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Abstract 

Proteins are one of the most versatile macromolecules in the biological system. The 

function or activity of a protein highly depends on its 3D native structure. However, 

under stress, they are at risk of misfolding/aggregation, leading to formation of structures 

that can indicate loss of function or gain of toxicity. In severe cases, protein aggregation 

can result in many diseases, including neurodegenerative diseases, such as Alzheimer’s, 

Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis. Due to the heterogeneous 

nature of cellular environment and protein molecules, mechanism of in vivo folding and 

related toxicity still remains elusive. To have a better understanding of the cellular 

protein aggregations process and subsequent toxicity, we have performed aggregation 

studies of proteins with different types of posttranslational modifications, which is critical 

to protein’s functional diversity.  

In this dissertation, two common types of covalent modification of proteins, i.e. 

disulfide reduction and acetylation, were selected. In aggregation studies of two globular 

proteins, hen egg white lysozyme and bovine serum albumin (BSA), formation of 

amorphous aggregates were observed as a consequence of disulfide bond scrambling. The 

structural properties of the observed aggregates were distinct and depended on disulfide 

reduction level. In study of amyloid β (Aβ) peptide, the major pathological protein in 

Alzheimer’s disease, effect of acetylation of the two lysine (K) positions, K16 and K28, 

on protein aggregation were investigated. We observed that acetylation on K16 can 

significantly increase hydrophobicity of Aβ and disrupt amyloid fibril formation. 

Interestingly, the heterogeneous mixtures of wild type and acetylated peptides displayed 
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increased cytotoxicity compared to the homogeneous samples. To further understand the 

toxicity of protein aggregates, we then compared the cytotoxicity of eleven different 

aggregates from lysozyme and BSA, varying in morphology, size, flexibility, and 

hydrophobicity. The results suggest that the protein conformational changes in the early 

stage of aggregation process are essential for a gain in toxicity. Thy observed toxic 

species are structurally flexible, however, no clear correlation was found between 

cytotoxicity and hydrophobicity. Considering all the toxicity results of Aβ peptide, 

lysozyme, and BSA, we noticed that mixtures of native and modified proteins or 

aggregates are usually highly toxic. Therefore, the observed cytotoxicity of different 

structures may result from the heterogeneity of samples that are flexible rather than any 

defined structure. Further analysis of the toxic conformation would require high 

resolution structure determination of different aggregated protein species. 
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Chapter 1 Background 

Proteins are the most versatile macromolecules that are involved in almost all of the 

biological processes. Formed from 20 basic building blocks (amino acids), a protein’s 

biological function or activity is determined by its well-defined 3D native structure. In 

the cellular environment, there are risks for proteins to form wrong structures, which may 

result in loss of function, or in some cases, gain of toxicity. Even the proteins that 

successfully fold into correct native structures are only marginally stable 

(thermodynamically) in a very narrow range of physiological conditions. To understand 

the remarkable relationship between protein’s structure and function, the folding process 

of protein has been studied for more than 50 years. Researchers tried to answer the 

questions: How can a protein fold from the 1D sequence code to 3D structure? How can 

cells control protein folding? What happens if a protein folds into the wrong structure? 

Can we predict folding? Science magazine framed protein folding problem as one of the 

125 most important unsolved problems in science1. While the information in this area is 

still growing rapidly, protein folding has already grown into a whole field of research. In 

the following sections, basics of the protein folding process will be reviewed, including 

history of protein folding, the driving forces and factors of protein folding, and problems 

caused by misfolded proteins. 

1.1 History of protein folding 

About a half-century ago, Max Perutz and John Kendrew won the 1962 Nobel Prize 

in Chemistry for determining the 3D structure of globular protein at the atomic level2-4. 
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Their work laid the foundation for molecular biological mechanisms of the relationship 

between protein function and structure, and became great support to studies on protein 

folding. But the story of protein folding actually started 60 years earlier, in 1902, when 

Emil Fischer and Franz Hofmeister discovered that proteins were formed from covalently 

linked amino acid chains5. By 1911, Henrietta Chick and C. J. Martin discovered the 

denaturation process of protein. It was the first time that protein denaturation was 

distinguished from aggregation5. In fact, the concept of “protein folding” was not put 

forward until 1929 by Hsien Wu. When the denaturation process was believed to be 

either dehydration (Robertson, 1925) or hydrolysis (Anson and Mirsky, 1925) of the 

protein5, Wu proposed it to be a purely conformational change: during denaturation, the 

3D network of the protein chain changed from a “rigid, regular arrangement” to an 

“irregular, flexible open chain”6. However, Wu’s hypothesis was not accepted in the field 

immediately, because of the limited knowledge of protein structure. Until 1950s, 

reversible denaturation was investigated for serum albumin, hemoglobin7, ribonuclease 

A8  and many other proteins, which proved Wu’s hypothesis and also demonstrated that 

protein folding and denaturation are thermodynamic processes. The free energy change 

between the native and denatured states of a protein was discovered7. Shortly thereafter, 

Anfinsen established the “thermodynamic hypothesis”, suggesting that proteins exist in 

thermodynamic configurational equilibrium, with the folded state representing the global 

minimum of configuration energy8.  

Even though in the early studies denatured proteins were successfully refolded to 

their native structure and restoring the biological activities in test tubes, the investigators 

realized that the folding in a test tube was too slow compared to those carried out in cells. 
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In the talk “How to fold Graciously” (1969), Cyrus Levinthal mentioned the astronomical 

number of possible configurations of protein, which was later called “Levinthal’s 

Paradox”9: for a polypeptide chain of 100 residues, if each amino acids has 3 stable 

conformations, there will be total 3100 possible conformations that the protein may fold 

into. On that basis, if a protein reached its native structure by sequentially sampling all 

the possible conformations, it would take time that is longer than the life span of any 

organism in this universe. Therefore Levinthal proposed that in a biological system, there 

must be pathways that guide and speed up protein folding to the correct configuration10. 

Study of the role of the intracellular environment in protein folding started from 

renaturation of ribonuclease11, influenza hemagglutinin12, and bovine pancreatic trypsin 

inhibitor (BPTI)13 in isolated microsomal fractions. From the results, it was noticed that 

protein folding can be facilitated by certain proteins in the endoplasmic reticulum (ER) in 

eukaryotic cells. For example, the protein disulfide isomerase on ER was found to be 

involved in folding of proteins which have disulfide bonds13, 14. However folding of large 

complex, multi-domain proteins was found much harder than the small single domain 

proteins, which can easily form the native fold by themselves. Large proteins can only 

fold efficiently in the presence of certain proteins called “molecular chaperones”. The 

term molecular chaperones was first used to introduce nucleoplasmin, a protein that 

promotes assembly of DNA and histone-histone interactions without itself being part of 

the nucleosome15. Later it was applied to represent families of proteins that facilitate 

protein folding, assembly and translocation in bacterial and eukaryotic systems16. To date, 

molecular chaperones define a variety of factors that assist generation of native structures 

of biomolecules including proteins and nucleic acids7. 
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It has been more than a century since the first exploration of Fischer and Hofmeister, 

but the study of protein folding never stopped. Even though there is no specific 

commercial target in this field, protein folding has drawn intense interest as one of the 

frontiers in science today. Knowledge of protein folding is building from research in 

bench-top experiments and computational simulations. Now there are over 100,000 

protein structures at atomic detail available on databases like Protein Data Bank (PDB, 

www.rcsb.org/pdb)17, and the number keeps growing every year. With the advances in 

modern technologies, achievement of protein folding problems can be made not only 

through the professional supercomputers18, but also millions of normal home computer 

users through Folding@home (folding.stanford.edu)19, or even  through a multiplayer 

online video game called Foldit (Fold.it/portal)20. Moreover, studies of protein folding, 

and misfolding, sheds lights on a whole new class of disease, protein-misfolding diseases, 

including Alzheimer’s, Parkinson’s, and type II diabetes. However, to answer the 

questions arisen 100 years ago, there is still a long way to go. In the following parts, 

fundamentals of protein folding and aggregation process will be discussed in detail.  

1.2 Physical forces in protein folding 

One of the very first questions asked in protein folding studies is: how can protein 

form its 3D structure from its 1D amino acid sequence? Researchers used to propose the 

major folding force as electrostatic interactions5, hydrogen bonding21 or hydrophobic 

interactions. However since the stability difference between the native and denatured 

states of a protein is only 5-10 kcal/mol22, even minuscule interactions may contribute 

significantly. All the interactions are important. After years of studies, the common 
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physical forces involved in protein folding5 appear to be electrostatic interaction, 

hydrogen bonding, van de waals interaction, hydrophobic interaction, intrinsic 

propensities, and chain entropy. 

 
Figure 1.1. Examples of molecular interactions that stabilize protein structures. 

1.2.1 Electrostatic interaction 

As acids and bases were the earliest denaturants used in protein denaturation studies, 

electrostatic interactions were first hypothesized to be the folding force5. In 1924, 

Linderstrom-Lang came up with the first quantitative model of electrostatic interactions 

on native proteins. Electrostatic interaction, or in another word, ionic bonds, exist 

between oppositely charged residues (also called salt bridge) or between salts and 
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charged protein side chains (see example of electrostatic interactions in figure 1.1). The 

interactions between protein and ions in solution can destabilize protein by causing 

nonspecific repulsions. In detail, one can increase protein net charge by adding acid or 

base in the solution. As density of the same charge increases in a tightly-folded protein 

molecule, the charge repulsion will force the structure to loosen. This is known as 

classical electrostatic effect. However, in contrast, the specific charge interactions, or salt 

bridge, between oppositely charged side chains could stabilize the folded structure, 

because such interactions only occur in close spatial proximity.  During the 1930s, ionic 

bonds between protein side chains were believed to be the major contributor to stability 

and driving force of folding23-25. More studies on protein structures showed that ionic 

bond indeed affect stability26, 27, bus since most charge residues are concentrated on the 

protein surface, it’s not the dominant force of protein folding. Jacobsen and Linderstrom-

Lang proved the first evidence that if driven by ion pairing, folding would result in a 

negative volume change, which is in contrast to experimental results28. Investigation also 

showed that proteins have little dependence on pH (near neutral) or ionic strength (at low 

concentration) near their most stable pH29. Actually, the free energy contribution of ionic 

bonds to total stability was later proved 5-10-fold smaller than hydrophobic interactions5. 

In average, there are only about 5 salt bridges per 150 residues in protein, involving less 

than 10% of the protein molecule30, which is unlikely to be the dominant folding force. 

1.2.2 Hydrogen bonding 

The hydrogen bonds are defined as attractive interactions between a hydrogen atom 

(or a molecular fragment X–H in which X is more electronegative than H) and an 

electronegative atom/group of atoms (See example of hydrogen bond in Figure 1.1). In 
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the 1930s, Pauling proposed the importance of hydrogen bonds in molecules24, and based 

on hydrogen bonding patterns, he successfully predicted the model of secondary 

structures, α-helix and β-sheets31. It was soon investigated that hydrogen bonds among 

amid and carbonyl groups on the backbone is the principle driving force for α-helix and 

β-sheets from random coil structure32-34, and the force increased with more polar groups 

in the protein. Since helices and sheets are common features in proteins, hydrogen 

bonding should naturally play an important role in folding. There are about 90% of C=O 

groups and NH groups in proteins form hydrogen bonds to either water molecules, 

protein backbone, or other side chains35. Remarkably, all possible hydrogen bonds are 

generally satisfied in protein native fold36. Studies on tyrosyl-tRNA synthetase37 and 

phage-T4 lysozyme38, 39 found that hydrogen bonds stabilized protein structures. 

However, all proteins share the same peptide bond connections to form the backbone, but 

the native folded configurations are all different. Thus, the hydrogen bonding interactions 

that majorly from the backbone atoms are not specific for a protein to fold into a unique 

structure. Kauzmann40 concluded that the intrachain hydrogen bonds have similar free 

energy in both folded and unfolded states, suggesting that folding is not favored for 

hydrogen bonds formation. In addition, hydrogen bond angles in protein share the same 

distribution with those in small molecular compounds35. The hydrogen bond turns out to 

be a weak folding driving force, but contributes significantly to the internal organization 

in the folded protein5.  

1.2.3 Van der Waals interactions 

Van der Waals interactions represent the attractions among fixed or induced dipoles5. 

Since a folded protein molecule is tightly packed, attractive or repulsive forces between 
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closely arranged atoms are important. In general, for the large numbers of van der Waals 

interactions from protein backbone, folding is favored. However van der Waals 

interaction is naturally not selective, which cannot count for why there is only one 

specific native conformation of the polypeptide chain. 

1.2.4 Hydrophobic interaction 

Hydrophobic interaction was actually first discovered in the study of electrostatics 

forces in protein folding. In early studies, it was noticed that both the processes of folding 

and transferring nonpolar compounds from water into nonpolar solutions involved a 

significant decrease of heat capacity. In work of Jacobsen and Linderstron-Lang28, 

protein folding was driven by the “aversion” from the nonpolar residues to water, the 

same force drives micelle formation. While in nonpolar solvent, proteins are easily 

denatured. This kind of interaction was first considered as van der Waals41; till 1960s, 

Kauzmann and other researchers brought the name hydrophobic bond (earlier called 

“antihydrogen bond”), which is now used to describe the relation between hydrophobes 

(low water soluble molecules) surrounded by water5. Thus, it is also called “water 

mediated hydrophobic interaction”. As more crystal structures of proteins become 

available, a core structure formed by nonpolar residues protected from water was found 

as a predominant feature of globular proteins42. The compact arrangement of hydrophobic 

core helps proteins to reduce the surface area and decrease undesirable interactions with 

water molecules. Compared to other types of interactions, the hydrophobic core residues 

are more strongly conserved and correlated with the structure43-46. In addition, 

substitution of nonpolar residues turned to be more disruptive to protein stability than 

other types of substitution47, 48. Therefore, hydrophobic interactions among the nonpolar 
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sidechains from core residues are considered one of the major folding forces. However, 

without other interactions, hydrophobic interaction alone still cannot fold protein into 

unique native conformation. 

1.2.5 Intrinsic propensities 

Instead of describing a single type of force, intrinsic propensity represents certain 

types of configurations preferred by the peptide chains, depending on size or sequence, 

which could be results of the total local interactions among residues5. For example, the 

stability of the helix structure increased with length of the polypeptide chain49, 50, in 

which the small free energy contribution from each residue summed to become a strong 

force what favors helix formation. Globular proteins have unique internal organizations 

as combination of helix, sheets, and turns, determined by amino acid sequence. Among 

all the attempts to predict protein structures using only intrinsic propensities, the success 

rate is ~ 60%, which will be higher within in a given family of proteins51-53. Polymer 

chains, not only proteins, share a similar tendency to fold. When a chain molecule forms 

self-contact, it will prefer to form a loop as small as possible, which leaves more 

accessible conformations for the main chain54. For the same reason, if the chain is to form 

a second self-contact, it will be as close as possible to the first structure in the sequence. 

As a consequence, when a chain becomes more and more compact, a considerable 

number of secondary structures will be developed54. This is not to say that other forces 

are not important. This is only to say that intrinsic propensities of a protein chain also 

limits the possible conformations when it folds. 
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1.2.6 Chain entropy – principle opposing force 

Entropy is the main force opposing folding, in another word, unfolding5, 24. As a long 

polymer, the polypeptide chain can gain entropy in many possible configurations, 

depending on the relevant degree of freedom. While changing conformation, the 

arrangement of connected residues would be affected, including changing specific ion 

pairs, or the bond φ, ψ, and χ angles. Entropies that arise from these local configuration 

changes are called local entropy. These local entropies resemble translational, vibrational, 

and rotational entropies of small molecules55, being independent from the global 

properties of the protein, like size or distributions of polar/nonpolar residues5. Although 

local entropy is normally small, there are evidences that local entropy could affect protein 

stabilities56. There is another type of entropy, nonlocal entropy, arises from “excluded 

volume”, which means one part of a long chain cannot occupy the space that was already 

occupied by the other part of the same chain. If there is no limitation of volume, a chain 

can occupy any large space with any configuration. However, the excluded volume 

reduces the ways the polypeptide chain can configure. Recent structure simulation 

achievement showed that as a compact polymer, the protein reaches its internal 

architecture more as a consequence of steric constraints54, 57, which has presumably 

hydrophobic interaction as the driving force, and nonlocal entropy as the opposing force. 

The external thermodynamic conditions, such as pH, temperature, and ionic strength of 

the solution can affect the radius and conformations of the denatured proteins, and 

therefore the nonlocal entropies. In general, the excluded volume effect is proportional to 

the number of residues. Larger proteins have relatively smaller free volume. In this light, 

cross-links were introduced to increase protein stability. Evidences showed that after 
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adding cross-link residues, which reduces the number of accessible configurations, the 

unfolded state became less favored58, 59. It appears that the most commonly used protein 

cross-link is disulfide bonds, which will be discussed in section 1.5.1. 

1.3 Energy landscape – A global overview of protein energy surfaces 

With a tremendous amount of experimentation achievements on the physical forces 

of protein folding, using statistical ideas, the theory of funnel-shaped protein folding 

energy landscape was emerged in the late 1980s60-62. The energy landscape is the 

mathematical description of the relationship between folding forces and chain entropy 

(the major opposing force), as introduced in the last section. It has generally been based 

on the assumption that protein folding occurs by searching through an ensemble of 

accessible configurations, rather than directly through certain defined structure 

intermediates. Since the unstable denatured proteins are conformationally heterogeneous, 

in all different types of energy landscape models, proteins always have many high energy 

states and only a few low energy states, resulting in a funnel shape. Figure 1.2 shows the 

most realistic model, a rugged energy landscape with kinetic traps that proteins can 

transiently reside60, 62. With no pathway but multiple folding routes at different conditions 

a protein starts folding from the unstable high energy states, crossing substantial kinetic 

barriers, toward the low energy native structure. As protein stability increases (lower 

energy), conformational entropy decreases63. In this way, the funnel-shaped model 

describes protein’s conformational heterogeneity. 



12 
 

 
Figure 1.2. A classic rugged model of protein folding energy landscape (modified 

from Onuchic, Annu. Rev. Phys. Chem. 199760 Copyright © 2015 Annual Reviews). 

Energy represents the solvent-averaged energy, and the fraction of native-like contacts, 

is used to describe the position of a state during folding.  

Usually, small single domain proteins, less than 100 amino acids, have relatively 

smooth folding funnels. However about 90% proteins in the cell are larger than 100 
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amino acids, which have a strong tendency to form compact structures in aqueous solvent 

via hydrophobic collapse64. In those cases, the rapid folded states may not relate to the 

correct folding pathway, but there probably are substantial elements of native structures 

contained in such species (Figure 1.2, unrelated structures). Structure reorganization that 

may involve a high free-energy barrier is then required to convert the rapid folded 

structures to the correct fold, resulting in population of intermediate states (Figure 1.2), 

which may only have <50% structure similarity to native-like structures65. By limiting the 

accessible configurations, intermediates could assist folding on the correct pathway66. On 

the other hand, if the intermediates cannot reach native state through the structural 

reorganization process, the intermediates are then defined “off-pathway”67. Abundant 

evidences had been found that off-pathway intermediates lead to formation of misfolded 

structures or aggregates68. Figure 1.3 shows a schematic energy landscape of protein 

aggregation, with some common misfolded protein aggregate species, including 

oligomers, amorphous aggregates, and amyloid fibrils. Although the native fold and 

aggregates appear as very distinct structures, they share the same physical folding forces: 

hydrophobic interactions, hydrogen bonding, and many other interactions as introduced 

in section 1.2. Since native protein molecules need to keep certain conformation 

flexibility to fulfill their biological functions, the native states are only marginally stable 

compared to the denatured state. However, as intermolecular assemblies without 

biological activities, the protein aggregates are more thermodynamically stable than the 

native state of single molecules, showing much lower free energy and less structural 

entropy on energy landscape (Figure 1.3). Therefore, the off-pathway aggregation 

processes are more kinetically trapped through formation of misfolded proteins or 
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aggregation nucleus by local unfolding events. Next section will focus on different types 

of protein aggregates and the different mechanisms by which all manages/removes these 

aggregates. 

 

Figure 1.3. Schematic energy landscape for protein folding and aggregation 

(modified from Hartl and Hayer-Hartl. Nat. Struct. Mol. Biol. 200969). The light gray 

shaded folding part shows the typical on-pathway folding funnel that unfolded proteins 

funneling towards the native state via different intermediate states. While the dark gray 

shaded part describes the off-pathway aggregation process of unfolded proteins toward 

the thermodynamic global free energy minimum form, the amyloid fibrils, via conversion 

from kinetically stabilized globular structures, such as oligomers, or amorphous 

aggregates. 
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1.4 Misfolded proteins  

Cells have a protein quality control system that is formed by a large machinery of 

proteins, to ensure correct folding and rapid degradation of any mutated or misfolded 

protein structures. Irreversibly misfolded and aggregated proteins are normally removed 

by ubiquitin-proteasome system (UPS) and autophagy system. However, even after 

escaping the cellular quality control machinery, the folded proteins may still form 

aggregation intermediates, which can be induced by random conformational fluctuations 

or environmental factors. When misfolded proteins cannot be degraded, they may 

accumulate inside cells or tissues in form of distinct aggregates. Some of them may form 

structures that are toxic and are known to be associated with diseases, such as 

amyloidosis, Prion disease, Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral 

sclerosis, and Huntington’s disease (Table 1.1). Even for proteins that do not cause 

amyloidosis, their aggregates can cause toxicity as well70, 71. Especially in age-related 

amyloidosis, protein quality control machinery could be saturated by large numbers of 

partially folded or misfolded proteins, which keep accumulating in the crowded cellular 

environment and eventually form intracellular aggregates before being refolded or 

degraded72. In this section, the major pathologic protein aggregates, amyloid fibril, 

protofibrils, oligomers, and amorphous aggregates will be highlighted. 

1.4.1 Amyloid fibrils 

Amyloid fibrils are a specific class of abnormal extracellular protein assembly with 

long branchless fiber structures and are resistant to degradation (Figure 1.4). The amyloid 

fibril structures were first found about 100 years ago by Dr. Alois Alzheimer, in brains of 
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patients diagnosed with dementia. Now amyloid fibrils have been found in many diseases 

affecting almost all the organs in the human body, formed by more than 30 plasma 

proteins (Table 1.1). Diseases such as Alzheimer’s, type II diabetes, spongiform 

encephalopathies, and amyotrophic lateral sclerosis that pathologically associate with 

amyloid fibrils are classified as amyloidosis diseases. Recently, the biological function, 

instead of pathologic effects, of the amyloid has also been identified73. 

 

Figure 1.4. Different types of amyloid fibrils and pre-fibril intermediates imaged by 

transmitted electron microscope (TEM). (a, b) Amyloid β peptide 1-40 (Aβ1–40) fibrils 

with (a) ″twisted and (b) ″striated ribbon morphologies. (c) Islet amyloid polypeptide 

(amylin) fibrils. (d, e) PrP fibrils with (d) ″R″ and (e) ″S″ morphologies. (f) Pmel17 

repeat domain fibrils (g) Aβ1–40 (E22G) protofibrils. (h) Aβ1–40 (E22G) amyloid pores. 

Scale bars in (a)-(g) are 200 nm, in (h) is 50 nm. Images are reprinted with permission 

from Tycko et al. 201374. Copyright © 2015 American Chemical Society.  

Table 1.1. Some human amyloidogenesis proteins and the related diseases75. 

Protein name Amyloid diseases 
# of 

S-S 
Structure 
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Androgen receptor 
Spinal and bulbar 

muscular atrophy 
0 

α-helical with unfolded N-

terminal 

Amyloid-β Alzheimer's disease 0 Natively unfolded 

α-synuclein 
Parkinson's disease 

Alzheimer's disease 
0 Natively unfolded 

Huntingtin exon 1 Huntington Disease 0 Natively unfolded 

Tau protein 
Frontotemporal 

dementias 
0 Probably natively unfolded 

Ataxin-1 Spinocerebellar ataxia 0 Probably natively unfolded 

Calcitonin 
Medullary Carcinoma of 

the Thyroid 
1 Natively unfolded 

Islet amyloid 

polypeptide (IAPP) 
Type 2 diabetes 1 Natively unfolded 

Prion 
Spongiform 

encephalopathies 
1 

unfolded (N-terminal) and 

α-helical (C-terminal) 

Tansthyretin 
Senile systemic 

amyloidosis 
1 Predominantly β-sheet 

Abri 
Familial British 

dementia 
1 Predominantly β-strand 

Superoxide 

dismutase 1 

Amyotrophic lateral 

sclerosis 
1 Predominantly β-strand 

β2-Microglobulin 
Haemodialysis-related 

amyloidosis 
1 β-sheet 

Ig light chains 
Primary systemic 

amyloidosis 
1 β-sheet 

Gelsolin 
Finnish-type familial 

amyloidosis 
1 Globular protein 

Atrial natriuretic 

factor 
Atrial amyloidosis 1 Globular protein 

Cystatin C Hereditary cystatin c 2 Globular protein 
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amyloid angiopathy 

Insulin 
Injection-localized 

amyloidosis 
3 Globular protein 

Lysozyme 
Hereditary systemic 

amyloidosis 
4 Globular protein 

Fibrinogen 
Hereditary renal 

amyloidosis 
29 β-sheet 

 

The insoluble amyloid fibrils are structurally dominated by antiparallel β-sheet 

structures. Remarkably, the precursor proteins of amyloid fibrils are structurally diverse 

and share nearly no sequence similarity, ranging from < 5 kDa small peptide (amyloid β-

peptide) to >55 kDa large protein assemblies [transthyretin (TTR)]67, 74. More 

intriguingly, there are many more proteins that do not associate with amyloidosis can 

aggregate into amyloid fibril structures under laboratory conditions76, strongly suggesting 

that polypeptide chain forms cross-β structures as an inherent property77. Therefore, study 

of fibrillization mechanism of one single protein may cast important insights on the fibril 

formation process of all proteins. 

Amyloid fibrils are normally formed from soluble proteins. Taking non-

amyloidogenic globular proteins as an example, fibrils typically form under extreme pH 

or temperature conditions, or with denaturant, which destabilize the protein’s native 

structure into flexible unfolded or partially folded conformations78. The typical amyloid 

formation for lysozyme is at pH 2.0, 65 oC, at high protein concentration79, 80. Other 

factors such as mutations were shown to significantly destabilize structures, leading to 

increased tendency for fibril formation. The early onset familial Alzheimer’s disease was 

found to be closely related to certain Aβ mutations, including Dutch (E22Q), Italian 
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(E22K), Tottori (D7N), Flemish (A21G), and Iowa (D23N)81-83. For some proteins, 

increase in concentration of native proteins can also result in onset of amyloid disease. 

For example, high serum concentration (~60-fold higher than normal) of β2-

microglobulin can decrease the stability of monomeric proteins and lead to renal 

impairment67. While for the proteins that are intrinsically unstructured/disordered, such as 

amyloid β-peptides, α-synuclein, partial folding is the critical first step in assembly84. 

However, the exact amyloid precursor structure of any protein has not yet been identified, 

leaving folding and aggregation disconnected. 

Studies of amyloid fibrils started since amyloid deposition was found as a key 

character of amyloidosis diseases. However, the question now becomes when do amyloid 

fibrils form, before or after the disease occurred? According to the amyloid cascade 

hypothesis85, the amyloid precursor protein (APP) initiates the pathogenesis of 

Alzheimer’s disease when the protein’s metabolism is altered. As a consequence of 

disease conditions, Aβ aggregates into fibrils and form neuritic plaques, which may 

further cause neuronal cell loss and that may result in dementia. However, it is the 

concentration of soluble Aβ monomers, but not the density of amyloid plaques that 

correlate with cognitive impairments86-88. Using electron microscopy and atomic force 

microscopy techniques, several pre-fibril intermediate structures, such as protofibrils, 

small oligomers, and membrane embedded pores (Figure 1.4) have been identified. These 

intermediates could be either on the fibril pathway or off-pathway, which may end up as 

amorphous aggregates. Remarkably, the pre-fibril intermediates, especially small 

oligomers, were found to be more toxic than mature fibrils, becoming the major 

pathologic structures in amyloidosis diseases. Thus, formation of mature fibrils may 
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serve a protective role by reducing the population of toxic intermediates89. Therefore, the 

research of amyloid fibrils is trying to answer the two questions: (1) what is the atomic 

structure of the toxic intermediate species; (2) what is the toxic mechanism. 

1.4.2 Amorphous/unstructured protein aggregates 

There are many other structures of protein aggregates that are very different than 

amyloid fibril structures and all are called amorphous aggregates (Figure 1.5).  

Amorphous aggregates are frequently observed during protein expression and 

purification, coupled with protein denaturation, when more hydrophobic areas are 

exposed on the unfolded conformations. These aggregates are often in a granular 

appearance without ordered intermolecular interactions, formed from random assembly 

of monomers, or through intermediates like oligomers or protofibrils90. Amyloidogenic 

proteins also form amorphous aggregates, when they failed to form amyloid fibrils. 

However, in contrast with amyloid fibrils, we know very little about amorphous 

aggregates. Due to the high structural flexibility and heterogeneity, it is extremely hard to 

measure structures of amorphous aggregates at the atomic level and classify them. 

Various amorphous aggregates have been identified recently with different structure 

properties and toxicity levels. In many studies, formation of amorphous aggregates was 

considered as a sign of successful inhibition of amyloid fibril formation91-93. However, 

some amorphous aggregates also associate with diseases, for example, the amorphous 

aggregates formed from α-crystallin in cataracts94. Moreover, some amyloid plaques in 

amyloidosis are mixtures of amyloid fibrils and amorphous aggregates95, 96. Since 

amorphous aggregates share a lot of structural similarity with intermediate oligomers and 

protofibrils, which were recently found to be the most toxic species in human 
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amyloidosis, it will be crucial to increase our understanding of the aggregation and 

toxicity mechanism of amorphous aggregates. Considering that the normal function of 

proteins directly relate to structure, the toxicity of misfolded protein assembly may also 

be controlled by certain structure properties. In this light, studies of amorphous 

aggregates could benefit understanding of other species in protein folding and 

fibrillization as well. 

 

Figure 1.5. Four different amorphous aggregate structures formed from hen egg 

white lysozyme, imaged by scanning electron microscope (SEM). (a) Lysozyme (40 μM) 

with 10 mM DTT at pH 7.2, 37 oC. (b) Lysozyme (40 μM) seeded by aggregates showed 

in (a) at pH 7.2, 37 oC. (c) Lysozyme (700 μM) at pH 7.4, 65 oC. (d) Lysozyme (120 μM) 

at pH 12.0, 25 oC. All scale bars = 1 μm. Images (a) and (b) are reprinted with permission 

from Yang et al. 201597 Copyright © 2015 American Chemical Society.  

1.5 In vivo factors of protein folding and aggregation 

While a variety of conditions that direct correct folding have been successfully 

developed, there are still differences between folding processed in cell compared to those 

in a test tube. Taking hCG-β subunit14 and tail spike protein P2298 as examples, the in 

vitro folding processes appeared to parallel their intracellular assembly, proceeding 

through the same folding intermediates to the same final native fold, but the in vitro 

folding rates and efficiency were much lower. On the other hand, small proteins can fold 

within microseconds into the native structures in diluted buffer solutions; however, the 
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same process may take minutes even hours to large, multidomain proteins. Knowing the 

highly crowded cellular environment normally contains 300-400 g/l99 cytosolic proteins, 

efficient correct folding of large proteins in cells is more challenging. The entire folding 

process is, thus, assisted and controlled by molecular chaperones, which are also widely 

applied to in vitro conditions to assist folding7. Most chaperones that participate in 

protein folding are multicomponent molecular machines that typically recognize and bind 

to the hydrophobic regions of a polypeptide chain or non-native proteins. This protects 

the hydrophobic patches from random interactions and aggregation, and at the same time, 

may also lead to conformational rearrangements to remove kinetic barriers in folding100. 

When released from chaperones, the hydrophobic residues can collapse rapidly (nano- to 

few microseconds) forming the core. Normally small proteins reach partially folded 

structures after fast folding and can then rapidly fold into the native states. Whereas the 

longer chains that require more time to fold will bind to the chaperone again and undergo 

another cycle99. Proteins that are not able to accomplish folding through fast-folding 

trajectories will be transferred to the chaperonin cages, which are 800-900 kDa protein 

complexes that are specialized to assist folding of large proteins, such as actin and 

tubulins101. 

In the cells, most eukaryotic membrane or secreted proteins follow a similar route: 

First, the nascent proteins are synthesized in rough ER. Then, they are translocated to the 

cisternae of ER, where (1) signal peptide is cleaved; (2) secondary structures and/or 

tertiary structure form as a result of co-translational folding; (3) posttranslational 

modifications takes place; and (4) disulfide bonds are formed. Finally, proteins are 

transferred to the Golgi apparatus or cell surface.  This section will focus on disulfide 
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bonds and posttranslational modifications, which play important but distinct roles in 

protein folding and aggregation.  

1.5.1 Disulfide bonds in proteins 

A favorable redox potential is required in many folding systems to assist disulfide 

bond formation, which is important for proteins to maintain the ordered structures. 

Disulfide bonds, the reversible covalent linkages between the side-chain β-thiol groups of 

cysteine (C) residues, are by far the second most common covalent bond in proteins and 

peptides102. They are naturally formed in 65% of secreted proteins and more than half of 

amyloidogenic proteins (Table 1.1)75. Moreover, disulfide bonds exist in folded proteins 

as well as the unfolded ones (see examples in Table 1.1). However, the link between 

disulfide bonds and aggregate/amyloid formation is still a matter of debate. Some native 

disulfide bonds help to prevent aggregation or fibrillization. In general, hydrophobic 

residues are mostly buried inside the core structure with native disulfide bonds103. 

Therefore, disruption of native disulfide bonds can result in exposure of hydrophobic 

structures, which may lead to protein aggregation. For example, the only disulfide bond 

in human cellular prion protein (PrP), C179-C214, is buried in the hydrophobic core, 

contributing to stabilize the globular structure104 and does not exist in the pathological 

scrapie PrP. Instead, the pathological scrapie PrP forms intermolecular disulfide bonds. 

Evidences showed that the scrapie PrP polymers can convert monomers of normal 

cellular PrP into scrapie-like conformation through disulfide exchange75 (Figure 1.6). 

Reduction of disulfide bond increases the protein conformational flexibility, which can 

assist conversion of the native α-helix structure into β-sheets and then form amyloid 

fibrils105. In addition, cleavage of the disulfide bond not only promotes conversion of 
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scrapie PrP, but also leads to dramatic conformational change and exposure of interior 

structures of the protein, which enhances in PrP-membrane interaction, alters cell 

physiology, and finally causes cell death. Furthermore, reduction of native intramolecular 

disulfide bonds leads to protein disulfide cross-linking or self-assembly, results in 

fibrillation. This has been shown for many amyloid proteins75, 105, 106.  

 

Figure 1.6. The transformation of cellular PrP (PrPc) to the pathological scrapie PrP 

(PrPsc
) polymer.* The breakage of intramolecular disulfide bonds of PrPc can be initiated 

by free thiol group on PrPsc by forming intermolecular disulfide cross-linking and is 

followed by conformational change of PrPc. When the conversion is completed, the 

newly formed polymer starts another cycle. *Adapted from Li et al. 201375 

In some other proteins, the native disulfide bonds are essential to amyloid fibril 

formation. The β2-microglobulin (β2M) has one fully buried intra-chain disulfide bond, 

which significantly contributes to amyloid fibril formation rather than stabilizing the 

native fold107, 108. Another example could be amyloidogenic peptide Abri, which 

predominantly has β-strands with one intramolecular disulfide bond (Table 1.1). In 

solution, the disulfide bond on Abri peptide promotes rapid formation of oligomers and 

the highly insoluble amyloid deposits in familial British dementia 109. According to 

Abkevich and Shakhnovich110, folding could be directly affected by the relative position 

of disulfide bonds, meaning that if the disulfides located in or near folding/aggregation 
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nucleus, they may guide the process, whereas those located far form the nucleus 

structures may slow down the progresses110. 

Since natural protein/peptide with disulfide bonds have more constrained 

frameworks and higher stabilities than other biomolecules, intermolecular disulfide cross-

linking have attracted the attention of protein engineering. Hundreds of peptide-based 

drugs design and valuable scaffolds in tissue engineering are based on the discovery of 

natural disulfide-rich architectures111. Furthermore, some disulfide-rich peptides were 

also applied to solve the oral delivery and cell uptake issues in pharmacology. One such 

example is application of the cell-penetrating peptides (CPPs)112 in drug delivery 

platforms. CPPs are short, water-soluble peptides that are capable of crossing cell 

membranes and even the blood-brain barrier. Since the intracellular glutathione 

concentration is ~ 1000-fold higher than those in the extracellular environment, disulfide 

moieties are widely used for building CPP-drug conjugates113. In this light, the CPP-

conjugates are stable during transfer in the tissues, but once the conjugates crosses the 

cell membrane, the elevated thiol concentration breaks disulfide bonds and leads to 

release of the cargo drug114. This approach of CPP has been successfully applied in drug 

delivery field and may bring a large number of peptide drugs into the market, 

contributing to both academic and industrial worlds111.  

1.5.2 Posttranslational modifications in proteins 

There are approximately 30,000 protein coding genes in human genome, but the 

actual number of cellular protein species in cells are more than one million. This 

diversification of protein first expands by mRNA splicing at the transcriptional level, 

which is a central topic of RNA metabolism115 and will not be discussed here. The second 
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proteome expansion route is the specific enzyme-catalyzed covalent posttranslational 

modification (PTM) on the side chain or backbones of nascent or folded proteins. 

Depending on the targeting amino acid side chains, the modifying enzyme, and the 

reversibility of the reaction, the major types of protein covalent modifications can be 

classified as phosphorylation, acetylation, methylation, ubiquitination, and glycosylation 

(Table 1.2). Other chemical events such as disulfide formation (discussed in section 1.2), 

backbone cleavage, proteasome autoactivation, and green fluorescent protein maturation 

are also considered as PTMs.  

Table 1.2. Posttranslational modifications on protein side chains102. 

Residue Reaction 

Arginine N-methylation, N-ADP-ribosylation 

Asparagine  N-glycosylation, N-ADP-ribosylation , protein splicing 

Aspartic acid  Phosphorylation, Isomerization to isoAsp 

Cysteine  S-hydroxylation (S-OH), Disulfide bond formation , Phosphorylation, 

S-acylation, S-prenylation, protein splicing 

Glutamine  Transglutamination 

Glutamic acid Methylation, Carboxylation, Polyglycination, Polyglutamylation 

Glycine C-hydroxylation 

Histidine Aminocarboxypropylation, Phosphorylation, Regulatory systems, N-

methylation 

Lysine N-methylation, N-acylation by acetyl, biotinyl, lipoyl, ubiquityl 

groups 

C-hydroxylation 

Methionine Oxidation to sulfoxide 

Proline C-hydroxylation 

Serine Phosphorylation, Phosphatases, O-glycosylation, 

Pphosphopantetheinylation  
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Autocleavages 

Threonine Phosphorylation, O-glycosylation 

Tryptophan C-mannosylation  

Tyrosine Phosphorylation, Sulfation, ortho-Nitration, TOPA quinone 

 

The major PTMs covalently add external chemical groups on the protein that alter 

the protein’s structure, size, charge, or conformation, and result in changes of 

hydrophobicity, biding affinity, enzyme activity, or sometimes create architectural 

impetus for molecular signaling. As the most common PTM, phosphorylation introduces 

anionic phosphates to the neutral OH side chains of serine, tyrosine, and threonine. The 

local microenvironments around these residues are then altered, and as a consequence, 

protein conformation changes. Tau is a microtubule associated protein that contains 5 

tyrosine and 80 serine/threonine as potential phosphorylation sites. When tau is 

abnormally hyper-phosphorylated, it aggregates into paired helical filaments and forms 

neurofibrillary tangles, which is identified as a histopathological hallmark in Alzheimer’s 

disease116. Similarly, acetylation alters the charge distribution on proteins by blocking the 

positively charged lysine side chains with neutral acetyl groups. There are tens of 

thousands of glycoprotein variants that are added to at least one third of secretory 

proteins by glycosylation, which alters protein architecture during folding or quality-

control processes102. A protein can be posttranslationally modified with the same group at 

many residues, as the tau protein introduced above, or a protein can also have several 

PTMs targeting on the same molecule. For example, histone has a total of 15 lysine 

residues on its four tails that organize how DNA is wrapped into nucleosomes. Two PTM 

types, acetylation and methylation, compete on the positively charged lysine and arginine 
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side chains on histone tails and result in opposite effects on gene transcription. Histone 

acetylation leads to loose packing of nucleosomes, which initiates binding of 

transcription factors and starts gene expression. Whereas blocking the lysine and arginine 

with methyl groups can result in tight packing of nucleosomes, and gene expression is 

turned off117. Another PTM, ubiquitination, also competes with acetylation and 

methylation on lysine side chains. Unlike the small single acetyl groups in acetylation, 

the ubiquityl aceyl moiety links to an 8-kDa protein ubiquitin and functions as a signaling 

scaffold that provides information with particular partner proteins during biological 

responses.  Ubiquitination usually targets the proteins that need to be relocated and 

degraded in cells. The partner proteins that contain ubiquitin receptors can act as 

chaperones, importing the target protein into early endosomes and then lysosomes for 

hydrolytic degradation102. 

To date there are more than 300 PTMs that have been discovered with the 

advancement of high-resolution mass spectrometry techniques, and the number is still 

increasing. It is not surprising that PTMs play an important role in protein folding and 

aggregation. The amyloidogenic proteins such as Aβ and tau in Alzheimer’s patients’ 

brains are recently detected to have various types of glycosylation on the side chains118, 

119. Extracellular phosphorylation and N-terminal truncation both result in acceleration of 

Aβ assembly, leading to neurotoxic aggregate species120, 121. Therefore, studies of PTMs 

can not only give insight into how the bioactive structures have been tuned by nature for 

hundreds of thousands of years, they also help us to understand the pathology of diseases. 

Moreover, since many PTMs serve as parts of the signaling pathways, they have been 

also widely applied as biomarkers or potential therapeutic targets in many diseases122, 123.  
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1.6 Motivations and hypothesis  

As introduced in section 1.4, in addition to amyloid fibrils, the aggregation 

intermediates and amorphous aggregates now draw the biggest question marks in the 

field of amyloid diseases. Recent research strongly suggests that the non-fibril oligomers 

hold the key of toxicity. Even though several oligomeric structures have been 

characterized, there is still no common standard to define a “toxic structure”. In addition, 

there are many factors that can affect protein structure in a living cell in spite of great 

strides made in the field. The full picture of protein aggregation and its relationship to 

toxicity is not clear. Therefore, it is important to characterize and link many different 

structural forms of aggregates to toxicity to have a better understanding of the protein 

misfolding diseases.  

One of the intracellular protein folding factors that can be possibly altered is the 

status of disulfide bonds. In the past, most studies on protein disulfide bonds were carried 

out at extreme pH or temperature79, 80, 124, while the in vivo environment is relatively mild 

in terms of pH and temperature variations. Experiments under conditions close to 

physiological (pH 7.2 and 37 oC) may contribute to a better understanding of protein 

aggregation process in cells. Besides the high concentration of glutathione in cytosol, 

improper use of thiol based antioxidant supplements on a daily basis can also increase the 

levels of free thiol groups in the body, resulting in a highly reducing environment in vivo. 

The highly reducing environment has potential of breaking protein disulfide bonds. 

Therefore, in the first project (chapter 3) we selected a commonly used disulfide reducing 

agent, dithiothreitol (DTT), to treat two disulfide rich proteins, hen egg white lysozyme 

(Lysozyme) and bovine serum albumin (BSA), near physiological condition. Lysozyme 
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is the amyloidogenic protein that has the highest number of native disulfide bonds (4) and 

is globular in shape. While BSA is a globular protein with 17 native disulfide bonds but 

is not involved with any amyloid disorders. Investigating the effect of disulfide 

scrambling (i.e. non-native disulfide formation) on the aggregation process using these 

two different types of proteins could give insight into the aggregation pathways that may 

be relevant to several other proteins. 

The other factor that we investigated was how a PTM, like acetylation on lysine side 

chains, can impact protein aggregation. As discussed in chapter 4, we blocked the 

positive charge on the two lysine residues of Aβ peptide, K16 and K28, by acetylation. 

The Aβ peptide has only 42 amino acids and is an intrinsically disordered structure. 

Aggregation of Aβ is simply driven by hydrophobic interactions. Residue K16 is located 

at an intermolecular binding region (K16-F20) and the K28 residue is known to form 

important intramolecular salt bridges that stabilize the β-sheets in amyloid fibrils. 

Therefore, we propose that acetylation on one or both of these two lysine residues could 

impact Aβ fibrillization process. How do these acetylation modulate Aβ aggregation may 

give insight into therapeutic strategies of Alzheimer’s disease.  

Finally, we wanted to focus on the central problem in protein aggregation field, the 

relationship between aggregate structure and its toxicity. Unlike the amyloid structure 

that is well defined, the structural characteristics of amorphous aggregates are still not 

clear. After generating many different types of amorphous aggregates using literature 

reported condition, we noticed that the amorphous structures are vatiable. In chapter 5, 

amorphous aggregates that were generated at ten different conditions were characterized 

and classified in terms of size, hydrophobicity, or structural flexibility. Then these 
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aggregates were used to measure cell cytotoxicity. By comparing the cytotoxicity of these 

amorphous aggregates, we want to identify the dominant structure that is toxic. Once we 

have a good understanding of the structures, the goal is to identify small molecules that 

can efficiently bind to these structures and hence can decrease their toxicity. This will 

have serious implication for many protein misfolding diseases for developing effective 

drug candidates. 
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Chapter 2 Methods 

Several biochemical and biophysical techniques are employed to investigate protein 

folding, misfolding, and aggregation. Table 2.1 shows techniques most frequently used 

for protein folding/aggregation research. Each technique listed below has its own strength 

and limitations.  This chapter will focus on introducing the techniques and experimental 

methods used to carry out protein aggregation studies reported in this dissertation. This 

includes UV-vis absorbance spectroscopy, fluorescence spectroscopy, non-reducing gel 

electrophoresis, scanning electron microscopy, cytotoxicity assays, and live cell 

fluorescence imaging. Details of specific experimental conditions are mentioned in each 

chapter. 

Table 2.1. Some common biophysical methods used to investigate protein folding 

and aggregation processes1, 2. U, unfolded or partially folded states; N, native states; O, 

Oligomers; A, (amorphous) aggregates; F, amyloid fibrils. 

Property Technique species 

Folding/Aggregation 

kinetics Ultraviolet absorbance U, N, O, A, F 

 Intrinsic fluorescence U, N, O, A, F 

 ANS fluorescence U, N, O, A, F 

 Mass Spectrometry U, N, O, A, F 

 Fluorescence resonance energy transfer 

(FRET) 

U, N 

 Hydrogen-deuterium exchange U, N, O, F 

Structure X-ray diffraction N, F 
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 Far-UV circular dichroism (CD) U, N, O, A, F 

 Solution/Solid state NMR U, N/O, F 

 Atomic force microscopy (AFM) O, A, F 

 Electron microscopy (EM) O, A, F 

 Fourier transform infrared spectroscopy 

(FTIR) 

U, N, O, A, F 

 Fluorescence microscopy A, F 

Conformation bis-ANS fluorescence U, N, O 

 Congo red or Thioflavin T fluorescence A, F 

 Analytical ultracentrifugation U, N, O, F 

 Calorimetry U, N 

 Gel chromatography U, N, O 

 

2.1 UV-visible absorbance spectroscopy 

Spectroscopy technique measures the effect of electromagnetic radiation on 

molecules. Light in the near-ultraviolet and visible (UV-vis) range (150-800 nm) 

comprises photon energies of about 150–400 kJ/mol3, which are sufficient to excite 

electrons to a higher energy orbital. Among the six electronic excitations that may occur 

in an organic molecule (Figure 2. 1), the transitions of n or π electrons to the π* state can 

be achieved by the energies from UV-vis lights. Therefore, the substances that applied in 

spectroscopy analysis normally have delocalized aromatic systems, such as proteins and 

nucleic acids. The absorption maxima of proteins is normally near 280 nm, contributed 

mainly by the two aromatic amino acids tryptophan (Trp) and tyrosine (Tyr) (Figure 2. 
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2). The absorptivity of phenylalanine (Phe) is 10-fold lower than Tyr and 30-fold lower 

than Trp3, thus, Phe normally does not account for protein UV absorbance. For a protein 

that contains Trp residues, such as lysozyme, the protein UV absorbance spectra is in the 

same shape with Trp UV absorbance spectra. The absorbance measurements of proteins 

are usually carried out in aqueous buffer solution, where the protein absorbance is 

proportional to its concentration, following the Lambert Beer’s law: 

A=ε·c·l 

where A is absorbance; ε is the molar extinction coefficient (M-1·cm-1), describing the 

light absorption ability of a molecule at certain wavelength; c is molar concentration; and 

l is the path length in cm. The UV-vis spectroscopy method is very sensitive and 

nondestructive, therefore, it is widely applied in quantitative analysis. Since the changes 

in local environment around the chromophores can alter the wavelength of peak 

absorbance, absorbance spectroscopy technique is also suited for measurements of 

ligand-binding reaction, conformational changes of proteins or nucleic acids, and protein 

assembly.  



48 
 

 

Figure 2.1. Molecular orbitals. 

 

Figure 2.2. UV-vis absorbance spectrum of amino acids Phe, Tyr, and Trp (A) and 

lysozyme (B). (A) UV absorbance spectra of phenylalanine (2.5 mM), tyrosine (0.5 mM), 

and tryptophan (0.1 mM) in phosphate buffer (40 mM, pH 7.0). (B) UV absorbance 

spectra of lysozyme (D, 21 μM). 
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All absorbance measurements in the following chapters were carried out on a Perkin 

Elmer Lambda 35 UV/VIS spectrometer. UV-vis absorbance was first used to measure 

the concentration of native proteins and fluorescence dyes in stock solutions. We also 

carried out UV-vis absorbance measurement to detect the soluble protein level in 

aggregation samples. Protein samples were incubated for the indicated time and then 

centrifuged at 20,000 × g for 5 minute. The supernatant was collected and diluted to 50% 

with 20 mM pH 7.2 sodium phosphate buffer and then absorbance was measured from 

240 to 600 nm. All measurements were done in triplicates. Controls were similarly 

prepared and incubated as the samples, had all the ingredients as in the sample except 

protein, and were used for background subtraction. 

2.2 Fluorescence spectroscopy 

Fluorescence describes the phenomenon that when electrons are excited from the 

ground state to S1 or S2 state, they emit energy in the form of light before returning to 

the ground state. Molecules with fluorescence properties are typically aromatic 

compounds, called fluorophores. As introduced in last section, electrons in delocalized 

aromatic systems can absorb energy from light and be excited to higher energy levels. 

However, these electrons are very unstable on the excited orbitals, thus, they rapidly 

return to the ground state by release energy as emitting photons. The Jablonski diagram 

can be used to illustrate the light absorption and fluorescence emission process (Figure 

2.3). The energy levels S0, S1, and S2 represent the ground, first, and second electronic 

states, respectively, and each energy level has many vibrational levels. Depending on the 

light irradiation energy, the electrons could be excited to different vibrational levels of 
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excited states S1 or S2. Soon after that, when the electrons relax to the lowest vibrational 

level of S1 via vibrational relaxation from the higher vibrational levels of S1, or through 

internal conversion from S2 to S1. These rapid relaxation processes complete within ~10 

picoseconds, which usually occur prior to the fluorescence emission and do not involve 

photons. The lowest vibrational state of S1 is a thermally equilibrated state. When 

electrons return to various vibrational levels of ground states (S0) from S1, energies are 

released through emission of photons, which is known as fluorescence. The electrons on 

S1 state can also be converted to the triplet states, T1, through intersystem crossing. If 

electrons return to S0 from T1, another type of luminescence could be observed, called 

phosphorescence. Since T1 is a lower energy level than S1, phosphorescence generally 

has longer emission wavelengths and lower emission rates compared to fluorescence. 

The chemical structure and local environment of a fluorophore significantly affect 

the shape and intensity of its emission spectra, therefore, fluorescence spectroscopy has 

been employed as a sensitive analysis method in protein folding studies. In our studies, 

two fluorescence methods, protein intrinsic fluorescence and extrinsic fluorescence, were 

used to monitor protein structure change during aggregation. 
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Figure 2.3. A typical Jablonski diagram. S0, S1, S2, and T1 represent the ground, 

first and second electronic states and triplet state. The colored straight arrows represent 

the processes that involve photons, including absorption (red), fluorescence (blue), and 

phosphorescence (green). The curved arrows represent the radiationless transitions. 

2.2.1 Protein intrinsic fluorescence 

The protein intrinsic fluorescence is derived majorly from the amino acid Trp and 

Tyr. Fluorescence intensities of Trp and Tyr are quite sensitive to the local environment, 

roughly correlating with the degree of solvent exposure of these residues. When 

transferred from a polar solvent to a non-polar environment, the fluorescence intensities 

of Tyr increased while Trp decreased (Figure 2.4 A). The peak wavelength (λmax) of Trp 

also shifted from 360 nm to 345 nm from polar to non-polar.  This is because that upon 

excitation, the electron density at the pyrrole ring will be shifted to the benzene ring4. On 

the proteins, same blue shift of tryptophan fluorescence can be observed during folding 

when the electron density near pyrrole end is higher than the benzene end due to the 
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electric field imposed by other charge residues or the solvent, while the opposite results 

in a red shift (to longer wavelengths) of λmax. Therefore, protein intrinsic fluorescence 

can provide information of protein conformational changes. Figure 2.4 C shows intrinsic 

fluorescence spectrum of lysozyme during chemical denaturation.  When the 

concentration of denaturant guanidine HCl (GdnHCl), increases, the protein lysozyme 

unfolded and lost the compact native structure. As a consequence, the Trp residues which 

are normally buried in the hydrophobic core are exposed to the aqueous buffer 

environment during unfolding, resulting in increase of fluorescence intensity and red shift 

of λmax. 

 

Figure 2.4. Intrinsic fluorescence of amino acids and protein. (A) Fluorescence 

intensity change of Phe, Tyr, and Trp in 0-90% ethanol solutions. Emission peak 

intensities at 324 nm of Phe, at 306 nm of Tyr, and at 346-359 nm of Trp were plotted as 

function of percentage of ethanol in the solution. (B) Change of fluorescence intensity 
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and peak wavelength of Trp in 0-90% ethanol solutions. (C) Intrinsic fluorescence 

emission spectra of lysozyme during denaturation by 0 -7 M guanidine HCl (GdnHCl). 

Therefore, by monitoring the position change of Trp residues on proteins, intrinsic 

fluorescence can sensitively detect protein conformational changes during aggregation. 

Fluorescent measurements in the following chapters were all performed on a Horiba 

Jobin Yvon spectrofluorometer (Fluoromax-4) at room temperature. For protein intrinsic 

fluorescence analysis, samples were diluted with phosphate buffer (20 mM, pH 7.2) or 

with HEPES buffer (20 mM, pH 7.2) to a final protein concentration of 10 or 5 μM. 

Intrinsic fluorescence spectra were collected from 300-450 nm with excitation at 280 nm. 

All measurements were done in triplicates. Bandwidths for excitation and emission were 

set at 2 nm. Controls were similarly prepared and incubated as the samples, had all the 

ingredients as in the sample except protein, and were used for background subtraction. 

2.2.2 Extrinsic fluorescence 

In addition of intrinsic fluorescence, the use of various extrinsic fluorescent probes 

provides additional possibilities for protein characterization. The extrinsic probes are 

normally synthetic chemical fluorophores that usually attach to protein via non-covalent 

interactions, including hydrophobic and electrostatic interactions. As introduced in Table 

2.1, fluorescence analysis with extrinsic probes can be applied to almost all protein 

species generated during aggregation, to detect changes of kinetics, structure, size, and 

conformation. 

The fluorescent dye 1-anilinonaphthalene-8-sulfonate (ANS, Figure 2.5) is the most 

frequently used hydrophobic probe in protein characterization. ANS is very sensitive to 

local solvent environments and is very weakly fluorescent in polar (aqueous) 
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environment, but shows blue shift of the emission maximum and an increase of 

fluorescence in non-polar environment e.g. organic solvents or hydrophobic pockets on 

proteins5-7. Therefore, ANS fluorescence can be used to measure protein’s 

hydrophobicity. Hydrophobic and electrostatic interactions are believed to be the major 

binding mechanisms of ANS to proteins7-9, where electrostatic interactions between the 

negatively charged sulfonate group of ANS and the positively charged residues on 

proteins play a predominant role7. Complementary interactions like van der Waals also 

stabilize the ANS-protein binding5. 

 

Figure 2.5. Molecular structures of the extrinsic fluorescent dyes used in our protein 

aggregation studies. 

Interestingly, the dimeric analog of ANS, bis-ANS, does not bind tightly to 

organized structures, even though the binding of bis-ANS to protein is dominated by 

hydrophobic interactions10. The different sizes of ANS and bis-ANS result in differences 

in their binding affinities and the number of binding sites on a protein. Bis-ANS requires 

a flexible molten globule like structures for tight binding11, 12, and reacts weakly to 

amyloid fibrils13.  Therefore, ANS and bis-ANS provide different information in protein 

aggregation measurements. ANS fluorescence measures the aggregation by monitoring 

the extent of protein hydrophobicity, which is the major driving force during aggregation. 
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Whereas, bis-ANS fluorescence detects how flexible the misfolded hydrophobic 

structures is giving insight about the nature of aggregate (i.e. is it lose or compact). 

Thioflavin T (ThT, figure 2.5) is a probe that is widely used to characterize and 

quantify amyloid fibril structures. With the hydrophobic ring structures, ThT absorption 

λmax can be affected by solvent polarity14. However, ThT fluorescence intensity depends 

more on viscosity and the rigidity of the microenvironment rather than polarity5. It has 

been proposed that when ThT interacts with amyloid fibrils, the steric constraints of 

amyloid structures require flat conformation of the dye molecule, which changes the 

twisted angle φ of the single bond between benzothiazole and the benzene ring from ~90° 

to ~30°, resulting in increase of fluorescent signal at 480 nm15. The binding of ThT to 

amyloid fibrils was proposed to occur at the grooves that parallel to the long axis of 

fibrils, driven by the hydrophobic interactions with amino acid side chains16. However, 

many recent studies found that ThT also binds to non-fibrils structures and generates high 

fluorescence17, 18. It was then suggested that hydrophobic structures with cavity of 8-9 Å 

in diameter that are capable to bind ThT and generate the character fluorescence peak at 

480 nm5, 19. Therefore, we used ThT fluorescence in the experiments to analyze the 

structural detail of aggregates/fibrils. 

Fluorescence measurements in the following chapters were all performed on a 

Horiba Jobin Yvon spectrofluorometer (Fluoromax-4) at room temperature. Stock 

solutions of extrinsic fluorescent dyes were prepared in ethanol, and then freshly diluted 

with phosphate buffer (or HEPES buffer for TCEP treated samples) as working stocks at 

concentration of 350 μM (ANS), 70 μM (bis-ANS), and 700 μM (ThT) for incubation 

with the protein samples. Concentrations of stock solutions were determined by UV-vis 
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absorbance using extinction coefficients: ANS ε350 nm = 5,000 M-1cm-1, bis-ANS ε385 nm = 

16,790 M-1cm-1, and ThT ε416 nm = 26,620 M-1cm-1. ANS and bis-ANS were used at a 

final concentration of 5 μM and 1 μM, respectively, with 15 minute equilibration with 10 

μM of proteins in samples on ice. Fluorescence spectra (400-700 nm range) were 

collected with excitation at 380 nm for ANS and 360 nm for bis-ANS. For ThT 

fluorescence, 10 μM dye was incubated with 5 μM proteins on ice for 30 minutes and 

emission spectra (460-700 nm range) were collected with excitation at 450 nm. All 

samples containing fluorescent dyes were incubated in dark for the time indicated before 

the emission spectra were acquired. All measurements were done in triplicates. 

Bandwidths for excitation and emission were set at 2 nm. Controls were similarly 

prepared and incubated as the samples, had all the ingredients as in the sample except 

proteins, and were used for background subtraction. 

2.3 Non-reducing gel electrophoresis 

Gel electrophoresis is a technique frequently applied for the separation and 

characterization of nucleic acids and proteins in biochemistry and molecular biology 

analysis. Based on the principle that the charged particles migrate in solution under the 

influence of an electrical field, gel electrophoresis methods can separate molecules by 

size, charge, or shape. The polyacrylamide gel electrophoresis (PAGE) is most suitable to 

separate proteins ranging in size from 5 to 2,000 kDa, depending on the uniform pore size 

of the gel, which can be modulated by the ratio of acrylamide and bis-acrylamide when 

casting the gel. In general, smaller protein molecules migrate faster and further than the 

large ones, resulting in separated bands on the gel (Figure 2.6). To make sure all the 
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proteins that have different net charges move in the same direction on the gel, a 

negatively charged detergent, sodium dodecyl sulfate (SDS), is usually added to protein 

samples to unfold their 3D structures and add negative net charges on the molecules. 

Therefore, on a SDS-PAGE, the migration of proteins is mainly affected by their 

molecular weight. 

 

Figure 2.6. Principle of SDS-PAGE. From: BIOCHEMISTRY 8E, by Jeremy M. 

Berg, John L. Tymoczko, Gregory, J. Gatto, Lubert Stryer, Copyright © 2015 by W.H. 

Freeman and Company. Used by permission of the publisher. 

 Depending on their stability and structure, proteins may or may not be able to 

maintain disulfide bonds intact through boiling with SDS sample buffer. The regular 

denaturing SDS-PAGEs usually contain reducing agent DTT or β-mercaptoethanol in the 

sample buffer to reduce any disulfide bonds, so electrophoretic mobility of proteins in 

SDS-PAGE depends only on size. Whereas in non-reducing SDS-PAGE (Figure 2.7), 

sample buffer contains no disulfide reducing agent, that is, proteins could maintain their 

intact disulfide bridges during migration through the gel. Since disulfide bridges can 

significantly change the tertiary structure of a protein, migration of proteins on non-

reducing SDS-PAGE depends on hydrodynamic volume, which is a combination of size 
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and shape20. Generally, with disulfide bridges, proteins should have more compact shape 

and run faster on a gel. Therefore, when studying the effect of disulfide bonds on protein 

aggregation, we decided to use the non-reducing SDS-PAGE, which allows us to analyze 

the aggregates formed through intermolecular disulfide linkages. 

 

Figure 2.7. Non-reducing SDS-PAGE. Gel images are reprinted with permission 

from Yang et al. 2015. Copyright © 2015 American Chemical Society. 

In the non-reducing SDS-PAGE experiment, incubated protein samples were first 

mixed with 5 mM iodoacetamide and incubated for 2 h at room temperature to block any 

free thiol groups. To terminate the reaction with iodoacetamide, protein samples were 

boiled with SDS sample buffer (lacking reducing agent) for 3 minutes. For the fully 

reduced samples, freshly prepared 40 μM protein solutions at pH 7.2 (20 mM phosphate 

buffer having 150 mM NaCl) were boiled with SDS sample buffer containing 10, 40, or 

100 mM DTT or 5% 2-mercaptoethanol for 3 minute. Lysozyme (10 μg/lane) and BSA (5 
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μg/lane) samples were loaded on 15% and 10% Criterion Tris-HCl polyacrylamide 

precast gels (Bio-Rad), respectively. Tris-glycine-SDS buffer (25 mM Tris, 192 mM 

glycine, 0.1% SDS, pH 8.3; Bio-Rad) was used as running buffer and proteins were 

separated by SDS-PAGE. The gels were stained with Coomassie blue stain and images 

were acquired using an Epson scanner. 

2.4 Scanning electron microscopy (SEM) 

Instead of light, the electron microscopes use a beam of accelerated electrons as an 

illumination source. Since the wavelength of an electron is 105 fold shorter than a photon, 

the magnifications of electron microscope can be up to about 10,000,000x, which is 

5,000 higher than most light microscopes. The SEM produces images by scanning the 

specimen with a focused electron beam. When interacting with the specimen, the electron 

beam loses energy in form of secondary electrons, backscattered electrons, characteristic 

x-rays, and heat or photons, which provide signals of the surface properties of the 

specimen. SEM can provide very high resolution images that show details ~1 nm, but the 

resolution of SEM images is still generally at least an order of magnitude poorer than 

those from transmitted electron microscope (TEM)21. However, due to the contrast of 

secondary and backscattered electron signals and the large depth of field, SEM permits 

the observation of the 3D shape of samples, while TEM can only obtain 2D images22. 

Thus, SEM is a great tool to observe surface morphology of small structures. 

The major limitation of applying the electron microscopy in molecular biology is 

that most organic materials are not solid and electrically conductive. To solve this 

problem, the biological samples are usually first dried on the spaceman holder and then 
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coated with an ultrathin layer of electrically conducting material, such as gold or 

platinum. Although material is coated with thin layer of metal, there are still chances for 

the soft biological sample to be burned by the high energy electron beam. SEM, uses 

lower energy electron beams, is more suitable for small oligomers and amorphous 

aggregates. To keep experiment consistency, all the aggregate structures in the following 

chapters were observed using SEM. 

In chapters 3, 4, and 5, samples of amyloid fibrils and amorphous aggregates were 

analyzed on a Hitachi S-4700 FESEM, a cold field emission high resolution scanning 

electron microscope. Incubated samples were aliquoted in a Millipore Amicon® Ultra 

centrifugal filters (3 kDa cut off) and the samples were diluted with MilliQ water. The 

diluted samples were centrifuged and concentrated at 7,000 × g at 4 oC (3 repeats after 

dilution with MilliQ water) to wash off salts and buffer. The washed samples were 

aliquoted on scanning electron microscope (SEM) stubs and allowed to dry at room 

temperature. The samples were coated with 10 nm platinum using a sputter coater. 

Acceleration voltage of 10 kV and emission current of 5 μA were used to image the 

samples. 

2.5 Cell viability (MTS) assay 

Cell viability assays are often performed in laboratories to determine if a test 

molecule affects cell proliferation or shows direct cytotoxicity. Most cell-based assays 

measure the toxicity by quantifying the number of viable cells at the end of the 

experiment. The MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium)23 assay is a colorimetric method based on the tetrazolium 
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reduction to measure redox metabolism of viable cells. The tetrazolium reagent MTS is 

used in combination with an intermediate electron acceptor, phenazine methyl sulfate 

(PMS), which can enter viable cells and become reduced in the cytoplasm or at the cell 

surface by intracellular reductants, mostly NADH24. Once it exits the cells, PMS transfers 

the electrons to MTS, converting this yellow color tetrazolium to a purple color formazan 

product (Figure 2.7)24. The formazan production could be quantified by absorbance at 

490 nm, which is proportional to the number of viable cells. While dead cells does not 

have the ability to reduce tetrazolium into formazan. This difference permits 

quantification of viable cells after incubation with substrates.  

 

Figure 2.8. The intermediate electron acceptor PMS transfers an electron from 

NADH in the cytoplasm to reduce MTS into MTS formazan. 

In the following chapters, MTS assay was performed to measure the cytotoxicity of 

protein amyloid fibrils, amorphous aggregates, and some intracellular fluorescent probes. 

Human breast cancer cells MDA-MB-231 and SH-SY5Y human neuroblastoma cells 

(from ATCC) were cultured in DMEM/F-12 medium with 10% FBS and 100 U/ml 
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penicillin-streptomycin at 37 oC in 5% CO2 humidified environment and used for MTS 

assays within the first 10 passages. The MDA-MB-231 cells were plated at 1 x 104 

cells/well and SH-SY5Y cells were plated at 2 x 104 cells/well on 96-well plates and 

allowed to grow overnight. The next day, the culture media were removed and cells were 

washed with 1X PBS buffer (pH 7.4) twice. Then 100 μl fresh media containing test 

samples at indicated concentrations were added to each well, and 6 replicates were 

prepared for each sample. The cells were incubated with the samples for 48 h. Media 

without any peptide were used as controls. To measure cell viability, 20 μl of CellTiter 

96® AQueous One Solution Cell Proliferation (MTS) Assay kit (Promega) were added to 

each well and incubated with cells at 37 oC for 4 h. Then absorbance at 490 nm were 

collected using an ELISA plate reader (BioTek Instruments, Inc.). Blanks that contains 

media and protein samples but no cells were similarly prepared and used for background 

subtraction. 

2.6 Live cell fluorescence imaging 

Recently live cell fluorescence microscopy is used to observe biological molecules, 

organelles, and many dynamic events in cells and tissues. The normal optical or electron 

microscopy cannot efficiently distinguish different cellular organelles, while fluorescence 

microscopy, can identify proteins and organelles are labeled with fluorescent probes 

(Figure 2.9). Fluorescent probes can also be used to identify cellular changes in pH, or its 

redox level. However, toxicity and photodamage effects from the chemical fluorescent 

probes limit the observation of cell dynamics over extended periods of time.  
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Figure 2.9. Fluorescence microscope image shows a human normal endothelial cell. 

The nuclei is stained in blue. The mitochondria and lysosomes are stained in green and 

red, respectively. Image is adapted from Zhang et al.25 with permission from The Royal 

Society of Chemistry.  

In chapter 6, two live cell fluorescent probes for sensitive detection of lysosomal and 

intracellular pH are tested on different mammalian cell lines. Breast cancer cells MDA-

MB-231 and normal endothelial cells HUVEC-C (from ATCC) were cultured in 

DMEM/F-12 medium (MDA-MB-231) and Medium 199 (HUVEC-C) with 10% FBS 

and 100 U/ml penicillin-streptomycin at 37 oC in 5% CO2 humidified environment and 

used for experiment within the first 10 passages. Cells were plated on 12-well culture 

plates at 1 x 105 cells/well and incubated at 37 oC in 5% CO2 incubator overnight. The 

next day, the media was removed and cells were rinsed twice with 1 X PBS after which 

fresh serum-free media was added and cells were incubated for 2 h at 37 oC in CO2 

50 μm  
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incubator. Following 2 h serum starvation, fresh serum free media with/without 

fluorescent probes (at indicated concentration) were added and incubated further with 

cells for 2 h. Live cell images were acquired using an inverted fluorescence microscope 

(AMF-4306, EVOSfl, AMG) with DAPI filter for Hoechst 33342 (Sigma-Aldich), GFP 

filter for LysoSensor Green DND-189 (Invitrogen), and RFP or CY5 filters for test 

fluorescent probes. The fluorescence images were obtained at 40x and 60x magnification 

for HUVEC-C and at 60x magnification for MDA-MB-231 cells. The exposure times for 

each filter were kept constant. Co-localization analysis based on Pearson’s coefficient 

was done using JACoP plugin from ImageJ26.  

To alter the intracellular pH during live cell imaging, normal endothelial cells 

HUVEC-C (from ATCC) were cultured as previously described. After overnight 

incubation in 12-well culture plates, cells were rinsed twice with 1 X PBS (pH 7.4). The 

fresh serum free media with the test fluorescent probes were added to the cells and 

incubated for 2 h. After incubation, the media were removed and cells were gently rinsed 

with 1 X PBS (pH 7.4) three times. Cells were then treated with nigericin (5 μg/mL) in 2 

mL potassium rich PBS (at pH 5.0, 5.5, 6.5, 7.5, and 8.5) and incubated for 15 min. Live 

cell images were acquired using an inverted fluorescence microscope (AMF-4306, 

EVOSfl, AMG) with DAPI filter for Hoechst 33342 (Sigma-Aldich), GFP filter for 

LysoSensor Green DND-189 (Invitrogen), and CY5 filter for test probes. The 

fluorescence images were obtained at 40x magnification. The exposure times for each 

filter were kept constant. 
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3.1 Introduction 

Most proteins are functional in a narrow range of conditions where they are stable 

and which can be altered by changes in pH, temperature, and/or ionic strength. Once 

destabilized, proteins can misfold and aggregate resulting in loss of function or a novel 

gain of toxic function that can lead to cellular or neuronal toxicity1-5. While, several 

studies have reported on the formation of amorphous or β-sheet rich amyloid-like fibrils 

due to denaturants and extreme pH, temperature, and/or ionic strength6-10, only a few 

studies have been carried out at or near physiological pH11-14. It has been suggested that 

most proteins can form β-sheet rich fibrils under properly designed laboratory conditions 

that impact inter- and intra-molecular weak forces1, 2. Interestingly, in most of the 

reported studies, proteins that form amyloid fibrils have intact disulfide bonds3, 4, 7, 15. 

Disulfide bonds are critical to stabilizing protein structure and can either promote or 

inhibit molecular interactions affecting fibrillation12, 16-18; leaving the relationship 

between disulfide bonds and protein aggregation still unclear19. Furthermore, previously 

reported studies on disulfide-reduced proteins were performed at extreme pH or 

temperature16, 17, 20, 21 in order to trigger aggregation/fibrillation. In addition, mutated or 

fully denatured proteins lacking disulfide bonds were found to form amyloid fibrils9, but 

these proteins are rare under physiological conditions.  The cytosolic environment is 

highly reducing and under certain conditions may have reduced glutathione levels as high 

as 10 mM22. The cytosolic reducing agents like glutathione can break the disulfide 

bonds23 resulting in protein misfolding leading to intracellular protein aggregates or 

inclusions formation. On the other hand, reducing stress could also be created in 

extracellular environment due to excessive or improper use of antioxidants24-26.  
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In this study, we used dithiothreitol (DTT), a well-known thiol-based protein 

disulfide reducing agent, to investigate disulfide-bond cleavage and protein aggregation 

in two model proteins, hen egg white lysozyme (lysozyme) and bovine serum albumin 

(BSA) at pH 7.2 and 37 °C21, 27-29. We also used a non-thiol based reducing agent, tris(2-

carboxyethyl)phosphine (TCEP), at pH 7.2 and 37°C to verify the findings from DTT 

experiments. We chose lysozyme and BSA as both are globular, α-helical rich proteins 

containing multiple disulfide linkages30, 31. Lysozyme is a small protein (129 amino acid 

residues; 14.3 kDa) containing 4 disulfide bridges (C6-C127, C30-C115, C64-C80, and 

C76-C94) and has mostly α-helices, a β-sheet, and a long loop (Figure 3.1). The bond C6-

C127 connects N- and C-terminals of the protein, and is partially exposed to solvent; the 

other three disulfide-bonds are buried and are not solvent accessible32. Lysozyme under 

disulfide-reducing conditions unfolds, loses its globular structure, and becomes a random 

coiled polypeptide9, 33. Fibrillar, amyloid-like structures have been reported 

predominantly at non-physiological pH or in presence of denaturant such as guanidine 

hydrochloride6, 9, 14, 34. Two other studies show that at high temperature and neutral/near-

neutral pH, lysozyme can unfold and aggregate through hydrophobic interactions forming 

particulates or non-fibrillar large aggregates35, 36. Earlier studies on lysozyme showed that 

at acidic pH and high temperature the aggregation of protein resulted in fibril formation 

and was dependent on disulfide-bond integrity. Fully reduced or oxidized lysozyme 

formed fibrils6, 9 but the partially reduced lysozyme (50% of free –SH) did not form 

amyloid fibrils even after 10 days of incubation21. These findings are very interesting but 

require further study to understand the role of disulfide bonds in lysozyme aggregation. 
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BSA is a large protein (583 amino acid residues; ~66 kDa) containing 17 disulfide 

bridges and one free cysteine and is pre-dominantly α-helical with three homologous 

domains (I, II, and III) that provide a variety of binding sites on the protein (Figure 3.1)31. 

BSA shares 76% sequence homology with human serum albumin (HSA)8, 31. Serum 

albumin is an abundant transport protein that binds to acidic or lipophilic ligands, such as 

fatty acids, bilirubin, hemin, and thyroxine, and transports it across the circulatory 

system37. At pH that is between acidic to neutral (pH 5 to 7), almost all the disulfide 

bonds are protected on BSA. However, when pH is increased from neutral to basic (pH 7 

to 10), approximately 5 disulfide bonds out of 17 become solvent accessible and can be 

cleaved by a reducing agent38, 39. In addition, raising the temperature from 35 oC to 55 oC 

also increases the number of solvent accessible disulfide bonds on BSA40. Fully disulfide 

reduced BSA protein was found to lose its native structure and binding abilities41. 

Although, BSA is not related to any amyloidogenic disease, it is able to form aggregates 

that are either amorphous in nature or show amyloid fibrillar structures under certain 

laboratory conditions8, 13, 42, 43.  
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Figure 3.1. Structures of lysozyme (A) and BSA (B), showing the disulfide bonds 

(S-S, sand-yellow). The tryptophan residues are shown as purple-blue spheres. The 

backbone is shown in grey color. The structures were generated using PyMOL 1.3 and 

PDB files (1UCO)30 for lysozyme and (4F5S)31 for BSA.   

Comparing and contrasting aggregation of lysozyme with BSA under identical 

disulfide-reducing conditions can provide insights into how disulfide bonds affect protein 

aggregation. Under the experimental conditions, both lysozyme and BSA formed 

amorphous aggregates that are significantly different from the amyloid fibrils reported in 

earlier studies. Interestingly, both lysozyme and BSA form amorphous aggregates that 

show different properties; lysozyme forms highly flexible aggregates whereas BSA 

aggregates are rigid and compact.  

3.2 Materials and methods 

Unless otherwise indicated, all materials were used as supplied by the manufacturer 

without any further purification. Tris(2-carboxyethyl)phosphine (TCEP) was from 
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Thermo Scientific Pierce; Lysozyme, BSA, DTT, Thioflavin T (ThT), 8-anilino-1-

naphthalenesulfonic acid (ANS) dye, 4,4’-Dianilino-1,1’-binaphthyl-5,5’-disulfonic acid 

(bis-ANS) dye were purchased from Sigma. 

Preparation of protein samples- Stocks of lysozyme and BSA were prepared by 

dissolving lyophilized protein powder in 20 mM pH 7.2 sodium phosphate buffer having 

150 mM NaCl. The protein samples reduced with TCEP were prepared in 20 mM pH 7.2 

HEPES buffer having 150 mM NaCl instead of phosphate buffer. NaOH was added to 20 

and 40 mM TCEP samples to neutralize the acidic TCEP HCl and maintain the final pH 

at 7.2. The protein concentrations were determined by UV-visible spectroscopy using 

extinction coefficient ε 280nm = 38,940 M-1cm-1 and ε280nm = 43,824 M-1cm-1 for lysozyme 

and BSA, respectively. The working protein solutions (protein samples) had 40 μM 

protein in 20 mM pH 7.2 phosphates buffer having 150 mM NaCl and 0 or 10 mM DTT. 

All samples were prepared on ice and then incubated at 37 oC for the indicated time 

periods (see figures for details). Lysozyme fibrils were prepared using the method from 

Krebs et al. 20006. Briefly, 1 mM of lysozyme at pH 2.0 (in 20 mM glycine-HCl buffer) 

was incubated at 65 oC for 7 days to generate the fibrils. 

Seeding activity of disulfide-reduced protein aggregates- After 72 h incubation of 

both lysozyme and BSA proteins with 10 mM DTT in 20 mM phosphate buffer (pH 7.2), 

aggregates of both proteins were washed with water and then added to 40 μM of 

respective protein solutions at physiological pH (20 mM phosphate buffer, pH 7.2, 

having 150 mM NaCl) and acidic pH (20 mM glycine-HCl buffer, pH 2.0, having 150 

mM NaCl). Aggregated protein seeds were added at a final concentration of 5%, 15%, 

and 50% v/v concentrations, respectively. Negative controls were prepared under 
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identical conditions but without adding seeds. All samples were prepared on ice and then 

incubated at 37 oC for the indicated time periods (see Figure 3.7 for details). 

Non-reducing gel electrophoresis- Non-reducing SDS-PAGEs were performed as 

previous introduced in chapter 2. In brief, protein samples were first reacted with 5 mM 

iodoacetamide, and then boiled with sodium dodecyl sulfate (SDS) sample buffer 

(lacking reducing agent) for 3 minute. Fully reduced samples were freshly prepared and 

boiled with SDS sample buffer containing 10, 40, or 100 mM DTT or 5% 2-

mercaptoethanol for 3 minute. Lysozyme (10 μg/lane) and BSA (5 μg/lane) samples were 

loaded on 15% and 10% Criterion Tris-HCl polyacrylamide precast gels (Bio-Rad), 

respectively. Tris-glycine-SDS buffer (25 mM Tris, 192 mM glycine, 0.1% SDS, pH 8.3; 

Bio-Rad) was used as running buffer and proteins were separated by sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The gels were stained with 

Coomassie blue stain and image was acquired using a scanner. 

UV-visible absorbance spectroscopy- All absorbance measurements were carried out 

on Perkin Elmer Lambda 35 UV/VIS spectrometer as previous described in chapter 2. In 

brief, protein samples were centrifuged at 20,000 × g for 5 minute after incubation. The 

supernatant was collected and diluted to 50% with 20 mM pH 7.2 sodium phosphate 

buffer and then absorbance was measured from 240 to 600 nm. All measurements were 

done in triplicates. Controls were similarly prepared and incubated as the samples, had all 

the ingredients as in the sample except protein, and were used for background subtraction. 

Intrinsic and extrinsic fluorescence- Fluorescence measurements were performed on 

Horiba Jobin Yvon spectrofluorometer (Fluoromax-4) at room temperature as previously 

described in chapter 2. The samples were diluted with phosphate buffer (20 mM, pH 7.2; 
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for DTT treated samples) or with HEPES buffer (20 mM, pH 7.2; for TCEP treated 

samples) to a final protein concentration of 10 or 5 μM for fluorescence experiments. 

Intrinsic fluorescence spectra for lysozyme and BSA (5 μM) were collected in 300-450 

nm range with excitation at 280 nm. Extrinsic fluorescent dyes were dissolved in ethanol 

and then freshly diluted with phosphate buffer (or HEPES buffer for TCEP treated 

samples) as working stocks at concentration of 350 μM (ANS), 70 μM (bis-ANS), and 

700 μM (ThT) for incubation with the protein samples. ANS and bis-ANS were used at a 

final concentration of 5 μM and 1 μM, respectively, with 15 minute equilibration with 10 

μM of proteins in samples on ice. Fluorescence spectra (400-700 nm range) were 

collected with excitation at 380 nm for ANS and 360 nm for bis-ANS. For ThT 

fluorescence, 10 μM dye was incubated with 5 μM proteins on ice for 30 minute and 

emission spectra (460-700 nm range) was collected with excitation at 450 nm. All 

samples containing fluorescent dyes were incubated in dark for the time indicated before 

the emission spectra were acquired. All measurements were done in triplicates. 

Bandwidths for excitation and emission were set at 2 nm. Controls were similarly 

prepared and incubated as the samples, had all the ingredients as in the sample except 

protein, and were used for background subtraction. 

Field Emission Scanning Electron Microscopy (FESEM)- FESEM images were 

acquired on a Hitachi S-4700 FESEM microscope as previously described in chapter 2. In 

brief, samples were washed using a Millipore Amicon® Ultra centrifugal filters (3 kDa 

cut off) with double-distilled water to remove salts and buffer. The washed samples were 

aliquoted on scanning electron microscope (SEM) stubs and allowed to dry at room 

temperature. The samples were coated with 10 nm platinum using a sputter coater. 
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Acceleration voltage of 10 kV and emission current of 5 μA were used to image the 

samples. 

3.3 Results 

In this study, lysozyme and BSA proteins were incubated with 0-100 mM of DTT at 

pH 7.2 and 37 °C for the indicated time periods and aggregation was monitored by 

different techniques. Changing the concentration of DTT altered the aggregation kinetics 

slightly but did not affect the nature of aggregates observed (Figure 3.2). Therefore, we 

chose 10 mM DTT for all our subsequent studies with proteins as it showed optimum 

response. We incubated the proteins in the presence or absence of 10 mM DTT at pH 7.2 

and 37 °C for the indicated time periods and aggregation was monitored by different 

techniques. The protein samples were centrifuged and the concentration of protein in the 

supernatant (soluble fraction) was measured by UV-visible spectroscopy and morphology 

of aggregates was characterized by scanning electron microscope (Figure 3.3). The 

amount of soluble protein did not change over time in the protein samples incubated in 

the absence of DTT (Figure 3.3A, B, open symbols). In addition, no aggregates were 

observed in the SEM images (Figure 3.3C, H). However, for protein samples incubated in 

the presence of 10 mM DTT, the fraction of soluble protein decreased significantly in 4 h 

(Figure 3.3A, B, closed symbols). After 12 h, < 20% of soluble proteins were detected in 

the sample solution (Figure 3.3A, B). Insoluble protein aggregates, as visualized by SEM, 

increased in amount and size as the incubation time increased for samples in the presence 

of 10 mM DTT (Figure 2E-F, I-J). For both proteins, the aggregates were amorphous 

with an average subunit diameter of 400 ± 200 nm. Even when the DTT-treated lysozyme 
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was incubated for a longer time (48-day sample, Figure S6), the aggregates were still 

amorphous in nature.  

 

 

Figure 3.2. The effect of increasing concentrations of DTT on lysozyme and BSA 

aggregation are monitored by intrinsic fluorescence (A, C) and ThT assay (B, D) and 
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SEM (E-L). Intrinsic and ThT fluorescence results showed the protein aggregation of 

lysozyme (A, B) and BSA (C, D) in 0-24 h. Error bars indicate ± S.D. Aggregates formed 

in presence of 5 mM (E, I), 10 mM (F, J), 40 mM (G, K), and 100 mM (H,L) DTT from 

lysozyme (E-H) and BSA (I-L) were images using SEM. Scale bars = 1 µm. 

 

Figure 3.3. UV absorbance showing the fraction soluble protein and SEM images of 

the insoluble aggregates. Protein samples were incubated at 37 °C for the indicated 

periods of time and then centrifuged. Fraction soluble proteins in supernatant were 

determined by UV absorbance at 280 nm for lysozyme (A) and BSA (B). Error bars 

indicate ± S.D. Insoluble aggregates were imaged using SEM. The samples for lysozyme 

and BSA respectively are: proteins incubated without DTT (C, G; scale bars = 10 µm); 

with 10 mM DTT for 0 h (D, H; scale bars = 10 µm), 4 h (E, I; scale bars are 50, 5, and 1 

µm from left to right), and 7 days (168 h) (F, J; scale bars are 50, 5, and 1 µm from left to 

right).  
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Non-reducing gel electrophoresis was used to check if proteins under the 

experimental conditions were fully disulfide reduced or formed higher molecular weight 

protein species as the incubation time increased (Figure 3.4). For samples incubated in 

the absence of DTT, no new high molecular weight protein species were observed even 

after 48 h and was comparable to freshly prepared fully oxidized protein samples (Figure 

3.4; lane O in panels A, B, and C). Freshly prepared proteins that were fully reduced by 

2-mercaptoethanol (Figure 3.4; lane R in panels A, B and C) showed a slight decrease in 

electrophoretic mobility compared to the fully oxidized protein samples (Figure 3.4; lane 

O in panels A, B and C) but did not show any additional higher molecular weight protein 

bands. While 10 mM DTT in sample buffer is not sufficient to completely reduce BSA, 

40 mM and 100 mM DTT resulted in complete reduction of BSA (Figure 3.4; compare 

lanes R and R’). However, for samples incubated in the presence of 10 mM DTT, 

appearance of higher molecular weight protein species were observed for lysozyme as 

early as 4 h (Figure 3A). Higher molecular weight protein bands increased with 

increasing incubation time. In the case of BSA, the major protein band is at ~66 kDa that 

faded with time and a smear of protein in the higher molecular weight region was 

observed for protein incubated for 24 h or more (Figure 3.4B, C). The DTT-treated BSA 

proteins incubated for 2 h or longer also showed a mixture of reduced (R) and oxidized 

(O) proteins (Figure 3.4B). Even BSA proteins treated with high concentrations of DTT 

(40 or 100 mM DTT) showed mixture of reduced (R) and oxidized (O) proteins at 48 h 

(Figure 3.4C).  To check if the high molecular weight protein species are present in 

soluble fraction or not, samples from different timed incubation (1, 2, 4, 24, 48, and 72 h) 

were centrifuged at high speed and pellets and supernatant were analyzed by non-
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reducing SDS-PAGE (Figure 3.4D). All high molecular weight protein species were 

observed in the pellet fraction only.  

 

Figure 3.4. Non-reducing SDS-PAGE indicated the presence of high molecular 

weight species. Lysozyme (10 μg/lane) and BSA samples (5 μg/lane) were loaded on 

15% gel (A) and 10% gel (B, C), respectively. The gels were run at 80 V for 3.5 and 4 

h (lysozyme and BSA, respectively) followed by staining with Coomassie blue. Lanes 

“O” were fully oxidized proteins that reacted with iodoacetamide in the absence of 

DTT. Lanes “R” in panel A, B, and C were proteins that were fully reduced by 2-

mercaptoethanol. Loading orders are same for gels A and B. Lanes “R’” in panel C 

were BSA samples boiled in sample buffer containing 10, 40 or 100 mM DTT instead 

of 5% 2-mercaptoethanol. The last two lanes on panel C were BSA samples treated 

with 40 and 100 mM DTT for 48 h. In panel D lanes “S” and “P” were soluble fractions 
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and insoluble pellets in samples, respectively.  * signifies the presence of high 

molecular weight protein species. 

Conformational changes, hydrophobic exposure, and aggregation in lysozyme and 

BSA were monitored by intrinsic fluorescence and by extrinsic fluorophores such as 8-

anilino-1-naphthalene sulfonate (ANS), 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid 

(bis-ANS), and Thioflavin T (ThT). Intrinsic fluorescence intensity for disulfide-reduced 

lysozyme increased rapidly in the first 4 h followed by a fast and significant decrease in 

fluorescence up to 72 h (Figure 3.5A). After 72 h the decrease in fluorescence intensity 

was slow. On the other hand, the intrinsic fluorescence for disulfide reduced-BSA 

showed a very rapid drop in fluorescence up to 24 h (Figure 3.5B). After 24 h, the 

decrease in fluorescence slowed down considerably. Both lysozyme and BSA that had 

intact disulfide bands (samples with no DTT) showed negligible fluorescence changes 

over time (Figure 4). 
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Figure 3.5. Intrinsic fluorescence peak intensities over time for both lysozyme and 

BSA proteins. Fluorescence spectra for 5 μM each of lysozyme and BSA were collected 

from 300-450 nm with excitation at 280 nm. Peak emission wavelength of 346 nm and 

336 nm were selected for lysozyme (A) and BSA (B), respectively. Peak fluorescence 

intensities are shown using open symbols (without DTT) and closed symbols (with 10 

mM DTT) as a function of time. Inset shows a plot for the first 4 h of incubation. Error 

bars indicate ± S.D. 

The disulfide-reduced lysozyme and BSA showed opposite trends for ANS and bis-

ANS fluorescence (Figure 3.6). In the case of DTT-treated lysozyme samples, ANS 
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(Figure 3.6A) and bis-ANS (Figure 3.6C) probes showed increased fluorescence with 

fluorescence increasing rapidly for the first 4 h (Figure 3.6A, C). After 4 h, the 

fluorescence plateaued and no significant change in fluorescence was observed as a 

function of time (Figure 3.6A, C). However, DTT-treated BSA showed a rapid decrease 

in ANS fluorescence for the first 4 h followed by a slower decrease in fluorescence over 

time (Figure 3.6B). Interestingly, bis-ANS showed a similar decrease in fluorescence for 

BSA proteins treated with or without DTT (Figure 3.6D). The aggregation of proteins 

monitored by ThT showed increased fluorescence intensity for DTT-treated lysozyme 

and BSA in the first 4 h (Figure 3.7A, B; closed symbols) whereas, protein samples in the 

absence of DTT showed no change in ThT fluorescence (Figure 3.7A, B; open symbols). 
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Figure 3.6. Changes in protein hydrophobicity and aggregation were monitored by 

ANS and bis-ANS fluorescence. 10 μM of protein samples were incubated with 5 μM 

ANS or 1 μM bis-ANS for 15 minute, before acquiring spectra. Emission spectra for 

lysozyme (A, C) and BSA (B, D) were collected from 400-700 nm with excitation at 380 

nm for ANS and 360 nm for bis-ANS. Average emission peak wavelength of 471 nm and 

484 nm were selected for ANS (A, B) and bis-ANS (C, D), respectively. Peak 

fluorescence intensities are shown using open symbols (without DTT) and closed 

symbols (with 10 mM DTT). Inset shows plot for first 4 h of incubation. Error bars 

indicate ± S.D. 

 

Figure 3.7. ThT fluorescence of protein aggregates and lysozyme fibrils. Emission 

spectra for 5 μM of lysozyme and BSA in presence of 10 μM ThT were acquired from 

460-700 nm with excitation at 450 nm. Average emission peak wavelength of 486 nm 

and 484 nm were selected for lysozyme (A) and BSA (B), respectively. Peak 

fluorescence intensities are shown as open symbols (without DTT) and closed symbols 
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(with 10 mM DTT). Inset shows a plot for first 4 h of incubation. Error bars indicate ± 

S.D. Fluorescence spectrum showing signal for 5 μM lysozyme fibril and amorphous 

aggregates from 7-day old samples incubated with 10 μM of ThT dye (C). SEM images 

shows structures of lysozyme fibril (D) and lysozyme aggregates (E) from 7 day old 

samples (scale bars = 5 µm). 

SEM analysis (Figure 2) of disulfide reduced lysozyme and BSA proteins showed 

that aggregates are amorphous in nature that stays amorphous even upon longer 

incubation. To further investigate if formation of these aggregates are seed-dependent or 

whether seeding can lead to fibril formation or not, we carried out cross-seeding assays at 

two different pHs (pH 7.2 and pH 2.0; Figure 3.8). The aggregates formed from 72 h 

incubated disulfide-reduced proteins (lysozyme and BSA) were washed and added as 

seeds (5%, 15%, and 50% v/v) into respective lysozyme and BSA protein solutions 

having intact disulfide bonds (native proteins). Proteins even with small amount of  seeds 

(5% v/v aggregated proteins) initiated aggregation of native proteins at pH 7.2 that share 

similar morphology with the seeds and showed increased binding to ThT (Figure 3.8, A, 

B, E, G). In contrast, at pH 2.0, no increase of ThT fluorescence was observed except for 

lysozyme and BSA that showed increase in ThT fluorescence with 50% seeds (Figure 

3.8C, D). And after 72 h, no structured species could be found by SEM, indicating 

aggregates were destabilized at acidic pH.  
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Figure 3.8. Effect of seeding of lysozyme and BSA aggregates on native protein 

monitored by ThT fluorescence. 5%, 15% and 50% (v/v) of aggregates generated by 

incubating lysozyme and BSA protein at pH 7.2 and in presence of 10 mM DTT were 

added as seeds to 40 µM native protein solutions and incubated at 37°C: lysozyme pH 7.2 

(A, E), lysozyme pH 2.0 (C, F), BSA pH 7.2 (B, G), and BSA pH 2.0 (D, H). ThT 

fluorescence experiments were performed as detailed in Figure 6. Error bars indicate ± 

S.D. SEM images (E-H) show morphology of aggregates formed with 15% seeds after 72 

h of incubation (scale bars = 10 µm). 

To further confirm the role of disulfide bonds in aggregation, we incubated protein 

samples with TCEP, a non-thiol based reducing agent, and monitored protein aggregation 

by intrinsic and ThT fluorescence (Figure 3.9, A-D). As TCEP in not stable in phosphate 
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buffer, especially around neutral pH, we changed buffer to HEPES (20 mM, pH 7.2). 

Without adding TCEP, both proteins remained stable, and no aggregates was observed up 

to 24 hours. The intrinsic fluorescence data for lysozyme samples showed an increase in 

fluorescence in first 4 h a trend similar to DTT treated samples but upon longer 

incubation remained steady instead of decreasing in intensity (Figure 3.5A, 3.9A). 

However, intrinsic fluorescence for TCEP treated BSA, and ThT fluorescence for 

lysozyme and BSA showed trends similar to that observed for DTT treated protein 

samples (Figure 3.5B, 3.7A, 3.7B, 3.9B-D). SEM images showed amorphous aggregates 

for proteins incubated with 2 mM TCEP (Figure 3.9 E, F) that share morphology similar 

to aggregates seen for proteins incubated with 10 mM DTT (Figure 3.3 E, F, I, J). 

Interestingly, we did not observe aggregates of either lysozyme or BSA incubated with 5 

mM or more TCEP in 24 h.  
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Figure 3.9. Concentration dependence of TCEP on protein aggregation.  Protein 

aggregation rates were monitored using intrinsic fluorescence (A, B) and ThT 

fluorescence (C, D) for lysozyme (A, C) and BSA (B, D). Error bars indicate ± S.D. 

Intrinsic fluorescence experiments were performed as detailed in Figure 4 and ThT 

fluorescence experiments were performed as detailed in Figure 6. SEM images for 

aggregates of lysozyme and BSA in presence of 2 mM TCEP are shown in panels (E) and 

(F), respectively. Scale bars = 10 µm. 
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3.4 Discussion 

Disulfide bonds are formed naturally in 65% of secreted proteins, 15% of human 

proteome, and in more than 50% of amyloidogenic proteins19. The native disulfide bonds 

are critical for correct folding and normal function of proteins, and the disruption of 

disulfide bonds were shown to alter protein structures and even result in protein 

aggregation9, 23, 44. Although cellular redox status can be tuned by certain reducing agents 

26, cells have great coping mechanism to resist changes. In this study we chose DTT, a 

disulfide reducing agent to mimic the excessive or improper use of thiol-based 

antioxidants at physiological pH and temperature. The role of disulfide bonds have been 

previously studied using strong reducing agents45, single site mutations 9, artificial 

disulfide linkages 18, and/or at extreme pH conditions16. Therefore, we wanted to study 

how disulfide-reduced proteins misfold and form aggregates at physiological pH in 

absence of any other destabilizing influences. The two proteins (lysozyme and BSA) used 

in this study could form amorphous aggregates but with unique structural properties. 

UV absorbance and fluorescence spectroscopy data showed that both lysozyme and 

BSA protein samples that lack DTT were stable at 37 °C up to 4 weeks with no 

measurable changes in their spectral properties (Figure 3.3 and Figures 3.5-3.7). In 

addition, no visible aggregates were observed for the proteins by SEM (Figure 3.3C, G). 

This suggests that these two proteins are stable at pH 7.2 and 37 °C for long term in the 

absence of any destabilizing influence. But for proteins incubated at 37 °C in the 

presence of reducing agent (10 mM DTT), we observed amorphous aggregates appearing 

as early as 2 h, signifying the importance of disulfide-bond integrity in providing protein 

stability (Figure 3.3E). This is in contrast to the fibrils found in several previous studies 
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performed at extremes of pH or temperature in combination with other solvent additives9, 

20, 23, 34. The amorphous aggregates in this study are ~400 nm in diameter with a 

maximum length of 30 μm (Figure 3.3) that shares some physicochemical characteristics 

with protofibril, such as size (lysozyme aggregates) and ThT binding capacity. An earlier 

study shows that ThT positive amorphous aggregates were able to convert into 

protofibrils after long term incubation, and eventually formed long, unbranched fibril 

structure46. However, under our experimental conditions, the DTT-treated aggregates 

were not able to convert into fibrils with increased incubation time (Figure 3.10). 

Although DTT-treated lysozyme and BSA aggregates show rapid increase in ThT 

fluorescence (Figure 3.7A,B), the ThT signal from aggregates is low and about 1/5th 

compared to a mature fibril under identical experimental conditions (Figure 3.7C). ThT is 

a well-known dye for characterizing amyloid-like structures47; however, recent studies 

have shown that some non-fibril/amorphous aggregates were able to bind ThT and show 

ThT characteristic fluorescence at ~485 nm48. The different fluorescence intensities of 

mature fibril and the aggregates could be caused by difference binding modes of ThT on 

these structures. It is widely studied and believed that ThT binds to the grooves parallel to 

the long axis of amyloid fibrils and is stabilized by the hydrophobic and aromatic amino 

acid side chains 49. The DTT treated aggregates have very distinct structure from amyloid 

fibrils (Figure 3.7D, E) but ANS fluorescence results (Figure 3.6A, B) shows the 

aggregates are very hydrophobic, indicating the ThT molecules could bind to the 

hydrophobic pockets on the aggregates49.  In other cases, Groenning and colleagues50 

showed that β-sheet rich proteins, β-cyclodextrin and transthyretin, could tightly bind 

ThT molecule without inducing the characteristic fluorescence as the binding site on 
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proteins was smaller than 8 Å. However, non-β-sheet proteins, γ-cyclodextrin and 

acetylcholinesterase could induce high ThT fluorescence signal similar to amyloid fibrils 

as these two proteins had structures with cavity diameters of 8-9 Å, allowing binding of 

ThT molecules50. This is in line with another study showing ThT fluorescence can be 

induced by non-fibril, protofibril-like aggregates48. Another key factor of ThT 

fluorescence is the rotation of the single bond connecting the benzothiazole ring and the 

dimethylaminobenzene ring. Wolfe et al.51 compared the co-crystal structures of ThT 

with monomeric and amyloid-like oligomer of β-2 microglobulin (β2m) and found that 

the twisted angle φ of the ThT single bond is ~60o in present of amyloid-like oligomers 

while φ = ~30o when ThT binds to β2m monomers. Therefore, the weak ThT 

fluorescence of DTT treated aggregates could be result of the binding mode of ThT, or 

the twisted angle φ. However, before taking enough atomic level information about the 

binding of ThT with amorphous aggregate, we are not able to make any clear conclusion 

of the mechanism of modest ThT fluorescence of DTT treated aggregates. Even though 

the lysozyme aggregates in this study are more “structured”, there is no direct evidence 

demonstrating that these aggregates could be classified as protofibrils or protofibril-like 

aggregates.  
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Figure 3.10. Lysozyme and BSA samples which were incubated for long time at 

37 °C show amorphous aggregates only. Lysozyme (A, B) and BSA (C) aggregates were 

imaged after 14 days (A, C) and 48 days (B) of incubation at 37 oC in presence of 10 mM 

DTT. Scale bars are 50, 5, and 1 μm from left to right in each panel. 

Non-reducing SDS-PAGE was used to visualize higher molecular weight cross-

linked protein species that can arise due to the scrambling of disulfide bonds (Figure 3.4). 

The non-reducing gel electrophoresis for lysozyme shows appearance of distinct high 

molecular weight bands as early as 4 h that can result from disulfide-bond scrambling 

(Figure 3.4A). This is in line with an earlier study that reported formation of scrambled 

disulfide-bonds for lysozyme in the presence of 2-mercaptoethanol, a disulfide reducing 

agent18. Based on an earlier study the 17 disulfide-bonds in BSA can be grouped in three 

classes centered on their location and susceptibility to disulfide reducing agent: fully 



93 
 

exposed (reactive with 0.5 mM DTT), partially buried (reactive with 10 mM DTT), and 

buried (nonreactive in native solution without any denaturants)52. For a full reduction of 

disulfide bonds of the BSA polypeptide chain, 110-218-fold molar excess of DTT is 

required28. In this study, the use of 10 mM DTT is only a 14-fold molar excess for BSA 

disulfide bonds. Therefore, we do not expect complete reduction of all the disulfide 

bridges in the BSA polypeptide chain (Figure 3.4C; see lane R’). Partial disulfide 

reduction can promote scrambling of disulfide bonds resulting in higher molecular weight 

species (Figure 3.4B). “R” and “O” bands indicate the presence of a mixture of reduced 

(R) and oxidized (O) proteins in the DTT-treated BSA samples after 4 h of incubation 

(Figure 3.4B). Presence of high molecular weight protein species in BSA samples treated 

with 40 mM or 100 mM DTT at 48 h suggests that proteins are not fully reduced even at 

high concentrations of DTT under the incubation conditions (Figure 3.4C).  The atypical 

electrophoretic mobility of DTT-treated BSA samples is due to mixture of partially 

oxidized and reduced proteins affecting the overall hydrodynamic volume of proteins 

(apparent size) and hence its migration on SDS-PAGE53, 54.  In the gel “R” and “O” bands 

started to be clearly visible from 2 h and their intensities did not change after 4 h which is 

in line with trend of fluorescence results (Figure 3.5B, 3.6B, and 3.7B). This suggests that 

presence of scrambled (inter-/intra-molecular) disulfide bonds may be critical in driving 

and further stabilizing the amorphous aggregate formation (Figure 3.3, 3.11).  
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Figure 3.11. A generic aggregation model based on the results of both lysozyme and 

BSA proteins treated with 10 mM DTT at pH 7.2 and 37 °C. Incomplete reduction of 

disulfide-bonds in proteins can affect misfolding and can result in formation of scrambled 

disulfide bonds (both inter- and intra-molecular) affecting the aggregation process. This 

can favor formation of amorphous aggregates over amyloid like structure.  

Intrinsic fluorescence can provide information on protein conformational changes by 

measuring tryptophan fluorescence that is very sensitive to its local microenvironment. 

Although both lysozyme and BSA showed similar aggregation kinetics with major 

structural changes observed within first 4 h, they gave different fluorescence responses. 

Lysozyme showed an increase in intrinsic fluorescence for first 4 h followed by a rapid 

decrease in fluorescence signal (Figure 3.5A). The major contributors of intrinsic 
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fluorescence in native lysozyme are Trp 62 and Trp 10855, which are exposed to the 

solvent56. The other Trp residues are either tightly packed inside the structure (Trp 111 

and Trp 123), or are located near disulfide bonds (Trp 28, Trp 63, Trp 111, Trp 123), 

which have Cys-linked sulfurs that can act as fluorescence quenchers55. Therefore, the 

increase of lysozyme intrinsic fluorescence in the first 4 hours could be a result of 

disulfide bonds breaking with and exposing Trp residues decreasing the quenching 

effects of reduced sulfur groups in the unfolded structure. Free thiols upon longer 

incubation can form scrambled disulfide bonds and quench intrinsic fluorescence as the 

aggregated proteins may have a more packed structure that may also bring the Trp 

residues closer to Cys residues.  DTT-treated BSA showed a very different fluorescence 

response compared to that of lysozyme (Figure 3.5B). The major difference may be due 

to the size of the protein (66 kDa), number of disulfide bonds (17 S-S bonds) per 

molecule of protein, and location of aromatic residues in the protein structure31. BSA is a 

big protein with only two tryptophan residues (W-134 and W-213), and neither of them is 

located on the protein’s surface. A blue shift in the emission peak that is associated with a 

decrease in fluorescence intensity is consistent with aggregation leading to shielding of 

Trp residues and its fluorescence being quenched by close proximity of other groups such 

as free Cys or peptide bond 57, 58 (Figure 3.12A).  
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Figure 3.12. Intrinsic fluorescence peak intensity and wavelength shifts over time 

for BSA protein. Peak fluorescence intensities are shown in black and wavelength for 

peak maxima are plotted in red. The results from first 4 hour were zoomed as inset 

figures. Error bars indicate ± S.D. 

As all of the Trp residues in lysozyme and BSA are located near hydrophobic 

clusters17, 31, 59, we used hydrophobic probe ANS to detect change in protein 

hydrophobicity. ANS is very sensitive to local solvent environments, shows high 

fluorescence and is blue shifted when buried in hydrophobic pockets, or shows decreased 

fluorescence that is red shifted when exposed to more polar environment47, 60, 61. In 

presence of ANS, lysozyme showed a rapid increase in fluorescence for the first 4 h with 

subsequent fluorescence plateau (Figure 3.6A). This was mirrored by a shift in 

wavelength for peak cps from ~510 nm (considerable exposure to polar solvent) to ~470 

nm (indicative of buried in hydrophobic core) and was stable around 470 nm after that 



97 
 

(Figure 3.12B). The high fluorescence signal and blue shift suggests that lysozyme 

aggregates maybe flexible permitting tight binding of ANS molecules to the protein47, 62, 

63. To further study the flexibility of protein aggregates, we used the dimeric analog of 

ANS, bis-ANS, that has larger ring structure and does not bind tightly to organized 

structures, even if hydrophobic. Bis-ANS requires a flexible molten globule like 

structures for tight binding64, 65, and reacts weakly to amyloid fibrils66. Bis-ANS 

fluorescence of lysozyme aggregates suggests DTT reduced lysozyme aggregates have a 

highly flexible structure (Figure 3.6C). The continued high bis-ANS fluorescence of 

reduced lysozyme after 4 h indicates that aggregates of lysozyme even after long-term 

incubation were still flexible and had not converted into more organized and rigid 

structures. As ANS and bis-ANS have net negative charge we investigated the effect of 

ionic strength on fluorescence of lysozyme aggregates (Figure 3.13). Although it has 

been reported that high ionic strength can affect lysozyme structure67, the removal of 

NaCl in this study did not affect lysozyme aggregation, suggesting that electrostatic 

interaction is not a major force driving the interaction at pH 7.2. 
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Figure 3.13. Effect of ionic strength (NaCl) monitored by UV absorbance, intrinsic 

and ThT fluorescence. Both lysozyme (A-C) and BSA (D-F) protein samples were 

prepared in presence (closed symbols) or absence (open symbols) of 150 mM NaCl 

having 0 (black) or 10 mM (red) DTT. Fraction soluble proteins at 280 nm (A, D) were 

estimated by UV absorbance. The peak intensities of intrinsic fluorescence (B, E) at 346 

nm (for lysozyme) and 336 nm (for BSA) were plotted. For ThT assay (C, F): protein 

samples (5 μM) were incubated with 10 μM ThT, and peak fluorescence intensities at 486 
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nm (for lysozyme) and 484 nm (for BSA) were plotted. The results from first 4 hour were 

zoomed as inset figures. Error bars indicate ± S.D. 

Different from lysozyme, the reduced BSA showed a dramatic decrease in ANS 

fluorescence in first 4 h and then was stable at low signal level for long term (Figure 

3.6B). The BSA samples with intact disulfide bonds (lacking DTT) showed high ANS 

fluorescence (Figure 3.6B). This could be because ANS can bind to the hydrophobic 

pockets on BSA and its fluorescence intensity and quantum yield depend upon the degree 

of exposure to solvent61, 68. In addition, serum albumin is a transport protein with highly 

flexible native structure and has many binding sites for lipids or drugs that can also bind 

ANS37. The decrease in ANS fluorescence of DTT-treated BSA could be due to exposure 

of hydrophobic regions to the solvent phase, or collapsing and aggregating of 

hydrophobic regions that can be a result of scrambling of disulfide bonds, as BSA is only 

partially reduced under the experimental conditions. Peak emission wavelength for 

fluorescence in the 470 nm range suggests poor but hydrophobic binding of the dye, that 

maybe a result of rigid amorphous structure (Figure 3.12B). Bis-ANS was used to further 

investigate protein flexibility changes in oxidized and reduced BSA. Interestingly, we 

found that both DTT-treated and DTT lacking BSA samples had weak interactions with 

bis-ANS (Figure 3.6D). Bis-ANS was found to have dual effect on protein structure 

through binding: high concentration of bis-ANS induces more disordered protein 

structures, while at low concentration, binding with bis-ANS results in tighter 

conformers65. Thus, in the case of the DTT lacking BSA samples, the equilibrium could 

shift from native conformation to a tighter conformer after binding bis-ANS. Native BSA 

has high affinity binding sites for ANS and bis-ANS, but on non-native conformations, 
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only low affinity binding sites were found65. Plus the structure of DTT treated BSA 

aggregates are relatively rigid (Figure 3.3 I, J), indicating weak binding with bis-ANS. 

Therefore, we only observed weak bis-ANS fluorescence with both native and aggregated 

BSA samples. 

In the cross-seeding experiments, the amorphous aggregates were able to act as seed 

and lead to rapid aggregation of native proteins at pH 7.2 (Figure 3.8), suggesting a low 

energy barrier between the native conformation and the aggregates69, 70. In addition, the 

association of native proteins to seeds could also be driven by hydrophobic interactions, 

knowing that the aggregates have high ANS binding capacity (Figure 3.6). Whereas, the 

cross-seeded proteins at pH 2.0 (Figure 3.8) did not induce aggregation of native proteins. 

This may be due to difference in molecular organization of native proteins that favor 

fibril formation at pH 2.048 . In addition, the scrambling of disulfide bonds increased the 

tendency for molecular self-assembling and collisions that results in lack of large 

homogeneous structures. Similar findings have been reported in previous studies of 

amyloid-β peptide48 and β2-microglobulin71. Therefore, the amorphous aggregates of 

disulfide-reduced proteins at pH 7.2 are probably formed through a kinetically trapped 

pathway, due to strong inter-/intra-molecular association caused by disulfide scrambling. 

To further confirm the formation of amorphous aggregates observed in this study is a 

result of disulfide scrambling and not thiolated side product of DTT oxidation, we treated 

the proteins with 0 to 40 mM TCEP (Figure 3.9). It’s noticeable that in presence of 2 mM 

TCEP, both lysozyme and BSA, show strong measurable fluorescence signals. Knowing 

that TCEP has stronger reducing activity72 and longer half-life than DTT73, high 

concentration of TCEP could inhibit disulfide scrambling, which is the driving force for 
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the formation of amorphous aggregates observed in this study. SEM images of protein 

samples incubated with 2 mM TCEP formed amorphous aggregates (figure 3.9 E, F) that 

share morphology very similar to 10 mM DTT treated protein samples. However, we did 

not observe aggregates of either lysozyme or BSA up to 24 h with TCEP concentration 

higher than 5 mM. The high concentration of TCEP could possibly inhibit the scrambling 

of disulfide bonds and hence can affect the formation of amorphous aggregates. Since the 

result with 10 mM DTT could be reproduced with low concentration of TCEP (2 mM), 

we believe that the formation of amorphous aggregates in presence of 10 mM DTT is a 

result of disulfide scrambling.  

3.5 Conclusion 

In summary, under the experimental conditions reported in this work, both disulfide 

reduced lysozyme and BSA showed increased susceptibility to form amorphous 

aggregates that have very distinct structures.  Both proteins show increased ThT binding 

but the fluorescence signal is still low compared to amyloid fibril. The lysozyme 

aggregates show higher structural flexibility in comparison to BSA aggregates. 

Formation of amorphous aggregates for these two proteins is a result of the interplay of 

disulfide bond scrambling and hydrophobic interactions that could kinetically affect the 

overall aggregation pathway (Figure 3.11).  Cross-seeding experiments into native 

proteins for both proteins could only promote aggregation at pH 7.2 but not for proteins 

at acidic pH. This may be due to surface charge differences on proteins resulting in 

unique molecular organization at different pHs.   
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4.1 Introduction 

Protein misfolding/aggregation was long believed to hold the key to 

neurodegenerative diseases, among which Alzheimer’s disease (AD) is most known and 

now affects 5.3 million Americans, with a total cost of $217.7 billion in 20141, 2. Without 

preventative treatments or effective therapeutic methods, the number of people suffering 

from AD in the US is expected to be 10 million by 20501, 2. The extracellular amyloid 

plaques formed from amyloid β (Aβ) peptide was identified as one of the major 

hallmarks of this disease3. Aβ peptides vary in length from 39 to 43 amino acids4. In a 

normal human brain, about 76-90% of Aβ peptides are Aβ40, whereas only <10% are the 

more aggregation-prone one, Aβ425-7. Since the discovery of Aβ 30 years ago, great 

efforts have been done on understanding Aβ fibrils8 and the associated toxicities9, 10. 

However, the toxic structure of Aβ is still not defined. Many drugs or therapies have been 

developed in the past decades, but none to date shows clinical efficacy. In the past 5 years, 

over 5,000 projects and $3 billion of funds contributing to researches of AD and related 

dementias2. However, development of AD treatment is limited by the large variety of the 

highly transient dynamics of Aβ species that is naturally formed in the brain8, 10. 

The in vivo “pool” of Aβ contains not only the Aβ peptides in different length, but 

also the post-translated modified forms10. It has been well established that the 

posttranslational modifications (PTMs) play an important role in protein folding and 

aggregation. Extracellular phosphorylation on Aβ accelerates the self-assembling of this 

peptide into neurotoxic aggregate species11-13. Other modifications, such as 

phosphorylation11-13, truncation14-16, isomerization17, 18, and pyroglutamate formation16, 19, 

were also found to influence Aβ aggregation propensity and cytotoxicity. Glycosylation 
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was detected on Aβ42 in human cerebrospinal fluid, but the functional effects are still not 

clear20. Acetylation was recently found to be caused by the highly electrophilic diacetyl 

radicals that are related to many diseases21-24. In the case of AD, acetylation on tau was 

recently identified and was proposed as a new therapeutic target25, 26. Interestingly, 

acetylation on Aβ peptide was not as well studied as other modifications. Aβ acetylation 

on residue K28 has been previously demonstrated on Aβ25-35 fragment, showing 

negligible effect on the overall fibril morphology27, but little is known about the effect of 

acetylation on full length Aβ42 peptide. 

The Aβ42 peptide has two lysine residues, K16 and K28 (Figure 1A). K16 

contributes to amyloid fibril formation by serving as part of an intermolecular binding 

sequence (K16-F20)28. While K28 forms a salt bridge with A42 in Aβ42 fibrils (Figure 

1B)29, or with D23 in Aβ40 fibrils30, to stabilize the β-sheet structures of amyloid fibrils. 

Both lysine residues link to familial (K16N) and nonfamilial (K16A, K28A) mutations 

that cause early onset dementia in Alzheimer’s disease31, 32. Replacing lysine with alanine 

could affect the α-helical structure (K16A)33 or the intrapeptide hydrophobic interaction 

(K28A)34. However, K16R and K28R mutations on Aβ40 peptide did not affect the 

formation of amyloid fibrils35.  
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Figure 4.1. Sequence Aβ1-42 (A) and atomic structure model of Aβ42 monomer (B, 

in aqueous solution, PDB code: 1Z0Q36) and mature fibril (C, PDB code: 2MXU29). The 

two lysine residues K16 and K28 are shown in red stick structures. In fibril model, the 

first 10 N-terminal residues are omitted, because they are structurally disordered and 

exposed along the fibril surface. The structures were generated using UCSF Chimera37.  

In this study, three different acetylation modified Aβ42 peptides were synthesized: 

single acetylation on K16 (K16Ac) or K28 (K28Ac), or double acetylation on both 

Lysine residues (KKAc). We found that the acetylation on K28 slows down the 

fibrillization process of Aβ42, but still promotes a fibril-like structure. However side-

chain acetylation on K16 can profoundly impair the fibrillization property and 

significantly affect toxicity of Aβ42 peptide, which could account for the modulation of 

Aβ42 related pathogenic. 

4.2 Materials and methods 

Prepare amyloid β peptide assembly samples – Synthetic wild-type (WT), K16Ac, 

K28Ac, and KKAc Aβ42 peptides were purchased from Biomatik (Canada). The identity 
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and purity (>95%) of all four peptides were confirmed by mass spectrometry and RP-

HPLC. Preparation of aggregate-free monomers followed the method from Teplow et al. 

201338. In brief, the peptide lyophilizate was first dissolved in 10% (v/v) of 60 mM 

NaOH, followed by 45% (v/v) MilliQ water. The the pH was adjusted by adding 45% 

(v/v) of 10 mM sodium phosphate buffer (pH 7.4). After 10 min centrigufe at 16,000 × g 

at 4 oC, the supernatant fluid was filted through 0.22 μm membrane. Concentration of 

peptide stock was determined using ε214 = 75,887 M-1cm-1.  All the solutions and MilliQ 

water were filtered through 0.22 μm membrane before use. Peptide stocks were stored at 

-80 oC until use. 

Thioflavin T (ThT) fluorescence – Fluorescence measurements were performed on 

Horiba Jobin Yvon spectrofluorometer (Fluoromax-4) at room temperature as previously 

described in chapter 2. In brief, Samples (50 μM peptide in 50 mM phosphate buffer, 300 

mM NaCl, pH 7.4) were incubated at 37 oC with agitation for indicated time. After 

incubation, samples were diluted by phosphate buffer (10 mM, pH 7.4) to a final 

concentration of 10 μM, followed by addition of ThT solutions (final concentration at 10 

μM). Emission spectra were collected at room temperature from 460 – 700 nm, with 

excitation at 450 nm.  

8-anilino-1-naphthalenesulfoni acid (ANS) fluorescence – Freshly prepared samples 

and 7-day fibril/aggregates samples that contain 10 μM peptides were mixed with ANS 

solution (final concentration at 10 μM). Emission spectra were collected at room 

temperature from 400 – 700 nm, with excitation at 380 nm. 

Field emission scanning electron microscopy (FESEM) – FESEM images were 

acquired on a Hitachi S-4700 FESEM microscope as previous described in chapter 2. In 
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brief, samples were pelleted by centrifuging at 9,000 × g for 45 min at room temperature. 

To wash off salts, the pellets were separated and suspended in MilliQ water (0.22 μm 

membrane filtered) and centrifuged at 9,000 × g for 45 min at room temperature. Washed 

fibrils or aggregates were applied on SEM stubs and air dried at room temperature. The 

SEM samples were then coated with 10 nm platinum. For FESEM imaging, 10 kV of 

acceleration voltage and 5 μA of emission current were used. 

Molecular dynamics (MD) calculations – Docking calculations were carried out 

using AutoDock Vina (Vina)39 and DrugScore eXtended (DSX)40. The 3D configuration 

of ANS is downloaded from PubChem database and saved as PDB file. The energetically 

most stable Aβ42 configuration proposed by 1Z0Q36 PDB file is used as WT template. 

Mutator Plugin of the VMD41  was applied to perform in silico acetylation of Lysine 

residues. PDB files for WT, K16Ac, K28Ac and KKAc Aβ42 were created. The ANS- 

Aβ42 complexes are refined VMD 1.9.241. The initial topology and parameter files for 

Acetylated Lysine (ALY) and ANS are created by SwissParam Web Server42.  The 

atomic charges on the topology files are refined by B3LYP level QM calculations using 

Gaussian 09 Revision D.0143. The molecular simulations to minimize the energy of the 

ligand-protein complexes were performed in the canonical (NVT) ensemble with periodic 

boundary conditions in all three directions. The iteration was stopped after 10,000 time 

steps and the resultant geometries were recorded. ANS was re-docked on the resultant 

Aβ42 PDB file and the Vina scores were recorded. The docking output by Vina and the 

backbone proteins were then used as input files for DSX. The z scores (standard scores) 

were calculated using the equation: 

𝑧𝑧 =
𝑥𝑥 − 𝜇𝜇
𝜎𝜎
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Where x is the raw score, μ is the population mean and σ is the standard deviation of 

the population. 

The resultant PDB files for different ANS-Aβ42 complexes are submitted to the 

PLIP (Protein Ligand Interaction Profiler)44 Web Server based on a Python command line 

application and an empirical database of non-covalent interactions44. The interactions are 

visualized by JSMol applet embedded in the Web Server. Whole molecule is 

encapsulated by AutoDock Grid Box since no binding region is proposed prior to the 

calculations. The docking results are listed with respect to the scoring function and 

visualized by UCSF Chimera37. 

Cell viability (MTS) assay – SH-SY5Y human neuroblastoma cells (from ATCC) 

were cultured in DMEM/F-12 medium with 10% FBS and 100 U/ml penicillin-

streptomycin at 37 oC in 5% CO2 humidified environment and used within the first 10 

passages. Cells were plated at 2 × 104 cells/well on 96-well plates and allowed to grow 

overnight. The next day, the culture media were removed and cells were washed with 1X 

PBS buffer (pH 7.4) twice. Then 100 μl fresh media containing 1, 2, or 5 μM of peptide 

samples were added to each well. Six replicates were prepared for each sample. Media 

without any peptide were used as controls. After 48 h incubation, 20 μl of CellTiter 96® 

AQueous One Solution Cell Proliferation (MTS) Assay kit (Promega) were added to each 

well and incubated for 4 h. Then absorbance at 490 nm were collected using an ELISA 

plate reader (BioTek Instruments, Inc.). Blanks containing media and peptide samples but 

no cells were similarly prepared and used for background subtraction. 
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4.3 Results  

Surface hydrophobicity of wild type (WT) Aβ42 peptide and the three acetylation-

modified peptides were measured by ANS fluorescence (Figure 4.2A). Even though 

freshly prepared peptides displayed very similar ANS fluorescence, all three acetylated 

peptides showed slightly higher fluorescence than WT. For better understanding of the 

results, the resultant geometries by NAMD calculations were optimized and ANS 

docking was remolded. The final Binding Affinities and ligand-protein interactions are 

used to interpret the experimental findings. The top-ranked poses of ANS at all four 

Aβ42 forms have one common major binding site: hydrophobic rings of ANS interact 

with the aromatic rings of Y10 and H14; the negative charge from ANS is paired with the 

positive charge on H14 (Figure 4.3). Two more potential binding sites were observed 

(Figure 4.3): the hydrophobic pocket which is known to play an important role in the 

aggregation (16-21) and also the region near C terminus (30-35). Table 4.1 and 4.2 show 

the docking scores of ANS on the four peptides, calculated using DSX and AutoDock 

Vina. Although the docking scores of Y10 & H14 site are very close in all four peptides 

(Table 4.1), the ANS binding in the central hydrophobic core (17-20) was strongly 

affected by acetylation on K16 (Table 4.1, Figure 4.3). With K16Ac, ANS docking scores 

are -39.132 kcal/mol and -5.0 kcal/mol by DSX and AutoDock Vina, respectively, which 

are significantly lower than other peptides (Table 4.1). That indicates a significant 

increase in the hydrophobicity of the 16-21 core, which is related to ANS fluorescence 

(Figure 4.2A). After 7 days of incubation, differences of hydrophobicity among the four 

peptides were amplified, especially in K16Ac and KKAc (Figure 4.2A). It is noticeable 

that fluorescence intensity of K16Ac is almost doubled after incubation for 7 days. 
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K28Ac showed results similar to WT peptide. Since the Aβ peptides normally appear in 

the brain in the heterozygous state, 1:1 ratio mixtures of WT Aβ42 with each acetylated 

peptide were prepared. The hydrophobicity of aggregates generated from the mixtures 

showed a slight increase in fluorescence compared to WT peptides, except for K28Ac 

and WT mixture (Figure 4.2A). 
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Figure 4.2. (A) Hydrophobicity of the fresh Aβ42 peptides and the 7-day 

fibril/aggregates were measured by ANS fluorescence. Ten μM of peptide samples were 

incubated with 10 μM of ANS. Mix represents the 1:1 mixture of the acetylated peptide 

with WT as shown on the right side of the panel. Error bars = ± S.D. (B) The most stable 

binding conformer of ANS and Aβ42 peptide analyzed by PLIP44. Peptide backbones are 

in green, ANS molecule is in red, and the major binding sites Y10&H14 are labeled in 

blue.  
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Figure 4.3. The three potential binding sites, Y10&H14, 16-21 region, and 30-35 

region, on WT, K16Ac, K28Ac, and KKAc Aβ42.  

 

Table 4.1 Docking scores (in kcal/mol) of ANS on the sites Y10 & H14 

 Y10 & H14 

 DSX Score ZDSX AutoDock Vina Score Zvina 

WT -12.386 -1.12 -6.1 -2.48 

K16Ac -12.311 -1.74 -6.1 -1.96 

K28Ac -12.312 -1.39 -6.1 -2.04 

KKAc -12.339 -1.47 -6.1 -2.18 

 

Table 4.2 Docking scores (in kcal/mol) of ANS on region 16-21 

 region 16-21 

 DSX Score ZDSX AutoDock Vina Score Zvina 

WT -14.250 0.44 -4.7 0.1 

K16Ac -39.132 -1.50 -5.0 -1.1 

K28Ac -12.975 -0.54 -4.4 1.3 

KKAc -13.284 0.52 -4.8 -0.3 
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Fibrillization/aggregation of the four peptides were monitored by ThT fluorescence 

(Figure 4.4 A-D). The K28Ac peptide showed very similar sigmoidal fluorescence trend 

with WT Aβ42 and was able to form fibril-like structures in both homogenous K28Ac 

sample (Figure 4.4 A, G) and the equimolar mixture with WT (Figure 3C, J). In sharp 

contrast, the two peptides that have acetylation on K16 (K16Ac and KKAc) both showed 

non-sigmoidal ThT fluorescence trend (Figure 3A) and formed amorphous aggregates 

after 7 days (Figure 4.4 F, H) and even 14 days (Figure 4.5). Noticeably, even though 

KKAc did not form amyloid fibrils (Figure 3 H), it showed high ThT fluorescence 

intensity (Figure 4.4A). The aggregation processes of the 1:1 mixtures with WT showed 

that K16Ac and KKAc maintained their aggregation properties in presence of WT Aβ42, 

and only amorphous aggregates were observed after incubation (Figure 4.4 B, D, J, L). 

These results suggest that acetylation on K16 position can significantly affect the 

fibrillization process of Aβ42 peptide. Interestingly, even though the aggregates formed 

from the mixtures of K16Ac and KKAc were still amorphous, their morphologies were 

different from pure K16Ac or KKAc aggregates, also showing reduced bis-ANS 

fluorescence (Figure 4.4 I).  
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Figure 4.4. Fibrillization/aggregation of WT and acetylated peptides was monitored 

using ThT fluorescence, bis-ANS fluorescence, and SEM. For ThT fluorescence analysis 

(A-D), 10 μM of peptide samples were incubates with 10 μM of ThT. Peak intensities at 

487 nm were plotted in function of time. After 7 days incubation, the structures of fibrils 

or aggregates were visualized using SEM (E-K). Scale bars are 1 μm for all. Structure 

flexibility of the fibrils or aggregates were measured by bis-ANS fluorescence (I). Error 

bars = ± S.D. 
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Figure 4.5. SEM images of samples after 14 days incubation. Scale bars are 5 μm, 1 

μm and 500 nm for top panel to bottom panels, respectively. 

Cell viability of Aβ42 fibrils and aggregates were determined using using human 

HUVEC-C endothelial cells and SH-SY5Y neuroblastoma cells (Figure 4.6). At 2 μM, 

the WT fibrils and K16Ac aggregates were found harmful to normal cells (HUVEC-C) 

after 72 h (Figure 4.6). The rigid amorphous aggregates formed from the equal molar 

mixture of WT and K16Ac showed severe cytotoxicity (Figure 4.6).  However, for SH-

SY5Y cells, the fresh K16Ac showed the highest cytotoxicity, whereas its 7-day 

aggregates resulted in >80% cell viability. All the 72 h samples of WT and single 

acetylated peptides were found to be more harmful to neuroblastoma cells than the 7-day 

aggregates. Interestingly, for KKAc, the fresh peptide was protective but 7-day aggregate 

showed severe toxicity. Interestingly, the cell viability decreased in all three mixtures, 

especially the K16Ac mixture, showing 20% decrease in 7-day samples.  
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Figure 4.6. Cell viability of HUVEC-C cells and SH-SY5Y cells with Aβ42 fibrils 

or aggregates. The WT or acetylated Aβ42 peptides were incubated at pH 7.4 and 37 oC 

for 0 h, 72 h, or 7 d, and then added to cells to a final concentration of 2 μM. The 

mixtures represent samples containing equimolar WT and acetylated peptides. Error bars 

= ± S.D.  

4.4 Discussion 

Amyloid fibril dynamics could be affected by the chemical nature of the Aβ peptide 

through side-chain interactions45. Here we demonstrated that acetylation on lysine 16 and 

28 have distinct effects on Aβ42 fibril formation. Acetylation on K16 is more essential to 
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the early stage inter-peptide interactions, which disrupted fibril formation and altered the 

related cytotoxicity. 

In this study, acetylation on both K16 and K28 residues was expected to affect the 

hydrophobicity of Aβ42, since these are located near hydrophobic patches. While 

negligible differences of ANS fluorescence was observed between WT and the acetylated 

peptides. PLIP analysis showed that the major binding site of hydrophobic probe ANS is 

Y10 & H14 and not the central hydrophobic core, L17-F20 (Figure 4.2, Table 4.1 and 

4.2). However, K16 acetylation increased the binding affinity of ANS in the 16-20 region 

of both K16Ac and KKAc peptides, which later formed amorphous aggregates with 

higher hydrophobicity than amyloid fibrils (Figure 4.2). 

The aggregation rate of K16Ac peptide was faster than K28Ac and WT peptide, 

showing a slightly greater slope in the first 2 days (Figure 4.4A, 4.5). Moreover, 

aggregation of K16Ac peptides completed in 2 days, which is almost the same as the lag 

time of WT and K28Ac peptides (Figure 4.4A). Similar rapid aggregation without lag 

time was previously observed in computational simulation of Aβ16-22 fragment, in 

which the Aβ16-22 peptide oligomers were found to be in a disordered molten globular 

structure as a result of strong hydrophobic interactions46. As the oligomers undergo 

conformational reorganization, anti-parallel β-sheet structure form and was stabilized by 

inter-chain salt bridges between K16 and E2247, which follows the “dock-lock” 

mechanism of fibril growth. During fibril formation, the addition of Aβ monomers to 

fibril template is a sequential process of two distinct kinetic steps. In the first step, dock, 

Aβ monomers bind to fibril (or fibril template) rapidly and fully reversibly. In the second 

step, lock, the deposited monomer undergoes conformational reorganization, which 
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significantly increased its association affinity to fibril, resulting in irreversible binding. It 

was also proposed that the formation of ordered amyloid fibril or oligomer structures 

could be affected by the competition of hydrophobic interactions and hydrogen bonding, 

as the higher ordered structures, protofibrils and mature fibrils, are stabilized by high 

density of direct inter-chain hydrogen bonds and steric zipper interactions46, 48. According 

to the dock-lock mechanism, although the formation of amyloid fibrils is 

thermaodynamically favored, the transition from monomers to amyloid conformations is 

kinetically limited47. Considering that the 16-20 residues (KLVFF) was previously 

detected as a intermolecular binding sequence of Aβ40 fibrillization28, in case of K16Ac 

aggregation, it is possible that the inter-chain hydrophobic interactions of the residues 16-

20 increased after removing the positive charge on K16, resulting in the initial rapid 

docking process becoming irreversible, which kinetically inhibited the conformational 

reorganization in the locking phase (Figure 4.7). As a consequence, K16Ac was able to 

inhibit amyloid fibril formation of WT Aβ42 in their equimolar mixture (Figure 4.4C). 
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Figure 4.7. Suggested schematic model based on the aggregation results of WT and 

acetylation modified Aβ42 peptides. Both WT and K28Ac Aβ42 peptide formed amyloid 

fibril structures. Acetylation on K28 may cause formation of a different type of fibril, 

probably due to loss of the K28-A42 salt bridge, but does not show any critical effects on 

morphology. Acetylation on K16 possibly increased the binding affinity of the K16-F20 

region (green), which serves as intermolecular binding sequence during Aβ42 

fibrillization. In consequence, aggregation was kinetically driven to form amorphous 

aggregates.  

The Aβ42 mature fibrils were recently found to form an S-shape “triple-β-motif”29 

(Figure 4.1), which is different from the U-shape conformation of Aβ40 fibrils (Figure 

A3). The D23-K28 salt bridge, which was previously found to be essential in Aβ40 

fibrils30, 49, 50, was missing in the Aβ42 fibril structure; instead, a unique salt bridge was 

observed between K28 and A4229. After removing the positive charge on K28 by 

acetylation, the K28Ac peptide has a longer lag time than WT Aβ42 peptide during 

aggregation. This confirms the stabilizing role of K28-A42 during the early-stage 

conformational changes for nucleation51. However, the K28Ac peptides were capable of 

forming amyloid fibril structures eventually, no matter in homogeneous K28Ac peptide 

sample, or in a heterogeneous equimolar mixture with WT Aβ42 (Figure 4.4A, C, G, J). 

This suggests that the salt bridge may not be essential to fibril morphology. N-ε-amino 

acetylation on K28 was previously done on Aβ25-35 fragment, and the gross structure of 

Aβ25-35-K28Ac fibril was very similar with WT Aβ25-35 fibrils27. The K28Ac fibrils 

observed here may probably have a U-shape structure, which is different with the S-shape 

fibril of WT Aβ42. Acetylation on K28 may alter the triple-β conformation by 

interrupting the K28-A42 salt bridge, and slowdown the early-stage misfolding and 

nucleation. However, it did not show significant effect on morphology or cytotoxicity of 
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Aβ42 fibrils. The amorphous aggregates formed from KKAc (Figure 4.4H, K) suggest 

that the K16 is probably more critical to Aβ42 fibrillization than K28.  

Compared to other posttranslational modified Aβ12, 15, 16, the K16Ac and K28Ac 

peptides were not deleterious to the SH-SY5Y cells, exhibiting similar or less cell loss 

than WT Aβ42 fibrils of 72 h oligomers and 7-day aggregates, respectively (Figure 4.6). 

Interestingly, the K16Ac peptide that added to cells as fresh monomers showed much less 

increased toxicity compared to other forms after 48 h incubation. It was recently noticed 

that the early species in aggregation are more toxic than the final aggregates or fibrils52. 

However, toxicity of KKAc peptide increased with longer incubation (7 d) and fresh 

peptide shows very mild damage to cells. Although both K16Ac and KKAc aggregates 

are amorphous, the K16Ac aggregates are defined bead-like structures compared to 

KKAc. The different toxicities of these two peptides may be related to their structural 

variations. Another hypothesis suggests that the cytotoxicity is due to the dynamic 

aggregation process, rather than any single structure species10, 52. Minor shifts in the 

Aβ40:Aβ42 ratio was demonstrated to be enough to modulate neurotoxicity5. In addition, 

the K16N mutation of Aβ42 is not harmful in isolation, but exhibits severe toxicity when 

mixed with WT peptides32. Whereas the mixture of WT Aβ42 and its toxic mutation A2V 

was protective to the cells, both in vitro and in vivo53. Here in this study, the aggregates 

formed from heterogeneous mixtures of WT and acetylate peptides all showed increased 

toxicity compared to homogeneous samples. Therefore, in addition to the structural 

characteristics, the dynamic interactions of different species contribute significantly to 

aggregation related toxicity.  
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4.5 Conclusion 

In the present study, the Aβ42 peptide was modified with lysine side-chain 

acetylation on residues K16 and K28. Acetylation on K16 position can significantly 

affect the hydrophobicity of residues K16-A21 and alter the Aβ42 self-assembly resulting 

in formation of amorphous aggregates instead of amyloid fibril. This switch is probably 

kinetically driven by the increased inter-peptide hydrophobic interactions in the K16-A21 

region. The peptides with single acetylation on K28 can still assemble into typical 

amyloid fibrils, confirmed by ThT fluorescence and SEM images. However, the 

amorphous aggregates formed from heterogeneous mixtures of WT and acetylated 

peptides exhibit severe cytotoxicity to SH-SY5Y cells, indicating the dynamics of Aβ42 

aggregation needs to be explored further in future studies. 
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5.1 Introduction 

Abnormal protein folding and aggregations are constantly observed in 

neurodegenerative diseases and are believed to be pathogenic1-4. In these diseases, the 

intracellular or extracellular accumulation of protein aggregates could be amyloid fibrils 

or amorphous structures, resulting from mutations or post-translational modifications of 

the disease-related proteins, or triggered by environmental stress5. Moreover, proteins 

that do not cause amyloid diseases are also able to form toxic aggregates3, 6. Although the 

literature has many reported studies that focus on amyloid fibrils, which are commonly 

observed in human diseases; recently, there has been a surge in numbers of pre-fibril 

oligomers and amorphous aggregates studies reported in the literature7-11. Unlike amyloid 

fibrils, the non-fibril structures (amorphous) have very low stability, which limits high 

resolution structure determination using NMR or X-ray crystallography technique. 

The toxicity of protein aggregates could be a consequence of losing the normal 

functions, sequestration, mislocalizations, or gain of toxic function12. However, after 

decades of searching, the predominant toxic species in amyloid diseases is still remains 

unclear. Amyloids were found to disrupt cellular structure and function because of their 

large sizes13. However, only weak correlations were observed between the clinical 

severity of the diseases and the density of amyloid plaques or inclusion bodies formed 

from protein fibrils14-16. Increasing evidences indicated that the amyloid formation could 

be a consequence of cellular protective response1. Some amyloids have no toxicity but 

biological functions, such as binding of peptide hormones, formation of biofilms, or 

launch of innate immune responses4, 17-19. On the other hand, small non-fibril oligomers 

and many other amorphous aggregates were recently proposed to be the major toxic 
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species in human diseases7, 8, 20. Many soluble oligomers of amyloid β peptide were 

isolated from Alzheimer’s disease brain, causing severe synaptic toxicity both in vitro 

and in vivo21, 22. In addition, in vitro cell culture models of Parkinson’s disease also 

showed that co-transfection of α-synuclein and its interacting protein in cells could 

enhance the formation of inclusion bodies and cell viability23, 24. Therefore, the early 

events of aggregation might cause toxicity, while the formation of mature fibril structures 

only represent the end-stage manifestation1. To better understand the cellular toxic 

mechanism in the amyloidosis diseases, more information of the biochemistry and 

biophysics of the non-fibril structures, such as oligomers, protofibrils, and amorphous 

aggregates, will be critical. Many non-fibril oligomer or amorphous structures in previous 

studies have similar properties. Unfortunately, different laboratories in the field normally 

do not share or compare their protein aggregates. 

In this study, different protein aggregates structures selected from previous reports 

were prepared and compared for their size, flexibility, hydrophobicity, and cytotoxicity. 

The goal is to characterize the differences of amorphous aggregates and correlate it to 

cytotoxicity. This will help to understand the relationship between different 

morphological structures and their toxicity. 

5.2 Materials and methods 

Unless otherwise indicated, all materials were used as supplied by the manufacturer 

without any further purification. Hen egg white lysozyme (lysozyme), bovine serum 

albumin (BSA), dithiothreitol (DTT), Thioflavin T (ThT), 8-anilino-1-

naphthalenesulfonic acid (ANS) dye, 4,4’-Dianilino-1,1’-binaphthyl-5,5’-disulfonic acid 
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(bis-ANS) dye, 2',7'-dichlorofluorescin diacetate (DCFH-DA) were purchased from 

Sigma. The CellTiter 96® AQueous One Solution Cell Proliferation (MTS) Assay kit was 

from Promega. 

Preparing protein fibrils/aggregates – Fibrils/aggregates were prepared using 

method from the following studies listed in Table 5.1 and 5.2.  

Table 5.1. Sample preparation conditions of lysozyme aggregates 

Sample # structure condition 

I Amyloid  
Samples contain 1 mM lysozyme in HCl solution (pH 2.0) 

were incubated at 65 oC for 7 days25 

II 
Amorphous  

aggregates 

Samples contain 140 uM lysozyme in HCl solution (pH 

2.0, with 136.7 mM NaCl, 2.68 mM KCl, and 4 mM 

DTT). Samples were first mixed via vortex and then 

incubated were incubated at 55 oC for 30 days26 

III 
Amorphous  

aggregates 

Samples contain 40 μM lysozyme in phosphate buffer (pH 

7.2, 20 mM, with 150 mM NaCl) were incubated at 37 oC 

for 7 days11 

IV &V 
Amorphous  

aggregates 

Samples contain 699 μM lysozyme in Phosphate buffer 

(pH 7.4, 100 mM) were incubated at 56 oC (IV) and  25 
oC (V) 27 

VI 
Amorphous  

aggregates 

Samples contain 120 µM lysozyme in Phosphate buffer 

(pH 7.0, 50 mM) were incubated at 25 oC28 

VII 
Amorphous  

aggregates 

Samples contain 120 µM lysozyme in Phosphate-NaOH 

buffer (pH 12.0, 50 mM) were incubated at 25 oC28 

 

Table 5.2. Sample preparation conditions of BSA aggregates 
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Sample # structure condition 

I Amorphous 

Samples contain 100 µM BSA in glycine-HCl buffer (pH 

3.0, 50 mM , with 50 mM NaCl) were incubated at 65 oC 

for 4 h then followed by 30 days room temperature 

incubation29 

II 
Amorphous  

aggregates 

Samples contain 40 μM BSA in phosphate buffer (pH 7.2, 

20 mM, with 150 mM NaCl) were incubated at 37 oC for 7 

days11 

III protofibrils 
Samples contain 37.6 μM BSA in Tris–HCl buffer (pH 7.4, 

20 mM) were incubated at 70 oC for 4 days30 

IV 
Amorphous  

aggregates 

Samples contain 7.5 uM BSA in phosphate buffer (pH 8.9, 

0.1 M) were incubated at 62 oC over 10 h31 

 

Fluorescence measurements – Fluorescence measurements were performed as 

previously described in chapter 2. In brief, samples were diluted by phosphate buffer (10 

mM, pH 7.4) to a final concentration of 10 μM. Fluorescent probes Thioflavin T (ThT), 

8-anilino-1-naphthalenesulfoni acid (ANS), and 4,4'-dianilino-1,1'-binaphthyl-5,5'-

disulfonic acid (bis-ANS) were prepared in ethonal and then added to samples to final 

concentrations of 10 μM (ThT), 5 μM (ANS), and 1 μM (bis-ANS). Emission spectra 

were collected using a Horiba Hobin Yvon spectrofluorometer (Fluoromax-4) at room 

temperature. ThT spectra were collected from 460 – 700 nm, with excitation at 450 nm. 

ANS and bis-ANS spectra were acquired from 400 – 700 nm, with excitation at 380 nm 

and 360 nm, respectively. 

Field emission scanning electron microscopy (FESEM) – Protein samples were 

analyzed using a cold field emission high-resolution scanning electron microscope, 
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Hitachi S-4700 FESEM as previously described in chapter 2. In brief, protein samples 

were washed in MilliQ water using a Millipore Amicon® Ultra centrifugal filters (3 kDa 

cut off) by centrifuging three times at 7,000 × g for 30 min at 4 oC. Washed fibrils or 

aggregates were applied on SEM stubs and air dried at room temperature. The SEM 

samples were then coated with 10 nm platinum. For FESEM imaging, 10 kV of 

acceleration voltage and 5 μA of emission current were used. 

Cell viability (MTS) assay – SH-SY5Y human neuroblastoma cells (from ATCC) 

were cultured in DMEM/F-12 medium with 10% FBS and 100 U/ml penicillin-

streptomycin at 37 oC in 5% CO2 humidified environment and used within the first 10 

passages. Cells were plated at 2 × 104 cells/well on 96-well plates and allowed to grow 

overnight. The next day, cells were washed with 1X PBS buffer (pH 7.4) twice. Then 100 

μl fresh media containing peptide samples were added. Six replicates were prepared per 

sample. Media without any peptide were used as controls. After 48 h incubation, 20 μl of 

CellTiter 96® AQueous One Solution Cell Proliferation (MTS) Assay kit (Promega) 

were added and incubated for 4 h. Then absorbance at 490 nm were collected using an 

ELISA plate reader (BioTek Instruments, Inc.). Blanks containing media and peptide 

samples but no cells were similarly prepared and used for background subtraction. 

Cytotoxicity (LDH) assay – SH-SY5Y cells were plated at 2 × 104 cells/well on 96-

well plates and incubated with protein aggregate samples for 48 h. After incubation, 50 μl 

of aliquots from each test and control well was transferred to a fresh 96-well plate. To 

prepare positive control that has maximum lactate dehydrogenase (LDH) release, 10 μl of 

10X lysis solution were added into each well and incubated for 45 min. Then 50 μl of 

reagent from the CytoTox 96® Non-Radioactive Cytosocity Assay kit (Promega) were 
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added and incubated for 30 min, followed by addition of 50 μl stop solution. The 

absorbance at 490 nm were collected using an ELISA plate reader (BioTek Instruments, 

Inc.). Blanks containing media and peptide samples but no cells were similarly prepared 

and used for background subtraction. 

2',7'-dichlorofluorescin diacetate (DCFH-DA) fluorescence assay – Intracellular 

reactive oxidative species (ROS) can oxidize DCFH-DA to the highly fluorescent 

compound dichlorofluorescein (DCF).Therefore, respiratory burst activity in cells was 

detected by using the fluorescent probe DCFH-DA32, 33. DCFH-DA was dissolved in 

ethanol at 25 mM as tock solution. SH-SY5Y cells were seeded in 96-well plates at 1 x 

105 cells/well and were incubated with protein aggregate samples for 24 h. After 

incubation, cells were washed using 1X PBS and then incubated with 10 μM DCFH-DA 

at 37 oC for 30 min, then washed with 1X PBS. The fluorescence intensity of DCF was 

measured in a Multiskan™ GO Microplate Spectrophotometer (Thermo Scientific) at 

excitation wavelength 485 nm and emission wavelength 538 nm. 

5.3 Results and discussion 

In this study, three fluorescent probes were used to characterize the protein 

aggregates. As introduced in chapter 2, ANS dye detects hydrophobic structures or 

nonpolar cavities in proteins with high fluorescence signals. The dimeric analogue of 

ANS, bis-ANS, is an important probe to determine structure flexibility. ThT was used to 

detect the structural property of the aggregates. From the previous publications11, 25-29, 31, 

34, a total of 17 samples at different conditions were selected (Table S1). However, we 

found that at the same pH and temperature, changes in concentration with 100 μM did not 
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have significant effects on protein structure and related fluorescence analysis (Figure 5.1). 

Therefore, only one concentration at each set of condition was selected as the most 

representative samples for toxicity measurements. 
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Figure 5.1. Samples at same pH and temperature but different concentrations 

showed similar ANS, bis-ANS, and ThT fluorescence results. (A, B) Samples that 

contain 80 μM (A) or 120 μM (B) of lysozyme at pH 7.0 were incubated at 25 oC up to 

14 days. (C, D, E) Samples that contain 40 μM (C), 80 μM (D) or 120 μM (E) of 

lysozyme at pH 12.0 were incubated at 25 oC up to 14 days. 

First, we compared different types of aggregates, amyloid and granular structures, 

from the same proteins (Figure 5.2 and 5.3). Figure 5.2 shows three different aggregate 

structures generated from lysozyme. The fibril structure showed increased ANS and ThT 

fluorescence and decreased cell viability upon incubation (Figure 5.2 A, D). This is in 

line with a previous hypothesis that the extracellular amyloid deposits can physically 

disrupt the cellular structure and function by a bulk process1. While the other two 

amorphous aggregates had more hydrophobic and flexible structures than the fibrils, but 

did not bind to ThT (Figure 5.2 B, C). Even though both amorphous aggregates had a 

granular appearance when observed under SEM, aggregate II (Figure 5.2 B) had a 

smaller subunit size, which results in a more rigid structure. Unlike fibrils, both granular 

aggregates were most harmful to the cell after 12h incubation, suggesting that under these 

two conditions, the aggregation intermediates were more toxic. Interestingly, both 12 h 

and 7 d samples of aggregate III (Figure 5.2 C) resulted in < 40% cell viability, but the 3 

d sample showed decreased toxic. Except ThT fluorescence, the aggregate III showed 

negligible changes in hydrophobicity, flexibility, and overall morphology after 12 h. 

According to a previous study11, the amount of high molecular species increased from 12 

h to 7 d, suggesting that although negligible changes were observed for fluorescence and 

morphology (Figure 5.2 and B1), the aggregation was still continuing, to form larger 

protein assemblies. Therefore, the 7d sample had most mature aggregates, while the 12 h 
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sample contains both intermediates and mature aggregates, the toxicity of 12 h samples is 

likely due to the heterogeneity of sample.  
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Figure 5.2. Three different structures generated from lysozyme were characterized 

using fluorescent probes, SEM, and MTS assay. (A) Fluorescence results and SEM image 

of lysozyme aggregate I: amyloid fibril generated from 1 mM lysozyme at pH 2.0, 65 oC. 

(B) Fluorescence results and SEM image of lysozyme aggregate II: amorphous aggregate 

generated from 140 μM lysozyme at pH 2.0, 55 oC. (C) Fluorescence results and SEM 

image of lysozyme aggregate III: amorphous aggregate generated from 40 μM lysozyme 

with 10 mM DTT at pH 7.2, 37 oC. (D) MTS assay of SH-SY5Y cells incubated with 15 

μM lysozyme aggregates I-III. Error bars = ± S.D. Scale bars in SEM images = 5 μm. 

For BSA, all four aggregates tested here did not show any detectable changes of bis-

ANS fluorescence. This may be due to the bulky nature of the BSA protein. The BSA_I 

(Figure 5.3A) showed negligible changes for up to 30 days of incubation, but two types 



149 
 

of structures, granular and fibril-like, were observed under SEM. However, these 

aggregates from BSA_I samples appear to be essentially harmless to the SH-SY5Y cell 

(Figure 5.3 E). During aggregation, BSA_II, III, and IV showed different levels of 

impairments of ANS fluorescence and increases in ThT fluorescence. Even though 

BSA_IV aggregates appeared in straight fibril-like morphology, we found that the 

structure could not bind ThT, and was very unstable under SEM, suggesting that this 

structure might not be classified as amyloid fibrils. Cytotoxicity of the two non-fibril 

aggregates, BSA_II and IV followed similar trends as their ANS fluorescence, where 

toxicity of BSA_II aggregates stayed stable after 12 h, but the number of live cell treated 

by BSA_IV samples kept decreasing till 7 d (Figure 5.3 B, D, E). Since a decrease of 

ANS fluorescence indicates conformational change and assembly of BSA molecules, the 

matched trends of the toxicity and ANS results suggests that the final aggregates are the 

major toxic species in these two cases. For BSA_III, the high ThT fluorescence signals 

and the short fibrillar structures (Figure 5.3 C) identified this structure as protofibrils. 

Both the 2 h intermediates and the 7d protofibrils of BSA_III caused impairment of cell 

viability (Figure 5.3E). Since the 12 h intermediates were more hydrophobic and less 

stable than the 7 d protofibrils (Figure S5.2), they might cause cell dysfunction or death 

through different mechanisms. 
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Figure 5.3. Four different structures generated from BSA were characterized using 

fluorescent probes, SEM, and MTS assay. (A) Fluorescence results and SEM image of 

BSA_I aggregate: amorphous aggregate mixed with fibril-like structures generated from 

100 μM BSA at pH 3.0, 25 oC. (B) Fluorescence results and SEM image of BSA 

aggregate II: amorphous aggregate generated from 40 μM BSA with 10 mM DTT at pH 
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7.2, 37 oC. (C) Fluorescence results and SEM image of BSA aggregate III: protofibril 

generated from 37.6 μM BSA at pH 7.4, 70 oC. (D) Fluorescence results and SEM image 

of BSA aggregate IV: amorphous aggregate generated from 7.5 μM of BSA at pH 8.9, 65 
oC. (E) MTS assay of SH-SY5Y cells incubated with 15 μM BSA aggregates I-IV. Error 

bars = ± S.D. Scale bars in SEM images = 1 μm (A-C) or 10 μm (D).  

There is an ongoing debate in the field, as to what is the primary toxic species 

responsible for diseases5, 7, 35, 36. Many protein aggregate toxicity studies have shown that 

the rapidly formed non-fibril oligomers are more toxic than the highly organized fibrillar 

structures, which may be due to the exposure of hydrophobic side chains7, 35, 36. 

Interestingly, we observed that the granular BSA_II aggregates showed a similar trend in 

the toxicity as lysozyme_I fibrils, where all aggregates from 12 h to 7 d had a similar 

level of cytotoxicity (Figure 5.3E and 5.2D). In addition, the protofibrils from BSA_III 

and the granular lysozyme_III aggregates both have toxic intermediates as well as toxic 

mature aggregates (Figure 5.3 C and 5.2 A). According to our observations of different 

protein aggregates from lysozyme and BSA, the toxic species may not be conclude as 

general fibrillar or granular structures. While the only sample that did not exhibit any 

toxicity, was BSA_I, which showed two different structures but no measurable changes 

in fluorescence. This suggest that the aggregate toxicity may not depend on the overall 

appearance of the structure, but depend on the molecular organization of the aggregates35. 

Next, we prepared four different non-fibrillar aggregate structures that are all in 

granular appearance from the same protein, lysozyme (Figure 5.4). Although generated 

under very different conditions (see Table 5.1), similar morphology and subunit size of 

the aggregates were observed. The four aggregates could be grouped as two pairs that 

lysozyme_IV and VI forms larger bead-like structures, while lysozyme_V and VII forms 
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smaller and more compact structures. Does size matter? In general, although size 

measurements may lack structural/conformational details, size could matter for the 

activity of small structures in 10-100 kDa, or the insoluble ones8. Smaller size would be 

expected to assist diffusion, and could provide larger surface to mass ratio for potential 

interactions. However, here among the four granular aggregates, structures that have the 

largest (Lysozyme_IV) and the smallest (Lysozyme_VII) unit size caused impairment of 

cell viability (Figure 5.4 E), indicating that size dose not play a primary role to affect 

cytotoxicity. It is noticeable that the non-toxic structures did not show any measurable 

changes in ANS, bis-ANS, or ThT fluorescence (Figure 5.4 B, C), which is very similar 

with BSA_I (Figure 5.3A). These results again support the idea that toxicity closely 

related to the conformational organization of protein aggregates. Interestingly, proteins 

formed non-toxic aggregates without significant conformational changes. Although these 

aggregates were stable and large, they stayed as harmless as the native monomers. 

Therefore, conformational rearrangement is probably the first step to gain toxicity. 

However, the toxic aggregates observed so far present a mixed picture: in general, the 

results support that the toxicity may likely be a consequence of the loss of protein’s 

native fold, but whether the observed cytotoxicity specifically associated with one certain 

structure/conformation or it is a consequence of general heterogeneous dynamic of the 

aggregation process still remains to be clarified.  
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Figure 5.4. Four different bead-like amorphous aggregate structures generated from 

lysozyme were characterized using fluorescent probes, SEM, and MTS assay. (A, B) 

Fluorescence results and SEM image of lysozyme aggregate IV (A) and V (B): generated 

from 699 μM lysozyme at pH 7.4, 65 oC (A) or 25 oC (B). (C) Fluorescence results and 

SEM image of lysozyme aggregate VI: generated from 120 μM lysozyme at pH 7.0, 25 
oC. (D) Fluorescence results and SEM image of lysozyme aggregate VII: generated from 
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120 μM lysozyme at pH 12.0, 25 oC. (D) MTS assay of of SH-SY5Y cells incubated with 

15 μM lysozyme aggregates IV-VII. Error bars = ± S.D. Scale bars in SEM images = 1 

μm. 

Similar results have also been reported in studies of other proteins35, such as α-

synuclein37, amyloid β peptide38, 39, and Hyp-F peptide40. Many of these on-/off-pathway 

aggregates share similar morphologies or overlapping properties, but different toxic 

effects36. It has been proposed that the increase toxicity of certain protein assemblies is 

due to their “biologically active conformation”38, which exposes the “toxic surface”1 on 

the molecules. However, the nature of either the “biologically active conformation” or the 

“toxic surface” remains elusive. Many previous studies suggest that the hydrophobic 

structures are potentially able to disrupt cell membrane, resulting in substantial cellular 

dysfunctions7, 41. Whether or not hydrophobicity is directly related to toxicity is still a 

matter of debate. In the present study, toxicity observed in four out of five toxic lysozyme 

aggregates (lysozyme_I, II, III, IV, VII) showed a positive correlation to hydrophobicity 

(Figure 5.2, 5.4). However, the most hydrophobic species in lysozyme_VII and all the 

BSA samples were not the most toxic ones (Figure 5.3 and 5.4). Evidence can also be 

found in Hyp-F oligomers, where the structure with lower degree of hydrophobic packing 

were able to interact strongly with cell membranes, penetrate into cells, and resulted in 

high toxicity40. The authors suggest that the toxicity may arise due to the structural 

flexibility40, 42. This hypothesis is actually in line with our finding in lysozyme aggregates, 

that all the toxic structures showed high bis-ANS fluorescence compared with native 

monomers. From that point, toxicity could possibly resulted from the increased flexibility 

of the protein/peptide aggregates36.  
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Among the results discussed above, we noticed that under many conditions, both the 

intermediates and mature aggregate structures caused low cell viability in MTS assay. To 

further understand the difference between these structures, the toxic structure selected by 

MTS assay were then tested using LDH and DCF assays, which determine cytotoxicity 

and the respiratory burst activity in cells, respectively. Release of the cytosolic enzyme 

lactate dehydrogenase (LDH) is known as an indicator of membrane leaking, a 

consequence of cell death. It is noticeable that only in BSA_III and IV, the mature 

structures are more toxic (Figure 5.5). In most of the tested samples, the intermediates 

showed higher toxicity than the mature structure, although they exhibited similar effect 

on cell viability (MTS) assay (Figure 5.5). This suggests that the intermediates exhibit 

higher cytotoxicity. The non-polar compound 2',7'-dichlorofluorescin diacetate (DCFH-

DA) can penetrate the cell membrane, and be hydrolyzed by the intracellular esterase to 

2',7'-dichlorofluorescin (DCFH). In the presence of reactive oxygen species (ROS), 

DCFH can be oxidized into the highly fluorescent 2',7'-dichlorofluorescein (DCF)32. 

Therefore, the DCF assay is widely used to measure the amount of intracellular ROS 

level32, 33, 43. Increases in the ROS species indicates increased cellular stress. In general, 

DCF results of the selected toxic structures followed similar trend to LDH measurements 

(Figure 5.5), suggesting that the cytotoxicity may arise as a result of increased oxidative 

stress inside the cell. Overall, the parallel comparison of these different assays suggest 

that both intermediates and mature aggregates in protein aggregation process can affect 

cell proliferation, but the intermediates generally exhibit higher cytotoxicity, probably 

due to increased ROS in the cell. This also has the implication that different pathways for 

cytotoxicity may be activated depending on the nature of aggregates. 
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Figure 5.5. The toxicity of different protein aggregates were compared by MTS 

assay, LDH assay, and DCF assay. In each assay, SH-SY5Y cells were incubated with 15 

μM of selected aggregate samples. In MTS assay and DCF assay, data was normalized 
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based on cell-only control. In LDH assay, max LDH release was set as 1, and all other 

data was normalized accordingly. Error bars = ± S.D.  

Here in this study, the most toxic species were found at 2 h or 12 h incubations, 

which are flexible intermediate structures. This observation of toxic intermediates is in 

agreement with the hypothesis that toxicity is related to protein’s flexibility as mentioned 

above. Alternatively, toxicity is also proposed as a consequence of the dynamics of 

protein aggregation process1, 20, 44, 45. Studies of amyloid β peptide have shown strong 

correlations between toxicity and the free monomers or aggregation seeds, rather than 

mature amyloid fibrils1. Considering the toxic intermediates observed in the present study 

and reported in the literature, the toxicity may also relate to the ongoing aggregation 

process and heterogeneous character of natural aggregates37. Although this hypothesis of 

aggregation dynamics associated toxicity is able to explain many of the available 

observation in the field, its mechanism is even more difficult to understand. Future work 

on identifications of the diverse structures during aggregation process would be necessary. 

Comparing and contrasting the toxic structures observed in vitro and in vivo may also 

provide important insights for the actual toxic mechanism of protein aggregation. 
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Figure 5.6. The initial conformational change during aggregation is a common key 

factor to different protein aggregates observed in this study. However, toxicity was 

observed in both types of intermediates that form amyloid and granular aggregates. 

Further precisely structure analysis is needed to full distinguish different aggregation 

intermediates in terms of toxicity. 

5.4 Conclusion 

In this study, different aggregate structures of lysozyme and BSA were generated, 

and compared for hydrophobicity, structural flexibility, and cytotoxicity. Results showed 

that aggregates in similar morphology could be differentiated on the biophysical 

properties and related cellular effects, which provide evidence of heterogeneous 

population of protein aggregates. In both lysozyme and BSA, cytotoxicity could arise as a 

consequence of structural flexibility. The aggregates that formed rapidly and had no 

significant conformational change from the protein native structure are essentially 

harmless to the cells. To further precisely define the toxic conformation of proteins, 

future work with high resolution structural identification would be needed. 
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6.1 Introduction 

Intracellular pH is essential to regulate many important behaviors of a cell such as 

cell volume, membrane polarity, proliferation and apoptosis, ion transport, enzyme 

activity, and protein degradation1. The pH varies considerably among subcellular 

compartments, ranging from 4.7 in lysosome to 8.0 in mitochondria. Changes of pH in 

living cells affect cellular internalization pathways, as well as synaptic transmission and 

signal cascades in the nervous system. Disruptive pH variations in organelles associate 

with dysfunctions and are observed in pathophysiology of many diseases, such as 

triggering cancer, stroke, and Alzheimer’s disease. For example, the organelle lysosome 

maintains an acidic environment (pH 4.5–5.5) that serves to denature proteins or to 

activate degradation enzymes. Abnormal lysosomal pH can cause lysosome malfunction, 

accumulation of cell trashes, and even lysosomal storage diseases that can affect every 

part of the human body2. Therefore, it is very important to monitor pH changes inside 

living cells in order to investigate cellular functions that can provide insight into 

physiological and pathological processes.  

Intracellular pH is normally detected using NMR, microelectrodes, absorbance 

spectroscopy, and fluorescence spectroscopy1. Compared with other methods, 

fluorescence detection of intracellular pH is not only simple-to-operate and highly 

sensitive, but also has advantages of excellent spatial and temporal observations2-4. 

Fluorescence-based techniques such as fluorescence microscopy and flow cytometry can 

provide high-resolution and high-throughput analysis, thus, they have been widely used 

to investigate intact subcellular pH. However, among the large numbers of pH fluorescent 



169 
 

probes, only a few have been applied inside living cells5-7. Most intracellular fluorescent 

probes have used morpholine residues for the selective accumulation in the acidic 

lysosomes, since the ionizable tertiary amine groups tend to be protonated in acidic 

environments4. As a consequence of tertiary amine protonation in acidic lysosomes, the 

photo-induced electron transfer (PET) from the tertiary amine to the probe fluorophores 

is prohibited, resulting in enhancement of the probe fluorescence8-10. The potential 

drawbacks of these fluorescent probes are that they have broad pH responses and 

relatively high fluorescent background issue at pH 7.4. Recently, fluorescein and 

rhodamine dyes were used in approaches to reduce the background fluorescent at pH 

7.411-13. However, most fluorescent probes are still not soluble in aqueous solution, and 

some probes can cause sever photo-damage to cells due to their short absorption and 

emission wavelengths (< 600 nm)14-16. A series of rhodamine dye counterparts were 

recently reported to sensitively detect lysosomal pH in live cells. These fluorescent 

probes have near-infrared excitation and emission wavelengths with deep tissue light 

penetration, low cytotoxicity, excellent photostability, as well as low background 

fluorescence. However, they were still insoluble in aqueous solution17. Therefore, the 

readily accessible near-infrared fluorescent probes that have good water solubility, large 

dynamic range and high specificity are still a challenging task for near-infrared imaging, 

especially for sensitive detection of lysosomal pH in living cells.  

In this chapter, one uncommon morpholine based fluorescent probe 1 with 

morpholine residues to BODIPY dyes will be introduced to sense abnormal, elevated 

intracellular pH. The fluorescent probe 1 selectively displays high fluorescence with great 

photostability in a basic condition, but exhibits very weak fluorescence in an acidic 
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condition. In addition, fluorescent probe 1 has a long emission wavelength and a high 

pKa near the physiological pH, which provide more advantages for live cell fluorescence 

imaging. To further sensitively detect lysosomal pH changes, another group of near-

infrared BODIPY-based fluorescent probes, probes 2, 3, 4, was synthesized for lysosomal 

pH detection. Piperazine moieties were attached to the fluorescent cores to manipulate 

the fluorescent responses of the probes at different pH values. Fluorescent probes display 

very weak fluorescence at basic and neutral pHs, while decreasing the pH significantly 

enhances fluorescence intensity. These fluorescent probes have advantages such as high 

photostability, sensitive and selective near-infrared imaging of lysosomal pH in living 

cells. They have potential for intact in vivo imaging and deep tissue penetration without 

auto-fluorescence and unintended cellular damage issues. 

6.2 Materials and methods 

Intracellular fluorescent probes 1 and lysosomal pH probes 2, 3, 4 were synthesized 

by Jingtuo Zhang from Dr. Haiying Liu’s research group. Details of compound synthesis 

and characterization could be found in the original publication2. 

 Optical measurements – All absorption and emission spectra were recorded as 

previously described in chapter 2. In brief, 20 mM and 50 mM of citrate-phosphate-

borate buffers were used for pH dependency and photostability measurements of 

intracellular and lysosomal fluorescent probes, respectively. Stock solutions of all the 

probes are at 1.0 mM in DMSO (probes 2 and 3) or aqueous solution (probe 1 and 4). To 

avoid the interference caused by metal-phosphate and metal-citrate binding interactions 

(forming precipitates of divalent cation phosphate and forming complex of the metal-
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citrate), 10 mM KHP buffer (pH 4.0) and 10 mM HEPES (pH 7.4) buffer were used for 

selectivity measurements of fluorescent probes. The UV-Vis absorption spectra of 

fluorescent probes 1, 2, 3, and 4 for pH dependency, selectivity, photostability and 

solvent effect measurements were collected in the range from 300 to 800 nm with 

increments of 1 nm. Their corresponding fluorescence spectra were collected at the 

excitation wavelength of 580 nm for fluorescent probes 1, and 620 nm for probes 2, 3, 4. 

The excitation and emission slit widths were set up to 3 nm.   

Determination of pKa by fluorometric titration – The constants Ka of fluorescent 

probes were determined in buffer solutions by fluorometric titration as a function of pH 

using the fluorescence spectra. The expression of the steady-state fluorescence intensity F 

as a function of the proton concentration has been extended for the case of an n: 1 

complex between H+ and a fluorescent probe, which is expressed by the equation as 

below:  

𝐹𝐹 =
𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚[H+]𝑛𝑛 + 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝐾𝐾𝑎𝑎

𝐾𝐾𝑎𝑎 + [H+]𝑛𝑛
 

Fmin and Fmax stand for the fluorescence intensities at maximal and minimal H+ 

concentrations, respectively, and n is apparent stoichiometry of H+ binding to the probe 

which affects the fluorescent change. Nonlinear fitting of the above equation to the 

fluorescence titration data recoded as a function of H+ concentration with Ka and n as 

free adjustable parameters yields the estimated apparent constant of Ka. 

Live cell fluorescence imaging – Breast cancer cells MDA-MB-231 and normal 

endothelial cells HUVEC-C (from ATCC) were cultured as previously described in 

chapter 2. In brief, cells were plated on 12-well culture plates at 1 × 105 cells per well and 
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incubated at 37 oC in a 5% CO2 incubator overnight. The next day, the medium was 

removed and cells were rinsed twice with 1X PBS, after which fresh serum-free medium 

was added and cells were incubated for 2 h at 37 oC in a CO2 incubator. Following 2 h 

serum starvation, fresh serum free media with/without indicated concentrations of probes 

and co-stains were added and incubated further with cells for 2 h. Cells were washed with 

fresh serum free media without any fluorescence dyes to remove background 

fluorescence. To adjust the intracellular pH, cells were treated with nigericin (5 mg mL-1) 

in 2 mL potassium rich PBS at different pH values and incubated further for 15 min. Live 

cell images were acquired using an inverted fluorescence microscope (AMF-4306, 

EVOSfl, AMG) with DAPI filter for Hoechst 33342 (Sigma-Aldrich), GFP filter for 

LysoSensor Green DND-189 (Invitrogen), and CY5 filter for fluorescent probes 1, 2, 3, 

and 4. The fluorescence images were obtained at 40X and 60X magnification for 

HUVEC-C and at 60X magnification for MDA-MB-231 cells. The exposure times for 

each filter were kept constant. Co-localization analysis based on Pearson's coefficient 

was done using JACoP plugin from ImageJ.35 

Determination of cellular uptake efficiency – HUVEC-C cells were plated at a 

density of 1 × 104 cells per well on a 96-well cell culture plate and incubated at 37 oC in a 

5% CO2 incubator overnight. The next day, the culture media was removed and cells 

were rinsed twice with PBS (pH 7.4). Fresh 100 mL media with indicated concentrations 

of probes were added to the wells in triplicate and incubated for 2 h. Controls and blanks 

were also set in triplicate at the same time. Controls had culture media and dyes but no 

cells. Blanks used for background subtraction had cells and media but no dyes. After 2 h 

incubation, the media (100 mL) was pipetted out from the plate and put in a fresh 96-well 
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plate. Each well was rinsed with 100 mL of fresh PBS (pH 7.4), and the solution was 

added to the respective wells in the fresh 96-well plate. Then the absorbance of the wells 

was measured by an ELISA plate reader (BioTek Instruments, Inc.) at 712 nm, 710 nm, 

and 687 nm (absorbance peaks of fluorescent probes 2, 3, or 4, respectively). The values 

of the respective blanks were subtracted from samples (Adye) and controls (Actrl). 

Cellular uptake efficiency was calculated as [1 – (Adye/Actrl)] × 100%. 

Cell viability (MTS) assay – MTS assay was performed with MDA-MB-231 cells 

and HUVEC-C cells (ATCC), as previously described in chapter 2. Briefly, the cells were 

plated at a density of 5,000 cells per well on a 96-well cell culture plate and incubated at 

37 oC in a 5% CO2 incubator overnight. The next day, media were removed and the cells 

were washed with 1X PBS. Fresh media with 0-50 μM of fluorescent probes in DMSO 

(with <0.5% DMSO final concentration in media) were added to the wells and measured 

in 6 replicates for each dye concentration. Blanks that had everything else except the cells 

were prepared at the same time. The plates were incubated at 37 oC in a 5% CO2 

incubator for 72 h. After incubation, 20 μL of MTS reagent (CellTiter 96 Aqueous Non-

Radioactive Cell proliferation Assay (MTS) kit, Promega) was added to each well. The 

absorbance at 490 nm was acquired after a 4 h incubation at 37 oC, using an ELISA plate 

reader (BioTek Instruments, Inc.). Plots were normalized to control wells containing 

media and cells only. 
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6.3 Results and discussion 

6.3.1 Intracellular pH probe 

The intracellular pH probe 1 (Figure 6.1) was synthesized by Dr. Haiying Liu’s 

group. The tri-(ethylene glycol) methyl ether groups were introduced to the meso-phenyl 

rings and 1,7-positions of BODIPY dye, which enhances the solubility of probe 1 in polar 

solvents. The functionalizing groups, morpholine moieties, were attached to the BODIPY 

core at 4,4’-positions. The probe displays negligible change in absorption at different pHs 

(data not shown). However, a fluorescence turn-on behavior was observed at basic pH, 

with 14.3-fold enhancement of fluorescence intensity from pH 3.02 to 9.49 (Figure 6.1).  

Theoretical modeling results showed that the fluorescent probe responded to pH via a 

modulation of d-PET (photo-induced electron transfer) mechanism (Figure 6.2). At high 

pH, the calculated HOMO and LUMO energies of morpholine moieties are lower and 

higher than those of probe 1, respectively. This suggests that the electrons cannot transfer 

from mopholine moieties to the probe core, leading to a prohibited a-PET mechanism and 

high fluorescence of probe 1. Whereas at low pH, the protonation of morpholine moiety 

results in a dramatic decrease of HOMO and LUMO energies, where the LUMO energy 

of protonated morpholine moieties lies between the HOMO and LUMO energies of probe 

1 (Figure 6.2). In this case, morpholine residues serve as electron accepters, which 

quenched the fluorescence of the BODIPY dye via d-PET mechanism. In addition, probe 

1 has a pKa value of 6.15, with maxima fluorescence increase lies in pH range 4.5-7.4, 

showing great potential to sensitively detect changes near physiological pH. Moreover, 

the deep-red emission prevents photo-damage to the cells, and the large Stokes shift 
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(from 550 nm excitation to 665 nm emission at pH 7.4, figure 6.1) minimizes the 

potential interference from excitation signals.  

 
Figure 6.1. Chemical structure and fluorescence spectra of fluorescent probe 1 (5 

μM) in buffer solution at different pH (with 1% DMSO). The corresponding curve shows 

the increase of fluorescence intensity when pH increases.   
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Figure 6.2. The HOMO and LUMO energies of fluorescent probe 1 and morpholine 

moiety (N-methylmopholine, before and after protonation) were calculated. 

Live cell fluorescence imaging of probe 1 was performed using HUVEC-C cells at 

different intracellular pH values (Figure 6.3, 6.4). Since the tertiary amines of the 

morpholine moieties tend to accumulate in acidic environments, we hypothesis that the 

fluorescent probe 1 may label lysosomes in the cell. Therefore, a well-known commercial 

lysosome probe, LysoSensor Green DND-189, was selected as a co-stain. Figure 6.3 

shows that probe 1 exhibited very weak fluorescence signals at 5-25 uM. Slight 

fluorescence enhancements could be observed with increased probe concentrations. The 

merged fluorescence images show more green areas around the nucleus and only a few 

green-yellowish dot structures can be observed by a careful examination (Figure 6.3). 

However, the calculated Pearson’s coefficients of red (fluorescent probe 1) and green 

(LysoSensor Green) channels are 0.92, 0.85 and 0.88 for 5 µM, 15 µM and 25 µM probe 

1, respectively (Figure 6.3 cytofluorograms), indicating that the area stained by probe 1 

matches those stained by LysoSensor Green in cells. This confirmed our hypothesis that 
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fluorescent probe 1 mainly stained lysosomes or other acidic organelles in cells. 

Therefore, the weak fluorescence of fluorescent probe 1 observed in the cells is a 

consequence of fluorescence quenching by the protonated morpholine moieties via a d-

PET effect at lysosomal pH (4.5-5.5). In order to examine the fluorescence responses of 

fluorescent probe 1 to different pHs inside of cells, we further adjusted the intracellular 

pH of HUVEC-C cells using a widely used H+/K+ ionophore, nigericin, in K+ rich PBS 

buffer solutions at pH 5.5, 6.5, 7.5, or 8.5 by equilibrating the intracellular and 

extracellular pHs. At all three concentrations, fluorescent probe 1 displayed very weak 

fluorescence at acidic pH (pH 5.5), whereas its fluorescence intensity showed gradual 

enhancement as intracellular pH increased from 5.5 to 8.5 (Figure 6.4). In addition, at 

each intracellular pH, higher probe concentration resulted in stronger fluorescence signals 

(Figure 6.4). These responses of fluorescent probe 1 to increased intracellular pH are in 

line with its optical responses to pH in buffer solutions (Figure 6.1), which further proved 

the d-PET mechanism of fluorescent probe 1 at different pHs in live cells. However, the 

commercial lysosome probe LysoSensor Green DND-189 did not exhibit any change in 

fluorescence upon change of intracellular pH (Figure 6.4). 
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Figure 6.3. Fluorescence images of HUVEC-C cells incubated with 5 μM, 15 μM, or 

25 μM fluorescent probe 1. HUVEC-C cells were incubated with fluorescent probe 1 for 
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2 h, post serum starvation (2 h) and imaged for co-localization with 1 μM LysoSensor 

Green and (1 μg·mL−1) Hoechst 33342 stains. Images were acquired using the inverted 

fluorescence microscope (AMF-4306, EVOSfl, AMG) at 40× magnification, scale bars = 

100 μm. Cytofluorograms of green and red channel co-localization was carried out by 

JACoP plugin of ImageJ. 

  

Figure 6.4. Fluorescence images of HUVEC-C cells incubated with 5 μM, 15 μM, or 

25 μM fluorescent probe 1 (red channel) and LysoSensor Green (green channel) in 

buffers at different pH values of 5.5, 6.5, 7.5, or 8.5 having nigericin. Images were 

acquired using the inverted fluorescence microscope (AMF-4306, EVOSfl, AMG) at 40× 

magnification, scale bars = 100 μm. 

We also investigated the toxicity of fluorescent probe 1 to HUVEC-C cells using 

MTS assay (Figure 6.5).  At a low concentration, 5 µM, the fluorescent probe 1 provided 

more than 80% cell viability, when the concentration increased to 15 µM, the cell 

viability dropped to 60-70%, indicating the low to moderate toxicity of fluorescent probe 

1 to the cells in this concentration range. However, fluorescent probe 1 at higher 

concentrations like 25 µM and 50 µM were very toxic to the cells as less than 10% cell 

viabilities were observed. 
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Figure 6.5. Effects of fluorescent probe 1 on cell proliferation measured by MTS 

assay. HUVEC-C cells were incubated with 5 μM, 15 μM, 25 μM, or 50 μM of 

fluorescent probe 1 for 48 h. To this 20 μL of MTS reagent was added per well and 

absorbance at 490 nm was measured to determine cell viability. Error bars indicate ± SD. 

6.3.2 Lysosomal pH probe 

To further specifically target lysosome in the cells, piperazine moieties were 

conjugated at 3,5-positions of BODIPY core to prepare the BODIY-based near-infrared 

fluorescent probe 2 (Figure 6.6). However, the fluorescent probe 2 is hydrophobic and 

displays less than 0.1 mg/mL solubility in water. In order to facilitate the interactions of 

the probe with water molecules, the hydrophilic oligo(ethylene glycol)methyl ether 

residues were attached to meso- and 3,5-positions, resulting in probes 3 and 4 (Figure 

6.6). 
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Figure 6.6. Chemical structures of fluorescent probes 2, 3, 4. 

In organic solvents such as ethanol, dichloromethane, and DMSO, fluorescent probe 

2 displays absorption and emission peaks at 668 nm and 715 nm, respectively, due to the 

enhanced π-conjugation and intramolecular charge transfer (ICT) effect from piperazine 

moieties at 3,5-positions to the BODIPY core. However, in pH 7.4 buffer, probe 2 

showed increased tendency of self-assembly, decreased fluorescence, and shifted 

absorption and emission peaks at 712 nm and 770 nm, caused by its hydrophobicity and 

the ICT effect in polar solution. Compared with fluorescence of probe 2, probe 3 exhibits 
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similar optical properties in organic solvents, but blue-shifted absorption peak (710 nm) 

and emission peak (755 nm) in buffer solution (pH 7.4), which may be attributed to the 

reduced aggregation in aqueous solution with hydrophilic oligo(ethylene glycol)methyl 

ether residues. Fluorescent probe 4 has the highest water solubility, significant extended 

π-conjugation, and ICT effect from piperazine moieties to the BODIPY core, which 

shows absorption peaks at 669 nm and 687 nm, and emission peaks at 720 nm and 750 

nm in ethanol and buffer solution (pH 7.4), respectively. In addition, the highly water-

soluble character of probe 4 further reduced its self-aggregation effect in buffer solution.  

On the other hand, all three fluorescent probes display very sensitive fluorescence 

responses to pH changes (Fig. 6.7). From pH 9.98 to 2.20, fluorescence enhancements of 

75-, 88- and 102-fold were observed at 715 nm of fluorescent for probes 2, 3 and 4, 

respectively (Fig. 6.7). In addition, there are significant blue shifts of 55 nm, 41 nm and 

35 nm in emission spectra of the probes 2, 3 and 4, respectively. This is because in acidic 

conditions, probe aggregation was reduced, and the nitrogen atoms in piperazine moieties 

were protonated, which reduced the ICT effect from piperazine moieties to BODIPY 

cores (Figure 6.6). Besides the ICT effect, potential PET effect from the lower nitrogen 

atoms of the piperazine moieties may also contribute to the extremely low fluorescence 

of all three probes in neutral/basic conditions. While at low pH, this potential PET 

quenching effect could be reduced via the protonation of piperazine moieties. Therefore, 

in basic to neutral pH range, all probes showed very weak fluorescence without any 

evident changes, whereas fluorescence intensities gradually increased from pH 7.0 to 

2.2(Figure 6.7). However, highly acidic pHs from 2.20 to 1.01 significantly quenched 

fluorescence of the probes (Figure 6.7). More evidences are needed to fully understand 
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the fluorescence quenching mechanism of these probes at extremely low pH. The pKa 

values of probes 2, 3 and 4 are 2.91, 3.19 and 3.57, respectively. It is very clear that 

probe 4 exhibits the highest fluorescence responses with the highest pKa value among all 

three probes, since this highly water-soluble probe has less aggregation, and is protonated 

considerably more easily in aqueous solution. As a consequence, probe 4 showed higher 

sensitivity to pH than probes 2 and 3. Linear fluorescence responses to pH were shown 

between physiological pH (~7.4) and lysosomal pH (~4.2), where probe 4 displayed the 

highest sensitivity (Figure 6.7). The linear, high dynamic range, and sensitive responses 

of the probes to pH indicate the feasibility of intracellular pH detection.  
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Figure 6.7. Emission spectra of fluorescent probes 2, 3 and 4 (5 mM) were collected 

in buffer solution at pH 2.20-9.98. 

Live cell imaging in various concentrations of all three probes were conducted using 

MDA-MB-231 cells and HUVEC-C cells (Figure 6.8, 6.9). In both cancer and normal 

cells, probes 2, 3,  and 4 showed fluorescent signals, and the area in the cell that stained 

by probe 2, 3, or 4 (red channels in Figure 6.8, 6.9) matched those stained by LysoSensor 

Green (green channels in Figure 6.8, 6.9). The co-localization Pearson’s coefficients are 

8.5-9.4. Therefore, these probes are able to target lysosomes or other acidic cellular 

compartments in cells. Interestingly, the highly water soluble probe 4, which fluorescent 

the strongest in buffers, displayed the weakest fluorescent signals inside cells. Whereas 

the most hydrophobic one, probe 2, showed the highest fluorescent intensity among all 

three probes and displayed good signal even at 2 µM concentration (data not shown). A 

possible reason could be that probes 2 and 3 are more hydrophobic and less stericly 

hindered than probe 4, which could interact with the hydrophobic lipophilic membrane 

structures, thus, the fluorescence was activated by depressing ICT effect of the 

fluorophores18. On the other hand, probe 4 showed the lowest cytotoxicity after 72 h 

incubation with cells (Figure 6.10 A). While probe 2 is the most harmful to the cells, 

resulting in only ~50% viability at 5 µM and less than 10% viability at 15 µM and higher 

concentration (Figure 6.10 A). Probes 3 and 4 showed very mild toxicity with greater 

than 70% cell viability even at 50 µM concentration (Figure 6.10 A).      
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Figure 6.8. Live cell fluorescence images of probes 2, 3, and 4 in MDA-MB-231 

cells. Cells incubated with 5 µM of respective probes for 2 h, post serum starvation (2 h) 

and imaged for co-localization with 1 µM LysoSensor Green and (1 μg/mL) Hoechst 

33342 stains. All images were acquired at 60X magnification using inverted fluorescence 

microscope (AMF-4306, EVOSfl, AMG). 

 

Figure 6.9. Live cell fluorescence images of probes 2, 3, and 4 in HUVEC-C cells. 

Cells were incubated with 5 µM of respective probes for 2 h, post serum starvation (2 h) 

and imaged for co-localization with 1 µM LysoSensor Green and (1 μg/mL) Hoechst 

33342 stains. Images were acquired using the using inverted fluorescence microscope 

(AMF-4306, EVOSfl, AMG) at 60X magnification. 



186 
 

To understand the differences of fluorescence responses in buffers and in cells, 

cellular uptake efficiency of the three probes was measured using HUVEC-C cells 

(Figure 6.10 B). We found that probe 2 has much higher cellular uptake efficiency (more 

than 30%) at all three concentrations compared with probes 3 and 4. Probe 3 has 

moderate cellular uptake efficiency (18%) at 5 μM, but there are only 8% and 4% of 

probe 3 were taken by the cells at 15 μM and 25 μM, respectively. In case of probe 4, the 

cellular uptake efficiencies were only 10%, 3% and 3% for incubation concentration of 5 

μM, 15 μM and 25 μM, respectively. This low cellular uptake of probe 4 could be 

concluded as the main reason for its relatively weak intracellular fluorescence signals. 

 

Figure 6.10. The cytotoxicity (A) and cellular uptake efficiency (B) of probes 2, 3 

and 4 at different concentrations. (A) Cytotoxicity and cell proliferation effect of were 

tested by MTS assay. The MDA-MB-231 cells were incubated with 5-50 μM of probes 2, 

3 and 4 for 72 h and cell viability was measured by adding MTS reagent and measuring 

the formation of formazon at 490 nm. Error bars indicate ± S.D. (B) The cellular uptake 

efficiency was calculated as the percentage of probe taken up by cells out of total amount 

of probe in initial incubation solution.  

We have further examined the pH dependency of the probes inside the living cells. 

The intracellular pH of HUVEC-C cells were adjusted using nigericin (5 μg mL-1) in pH 
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5.0, 5.5, 6.0, and 7.5 buffer solutions18-20. Even though probe 4 exhibited very weak 

fluorescence in cells near physiological pH (pH 7.5), its fluorescence intensity was 

significantly enhanced as the intracellular pH decreased to 5.0 (Figure 6.11). This turn-on 

response of probe 4 to acidic intracellular pH indicates that it is sensitive to pH inside the 

living cells, following the same ICT and potential PET mechanisms as previously 

described. In addition, commercial probe LysoSensor Green did not display any obvious 

change of fluorescence to pH changes. Probes 2 and 3 displayed similar but less 

fluorescence enhancements when the intracellular pH decreased from 7.5 to 5.0 (data not 

shown). This difference may be due to the fact that probe 4 has higher pKa value and 

better water solubility than probes 2 and 3. 

 

 

Figure 6.11. Fluorescence images of HUVEC-C cells incubated with 15 µM probe 4 

at different pH values. 1 µM LysoSensor Green and 1 μg/mL Hoechst 33342 were used 
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as co-stains. Images were acquired using the using inverted fluorescence microscope 

(AMF-4306, EVOSfl, AMG) at 40X magnification. 

6.4 Conclusion 

Based on modulation of ICT and/or PET mechanisms of the functionalizing groups 

to the fluorescent BODIPY core, four intracellular fluorescent probes were prepared, 

showing distinct responses to pH changes. The pH sensitive morpholine-functionalized 

fluorescent probe 1 displays unusual fluorescence turn-on response at basic pH in 

aqueous solutions, and quenched fluorescence in acidic condition via the d-PET effect 

from protonated morpholine moieties to the BODIPY cores. Whereas the lysosomal pH 

probes 2, 3, and 4 display extremely low fluorescent at neutral pH due to ICT and 

potential PET effects from the piperazine moieties to BODIPY cores, and become highly 

fluorescent at low pHs. All four probes are photostable, cell-permeable, and showed a 

potential non-invasive method with deep-red fluorescence and low background for 

monitoring intracellular/lysosomal pH changes inside of living cells. 
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Chapter 7 Summary and perspectives 

In the field of protein folding and aggregation, considerable process has been made 

in characterization of the native proteins and the amyloid fibrils. However, our 

knowledge of amorphous aggregates is still very limit, although they have been 

constantly observed in protein aggregation and disease processes. In this dissertation, we 

have focused on characterizing the amorphous aggregates formed from two globular 

proteins (lysozyme and BSA) and one intrinsically disordered peptide (Aβ). Among these 

lysozyme and Aβ have been linked to human amyloid diseases. Two types of 

posttranslational modifications, disulfide bonding and side-chain acetylation, were 

demonstrated to alter the morphologies of protein aggregates. In addition, diverse 

amorphous aggregates using literature reported conditions were also prepared to 

investigate the relationship between aggregate structure and cytotoxicity. 

In chapter 3, the scrambling of disulfide bonds in lysozyme and BSA were observed 

in aggregation of these proteins at condition close to physiological. Even though both 

protein aggregates were amorphous in morphology, the two structures are very distinct in 

terms of size, shape, flexibility and surface hydrophobicity as reflected by spectral 

characteristics. The differences between the two types of structures may be a 

consequence of protein size, reduction level, and the structure properties of the local 

environment near disulfide bonds. Since lysozyme is an amyloidogenic protein while 

BSA is not, observations of aggregates from these two different types of proteins could 

give insight into the aggregation pathways that may be relevant for several other globular 

proteins. 
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In chapter 4, we blocked the positive charge on the two lysine residues of Aβ peptide, 

K16 and K28 by acetylation. Interestingly, only acetylation on K16 was able to affect 

molecular property and amyloid formation of Aβ. Acetylation on K16 position can 

significantly increase the hydrophobicity of residues 16-21, which consequently disrupts 

the amyloid fibril formation. Whereas, the peptides with single acetylation on K28 can 

still assemble into typical amyloid fibrils and were confirmed by ThT fluorescence and 

SEM images. Furthermore, the amorphous aggregates formed from heterogeneous 

mixtures of WT and acetylated peptides exhibit severe cytotoxicity to SH-SY5Y cells, 

indicating the heterogeneity of aggregates may be central to cellular toxicity. 

After generating diverse amorphous aggregates as pet reported literature that are 

different in size, morphology, and cytotoxicity, we noticed that many amorphous 

structures were subtly different. We have generated eleven different aggregates from two 

proteins, lysozyme and BSA. Thees aggregates varied in morphology, size, flexibility, 

and hydrophobicity. The aggregates were then compared for surface hydrophobicity, 

structural flexibility, and cytotoxicity, which provide evidence of heterogeneous 

population of protein aggregates being critical for cytotoxicity. We observed that the 

conformational changes of native monomer that occur in the early stage of aggregation 

process is essential for toxicity. Most toxic species are structurally flexible, however, no 

clear correlation was found between cytotoxicity and extent of hydrophobicity. Therefore, 

the observed cytotoxicity of different structures may result from the heterogeneous 

dynamics of the aggregation process. 

We are also facing problems similar to many research groups focusing on protein 

aggregation: overlapping biochemical/biophysical properties of the protein aggregates 
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generated under different conditions were observed with no clear correlations to 

cytotoxicity. To have a better understanding of protein aggregation and its relationship to 

cellular toxicity, we need to first, develop high resolution structure analysis techniques of 

protein aggregates. Recently, the aggregation intermediates or oligomers are recognized 

as the major toxic species. But these structures are usually highly unstable, which cannot 

be analyzed using traditional X-Ray crystallography or NMR methods. Fluorescent 

probes used in our research are sensitive to certain properties, but still not able to provide 

precise description of the structure. Some conformation specific antibodies that have been 

developed from in vivo samples are applied in detection of amyloid structure, but these 

antibodies were not suitable in detection of smaller oligomers or other species. Another 

problem in the field is the disconnection between in vitro and in vivo studies. Although 

with the help of modern technology, people can prepare almost all kinds of protein 

aggregates in the laboratory, the ultimate goal is to understand the in vivo disease process. 

In vivo proteins have higher level of heterogeneousness and posttranslational 

modifications that are absent in vitro. This is also why we have performed acetylation 

study of Aβ peptide in chapter 4. In addition, the nature of many naturally derived protein 

assemblies still remains unclear. Although more work is needed, this dissertation research 

is a step in the direction to correlate different structural aggregates generated from same 

protein to cellular toxicities. 
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Appendix A Supporting Information for Chapter 4 

 

Table A1. The top 10 most stable ANS-WT Aβ42 complexes analyzed by AutoDock 

Vina and DSX (scores in kcal/mol). 

Vina 

Ranking 

Main Interacting 

Residues 

Vina 

Score  
Zvina DSX Score Zdsx 

1 10 and 14 -6.1 -2.48 -12.386 -1.120 

2 10 and 14 -5.5 -0.91 -8.264 -0.301 

3 40-42 -5.2 -0.13 -1.975 0.950 

4 10 and 14 -5.1 0.13 -6.066 0.137 

5 40-42 -5.0 0.39 -1.402 1.064 

6 40-42 -5.0 0.39 -8.916 -0.430 

7 40-42 -4.9 0.65 -7.941 -0.236 

8 40-42 -4.9 0.65 1.946 1.730 

9 40-42 -4.9 0.65 -8.171 -0.282 

10 17 and 18 -4.9 0.65 -14.353 -1.512 

 

  



195 
 

Table A2. The top 10 most stable ANS-K16Ac Aβ42 complexes analyzed by 

AutoDock Vina and DSX (scores in kcal/mol). 

Vina 

Ranking 

Main Interacting 

Residues 
Vina Score Zvina DSX Score Zdsx 

1 10 and 14 -6.1 -1.958 -12.311 -1.740 

2 10 and 14 -5.5 -0.636 -8.049 -0.519 

3 10 -5.5 -0.636 -9.119 -0.826 

4 10 -5.2 0.024 -5.428 0.231 

5 31 -5.2 0.024 -3.362 0.822 

6 10 and 14 -5.1 0.245 -6.244 -0.003 

7 15 and 19 -5.0 0.465 -3.56 0.766 

8 15 and 19 -4.7 1.126 -7.425 -0.341 

9 19 -4.6 1.346 -0.612 1.610 
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Table A3. The top 10 most stable ANS-K28Ac Aβ42 complexes analyzed by 

AutoDock Vina and DSX (scores in kcal/mol). 

Vina 

Ranking 

Main Interacting 

Residues 
Vina Score Zvina DSX Score Zdsx 

1 10 and 14 -6.1 -2.041 -12.312 -1.390 

2 10 -5.5 -0.816 -8.888 -0.777 

3 10 and 14 -5.3 -0.408 -2.478 0.371 

4 40-42 -5.2 -0.204 -2.234 0.415 

5 40-42 -5.0 0.204 -0.274 0.766 

6 17 and 18 -4.9 0.408 -13.65 -1.629 

7 40-42 -4.7 0.816 -1.474 0.551 

8 15 -4.6 1.021 -1.478 0.550 

9 40-42 -4.6 1.021 1.838 1.144 
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Table A4. The top 10 most stable ANS-KKAc Aβ42 complexes analyzed by 

AutoDock Vina and DSX (scores in kcal/mol). 

Vina 

Ranking 

Main Interacting 

Residues 
Vina Score  Zvina DSX Score Zdsx 

1 10 and 14 -6.1 -2.179 -12.339 -1.468 

2 10 and 14 -5.5 -0.567 -8.092 -0.446 

3 10 -5.5 -0.567 -9.018 -0.669 

4 10 and 14 -5.3 -0.030 -5.683 0.133 

5 40-42 -5.2 0.239 -2.514 0.896 

6 40-42 -5.1 0.507 -9.67 -0.826 

7 40-42 -5 0.776 -0.645 1.345 

8 40-42 -5 0.776 -7.496 -0.303 

9 19 -4.9 1.045 -0.672 1.339 
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Figure A1. Fibrillation/aggregation of WT and acetylation modified peptides in the 

first 5 hours was monitored by ThT. Ten μM of peptide samples were incubates with 10 

μM of ThT. Fluorescence emission spectra was collected at 460-700 nm with excitation 

at 450 nm. Peak intensities at 487 nm were plotted in function of time. SEM images of 

samples after 5 hours of incubation. Scale bars are 10 μm and 5 μm for top panel and 

bottom panel, respectively. 
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Figure A2. Cell viability of SH-SY5Y cells with Aβ42 fibrils or aggregates. The free 

Aβ42 or acetylation modified Aβ42 peptides were incubated at pH 7.4 and 37 oC for 0 h, 

72 h, or 7 d, and then added to SH-SY5Y cells to a final concentration of 1 or 5 μM. Cell 

proliferation were measured after 48 h incubation with samples by taking absorbance at 

490 nm. Error bars = ± S.D.  
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Figure A3. Atomic models of U-shape Aβ42 fibrils (2BEG) and Aβ40 fibrils 

(2LMN and 2M4J). The two lysine residues K16 and K28 are shown in red stick 

structures. In fibril model 2BEG, the disordered first 16 N-terminal residues are omitted. 

The structures were generated using USCF Chimera. 
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Appendix B Supporting Information for Chapter 5 

 

Table B1. Sample preparation conditions of all the 17 lysozyme and BSA 

samples 

Sample # structure condition 

1 Amyloid  
Samples contain 1 mM lysozyme in HCl solution (pH 2.0) 

were incubated at 65 oC for 7 days1 

2 & 12 
Amorphous  

aggregates 

Samples contain 40 μM lysozyme (#2) or BSA (#12) in 

phosphate buffer (pH 7.2, 20 mM, with 150 mM NaCl) 

were incubated at 37 oC for 7 days2 

3 & 4 
Amorphous  

aggregates 

Samples contain 699 μM lysozyme in Phosphate buffer 

(pH 7.4, 100 mM) were incubated at 56 oC (#3) and  25 oC 

(#4) 3 

5-6 
Amorphous  

aggregates 

Samples contain 80 µM (#5) and 120 µM (#6) lysozyme 

in Phosphate buffer (pH 7.0, 50 mM) were incubated at 25 
oC4 

7-9 

15-17 

Amorphous  

aggregates 

Samples contain 40 µM (#7, #15), 80 µM (#8, #16) and 

120 µM (#9, #17) lysozyme in Phosphate-NaOH buffer 

(pH 12.0, 50 mM) with 0M (#7-9) or 14 mM (#15-17) of 

SDS were incubated at 25 oC4 

10 Amyloid 

Samples contain 100 µM BSA in glycine-HCl buffer (pH 

3.0, 50 mM , with 50 mM NaCl) were incubated at 65 oC 

for 4 h then followed by room temperature incubation for 

30 days5 

11 
Amorphous  

aggregates 

Samples contain 140 uM lysozyme in HCl solution (pH 

2.0, with 136.7 mM NaCl, 2.68 mM KCl, and 4 mM 
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DTT). Samples were first mixed via vortex and then 

incubated were incubated at 55 oC for 30 days6 

13 protofibrils 
Samples contain 37.6 μM BSA in Tris–HCl buffer (pH 

7.4, 20 mM) were incubated at 70 oC for 4 days7 

14 
Amorphous  

aggregates 

Samples contain 7.5 uM BSA in phosphate buffer (pH 

8.9, 0.1 M) were incubated at 62 oC over 10 h8 
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Figure B1. SEM images of lysozyme_I, II, and III. Scale bars = 5 μm. 

 

 

Figure B2. SEM images of BSA_I, II, III, and IV. Scale bars = 5 μm (for BSA_I, II, 

and III) or 10 μm (for BSA_IV). 
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Figure B3. SEM images of lysozyme_IV, V, IV and VII. Scale bars = 5 μm. 
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