ) } = 0 (2.15)

This yields Euler- Lagrange equation:

µ =
δET [n(r)]

δ [n(r)] =
δT [n(r)]

δ r − φ(r) (2.16)

φ(r), the electrostatic potential at a point due to the nucleus and the electrons, is given by:

φ(r) =
z
r −

∫ n(r′)
|r− r′ | (2.17)

This is the simple Thomas-Fermi model. Due to severe deficiencies associated with the

rough description of the charge density and the electrostatic potential, Thomas-Fermi model
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is considered as a over simplified model; this does not have much importance for the quan-

titative prediction of solid state physics. The situation is improved by the landmark pub-

lication of Hohenberg and Kohn(1964). Two simple but powerful theorems [50] establish

that the electron density n(r) is the central quantity for describing electron interaction.

2.4.3.2 Hohenberg-Kohn theorems

The Hohenberg-Kohn theorems open new prospectives to the calculation of electronic prop-

erties of condensed system. For a system of N electrons, the ground state properties are

entirely determined by the number of electrons and the position of the nuclei that gives the

potential of the system [48]. The time independent Schrodinger equation for such a system

can be expressed as:

Ĥ ψ(ri) = E ψ(ri) (2.18)

with

Ĥ = T̂ + V̂ee + V̂ne
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T̂ = −1
2

N
∑
i=1

52
i

V̂ee =
N
∑
i< j

1
| r′i − r j|

ˆVext = ˆVne = −∑
α

Z
| r−Rα | (2.19)

Vee is the electron-electron interaction potential and Vext is the external potential. Hohen-

berg theorem uses the electron density n(r) as the basic variable having one-to-one corre-

spondence with the external potential Vext(r). Thus, the Hohenberg-Kohn theorem relates

to any quantum mechanical system of N electrons moving under the influence of external

potential Vext , and can be stated as follows:

Theorem 1: The external potential Vext is uniquely determined by the electronic charge

density n(r). So the total energy is an unique functional of the density n(r).

Thus the electron density n(r) determines the many-electron, ground state wave function

ψ and hence the ground state electronic properties of the system. The total energy of the

system is:

E[n(r)] = Te[n(r)] + Vee[n(r)] + Vext [n(r)] (2.20)

Te and Vee are the kinetic energy of the electron and electron-electron interaction potential
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respectively. The external potential Vext takes the form:

Vext [n(r)] =

∫

Vext(r) n(r) dr

Vext(r) = −∑
α

Zα
| r − Rα | (2.21)

Thus the energy functional takes the form as:

E[n(r)] =
∫

Vext(r) n(r) dr +FHK [n(r)] (2.22)

The functional FHK is:

FHK [n(r)] = T [n(r)] + Vee[n(r)] (2.23)

with

Vee[n(r)] = VH [n(r)]+Exc(non− classical term) (2.24)

Here VH [n(r)] is the classical electron-electron repulsion term also called Hartree potential.

The non-classical part in eqn. 2.24 is a very important quantity and is the exchange and cor-

relation energy. The second Hohenberg and Kohn theorem provides the energy variational

principle and is stated as:

Theorem 2: The density which minimizes the energy is the ground state density and the

minimum energy is the ground state energy.
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For a trial density n̄(r) satisfying the conditions:

n̄(r) ≥ 0

and
∫

n̄(r) dr = N

E0 ≤ E[n̄(r) (2.25)

minE[n(r)] = E0

The variational principle requires that the ground state density must satisfy the stationary

principle in the same way as in the Thomas-Fermi theory. Thus from eqn. 2.15:

δ {E[n(r)] − µ [
∫

n(r)dr −N]} = 0 (2.26)

giving the Euler-Lagrange equations as:

µ =
δ E[n(r)]

δ n(r) = Vext [n(r)] +
δ FHK[n(r)]

δ n(r) (2.27)

µ is the chemical potential. The eqn. 2.26 can represents the exact equation for the ground

state electron density provided we know the exact functional FHK . Thus the knowledge of

FHK is necessary to solve any quantum mechanical system. The eqn. 2.27 looks very at-
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tractive because the calculation of electron density n(r) is much simpler than the N-electron

wave function. However, the accurate implementation of this method is not easy. The main

problem is to get an explicit form of the functional FHK . The calculations with drastic

approximations to these functionals results in the loss of accuracy to a great extent.

2.4.3.3 The Levy Constrained search

The Hohenberg-Kohm theorem suffers from two major drawbacks. First, it assumes no

degeneracy for the ground state of the system. Second, it assumes the density to be v- rep-

resentable. Thus, if n(r) is the density corresponding to the antisymmetric wave function

of the ground state Hamiltonian, the correct formulation of variational principle is:

E0 = min
n(r)

Ev[n(r)] (2.28)

v stands for the v-representability of the density n(r). But, the specific conditions to make

a density v-representable are not known as many reasonable densities have been shown to

be non-v-representable. A generalization of Hohenberg-Kohn theorem was found by Levy

[51, 52] using an alternative weaker constraint i.e N-representable density which is known

as Levy constrained search formulation. The v and Nrepresentability of n(r) is discussed

in Appendix B. The starting point is to distinguish the ground state wave function ψ0 from

different ψn0, which also integrates to give the ground state electron density n0(r). From
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the variational principle:

〈 ψn0 | Ĥ | ψn0 〉 � 〈 ψ0 | Ĥ | ψ0 〉 = E0 (2.29)

Taking into account that Vext [n(r)] is the function of n(r) only,

〈 ψn0 | T̂ + V̂ee | ψn0 〉 +

∫

Vext(r) n(r) dr �

〈 ψ0 | T̂ + V̂ee | ψ0 〉 +
∫

Vext(r) n(r) dr

(2.30)

⇒ 〈 ψn0 | T̂ + V̂ee | ψn0 〉 � 〈 ψ0 | T̂ + V̂ee | ψ0 〉 (2.31)

Thus ψ0, is the wave function that minimizes the kinetic energy as well as the electron-

electron interaction energy. It also should integrate to give the ground state electron density

n0(r). Then the functional becomes:

FHK[n(r)] = min
ψ → n(r)

〈 ψ | T̂ + V̂ee | ψ 〉 (2.32)

FHK[n(r)] looks for all ψ that gives the density n0(r). This gives the expression for energy
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as:

E0 = min
n(r)

[ FHK [n(r)] +

∫

Vext(r) n(r) dr ]

= min
n(r)

E[n(r)] (2.33)

E[n(r)] searches over all N-representable densities. Thus the v-representable problem can

be avoided and the explicit form of the energy is:

E0 = min
n(r)

[ min
ψn0 → n(r)

〈 ψn0 | T̂ + V̂ee | ψn0 〉

+

∫

Vext(r) n(r) dr ] (2.34)

The inner minimization restricts all the wave functions ψn0 leading to the ground state

density n0(r). The outer minimization searches over all densities that integrate to give total

number of electrons N.

2.4.3.4 The Kohn-Sham Formulations

Though, Hohenberg-Kohn theorem gives the possibility to calculate the electronic prop-

erties of a quantum mechanical system using the ground state density n(r), it doesn’t de-

scribe the way to find it. The Kohn-Sham formulation [53]provides the solution for it. The

ground state energy of many-electron system is the minimum of the energy functional. So
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the equation takes the form as

E[n(r)] = F[n(r)] +

∫

Vext(r) n(r) dr ] (2.35)

The Kohn-Sham approach provides an explicit approximation for the functional F[n(r)] =

T [n(r)]+ Vee[n(r)] by introducing orbitals concept into the problem in such a way that the

kinetic energy can be computed with a greater accuracy.

Non-interacting v-representability: In this method, they introduce an auxiliary non-interacting

reference system, which intends to imitate the actual many-electron system. The Hamilto-

nian of such an auxiliary system can be written as[46]:

Ĥks =
N
∑

i
(−1

2
52

i ) +
N
∑

i
Vks(r) (2.36)

The electron-electron repulsion term is switched off, and the electrons move in presence

of an auxiliary external potential Vks(r) known as Kohn-Sham potential. The potentials are

defined in such a way that the ground state electron density n(r) is exactly equals to the

density n0(r) of the electronic system for which the functional F[n(r)] needs to be eval-

uated. Since there is no interaction between the particles, the ground state wave function

is less complicated compared to the wave function of an actual interacting system. Thus

the ground state wave function can take an explicit form of a single particle wave function

satisfying the anti-symmetry condition. The single particle wave function is represented by

29



a Slater determinant as:

ψks =
1√
N!

det [ψ1 ψ2...........ψN ] (2.37)

ψ s are the N lowest eigenstates of the one-electron Hamiltonian hs

hs ψi = = [−1
2 52 + Vks(r)]ψi = εiψi (2.38)

These single particle wave functions ψi(r) are called Kohn-Sham orbitals. For each spin-

up orbital, there will be a spin-down orbital with same eigen function and eigen value.

Because of the degeneracy, we deal with Kohn-Sham special orbitals ψks. For the N-

particle quantum mechanical system, we have either N
2 Kohn-Sham orbitals for even N or

N
2 + 1 for odd N. For odd N, the highest orbital is the unpaired orbital. The ground state

kinetic energy of this auxiliary system for the occupied orbitals is expressed as[46, 55]:

Tks[n(r)] =
N
∑
i=1

〈 ψks| −
1
2
52

i |ψks〉 (2.39)

The kinetic energy Tks[n(r)] is still not the exact ground state kinetic energy functional

T [n(r)]. The normalized N-representable density is decomposed as:

n(r) =
N
∑

i
∑
s
| ψksi(r,s) |2 (2.40)
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For this auxiliary system, the functional Fks takes the expectation value of the non-interacting

kinetic energy Tks[n(r)] and the non-interacting internal potential energy Vks(r).

Fks = Tks[n(r)] + Vks(r) (2.41)

The potential energy Vks(r) is sum of the of Hatred energy VH and the exchange energy VX ,

Vks = VH + VX(r) (2.42)

The VH , electron-electron Coulombic energy takes the form

VH [n(r)] =
1
2

∫

dr
∫

dr′ n(r) n(r′)
|r− r′| (2.43)

VX , the exchange energy is due to the quantization of charge and the anti-symmetry property

of the electronic wave function with respect to the exchange of co-ordinates between any

two particles. This is expressed as:

VX [n(r)] = −1
2 ∑

i, j

∫

dr
∫

dr′
ψ∗

ksi(r) ψksi(r′) ψ∗
ks j(r′) ψks j(r)

|r− r′| (2.44)

The difference between the actual energy functional F[n(r)] and the auxiliary functional

Fks[n(r)] is called the correlation energy Ec.

Ec = F[n(r)] − Fks[n(r)] (2.45)
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Ec = T [n(r)] − Tks[n(r)] + Vee[n(r)]− VH − VX(r) (2.46)

To understand the correlation energy[46, 55], let us imagine a the non-interacting auxiliary

system and then switch on the interaction energy, which is mostly the electron-electron

repulsion energy. The system considered is in the ground state with fixed electron density.

Now due to mutual repulsion, the electrons will avoid each other more at their close prox-

imity than that they would in the non-interacting system. As a result, the internal potential

energy is reduced since electron pairs are less likely to be closer to each other. For the

greater mutual repulsion, the wave function gets changed resulting in an increase in the

kinetic energy. Thus, the correlation energy is explained by both decrease in potential and

increase in kinetic energy component. and the eqn. 2.46 is written as:

Ec = Tc + Vc (2.47)

Tc is the difference between the exact kinetic energy and Kohn-Sham Kinetic energy, and

assumed to be fairly small. Vc is the potential part of the correlation energy. The calcula-

tion of exchange energy, VX eqn. 2.44, is computationally expensive compared to the Hatred

energy, and the non-interacting kinetic energy. Thus the exchange and the correlation en-

ergies are always approximated by combining them together as the exchange-correlation

energy,Exc.

Exc = VX + Ec (2.48)
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Now rearranging them, we get:

Exc = VX + F − Fks

= VX + F − [ Tks + VH + VX ]

= F − Tks + VH (2.49)

Thus in the Kohn-Sham frame of reference, the exact form of the functional F[n(r)] is:

F[n(r)] = Tks[n(r)]+ VH [n(r)] + Exc[n(r)] (2.50)

with the exact expression for exchange-correlation energy as:

Exc[n(r)] = T [n(r)]−Tks[n(r)]+ Vee[n(r)] − VH [n(r)] (2.51)

Now the energy functional for the N-particle system is:

E[n(r)] = Tks[n(r)]+ VH [n(r)] + Exc[n(r)] +
∫

n(r) Vext(r) dr (2.52)

From Euler’s eqn. 2.27:

µ =
δ Tks[n(r)]

δ n(r) + Ve f f [n(r)] (2.53)
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Ve f f is the Kohn-sham effective potential

Ve f f [n(r)] = Vext(r)+
δ VH [n(r)]

δ n(r) +
δ Exc[n(r)]

δ n(r)

= Vext(r)+
∫ n(ŕ)

| r− r′ | dr′ + Vxc[n(r)] (2.54)

with the exchange-correlation potential,

Vxc[n(r)] =
δ Exc[n(r)]

δ n(r) (2.55)

Thus, eqn. 2.52 represents the energy in terms of N orbitals which are allowed to vary over

the entire space so that the density of eqn. 2.40 covers all N-representable densities. To

have a finite kinetic energy, the orbitals are constrained to be orthonormal

∫

ψ∗
i (x) ψ j(x) dx = δi j (2.56)

A functional Ω is defined as:

Ω[ψi] = E[n(r)] −
N
∑

i

N
∑

j
εi j

∫

ψ∗
i (x) ψ j(x) dx (2.57)
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ε ′i js are the Lagrange multipliers and E[n] is the energy functional of ψi and can be ex-

pressed as:

E[n] =
N
∑

i
∑
s

∫

ψ∗
i (r)(−1

25
2) ψi(r) dr

+VH [n]+ Exc[n]+
∫

n(r) Vext(r) dr (2.58)

For E[n] to be minimum, the required condition is:

Ω[ψi] = 0 (2.59)

This gives us the Kohn-Sham equation:

heff ψi = = [−1
2 52 + Ve f f (r)]ψi =

N
∑

j
εi jψ j (2.60)

Here the effective one-electron Hamiltonian heff is a Hermitian operator and εi j is a Her-

mitian matrix. εi j can be diagonalized by unitary transformation of orbitals. This keeps

the ground state single determinant wave function (eqn. 2.37), the ground state density

eqn. 2.40, and the Hamiltonian invariant under such transformations. Thus the canonical

from of the Kohn-Sham [46]orbital equation is reduced to its simplest form as:

[−1
2 52 + Ve f f (r)]ψi = εiψi (2.61)
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Ve f f given by eqn. 2.54, depends on n(r), given by eqn. 2.40. Thus the Kohn-Sham

Schrödinger eqn. 2.61, the effective potential Ve f f and n(r) must be solved self-consistently.

In self-consistent approach, we start with a suitable ψ to obtain n(r); construct Ve f f ; solve

eqn. 2.61to obtain a new set of ψs to get new n(r); mix the old and the new n(r); continue

the procedure till a convergence in n(r) is achieved. The total energy is then determined

from the final density n(r),

E =
N
∑

i
εi − VH [n]− Exc[n]−

∫

n(r) Vext(r) dr (2.62)

Thus, by introducing N-orbitals it is easier to handle the kinetic energy part Tks[n(r)], which

is the dominant part of the exact kinetic energy T [n(r)]. Though all Hartree, Hartree-

Fock and Kohn-Sham theories provide effective one-electron equations to describe a many-

electron system, the Kohn-Sham method is exact in principle and distinguished from the

other two theories as it incorporates fully the exchange-correlation effects of electrons.

Kohn-Sham equation would give the exact solution for n(r) and E[n(r)] provided the

exchange-correlation energy Exc is precisely known.

2.4.3.5 Approximation for the exchange-correlational functional

One of the major problems in DFT is that the exact form of the exchange and correlation

functionals are not known except for the free electron gas. To get a better picture of the

approximation to these functionals, we can write the total energy of the electronic system
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[54, 55]in terms of different energy contributions.

E[n] = Tks + Eext +EH + EX + Ec

The interaction of electrons with the external field Eext , the classical electron-electron inter-

action energy EH , are explicit function of the ground state density n(r). The non-interacting

kinetic energy Tks, and the exchange energy EX are the functional of the non-interacting or-

bitals; thus unknown functionals of n(r). The correlation energy, Ec, is unknown. No

exact approximation is known to achieve a accuracy level for Ec comparable to the other

terms. Even if the exchange energy is treated exactly as functional of orbitals, as done in

Hartree-Fock theory, the errors introduced while approximating correlation energy can’t be

compensated. Thus it is a good idea to treat exchange and correlation energy at a similar

level of approximation, and combine them as exchange-correlation energy EXC. For the

homogeneous electron gas, which is the simplest system representing correlated electrons,

the exchange energy is given by the Dirac expression

εx[n] = −3
4

(

3
π

)
1
3

n
1
3 = −0.458

rs
(2.63)

rs =

(

3
4π n

)
1
3

(2.64)

represents the mean inter-electronic distance. The best approximation for correlation en-

ergy is obtained from the Monte-Carlo simulations of both spin-polarized and spin-unpolarized

37



homogeneous electron gas, and is expressed as:

εx[n] = A ln rs + B+ Crsln rs +Drs, rs ≤ 1,

=
γ

(1+ β1
√rs +β2 rs)

, rs > 1 (2.65)

For a molecular system, where the electron density is far different from ideal homogeneous

electron gas, the most widely used approximation for EXC are Local density approxima-

tion(LDA) and the Generalized gradient approximation(GGA).

Local-density approximation: This is the simplest approximation method, implemented

in Kohn-Sham formulation of DFT for describing the exchange-correlation energy of a

many-electron system. The LDA assumes that EXC energy is purely a local functional,

and applicable to a system where the charge density varies slowly. It assumes that the

exchange-correlation energy per electron at point r in the electron gas, εXC, is equal to

exchange-correlation energy per electron in a homogeneous electron gas that has the same

density as the true system of electron gas at point r. Thus,

EXC[n] =
∫

εXC(n) n(r) d3r (2.66)

The Local spin density approximation(LSDA) is just the generalization of LDA, taking

electron spin into account, and can be expressed as:

EXC[n ↑, n ↓] =

∫

εXC (n ↑, n ↓) n(r) d3r (2.67)
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Generalized gradient approximation: The GGA approximation is still a local functional

but it takes the gradient of density at the same coordinate and expressed as:

EXC[n ↑, n ↓] =
∫

εXC (n ↑, n ↓, ∇n ↑, ∇n ↓) n(r) d3r (2.68)

Usually, GGA approach gives very good result for optimized geometry and ground state

energy of a many-body system. But for solid state calculation with Kohn-Sham theory, the

local density approximations are commonly used along with the plane wave basis set.

2.5 Supercell approach

Up to now, we have been demonstrating that the Hartree-Fock and Density-Functional

methods can be implemented to map a many-body problem into an effective one-particle

problem. However for a bulk system, within these formalism we need to solve the time

independent Schrödinger equations for infinite number of non-interacting electrons, that

experience static potential due to infinite number of nuclei. This requires the calculation

of wave function for each of the infinite number of electrons. Since each electronic wave

function extends over the entire solid, we need an infinite basis set to represent the wave

function. But this problem can be simplified if the infinite system is periodic. The periodic

system allows us to simplify the problem by considering a simpler finite system called

a supercell. The chosen supercell is large enough to contain all the information about the
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system with in it and gets replicated periodically throughout the entire space. The approach

can be dealt using the Bloch’s theorem [37, 56].

2.5.1 Bloch’s theorem

For a perfect crystal at 00K the nuclei are arranged in a regular periodic manner and the

system is invariant under translation by the Bravais lattice vector R. The Bloch’s theorem

states that for a system of noninteracting particles moving in a static potential V, which may

be the Kohn-Sham potential Vks, the potential V is invariant under the translation vector R.

V (r+R) = V (r) (2.69)

Bloch’s theorem uses this periodicity to reduce the infinite number of one-electron wave

functions to a finite number that depends upon the number of electrons in the supercell.

The electronic wave function is represented by the product of lattice periodic part f j(r) and

a wave like part e(ik.r). The function f (r) has the same periodicity as that of lattice i.e.

f (r+R) = f (r).

ψ j,k(r) = f j(r)eik.r (2.70)

Here j is the band index and k is the wave vector in the first Brillouin zone of the reciprocal

lattice. The lattice periodic part f j(r) is represented by a discrete plane waves basis set with
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the reciprocal lattice vector G of the crystal as the wave vector.

f j(r) = ∑
G

C j,G e(iG.r) (2.71)

with G.R = 2πm where R represents the crystal lattice vector; m represents an integer.

Thus the electronic wave function is represented as:

ψ j,k(r) = ∑
G

C j,k+Ge[i(k+G).r] (2.72)

This electronic wave function is independent of the type of crystal. Due to periodicity

of the crystal, instead of solving the wave function over the infinite space, one requires

solution of the wavefunction only within the supercell. In the reciprocal space within the

first Brillouin zone of the supercell, there are infinite number of possible k points at which

the wave functions need to be calculated, as the occupied states at each k point contributes

to the electronic potential of the system. Thus, infinite number of calculations are needed

to compute the potential. This problem can be simplified by sampling the entire Brillouin

zone to a special set of k-points by imposing boundary conditions on the wave-functions.

2.5.2 Brillouin zone sampling

The infinite periodic system can be modeled by a large number of primitive cells (Nc)

stacked together. Nc = N1N2N3, where Ni cells are along ai direction; i = 1,2,3. The
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periodic boundary condition to the wave functions can be understood as the particle leaves

one surface of the crystal at the same instant it enters the crystal at the opposite surface.

Thus

ψ(r+Niai) = ψ(r) (2.73)

with i=1,2,3. and using Bloch’s theorem

ψ(r + Niai) = ψ(r) e(iNik . ai) (2.74)

From eqn. 2.73 and eqn. 2.74

ψ(r) e(iNik . ai) = 1

e(2π iNixi) = 1, i = 1,2,3. (2.75)

Then the values xi = li
Ni with li are integers; the wave vector k = x1g1 + x2g2 + x3g3 =

∑i xigi Thus the allowed k values are:

k =
3
∑
i=1

li
Ni

gi (2.76)

Though for a infinite prefect crystal the number of allowed k-vectors are still infinite, the

k-vectors related by the reciprocal lattice vectors G are all equivalent and is expressed as:
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k′ = k +G. Thus the wave-functions are restricted to those k-points lying within the first

Brillouin zone. Since the occupied state at each k-point within the first Brillouin zone con-

tributes to the potential of the solid, the eigen states of the Hamiltonian must be calculated

for the infinite number of k-points in the first Brilloiun zone. However it is possible to

take the advantage of the fact that the electronic wave function and the eigen values vary

smoothly over a particular region of the Brillouin zone. Hence the wave function over a re-

gion of k-space can be represented by a wave function at single k-point. Thus finite number

of k-points in the first Brillouin zone are needed to calculate the potential as well as total

energy of the system. Different methods are devised by Chadi and Cohen [57], Monkhorst

and Pack [58] to generate a sufficiently dense set of special k-points in the irreducible part

of the Brillouin zone to reduce the error in calculating total energy of the system. The

volume of the Brillouin zone ΩBZ can be related to the volume of the supercell ΩSC by the

relation:

ΩBZ =
(2π)3

ΩSC
(2.77)

For a large supercell, the volume of Brillouin zone is smaller and only few k-points are

required to describe the variation of the wavefunction in the Brillouin zone. So the center

of the Brillouin zone, at k = 0, represented by Γ − point is enough to calculate the wave

function and the eigen values. Now the problem of infinite set of k-points is solved but the

electronic wave function at each k-point needs to be expressed in terms of discrete basis

set(plane waves) which is infinite. In the following section this problem is addressed.

43



2.5.3 Plane-wave basis sets

In principle, for an exact energy calculation, the dimension of the plane wave basis set needs

to be infinite. This infinite basis set can be truncated to a finite basis set by introducing

particular energy cut-off. The kinetic energy of the plane waves, given by eqn. 2.72 is:

ε =
h̄2

2m | k+G |2 (2.78)

The plane waves having lower ε are more important than those with higher kinetic energy.

Thus, for practical purposes the basis set includes only those plane waves that have kinetic

energy less than a particular cutoff energy, εcut . Thus, the application of Bloch’s theorem

makes the continuum plane wave basis set to be expanded in terms of discrete set of plane

waves, which can be further reduced to a finite basis set by introducing the εcut . The error

in calculation of total energy with the truncated finite basis set can always be reduced by

increasing the value of the cutoff energy.

2.5.4 Plane-wave picture of Kohn-Sham equations

The Kohn-sham equation in DFT takes a much simpler form in a periodic system where the

electronic wave function is expanded in terms of plane wave basis set. The Fourier-space
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representation of the Kohn-Sham equation is [46]:

Hk+G,k+G’ Ci,k+G’ = εi Ci,k+G′ (2.79)

where

Hk+G,k+G’ =
1
2 | k +G |2δG, G′

+Vext( G−G′)+VH(G−G′ )+ vXc VH(G − G′) (2.80)

Here the kinetic energy is diagonal; Vext , VH , Vxc are the Fourier component of external,

Hartree, and exchange-correlation potentials respectively. The solution to the above Kohn-

Sham equation can be done by diagonalizing the Hamiltonian matrix Hk+G,k+G′ . The size

of the matrix is determined by the choice of cutoff energy εcut . However, for a large system

with both valence and core electron the size of the required matrix is intractably huge

irrespective of our choice of cutoff energy. Thus, a very large number of plane wave basis

set is required to expand the tightly bound core orbitals as well as the rapid oscillation of

valence electron wave functions in the core region. This problem can be handled by the

pseudopotential approximation of the actual potentials.
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2.6 Pseudopotential Approximation

This approximation [59, 60, 61]is based upon the observation that most physical properties

of solids have a greater dependence on valence electron than the core electrons. Though

the core electron has a larger contribution to the binding energy, it doesn’t change when

isolated atoms are brought together to form a crystal or molecule. The change in energy is

mostly due to change in valence electron energies. Thus, if binding energy of core electron

is excluded, the change in valence electron energies has a larger fraction of contribution

to the total binding energy. The eigen states of an atomic Hamiltonian should be mutually

orthogonal to each other. The core states are localized in the vicinity of the nucleus. The va-

lence electron wave function oscillates rapidly in the core region to maintain orthogonality

with the core states. Due to this rapid oscillation, the valence electrons have large kinetic

energy in the core region that cancels the large potential energy due to strong nuclear po-

tential. Computationally it is difficult to handle the strong nuclear Coulomb potential and

the localized core electron wave functions. The strong oscillation of valence electron wave

function in the core region also poses a serious challenge from the computational point of

view. Thus, the idea of pseudopotential approach is to replace the strong Coulomb potential

of the nucleus, and the effect of the tightly bound core electrons on valence electron by a

much weaker effective pseudopotential shown in fig. 2.1. In addition, the valence electron

wave functions that oscillate rapidly in the core region is represented by pseudo wave func-

tions, that varies smoothly in the core region. The nuclear Coulomb potential, effective

46



Pseudo potential(Vpseudo), valence wave function and pseudo-wave function(ψpseudo) are

presented schematically in fig. 2.1

Figure 2.1: A schematic view of true ionic potential and valance wave function with
the corresponding pseudopotential and pseudo-wave function(accessed on January
10, 2009; Copyright - Wquester, Wikipedia, 2006, distributed under public domain,
refer Appendix C for permission.)

The pseudopotential is generated with certain criteria as follows. The scattering properties

for the pseudo wave function, ψpseudo, are identical to that of the atomic wave function,ψ ,

from ionic core. ψpseudo should be non-oscillatory in the core region defined by a cutoff

radius rc. ψpseudo as well as it first and second derivative should be continuous at rc, and

outside the core region the pseudopotential, Vpseudo, should be identical to the actual ionic

potential V; the scattering from the two potentials are indistinguishable. One of the major

advantages of this method stems from the fact that ψpseudo is free from radial nodes. Thus
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only a finite numbers of plane waves are sufficient to represent ψpseudo. Besides even if the

total energy of the pseudo system is much more than the total energy of the true all electron

system, the energy difference between the ionic configuration( meaningful for convergence

test) in pseudo valence-electron system is as large that in all-electron system. This is true

because the difference between the energies of different ionic configurations appears mostly

in differences in energies of valence electrons. So, the accuracy required in calculating the

energy difference between the ionic configuration in a pseudopotential approach is much

smaller than that in all-electron approach.

2.7 Computational Procedure for calculation of ground

state charge density and energy

First, the pseudopotential for the ions and the cutoff for the plane wave basis set needs to

be chosen. Subsequently, VH and Vxc are calculated by taking a guess charge density ntr(r),

and at each required k-point the Hamiltonian matrix, H, is constructed and diagonalized

to obtain the Kohn-Sham eigen states. From the Kohn-Sham eigen states, a new charge

density nnew is generated. The nnew is mixed with ntr to obtain ntr for the next step. This

procedure is repeated untill the self-consistency in the charge density is achieved. Once the

final solution for n is obtained, the total ground state energy is obtained with ground state

density. So also the new Hamiltonian can be elucidated with freshly calculated potentials.
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Figure 2.2: Flow chart for the computational approach
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Chapter 3

Tuning ferromagnetism in multilayered

one dimensional barcode nanowires

3.1 Introduction

The research on electronic and magnetic properties of hetero-structures has reached at a

level from which the unifying theme of all seminal works, discussed in Chapter I, have con-

tributed to the vast applications of magnetic and non-magnetic heterostructures in memory

devices. The successful endeavor of several experimental groups in recent years demon-

strating the phenomenal GMR effect in multilayered nanowire structures [16, 17, 18, 19,

20] and the precise fabrication of multilayered nanowire with a desired magnetic and non-
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magnetic layer sequence [33] have prompted intense research efforts towards using these

one dimensional nano materials in nanoelectronics. Among all the multilayered nanowire

systems, the Fe/Pt system offers an exceptional promise for the future magnetoelectronic

devices. This system has generated lot of research interest because of its multifaceted phys-

ical properties. Even in the absence of external magnetic field, the Fe/Pt system can act

as a permanent magnet. The other important physical properties like invar effect as well

as the magnetostriction effect for this system are worth a mention. In addition, the suc-

cessful fabrication of Fe/Pt nanowire [30, 31, 32] gives more impetus towards studying

the Fe/Pt system. Various experimental groups have reported the electronic and magnetic

properties of Fe/Pt system in nanoparticles and nanoalloy [26, 27, 28, 29] forms. Though

ab initio calculations are performed to study electronic and magnetic properties in ferro-

magnetic (FM) and antiferromagnetic (AFM) configuration in the case of Fe/Pt bulk alloy

[62, 63], no first principle theoretical calculation has been used to understand the role of

non-magnetic spacer in modulating ferromagnetic properties of one dimensional Fe/Pt

multilayer nanowire system. In the present study, I look into the role of non-magnetic Plat-

inum spacer in tuning the ferromagnetism of Fe/Pt nanowire at the ab initio level. I have

also compared my results with other multilayered nanowire systems [64] like Ni/Al and

Ni/Cu. The rest of the Chapter is organized as follows: Sec. 3.2 summarizes the compu-

tational procedures in details; Sec 3.3 presents the results and discussions, and Sec. 3.3

contains a brief summary.
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3.2 Computational approach

The first principles calculation of isolated one dimensional multilayered nanowire structure

is a difficult task because a large super cell with enough vacuum needs to be considered to

guarantee negligible interaction between the nanowire and its image. Second, the spin po-

larized nature of the problem increases the computational cost significantly. Furthermore,

it has always been a theoretical challenge to obtain the equilibrium structure of these multi-

layered nanowires since the atomic level structural details of these systems are not available

beforehand. In this project, I have used bulk fcc iron as the guiding point to construct the

nanowire. Iron in fcc phase is paramagnetic, and shows transitions to ferromagnetic phase

with lattice expansion. I have chosen the fcc phase because nanowires constructed from

fcc phase have more number of nearest neighbor atoms compared to that of nanowires

constructed from bcc phase. Besides, successful controlled fabrication of Fe/Pt multilayer

nanowire [30] in fcc phase has also been reported. In addition, some other experimental

groups [65] have shown that thin film of iron grows in fcc phase at Fe/Pt interface. Again,

electron diffraction studies have reported the fcc structure for the Fe50/Pt50 nanoparticle

[66]. Taking all these factors into account, pristine iron nanowire structure was guessed

from the fcc Fe in the (111) direction by repeating three conjugate planes (ABCABCABC)

as shown in Figure. 3.1(a). Figure. 3.1(b) shows the [top view] arrangements of atoms of

the first ABC series.

To construct our unit cell, I have considered 39 atoms (733 733 733) of the (ABCABC)
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Figure 3.1: ABCABCABC stacking of the fcc Fe; (a) side view, (b) top view used
to construct the Fe-nanowire

periodic series. The Lattice parameter along the wire axis was 18.18 Å. The other two

sides of the unit cell were taken to be 15 Å to ensure negligible interaction between the

nanowire with its image along the x and y direction. Then Fe/Pt/Fe multilayered nanowire

is constructed by replacing Iron atoms layer wise with Platinum atoms. It should be noted

that the Platinum is also fcc in bulk phase with lattice parameter of 3.92 Å [37].

VASP code [39], which is based upon the plane wave basis set and uses ultra-soft pseudo

potential, is used to describe the valance core interaction. The density functional theory

within the local spins density functional approximation (LSDA) [35], discussed in details

in Chapter II is used for my calculations. To test the robustness of LSDA, I have tested this

approach for bulk fcc Fe. The calculated cohesive energy per atom and magnetic moment

per atom in fcc iron is summarized in Figure. 3.2.
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Figure 3.2: Calculated cohesive energy, Ec,(black line), and magnetic mo-
ment(blue line) per Iron atom as a function of lattice parameter in fcc solid, ob-
tained using LSDA approximation

The equilibrium lattice constant of pure iron in fcc phase is found to be 3.4 Å, which is

in good agreement with the reported value of 3.57 Å[36]. The ground state fcc structure

is found to be paramagnetic with 0 µB magnetic moment. This agrees with the previously

reported results [36]. It should be noted that the gradient corrected approach (GGA) found

to overestimate the magnetism for the fcc Fe in the ground state as shown in Figure. 3.3.

Thus, we have not used GGA approach for our calculations. The robustness of the LSDA

approach for the bulk Pt has also been tested. The calculated cohesive energy as a function

of lattice parameter is summarized in Figure. 3.4. The equilibrium lattice parameter is
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Figure 3.3: Calculated cohesive energy, Ec,(black line), and magnetic mo-
ment(blue line) per Iron atom as a function of lattice parameter in fcc solid, ob-
tained using GGA approximation

found to be 3.92 Å, which is in very good agreement with the reported equilibrium lattice

parameter of 3.9 Å for Pt [37].

The 1 x 1 x 1 k-point mesh within the Monkhorst-Pack scheme is used for geometrical

structure optimization of the nanowire. During structural relaxation, the minimum force

on each atom is chosen to be 0.01 eV/Å. The convergence threshold for energy was taken

to be 106eV . Larger k-point mesh (1 x 1 x 11) for sampling the Brillouin zone is used for

calculating the electronic and magnetic properties of the optimized nanowires. The plane

wave cutoff was taken to be 237.6 eV and kept fixed for all the multilayered nanowires. I

have used Wigner-Seitz radii of 2.46 a.u. and 2.75 a.u. for iron and platinum respectively
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Figure 3.4: Calculated cohesive energy, Ec, per Platinum atom as a function of
lattice parameter in fcc solid, obtained using LSDA approximation

to calculate the local magnetic moment of individual atom in multilayered nanowire. This

calculation is based upon the collinear magnetism. Since the dimension of the considered

system is quite small, the nanowire is assumed to consist of single magnetic domains.

3.3 Results and discussions

The results are organized as follows. First, the structure and stability are discussed in Sec.

3.3.1 and the magnetic properties in Sec. 3.3.2. This is followed by Sec. 3.3.3, which deals

with the spin polarized density of states, and Sec. 3.3.4 describes the spin polarized band

structure. In Sec. 3.3.5, the results of Fe/Pt system are compared with Ni/Al and Ni/Cu
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nanowire systems.

3.3.1 Structure and stability

The geometry optimizations for pristine as well as multilayer nanowires were performed

using the procedure discussed in Chapter II. In the pristine Fe-nanowire, a significant

atomic structure relaxation in the A plane of the ABCABCABC unit cell was noticed as

can be observed in Figure. 3.5. In the Fe/Pt multilayer nanowire, the structural relaxation

in the radial outward direction is noticeable in the Pt part of the wire as presented in the

Figure. 3.5. This is expected because the lattice parameter for bulk Pt is ∼ 0.4 Å larger

than that of fcc Fe. Next, we discuss the stability of these nanowires.

Stability: To infer the stability, the cohesive energy, Ec, per atom in each wire is calculated

using the formula:

Ec =
(ENW − ∑i Ei)

N (3.1)

ENW is the energy of the nanowire, N is the number of atoms in the unit cell, and Ei

corresponds to the energy of the isolated atom. The results for calculated cohesive energy

are summarized in Figure. 3.6.

It can be inferred from this figure that the cohesive energy increases with the increase in the

number of platinum spacer layers. Thus the platinum rich nanowires are more stable. Here,
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Figure 3.5: Optimized (a) Fe39; (b) Fe36Pt3; (c) Fe23Pt16; and (d) Fe10Pt29-
nanowire structures. Notation: golden yellow (Fe); silver white (Pt). Two unit cells
for each structure are presented for better visualization. Reprinted figure with per-
mission from, Puspamitra.Panigrahi, Ranjit.Pati, Phys. Rev. B. 76, 024431(2007),
c©(2007) The American Physical society.

the N(Pt) = 0 point corresponds to the pristine Fe nanowire of ∼ 0.4 nm diameter. The

calculated cohesive energy of the pristine Fe wire is found to be 4.7 eV, i.e ∼ 1.7 eV less

stable than the bulk Iron in fcc phase. It suggests that the stability of the system decreases

with reduced coordination. The magnetic properties of this system are elucidated in the

following section.
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Figure 3.6: Calculated cohesive energy, Ec, as a function of the number of Pt
spacer layers, N (Pt), in the nanowire structures. Reprinted figure with permission
from Puspamitra.Panigrahi, Ranjit.Pati, Phys. Rev. B. 76, 024431(2007), c©(2007)
The American Physical society

3.3.2 Magnetic Properties

Magnetic moment: The average magnetic moment per iron atom was calculated as

µav =
∑ µ(Fe)

Natoms(Fe) (3.2)

∑ µ(Fe) represents the sum of individual magnetic moments of Fe atoms in the wire; Natoms

corresponds to the total number of Fe atoms in the Iron part of the barcode nanowire.
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The results for the calculated magnetic moment as a function platinum spacer thickness,

N(Pt), are presented in Figure. 3.7. It can be noted that the magnetic moment per atom

monotonically increases with the increase in the number of non-magnetic platinum spacer

layers. The non-uniform feature observed in Figure. 3.7 is due to the non-uniform increase

in number of platinum atoms with the increase in the number of platinum layers.

Figure 3.7: Calculated magnetic moment per Fe atom (µav) as a function of the
number of Pt spacer layers, N(Pt). Reprinted figure with permission from Pus-
pamitra.Panigrahi, Ranjit.Pati, Phys. Rev. B. 76, 024431(2007), c©(2007) The
American Physical society

For example, N(Pt) = 1 represents increase in one spacer layer with three Pt atoms in

the system and the trend continued for N(Pt) = 2, 4, 5, 7 and 8 each time by replacing

three Pt atoms with three Fe atoms in the 39 atom unit cell, whereas at N(Pt) = 3 and 6,

there is an increase of seven Pt atoms in the nanowire. This explains the observed non
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uniform increase in magnetic moment. The average magnetic moment per atom in the

pristine iron nanowire is found to be 2.49 µB compared to the paramagnetic fcc bulk Iron

in the ground state. A very similar trend of increase in magnetic moment µav of Fe with

the increase of Platinum concentration was reported by Podgorny [62] in FePt bulk alloy

system. It was found that the µav of Fe increases from 2.54 µB in PtFe3 alloy through 2.84

µB in Pt2Fe2 to 3.28 µB in Pt3Fe in the FM phase. To understand the origin of enhanced

magnetic moment for Fe atom, the individual magnetic moment associated with Fe and Pt

atoms were analyzed in the respective nanowire. For a clear understanding the individual

magnetic moment for the first seven atoms which are the most affected inter-facial Fe

atoms, referred as the A layer atoms from the ABCABCABC series, are presented for the

four representative nanowires in Table 3.1.

Table 3.1: Comparison of individual magnetic moment (in the unit of µB) of
Fe atoms in Fe39 (pristine)nanowire with that of the corresponding Fe atoms in
Fe36Pt3 (1-Layer Pt), Fe23Pt16 (4-Layer Pt), Fe10Pt29 (7-Layer Pt) multilayered
nanowires

Atom Pristine 1-Layer Pt 4-Layer Pt 7-Layer Pt
N(Pt)=0 N(Pt)=1 N(Pt)=4 N(Pt)=7

Fe1 1.01 1.29 1.52 1.68
Fe2 2.74 2.87 2.94 3.03
Fe3 2.74 2.80 2.79 2.85
Fe4 2.74 2.80 2.80 2.84
Fe5 2.74 2.87 2.94 3.03
Fe6 2.74 2.80 2.78 2.83
Fe7 2.74 2.87 2.94 3.03

From Table 3.1, one could see a steady monotonic increase in the magnetic moment with
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the decrease in N(Fe) or increase in N(Pt). It is found that the change is more substantial

for the core Iron atom (Fe1) as compared to the peripheral Fe atoms. It is evident from

the inter-facial structure of Fe/Pt nanowire that the core iron atom has larger number of

Pt nearest neighbors than the peripheral Fe atoms resulting in maximum increase in its

magnetic moment compared to the peripheral Fe atoms. Now, the question arises: What

is the cause for this increase in magnetic moment with increase of nonmagnetic Platinum

spacer layer thickness? Magnetic moment arises due to the difference between spin up and

spin down population in the system. Thus, to get a clear understanding of this trend, the up

spin and down spin populations of Fe atoms both in Fe/Pt and in pristine nanowire were

analyzed. Based on the analysis, a new mechanism is proposed [67].

Mechanism for magnetic moment enhancement: The increase in magnetic moment of the

iron atoms at the Fe/Pt interface is found to be due to spin flip as well as multi-step elec-

tron transfer process. To give a schematic view of this proposed mechanism, the nanowire

with four layers of platinum spacer is illustrated exclusively as an example. A substantially

more increase in spin up population of the Fe atom at the Fe/Pt interface as compared to

the increase in spin down population was found from the spin population analysis. This

illustration is depicted in Figure. 3.8. The increase in up and down spin population of iron

layer (FeI) is due to both spin up and spin down electron transfer from the nearest interface

platinum layers. This would, in fact, suggest negative magnetic moments at the interface

Platinum atoms (PtI). However, it is found that the interface Platinum atoms have positive

magnetic moment. Analyzing the spin population of the Platinum layers, it is evident that
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those layers away from the interface have substantially very small magnetic moment. This

suggests that the electron transfer occurs from the second Platinum interface layer (PtII) to

the first Platinum (PtI) interface layer. This could again lead to negative magnetic moments

in the Platinum atoms at the second Platinum interface (PtII) which is also not happening.

Rather there is an increase in Platinum magnetic moment at the Fe/Pt interface (PtI) as

compared to that of (PtII). This is due to flipping of few spin down electrons due to the

strong magnetic interaction with the interface iron layer that has a large positive magnetic

moment. And the atoms at the second interface (PtII) have a smaller positive magnetic mo-

ment compared to that of (PtI) is only due to multi-step electron transfer process. Further

depending upon the thickness of the Platinum spacer layer, there is always a competition

between spin flip and multi-step electron transfer process. For example, in the case of eight

platinum spacer layers, it is found that the spin up population increases and the spin down

population decreases for the Fe atoms at the Fe/Pt interface as compared to that for the

corresponding Fe atoms in the pristine nanowire. These larger difference in the spin up and

spin down populations leads to an increased magnetic moment for the inter-facial Fe atoms.

In this case there is a substantial polarization of Platinum atoms in the inter-facial layer re-

sulting in a positive magnetic moment for them, whereas the Platinum layers away from

the interface shows a negative magnetic moment. Here we proposed the multi-step electron

transfer process playing a more dominant role in modulating the magnetic property at the

interface. Further examination of the individual magnetic moments suggests the magnetic

moments of the Fe, which are far away from the Fe/Pt interface virtually remains same

64



as that in pristine iron nanowire. However, there is a strong electron exchange interaction

between Fe and Pt at the interface which induces positive magnetic moments on Pt layers.

The effect diminishes for the Pt layers that are away from the interface. Similar effect of

charge transfer is also found in Fe/Pt bulk system [62]. From a careful inspection of the

µav from Figure. 3.7, the average magnetic moment per iron atom found to increase mono-

tonically with a ∼ 1
N(Fe) dependence, where N(Fe) = 9 − N(Pt) ; N(Pt) is the number of

Pt layers in the multilayered nanowires.

Figure 3.8: Schematic representation of spin flipping and multistep electron trans-
fer process in Fe23Pt16 barcode wire

The number ’9’ comes from the total number of layers in the 39 atoms unit cell. To under-

stand this approximate 1
N(Fe) behavior of the µav, we have analyzed the individual magnetic

moments associated with the Fe and Pt atoms in the Fe/Pt nanowires. With an aim to ex-
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trapolate this mechanism further for a longer nanowire with large number of spacer layers,

a model is proposed to explain the 1
N(Fe) dependency of µav of Fe in the next Section.

Model for magnetic moment variation : Since the introduction of Fe/Pt interface in-

creases the local magnetic moment of the interfacial Fe atoms compared to that in pristine

Fe nanowire, one could write the average magnetic moment per iron atom in Fe/Pt hybrid

nanowire as:

µav = µav(pristine)+dµav (3.3)

µav(pristine) is the average magnetic moment per iron atom in pristine Fe39-nanowire. The

average contribution from the interface structure can be approximated as:

dµav =
NFe−Pt

NFe−atoms
(3.4)

NFe−Pt is the number of nearest neighbor Fe atoms of the Pt interface and NFe−atoms is

the total number of Fe atoms in the barcode wire. Since µav(pristine) is constant for all

the representative wires, the variation observed comes from the interface structure. For

example, in the studied nanowires with N(Fe) = 1, 2, 3, 4, 5, 6, 7, 8; one can find

NFe−Pt = 14, 10, 10, 14, 10, 10, 14, 10; and NFe−atoms = 7, 10, 13, 20, 23, 26, 33, 36.

This can be explained as follows. In our 39 atom unit cell (ABCABCABC), for N(Fe) = 1,
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we have one interface between A Iron layer (7 atoms) and B platinum layer (3 atoms) and

another interface between the C platinum layer (3 atoms) and A iron layer (7 atoms) in

the next unit cell resulting NFe−Pt = 14. The similar approach can be applied to obtain

all elements of NFe−Pt series. Calculating the µav from the simple model in eqn. 3.3 and

eqn. 3.4, and plotting them as a function of N(Pt) Figure. 3.9, we can find a similar trend as

shown in Fig. ??. The small discrepancy of the trend between Figure. 3.7 and Figure. 3.9

is attributed to the exact nature of the interfacial electronic structure, which is absent in the

simple model eqn. 3.3 and eqn. 3.4.

Figure 3.9: Inverse of number of Fe layers N(Fe), in the multilayer as a function
of the number of Pt spacer layers, N(Pt).

Quantum Confinement effect: To understand the confinement effect, the diameter of the

pristine Fe-nanowire is increased from 0.4 nm to 1.1 nm Figure. 3.10, and the cohesive
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energy and magnetic moment are calculated using the same procedure as for the ∼ 0.4 nm

diameter nanowire. By increasing the diameter of the Fe-nanowire (for ∼ 1.1 nm diameter),

we found a nearly 1µav reduction in magnetic moment per atom and the stability of the

∼ 1.1nm diameter Fe-nanowire was enhanced by ∼ 0.9 eV relative to ∼ 0.4 nm diameter

nanowire. Through a deeper analysis, we found that the surface Fe atom in the nanowire

has higher magnetic moment of ∼ 2.7 µB as compared to 1µB for a core Fe atom. This

clearly implies that the reduced coordination number and the confinement effect along the

two directions perpendicular to the length of the wire lead to the increase in magnetic

moment for the 0.4 nm diameter Fe-nanowire.

Figure 3.10: Equilibrium Fe43-nanowire structure of ≈ 1.1nm diameter.6unit cells
are presented for clarity.

3.3.3 Spin polarized density of states

To further understand the origin of enhanced stability and increase in the magnetic moment

per iron atom in Fe/Pt/Fe hybrid nanowire, the spin polarized d-band density of states
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(PDOS) associated with Fe and Pt were plotted . The PDOS for iron in pristine Fe39

nanowire Figure. 3.11 shows strong exchange splitting with completely filled spin up d

bands. Spin down PDOS is plotted on the negative axis for visualization purposes.

Figure 3.11: Projected spin-polarized d-band density of states (PDOS) of Fe
in Fe39 barcode nanowires. Reprinted figure with permission from, Puspami-
tra.Panigrahi, Ranjit.Pati, Phys. Rev. B. 76, 024431(2007), c©(2007) The Ameri-
can Physical society.

In Fe/Pt hybrid structure, for example in Fe23Pt16 nanowire (4 layers of Pt), the spin up

d bands are again completely filled for Fe (Figure. 3.12), and the 5d bands for Pt (Fig-

ure. 3.13) are almost degenerate with the 3d bands of Fe near the Fermi energy.

From this, a strong hybridization between Fe and Pt in FePt hybrid structure can be in-

terpreted. The stronger hybridization between Fe and Pt d bands explains the enhanced

stability in Fe/Pt system. The asymmetry between the spin up and spin down bands of Pt

in Figure. 3.13 explains the polarization of platinum d band due to the exchange interac-

tion. From the structural analysis it is evident that the hybridization between Fe and Pt at
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Figure 3.12: Projected spin-polarized d-band density of states (PDOS) of Fe in
Fe23Pt16 barcode nanowires. Reprinted figure with permission from, Puspami-
tra.Panigrahi, Ranjit.Pati, Phys. Rev. B. 76, 024431(2007), c©(2007) The Ameri-
can Physical society.

Figure 3.13: Projected spin-polarized d-band density of states (PDOS) of Pt in
Fe23Pt16 barcode nanowires. Reprinted figure with permission from, Puspami-
tra.Panigrahi, Ranjit.Pati, Phys. Rev. B. 76, 024431(2007), c©(2007) The Ameri-
can Physical society.

the interface weakens the hybridization between the 3d bands of Fe-atoms in the nanowire.

This results in a shorter Fe−Fe bond distance in pristine Fe39 nanowire by ∼ 0.02 Å - 0.07
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Å compared to that in Fe/Pt hybrid system. This increased Fe−Fe bond distance leads

to band narrowing and enhancement of Iron magnetic moment in Fe/Pt hybrid system,

especially at the interface.

3.3.4 Spin polarized energy bands

The spin-polarized Kohn-Sham energy bands of these nanowires are calculated for under-

standing the electronic properties. A strong exchange splitting in the band structures is

clearly evident in the pristine Fe39-nanowire Figure. 3.14. In the vicinity of the Fermi

energy,in the spin up and spin down case, both the valence and conduction bands show

a dominant Fe(d) character. In the spin up case, the conduction band crosses the Fermi

energy whereas in the spin down case, the valence band crosses the Fermi energy. This

suggests both the spin up and down channels could contribute to the total conductance

of G0 ≈ 2e2

h in this wire assuming an ideal transmission,T ≈ 1 for each spin channel and

ignoring spin flip scattering.

In the case of the Fe36Pt3-nanowire, the spin up valence band near the Fermi energy shows

a clear hybridization of Fe(d, p) bands with the Pt(d, p)bands (Figure. 3.15). Where as the

conduction bands near the Fermi energy are mostly FePt(s, p,d) hybrid bands. But as we

move away from the high symmetry point, both the valence and conduction bands show

dominant Fe(d) character. In the spin down case, the valance bands are mainly Fe(d, p)
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Figure 3.14: Spin polarized electronic band structures for (i)Fe39 (spin up); (ii)
Fe39 (spin down). Reprinted figure with permission from, Puspamitra.Panigrahi,
Ranjit.Pati, Phys. Rev. B. 76, 024431(2007), c©(2007) The American Physical
society.

bands and the conduction bands are hybridization of Fe and Pt(d, p) bands around the

Fermi energy. Furthermore, there is a gap opening in the spin down case, and only the

spin up conduction band crosses the Fermi energy. Thus only the majority spin band is

expected to contribute to the conductance near the Fermi energy, leading to a conductance

of ≈ 0.5 G0.

For the Fe23Pt16 wire, the spin up conduction bands near the Fermi energy are predom-

inantly Fe(s, p) bands with a little contribution from Fe and Pt(d) hybridization (Fig-

ure. 3.16). But the valence bands are mostly Pt(d) bands. As we move away from the

high symmetry point, the conduction bands are mostly Fe and Pt(d) hybrid bands so also
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Figure 3.15: Spin polarized electronic band structures for (i) Fe36Pt3 (spin
up); (ii)Fe39Pt3 (spin down).Reprinted figure with permission from, Puspami-
tra.Panigrahi, Ranjit.Pati, Phys. Rev. B. 76, 024431(2007), c©(2007) The Ameri-
can Physical society.

the valance bands. In spin down case both valence bands and conduction bands are Fe(d)

bands, and as we move away from the high symmetry point Pt(d) hybrid bands contribute.

The observed spin up conduction band crossing the Fermi energy and a gap closure in the

spin down channel establishes that both spin up and spin down channels would contribute

to the conduction as in the case of pristine Fe39 nanowire.

In the case of the Fe10Pt29-nanowire, in the spin up case, both valence and conduction

bands show dominant Pt(d) character where as in the spin down case both bands are mostly

FePt(d) hybrid bands (Figure. 3.17). Also, here one can notice a small gap opening be-

tween the spin down conduction and valence bands as compared to that in the Fe23Pt16-
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Figure 3.16: Spin polarized electronic band structures for (i) Fe23Pt16 (spin
up); (ii)Fe23Pt16 (spin down). Reprinted figure with permission from, Puspami-
tra.Panigrahi, Ranjit.Pati, Phys. Rev. B. 76, 024431(2007), c©(2007) The Ameri-
can Physical society.

nanowire. This suggests that the spin polarized conductance in these barcode wires can be

controlled by controlling the number of Pt spacer layers.

Hence, this dependence of spin polarized conductance on the number of Pt layers in the

barcode wire confirm the possibilities in controlling magneto-conductance properties of

these wires via precise control of the number of ferromagnetic and non-magnetic layer

sequences in the wire, which is a prerequisite for their noble applications in magneto-

electronics.
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Figure 3.17: Spin polarized electronic band structures for (i) Fe10Pt29 (spin
up); (ii)Fe10Pt29 (spin down). Reprinted figure with permission from, Puspami-
tra.Panigrahi, Ranjit.Pati, Phys. Rev. B. 76, 024431(2007), c©(2007) The Ameri-
can Physical society.

3.3.5 Comparison with Ni/Cu and Ni/Al System

Now the question arises whether the trend observed in the Fe/Pt nanowire system dis-

cussed before is universal. To answer this question, I have compared my results with the

recently published [64] Ni/Cu and Ni/Al nanowire having similar atomic configurations.

Both these systems have equal number of atoms in the unit cell as that of Fe/Pt system.

The new system is with magnetic Ni nanowire in which the non magnetic Cu as well as

Al was introduced as spacer in a similar fashion as Pt was introduced as the spacer inFe

nanowire system. Also the structure optimization was done under exactly the same criteria
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and magnetic properties as well as band structure calculation were performed in a similar

manner using VASP code. The stability of both the nanowires was calculated as that for

Fe/Pt nanowire. The stability in both Ni/Cu and Ni/Al found to increases with increase in

the concentration of magnetic Ni layers Figure. 3.18, Figure. 3.19. This result is in contrast

to that observed increase of stability in Fe/Pt nanowire with increase in the concentration

of nonmagnetic Pt layer. The magnetic properties in Ni/Cu and Ni/Al nanowire showed

decreasing trend like a steady decrease of µav with increase of Cu spacer layer and a non-

monotonic decrease of µav with Al spacer layer thickness respectively, whereas the Fe/Pt

system showed a monotonic increasing trend in µav with increase of Pt spacer layer thick-

ness. The interfacial covalent bonding found to play an important role in reducing magnetic

properties in Ni/Cu and Ni/Al nanowire systems. In Ni/Al system, (Figure. 3.20), the di-

rectional nature of Ni(d) and Al(p) hybridization forces Ni to have higher coordination

number with Al resulting in a decreasing trend of µav. Here the quenching of magnetic

moment in Ni atom in the Ni/Al system is proportional to the number of Al atoms at the

Ni−Al interface. So in the ABCABC packing series when three atoms Ni layer is fol-

lowed by seven atoms Al layer the quenching effect is more significant compared to seven

atoms Ni layer followed by three atoms Al layer. The stronger Ni(d) and Al(p) hybridiza-

tion, higher will be the Ni coordination number, resulting in decrease in magnetic moment.

This explains the non monotonic decreasing trend of magnetic moment in Ni/Al nanowire

system. Whereas, in Ni/Cu system, (Figure.3.21) the strong hybridization between Ni(d)

and Cu(s) states, leads to reduction in the number of unoccupied Ni(d) down states, which
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results in a decreasing trend of µav. In contrast, in the Fe/Pt system, the spin flip and multi

step electron transfer is found to be the main mechanism behind the increasing trend of µav

with Pt spacer which is discussed at length before.

Figure 3.18: Calculated cohesive energy Ec as a function of Number of Cu lay-
ers (NCu) in Ni/Cu multilayered nanowire(Reprinted figure with permission from,
Partha.Pratim.Pal, Ranjit.Pati, Phys. Rev. B. 77, 144430(2008), c©(2008) The
American Physical society: refer Appendix C for permission)

Figure 3.19: Calculated cohesive energy Ec as a function of Number of Al lay-
ers (NAl) in Ni/Al multilayered nanowire(Reprinted figure with permission from,
Partha.Pratim.Pal, Ranjit.Pati, Phys. Rev. B. 77, 144430(2008), c©(2008) The
American Physical society: refer Appendix C for permission)
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Figure 3.20: Calculated magnetic moment per Ni atom (µav) as a function of num-
ber of Al layers (NAl) in Ni/Al multilayered nanowire.(Reprinted figure with per-
mission from, Partha.Pratim.Pal, Ranjit.Pati, Phys. Rev. B. 77, 144430(2008),
c©(2008) The American Physical society: refer Appendix C for permission)

Figure 3.21: Calculated magnetic moment per Ni atom (µav) as a function of Num-
ber of Cu layers (NCu) in Ni/Cu multilayered nanowire(Reprinted figure with per-
mission from, Partha.Pratim.Pal, Ranjit.Pati, Phys. Rev. B. 77, 144430(2008),
c©(2008) The American Physical society: refer Appendix C for permission)
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3.4 Summary

The findings of this present study clearly explain the role of non-magnetic spacer layer

thickness in modulating the magnetic and electronic properties of multilayer barcode nanowire.

Particularly, our first-principles calculations suggest that increasing the thickness of the Pt

layer and consequently, reducing the thickness of the Fe layer in the Fe/Pt/Fe barcode

nanowire increases the stability of the nanowire system. Furthermore, this induces a mono-

tonically increasing effect in the average magnetic moment per Fe atom quantitatively from

2.49 µB in a pristine Fe39-nanowire to 2.7 µB in Fe13Pt26-nanowire and then to 2.95 µB for

Fe7Pt32-nanowire. This is referred as the barcode layer effect. A simple model based

on the interface structure is proposed which could explain the 1
NFe

dependence trend in

µav obtained from the first-principles density functional calculations. A new mechanism

based on the spin flip and multi-step electron transfer process is proposed to explain the en-

hancement of magnetic moments with the increase of non magnetic spacer layer in Fe/Pt

system. Thus, the role of interfacial bonding in modulation of the magnetic characters is

established thoroughly. The decrease in magnetic moment in a higher diameter nanowire

system is also well explained by the quantum confinement effect. Analyzing the spin po-

larized band structure, a strong dependence of spin-polarized energy bands in the vicinity

of the Fermi energy on the non-magnetic layer thickness was also observed. This suggests

the potential applications of this nanowire structure in magneto-electronics or spintronics.

In the case of Ni/Al and Ni/Cu system a different trend in magnetic behavior is observed.
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This different magnetic property is attributed to their dissimilar interfacial bonding. For

example in Ni/Al system the directional character of Ni−Al(d − p) hybridization forces

Ni to have higher coordination number with Al resulting in a decreasing but non-monotonic

trend in µav. In Ni−Cu, the s− d hybridization reduces the unoccupied Ni(d) down state

leading to a decreasing trend in µav. This study again reveals the role of non magnetic

spacer in modulating magnetic property but in a dissimilar fashion. So it is evident that by

controlling the spacer layer thickness in multilayered magnetic and non magnetic nanowire

system, one can tune the ferromagnetic properties. This opens up the possibility for their

applications in nanoscale magnetic-barcodes.
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Chapter 4

Controlling Interlayer Exchange

Coupling in one dimensional Fe/Pt

Multilayered nanowire

4.1 Introduction

The previous chapter dealt with the tuning of ferromagnetic behavior in Fe/Pt multilayered

nanowire by controlling non-magnetic spacer layer thickness. The magnetic moment of the

interfacial Fe atoms in the Fe/Pt multilayered nanowire is found to be higher than that of

the Fe atoms away from the interface. However, the interlayer exchange coupling (IEC)
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needs to be explored in the lower dimensional multilayer nanowire system for their poten-

tial application in ultra-high density memory device and magnetic sensors. The magnitude

of giant magnetoresistance (GMR) has been found to oscillates with the thickness of non-

magnetic spacer in magnetic/non-magnetic heterostructures. This oscillation in GMR is

caused by the alteration in the sign of the interlayer exchange coupling between ferromag-

netic layers. Moreover, the exchange coupling is found to oscillate between ferromagnetic

and anti-ferromagnetic depending upon the magnetic moment of successive ferromagnetic

layers. The exchange coupling J, that is obtained from the energy difference between the

AFM and FM configurations, corresponds to the strength of the inter layer coupling en-

ergy, J = E↑↓
d −E↑ ↑

d . The quantitative prediction of J and its damped oscillatory behavior

with spacer in bulk heterostructures are well explained by the ab initio density functional

calculations [9, 10, 11, 12], which is also in good agreement with the experimental re-

sults [13, 14, 15]. Though we have started to witness serge in theoretical interest towards

multilayered nanowires [68, 69, 70] and tunnel junctions [71] in recent years, only limited

calculations have been reported in magnetic nanowires to understand the crucial atomic

scale structural heterogeneity at the magnetic/non-magnetic interface and its role on IEC.

The ab initio calculations are essential for the accurate determination of exchange energy

J for the nanowire systems. To achieve this, one needs to consider both the ferromagnetic

(FM) and anti-ferromagnetic (AFM) configuration between the magnetic layers. However,

obtaining AFM configuration in nanowire system is a challenging task. At the outset, it

is required to explore whether the oscillation of IEC with increase in spacer thickness is
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possible in nanowire system so that the Fe/Pt nanowire can be used as a building block

in device miniaturization process. In case the answer is in affirmative, whether the RKKY

model or the QW model [72, 73, 74, 75] which were able to give a clear explanation for

the physics behind the universal oscillation of IEC as a function of spacer in bulk het-

erostructure, holds good for the multilayer nanowire system. In this project, both FM and

AFM coupling between the Fe layers for different Pt spacer widths are considered and

the switching behavior of J is observed while ascending from two to five Pt spacer layers.

Again increasing the number of spacer layer from five to eight, switching in the sign of J

value is observed, but the magnitude of J is found to be significantly smaller. I discuss the

oscillatory magnetic properties of Fe/Pt multilayered nanowires as function of Pt spacer

width in this Chapter which is organized with the different sections comprising Section 4.2

summarizes the theoretical approach, Section 4.3 presents the results and discussions in

details and Section 4.4 describes the summary.

4.2 Theoretical Approach

The atomic level structural details are not available a priori for the proposed magnetic

nanowires and so the structure determination from the zero score throw up an arduous

challenge. The bulk experimental structure was considered as the guiding point for con-

structing the nanowire structure as described in our previous study [67]. Both Fe and

Pt have fcc bulk structures. From the atomic arrangements in the fcc bulk structure, the
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nanowire is constructed along the (111) direction whose unit cell repeats in every three

planes (ABCABC). For two layers of Pt spacer (Figure4.1), a unit cell of 26 atoms from

the (ABCABCABC) periodic series is engineered in the form of a tetragonal lattice with a

lattice parameter 12.12 Å. The other two sides of the unit cell are taken as 15 Å to ensure

negligible interaction of the nanowire with its image in the x and the y direction. From

this ABCABC periodic series, A layer accommodates 7 Fe atoms; B and C layers have 3 Pt

atoms each. To achieve the ferromagnetic coupling, the spins of two A layers are kept in

parallel configuration with each other. The first principle density functional approach [35]

is used with local spin density approximation for exchange and correlation. The optimized

structures in the FM and AFM configurations are obtained using the stringent force criterion

of 0.01 eV/Å for individual atom. During the self-consistent calculation the convergence

criterion for energy is taken to be 10−6 eV. For the calculation, the plane wave basis set

and ultra-soft pseudo potential (USPP) is used. The inter layer exchange coupling (J) is

calculated from the difference in total energy between the FM and AFM configurations as:

J =
E↑↓

d −E↑ ↑
d

n . (4.1)

n is the number of atoms in the unit cell. In a representative nanowire with two Pt spacer

layers in the unit cell, we have also used the projected augmented wave (PAW) potential

[35] to test the validity of the results for J with respect to the choice of the potential. It is

found that the use of PAW potential with (1 x 1 x 1) k point sampling within the Monkhorst
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pack (MP) scheme for structure optimization gives a J value of 19.6 meV as compared to

15.4 meV from USPP with the same k-point sampling of the Brillouin zone(BZ). Though

the use of PAW potential yields a higher J value, the sign of the J value, which is of

interest to us, remains unchanged. The sensitiveness of the J is also tested by optimizing

the structure for two Pt spacer nanowire using (1 x 1 x 3), (1 x 1 x 5) and (1 x 1 x 7) k-point

samplings of the Brillouin zone within the MP scheme. Use of (1 x 1 x 3) k-point sampling

of the BZ during structural optimization gives the J value of 9.6 meV, which changes to 9.5

meV and 9.3 meV for 1 x 1 x 5 and 1 x 1 x 7 k-point samplings respectively. The relative

difference in J value between 1 x 1 x 5 and 1 x 1 x 7 is only 2 %. It is also important to

note that the sign of the J value remains unchanged with respect to the choice of k-point

sampling. To check the perceptivity of J with respect to number of atoms in the unit cell,

the 2 spacer nanowire is also tested in a bigger unit cell with fifty two atoms. It is found

that, irrespective of number of atoms in the unit cell the sign of the J remains unchanged.

Considering the spin-polarized nature of the problem and relatively larger size of the unit

cell, and the excellent convergence in J value in two Pt spacer nanowire, we have used

1 x 1 x 5 k-point sampling of the BZ during geometry optimization for the five and eight

spacer layer nanowires. For five spacer layers (Figure. 4.1), the 1st and the 3rd A layers

are chosen to be the magnetic Fe layers whereas the BCABC layers in between, are chosen

as the nonmagnetic Pt layers. In the case of eight spacer layers (Figure. 4.1), the 1st and

the 10th A layers are the magnetic Fe layers whereas the BCABCABC layers in between

are the nonmagnetic Pt layers. The spins in the magnetic layers are aligned in parallel
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and anti-parallel configurations to obtain the FM and AFM coupling between the magnetic

layers. Similar procedures as discussed above for two spacer layers are used to obtain the

IEC as a function of the spacer length. The 1 x 1 x 5 k-point mesh was used for calculating

the electronic band structure and magnetic moments. A large plane wave cut-off of 237.6

eV is taken to include reasonably large number of plane waves in the basis set and kept

fixed for all subsequent calculations. To calculate the local magnetic moment of individual

atom, the Wigner-Seitz radii for Fe and Pt are taken as 2.46 and 2.75 a.u. respectively.

4.3 Results and discussion

The results are organized as follows: First stability and magnetic properties are discussed

in Sec.4.3.1., following which the variation of IEC with Pt spacer is discussed in Sec.4.3.2

while Sec 4.3.3 describes the spin polarized band structures. In Sec 4.3.4 the calculation of

conductance at different spacer width is described.

4.3.1 Stability and magnetic properties

In case of two spacer layers system, only a minor relaxation from the ABCABC packing

of the fcc structure is noted. The structures are optimized for both FM and AFM config-

urations. The optimized nanowire structures for different spacer lengths are depicted in
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Figure. 4.1.

Figure 4.1: Optimized structures for the Fe/Pt nanowire with two Pt spacer, five
Pt spacer, and eight Pt spacer layers respectively. Notations: dark gray (red),
Fe; light gray (yellow), Pt. Reprinted figure with permission from, Puspami-
tra.Panigrahi, Ranjit.Pati, Phys. Rev. B. 79, 014411(2009), c©(2009) The Ameri-
can Physical society.

In the AFM configuration, the atomic level structural relaxations due to spin flips are ex-

plicitly included. Any increase in the Pt spacer width can obviously mark a significant

distortion from the ABCABC packing of the fcc due to a strong buckling in the A plane. A

similar structural configuration is obtained for the AFM configuration. An increase in Fe

magnetic moment at the Fe/Pt interfacial site compared to the Fe atom at the interface is

evident from the analysis of individual magnetic moments in the FM and AFM configu-

rations. Also it is important to note that the magnetic moment of Fe, far away from the
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interface is almost same as that obtained in the pristine Fe-nanowire. This trend is also

noticed in our first part of the project [67] where a similar increase in magnetic moment at

the interfacial Fe atoms is observed. Furthermore, in Fe/Pt bulk structure [62], magnetic

moment enhancement for the interfacial Fe atom is also reported. To understand the cause

of this increase in magnetic moments of Fe atom at the interface, the magnetic moments of

the individual Fe atoms at the most affected inter-facial A layer from the ABCABC series

are summarized in Table.4.1

Table 4.1: Comparison of individual magnetic moment (unit µB of Fe atom in 2-
spacer,5-spacer,8-spacer layer multilayered nanowire systems in both FM and AFM
configuration with that of corresponding Fe atoms in the pristine Fe nanowires

Atom Pristine 2-spacer-layer 5-spacer-layer 8-spacer-layer
ferro anti-ferro ferro anti-ferro ferro anti-ferro

Fe1 0.990 2.257 1.877 2.231 2.137 2.197 2.196
Fe2 2.746 3.085 2.911 3.175 3.165 3.088 3.088
Fe3 2.743 3.085 2.911 2.997 3.090 3.088 3.089
Fe4 2.746 3.107 3.037 3.054 3.067 3.087 3.089
Fe5 2.743 3.107 3.037 2.725 3.074 3.065 3.064
Fe6 2.743 3.108 3.037 2.725 3.056 3.065 3.063
Fe7 2.745 3.108 3.037 2.720 3.012 3.087 3.088

A substantial change in magnetic moment for the core Fe atom is noted between pristine

and multilayered nanowire (Table.4.1). The increase in magnetic moment can be explained

by the spin flip and multi-step electron transferprocess in the similar way as explained in

Chapter 1.
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4.3.2 Switching of IEC with Platinum spacer

The Figure. 4.2 depicts the calculated IEC as a function of spacer layer thickness. It shows

that the magnitude of J value decreases with the increase in spacer width. Both 1 x 1 x 1

and 1 x 1 x 5 k-point sampling of the BZ yield similar trend in IEC.

Figure 4.2: Calculated inter layer exchange coupling ( J ), as a function of number
of non-magnetic Pt spacer layers N(Pt) in the nanowire structures. 1 x 1 x 1 and
1 x 1 x 5 represent the k-point sampling of the BZ used to obtain the respective
results. Reprinted figure with permission from, Puspamitra.Panigrahi, Ranjit.Pati,
Phys. Rev. B. 79, 014411(2009), c©(2009) The American Physical society.

Again the J value is found to be substantially smaller for the eight Pt spacer layer in the

unit cell. However, the most exciting aspect in this Figure. 4.2 is the switching in the sign

of J. Increasing the number of Pt spacer layers from two to five bring about a sign change

in the J value i.e. becoming negative. The AFM configuration is stable for two spacer layer

89



system. Where as the FM configuration is found to be more stable for five spacer layer.

Further, increasing the number of spacer layer from five to eight again lead to switching in

the sign of J value suggesting the stability of the AFM configuration over the FM ordering.

In bulk multilayered system, similar outcome in J value switching takes place with the

increase in spacer width [5, 6, 7], has been elucidated invoking RKKY and QW model.

It is worth to mention that, very recently, Bruno and colleagues [76] have demonstrated a

similar oscillation in the exchange coupling between two magnetic adatoms by varying the

size of the atomic spacer chain. The magnetic moment per atom were analyzed layer wise

to explore the concept of switching in J value in the nanowires. The results are summarized

in Figure. 4.3.

It is evident from this figure that for two Pt spacer system, because of the strong overlap

between the inter layer Pt wave functions, Pauli’s exclusion principle requires the spins

in Pt layer to be in anti parallel alignment. Thus, the negative direct exchange interaction

is favored over the positive direct exchange interaction (parallel spin alignment) between

Pt layers. These magnetic arrangements in Pt layers favor indirect RKKY type exchange

interaction between the Fe layers resulting in a stable AFM coupling. Whereas, as the

distance between spin polarized Pt layers (2 and 5; 2 and 6; 3 and 5; 3 and 6) increases in

case of 5 Pt spacer system (Figure. 4.4), the positive direct exchange interaction is favored

over the negative direct exchange.

Thus, the FM coupling between Fe layers is favored over the AFM coupling. The mag-
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Figure 4.3: Histogram plot for the average magnetic moment per atom (µav) in fer-
romagnetic (FM) and anti-ferromagnetic (AFM) configurations for two Pt spacer.
Reprinted figure with permission from, Puspamitra.Panigrahi, Ranjit.Pati, Phys.
Rev. B. 79, 014411(2009), c©(2009) The American Physical society

nitude of magnetic moment per atom in the fourth Pt layer is substantially smaller (Fig-

ure. 4.4) to initiate the negative direct exchange interaction between the Pt atoms within

the layers as seen for two Pt spacer. Indirect RKKY exchange interaction of a different

period can also give explanation for the stability of the FM coupling in the case of five

layer Pt spacer. It is also noteworthy to point out that the small asymmetry in the magni-

tude of average magnetic moment between the Fe-A layers, shown in Figure. 4.4, is due to

small local structural asymmetry around the A layer in the optimized structure. Going in

the ascending order with eight Pt spacer layers in the unit cell of the wire, with the increase

of distance between Fe layers, the super exchange interaction plays the dominant role in
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Figure 4.4: Histogram plot for the average magnetic moment per atom (µav) in fer-
romagnetic (FM) and anti-ferromagnetic (AFM) configurations for five Pt spacer.
Reprinted figure with permission from, Puspamitra.Panigrahi, Ranjit.Pati, Phys.
Rev. B. 79, 014411(2009), c©(2009) The American Physical society.

favoring the AFM coupling over the FM coupling between the Fe layers. The layers 4, 5,

6, and 7, as shown in Figure. 4.5, have almost zero magnetic moment per atom. These Pt

atoms are covalently bonded resulting in the stability of the AFM coupling mediated by

these non-magnetic Pt spacer atoms.

4.3.3 Spin polarized energy bands

To conceptualize an atomic level phenomenon of the switching of J and its role in the

electronic properties of the nanowire, the spin polarized energy bands are calculated for the
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Figure 4.5: Histogram plot for the average magnetic moment per atom (µav) in fer-
romagnetic (FM) and anti-ferromagnetic (AFM) configurations for eight Pt spacer.
Reprinted figure with permission from, Puspamitra.Panigrahi, Ranjit.Pati, Phys.
Rev. B. 79, 014411(2009), c©(2009) The American Physical society.

three representative nanowires. The results obtained using 1 x 1 x 5 k-point sampling of

the BZ are summarized in Figure.4.6.

In the case of two spacer layers in the unit cell, for the FM configuration (Figure. 4.7), the

α valence band and conduction band near the Fermi energy illustrate a clear Fe(s, p,d)

with Pt(s, p,d) hybridization; the β valence band is mostly Fe(d) and Pt(d) hybrid band,

and β conduction band illustrates a dominant Fe(d) character. Wherever there is a stable

AFM configuration, both the valence band and conduction band near the Fermi energy are

mostly Fe(d, p) and Pt(d, p) hybrid bands. Thus the strong d − p hybridization favors the

AFM coupling over the FM coupling in the case of two Pt spacer layers in the unit cell.
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Figure 4.6: Spin polarized energy band structures for 2-spacer system.The Fermi
energy is set at E = 0. Notations: gray (red) circle, conduction band; gray
(blue) diamond, valence band.Reprinted figure with permission from, Puspami-
tra.Panigrahi, Ranjit.Pati, Phys. Rev. B. 79, 014411(2009), c©(2009) The Ameri-
can Physical society.

Similar d− p hybridization favoring the AFM configuration over the FM configuration was

reported in NiAl nanowire [64].

For the five spacer layer nanowire in the FM (stable) configuration, both spin up valence

and conduction bands near the Fermi energy (Figure. 4.7) are found to have Pt(d) character.

But as we move away from the high symmetry point the bands develop Fe/Pt (d, p) hybrid

character contributing to the stability of the FM configuration. In the spin down case, both

valence and conduction bands are Fe(d) and Pt(d) hybrid bands with dominant Fe(d)

character at the high symmetry point. In the case of the AFM configuration both valence
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Figure 4.7: Spin polarized energy band structures for 5-spacer system.The Fermi
energy is set at E = 0. Notations: gray (red) circle, conduction band; gray
(blue) diamond, valence band. Reprinted figure with permission from, Puspami-
tra.Panigrahi, Ranjit.Pati, Phys. Rev. B. 79, 014411(2009), c©(2009) The Ameri-
can Physical society.

and conduction bands are primarily Pt(d) bands. Thus, the weakening of the Fe − Pt

hybridization in the AFM configuration case is resulting in an unstable AFM ordering. In

the case of eight Pt spacer layers in the unit cell, the valence and conduction bands near the

Fermi energy are mostly Pt(d) bands (Figure. 4.8) with very little Fe(d) character. Here

bonding between Pt atoms is mostly covalent in nature.

Thus the strong covalency within the Pt layer favors the AFM coupling between Fe via the

super exchange interaction.
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Figure 4.8: Spin polarized energy band structures for 8-spacer system.The Fermi
energy is set at E = 0. Notations: gray (red) circle, conduction band; gray
(blue) diamond, valence band. Reprinted figure with permission from, Puspami-
tra.Panigrahi, Ranjit.Pati, Phys. Rev. B. 79, 014411(2009), c©(2009) The Ameri-
can Physical society.

4.3.4 Conductance

To further understand the J switching and its implication on magneto resistance for practi-

cal applications, we have calculated the polarization, conductance and magneto resistance

for different spacer length. These results obtained using 1 x 1 x 5 k-point sampling of the

BZ are summarized in Table.4.2. From Table.4.2, one can notice switching in the sign of

the polarization at the Fermi energy between two and five spacer system. Increasing from

five to eight spacer layers in the unit cell, the polarization at the Fermi energy again changes

sign. This polarization switching is expected to affect the magneto conductance of the wire.
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Table 4.2: Calculated Polarization, Conductance, and GMR in the nanowire for
different spacer lengths.

Parameters 2-spacer 5-spacer 8-spacer
ferro anti-ferro ferro anti-ferro ferro anti-ferro

Polarization(p) -0.9192 0 0.3385 0 -0.3 0
Conductance(G) 1.2713 0.544 0.898 1.125 0.7848 0.58

GMR 57% -27% 26%

The Polarization(p) is defined as

p =
DosE f (α) − DosE f (β )

DosE f (α) + DosE f (β )
; (4.2)

The DosE f (α) corresponds to the spin up(α) density of states at the Fermi energy and

DosE f (β ) corresponds to spin down (β )density of states at the Fermi energy. Using Jullier’s

model [77], we have calculated the conductances. The Conductance(G) in the FM case is:

GFM = [DosE f (α)]2 + [DosE f (β )]2

In the case of AFM, the conductance is given by:

GAFM = 2DosE f (α)2DosE f (β ) = 2[DosE f (α)]2,

The GMR value is calculated from the conductance GFM and GAFM as:

GMR =
GFM − GAFM

GFM
× 100% (4.3)
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The GMR value obtained for different spacer configurations also shows switching in sign

as noted for J.

4.4 Summary

In summary, using first principles density functional approach, we report a comprehensive

study on the role of atomic scale structural heterogeneity at the magnetic/non-magnetic

interface in modulating the IEC in 1D Fe/Pt nanowire. We found enhancement in the

magnetic moment of the Fe at the Fe/Pt interface as compared to the magnetic moment of

the Fe atom away from the interface. A mechanism based on multi-step electron transfer

and spin-flip is proposed to explain the increased magnetic moment of the interfacial Fe

atom. The J value as well as GMR is found to switch sign as the spacer width in the

nanowire increases. Magnitude of J value is found to decrease substantially for larger

spacer width. The competition among short range and long range direct exchange, indirect

exchange, and super exchange depending upon the spacer width is found to be responsible

for the non-monotonous sign in J.
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Chapter 5

Role of spacer on Interlayer Exchange

coupling in multilayered nanowire

5.1 Introduction

Deciphering the interlayer exchange coupling (IEC) and other functional characteristics in

Fe/Pt multilayered nanowire system in our previous studies, our inquisitiveness drive us

to look into the other nanowire systems to further our understanding. In this part of this

project, the Fe/Pd, Fe/Cu, Fe/Ag, Fe/Au nanowire systems were analyzed with respec-

tive spacer layer of Palladium (Pd), Copper (Cu), Silver (Ag), and Gold (Au) by varying

their thicknesses. The oscillatory behavior of IEC with regard to various systems includ-
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ing all these combinations were studied in depth in bulk heterostructures. In addition, the

IEC in different magnetic/non-magnetic bulk heterostructures eg.(Co/Pt, Co/Cu, Co/Cr,

Co/Ru, Fe/Cr), displaying damped oscillatory behavior were also reported [5, 4, 6]. The

RKKY model and the QW model were the basis for explaining the theoretical aspect of

the damped oscillatory behavior of these systems. For fcc Co/Cu bulk structure, the den-

sity of states and magnetic coupling as well as the giant magnetoresistance found to have

almost same period of oscillation. The oscillatory magnetic coupling of these systems are

explained on the basis of QW model by calculating the total energy of all occupied QW

states and observing its periodic jump with increase in spacer thickness as and when a new

state crosses the Fermi level. Subsequently, detailed theoretical predictions have also been

made for long and short period oscillation of IEC along certain crystallographic direction,

for the Fe/Au/Fe, Fe/Cu/Fe and Co/Cu sandwiches [78, 79, 80]. To realize the univer-

sality of damped oscillatory behavior of IEC with regard to other qualified spacer systems

mentioned above, we have extended our study further into multilayered nanowire structure

involving Pd, Cu, Ag and Au as spacer. This will give insight into the functionality of

these multilayered nanowire systems in comparison to Fe/Pt nanowires studied in depth

in the previous Chapter. The underlying mechanism involving the sign and magnitude of

exchange coupling energy, J, as a function of nature and dimension of spacer which are

of interest are unraveled with regard to these unexplored nanowire systems. The exchange

coupling energy and its switching pattern between the ferromagnetic layers with respec-

tive spacers like Pd, Cu, Ag, Au with varying thicknesses were discussed, which further
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our perception about these multilayered nanowire systems. This Chapter is organized with

the following Sections. Section 5.2 briefly describes the theoretical approach; Section 5.3

discusses the results and discussion; Section 5.4 summarizes our main conclusions.

5.2 Theoretical Approach

In the line with the structure of the Fe/Pt nanowire, the atomic arrangement in studied

Fe/Pd, Fe/Cu, Fe/Ag, Fe/Au multilayered nanowires are engineered along the (1 1 1)

direction with units cell repeating in every three planes (ABCABC). Here, we have empha-

sized on the nature of the non-magnetic spacers sandwiched in between ferromagnetic Fe

layers. For this purpose, we have considered two and five layers of non-magnetic spacers

in all the four representative nanowire systems. In case of two spacer systems, the units cell

consists of 26 atoms from the (ABCABCABC) periodic series. The tetragonal unit cell of

each representative nanowire has lattice parameter 12.12 Å the other two sides of the unit

cells are 15 Å, ensuring negligible interaction of the nanowire with its images along other

two axes. The geometrical structure optimization for both FM and AFM coupling between

the Fe layers with specific spacer layer of choice is performed. Both the criteria for the

force on individual atom and energy convergence are same as that of the Fe/Pt system

discussed earlier to have a broad comparison between the systems. The exchange coupling

energy, J, the energy difference between FM and AFM configurations is also calculated in

the similar fashion. As discussed in the previous chapter, the sign of J value remains un-
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changed with respect to the choice of k point sampling of the BZ. We have taken 1 x 1 x 5

k-point sampling for the geometrical structure optimization of all representative nanowires.

The same 1 x 1 x 5 k-point sampling of the BZ is considered for electronic band structure

and magnetic moment calculations. For calculation of local magnetic moment of individual

atom, the Wigner Seitz radii for Fe, Pd, Cu, Ag, Au are taken as 2.46, 2.71, 2.48, 2.84, 2.84

a.u respectively. The ultra-soft pseudo potential (USPP) is used for all the calculations.

5.3 Results and Discussion

The results are presented as follows. Section 5.3.1 discusses structure, stability, and mag-

netic properties of nanowires; Sec 5.3.2 discusses with variation of J with spacer length

along with the spin polarized band structuresof the multilayered nanowire.

5.3.1 Structure stability and magnetic properties

For Fe/Pd, Fe/Cu, Fe/Au, Fe/Ag systems, the optimized nanowire structure with 2-spacer

and 5 spacer length are presented in Figure. 5.1. For the AFM configurations, the atomic

level structural relaxation due to spin flip is explicitly considered. Similar structural config-

urations is observed for both the FM and AFM configurations irrespective of spacer length

and nature. In 5-spacer system, the increase in concentration of Pd, Cu, Ag, Au leads to
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significant structural distortion due to lattice mismatch. similar structural features were

noted in previously studied Fe/Pt system.

Figure 5.1: Optimized structures for the Fe/spacer nanowire with two spacer, and
five spacer layers respectively in the FM and AFM configuration. The top two wires
correspond to the structure in FM configuration; the bottom two figures correspond
to the structure in AFM configuration. Notations: dark gray (red), Fe; light gray
(green and blue), spacers. Spacer atoms: Pd, Cu, Au, Ag.

For the Fe/Pd nanowire, the stability is found to increases when compared to that of the

pristine Fe nanowire. A similar trend was observed in the case of Fe/Pt nanowire system.

For Fe/Cu, Fe/Ag, Fe/Au systems, the stability shows rather a decreasing trend with the

increase of spacer size. This can be explained by comparing the bulk cohesive energy of

the spacers with that of the bulk Iron. For Cu, Ag and Au, the bulk cohesive energies are

lower compared to that of the Iron. Thus, these spacer rich nanowires are less stable than

the pristine Fe nanowire. In Fe/Pd nanowire, the increase in stability is due to strong

Fe−Pd hybridization. The magnetic properties of these representative nanowires are also
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assessed, and compared to that with the magnetic properties of the pristine Fe nanowire

system. A significant increase in magnetic moment of the Fe atom at the interfacial layer is

observed as found in Fe/Pt multilayered nanowire. This increase in magnetic moment can

be explained by the proposed spin flip and multi-step electron transfer process explained in

Chapter 1.

5.3.2 The role of spacers on IEC

The cohesive energy, Ec, of the Fe/Pd, Fe/Cu, Fe/Ag, and Fe/Au nanowires are calculated

in the similar fashion as described in Chapter 3. The exchange coupling energy, J, the

difference in energy between FM and AFM is also calculated as mentioned in Chapter 4.

To understand the behavior of IEC as a function of nature and thickness of spacer width,

the Ec and J for all four nanowire systems are presented in Table. 5.1 for (1 x 1 x 1) k-

point sampling of the Brillouin zone. Table. 5.2 represents results obtained with (1 x 1 x 5)

k-point sampling of the BZ.

Table 5.1: Results for exchange coupling energy J in 2-spacer, and 5-spacer mul-
tilayered nanowire systems obtained with (1 x 1 x 1) k-point sampling of the Bril-
louin zone.

spacer 2-spacer-layer 5-spacer-layer
Ec( f m)(eV) Ec(a f m)(eV) J(meV) Ec( f m)(eV) Ec(a f m)(eV) J(meV)

Fe/Pd -4.825 -4.845 20.61 -5.047 -5.044 -2.71
Fe/Cu -4.0131 -4.0011 -12.00 -3.8063 -3.8042 -2.096
Fe/Ag -3.615 -3.608 -6.584 -3.259 -3.2592 -0.307
Fe/Au -4.055 -4.052 -3.692 -3.823 -3.827 4.4038
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Table 5.2: Results for exchange coupling energy J in 2-spacer,and 5-spacer mul-
tilayered nanowire systems obtained with (1 x 1 x 5) k-point sampling of the Bril-
louin zone.

spacer 2-spacer-layer 5-spacer-layer
Ec( f m)(eV) Ec(a f m)(eV) J(meV) Ec( f m)(eV) Ec(a f m)(eV) J(meV)

Fe/Pd -4.8325 -4.8414 8.880 -5.0466 -5.0455 -1.101
Fe/Cu -3.9857 -3.9841 -0.811 -3.8046 -3.8036 -1.005
Fe/Ag -3.6074 -3.6088 1.434 -3.2655 - -
Fe/Au -4.0489 -4.0506 1.669 - -4.0506 -

Here Ec( f m) and Ec(a f m) represents the cohesive energy in ferromagnetic and anti-ferromagnetic

configurations respectively. To understand the role of non-magnetic spacer in switching be-

havior of J in different nanowire system, the average magnetic moment µav(per layer) is

calculated for all the four . The result for average magnetic moment, µav, associated with

spacer layers in the representative nanowire systems are presented in Table. 5.3.

Table 5.3: Comparison of individual average magnetic moment (unit µB associated
with soacer layers in 2-spacer multilayered nanowire systems.

2-spacers Fe/Pd(µav) Fe/Cu (µav) Fe/Ag (µav) Fe/Au (µav)
Layer FM AFM FM AFM FM AFM FM AFM

1st 0.303 0.266 -0.021 -0.006 0.123 0.161 0.124 -0.018
2nd 0.300 -0.262 -0.021 -0.006 0.108 -0.073 -0.006 -0.120

Explanation for each of the multilayered nanowire systems is presented in a separate sub-

heading.
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5.3.2.1 Fe/Pd Nanowire

In the Fe/Pd system, the magnitude of exchange coupling energy, J, changes inversely with

that of the Pd spacer width and simultaneously, it switches from a positive value to nega-

tive value as the spacer length increases from two to five. For two Pd spacer, the J value

is 20.61 meV, however reduces to -2.71 meV for five spacer layer (Table. 5.1) for (1 x 1 x

1) k-point sampling. In the case (1 x 1 x 5) k-point sampling of the BZ, the value J’s are

8.9 meV and -1.1 meV for 2-spacer and 5-spacer system respectively. This trend exactly

follows that of the Fe/Pt system studied before. To understand the switching of J value

in the Fe/Pd nanowire system, the magnetic moment per atom were analyzed layer wise.

As the non-magnetic Pd is the key element, the average magnetic moment of Pd atoms per

layer is presented in Table. 5.3. From the Table. 5.3, in two Pd-spacer system, the negative

direct exchange interaction favors over the positive direct exchange interaction. Thus, the

AFM configuration is more stable than the FM configuration. In five Pd-spacer system, the

distance between (1, 5),(1, 4),(2, 4), and (2, 5) Pd layers increases. Thus, the positive direct

exchange interaction favors over the negative exchange interaction between the Pd layers.

This in turn stabilizes the FM configuration over the AFM configuration.

Spin polarized energy bands:

The spin polarized energy bands are calculated for the Fe/Pd nanowires using 1 x 1 x 5

k-point sampling of the BZ for two and five spacer system and are depicted in Figure. 5.2
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and Figure. 5.3 respectively. In two-spacer system, for the FM configuration (Figure. 5.2)

the α valence band and conduction band near the Fermi energy illustrate a clear Fe with Pd

(s, p, d) hybridization. Whereas, the β valence band is mostly Fe(d) bands.

Figure 5.2: Spin polarized energy band structures for 2-spacer Fe/Pd system.The
Fermi energy is set at E = 0. Notations: gray (blue) diamond, conduction band;
gray (red) star, valence band.

But, as we move from high symmetry point, the Fe and Pd (d) hybrid bands dominate. In

the stable AFM configuration both the valence and conduction bands are mostly FePt(d, p)

hybrid bands. According to Kramers-Anderson exchange rule, [82, 83] when there is a

strong d − p hybridization between magnetic and non-magnetic ions, the AFM coupling

between the magnetic ions sitting next to nearest non-magnetic ions favors over the FM

coupling. Thus, for 2-spacer systems, the strong FePd(d − p) hybridization favors the

stable AFM coupling. Similar effect has also been observed for Fe/Pt and Ni/Al multilay-
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ered nanowire system [64, 81]. For both the system, the strong d-p hybridization between

magnetic ion and spacer makes the AFM coupling favorable for 2-spacer system. In case

of the five-spacer in the unit cell, for FM configuration (Figure. 5.3), the α valence band

mostly have Pd(s, p) bands and Fe(d) characters; the α conduction band is FePd (s, p) hy-

brid band. For the β valence and conduction bands mostly FePd(d) character dominates.

In case of the AFM configuration, both valence and conduction bands are Fe and Pd (d)

bands.

Figure 5.3: Spin polarized energy band structures for 5-spacer Fe/Pd system.The
Fermi energy is set at E = 0. Notations: gray (blue) diamond, conduction band;
gray (red) star, valence band.

According to Goodenough-Kanamori [84, 85] rule, superexchange interactions favors an-

tiferromagnetic ordering when the virtual electron transfer is between overlapping orbitals

that are each half-filled, but they favor ferromagnetic ordering when the virtual electron
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transfer is from a half-filled to an empty orbital or from a filled to a half-filled orbital.

Thus, in the 5pd-spacer system, for both the spin up valence and conduction bands in the

FM configuration, the strong hybridization between half filled [Fe (3d6] and empty [Pd

(5s0)] bands favors the strong FM exchange coupling over the AFM coupling.

5.3.2.2 Fe/Cu Nanowire

In the Fe/Cu system the most striking observation is that unlike the Fe/Pt and Fe/Pd

system, the magnitude of J increases with increase in the Cu spacer thickness and it doesn’t

switch sign. For two and five Cu-spacer systems, the calculated J values are -12.00 and -

2.096 meV respectively, obtained using (1 x 1 x 1) k-point sampling of the BZ (Table. 5.1).

For (1 x 1 x 5) k-point sampling of the BZ, the respective J values are -0.811 and -1.005

meV (Table. 5.2). As shown in Table. 5.3, in two and five Cu-spacer systems, the direct

exchange interaction play a dominant role in stabilizing the FM configuration over the AFM

configuration . To understand the role of hybridization we look into the spin polarized band

structure in Fe/Cu nanowire for both two and five spacer nanowires.

Spin polarized band structure:

The spin polarized energy bands are calculated for the Fe/Cu nanowires using 1 x 1 x 5

k-point sampling of the BZ for two and five spacer system. The results are depicted in

Figure. 5.4 and Figure. 5.5 respectively. In two-spacer system, for the FM configuration,

(Fig. 5.4) the α valence band near the Fermi energy illustrate a clear FeCu (s, p) hybrid
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band character with some contribution from Fe(d).

Figure 5.4: Spin polarized energy band structures for 2-spacer Fe/Cu system.The
Fermi energy is set at E = 0. Notations: gray (blue) diamond, conduction band;
gray (red) star, valence band.

The α conduction band is also mostly FeCu(s, p) hybrid band with some contribution from

Fe(d). The β valence band is mostly Fe(d) band; the conduction band is FeCu(d, p)

hybrid band. But, as we move away from the high symmetry point, the Fe(s,d) and Cu(p)

characters contribute to both valence and conduction bands. Here, the same Goodenough-

Kanamori rule explains the stability of the FM configuration. The hybridization between

half filled [Fe (3d6)] band and filled [Cu (3p6)] band in spin down case favors strong FM

exchange interaction. Also, the half filled [Cu (4s1)] hybridizes with completely filled [Fe

(3p6)] in spin up case favors the strong FM coupling. In the case of five-spacer in the
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unit cell, for FM configuration, ( Figure. 5.5) the α valence band and conduction band are

mostly FeCu(s, p) hybrid bands. For the spin down case, valence band and conduction

band are mostly Fe(d) bands. But as we move away from the high symmetry points both

the valence and conduction bands are found to have Cu(p) character.

Figure 5.5: Spin polarized energy band structures for 5-spacer Fe/Cu system.The
Fermi energy is set at E = 0. Notations: gray (blue) diamond, conduction band;
gray (red) star, valence band.

Thus, the hybridization between half filled [Cu (4s1)] band and filled [Fe (3p6)] band in spin

down case favors the strong FM exchange interaction. In case of the AFM configuration,

the valence band has Cu(p) bands and Fe/Cu(d) hybrid characters; the conduction band

is mostly FeCu(d) band. Away from the high symmetry point, the Fe/Cu(d, p) hybrid

characters contributes to both valence and conduction band.
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5.3.2.3 Fe/Ag and Fe/Au Multilayered Nanowires

Unlike the Fe/Cu nanowire the trend for two spacer system in Fe/Ag and Fe/Au nanowires

are similar to that of the Fe/Pt and Fe/Pd systems. Here the calculations are done for

both the multilayered nanowires with only 2 layers of nonmagnetic spacers. As used for

other nanowires both (1 x 1 x 1) k-point and (1 x 1 x 5) k-point grid are used to sample

the BZ. From (1 x 1 x 5) k-point sampling results (Table. 5.2); it can be noted that, for

both the nanowires with 2-spacer, the AFM coupling favors over the FM coupling . The

magnitude of Js for two spacer and five spacer system with (1 x 1 x 1) k-point sampling

of the BZ are shown in the table (Table. 5.1). To understand the role of non-magnetic

spacer on J value in both the nanowire system, the average magnetic moment per spacer

atoms are presented in Table. 5.3. From Table. 5.3, it can be noted that for both Ag and Au

systems, the negative direct exchange interaction favors over the positive direct exchange

interaction. Thus the AFM coupling is more stable than the FM coupling in both Fe/Ag and

Fe/Au multilayered nanowire systems. To identify the role of the hybridization, the spin

polarized band structures are studied in both Fe/Ag and Fe/Au multilayered nanowires

with two layers of non-magnetic spacers. Spin polarized band structure:

The calculated spin polarized band structure for the 2-spacer Fe/Ag nanowire is presented

in Figure 5.6. In the FM configuration, the α valence and conduction bands near the Fermi

energy are mostly FeAg (s, p) hybrid bands. Whereas, the β valence band is mostly FeAg

(d) band and the β conduction band shows predominantly Fe (d) character. In the stable
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AFM configuration, both the valence band and the conduction band are mostly FeAg (d, p)

hybrid bands.

Figure 5.6: Spin polarized energy band structures for 2-spacer Fe/Ag system.The
Fermi energy is set at E = 0. Notations: gray (blue) diamond, conduction band;
gray (red) star, valence band.

From the Kramers-Anderson exchange rule, the strong d− p hybrid bands favors the AFM

coupling over the FM coupling in 2-spacer Fe/Ag multileyered nanowire system. The spin

polarized band structure for the 2-spacer Fe/Au nanowire is depicted in Figure. 5.7. In the

FM configuration, the α valence band near the Fermi energy is mostly FeAu (s, p,d) hybrid

band and the conduction band is mostly FeAu (s, p) hybrid band. But near the L-point(away

from the high symmetry γ point, both valence and conduction band are FeAu (s, p) hybrid

bands. The β valence band is mostly FeAu (d) hybrid band. The β conduction band shows
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predominantly Fe (d) character with some contributions from FeAu (d, p) hybrid band. In

the stable AFM configuration, both the valence band and conduction band are mostly FeAu

(d, p) hybrid bands (Figure. 5.7). Here also, the same Kramers-Anderson exchange rule

explains the stability of the AFM configuration over the FM configuration.

Figure 5.7: Spin polarized energy band structures for 2-spacer Fe/Au system.The
Fermi energy is set at E = 0. Notations: gray (blue) diamond, conduction band;
gray (red) star, valence band.

5.4 Summary

In this chapter, a wide range of systems are studied and it elucidates the role of different non

magnetic spacers in controlling IEC and the behavior of the spin polarized electronic struc-
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ture. Conclusively, the role of atomic scale structural heterogeneity at the magnetic/non-

magnetic interface, in modulating the IEC in Fe/Pd, Fe/Cu, Fe/Ag and Fe/Au multilay-

ered nanowire systems, is identified. These systems behave differently depending on the

nature and extent of the spacer material used. The mechanism of multi-step electron trans-

fer and spin-flip, proposed in the previous chapter, holds good in explaining the increased

magnetic moment of the interfacial magnetic atoms. The J value switches sign with the in-

crease in spacer width in case of Fe/Pd system; in case of Fe/Cu system it doesn’t change

sign. The magnitude of J value is found to decrease with the increase in Fe/Pd nanowire.

In case od Fe/Cu nanowire an anomalous behavior is noted. Where as Fe/Ag and Fe/Au

nanowires show similar trend as that in Fe/Pd and Fe/Pt nanowires. These striking simi-

larities and obvious differences between these nanowires and corresponding spacer layers

suggest that different strategies need to be adopted for their effective utilization in sprint-

onic devices.
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Chapter 6

General Conclusions, Perspectives and

Future Directions

6.1 Conclusions

The sequence of studies undertaken here deals with the calculation of tunable electronic

structure and magnetic properties of multilayered nanowires as a function of size and the

nature of the spacer structure. It is evident from the first part of the study that the non-

magnetic spacer layer thicknesses have a role in modulating the magnetic and electronic

properties of multilayered nanowire. The stability of nanowires is found to increase by

increasing the thickness of the Pt layer and consequently, reducing the thickness of the Fe
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layer in the Fe/Pt/Fe multilayered nanowire. This in turn, induces a monotonically in-

creasing effect in the average magnetic moment per Fe atom quantitatively from 2.49µB in

a pristine Fe39-nanowire to 2.7 µB in Fe13Pt26-nanowire and then to 2.95 µB for Fe7Pt32-

nanowire, which is referred as the barcode layer effect. A simple model based on the

interface structure is proposed explaining the 1
N(Fe) dependence trend in µav obtained from

the first-principles density functional calculations. A new mechanism based on the spin

flip and multi-step electron transfer process is proposed to explain the enhancement of

magnetic moments with the increase of non magnetic spacer layer in Fe/Pt system. Thus,

the role of interfacial bonding in modulation of the magnetic characters is established. The

decrease in magnetic moment in a higher diameter nanowire system is also well explained

by the quantum confinement effect. Analyzing the spin polarized band structure, a strong

dependence of spin-polarized energy bands in the vicinity of the Fermi energy on the non-

magnetic layer thickness was also observed. This suggests the potential applications of

these nanowires structure in magneto-electronics or spintronics. To ascertain the trend in

the magnetic behavior and if it holds good with other test system, Ni/Al and Ni/Cu sys-

tem is investigated. However, this revealed a different trend in magnetic behavior. This

different magnetic property is attributed to their dissimilar interfacial bonding. As a matter

of fact, the directional character of Ni−Al (d − p) hybridization forces Ni to have higher

coordination number with Al resulting in a decreasing but non-monotonic trend in µav. In

Ni−Cu, the s− d hybridization reduces the unoccupied Ni d down state leading to a de-

creasing trend in µav. This study strongly put forward the role of non magnetic spacer in
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modulating magnetic property but in a dissimilar fashion. In the next part of our study,

the role of atomic scale structural heterogeneity at the magnetic/non-magnetic interface in

modulating the IEC in 1D Fe/Pt nanowire is unraveled using first principles density func-

tional approach. We also report an enhancement in the magnetic moment of the Fe atom

at the Fe/Pt interface, when compared to the magnetic moment of the corresponding Fe-

atom in the pristine Iron nanowire. Once again, a mechanism based on multi-step electron

transfer and spin-flip is used to explain the increased magnetic moment of the interfacial

Fe atom. The J value as well as GMR is found to switch sign as the spacer width in

the nanowire increases. Magnitude of J value is found to decrease substantially for larger

spacer width. The competition among short range and long range direct exchange, indirect

exchange, and super exchange depending upon the spacer width is found to be responsible

for the non-monotonous sign in J. Looking at the other multilayered structures with differ-

ent combinations involving various spacer systems like, Fe/Pd, Fe/Cu, Fe/Ag and Fe/Au,

the IEC is studied in relation to specific spacer layer thickness. For the Fe/Pd nanowire

system the magnetic properties as well as the switching behaviour of IEC is observed to be

in the similar fashion to that of Fe/Pt system. Where as the Fe/Cu multilayered nanowire

system behaves differently.
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6.2 Future directions:

Till now, our effort is to explain the magnetization of a spintronic device and it’s controlled

magnetic properties with non-magnetic spacer. From the series of studies we performed,

it is evident that there is an advantage of multilayered nanowires structures in ultra high

density magnetic memory devices. However in the currently used hard drive disk, the in-

formation is stored in the form of small magnetic domains with a particular direction of

magnetization. In the process of writing data in the disk, when a pulse of current is applied

to scan the disk, there is a magnetic field exists between pulse of current and manipulated

magnetization causing waste of energy. To overcome these limitations, an alternative way

is proposed to pass electric current directly through the nano-device to switch the magneti-

zation direction, either by spin transfer from the spin polarized current or by induced field,

instead of an external pulse current to generate the magnetic field. This unique feature

is called spin torque effect and it can lead to development of ultra high density magnetic

memory device which can run with low power consumption. Experimentally, it is already

reported that this spin transfer torque can switch the direction of magnetization in multi-

layer pillars [87, 88]. It is also possible to push the domain wall (DW) (boundary of two

different magnetic domains with different magnetization directions) along the length of the

nanowire [89, 90, 91] which gives rise to a new type of domain wall based data storage

device called racetrack memory device [92]. Since the currently used hard drive disks are

two dimensional arrays of magnetic bits, it is reasonable to look for the three dimensional
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racetrack memory (RM) device as an alternative approach to develop a much faster and

cheaper ultra high density memory device. The RM constitute the information stored in

magnetic domains being stacked in a tall column of magnetic material. Each domain has

a positive (north) and a negative (south) pole and the bit length is decided by the spacing

between consecutive DWs. Thus RM is basically a shift resister, in which the DWs i.e the

bits can move to and fro along the reading and writing elements integrated in the system.

Mostly the DWs can be read with magnetic tunnel junction (MTJ) magnetoresistive sensing

device [93], while the writing can be carried out using the spin momentum transfer torque

effect [94, 95] from the current injected to racetrack from magnetic nano-elements. Also it

can be achieved by using the fringing fields given by controlled motion of magnetic DW in

a proximal nanowire.

The external uniform magnetic field can’t be used to shift the series of DWs along the race

track because the neighboring DW would start to move in opposite directions and will start

to annihilate each other causing energy loss. Furthermore, the use of non-uniform local

magnetic field to manipulate the DW is found to be expensive and inconvenient. On the

other hand in RM, the current is allowed to pass through a magnetic material and gets

spin polarized, because of spin dependent diffusive scattering, thus carries spin angular

momentum. When this spin polarized current passes through the race track, the spin angular

momentum of the current gets transferred to the DW applying a torque to the moment of

the DW [96]. This results into the shift the DW along the race track. But the magnetic

column should be sufficiently narrow so that the spin momentum transfer interaction of the
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current to the DW dominates over the self field of the current. It is rational to assume that

the race tracks are needed to be composed of narrow magnetic nanowires. But the ability to

set the DW polarity in a layered nanowire system by choosing appropriate current direction

for a current pulse is yet to be explored. However, the most challenging aspect of the

racetrack memory is the controlled and reliable motion of these DWs and the required pulse

of spin polarized current density to move the DW along the race track. Further research is

necessary to understand the current induced domain wall motion in multilayered nanowire

including that of the Fe/Pt nanowire system.
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Appendix A

Derivation of Thomas Fermi kinetic

energy

The number of energy states between energy levels E to E+dE is:

ng =
π
4

(

8ml2

h2

)

3
2

ε
1
2 δε (1.1)

With ε f is the Fermi energy and all the states with energy smaller than ε f are the occu-

pied state and contributes to the total energy of the system. Thus the total energy is the
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contributions from all the occupied states and can be presented as:

∆E = 2
∫ ε f

0
ε

(

8ml2

h2

)

3
2

ε
1
2 δε (1.2)

The factor 2 comes as each energy state is doubly occupied with both spin-up and spin-

down electrons.

∆E =
8π
5

(

2m
h2

)
3
2

l3 ε
5
2
f (1.3)

The Fermi energy is related to the total number of electrons is:

∆N = 2
∫

ng(ε)dε (1.4)

using eqn. 1.1 it becomes,

∆N =
8π
3

(
2m
h2 )

3
2 l3(ε f )

5
2 (1.5)

In terms of ∆N the eqn. 1.3 becomes:

∆E =
3
5∆N ε f (1.6)
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3h2

10m(
3

8π
)

2
3 l3 =

(

∆N
l3

)
5
3

(∆N
l3 ) = n

n is the electron density. rearranging the above equation we get

∆E =
3
10

(3π2)
2
3

(

h2

8π2m

)

l3∆N n
5
3 (1.7)

in atomic unit

(

h2

8π2 m

)

l3 n
5
3 = 1

kinetic energy density is

t[n] =
∆E
l3 =

3
10

(3π2)
2
3 n(r)53 (1.8)

The total kinetic energy is

T [n] =
∫

t[n]dr = 3
10 (3π2)23

∫

n(r)53 dr
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T [n] = C f

∫

n(r)53 dr (1.9)

The derivation of Tomas-Fermi energy gives an clear explanation of kinetic energy of the

N-electron system.
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Appendix B

N representability and V

representability

An electron density n(r) is said to be V-representable if it corresponds to the ground state

Hamiltonian with a suitable local potential V (r). This potentialV (r) should be unique[86].

That means although a local potential V (r) can give multiple ground state with different

densities but two different potential can’t give the same ground state density as represented

in Figure. 2.1 Even for a single particle system there are densities that don’t correspond to

ground state wave function.

But the N-representable condition can be satisfied for any reasonable density. The density
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Figure 2.1: A mapping between potential and ground state density. Though the
local potential can have multiple ground states, the two different local potential
will never give the same ground state density.

is N-representable if

n(r) ≥ 0 nonumber (2.1)
∫

n(r)dr = N nonumber (2.2)
∫

|5 n(r)
1
2 |2 dr < ∞ (2.3)

This gives a clear idea of V-representable and N-representable density.
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Appendix C

Time Line

All the calculated results presented in my thesis are performed on paticluster with the CPU

using Dual Intel Xenon 2.8 GHz, Intel Pentium-4.3.0 GHz and Intel Xenon Quad Core 2.5

GHz with 2GB RAM in each node.Here I have only used VASP code but with different

pseudo-potentials and different set of grid point sampling of the Brillouin zone. Perfor-

mance of different k-point sampling is presented in the Table. 3.1

Table 3.1: comparison between different k-point sampling.

k-point 1 1 1 1 1 3 1 1 5 1 1 6 1 1 7
Total energy 178.964 178.551 178.529 178.532 178.534
CPU Time 1907.00 660.31 930.18 772.39 1137.18

129



Appendix D

Copyrights

The copyright permission for Figure. 1.3 is distributed under GFDL. GNU Free Documen-

tation License(GFDL)

Version 1.2, February 2006

The copyright permission for Figure. 1.2 is distributed under GFDL.

GNU Free Documentation License(GFDL) Version 1.2, 9th October 2007

The copyright permission for Figure. 2.1 is distributed under GFDL.

GNU Free Documentation License(GFDL)

22nd November 2006

Permission is granted to copy, distribute and/or modify this document under the terms of

the GNU Free Documentation License, Version 1.2 or any later version published by the

Fre e Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
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Cover Texts.

A copy of the license is included in the section entitled "GNU Free Documentation Li-

cense". GNU Free Documentation License(GFDL)

Author: Wolfram Quester: I, the copyright holder of this work, hereby release it into the

public domain. This applies worldwide. In case this is not legally possible,I grant any entity

the right to use this work for any purpose, without any conditions, unless such conditions

are required by law A guide line to follow public domain is described in the section entitled

"Wikipedia:Public domain"

The GNU Free Documentation License (GNU FDL or simply GFDL) is a copyleft license

for free documentation, designed by the Free Software Foundation (FSF) for the GNU

Project. It is similar to the GNU General Public License, giving readers the rights to copy,

redistribute and modify a work and requires all copies and derivatives to be available under

the same license. Copies may also be sold commercially, but, if produced in larger quan-

tities (greater than 100), the original document or source code must be made available to

the work’s recipient. The GFDL was designed for manuals, textbooks, other reference and

instructional materials, and documentation which often accompanies GNU software. How-

ever, it can be used for any text-based work, regardless of subject matter. For example, the

free online encyclopedia Wikipedia uses the GFDL for all of its text. Wikipedia:Public

domain For all practical purposes on Wikipedia, the public domain comprises copyright-

free works: anyone can use them in any way and for any purpose. Proper attribution to

the author or source of a work, even if it is in the public domain, is still required to avoid
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plagiarism. The public domain is generally defined (e.g. by the U.S. Copyright Office)

as the sum of works that are not copyrighted, i.e. * that were not eligible for copyright

in the first place, or * whose copyright has expired. However, there is no such thing as

the public domain on the Internet. International treaties, like the Berne Convention, are

not self-executing and do not supersede local law. There is no globally valid "International

Copyright Law" that would take precedence over local laws. Instead, signatory countries of

the Berne Convention have adapted their laws to comply with the minimum standards set

forth by the treaty, often with stronger provisions than required. Whether or not something

is copyright-free in some country depends on the laws of individual countries. Wikipedia,

and the Wikimedia Foundation, its legal body, are based in Florida, United States. Al-

though legislation is sometimes unclear about which laws are to apply on the Internet, the

primary law relevant for Wikipedia is that of the United States. For re-users of Wikipedia

content, it is the laws of their respective countries. In the U.S., any work published before

January 1, 1923 anywhere in the world[1] is in the public domain. Other countries are not

bound to that 1923 date, though. Complications arise when special cases are considered,

such as trying to determine whether a work published later might be in the public domain in

the U.S., or when dealing with unpublished works. When a work has not been published in

the U.S. but in some other country, that other country’s copyright laws also must be taken

into account. Re-users of Wikipedia content also might find the explanations here useful.

The copyright permission for Figure. 3.18, Figure. 3.19, Figure. 3.20, Figure. 3.20 is taken

from APS and attached as a figure in Figure. 4.1.
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Figure 4.1: The photo copy of the permission letter showing permission is granted
for the figures.(Reprinted from, Partha.Pratim.Pal, Ranjit.Pati, Phys. Rev. B. 77,
144430(2008), c©(2008) The American Physical society.)
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