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Abstract

The craze for faster and smaller electronic devices has never gone down and this has always

kept researchers on their toes. Following Moore’s law, which states that the number of tran-

sistors in a single chip will double in every 18 months, today “30 million transistors can fit

into the head of a 1.5 mm diameter pin”. But this miniaturization cannot continue indef-

initely due to the ‘quantum leakage’ limit in the thickness of the insulating layer between

the gate electrode and the current carrying channel. To bypass this limitation, scientists

came up with the idea of using vastly available organic molecules as components in an

electronic device. One of the primary challenges in this field was the ability to perform

conductance measurements across single molecular junctions. Once that was achieved the

focus shifted to a deeper understanding of the underlying physics behind the electron trans-

port across these molecular scale devices. Our initial theoretical approach is based on the

conventional Non-Equilibrium Green Function(NEGF) formulation, but the self-energy of

the leads is modified to include a weighting factor that ensures negligible current in the

absence of a molecular pathway as observed in a Mechanically Controlled Break Junction

(MCBJ) experiment. The formulation is then made parameter free by a more careful esti-

mation of the self-energy of the leads. The calculated conductance turns out to be atleast

an order more than the experimental values which is probably due to a strong chemical

bond at the metal-molecule junction unlike in the experiments. The focus is then shifted

xxiii



to a comparative study of charge transport in molecular wires of different lengths within

the same formalism. The molecular wires, composed of a series of organic molecules, are

sanwiched between two gold electrodes to make a two terminal device. The length of the

wire is increased by sequentially increasing the number of molecules in the wire from 1 to

3. In the low bias regime all the molecular devices are found to exhibit Ohmic behavior.

However, the magnitude of conductance decreases exponentially with increase in length of

the wire. In the next study, the relative contribution of the ‘in-phase’ and the ‘out-of-phase’

components of the total electronic current under the influence of an external bias is esti-

mated for the wires of three different lengths. In the low bias regime, the ‘out-of-phase’

contribution to the total current is minimal and the ‘in-phase’ elastic tunneling of the elec-

trons is responsible for the net electronic current. This is true irrespective of the length of

the molecular spacer. In this regime, the current-voltage characteristics follow Ohm’s law

and the conductance of the wires is found to decrease exponentially with increase in length

which is in agreement with experimental results. However, after a certain ‘off-set’ voltage,

the current increases non-linearly with bias and the ‘out-of-phase’ tunneling of electrons

reduces the net current substantially. Subsequently, the interaction of conduction electrons

with the vibrational modes as a function of external bias in the three different oligomers is

studied since they are one of the main sources of phase-breaking scattering. The number of

vibrational modes that couple strongly with the frontier molecular orbitals are found to in-

crease with length of the spacer and the external field. This is consistent with the existence

of lowest ‘off-set’ voltage for the longest wire under study.

xxiv



Chapter 1

The Beginning of Molecular Electronics

In this section, I will give a brief introduction to the field of study of transport of electrons

across molecular scale junctions. Such is the thirst for faster and smaller electronic devices

in the modern world that scientists are working day in and day out to meet the demands.

Electronic devices are made up “working units” which function in unision just as “cells” do

for living things. The first step to make an electronic device work faster is to pack in more

and more “working units” into it. Then there would be the issue of making them work “in

concert”. Does packing more and more “working units” means an increase in the size of

the electronic device ? The logical answer would be “Yes” unless the size of each “working

unit” is reduced. Sacrificing size for speed is not what a modern day world would demand.

A portable or handy device would always be preferred over a bulky one. So, the answer

would be to reduce the size of each “working unit” and pack more of these into the device.

1



� �

Figure 1.1: Size of a transistor since the last 3 decades. accessed on May 1, 2011; Copyright - refer
Appendix D for permission.

The “working units” of electronic devices are transistors. Several transistors make up a chip

and these chips work “in tandem” inside an electronic device. The size of a single transistor

in a commercial chip has been decreasing since the two to three decades following the em-

pirical law stated by Moore and is given in Fig. 1.1. Moore’s law1 states that the number of

transistors in a single chip will be doubled in 18 months. The next question would :- "how

long is this miniaturization possible ?" For that, we need to take a look at the structure of a

typical field effect transistor in Fig. 1.2. Reducing the size of the transistor includes a reduc-

tion in the thickness of the insulating layer which prevents the electrons in the gate electrode

to interact directly with the electrons in the main channel. Research says that the insulating
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Figure 1.2: Schematic of a field effect transistor (FET). Figure is adapted from the "News and
views" article in Nature2.

layer has to be at least 5 atomic layer thick in order to prevent the electronic wavefunctions

in the gate electrode to spill over into the current carrying channel3. If Moore’s law holds

true, then by the year 2020 the insulating layer will be 5 atomic layers thick and reducing

the size of the transistor further would be impossible. So, the question would be: "how can

one further progress towards more efficient electronic devices ?" One of the smarter solu-

tions is to build molecular scale devices i.e build devices out of organic molecules. This

idea was first proposed by Aviram and Ratner in the year 19734. Through their theoretical

calculation they predicted that an organic molecule which has an acceptor part and a donor

part can act a rectifier. Organic molecules are available in plenty and can be easily syn-
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Figure 1.3: Schematic of first single molecular junction. Figure is adapted from the research article
by Reed et al.5 in Science.

thesized in the laboratory. They are versatile, for e.g they can be metallic, semiconducting

or insulating depending upon their conformation or surroundings. They can form reason-

ably strong bonds with the source/drain for electrons with the help of anchoring atoms. In

other words, it is reasonably easy to form mono-layers of organic molecules using the an-

choring atoms. But the real challenge was to perform current/conductance measurements

across a single or few molecules. This challenge was overcome for the first time in the

year 1997 by an experimental group at Yale University headed by Mark Reed5. They were

able to carry out current measurements across a single or at best few benzene[1,4]dithiolate

molecules attached between two Gold electrodes. A schematic of the junction created in

4



Figure 1.4: I-V characteristics obtained by Reed et al.5.

this experiment is given in Fig. 1.3 and Fig. 1.4 shows the measured current and the conduc-

tance characteristics. From the conductance characteristics it is quite evident that transport

characteristics clearly has two regimes. One is the “off-resonant” regime in which cur-

rent increases slowly and linearly. This is mostly in the low bias regime. After ∼1.0 V

the current rises sharply and around that same bias a peak is observed in the conductance

curve. This peak signals the occurrence of “resonant” tunneling which means that a molec-

ular energy level is providing a pathway for the electrons to move from the source to the

drain. As one moves away from the “resonant” tunneling regime, the conductance again

starts to increase gradually before its another “resonant” tunneling ∼5.0 V. Here another

peak in the conductance curve is observed. After this ground breaking experiment lots of

other experimental groups from different parts of the world have successfully measured

current across single molecular junctions6–12. The transport characteristics have been suc-

cessfully tuned across these molecule sized junctions. Electronic current tuning has been

done through application of gate field13–23, change in molecular conformation24, adding
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functional groups to the molecular spacer25–29, or through doping/codoping30. Inspite of

a number successful experiments there are lots of unanswered questions in this field. With

regards to experiments - a controlled fabrication of the molecule-lead contact is yet to be

achieved. During the fabrication of these type of nano-scale junctions multiple contact

structures are formed and they have different conductance characteristics8,10,11. And then

there is always the issue of impurity atoms getting into the junctions which will definitely

have drastic effects on the transport characteristics. Theoretically modeling these junctions

is an extremely challenging task since these are open systems. An unknown contact geom-

etry adds to the problem of modeling the junction. A promising scheme for miniaturizing

electronici devices together with a lot of unanswered question makes it an exotic area of

research.
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Chapter 2

Modern Density Functional Theory

2.1 Quantum Many-body Theory

All realistic systems, are many-body systems in which either the number of nucleus, elec-

trons or both are present in multiple numbers. Performing quantummechanical calculations

of many-body systems is very challenging and often requires drastic approximations most

of which are physically sound. The starting point of any quantum calculation is the time

independent Schrödinger equation32,33 which is given by34,35:

Ĥneψne(r1,r2, ..........rN ,R1,R2, ....RQ) = Eneψne(r1,r2, ......rN ,R1,R2, ....RQ) (2.1)
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where the Ĥne is the time independent Hamiltonian of the multi-particle system containing

N electrons and Q nuclei. ψne(r1,r2, ...rN ,R1,R2, ....RQ) is the many-body wavefunction

which is a function of the coordinates of both the electrons and the nuclei. Our aim is to

concoct a many-body wavefunction which will satisfy equation 2.1, i.e an eigen function

for the many-body Hamiltonian and thus the quantized energy eigen-values(Ene) can be

determined. The Hamiltonian consists of the kinetic energy operator of the nucleus, the

electrons and the operator corresponding to the interaction of electrons with other electrons

and with the nuclei. Thus the Hamiltonian containing all these terms can be written as:

Ĥne = − h̄
2

2me

N

∑
i

▽2i −
h̄2

2

Q

∑
A

1
MA

▽2A−
N

∑
i

Q

∑
A

ZAe
2

|~ri− ~RA|
+
N

∑
i> j

N

∑
e2

|~ri−~r j|
+
1
2 ∑
A 6=B

ZAZBe
2

|~RA− ~RB|
(2.2)

where the electrons are numbered by i,j and nuclei are marked as A,B. The first two terms

denote the kinetic energies of the electron and the nuclei respectively. The third term is

the interaction of electrons with the nuclei. The fourth term denotes the electron-electron

interactions. The last term marks the nucleus-nucleus interactions with a factor 1/2 to

negate the double counting.
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2.2 The Born-Oppenheimer Approximation

The ratio of rest mass of a proton to that of an electron(me) is ∼183636. The nucleus con-

sists of protons and neutrons and is obviously much heavier than the electrons. So, the

kinetic energy of the nucleus is much less than that of the electrons. The other way to

interpret is: the nucleus can be assumed to be stationary when the electrons are moving

around36. Thus the second term in eqn. 2.2 can be neglected with respect to the other

terms in the equation. Since the nuclei can be assumed to be stationary, the last term in

the Hamiltonian will be a constant number which can always be added later on. Thus,

this approximation that allows us to treat the electronic and the nuclear degrees of freedom

independently is known as the Born-Oppenheimer Approximation(BOA). The many-body

wavefunction can hence be re-written as a product of electronic and nuclear wavefunc-

tions37:

ψne(r1,r2....rN ,R1,R2....RQ) = ψn(R1R2....RQ) ψe(r1r2....rN) (2.3)

BOA holds true unless there are severe inelastic effects within the system. Recent research

suggests that a one-dimensional system which is longer than 30 Å and has two electronic

energy levels that are coupled strongly to a particular ionic vibrational mode might violate

the BOA31. By separating the electronic and nuclear degrees of freedom we are now ready
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to solve the Schrödinger equation for the many-electron Hamiltonian which now looks like:

Ĥe = −1
2

N

∑
i

▽2i −
N

∑
i

Q

∑
A

ZA

|~ri− ~RA|
+
N

∑
N

∑
i> j

1
|~ri−~r j|

(2.4)

In the above equation we have used atomic units in which h̄, me, and e are all considered

to be 1. The Schrödinger equation for the multi-electron system in presence of multiple

nulcei is:

Ĥe ψe(r1,r2....rN) = Eeψe(r1r2....rN) (2.5)

From now on we will drop the ‘e’ subscript from the Hamiltonian and the energy eigen-

values. Solving eqn 2.5 requires several approximations. The first step towards solving the

equation was proposed by Hartree and is described in the next section.

2.3 Hartree Theory

In the Hartree theory33 each electron faces a central potential due to the nuclei and also due

to the other electrons. Hartree assumed that the many-electron wavefunction is a simple

product of all the single electron wavefunctions. This is a consequence of the probability

theory which states that the probability of two independent events occuring simultaneously

is the product of the probability of the two events occuring separately. Thus the many-
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electron wavefunction in the Hartree theory is given by33:

ψ(r1,r2, ......rN) = φ1(r1)φ2(r2)...φN(rN) (2.6)

φ ′s are the single electron orthogonal wavefunctions. Using the variational principle, the

expectation of H(i.e 〈ψ|H|ψ〉) hits a minimum when the following condition is satis-

fied(ref. Appendix A):

[ −1
2
▽2i −∑

A

ZA

|~ri− ~RA|
+ ∑
i 6= j

∫
|φ∗
j φ j|

1
|~ri−~r j|

d3r j ]φi(ri) = εiφi(ri) (2.7)

Thus, in this approximation the interaction between the electrons is restricted to a mean

field type which means that each and every electron interacts with a cloud of charge due to

all the other electrons33. The energy associated with this type of a wavefunction is:

E = 〈 ψ|H|ψ 〉 =
N

∑
i

εi−∑
i> j

∑
∫ ∫

|φ∗
j φ j||φ∗

i φi|
1

|~ri−~r j|
d3r jd

3ri (2.8)

The last term is added to nullify the double counting of the electron-electron interactions.

From equation 2.8 it is seen that the total energy of the multi-electron system is not just

the summation of all the single particle energies. Thus for the removal/addition of ith

electron from the system the Coulomb potential is altered and due to self-consistency is

reflected within the values of εi. A change in the last term is negligible in the case of

an inner electron (x-ray level) and thus Hartree approximation works well in this case33.
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However, since electrons are fermions ψ should be antisymmetric with respect to particle

interchange. This aspect of the wavefunction is not accounted for in the Hartree theory.

The next improvement of guess wavefunction comes under the Hartree-Fock theory.

2.4 Hartree-Fock Theory

Hartree-Fock theory33 assumes that the many-electron wavefunction is the Slater determi-

nant of all the single electron wavefunctions. This takes care of the antisymmetric property

of the electronic wavefunctions when the position of two electrons are interchanged. The

trial wavefunction in the Hartree-Fock approximation is given by:

ψ =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ2(r1) · · · · · · φN(r1)

φ1(r2) φ2(r2) · · · · · · φN(r2)

· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·

φ1(rN) φ2(rN) · · · · · · φN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.9)
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When the total energy is minimized with respect to this wavefunction, we arrive at the

following equation33:

(−1
2
▽2i −∑

A

ZA

|~ri− ~RA|
)φi(ri)+∑

j

∫
φ∗
j (r j)

1
|~ri−~r j|

φ j(r j)d
3r jφi(ri)

−∑
j

∫
φ∗
j (r j)φi(r j)

1
|~ri−~r j|

φi(ri)d
3r j = εiφi(ri)

(2.10)

The first three terms in the left hand side of equation 2.10 are the same as those obtained

from the Hartree theory in equation 2.7. The last term, which is the exchange term, arises

from the antisymmetric property of the multi-electron wavefunction. However, there are

still deficiencies in this approximation as the electron-electron correlation is not described

beyond the Pauli’s exclusion principle. The correlation energy can be expressed as:

Ec = E0 − EHF (2.11)

where Ec, E0 and EHF are the correlation, exact ground state and the Hartree-Fock ground

state energies respectively. The correlation energy becomes considerably important for in-

homogenous distribution of interacting electrons which is generally the case for mostly

studied systems of practical importance. Configuration interaction(CI), many-body pertur-

bation theory(MBPT) and density functional theory(DFT) are some of the many formalisms

which possess the capability to include the correlation energy upto various degrees of accu-

racy. Out of them, DFT is computationally the least expensive method. But as is the usual

case, accuracy is sacrificed at the expense of computational time.
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Figure 2.1: Mapping of a system of interacting particles to a system of non-interacting particles.
The figure is adapted from a power point presentation "Efficient implementation of time-dependent
density functional theory for the dynamical description of biomolecules and nanostructure" by A.
Rubio38.

2.5 Density Functional Theory (DFT)

As the name suggests, DFT49,50 is a formulation based on functionals, i.e function of a

function namely a function of spatial electron density. Since this approach is based on the

density of the system and not the many-body wavefunctions it is computationally the most

favoured method. DFT is mainly based on the two Hohenberg-Kohn theorems. They are:

Theorem 1:The external potential Vext is uniquely determined by the electronic charge

density n(r) within a trivial additive constant.50
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Proof: Let us consider n(r) to be the electron density for a N-electron system. They are

related by:
∫
n(r)dr = N. The Hamiltonian of a N-electron system is given by equation 2.4.

The nucleus-electron interaction term (second term) can be rewritten as
N

∑
i

Vext(~ri) where

the external potential,Vext(~ri) =
Q

∑
A

ZA

|~ri− ~RA|
. Suppose there are two external potentialsVext

and V
′
ext which differ by more than a trivial constant but correspond to the same ground

state density n(r). In that case we will have two Hamiltonians Ĥ and Ĥ
′
with ground state

wavefunctions as Ψ and Ψ
′
but with same ground state density n(r)50. If Ψ

′
is taken as the

trial wavefunction for Ĥ then

E0 < 〈Ψ′ | Ĥ | Ψ
′〉 = 〈Ψ′ | Ĥ ′ | Ψ

′〉+ 〈Ψ′ | (Ĥ− Ĥ ′
) | Ψ

′〉

= E
′
0+

∫
n(r)[Vext(r)−V

′
ext(r)]dr

(2.12)

where E0 and E
′
0 are the exact ground state energies for Ĥ and Ĥ

′
respectively. It is to be

noted that the above equation holds true because all the terms in Ĥ and Ĥ
′
are identical

(since both are N electron systems) except the term with the external potential. In a similar

manner, if we consider Ψ as a trial wavefunction for Ĥ
′
then we have50:

E
′
0 < 〈Ψ | Ĥ ′ | Ψ〉 = 〈Ψ | Ĥ | Ψ〉+ 〈Ψ | (Ĥ ′ − Ĥ) | Ψ〉

= E0−
∫
n(r)[Vext(r)−V

′
ext(r)]dr

(2.13)

Adding equations 2.12 and 2.13 we arrive at the relation E0+E
′
0 > E

′
0+E0, which is

a contradictory equation. Hence it can be concluded that two different external potentials

Vext(r) and V
′
ext(r) cannot exist for the same ground state electron density n(r)

50. Thus for
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every ground state electron density distribution there exists an unique external potential.

Theorem 250:The density which minimizes the expectation value of the energy is the ground

state density and the corresponding energy being the ground state energy.

This is an analogy of the variational principle where the fundamental quantity is the density

of the system rather than the many-body wavefunctions.

Proof: From the previous theorem we learn that the n(r) determines N andVext and the rest

of the ground state properties. So we can write the total energy as50:

EVext = T [n(r)]+Vne[n(r)]+Vee[n(r)]

=
∫
n(r)Vext(r)dr+FHK [n(r)]

(2.14)

where FHK [n(r)] = T [n(r)]+Vee[n(r)]. The second term can also be written as50:

Vee[n(r)] = J[n(r)] + exchange term (2.15)

The exchange term contains the information of the exchange and correlation energies. Now,

for a trial density n
′
(r) satisfying the conditions n

′
(r) ≥ 0 and ∫

n
′
(r)dr = N there exists

an unique external potential V
′
ext . If we take a trial wave function Ψ′ for a Hamiltonian H

then:

〈Ψ′ | Ĥ | Ψ
′〉 =

∫
n
′
(r)Vext(r)dr+FHK [n

′
(r)] = E

V
′
ext

[n
′
(r)] ≥ EVext [n(r)] (2.16)
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which is basically the analogous argument for the variational principle but not with the

wave functions. Assuming that EVext [n(r)] is differentiable, the ground state density has to

satisfy the stationary principle which is required by the variational principle50.

δ { EVext [n(r)]−µ(
∫
n(r)dr − N ) } = 0 (2.17)

giving way to the Euler-Lagrange equation:

µ =
δEVext [n(r)]

δ [n(r)]
= Vext(r) +

δFHK [n(r)]

δn(r)
(2.18)

where µ is defined to be the chemical potential. Note that the term FHK [n(r)] is independent

of the external potential i.e it will be an universal functional of n(r). If we can estimate

the exact form of FHK [n(r)] we can apply to it any system and calculate the ground state

properties. Equation 2.18 is the basic working equation of DFT50.

However, equation 2.18 is very difficult to be implemented for practical calculations since

the exact analytical form of FHK [n(r)] is still unknown. An analytical expression for

FHK [n(r)] is the real challenge. In the year 1965, Kohn and Sham devised a clever method

for a reasonably accurate and computationally feasible scheme to estimate FHK [n(r)].
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2.6 Kohn-Sham formulation

For an interacting system N-electron system, the ground state kinetic energy can be written

as50,51:

T =
N

∑
i

λi〈ψi|−
1
2
▽2i |ψi〉 (2.19)

where ψi is the ith orbital and λi is the corresponding occupation number. According to

Pauli’s exclusion principle: 0 ≤ λi ≤ 1. The total electron density of the N electron is:

n(r) =
N

∑
i

λi |ψi(r)|2 (2.20)

From Hohenberg-Kohn theorems it is guaranteed that T is a functional of n(r) But for an

interacting system there can be infinite number of terms in equations 2.19 and 2.20. How-

ever, for a non-interacting N electron system the kinetic energy functional can be written

as50:

T =
N

∑
i

〈ψi|−
1
2
▽2i |ψi〉 (2.21)

and the ground state density can be written as:

n(r) =
N

∑
i

|ψi(r)|2 (2.22)
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It can be seen that equations 2.21 and 2.22 are special cases of equations 2.19 and 2.20

with λi = 1 for N orbitals and λi = 0 for the rest. The Hamiltonian for the reference

non-interacting system of N-electrons can then be written as50:

Ĥks =
N

∑
i

(−1
2
▽2i ) +

N

∑
i

Vks(r) (2.23)

with no electron-electron interaction terms in the Hamiltonian. The ground state density

can be constructed out of a Slater determinant of the single particle wave functions as:

Ψks =
1√
N!
det [ψ1,ψ2...ψN ] (2.24)

where the each single particle ψ’s satisfy the equation:

ĥks = [ −1
2
▽2 +Vks ] ψi = εi ψi (2.25)

The total kinetic energy is then given by50:

Tks = 〈ψks|
N

∑
i

(−1
2
▽2i )|ψks〉

=
N

∑
i

〈ψi|−
1
2
▽2 |ψi〉

(2.26)

It should be noted here that Tks is not same as T which was defined earlier in equation 2.14.

Equation 2.26 is true if there is exists a non-interacting density n(r), which always exists

for antisymmetric wave functions. To separate out Tks from T one needs to rewrite the
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quantity FHK as:

FHK = Tks[n(r)] + J[n(r)] + Exc[n(r)] (2.27)

where Exc can be written as50:

Exc[n(r)] = T [n(r)] − Tks[n(r)] + Vee[n(r)] − J[n(r)] (2.28)

Exc[n(r)] is known as the exchange-correlation energy. The Euler-Lagrange in equation 2.18

then becomes50:

µ =Vext(r) +
δFHK [n(r)]

δn(r)
= Vext(r) +

δTKS[n(r)]

δn(r)
+

δJ[n(r)]

δn(r)
+

δExc[n(r)]

δn(r)

= Ve f f [n(r)] +
δTKS[n(r)]

δn(r)

(2.29)

where the effective Kohn-Sham potential is50:

Ve f f [n(r)] = Vext(r) +
δJ[n(r)]

δn(r)
+

δExc[n(r)]

δn(r)

= Vext(r) +
∫
n(r)

r− r′dr
′ + Vxc(r)

(2.30)

where Vxc(r) is the exchange-correlation potential and is given by:

Vxc(r) =
δExc[n(r)]

δn(r)
(2.31)
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For a system of non-interacting particles Vks(r) = Ve f f (r). Hence for a given Ve f f (r) one

can obtain a n(r) that satisfies equation 2.29 by solving the N one-electron equations:

[−1
2
▽2 +Ve f f (r)]ψi = ψiεi (2.32)

and setting

n(r) =
N

∑
i

|ψi(r)|2 (2.33)

Also, here Ve f f (r) depends on n(r) through equation 2.31. The Kohn-Sham method is

employed by solving equations 2.30, 2.32, and 2.33 self-consistently starting from a

guess n(r). The choice of Exc[n(r)] is determined by the user.

2.7 Modern Density Functional Theory

In this section we introduce the B3LYP functional50,118 and its application within DFT.

Exchange and correlation are the two terms which are not accounted for in the Hartree

and the Hartree-Fock formalisms. DFT50 includes both of these, but in form of function-

als. So, the challenge is to find a good functional which accounts for these two terms.

Efforts resulted in many hybrid functionals out of which B3LYP is the most popular one.

This functional includes a part of the exact Hartree-Fock exchange and the some local

and non-local correlational terms are included through the Lee-Yang-Parr(LYP) part of the
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functional. Mathematically it looks like50,118:

EB3LYPexc = ELDAexc + a0(E
HF
ex − ELDAex ) + aex(E

GGA
ex − ELDAex ) + ac(E

GGA
c − ELDAc ) (2.34)

where a0(= 0.20), aex(= 0.72), and ac(= 0.81) are semi-empirical coefficients calculated

from appropriate fitting of experimental data of atomization energies, ionization poten-

tials, proton affinities, and total atomic energies. ELDAexc , E
LDA
ex , and E

LDA
c are respectively

the exchange-correlation, exchange, and correlation energies obtained from the LDA50,118

approximation of DFT. EHFex is the exact exchange estimated from the Hartree-Fock formu-

lation. EGGAex and EGGAc are the exchange and correlation energies respectively calculated

within the GGA approximation50,118. The combination of DFT+B3LYP has been a big

success in predicting band gaps for a variety of materials39. Particularly in wide-gap semi-

conductors, the direct and indirect band gaps estimated within this formulation40,41 has

been in good qualtitative agreement with the experimentally measured values.
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Chapter 3

Quantum Transport

3.1 Introduction

Field driven electronic current in the macroscopical classical frame depends on the number

of collisions per unit time each electron suffers while travelling from a lower potential to

a higher potential region42,43. The distance which the electron travels between successive

collisions is known as the mean free path (ΛL). Typical values of ΛL would be few hun-

dreds of Å in bulk systems122–124. What happens if the length of an conductor/insulator is

less than the value of the mean free path ? From the classical theory the electron should be

travelling “collsion-free” within the insulator/conductor. Transport in this regime is consid-

ered to be Ballistic. The classical theory of transport fails in this regime but the Quantum
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Figure 3.1: A prototype molecular scale device. Adapted from the book "Electron Transport in
Nanoscale Systems" by M. Di Ventra122.

theory does not42,43. Thus the nomenclature of the chapter is “Quantum Transport”. Par-

allel school of theories have been developed to study electron transport in this regime. In

this chapter, I will elaborate on our approach I used to study this subject.

An archetypal molecular device consists of a finite-sized molecule slotted in between two

semi-infinite metallic electrodes as shown in Fig. 3.1. To simulate a directional motion

of electrons within the device one needs to concoct a non-equilibrium situation at the two

metal-molecule junctions. Theoretically the non-equilibrium situation can be created either

by applying an electric field as a result of which current would flow or by piling up a dif-
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ferent number of charge carriers at the two junctions thus generating an electrostatic field

between the two junctions. In the first approach, field is the cause and electronic current is

the outcome whereas in the second approach, field is the consequence of flow of charge122.

We use the former approach within the BOA, which allows us to calculate current in a

frozen geometry. Recent findings show that the BOA breaks down31 for longer molecular

wires (∼>30Å) but in our studies the longest molecular wire considered is ∼15Å. Within

the BOA the electronic energy levels can be computed independently, considering all the

nuclei to be stationary. The two semi-infinite electrodes which act as the electron reservoirs

are held at different chemical potentials. The presence of the electrodes render the device

to be an open system. To model such a heterogeneous system, we divide it into two parts

as shown in Fig. 3.2. One is the active region (marked in Fig. 3.2), which consists of a

molecule sandwiched inbetween two clusters comprising of a finite number of electrode

atoms that are perturbed when the molecule adsorbs onto the electrode surface. The ra-

tionale behind the choice of a finite number of electrode atoms in the active region of the

device is due to the fact that the adsorption of the molecule on the electrode results in a

local-charge screening within the metallic electrode at the interface45,46. The second part

of the device consists of the rest of the electrode on each side and is considered to retain

its bulk properties. Thus, this part is considered to be the unlimited “source” for electrons

on one side and the “sink” on the other side in the non-equilibrium condition. There are

numerous theoretical methods to calculate the steady state electronic current under this

‘non-equilibrium’ condition. Throughout, I have used the single particle Green’s function
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Figure 3.2: The active region of a molecular scale device.

approach to transport in conjunction with DFT which follows in the next section.

3.2 Green’s Function Approach

The active region consists of a single or a chain of molecules and a part of the electrode

(lead) on both sides. The molecular moiety interacts with the left and the right leads through

coupling potentials. However, the right and the left leads are decoupled from each other.

26



In the absence of any electric field, the Hamiltonian can be written as122:

H = HC+HL+HR+VLC+VCR+ complex conjugates (3.1)

where HL and HR are the Hamiltonians for the isolated semi-infinite leads. The molecular

Hamiltonian in the absence of electrodes is describes by HC. The molecule couple to

the left and the right leads through the coupling potential VLC and VRC. Going by the

earlier assumption that the leads do not interact with each other, the terms VLR and VRL are

considered to be zero. Using matrix formalism the Schrödinger equation can be written

as122: 



HL VLC 0

V
†
LC HC V

†
CR

0 VCR HR









| φL〉

| φC〉

| φR〉




= E





| φL〉

| φC〉

| φR〉




(3.2)

where the elements of the vector in the right hand side of the above equation are the single-

particle wave functions associated with the Hamiltonians in the three different regions, i.e

| φL〉 is an eigen function of the Hamiltonian HL. The three equation thus obtained from the

matrix multiplication are:

HL | φL〉+VLC | φC〉 = E | φL〉 (3.3)

V
†
LC | φL〉+HC | φC〉+VCR | φR〉 = E | φC〉 (3.4)

VCR | φC〉+HR | φR〉 = E | φR〉 (3.5)
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One can rearrange the last equation to write it as:

(E−HR) | φR〉 =VCR | φC〉 (3.6)

To reflect the semi-infiniteness in the right lead we replace E −→ E ± iε and then the

equation reduces to122:

| φR〉 = GR(z)VCR | φC〉 (3.7)

where the Green’s function of the right lead is defined as:

GR(z) =
1̂

z−HR
(3.8)

Similarly we obtain:

| φL〉 = GL(z)VLC | φC〉 (3.9)

Substituting the above equation into the middle equation of the three equations we have122:

[E−HC−V †LCGL(z)VLC−V
†
CRGR(z)VCR] | φC〉 = 0 (3.10)

where ΣL(z) =V †LCGL(z)VLC and ΣR(z) =V †CRGR(z)VCR are the self-energy operators. Writ-

ing the above equation in terms of the self energies:

[E−HC−ΣL(z)−ΣR(z)] | φC〉 = 0 (3.11)
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So, the Green’s function associated with the above equation is122:

G(z) =
1

E−HC−ΣL(z)−ΣR(z)
(3.12)

The Green’s function in equation 3.12 is the main entity in the single particle Green’s

function approach to electron transport in molecular scale devices. There are several other

methods to derive this equation, for example from the Dyson’s equation47 but this is the

simplest one. Now, I will focus on the determination of the various quantities in the right

hand side of equation 3.12 in a realistic calculation.

The first task is solving the Schrödinger equation or in other words calculating the energy

levels for the active region of the device. In the presence of an electric field the modified

Hamiltonian for the region can be written as32:

H(ε) = H(0)+~ε ·∑
i

~r(i), (3.13)

where H(0) is the unperturbed ground-state mean field DFT Hamiltonian;~ε is the applied

electric field to replicate the bias effect where only the dominant dipolar term is taken into

account; and~r(i) is the coordinate of the ith electron. The real space approach allows us to

partition H(ε) into the Hamiltonian corresponding to the central part, which consists of of

an organic molecule(HC ≡ Hmol) in our studies and the molecule-lead (only few perturbed

atoms of the electrode) coupling matrices(VLR,CR ≡ Cl,r). It is worth mentioning here that
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including the bias effect in formulations beyond the ground state mean-field DFT174 is a

very difficult task. In covalently bonded junctions, which is the case in all my studies, the

modification of the molecule-lead coupling with change in external bias is an important

quantity that should be captured in the formulation. In this context the ground state based

DFT is a reasonably good approach and is being successfully used55,57,121,175. H(ε), if

solved using first order perturbation theory will give only linear shifts to the zeroth order

energy eigenvalues. However, a fully self-consistent evaluation of H(ε) reveals a non-linear

increase in the energy eigenvalues with the application of~ε . Thus this approach not only

includes the first order effect of the field on the dipole moment of the molecule, but also

on its polarizability and higher order terms. In the next two sections I will describe the

phase-coherent and phase-incoherent elastic transport.

3.2.1 Coherent Transport

In this section, phase relaxation scattering of electrons is not considered. Also, this formal-

ism is only valid for elastic scattering of electrons. One can rewrite the Green’s function in

a matrix formulation using the notation mentioned towards the end of last section 3.2 as:

G(E,ε) = [E×S−Hmol(ε)−Σl(ε)−Σr(ε)]−1 (3.14)
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E is the injection energy of the tunneling electron, Hmol(ε) is the molecular part of the or-

thogonalized Hamiltonian matrix obtained fromH(ε) in equation 3.13, and S is an identity

matrix. Σl,r(ε)(previously called as ΣL,R) are the bias-dependent self-energy functions56,57,

which depict the molecule-contact interactions. The expressions for Σl,r(ε) are:

Σl,r(ε) =C†l,rGp(E)Cl,r (3.15)

where Cl,r(previously denoted as VLR,CR in equation 3.12) are the orthogonalized bias-

dependent molecule-lead coupling matrices. Thus, in our calculations, the non-equilibrium

nature of the electronic coupling between the molecule and the electrode is accounted for

at each bias value; structural reorganization under bias is not considered. It is important to

note that under non-equilibrium situation (i.e. in the presence of applied bias), structural

arrangements at the molecule-lead interface cannot be expected to be the same as those

under the equilibrium condition. However, for a strongly coupled molecular junction that

is considered here, a mass-scale rearrangement of atoms at the interfacial geometry is not

expected to occur. Gp, the Green’s function of the lead (Au), was previously defined as

GL and GR for the left and the right electrodes respectively. But here the left and the right

electrodes are made of the similar atoms (Au) and thus GL = GR ≡ Gp. Being an implicit

function of injection energy E it is defined as:

Gp(E) = −iπη(E)× I (3.16)
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I is an identity matrix of dimension m×m; m is the total number of Gaussian basis func-

tions used to represent the Au atoms in the active region of the device. η(E) is obtained

from the density of states (DOS) of the bulk Au, which is calculated using the periodic

DFT implemented within the VASP code58. The probability of electrons pumped into the

system from the source reaching the drain is determined by the bias dependent transmis-

sion function, which is a summation of the transmission probabilities over all conducting

channels, and is calculated as56,57:

Tlr = Tr[ΓlGΓrG
†] (3.17)

where Γl,r are the broadening functions, which determine the escape rate of electrons; they

are given by:

Γl,r = i[Σl,r(ε)−Σ†l,r(ε)]. (3.18)

Finally, within the coherent scattering approximation, the current through the molecular

junction is calculated using the multi-channel Landauer-Büttiker formalism56,57,59,60. In

this approach, the expression for the current is:

I =
2e
h

∫ µ2

µ1
Tlr[ f (E,µ2)− f (E,µ1)]dE, (3.19)

where f is the Fermi distribution function. µ1,2 is calculated as:

µ1,2 = E f ∓Vlow,high, (3.20)
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The Vlow,high is calculated self-consistently for each applied ε using the difference between

the electrostatic potentials103 at finite and zero bias at the two metal-molecule junctions;

E f is the equilibrium Fermi energy. The potential difference, V , is obtained from the dif-

ference of Vlow and Vhigh for each applied ε . It should be noted that at equilibrium (zero

bias)Vlow=Vhigh. An additional thermal smearing term, kBT (=0.026 eV) is subtracted from

µ1 and added to µ2 to take into account the electronic temperature at the contact in the

non-equilibrium condition; it essentially increases the integration window width by an ad-

ditional constant of 0.052 eV for each applied bias.

3.2.2 Incoherent Transport

Now the scheme is modified to include the phase-breaking scattering of electrons but within

the same elastic transport formalism. Büttiker’s multi-probe approach56,65,126, is used to

include the phase randomization. In this approach an imaginary third electrode is assumed

to be present; electrons injected from the source reach the sink via this fictitious probe as

shown in Fig. 3.3. Entering the pseudo-probe on its way to the sink forces the electron

to lose its phase information. Thus, the contribution of the electronic current due to these

electrons is the ‘out of phase’ current. It is important to note that the current in the third

probe is zero, i.e the number of electrons going into the probe is same as the number coming

out of it, thus rendering the name ‘pseudo’ probe. The effect of the third probe is included
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Figure 3.3: Büttiker’s multiprobe approach to incoherent but elastic transport. Adapted from the
book “Electron Transport in Mesoscopic Systems” by S. Datta56.

into the formalism with the help of an additional self-energy term to G(E,ε). The modified

Green’s function can now be written as65:

G(E,ε) = [E×S−Hmol(ε)−Σl(E,ε)−Σr(E,ε)−Σe−ph(E,ε)]−1 (3.21)

where the new term Σe−ph is the additional self-energy function which accounts for the

phase-breaking scattering. Since electron-phonon interactions are one of the main sources

of dephasing or phase-breaking, the additional self-energy can be thought to arise from the

interaction of conduction electrons with the molecular vibrations. Thus, the brute force
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method of computing Σe−ph would require the determination of the density of states of the

phonon modes for each energy(E). An alternative method of determining Σe−ph would be

to recourse to the Datta’s model,65,131 where Σe−ph = De−phG; De−ph is a scalar dephasing

parameter with the unit of (energy2). It is estimated from the average coupling energies

between the vibrational modes and the electronic energy levels. Since Σe−ph depends upon

G and vice-versa, they are determined self-consistently at each injection energy within each

bias point. Thus even though De−ph is kept constant for the current calculations, the bias

effect is incorporated self-consistently in Σe−ph through G. More over, even if we use a

constant for De−ph, as the dimension of the matrix increases with the increase in length of

the oligomer, the strength of dephasing increases. The expressions for Σl,r(ε) andGp can be

determined as before from equation 3.15 and equation 3.16 respectively. The escape-rate

of the electrons from one electrode to the other is determined by the broadening function

defined as:

Γl,r,e−ph = i[Σl,r,e−ph(ε)−Σ†l,r,e−ph(ε)]. (3.22)

In a two probe system, the ‘in-phase’ current can be described by the bias dependent trans-

mission function given by equation 3.17. However, for modeling the “out of phase” elec-

tronic current using Büttiker’s multi-probe approach56,65,126, equation 3.17 is not enough.

The transmission function now has to include both the “in-phase” and the “out of phase”

current and is given by:56,57,59,60

T12 = Tlr+
T(e−ph)rT(e−ph)l
T(e−ph)r+T(e−ph)l

(3.23)
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Tlr is the transmission contribution due to “in-phase” transport of electrons from the source

to the sink. The second term in equation 3.23 is due to the ‘phase-breaking’ transport. It

is derived by exploiting the boundary condition that there is no net current flowing into or

out from the fictitious probe. Tlr, T(e−ph)l , and T(e−ph)r are calculated using equation 3.17.

The total current is then obtain by integrating the transmission function over all injection

energies, within the Landauer-Büttiker regime:

I =
2e
h

∫ µ2

µ1
T12[ f2(E,µ2)− f1(E,µ1)]dE, (3.24)

where f1,2 are the Fermi distribution functions at the two electrodes; µ1,2 are the chemical

potentials at the electrodes. The integration in equation 5.1 should ideally include all pos-

sible injection energies, which is not feasible. Moreover, the functions f1 and f2 become

almost identical when one goes far away from the tail of the Fermi distribution function i.e

outside µ1 < E < µ2. So, the integration is restricted to the states between µ1 and µ2 which

have the highest probability of contributing to the net electronic current across the device.

This summarizes the complete picture of the formalism which will be used in the next few

chapters to study some molecular scale devices.
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Chapter 4

Revisiting the Au/BDT/Au junction.

4.1 Introduction

Since the ground-breaking measurement of current across a single molecular junction5,

researchers have taken a lot more interest delving into the subject with the promise of

building nano-devices with molecules. One of the primary concerns of researchers is the

reproducibililty of the experimental observations which ensure its reliablity and sustain-

ability when used as an electronic device or at least as a component of an electronic device.

Already, several single-molecule conductance measurements6–12 have been reported with

a fair amount of success. These premier experiments created the thirst for understanding

the underlying physics behind the electron transport characteristics across molecular nano-
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junctions. Being “nano-systems” ab-initio method would arguably be the best approach to

study these type of systems. Various research groups across the world have used diverse

“first-principles” schemes to study these systems with varying degrees of success.

A prototype system of this category consists of an organic molecule sanwiched between

two semi-infinite metallic electrodes. Bulk Au or Pt are the most commonly used electrode

materials. It has been observed that the presence of an anchoring group facilitates the for-

mation of a metal-molecule bond. Studies on the effect of various anchoring groups on

the binding strength of metal-molecule junctions reveal that thiol (-S-) end groups along

with Au electrodes form the most stable junction12,61,62. Such is the strength of the S-

Au bond that the stretching of the metal-molecule junction actually results in stretching of

Au-Au bonds. This creates a Au nanowire before finally snapping off the Au-Au bond.

This was first predicted by Molecular Dynamics(MD) calculations63 and later observed

experimentally64. So, now the question is - how the atoms of the anchoring group and its

neighboring electrode atoms are arranged? Statistical analysis of all single-molecule con-

ductance measurements clearly indicates peaks10,11 corresponding to different values of

conductance, which are attributed to different contact structures. Thus, the control over the

fabrication of a certain type of contact becomes very challenging. But the ability to create

single molecule junctions brought in a lot of excitement to this field and thus theoreticians

started to investigate the underlying physics behind the flow of charge through these nano-

scale junctions. It is a big challenge to model these open systems as they consist of both

finite (molecule + anchoring group) and semi-infinite (electrode) pieces. Various theoret-
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ical schemes have been applied to model both the finite and the semi-infinite parts. One

of the earliest approaches in modelling current flow through these devices centered around

the simple assumption that the electrostatic potential of the finite piece is constant and that

its value is half-way in between the chemical potential of the leads on both sides52. The

molecule-electrode distance and the equilibrium Fermi energy is adjusted so that the theo-

retical and the experimental value of the current through the junction is of the same order65.

Using this scheme within the Non-EquilibriumGreen’s Function (NEGF) formalismDamle

et al.66 calculated current and conductance through Au/Benzene-1,4-Dithiolate(BDT)/Au

system. But they could not reproduce the two “resonant tunneling peaks” in the conduc-

tance curve as observed experimentally. The binding site of the anchoring group(-S-) to

the electrode(Au) was shown to have a big influence in the transport characteristics of the

same system67. Thereafter, Density Functional Theory(DFT) in combination with time-

dependent perturbation theory and Mulliken population procedure was used to study the

electrical conductance of the same system68. The calculated current was of the same order

as that of the experimental results5 only for external voltages in between 0-3 V but there

was little qualtitative agreement. Reasonably accurate modelling of the electrodes which

are semi-infinite systems is a pretty complicated task. Instead of using standard bulk Au

properties, the electrodes were treated by the tight binding approach69 within the Newns-

Anderson model70. The Lippmann-Schwinger scattering approach with the electrodes be-

ing modelled by the jellium model71,72 was also used in several attempts to model these

nano-systems. This model was tested by studying the I-V characteristics of BDT placed in
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between two Au electrodes. The current-voltage curve71 agreed well qualitatively with the

experimental curve5 but the current values were three orders of magnitude more than that

measured experimentally. It was also argued71 that the insertion of Au atoms in between

the BDT and the electrodes will decrease the current by two orders of magnitude. But later

on, it was reported that adding more gold atoms in between the electrode and the BDT

actually increases the current through the junction73. So the quandary remained unsolved.

Hybrid DFT has also been used in modelling these kind of molecular devices74,75. The pe-

riodic supercell approach involving open boundary conditions for matching the Kohn-Sham

potential at the interface has also been used to model nano-junctions53. The difficulty with

this approach, however, is that the interaction of the supercell atoms with their periodic im-

age causes the system to fail to represent the nature of a true single-molecular device. So,

the contact structure still kept the theoreticians interested. In another attempt the contact

was modelled by the electrode atom being connected to the molecule at one end and the

other end being connected to the bulk electrode76. Since these are multi-electron systems,

a more realistic approach would be the many-body approach. With this approach, for low

external bias, the magnitude of the calculated current values77 were pretty close to those

obtained experimentally5, but the two did not match for higher biases. Several groups

tried to improve upon the scheme of calculating the molecular eigen-states so far done us-

ing Local Density Approximation (LDA) or Generalized Gradient Approximation(GGA)

methods within DFT. Self-interaction corrections78,79, calculated self-consistently, were

introduced. Improved exchange-correlation functionals were incorporated80,81, which re-
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sulted in agreement of low-bias current with the measured values. Dynamical correlation

corrections were introduced within the LDA-DFT82 and proved to be a major contribution

to the quantum resistance when a molecule is attached to the electrode. The GW approach

has shown significant promise when applied to studying these nano-contacts54,83. A piece-

wise thermal equilibrium approach based on first-principles calculation produced values of

current and conductance, same order as the experimental ones, but only for a bias range

of 0-1.5 V84. Varga et al.85 used NEGF but added an imaginary Dirac-Delta potential to

the Kohn-Sham Hamiltonian to replicate the electrodes. So far the contact structure still

remains illusive. Very recently, with the help of MD simulations, it was shown that the

contact (molecule-electrode) structure is stochastic and that the conductance value changes

by orders even when there is a slight (∼0.2Å) change in distance at the atomic level86.

Recently a new approach has been reported in which the current through the molecular

junction was calculated in the presence of a few excited states87 of the molecule. Some re-

cent review articles88–92 which summarize the field of “Quantum Transport” in a molecular

junction have also been published.

Bottomline, nobody has a concrete, robust scheme to determine the experimental contact

geometry required for the quantitative prediction of transport characteristics in a molecular

scale junction. This proved to be one of the major hurdles in replicating the experimental

current-voltage features through the theoretical calculations. In this project93, the quandary

of the unknown contact structure is addressed by viewing it from a different angle. The term

in the transport equation affected by the contact structure is singled out, and a scheme is
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devised to make a better quantitative estimate of that term by exploiting a certain result

in a typical Mechanical Controlled Break Junction (MCBJ) experiment. The term singled

out is the self-energy of the leads. The well-known result in a MCBJ experiment is that

the current through the junction suddenly increases by at least an order when a molecular

pathway is created in-between the two electrodes, is exploited. To incorporate this into

the self-energy, a multiplicative weighting factor ω is added, which is determined using

the fact that the current through the device in the absence of the molecule is negligible

when compared to the current in the presence of a molecular pathway. This value of ω

is used to estimate the self-energy of the leads at different biases. Using this self-energy,

current through the metal-molecule junction is calculated within the single particle Green’s

function approach. In the next few sections details of the computational approach and the

results obtained are described.

4.2 Computational Details

The active region consists of a BDT molecule sandwiched in between two clusters of 3

Au atoms. A real space approach is used in which the many-body wavefunction of the

electron is expanded in terms of a finite set of Gaussian atomic orbitals48. DFT poses a

well-known built-in problem of demanding the exact exchange; this plays a significant role

in determining accurate energy levels in the active region and hence the current through
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the molecule/electrode junctions. Dynamical correlation corrections to the exchange func-

tionals have already been proposed,82 but it often ends up estimating a wrong band-gap

especially for semi-conductor insulators. In our approach we have used the hybrid Becke’s

three parameter functional(B3LYP)48,50 approach within DFT, which uses a part of the

exact Hartree-Fock exhange. Hence this approach treats to a huge extent, the drawback

of self-interaction errors within conventional DFT. The Los Alamos double zeta effective

core potential(LANL2DZ)48 basis set, which includes the scalar relativistic effects. We

have used tight convergence criterion throughout our calculations which sets 10−6, 10−6,

and 10−8 a.u. as the convergence criterion for energy, maximum, and root mean square

electron density respectively. The Green’s function is calculated using the Kohn-Sham

Hamiltonian matrix which has an implicit dependence on the applied electric field as de-

scribed in equation 3.13. The Green’s function which was initially defined in equation 3.14

is now modified to include the weighting factor ω and is defined as:

G(ε) = [E×S−Hmol(ε)−ω ×Σl(ε)−ω ×Σr(ε)]−1 (4.1)

E is the injection energy of the tunneling electron, Hmol(ε) is the orthogonalized Kohn-

Sham hamiltonian matrix obtained from H(ε) , and S is the identity matrix. Σl,r(ε) are the

self-energy functions56,60 (defined in equation 3.15) calculated from the bias-dependent

coupling matrices and the Green’s function for the Au leads. The Green’s function for

the Au leads, which is kept fixed for all bias points, is approximated from the Density of

States(DOS) at the Fermi level of the 6s band in bulk Au95. ω is the additional weighting
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factor introduced in this approach. This factor is calculated while employing the boundary

condition that negligible current(∼nA) flows between the electrodes in the absence of the

molecular pathway. Hence, this factor takes us closer to an accurate estimation of the

realistic self energy in the experimental situation. The transmission function and the current

is calculated using equations 3.17 and 3.19 respectively.

4.3 Results

The first section will deal with the junction-structure that we have studied. In the second

part, we will show the importance of estimating an accurate self-energy of the leads while

calculating current and conductance across the molecular junction.

4.3.1 Structural effects

Inspite of the number of available sophisticated instruments for imaging nano-structures, it

is practically impossible to obtain the atomic level structural details of the metal-molecule

junction. Things become more complicated when an external field is applied because it

destroys the equilibrium of the contact configuration. The organization of the electrode
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Figure 4.1: Schematic of a Benzene-1,4-dithiolate prototype junction93.

and molecule atoms at the contact in a non-equilibrium situation can not be expected to be

the same as that under equilibrium conditions. On the other hand, mass-scale rearrangment

of the contact atoms supposedly does not occur. This assumption does not seem to be far

off as different theoretical groups have used various equilibrium contact structures and had

considerable success in explaining some of the experimental findings65,71,76,85. Amongst

them, some have concluded that the molecule is not coupled strongly to both of the junc-

tions65. It is also argued that the anchoring thiol (-S-) group at the end of the molecule is

bonded to a single Au atom76. Calculations that assume interaction of S with more than one

Au atom of the electrode do not seem to agree with the experimental results. Surprisingly, a
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substantial amount of qualtitative agreement is achieved even when the atomic level struc-

tural details of the contact are ignored by representing the electrodes with uniform-electron

gas71 or with a Dirac-Delta potential85. Lately, it has been proposed that the contact struc-

ture is probably stochastic86 which practically rules out any particular time-independent

contact geometry. Theoretically it is not feasible to deal with stochastic contact structures

under non-equilibrium conditions, but one can always manage the non-equilibrium nature

of the contact coupling at the electronic level. This is exactly what we have done in our

work. We do not consider the structural changes at the metal-molecule junction when the

external field is applied, but the electronic energy level rearrangement under external field

has been taken into account within the DFT framework. The equilibrium structure is ob-

tained by applying optimization techniques while keeping the Au atoms fixed and allowing

the molecule along with the anchoring thiol group to relax. It is found that the structure in

which the S is in the three-fold hollow site but is closer to one of the three Au atoms to be

energetically favourable. The current and the conductance calculations are done using this

structure. The schematic structure is given in Fig. 4.1.

4.3.2 Field dependent Potential Profile

To simulate the effect of external voltage on the molecule, an external electric dipole field

is applied along the axis of the molecule as discussed in Section II. The field dependent
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Figure 4.2: Potential profile along the axis of the molecule (Basis set: 6-311G∗)93.

potential profile across the active region of the device is plotted in Fig. 4.2. It is interest-

ing to note that there is a substantial amount of change in the electrostatic potential profile

within the molecule as the external bias increases. Earlier assumptions have incorporated

the potential change at the metal-molecule junctions only and have neglected the potential

gradient across the molecule52. Infact, the majority of current calculations have been car-

ried out using the zero bias Hamiltonian with the argument that the coupling between the

molecule and the electrode is very weak and hence the external field will have negligible

effect on the eigen-spectrum65,87 of the device’s active part. However, our plot shows that

the potential gradient across the molecule is not negligible. Thus, it is essential to include

47



the external field explicitly within the Hamiltonian of the active region of the device for

every bias point. The other aspect to note is that the potential profile is slightly asymmet-

ric even though the geometric profile is identical at the two junctions. For e.g, at a field

strength of ε = 0.05 V/Å the lead-molecule junction on the left in Fig. 4.2 is at 2.11 V

whereas the right junction is at 1.90 V. It is also noted that the asymmetry increases with

an increase in the strength of the electric field. This is due to the presence of the electric

dipole term in the Hamiltonian which breaks the symmetry of the wave function; conse-

quently an asymmetric potential drop is noted with increasing the strength of the dipole

field. What follows is that the chemical potential at the metal-molecule junctions is now

computed self-consistently for each and every bias point. As a result, the changes in the

chemical potential with an increase or decrease in external voltage is accounted for more

accurately.

4.3.3 Current and Conductance Features

To determine the current-voltage feature of the BDT junction, we need to determine the

weighting factor ω mentioned in Section 4.1 and Section 4.2 . How important is ω? We

performed a current and conductance calculation without incorporating ω in eqn. 4.1 i.e for

ω = 1. The results (in Fig 4.3) predict a single broadened peak in the conductance curve

unlike the experimental findings5. The following calculations will reveal the importance of
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Figure 4.3: Calculated Current-Voltage and Conductance-Voltage characteristics (ω = 1; Basis set:
6-311G∗)93.

ω . The weighting factor ω in eqn. 4.1 is obtained using the fact that the current through the

junction at a finite external bias should be negligible or atleast an order less when the BDT

molecule is absent. The value of ω is found to be 0.0015. With this value of ω and for an

external voltage of 0.182 V, the current in the absence of BDT is 17.5 nA whereas in the

presence of BDT the current is∼400 nA. The current in the absence of BDT is modelled by

calculating the current for a pseudo-molecule junction consisting of only the two Sulphur

atoms of the BDT placed in their respective positions. By doing this we expect to make a

better estimate of a realistic S-Au coupling. This is required to reduce the screening error

caused from the finite size of the Au cluster used in the active part of the device region
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Figure 4.4: Calculated Current-Voltage and Conductance-Voltage characteristics (ω = 0.0015; Ba-
sis set: 6-311G∗)93.

when estimating the molecule-lead coupling. Subsequently, we have calculated the current

and conductance of the BDT junction as a function of applied bias; these are plotted in

Fig. 4.4. To facilitate the comparison of various theoretical approaches, we have tabu-

lated the results of the original experiment and some earlier theoretical results in Table 4.1.

The abbreviations for LBC, V-1, V-2, C-1, C-2, are ‘Low bias conductance’, ‘Voltage cor-

responding to the first peak’, ‘Voltage corresponding to the second peak’, ‘peak value at

the first peak’, ‘peak value at the second peak’ respectively in Table 4.1. It is evident that

the LBC value of 2.28µS obtained in our calculation is relatively close to the experimen-

tal value5 and most of the reported theoretical LBC values. The first “resonant tunneling
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Figure 4.5: Calculated Current-Voltage and Conductance-Voltage characteristics (ω = 0.003; Basis
set: 6-311G∗)93.

peak” which occurs in the conductance curve of the original experiment5, has been repro-

duced in a number of theoretical approaches. However, that is not the case for the second

“resonant tunneling peak”. Only three (including ours) of the schemes listed in Table 4.1

have reported the second peak. All of them predict the peak conductance values atleast a

couple of orders higher than the experimental values. Similarly, our calculations resulted

in an over-estimation of both the voltages at which the peak occurs and also the magnitude

of conductance at those voltages. The first conductance peak of our calculation and that

of ref.[29] are relatively closer to the experimental value, but the second conductance peak

in our calculation is at a higher voltage than what is observed experimentally. The peak
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Table 4.1

Synopsis of experimental and theoretical results93

Method LBC(µS) V-1(V) V-2(V) C-1(µS) C-2(µS)
Experiment5 0.003 1.6 4.7 0.045 0.079
DFT + Jellium71 3 2.9 4.8 18 33
DFT + Dirac-Delta85 1.25 2 4 9 22.5
DFT + Bulk States73 5 1.5 ‖ 15 ‖

TransSIESTA96 35 ‖ ‖ ‖ ‖

Bias-dependent DFT97 5 1.6 ‖ 30 ‖

thermal equilibrium84 0.0062 0.8 ‖ 0.05 ‖

Many-body77 ‖ 2.5 ‖ 3.0 ‖
∗∗symmetric(this work) 1.73 2.23 5.51 25.71 59.37

heights we obtained are of the same order as the results obtained from previous theoretical

calculations. The disagreement in the voltage (experimental and theoretical) at which the

resonant tunneling occurs is probably due to the failure of replicating of the realistic unoc-

cupied energy levels of the device’s active region at higher biases; this can be corrected by

using the computationally intense GW54,83, Coupled Cluster(CC)98 or Configuration In-

teraction(CI)99 or MP2100 approach. The difference of 2 or more orders in the magnitude

of the conductance values is again due to the indeterminable contact structure in the exper-

iments. In other words, this suggests that the contact structure we have considered may not

be the true representative of the contact structure in the experimental case. Moreover, even

if the choice of the magnitude of the negligible current through the junction in the absence

of the BDT can be made arbitrarily small in our calculation ensuring negligible direct trans-

mission in the nano-gap, we may not obtain the exact self-energy. Now the question arises:

How does ω influence the transport characteristics ? We do see changes in the transport
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characteristics when we use a different ω . For e.g for ω = 0.003 (Fig. 4.5), there is a slight

shift in the conductance peaks. They are now at 2.4 V and 6.4 V with conductance values

of 0.49 G0 and 1.08 G0 respectively. With a smaller ω of 0.0001, the conductance curve

shows two peaks that are sharper than the ones previously obtained. The two peaks occur

at 2.13 V and 5.71 V which are almost the same as those obtained with the ω = 0.0015.

The sharp peaks essentially reflect the molecular features. To understand whether or not

the two conductance peaks are intrinsic to the molecule, we used an arbitrary self-energy in

eqn. 4.1 (an imaginary diagonal matrix with 0.025 as the diagonal elements) to recalculate

the I vs. V and dI/dV vs. V characteristics. This ensures the absence of the realistic non-

equilibrium molecule-electrode coupling at the electronic level. Our results indeed show

two peaks in the conductance curve at 2.3 V and 5.15 V with peak values of 1.22 G0 and

1.87 G0 respectively. It can be concluded that the two peaks seem to be predominantly a

feature of two broadened energy-levels of the BDT molecule in resonance with the Fermi

energy of the lead. This also further explains why various groups were successful in ob-

taining a qualitative agreement despite ignoring the atomic level structural details of the

contact.

In the approach described so far, the current and conductance values are dependent on the

parameter ω . Also, the method for the determination of ω is not well defined. A parameter

free formalism to calculate transport properties is desired. In the next section, a modifica-

tion of the current calculating scheme is described which is parameter independent.
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Figure 4.6: DOS of bulk Gold.

4.4 Modification to a parameter free approach

In this section we used a modified expression for the Green’s function of the lead. The

rationale behind this being that the atomic level structural details of the lead being unde-

terminable. Whether the lead has a electronic property of a bulk, surface, or 1-D system is

not unknown. So, we recalculate the I-V characteristics for the same nano-junction using

three different electronic structural properties of the lead, namely bulk, surface, and wire.

Previously, the Green’s function of the lead was calculated using the bulk DOS at the Fermi
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Figure 4.7: I-V characteristics of Au/BDT/Au junction with bulk Au Green’s function and 3 Au
atoms on each side of the molecule.

level which is a constant number(=0.035 states/eV). Now, the Green’s function of the lead

is a function of energy i.e the variation of DOS with respect to energy is taken into account

in equation 3.16. First let us look at the DOS as a function of energy in bulk Au, which

is calculated using a periodic supercell approach within VASP58. We have used a plane

wave basis function and density functional theory within generalized gradient approxi-

mation for the exchange-correlation. The core electrons are represented by the ultra-soft

pseudo potential. The 11 valence electrons for each gold atom undergoes the all electron

calculations. The valence-core interaction is described by the projector-augmented wave

(PAW) approach. Thus the DOS obtained from this calculation is basically the valence
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Figure 4.8: DOS of a simulated Gold surface.

DOS. The optimized lattice parameter for the fcc gold is found to be 4.175 Å. To calculate

the DOS, we have used 61 x 61 x 61 k-point sampling within the Monkhorst-Pack scheme

to sample the Brillouin zone. The robustness of the k-point sampling is tested by compar-

ing the energy of the system for different k-points (the energy convergence criterion with

respect to the choice of k-points was less than 0.001 eV) . The value for η (E) is calculated

as DOS (E) per electron in the unit cell. The energy grid (0.002 eV) is taken as the same

grid used for the integration in eqn. 3.19. Fermi energy of the bulk gold is aligned with

the Fermi level of the active region of the device at equilibrium (V = 0). The bulk DOS

is plotted in Fig. 4.6. The contribution to DOS around the Fermi level comes mostly from
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Figure 4.9: I-V and conductance characteristics of Au/BDT/Au junction with Au surface DOS.

the s-orbitals. This is reason behind the initial choice of s-density of states at the Fermi

level in equation 3.16. But, away from the Fermi level d-orbitals start to contribute to the

DOS. With this new method, the Green’s function of the lead (Gp) is now a function of

energy and takes into the change in the DOS with energy. The calculated current (Fig. 4.7)

with the new lead Green’s function is of the same order of that obtained in calculations

in the previous section. However, the conductance plot reveals two peaks at ∼ 4.0 V and

6.0 V. Also, the conductance curve is now more ragged than before due to the fluctuations

in the DOS of the lead. Thereafter, the same calculations were done using surface DOS

of the lead. The surface DOS for Au is also calculated by creating a supercell in VASP.
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Figure 4.10: A supercell of the Gold nanowire to calculate the 1-D DOS.

The kpoints used for this calculation is 61X61X1 with a Monkhorst-pack scheme. The

surface DOS which is very similar to the bulk DOS qualitatively is shown in Fig. 4.8. The

only difference is in the peak height of DOS which is around 2 eV from the Fermi level.

The value is 0.35 states/eV for the surface where same value is ∼0.325 states/eV for bulk

Au. The I-V and the conductance characteristics, shown in Fig. 4.9 has now become more

rugged as expected. The height and the position of the conductance peaks do not change.

Since both the surface and the bulk lead DOS did not have much effect on the I-V and the

conductance characteristics we recalculated the same quantities using a 1-D DOS for the

lead. The 1-D DOS for Au is calculated by simulating an infinite Au nanowire consisting
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Figure 4.11: 1-D DOS of Gold nanowire whose supercell is given in Fig. 4.10.

of 157 Au atoms. The supercell to build the Au nanowire is shown in Fig. 4.10. The wire

is infinitely long in the z-axis. The wire is prevented from interacting with its images by

keeping the supercell 50Ålong in the x and y directions. The DOS for the Au nanowire is

plotted in Fig. 4.11. It is similar to the bulk and the surface DOS but has more fluctuations

due to the quantum confinement effects. The I-V and the conductance characteristics also

is similar to the ones with the bulk and the surface DOS. This is expected since there is

similarity between the bulk, surface and 1-D wire DOS.

A more realistic approach to model an electrode would be to include the more number of

lead atoms in the active region of the device. So, in this section we study the I-V and the
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Figure 4.12: I-V characteristics of Au/BDT/Au junction with nanowire Au Green’s function and 3
Au atoms on each side of the molecule.

conductance characteristics of the same molecular device but with 13 Au atoms on each

side of the molecule. In this calculation, the molecule along with the 13 Au atom cluster

on each side is first optimized using Gaussian G03. It is observed that the 13 Au atom

cluster retains its bulk structure but the the S-Au distance decreases. As before, the S atom

is seen to get closer to one of the nearest Au atom. This structure has also been obtained

in previous theoretical calculations164. The inclusion of the 13 Au atom cluster on either

side of the molecule increases current and conductance of the device by almost an order as

seen in Fig. 4.13. The purely molecular orbitals are now renormalized due to the presence

of the 26 Au atoms. More over there is considerable spill-over of the atomic orbitals of Au
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Figure 4.13: I-V characteristics of Au/BDT/Au junction with bulk Au Green’s function and 13 Au
atoms on each side of the molecule.

into the molecule which is responsible for the increase in the transmission and the hence

current and conductance. Also now, there is prominent sharp peak in the conductance curve

around 3.5 V which was around 4.5 V with 3 Au atoms. When the current and conductance

is calculated using the surface DOS I-V characteristics remains similar as has been the

case before. The magnitude of current and conductance is of the same order, as shown in

Fig. 4.14 but the curves become more rugged. This ruggedness increase when 1-D DOS is

used for the same calculations as seen in Fig. 4.15.
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Figure 4.14: I-V characteristics of Au/BDT/Au junction with surface Au Green’s function and 13
Au atoms on each side of the molecule.

4.5 Summary

To summarize, we found that the estimation of accurate self-energy of the lead portion of

the electrode that replicates the experimental junction, is the most challenging task in theo-

retically modeling these devices. This problem can be remedied by multiplying a weighting

factor to the self-energy term and thus exploiting the fact that there is negligible current in

the absence of a molecular pathway between the electrodes as observed in MCBJ. We also

stress that it is not possible to reproduce the experimental result quantitatively since it is
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Figure 4.15: I-V characteristics of Au/BDT/Au junction with nanowire Au Green’s function and
13 Au atoms on each side of the molecule.

difficult to identify the exact contact structure in the non-equilibrium condition. However,

one can improve the theoretical schemes for modelling these devices by self-consistent

evaluation of the non-equilibrium nature of the contact at the electronic level. This would

include the self-consistent evaluation of the chemical potential and the inclusion the Stark-

effect explicitly within the “extended molecular” Hamiltonian. The inclusion of DOS as a

function of energy does not have a severe effect on the current and the conductance charac-

teristics. With inclusion of more number of Au atoms in the active region of the device the

magnitude of current and conductance increases by an order. This is due to a stronger spill

over of the Au orbitals into the molecule which increases the transmission function quite
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significantly. The 1-D, 2-D or 3-D DOS of the lead does not have any significant effect

on the transport characteristics of the device. So, the issue of overestimating the current

and conductance values for these type of molecular devices persists. A strongly coupled

junction is the most probably the reason behind this disagreement. Lack of atomic level

details of the contact structure does not help the cause either. To conclude, it would be very

difficult to match the experimental values without including any external parameters such

as the ω . To avoid this, we shifted our focus to studying the change in transport character-

istics with increase in the length of the molecular spacer which is present in between the

two electrodes. Since the calculations are done within the same model, it is expected to

show similar trends as seen in experiments or theory using some other formulation.
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Chapter 5

Coherent Elastic Transport

Portions of this chapter is copied from the Physical Review B vol. 82, page - 045424, year

- 2010 article173 by Partha P. Pal and Ranjit Pati. Copyright - Appendix E.

5.1 Introduction

Inter/intra-molecular electron/hole transfer has been a fascinating topic of research since

the last few decades104. The obvious reason behind this upsurge in research interest be-

ing the continuous desire to better understand the natural biological processes. In nature,

each and every chemical/biological phenomenon is dictated by the interaction of several
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molecules. How do these molecules interact between themselves? ‘Electron’ is the agent,

and the transfer of electrons from one molecule to another is one of the dominant modes

of ‘signal’ the molecules use to communicate105. In this perspective, ‘controlled’ elec-

tron transfer would be an important subject to unearth. Another driving force behind the

study of electron transfer in molecules is the craze for miniaturizing electronic devices

where the “toy idea” of building electronic devices with molecules would be a phenome-

nal solution4. In fact, electron transport measurements in single molecular junctions have

been reported successfully by several research groups5–12,23,106,107 ; for a comprehensive

review see Ref.88,89,108,109. These premier experiments have generated significant interest

towards understanding the underlying physics behind the current-voltage characteristics

across molecular nano-junctions.

The next question would be: “What kind of molecules would one choose to study electron

transfer?” A certain category of organic molecules known as ‘rigid molecular rods’110 can

be considered to be good candidates for studying electron transport owing to their stability

in adverse conditions. The name ‘rod’ is actually deceptive as they are very flexible110

and are not easily distorted. One should not mistake them to be ‘tough iron rods’ used in

our daily life. In fact, they can be thought of as ‘soft elastic rods’ which can withstand

distortions whether externally or internally and still retain their electronic properties. It is

due to this property that they can act as mediators or interconnects in between two ‘active

centers/units’ without getting their own electronic structure reorganized. One also finds

them to be useful in the construction of big molecules and supramolecular assemblies110.
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Bicyclo[1.1.1]pentane(BCP) is one of the smallest synthesized ‘rigid molecular rods’. Pro-

ducing111 and storing this molecule is quite simple. They are stable in temperatures up to

280-300◦C and are transparent in the UV spectrum up to 200nm110. Several groups have

already reported electron transfer coupling matrix (VAB) calculations for this system112–114

using Koopman’s theorem approximation and Marcus-Hush two state model115–117 within

Hartree-Fock (HF) theory. However, to understand the current-voltage characteristics of

this molecular wire, one needs to consider a device geometry where the finite molecule

is attached in between two semi-infinite electrodes used as a source and a drain. In such

an open and heterogeneous system, applied bias drives the electron from source to drain;

it is a non-equilibrium process. Modeling such a process in a heterogeneous system is a

challenging task as it depends not only on the intrinsic properties such as geometry, con-

formation, length, electronic, and magnetic structure of the molecular system but also on

the electronic structure at the molecule-lead interface. To the best of our knowledge, no

such theoretical modeling has been performed on such a system in device configuration

thus far. A two-terminal prototype device made out of this molecule would contain a BCP

molecule sandwiched between two semi-infinite metallic electrodes. Bulk Au or Pt are

the most commonly used electrode materials. It has been observed that the presence of an

anchoring group facilitates the formation of a metal-molecule bond. Studies on the effect

of various anchoring groups on the binding strength of metal-molecule junctions reveal

that thiol (-SH) end groups along with Au electrodes form the most stable junction12,61,62.

Such is the strength of the S-Au bond that the stretching of the metal-molecule junction
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actually results in stretching of Au-Au bonds. This creates a Au nanowire before breaking

the Au-Au bond. This was first predicted by Molecular Dynamics(MD) calculations63 and

was later observed experimentally64. With these strong evidences, we choose thiolate(-S)

to be the anchoring group and Au as the electrode.

We then proceed to study the current-voltage characteristics of this model-device using a

parameter-free, non-equilibrium Green’s function (NEGF) formalism. A first-principles

density functional method with Becke’s three parameter hybrid functional118 is used to

construct the non-equilibrium Green’s function; the bias effect is explicitly included in our

approach within a many-body framework. The calculated current-voltage characteristic in

the device shows an Ohmic behavior in a low-bias regime. An increase in the length of

the BCP ‘molecular wire’ results in an exponential decay in the magnitude of conductance,

which is in excellent agreement with the the exponential decay feature112,114 of the elec-

tron transfer rate predicted from the length dependent trend of electron transfer coupling

matrix value, VAB. The decay constant(β ) is calculated to be 0.59 Å−1. It is found that

by increasing the number of BCP cage units from 1 to 3 in the wire, one can completely

suppress the current in the molecular device for a bias up to 0.4 V.

68



� �

Figure 5.1: Schematic of a two-terminal device built out of a molecular wire containing two BCP
cages173. Reprinted figure with permission from Partha P. Pal and Ranjit Pati, Phys. Rev. B 82,
045424 (2010), c©(2011)The Americal Physical Society.

5.2 Computational Procedure

As mentioned earlier, we have constructed a BCP two-terminal molecular device by sand-

wiching a molecular moiety between two Au electrodes with thiolate as the anchoring

group. Initially, the isolated molecular wires containing 1, 2, 3 cages and terminated by

thiol groups (-SH) at both ends are fully relaxed with Gaussian electronic structure code.

B3LYP is the functional used and the basis set 6-311G(d,p) is used for all C, H, S atoms.
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The neighboring cages in the optimized structures are found to be rotated by 180◦ along

the wire axis. The distance between the S to the plane of the 3-Au atom cluster is esti-

mated from single point calculations by varying the distance between the S and the plane.

A real space approach in which the many-body wavefunction of the electron is expanded in

terms of a finite set of Gaussian atomic orbitals48 is adopted to calculate H(ε). In our cal-

culation we have used a posteriori Becke’s three parameter hybrid functional (B3LYP)118

that includes a part of the exact Hartree-Fock (HF) exchange and the Lee-Yang-Parr (LYP)

functional, which ensures the inclusion of local and non-local correlation terms48,50. The

inclusion of a part of the exact HF exchange, calculated using the Slater determinant of the

Kohn-Sham orbitals118, allows us to avoid the self-interaction errors that occur in conven-

tional DFT. The Los Alamos double zeta effective core potential(LANL2DZ) basis set48

that includes the scalar relativistic effects is used for the electrode(Au) atoms. A triple va-

lence zeta Gaussian basis function with an additional polarization function on heavy atoms

(6-311G*) is used for the atoms of the molecule. To ensure tight convergence during self-

consistent calculations, the convergence criterion for energy, maximum, and root mean

square electron density are set at 10−6, 10−6, and 10−8 a.u. respectively.

We have calculated the bias driven current for the three different wires containing 1, 2, and

3 BCP cages. A prototype two-terminal device built out of a molecular wire containing

two BCP cages is shown in Fig. 5.1. Though the structure of the free BCP molecule is

known110,114, the atomic level structural details of the contact geometry at the molecule-

gold interface is unknown. Hence, we first optimize each of the molecular wires with thiol
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(-SH) as the anchoring group using DFT within B3LYP formalism; Gaussian electronic

structure code is used48 for the optimization. The distance between the terminal C atom

and the S atom in the thiol group to which it is bonded is found to be 1.8 Å. The distance

between the two terminal C atoms is 1.86 Å, which is in good agreement with the previ-

ously reported value of 1.87 Å110,114. Subsequently, the optimized molecular structure with

thiolate (-S) as the anchoring group is embedded between two clusters of 3-Au atoms on

each side to model the active region. The S atom is incorporated into the three-fold hollow

site of the Au atoms on the Au(111) surface119. It should be noted that for practical pur-

poses, we have considered only three gold atoms on each side which are directly involved

in bonding with the S atoms. The distance between the Au and S is varied to determine

the minimum energy configuration(Fig 5.2). The optimized S-Au distance is found to be

2.80 Å; to discern the role of the molecular spacer on conductance, the interfacial contact

geometry is kept the same for all the three molecular devices.
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Figure 5.2: Variation of the Hartree-Fock energy with distance between the S and the first plane
containing the Au atoms.

5.3 Results and Discussions

5.3.1 Potential Profile

To understand the response of the molecule to external bias, we applied a dipole electric

field along the molecular wire axis as discussed in Section II. The electrostatic potential

is then calculated self-consistently103 at each atomic center in the active region for each
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Figure 5.3: Potential profile of the two-cage molecular wire for different electric fields, ε1, ε2, ε3.
The notation ‘S’ refers to the position of the terminal S atoms in the device173. Reprinted figure
with permission from Partha P. Pal and Ranjit Pati, Phys. Rev. B 82, 045424 (2010), c©(2011)The
Americal Physical Society.

applied field as well as for the zero bias. The difference between the electrostatic potentials

at ε = 0 (V = 0) and ε 6= 0 is then obtained at each atomic center, which is subsequently

averaged over the degrees of freedom perpendicular to the wire axis to obtain the relative

electrostatic potential (REP) profile along the wire axis. The REP values are then plotted

along the molecular wire axis for three different externally applied fields (Fig. 5.3). For

brevity, we have only presented the results for a molecular wire containing two BCP cages

in Fig. 2.
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The magnitude of REP at the molecule-lead interface increases with the increase of applied

field as expected (Fig. 5.3). For example, at an external applied field of 0.11 V/Å, the

REP at the left and right junction is 0.19 V and -0.19 V respectively. For an applied field

of 0.03 V/Å, the respective REPs are 0.05 V and -0.05 V. However, an intriguing feature

is revealed by examining the potential profile between the two terminal S-atoms; one can

clearly notice two effective potential barriers. Furthermore, the barrier height changes with

the increase of applied field. This clearly suggests that for quantitative evaluation of bias

induced response in a molecular device, the explicit inclusion of field effect is essential.

Next, we focus on the potential profile of the molecular wires containing one, two, and

three BCP cages. The potential profiles at V = 0.24 V for the three molecular wires are

encapsulated in Fig. 5.4. For the molecular wire containing one BCP cage, there is only

one effective potential barrier between the two terminal S-atoms. For the wire with two and

three BCP cages, two and three effective potential barriers are noticeable. This suggests

that by increasing the number of BCP cage units in the wire, we are essentially increasing

the number of effective potential barriers in the conducting molecular channels. Another

interesting, noticeable feature from Fig. 5.4 is that the barrier height for the wire with a

single BCP cage is relatively smaller than that of the wires containing two and three BCP

cages. The height and the number of effective barriers have important implication on the

quantum transport properties of these wires, which will be revisited in the next section.

To account for the origin of valley and hill at the terminal S-atom position in the potential

profiles (Fig. 2 and Fig. 3), we analyzed the variation of Mulliken charge associated with
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Figure 5.4: Potential profile of the three different wires at V=0.24 Volts. The notation ‘S’ refers to
the position of the terminal S atoms in the device. The arrows indicate the height of the effective
potential barriers173. Reprinted figure with permission from Partha P. Pal and Ranjit Pati, Phys.
Rev. B 82, 045424 (2010), c©(2011)The Americal Physical Society.

S-stoms as a function of bias. For a wire containing a single BCP cage, the charge profile

is presented in Fig. 5.5. At equilibrium (zero applied bias), both of the terminal S atoms

have equal amounts of charge (scaled to zero in the charge scale in Fig. 5.5). As the bias

increases, the negative charge on the left S increases steadily; at the same time positive

charge accumulation increases for the right S atom. This bias induced polarization effect

is responsible for the hill and valley observed in the potential profile. Similar bias induced

polarization effects were noted for wires containing two, and three BCP units.
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Figure 5.5: Charge profile depicting bias induced polarization effect on the terminal ‘S’ atoms in
the molecular wire containing one BCP cage unit173. Reprinted figure with permission from Partha
P. Pal and Ranjit Pati, Phys. Rev. B 82, 045424 (2010), c©(2011)The Americal Physical Society.

5.3.2 I-V characteristics

The calculated currents through the molecular wires as a function of external bias, V , are

summarized in Fig. 5.6. For the low bias regime considered in our calculation, the I-V

curves follow Ohm’s Law i.e the current increases linearly with the bias, V . As expected,

the wire containing the three BCP cage units has the largest resistance of the three and

hence the least current for a particular bias. For example at 0.41 V, the current in the
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Figure 5.6: I-V characteristics of the three different wires under the influence of applied external
bias. Inset shows the plot of ln(Gc) vs. length of the molecule (L). A straight line is fitted into
the data points in order to calculate β 173. Reprinted figure with permission from Partha P. Pal and
Ranjit Pati, Phys. Rev. B 82, 045424 (2010), c©(2011)The Americal Physical Society.

single-cage wire is 3.4 µA ; the current in the double-cage wire is 0.32 µA; and the current

in the triple cage wire is 0.07 µA. The resistance of the three wires calculated from the

slopes of the I-V curves are 0.12 MΩ, 1.4MΩ, 6.5 MΩ for the one-cage, two-cage, and

three-cage wire respectively. The substantial increase in resistance or the decay in current

with the increase in the number of cage units in the wire can also be understood from

Fig. 5.4. The increase in the number of barriers with the increase in the number of cage

units in the wire is responsible for the decrease in the current. From one-cage unit to two-

cage unit in the wire, the number of effective potential barriers in between the terminal
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S-atoms increases to two. In addition, the effective barrier heights also increase leading

to a significant drop in current. Going from two-cage to three-cage unit in the wire, the

number of effective potential barriers between the terminal S-atoms increases from two to

three. However, the barrier height does not show a significant change. This explains why

only a small drop in current is observed when increasing the number of cage-units from

two to three. The conductance values, obtained from the inverse of resistances, are found

to decrease exponentially with the increase of the number of cage-units in the wire. It

follows a simple relation:

Gc[L] = Gc(L= 0)e−βL (5.1)

where β is a decay constant associated with the decrease in the conductance value as the

length of the molecular wire (L) is increased; Gc(L = 0) is the extrapolated conductance

at the interface (L=0). This exponential decay feature of the conductance is in excellent

agreement with the length dependent decay feature in the electron transfer rate predicted

from the electron transfer coupling matrix values, which re-affirm the accuracy of our the-

oretical approach. It should be noted that the conductance value is proportional to the

electron transfer rate, and hence VAB. In the latter case the VAB was calculated using the

two-state Marcus-Hush model and the Koopman’s theorem approximation; no bias effect

was considered. The β value reported from the Koopman’s theorem approximation112 was

0.66 Å−1; the two-state Marcus-Hush model yielded114 the β -value to be 0.97 Å−1. To

determine the β -value, we plotted the variation in ln Gc with the length of the wire (L) as

shown in the inset of Fig. 5.6. The distance between the terminal S-atoms is considered to
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be the length of the wire. The data points are fitted to a straight line to calculate the β as

0.59 Å−1. The discrepancy between the current β value and the β value obtained from VAB

result could be ascribed to the fact that in the former case the bias effect was not explicitly

considered. In addition, the electrode induced polarization effect on the molecular orbital

was not taken into account during the calculation of VAB.

5.3.3 Transmission Function

To gain a deeper insight into the I-V characteristics of this particular metal-molecular wire-

metal system, we look into the entities that determine the electrical current through the

junction, precisely the bias dependent transmission function, Tlr (Refer equation 3.17 and

equation 3.19). Tlr as a function of injection energy E , is outlined in Fig. 5.7; a bias value

of 0.41 V is considered. The chemical potential window [µ1= -0.2, µ2= 0.21] is shown by

the dotted line; Fermi energy is set to zero in the energy scale. The transmission function

looks fairly flat within the low-bias regime (0 - 0.41 Volts) considered in our calculation.

Tlr is devoid of spikes as seen in some other molecular species57. A rugged Tlr can give

rise to non-linear I-V characteristics or even Negative Differential Resistance (NDR)57.

A relatively smooth Tlr within the integration window is the possible reason behind the

Ohmic behavior in this type of molecular wires. A comparative study of the Tlr for the

three devices within the same chemical potential window reveals a significantly higher
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Figure 5.7: Transmission function as a function of injection energy in the three molecular wires
under the same applied external voltage(= 0.41 V). The chemical potential window is shown by the
dotted line173. Reprinted figure with permission from Partha P. Pal and Ranjit Pati, Phys. Rev. B
82, 045424 (2010), c©(2011)The Americal Physical Society.

transmission value for a single-cage wire when compared to the wire containing two cages.

For instance at 0.1 eV injection energy, the value of the transmission function for the single

cage wire is 0.11 as compared to 0.008 for the two cage wire. In the triple cage system,

Tlr is 0.002 for the same injection energy. This clearly explains the length dependent I-V

features observed in Fig. 5.6.
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5.4 Summary

In summary, we have used first principles density functional method with a posteriori

B3LYP approach to study the quantum transport properties of BCP molecular devices.

A parameter free, non-equilibrium Green’s function approach, where the bias effect is ex-

plicitly included within a many-body formalism, is used to compute the current-voltage

characteristics of the device. In the low bias regime considered in our study, we found

the I-V feature to follow Ohm’s law. We estimated the resistance from the slope of the

I-V curve. By increasing the number of BCP units in the molecular wire, the conductance

value is found to decrease exponentially with a decay constant, β , of 0.59 Å−1. This is

in excellent agreement with the exponential decay feature observed for the length depen-

dent electron transfer rate in the same system predicted from the two-state Marcus-Hush

approach. By including three BCP units in the wire, we found that the current can be com-

pletely suppressed for a bias upto 0.41 V. This suggests that the wire containing three BCP

cage units could potentially be used as a gate throttle to avoid leakage gate current in a

three terminal molecular transistor.
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Chapter 6

Incoherent Elastic Transport

Portions of this chapter is copied from the Journal of Physical Chemistry C, 2011 article169

by Partha P. Pal and Ranjit Pati. Copyright - Appendix F.

6.1 Introduction

Phase randomization or relaxation56, which is defined as the loss of phase information of

the particles after they undergo scattering, is an interesting aspect to study in a molecular

scale device120,121. A simple estimation of the mean free path associated with the inelastic

scattering(which results in phase-loss) of electrons at very low temperatures gives the value

83



to few hundreds of Å,122 which is much longer than the length of the current carrying chan-

nel in molecular junctions122–124. But owing to the small size of the junctions one expects

a large number of scattering events to occur per unit time/volume122,124 that can even have

an effect on the stability of local bonds. Thus the inclusion of phase incoherence123,125,

associated with inelastic scattering gives a more complete picture of the non-equilibrium

charge transport at finite temperature. A scheme to include dephasing in a two-terminal

device was first proposed by Büttiker in his multi-probe formulation126. It can be incor-

porated within the Landauer-Büttiker formalism56,122,127,128 for the elastic transport. In

this formulation the phase relaxation is allowed through a fictitious probe. Despite this

being a phenomenological approach it has turned out to be appealing to a lot of theoret-

ical groups modeling mesoscopic transport for its simplicity and the physical insights it

provides65,121,129–131.

Interactions of electrons with the quantized normal vibrational modes of atoms (phonons)

is a dominant cause of phase randomization121. So, in order to study dephasing one needs

to investigate the electron-phonon(e-ph) interactions132,133 both qualitatively and quanti-

tatively. Experimentally, vibrational modes and its interaction with the conduction elec-

trons can be studied with Inelastic Tunneling Spectroscopy(IETS)134,135. IETS, which

is generally restricted to the low-bias non-resonant tunneling regime, is a powerful tool

that can provide structural informations at the molecular level by exploiting the active vi-

brational modes (ω) within the bias range 0 < Vbias < h̄ω
e
136–138. Vibrational modes in

molecular-scale junctions,139 such as metal-insulator-metal,135 or metal-molecule-metal
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systems140–145 have been successfully studied with IETS. It is also found to be useful in

studying nanoscale junctions which are highly conducting i.e the magnitude of conductance

is quite close to the quantum of conductance unit(G0), such as for a Pt-H2-Pt system146 or

for a chain of few Gold atoms sandwiched between Gold electrodes147,148. Theoretical

investigation of the effect of e-ph coupling on charge transport is an overwhelming task

since it demands a dynamic framework consisting of the lattice vibrations, their interac-

tion with the traversing electrons, and further renormalization of the scattering states due

to this e-ph coupling. Further, since this is a non-equilibrium charge transport process, the

effect of bias needs to be included in the formulation which might require structural reor-

ganization. However, in the low-bias regime, for weak e-ph coupling one can make lower

order approximations for e-ph interaction and apply perturbation theory to see its effect

on the non-equilibrium transport characteristics149–151. Therefore most of the efforts have

been restricted to tight-binding formulations152–155 or first principles calculations within

the Born approximation or its self-consistent extensive counterpart101,156–162. There are

always some system specific debatable issues such as which atoms interact with the travel-

ling electrons163. Do they originate only from the molecular moiety or the electrode atoms

which are perturbed when the molecule is attached ? Also, which are the modes of vibration

that interact the most with the scattering states ? Some first-principles analysis suggested

that the low-lying vibrational modes are the ones which mostly couple with the scatter-

ing states at the metal-molecule junction101. It has been pointed out that the e-ph coupling

strength undergoes change with increase in external bias, but the vibrational spectrum of the
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molecule essentially does not change much101,164. In the non-equilibrium charge transport,

e-ph coupling can give rise to multiple emission and absorption of phonons which can have

an influence in the mechanical stability of the metal-molecule junction165. Earlier, it was

pointed out that in some systems the strength of the e-ph coupling is a function of the metal-

molecule bonding at the junctions166. Recently, the breakdown of Born-Oppenheimer(BO)

approximation31 in a certain regime when two electronic energy levels of the molecule are

coupled by a molecular vibration is suggested. This opens up the possibility of control-

ling electron transport in a molecular junction mechanically through the molecular vibra-

tions. Whereas there has been a lot of research on the effect of molecular vibrations on

non-equilibrium transport,167,168 comparative studies on the contribution of dephasing, but

within the elastic tunneling, as a function of external bias in molecular wires of different

lengths is still lacking.

In this chapter169, we report a first principles study on the effect of “phase-breaking” scat-

tering to the net charge transport across strongly coupled molecular junctions. In particular,

we study the evolution of the “out of phase” current with external bias in three molec-

ular wires of increasing length. The molecular wires are constructed out of cubane170

molecules which have a rigid cage type cuboid structure. The stable structure of cubane

or its oligomers make them easily identifiable and are considered to have prospective ap-

plications in energy materials171. They have been subjected length dependent electron

transfer rate studies both experimentally172 and theoretically using the two state Marcus-

Hush model.114 But the response of cubane or its oligomers to electric field has not been
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explored yet. This motivated us to study the conductance as a function of length of a two-

terminal device built out of cubane oligomers. A first-principles density functional method

with Becke’s three parameter hybrid functional(B3LYP)118 within the Density Functional

Theory(DFT) is used to construct the single particle Green’s function; the bias effect is

explicitly included in our approach within a many-body (single determinant) framework.

Ignoring the dephasing phenomenon, the calculated current-voltage (Isd−Vsd) characteris-

tic in the device shows an Ohmic behavior in a low-bias regime. An increase in the length

of the wire results in an exponential decay in the magnitude of conductance, which is in

excellent agreement with the exponential decay feature of the electron transfer rate pre-

dicted experimentally172 and also from the length dependent trend of the electron transfer

coupling matrix (VAB)114. We then proceed to study the effect of “phase-breaking” scat-

tering on charge transport across the same system as a function of external bias and length

of the oligomer. The contribution of electronic current from the “phase-breaking” colli-

sions is modeled using the Büttiker’s multi-probe approach. This approach requires the

presence of a virtual electron reservoir. The electrons which travel from source to drain

via this pseudo-reservoir lose their phase information as soon as they enter this imaginary

third probe and thus are the ones which contributes to the “phase-breaking” current. Our

calculations show that the “out of phase” tunneling of electrons starts contributing to the

net current only after an “off-set” voltage. The magnitude of the “off-set” voltage is found

to be inversely proportional to the length of the wires, meaning the longest wire has the

minimum “off-set” voltage. The “off-set” bias depends on the position of the first trans-
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mission peak closest to the Fermi level. This is due to the fact that dephasing reduces

the constructive interference within elastic transport in the resonant tunneling regime and

thus reduces the electronic current. Electron-phonon(e-ph) interaction is one of the major

reasons of dephasing within the device. Estimation of electron-phonon coupling energies

reveal that with increase in external bias, a greater number of vibrational modes interact

strongly with conducting electrons, thus leading to a stronger dephasing effect.

6.2 Computational Details

It can be noted here that including the bias effect in formulations beyond the ground state

mean-field DFT174 is a very difficult task. In covalently bonded junctions, which is our

case here, the modification of the molecule-lead coupling with change in external bias is

an important quantity that should be captured in the formulation. In this context the ground

state based DFT is a reasonably good approach and is being successfully used.55,57,121,175

H(ε), if solved using first order perturbation theory will give only linear shifts to the zeroth

order energy eigenvalues. However, a fully self-consistent evaluation of H(ε) reveals a

non-linear increase in the energy eigenvalues with the application of~ε . Thus this approach

not only includes the first order effect of the field on the dipole moment of the molecule,

but also on its polarizability and higher order terms.
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The interaction of electrons and phonons is modeled using a phenomenological Hamil-

tonian in which only diagonal interaction terms of the matrix is used in the orbital in-

dex164,176. In this model, assuming the e-ph interaction to be weak, linear e-ph coupling

terms are only retained. The dimensionless coupling constant, gi,n is found to be
164,176:

gi,n =
1√
2h̄ωn

(
∂εi
∂Qn

)
(6.1)

Making a canonical transformation, the coupling energy can be calculated as164,176:

Ii,n = g2i,nh̄ωn (6.2)

The coupling energy along with the coupling constant gives a quantitative answer as to how

a particular electronic energy level interacts with a particular phonon mode. The coupling

energies of the various electronic levels and phonon modes of the molecule are calculated

both before and after the inclusion of an external bias.
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Figure 6.1: Schematic of a two-terminal device built out of a Cubane oligomer with N=2 i.e with
two cubane cages169. Reprinted figure with permission from Partha P. Pal and Ranjit Pati, J. Phys.
Chem. C 2011, c©(2011)The Americal Chemical Society. Copyright permission in Appendix F.
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6.3 Results and Discussions

6.3.1 Geometry

As mentioned in the introduction section, the three molecular wires are created with 1,2,

and 3 cubane molecules respectively. The isolated wires, terminated with a thiol (-SH)

group, are optimized by Gaussian(G03)48 that uses localized atomic gaussian basis sets.

The functional B3LYP is used within DFT for the optimization and subsequent electronic

structure calculations. The advantage of using a posteriori B3LYP approach is that the

Becke’s three parameter(B3) functional118 includes the exact Hartree-Fock exchange par-

tially and the Lee-Yang-Parr(LYP) functional50, which takes care of both local and non-

local correlation terms. Convergence criterion for energy, maximum, and root-mean-square

electron density are chosen to be 10−6, 10−6, and 10−8 a.u. respectively. The optimized

structure of a single cubane with -SH group attached to it turns out to be very close to

that of pure cubane.171,177 Both experimental results and theoretical calculations with pure

cubane yields C-C bond length to be 1.57 Å171,177. The C-C bond length obtained from

our calculation is also 1.57 Å on an average, which is same as the previously obtained ex-

perimental177 and theoretical values171. Same is seen for the C-H bond length. Previously

measured and calculated values are 1.1 Å177 and 1.09 Å171 respectively. Our calculations
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yield a value of 1.09 Å for the same. When the length of the molecular wire is increased

with addition of more cubanes, the C-C and C-H bond-lengths of the individual units re-

main the same. The C-C bond length between the Carbons of neighbouring cage-units is

1.47 Å. In order to design a prototype device out of these molecular wires, they are sand-

wiched between two Au electrodes with the help of the anchoring thiolate (-S-) group.

The Sulphur atom of the -S- group is placed in the three-fold hollow site of the Au(111)

plane119 as shown in Fig. 6.1. Attaching a molecule to the electrode generates a rearrange-

ment of the charges at the molecule-electrode junctions. But this reshuffling does not affect

the whole electrode due to the phenomenon of metallic charge screening within it. Ideally,

the accuracy of the calculations would increase when more number of electrode atoms are

included in the active region of the device. But inclusion of more atoms will lead to sub-

stantial increase in the computing time. So, here, for practical reason, we have assumed 3

Au atoms on each electrode to be perturbed by the molecular wire. The distance between

S and Au atoms is optimized to get to the minimum energy configuration(Fig. 6.2). The

optimized S-Au bond length comes out to be 2.80 Å. As in the previous study, our aim here

is to see the effect of length of a molecular spacer on the I-V characteristics of the device

and so the S-Au distances are kept fixed for all the three devices.
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Figure 6.2: Hartree-Fock energy as a function of the distance between the S atom and the plane of
the first layer of Au atoms.

6.3.2 Potential Profile

In order to simulate the non-equilibrium charge-transport process in the device configura-

tion, the bias is applied as discussed in Chapter 3, Section II. The electrostatic potential

is then calculated self-consistently103 at each atomic position. The difference between the

electrostatic potential at a finite bias and zero bias for each atomic position, called as the

Relative Electrostatic Potential (REP) here, is plotted in Fig. 6.3. It is seen that the individ-

ual cage units act as potential barriers in the REP profile. Thus, more number of cage units
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Figure 6.3: Relative Electrostatics Potential (REP) profile of the active region in the three different
molecular wires at an external voltage of Vsd = 0.27 V169. Reprinted figure with permission from
Partha P. Pal and Ranjit Pati, J. Phys. Chem. C 2011, c©(2011)The Americal Chemical Society.
Copyright permission in Appendix F.

means more number of potential barriers, and it becomes more difficult for the electrons

to tunnel across the molecular wire which is also reconfirmed in the I-V characteristics.

Among the different wires studied, the wire with 3 cubanes has the maximum number

of potential barriers and later on shows minimum current for a particular bias. It is also

observed, for a particular wire, the barrier height changes as the applied electric field is

increased, which clearly emphasizes the importance of an explicit inclusion of the exter-

nal bias. The chemical potential at the two metal-molecule junctions are the REPs at the

junctions, which are later used in the current calculations as the integration limits.

94



� �

Figure 6.4: Current (Isd) as a function of source-drain bias (Vsd). Inset shows the plot of ln(Gc)
vs. length of the molecular wire (L). A straight line is fitted into the data points to calculate
β 169. Reprinted figure with permission from Partha P. Pal and Ranjit Pati, J. Phys. Chem. C
2011, c©(2011)The Americal Chemical Society. Copyright permission in Appendix F.
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6.3.3 Current(Isd)-Voltage(Vsd) characteristics

6.3.3.1 Coherent Tunneling

The low-bias current-voltage characteristics of this system is similar to that of the previ-

ously studied BCP molecular wire173 in an earlier chapter. In this low-bias Ohmic regime

[0-0.16V] the Isd −Vsd characteristics is linear (Fig. 6.4). The current in the longest wire

is least among the three wires. There is almost one order drop in the current when one

compares the values for the one-cage wire and the two cage wire in this entire regime. But

when one compares the current between the two-cage and the three-cage wire there is not

much change (a factor of ∼ 0.5). This can easily be understood from the barrier heights.

The difference between the barrier heights of the one-cage wire and the two-cage is signif-

icantly more than that of the two-cage and the three-cage wire. Since the Isd −Vsd plot is

linear in the low-bias regime, it is easy to calculate the magnitude of conductance for the

three different wires namely,
dIsd

dVsd
. The decrease in the value of conductance with increase

in length of the wire follows an exponential relation:

Gc[L] = G0e
−βL (6.3)
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Figure 6.5: Variation of transmission function [T (E,Vsd)] with injection energy (E) in the 3 molec-
ular wires for a fixed external voltage of Vsd = 0.06 V. N = 1, 2, 3 denotes the number of cubane
cages in the oligomer. The dotted line denotes the chemical potential window. The scale for y-axis
is same for all the panels169. Reprinted figure with permission from Partha P. Pal and Ranjit Pati, J.
Phys. Chem. C 2011, c©(2011)The Americal Chemical Society. Copyright permission in Appendix
F.

where β is the decay constant associated with the decrease in the conductance value with

the increase in the length of the molecular wire (L). This exponential decay feature of

the conductance is in excellent agreement with the length dependent decay feature in the

electron transfer rate predicted from the electron transfer coupling matrix values, which

re-affirm the accuracy of our theoretical approach. It should be noted that the conductance

value is proportional to the electron transfer rate, and hence VAB. In the latter case the

VAB was calculated using the two-state Marcus-Hush model114–117. For a deeper analy-
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sis into the reason behind the decrease in current with increase in the length of the wire

we plotted the transmission function as a function of injection energy for three different

wires(Fig. 6.5). The transmission functions for all the wires are devoid of any spikes within

the integration window. Similar features were also observed in the bicyclo[1.1.1]pentane

(BCP) molecular wires173. The nearly flat transmission function explains the linear in-

crease of current with voltage. Also, comparing the values of transmission function within

the integration window it is seen that the most significant change in the value of the function

occurs from one to two-cage wire. The difference between the values of the function for the

2-cage and 3-cage is very less. This also reflects the reason behind a drastic decrease in the

value of the current from one to two cage structure. To determine the β -value, we plotted

the variation in ln Gc with the length of the wire (L) as shown in the inset of Fig. 6.4. The

distance between the terminal S-atoms is considered to be the length of the wire. The data

points are fitted to a straight line to calculate the β as 0.44 Å−1. Earlier, pulse radiolysis

measurements performed on cubane yielded a β value of 0.90 Å−1 172. Within the two-state

Marcus-Hush model the β was calculated as 1.42 Å−1 114. The discrepancies in the values

of the various β s obtained can be linked to the different chemical groups used to terminate

the cubane molecules in prior reports. Biphenyl and naphthyl were used as end groups in

the experiment. Moreover, the pulse radiolysis measurements172 were done in a solution

phase in which the solvent can always increase the overall rate of electron transfer. In the

theoretical calculations using the Marcus-Hush model, the cubane molecules were termi-

nated by -CH2 chemical groups114 whereas in this work the cubane molecules are attached
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to the Au-electrodes by the -S- group. The presence of the metallic atoms and the covalent

bond between the S-Au renormalizes the many-body states of the molecular wire. Thus the

molecular moiety becomes more conducive to current flow and possess a relatively lower

β value.

6.3.3.2 Phase-breaking tunneling

Interaction of electrons with vibronic modes of the oligomermight create or destroy phonons

either of which would force the electron to undergo phase and energy relaxation. In our

formulation, an electron making transition from a lower energy state to higher energy state

or vice versa is accompanied by a reverse transition following the conservation of energy.

But the electron ends up in losing its phase information due to these type of transitions. The

contribution of this ‘phase-breaking’ phenomenon to the total current in the device can be

accounted for by using Büttiker’s multi-probe approach, which has already been described

in Chapter 3, Section 3.2.2. In this approach, an imaginary ‘vibronic’ probe is floated into

the main current-carrying channel. It is assumed that a part of the electron flux travels from

the source to drain via the pseudo-probe resulting in the loss of their phase information.

The effect of the third probe enters the scheme in the form an extra ‘vibrational’ broad-

ening term in the Green’s function of the device(eqn. 3.21). The effective transmission

function is concocted utilizing the boundary condition that no net current flows in/out of
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Figure 6.6: (a) Transmission function [T (E,Vsd)] vs. injection energy (E) in the three molecular
devices. The plots are for a fixed external voltage of Vsd = 1.87, 1.88, 1.84 Volts for N = 1,2, and
3 respectively. The chemical potential window is shown by the dotted line. The Fermi level is
scaled to zero in the x-axis. (b) Current (Isd) as a function of source-drain bias (Vsd) in the three
molecular wires. ‘In-phase’ denotes the current in the absence of vibronic probe. ‘Total’ denotes
the current in the presence of the vibronic probe. Note that the scale of y-axis of the 3 cubane wire
is different. N = 1, 2, 3 denotes the number of cubane cages in the oligomer169. Reprinted figure
with permission from Partha P. Pal and Ranjit Pati, J. Phys. Chem. C 2011, c©(2011)The Americal
Chemical Society. Copyright permission in Appendix F.

the imaginary probe(eqn. 3.23). Using this approach we included the “out of phase” current

to the Isd−Vsd characteristics for the three molecular wires which is plotted in Fig. 6.6(b).

A range for the intial guess value of De−ph is estimated from the e-ph coupling energies

calculated in the next section of the paper. The range comes out to be from 0.0001 eV2 to

0.25 eV2. Since the e-ph interactions are considered to be weak, a relatively small value

of 0.005 eV2 is chosen for De−ph in the current calculations. However, it is important to
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note that the value of De−ph mentioned above is just a weighting factor used to compute

the Σe−ph (please see Chapter 3 Section 3.2.2). A change in the initial guess value of

De−ph does modifies the electronic current quantitatively but does not have any qualitative

effect on the Isd−Vsd characteristics. In the low bias regime, the phenomenon of dephas-

ing does not have a significant effect on the current in all the three wires. However, a

closer look reveals that dephasing raises the current slightly in this regime, as observed in

elsewhere121. This is owing to the reduction in the destructive interference due to phase

randomization, which increases the conduction of the system121. After a certain “off-set”

bias, which is different in the three oligomers, dephasing reduces the total current across

the junction. The “off-set” voltages for the two-cage and the three-cage wires are ∼ 1.0 V

and 0.5 V respectively. The “off-set” voltage for the single cage wire is expected to arrive

at a higher voltage than that considered here. A plot of transmission function as a function

of injection energy reveals that the “off-set” bias in the three wires is determined by the

position of the peak closest to the Fermi level. This is due to the fact that the addition of

dephasing reduces the height of the transmission peak which in turn reduces the current

through the junction. The first peak in the transmission function of the N=3 oligomer is

around 0.25 eV from the Fermi energy as seen in Fig. 6.6(a). This peak falls within the

chemical potential window at an external bias of ∼ 0.5 V. The transmission function at this

peak is substantially reduced when dephasing is included. Thus, the current forVsd > 0.5V

is reduced when phase-breaking tunneling is included. Similarly, since the first transmis-

sion peak in the N=2 oligomer is at an energy of 0.5 eV [Fig. 6.6(a)] away from the Fermi
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level, the current at a bias of Vsd > 1.0V decreases substantially when the non-coherent

elastic transport is accounted for. The molecular wire with a single cubane unit(N=1) has

the first peak in the transmission function at ∼ 1.0 eV from the Fermi level [Fig. 6.6(a)].

So, the “off-set” bias is expected to be around 2.0 V which is beyond the scale of the plots

provided. Peaks in the transmission function occur when there is resonant tunneling of

electrons i.e the discrete energy levels of the molecule matches with the injection energy in

the lead. Within the coherent elastic transport model the conductivity of the junction at this

point suddenly increases due to the constructive interference as seen by the dotted circles

in Fig. 6.6(b). But, the inclusion of phase randomization partially destroys the construc-

tive interference in this regime and thus adds an additional resistance thereby reducing the

current through the junction. It is to be noted here that the transmission function values at

resonance obtained in our calculations are∼5. A possible reason could be due to the single

particle nature of eqn. 3.17 (before dephasing). Since our calculation is at the mean field

level, which does not include the many-body dynamical correlations between the channel

states, a higher transmission function values at resonance is expected. This is the reason

why mean field approach usually overestimates the current at least by an order of magni-

tude. These important issues have been pointed out by many authors recently178,179. In

addition, we have considered a strongly coupled metal-molecule junction, where the sig-

nificant metal induced screening resulting in a strong broadening could be responsible for

such high transmission. It should be noted that our emphasis is on the relative difference

in current between the oligomers of different length. E-ph interactions is one of the main
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Table 6.1

Frequency of vibrational modes in three different oligomers, N=1,2,3.169

N=1 (cm−1) N=2 (cm−1) N=3 (cm−1)
126 43 22
132 47 28
202 55 37
238 142 65
243 148 67
. . .
. . .
. . .
. . .
3125 3117 3115
3127 3125 3125
3136 3127 3125

sources of dephasing and these interactions increase with the increase in external bias. So,

in the next section we look at the e-ph interactions in the three oligomers as a function of

external bias.

6.3.4 Electron Phonon Coupling

The vibrational spectra of the active region of the device is calculated using the Gaussian

(G03) electronic structure code. The vibronic frequencies are determined by inserting the

atoms in a harmonic potential. The normal mode corresponding to each frequency are

then calculated by a canonical transformation. This method is applied only on the atoms

of molecular moiety because they are much lighter than the electrode atoms. The above
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formulation, although with some assumptions, works reasonably well under equilibrium

conditions i.e at zero bias, is not the best choice when an external bias is applied across

the electrodes. In this case, ideally the structure should be allowed to relax under the effect

of the electric field and the vibronic frequencies must be recalculated in the presence of

an electronic current. Whereas this is a formidable task, a simpler formulation allows us

to include the electric field dependent electronic eigen states while calculating the e-ph

coupling energies at a finite bias.

The phonon frequencies for the three different wires are listed in Table 6.1. Some of the

frequencies in the first column (one cage unit) are very close to those of pure cubane i.e.

without the thiol group attached to it. However, it is seen that as the length of the wire is

increased, lower frequency vibrational modes are available, for e.g the lowest frequency

for the 6.28, 10.5, and 14.7Å wires are 126, 43, 22 cm−1 respectively. The decrease in

the lowest frequency with increase in the length of the wire (also an increase in mass of

the wire) is similar to an observed shift in vibrational spectra with different isotopes of

Hydrogen180. Thus the low frequency mode of the longest wire can be excited at a low

bias. This is consistent with the substantial contribution from phase-relaxation scattering

to the total current at the lowest external bias in the N=3 wire. In an earlier theoretical

paper on a chain of Au atoms, non-zero occupation of vibrational modes was found at a

lower external bias for a longer chain than for a shorter chain.158 On the similar lines, the

longest wire in our case has some of its vibrational modes active at a relatively low bias and

is consistent with the fact that the dephasing current starts to contribute to the total current
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Figure 6.7: Electron-phonon coupling energies (Ii,n) for various vibrational modes in the molecular
wire with a single cage-unit. i and n denote electronic energy eigen states and normal modes of
vibration respectively. The lower panel and the upper panel correspond to Vsd = 0 V and Vsd = 0.97
V respectively169. Reprinted figure with permission from Partha P. Pal and Ranjit Pati, J. Phys.
Chem. C 2011, c©(2011)The Americal Chemical Society. Copyright permission in Appendix F.

at a bias lower than the other two wires [Fig 6.6(b)] considered here.

The dimensionless e-ph coupling constant and the corresponding energies are calculated by

using eqns. 6.1 and 6.2 respectively. This part of the analysis requires two questions to be

answered. They are: (a)which are the vibrational modes that affect the electron transport,

and (b)how does this e-ph interaction evolve with increase in the bias ? One expects the

low energy vibrational modes to be easily excited by the application of external bias which

would be the answer to question (a). More specifically, at a very low bias, the modes in
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Figure 6.8: Electron-phonon coupling energies (Ii,n) for various vibrational modes in the molecular
wire with 2 cage-units. i and n denote electronic energy eigen states and normal modes of vibration
respectively. The lower panel and the upper panel correspond to Vsd=0 V and Vsd=0.98 V respec-
tively169. Reprinted figure with permission from Partha P. Pal and Ranjit Pati, J. Phys. Chem. C
2011, c©(2011)The Americal Chemical Society. Copyright permission in Appendix F.

which most of the atoms in the molecular moiety vibrates in a direction parallel122 to flow

of charge(for e.g the mode in Fig 6.9) interact strongly with the conduction electrons. As

the bias is increased, higher energy electrons will be injected into the molecule and they

will tend to excite higher frequency vibrational modes. Some of these modes, whose nor-

mal coordinates are predominantly perpendicular (for e.g the one shown in Fig 6.10) to

the flow of current, will now start to interact with the flowing charge. To answer question

(b) we look into the interaction energies of phonons with the orbitals which contributes to
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Figure 6.9: One of the many vibrational modes of the N = 2 oligomer which interact strongly with
frontier orbitals at zero bias169. Reprinted figure with permission from Partha P. Pal and Ranjit
Pati, J. Phys. Chem. C 2011, c©(2011)The Americal Chemical Society. Copyright permission in
Appendix F.

charge transport. The molecular levels within the chemical potential at the two junctions

would possess the maximum probability to contribute to the current. The next highest prob-

ability would be the energy level close to the chemical potential but outside the window.

In our case, for all the three wires, the renormalized molecular LUMO+1, LUMO+2 lie

within the chemical potential window [Fig 6.6(a)]. The next closest level is the LUMO.

All these levels are obtained from the diagonalization of the Hmol(ε) and then filling up

the energy levels following the Pauli’s exclusion principle. The coupling energies of dif-

ferent phonon modes with the LUMO + n (n = 0, 1, 2) are calculated. The possibility of
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Figure 6.10: One of the newer modes of the N = 2 oligomer which starts to interact strongly with
frontier molecular orbitals at Vsd = 0.98 V169. Reprinted figure with permission from Partha P.
Pal and Ranjit Pati, J. Phys. Chem. C 2011, c©(2011)The Americal Chemical Society. Copyright
permission in Appendix F.

other levels contributing to the electronic current is not ruled out, but these three channels

can be assumed to participate the most. The e-ph coupling energies for the three wires are

calculated at zero bias and at a bias ∼ 1.0V. For brevity, we have plotted the e-ph interac-

tion energies for N=1 and N=2 oligomers in Fig. 6.7 and 6.8 respectively. For the wire

with a cubane monomer(Fig. 6.7), the difference between the number of vibronic modes

interacting with the frontier orbitals at zero bias and at 0.97 V is very small. If we define

∆ as the increase in the number of phonon modes which couple strongly(5 meV or more)

with the frontier orbitals when the external bias is increased to ∼1.0 V, then for the N=1
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oligomer, ∆N=1 ≈ 3. But for the two cage units, there is a remarkable increase in the num-

ber of vibrational modes strongly interacting with electrons at 0.98 V as observed from the

e-ph coupling energy plot in Fig 6.8. At zero bias, there are 18 modes which are strongly

coupled to one of the frontier orbitals(Fig 6.8), whereas at a bias of 0.98 V there are ∼43

modes strongly interacting with the same orbitals. Thus in this case ∆N=2 ≈ 25 > ∆N=1.

A similar calculation on N=3 oligomer shows that ∆N=3 > ∆N=2. The scenario remains the

same for anyVsd > 1.0 V. This is consistent with the picture in Fig. 6.6(b). In the N=1 wire,

the relative increase in current with inclusion of dephasing is ∼ 6.6% at 1.5 V whereas

the relative decrease in current due to dephasing at the same external bias is ∼ 33.4% and

72% for N=2 and N=3 oligomers respectively. The relative change in the current is calcu-

lated using the formula:Total−Coherent
Total

×100. Thus dephasing effects are maximum for the

longest wire which is consistent with the earlier relation ∆N=3 > ∆N=2 > ∆N=1. Note that

these normal modes were also present in zero bias but did not have substantial interaction

energy with the electronic levels.A similar increase in the coupling between some impor-

tant vibrational modes and certain electronic levels with increase in external bias was also

observed earlier.101
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6.4 Summary

Using first principles methodology, we studied current-voltage characteristics of three molec-

ular wires constructed out of cubane oligomers(N = 1,2,3). In the low bias Ohmic regime,

the conductance of the wires show an exponential decay with an increase in length, which

is in agreement with experimental findings. With the inclusion of dephasing the low-bias

current-voltage characteristics still remains linear. However, after a certain “off-set” bias

dephasing starts to decrease the electronic current across the molecular junctions. The

“off-set” bias is found to decrease with the increase in length of the molecular wire. The

magnitude of the “off-set” bias depends upon the position of the peak nearest to the Fermi

level in the bias dependent transmission function. This is due to the fact that phase ran-

domization reduces the constructive interference at the resonant tunneling peaks and hence

reduces the magnitude of the current. E-ph interaction, which is one of the main causes

of dephasing, increases with external bias irrespective of the length of the wire. At a low

bias, the vibrational modes in which the atoms vibrate predominantly in a direction paral-

lel to the current flow strongly interacts with the conduction electrons. But as the bias is

increased, the modes in which most of the atoms vibrate perpendicular to the direction of

current flow starts to couple more strongly with the traversing electrons, thus increasing

the overall e-ph interaction. This increase in e-ph coupling strength with bias is directly

proportional to the increase in the length of the oligomer. Thus, this is consistent with
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the existence of the smallest “off-set” bias in the longest oligomer(N=3) under study. This

study gives an estimate of the length scale and a bias scale upto which dephasing effect can

be neglected on cubane oligomer based molecular devices.
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Chapter 7

Conclusion and Future work

7.1 Conclusions

In this section, we summarize the findings of the projects compiled in this dissertation. In

the first part, using a single particle Green’s function approach, we study the various fac-

tors that affect the bias dependent electron transport in molecular nano-junctions, namely

the potential profile in the wire, charge screening length at the electrode, and the atomic

level geometric information at the metal-molecule interface. The potential profile along

the molecular spacer undergoes substantial modifications when the external bias is varied,

thus reinforcing the need of explicit inclusion of the electric field in the Hamiltonian of the

active region of the device. An accurate estimate of self-energy is required for the agree-
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ment of the theoretical and the experimentally measured electronic current. Determination

of self-energy requires the knowledge of the metal-molecule contact geometry under ex-

perimental conditions. Our calculated current and conductance values of a Au-BDT-Au

junction is found to be at least one order higher than the experimental values. A parametric

calculation of the self-energy leads us to conclude that it has vital role to play in determin-

ing the conductance characteristics of the molecular junctions under study. Thereafter we

modify our formalism to make it parameter-free. This does not solve the problem. We con-

clude that a strongly coupled metal-molecule junctions leads us to overestimate the current

and conductance values. So we change our strategy and concentrate on comparative studies

of electron transport on molecular spacers of different lengths. We tested our formalism on

a strongly coupled metal-molecular wire-metal system with the wire being constructed out

of bicyclo[1.1.1]pentane (BCP) oligomers. In the low bias Ohmic regime, it is seen that

the conductance of the wire reduces exponentially with increase in its length. This is in

very good agreement with the previously obtained exponential decay feature of the electron

transfer rate in the same oligomer using the electron transfer coupling matrix values. There-

after we did a similar study on cubane oligomers. In the low bias regime, we obtained a

similar exponential decay of the conductance with increase in length of the oligomers. This

is also in excellent agreement with the previously measured exponential decay in conduc-

tance with increase in length with the help of pulse radiolysis measurements. Subsequently,

we looked into the dephasing effects on charge transport across Au-cubane-Au junctions

as a function of external bias and length of the oligomer. Our calculations show that the
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‘phase-breaking’ scattering events do not have a severe effect on the total current in the low

bias Ohmic regime. However, after a certain cut-off bias (which varies with the length of

the oligomer ), the phase-relaxing scattering starts to have a substantial contribution to the

total electronic current. Moreover, the magnitude of the cut-off bias was found to decrease

with increase in length of the molecular wire. Deeper analysis shows that the cut-off bias

depends on the position of the peak in the transmission function which is closest to the

Fermi energy. The peak position of the transmission function changes with the length of

the wire. With inclusion of phase randomization, the height of the peak in the transmission

function reduces, thus decreasing the magnitude of current. Electron-phonon interaction

being the main cause of ‘phase-loss’ in the current-carrying electrons directed us to look

into the normal modes of vibration in the molecular wires and their interaction with fron-

tier molecular orbitals. The e-ph interactions were studied using the Holstein Hamiltonian

which considers only the linear terms of the e-ph coupling. Our results show that the av-

erage e-ph coupling increases with external bias due to increase in the number of vibronic

modes which interact with traversing electrons. Through this project, we were able to fig-

ure out the length scale and the bias-scale up to which the ‘phase-breaking’ effects can be

neglected while modeling charge transport across cubane oligomers.
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7.2 Future Directions

So far, our theoretical studies have been on strongly coupled junctions. Under experimen-

tal conditions, the metal-molecule junction does not form a strong bond. In fact in all the

experiments done so far various values of conductance have been observed for a certain

metal-molecule junction. The different conductance values have been attributed to differ-

ent junction geometries. Also, experimentalists have faced the difficulty of having control

over fabricating the junctions which leads to various junction geometries. From all this

observations we can comment that the metal-molecule junction is not a strongly coupled

junction. Theoretically modeling weakly coupled junctions is very challenging task since

the correlation energy becomes important when solving the Schrödinger for the active re-

gion of the device. Also, the dynamical effects play an important role in the transport

characteristics of a weakly coupled junction. So, in future, one needs find a robust scheme

which takes into account both the static and the dynamic correlation factors.
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Appendix A

Hartree Approximation

For the Hartree approximation32,33, one needs to start from a trial wavefunction of the

form:

ψ(r1,r2, ......rN) = φ1(r1)φ2(r2)...φN(rN) (A.1)

Our aim is to minimise the expectation value of the Hamiltonian,

Ĥe = − h̄
2

2me
∑
i

▽2i −∑
i

∑
A

ZAe
2

|~ri− ~RA|
+∑∑

i> j

e2

|~ri−~r j|
(A.2)
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The expectation value(< ψ|H |ψ >) w.r.t to the trial wavefunction is:

∫
...

∫
φ∗
1 (r1)φ

∗
2 (r2)...φ

∗
N(rN)Hφ1(r1)φ2(r2)...φN(rN)d

3r1....d
3rN

= ∑
i

∫
φ∗
i (ri)(−

h̄2

2me
▽2i −∑

A

ZAe
2

|~ri− ~RA|
)φi(ri)d

3ri

+∑
i> j

∑
∫ ∫

φ∗
i (ri)φ

∗
j (r j)

e2

|~ri−~r j|
φi(ri)φ j(r j)d

3rid
3r j

(A.3)

since the φ -s are normalized. To find the minimum of < H > each φi has to be varied

separately. In order to do that we need to pull out the terms which contains φi. They are:

∫
φ∗
i (ri)(−

h̄2

2me
▽2i −∑

A

ZAe
2

|~ri− ~RA|
)φi(ri)d

3ri

+∑
i 6= j

∫ ∫
φ∗
i (ri)φ

∗
j (r j)

e2

|~ri−~r j|
φi(ri)φ j(r j)d

3rid
3r j

(A.4)

which is essentially equal to:
∫

φ∗
i (ri) Hiφi(ri)d

3ri (A.5)

, the expectation of Hi w.r.t the function φi(ri) where Hi is:

Hi ≡ − h̄
2

2me
▽2i −∑

A

ZAe
2

|~ri− ~RA|
+ ∑
i 6= j

∫
|φ∗
j φ j|

e2

|~ri−~r j|
d3r j (A.6)

According to the variational principle, the expectation value in eqn. A.5 is minimum when

φi(ri) is an eigenfunction of Hi which leads us to the condition:

[ − h̄
2

2me
▽2i −∑

A

ZAe
2

|~ri− ~RA|
+ ∑
i 6= j

∫
|φ∗
j φ j|

e2

|~ri−~r j|
d3r j ]φi(ri) = εiφi(ri) (A.7)
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Appendix B

Hartree-Fock Theory

In Hartree-Fock theory32,33, the guess for the many electron wavefunction is the Slater

determinant of the single-particle wave functions, which is:

ψ =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ2(r1) · · · · · · φN(r1)

φ1(r2) φ2(r2) · · · · · · φN(r2)

· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·

φ1(rN) φ2(rN) · · · · · · φN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= det[φ1(r1),φ2(r2), ...φN(rN)]

(B.1)
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We need to minimize the Hamiltonian, A.2 w.r.t the above wave function. The expectation

value of H w.r.t this wave function is:

∫
...

∫
det[φ1(r1),φ2(r2), ...φN(rN)]

∗H det[φ1(r1),φ2(r2), ...φN(rN)]d
3r1....d

3rN

= ∑
i

∫
φ∗
i (ri)(−

h̄2

2me
▽2i −∑

A

ZAe
2

|~ri− ~RA|
)φi(ri)d

3ri

+∑
i> j

∑
∫ ∫

φ∗
i (ri)φ

∗
j (r j)

e2

|~ri−~r j|
φ j(r j)φi(ri)d

3rid
3r j

−∑
i> j

∑
∫ ∫

φ∗
i (ri)φ

∗
j (r j)

e2

|~ri−~r j|
φi(r j)φ j(ri)d

3rid
3r j

(B.2)

again since the φ -s are normalized. To find the minimum of<H > each φi has to be varied

separately, which gives us the following equation.

(− h̄
2

2me
▽2i −∑

A

ZAe
2

|~ri− ~RA|
)φi(ri)+∑

j

∫
φ∗
j (r j)

e2

|~ri−~r j|
φ j(r j)d

3r jφi(ri)

−∑
j

∫
φ∗
j (r j)φi(r j)

e2

|~ri−~r j|
φi(ri)d

3r j = εiφi(ri)

(B.3)
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Appendix C

Estimation of Electron-phonon coupling

using the Holstein Model.

The Hamiltonian, using the second quantized notations, can thus be defined as164,176:

H = ∑
i

εi{0}a†i ai+∑
n

(
b†nbn+

1
2

)
h̄ωn+

∑
i,n

gi,na
†
i ai

(
b†n+bn

)
h̄ωn

(C.1)

where the first term is the unperturbed single electron energy levels (εi{0}) and the second

term corresponds to the normal vibrational modes of the molecule. The last term represents

the linear e-ph coupling with a dimensionless constant of gi,n. Physically, gi,n can be inter-

preted as the shift in the energy eigenvalues, labeled as εi, when the position of the atomic
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nuclei is changed following the coordinates of the normal mode, n. n the absence of any e-

ph interaction the electronic and the vibrational energy levels would evolve independently

and the Hamiltonian in this case would be:

H = He+Hph = ∑
i

εia
†
i ai+∑

n

(
b†nbn+

1
2

)
h̄ωn (C.2)

As mentioned earlier, e-ph interaction will produce a shift in the single electron energy

levels, εi which can now be expanded in terms of the dimensionless normal coordinates

(Q′
ns) by using the Taylor series

164,176:

εi{Q1Q2..Qn..} = εi{0}+∑
n

(
∂εi
∂Qn

)

0
Qn

+∑
n,m

(
∂ 2εi

∂Qn∂Qm

)
QnQm

2
+ ...

(C.3)

where εi{0} is the energy eigen-value of the electronic state in the absence of interac-

tion with any phonon mode. The dimensionless normal coordinates are related to the cre-

ation/annihilation operators by32,33:

Qn =
1√
2
(bn+b†n); Q̊n =

1√
2
(bn−b†n);(bn,b†m) = δnm (C.4)
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Inserting the shifted electronic energy eigenvalue given by eqn. C.3 into eqn. C.2 and ne-

glecting second order terms we have164,176:

H = ∑
i

a†i ai

[
εi{0}+∑

n

(
∂εi
∂Qn

)
1√
2
(bn+b†n)

]

+∑
n

h̄ωn

(
b†nbn+

1
2

) (C.5)

Comparing the coeffecients of the three terms in eqns. C.1 and C.5 the dimensionless

coupling constant, gi,n is found to be
164,176:

gi,n =
1√
2h̄ωn

(
∂εi
∂Qn

)
(C.6)

Making a canonical transformation, the coupling energy can be calculated as:

Ii,n = g2i,nh̄ωn (C.7)

The coupling energy along with the coupling constant gives a quantitative answer as to how

a particular electronic energy level interacts with a particular phonon mode. The coupling

energies of the various electronic levels and phonon modes of the molecule are calculated

both before and after the inclusion of an external bias.
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Appendix D

Copyrights

The copyright permission for Fig. 1.1 is distributed under GNU Free Documentation Li-

cense (GDFL)

GNU Free Documentation License

The GNU Free Documentation License (GNU FDL or simply GFDL) is a copyleft license

for free documentation, designed by the Free Software Foundation (FSF) for the GNU

Project. It is similar to the GNU General Public License, giving readers the rights to copy,

redistribute and modify a work and requires all copies and derivatives to be available un-

der the same license. Copies may also be sold commercially, but, if produced in larger

quantities (greater than 100), the original document or source code must be made available

to the work’s recipient. The GFDL was designed for manuals, textbooks, other reference

and instructional materials, and documentation which often accompanies GNU software.
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However, it can be used for any text-based work, regardless of subject matter. For example,

the free online encyclopedia Wikipedia uses the GFDL for all of its text.

Wikipedia:Public domain

For all practical purposes onWikipedia, the public domain comprises copyright-free works:

anyone can use them in any way and for any purpose. Proper attribution to the author or

source of a work, even if it is in the public domain, is still required to avoid plagiarism. The

public domain is generally defined (e.g. by the U.S. Copyright Office) as the sum of works

that are not copyrighted, i.e. * that were not eligible for copyright in the first place, or *

whose copyright has expired. However, there is no such thing as the public domain on the

Internet. International treaties, like the Berne Convention, are not self-executing and do not

supersede local law. There is no globally valid "International Copyright Law" that would

take precedence over local laws. Instead, signatory countries of the Berne Convention have

adapted their laws to comply with the minimum standards set forth by the treaty, often

with stronger provisions than required. Whether or not something is copyright-free in

some country depends on the laws of individual countries. Wikipedia, and the Wikimedia

Foundation, its legal body, are based in Florida, United States. Although legislation is

sometimes unclear about which laws are to apply on the Internet, the primary law relevant

for Wikipedia is that of the United States. For re-users of Wikipedia content, it is the

laws of their respective countries. In the U.S., any work published before January 1, 1923

anywhere in the world[1] is in the public domain. Other countries are not bound to that
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1923 date, though. Complications arise when special cases are considered, such as trying

to determine whether a work published later might be in the public domain in the U.S., or

when dealing with unpublished works. When a work has not been published in the U.S. but

in some other country, that other country’s copyright laws also must be taken into account.

Re-users of Wikipedia content also might find the explanations here useful.
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Appendix E

Copyrights

The Copyright permission from The Americal Physical Society for the article by Partha P.

Pal and Ranjit Pati, Phys. Rev. B 82, 045424 (2010). The permission applies to Figure

5.1.
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Figure E.1: Copyright permission from American Physical Society (APS) for using all or a portion
of the text from the article Phys. Rev. B 82, 045424 (2010), by Partha P. Pal and Ranjit Pati.
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Appendix F

Copyrights

The Copyright permission from The Americal Chemical Society for the article by Partha

P. Pal and Ranjit Pati, J. Phys. Chem. C 2011. The permission applies to Figures 6.1, 6.9,

and 6.10.
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Figure F.1: Copyright permission from American Chemical Society (ACS) for using all or a portion
of the text from the article in J. Phys. Chem. C 2011, by Partha P. Pal and Ranjit Pati.
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