Topological tight-binding models from nontrivial square roots

J. Arkinstall
Lancaster University

M. H. Teimourpour
Michigan Technological University

L. Feng
SUNY University at Buffalo

Ramy El-Ganainy
Michigan Technological University

H. Schomerus
Lancaster University

Follow this and additional works at: http://digitalcommons.mtu.edu/physics-fp

Part of the [Physics Commons](http://digitalcommons.mtu.edu/physics-fp)

Recommended Citation
Retrieved from: http://digitalcommons.mtu.edu/physics-fp/95

Follow this and additional works at: http://digitalcommons.mtu.edu/physics-fp
Part of the [Physics Commons](http://digitalcommons.mtu.edu/physics-fp)
Topological tight-binding models from nontrivial square roots

J. Arkinstall,1 M. H. Teimourpour,2 L. Feng,3 R. El-Ganainy,2,* and H. Schomerus1,†

1Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
2Department of Physics and Henes Center for Quantum Phenomena, Michigan Technological University, Houghton, Michigan 49931, USA
3Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA

(Received 13 October 2016; revised manuscript received 24 February 2017; published 6 April 2017)

We describe a versatile mechanism that provides tight-binding models with an enriched, topologically nontrivial band structure. The mechanism is algebraic in nature, and leads to tight-binding models that can be interpreted as a nontrivial square root of a parent lattice Hamiltonian—in analogy to the passage from a Klein-Gordon equation to a Dirac equation. In the tight-binding setting, the square-root operation admits to induce spectral symmetries at the expense of broken crystal symmetries. As we illustrate in detail for a simple one-dimensional example, the emergent and inherited spectral symmetries equip the energy gaps with independent topological quantum numbers that control the formation of topologically protected states. We also describe an implementation of this system in silicon photonic structures, outline applications in higher dimensions, and provide a general argument for the origin and nature of the emergent symmetries, which are typically nonsymmorphic.

DOI: 10.1103/PhysRevB.95.165109

I. INTRODUCTION

As the story goes, in 1927 Niels Bohr asked Paul Dirac "What are you working on Mr. Dirac?" to which Dirac replied "I’m trying to take the square root of something." Once Dirac achieved his goal, to identify the desired operator that squares to the Klein-Gordon equation, he had not only laid down a description of relativistic electrons replete with spin and antimatter [1,2]. As it emerged later, Dirac’s very same operator also plays a central role for topological considerations in differential geometry, where the Atiyah-Singer index theorem addresses its zero modes [3]. The zero modes in the topological materials considered today are a direct extension of this connection [4,5]. Fundamental symmetries can guarantee that all positive-energy states are paired with negative-energy states, with the exception of a protected set of zero-energy states whose number $|\nu|$ is obtained from a topological invariant. These properties may follow from a charge-conjugation symmetry, as encountered in superconductors [6,7], or from a chiral symmetry, as encountered for the Dirac operator [8,9]; both operations anticommute with the Hamiltonian and therefore single out a spectral symmetry point. In combination with possible invariance under time-reversal, these spectral symmetries determine a tenfold system of universality classes [7,10], which can be further extended by including aspects of dimensionality [11,12] and the space group (i.e., crystal symmetries) [13,14]—for example, nonsymmorphic symmetries involving fractional lattice translations can replace fundamental symmetries normally associated with fermionic systems [15]. Depending on the universality class, the topological invariant may take the values $\nu \in \{0,1\}$, leading to the notion of a \mathbb{Z}_2 invariant, or be any integer, leading to the notion of a \mathbb{Z} invariant. These topological features are not present in the Klein-Gordon equation from which Dirac had started to take the square root of, a task which was nontrivial as it required him to introduce extra components and matrices.

Here we describe how rich topological effects arise when one takes an analogous nontrivial square root on a tight-binding lattice. Tight-binding lattices provide an ubiquitous description of electronic bands in crystalline solids, but also extend to atoms and photons in suitably engineered optical and photonic lattices. This includes topological systems in all universality classes, such as the paradigmatic Su-Schrieffer-Heeger model, originally proposed for polyyacetylene [16], and nontopological variants such as the Rice-Mele model for conjugated polymers [17], both of which have been implemented on a wide range of platforms [18–21]. Both models possess two bands in their clean incarnation. The SSH model features a chiral symmetry which constraints the Bloch states and allows to define a topological winding number [22]. Defects between regions of different winding number introduce localized, square-normalizable defect states of a fixed chirality that are pinned to the midgap energy. The procedure of taking square roots of lattice systems proposed here provides a mechanism to generate a wider class of models, including models with multiple band gaps, where some of the topological properties can be traced back to features of a parent system while others emerge from the square-root operation. Given a suitable parent system with energy bands at positive energies, taking the nontrivial square root provides us with a symmetric arrangement of energy bands at positive and negative energies. If the original system harboured $2|\nu|$ protected modes around a spectral symmetry point E_0, the new system will harbour $|\nu|$ protected modes around energy $E = E_0$ and $|\nu|$ such modes around energy $E = -E_0$. Furthermore, the resulting system can also have topologically protected states around the newly emergent spectral symmetry point $E = 0$, whose formation is controlled by an independent topological invariant. As we will show, these features arise because the square-root operation allows us to induce (typically nonsymmorphic) spectral symmetries at the expense of broken crystal symmetries.

We justify this proposition with some general preparatory remarks (Sec. II), and then demonstrate the resulting features by deriving a simple minimal model that complies with the properties mentioned above (Sec. III). Applying a \mathbb{Z}_2
The bow-tie chain emerges after a sites per unit cell, which can be unfolded into a linear chain with nontrivial square root we obtain a tight-binding system with four sites per unit cell, thus only features two bands. After taking the β root of a two-legged ladder system (a tight-binding system with β and γ), we interpret the dimer chain as a nontrivial square root of the tight-binding system.3 In the regular case the dimer orientations alternate, resulting in a periodic system with four bands. The depicted orientation defect generates robust states in both of the finite energy bands. Here this is illustrated for $\beta = \gamma = \kappa = 1$, hence $\beta' = 3$ and $\gamma' = 2$.

![FIG. 2. Example of a trivial square root. The Rice-Mele model, a nontopological system proposed to describe conjugated polymers, is composed of the same dimers as the bow-tie chain (Fig. 1), but placed in an alternating fashion. The Rice-Mele model can also be interpreted as a square root, but possesses the same number of sites per unit cell as its parent system (a system of two uncoupled chains, with effective parameters defined in the same way as in Fig. 1). The illustrating band structures correspond to $\beta = \gamma = \kappa = 1$, hence $\beta' = 3$ and $\gamma' = 2$.]

Effective couplings can be made positive (see Sec. V and Figs. 6 and 7). Beyond the setting of this paradigmatic model, we then consolidate our general criterion whether a square root of a tight-binding system qualifies as nontrivial—the resulting system has to exhibit reduced crystal symmetries, manifested, e.g., via additional components that give rise to an increased number of bands with newly emerging spectral symmetries—and identify a number of systems in higher dimensions where this is encountered as well (see Sec. VI as well Figs. 8 and 9). As our findings also transfer to analogous realizations in atom-optical and electronic systems (see our concluding Sec. VII), they provide a general route to the design of topologically rich and robust systems with multiple types of protected modes.

II. PREPARATORY REMARKS AND PREMISE

A. Topological versus nontopological band structures

To develop our ideas, we consider quasi-one-dimensional tight-binding systems with nearest-neighbor couplings. Such systems are defined on a chain of cells labeled by an integer n, each associated with an M-component amplitude ψ_n (components $\psi_{n,1} \ldots \psi_{n,M}$), where M takes care of the number of sites in the cell, including internal degrees of freedom such as polarization or spin. The energies E of the system are obtained from the tight-binding equations

$$E\psi_n = H_n \psi_n + T_{n-1}^{\dagger} \psi_{n-1} + T_n \psi_{n+1}$$

with on-site Hamiltonians $H_n = H_n^{\dagger}$ and nearest-neighbor coupling matrices T_n. A band structure emerges when the system is periodic. We then can write the eigenstates as Bloch waves $\psi_n = \varphi(k)e^{ik}$ with wave number k, and find the k-dependent eigenvalue problem $E(k)\varphi(k) = H(k)\varphi(k)$ with Bloch Hamiltonian $H(k) = H_0 + T_0 e^{-ik} + T_0 e^{ik}$. The number M of sites in the unit cell determines the dimensions of the Bloch Hamiltonian, and thereby also the number of energy bands $E(k)$, associated with eigenvectors $\varphi(k)$.
A useful preatory example is the the Rice-Mele model (shown in Fig. 2), where \(M = 2 \) and
\[
H_n = \begin{pmatrix} \beta & \kappa \\ \kappa & -\beta \end{pmatrix}, \quad T_n = \begin{pmatrix} 0 & 0 \\ \gamma & 0 \end{pmatrix}.
\]

It will be convenient to represent this system as a sequence of asymmetric dimers with on-site energies \(-\beta, \beta\), intradimer coupling \(\gamma \) and interdimer coupling \(\kappa \); these dimers are depicted symbolically as triangles in all figures. (Note that these dimers combine two sites of adjacent cells, i.e., an amplitude \(\psi_{n+1} \) with an amplitude \(\psi_{n+1} \); see Appendix and Fig. 10 for further details.) The two bands \(E(k) = \pm \sqrt{\beta^2 + |\kappa + \gamma e^{i2\pi k}|^2} \) are arranged symmetrically in energy, which can be associated with the property \(H(k) = -\sigma_z[H(k)]^* \sigma_z \), where \(\sigma_z \) denotes the standard Pauli matrices. This band structure is not classified as topological as the line \(\beta = 0 \), \(|\gamma| = |\kappa| \), where the gap closes, does not divide the parameter space \((\beta, \gamma, \kappa)\), however, the system has a partner state \(\psi_n \) for \(k \), which may include an arbitrary range of the couplings, as it is our goal to relate it to a parent Hamiltonian \(H_\beta(k) = (U(k) + V(k))(U(k) - V(k)) \).

Normally, we would expect \(U(k + nk_0) = U(k) \) and \(V(k + nk_0) = V(k) \) be both periodic when cycling through the Brillouin zone of size \(k_0 \). However, as we will confirm in our concrete example, the gauge choice that renders \(X(k) \) constant can render \(V(k) \) antiperiodic, \(V(k + nk_0) = -(1)^{n}V(k) \). In this case, traversing the Brillouin zone joins \(H_\beta(k) = H_\beta(k + k_0) \) and \(u_- \) that so that it is natural to double the size of the Brillouin zone and describe the Bloch waves by a reduced set of \(M \) (instead of \(2M \)) components. Furthermore, applying the transformation \(\phi(k) \rightarrow \text{diag}(e^{i\pi k/2k_0}, e^{-i\pi k/2k_0}) \phi(k) \) we can revert to a gauge where \(H(k) \) is periodic, and then find that \(X(k) = \{\cos(\pi k/k_0)\sigma_x + \sin(\pi k/k_0)\sigma_z \} \otimes 1_M \) takes the form of a fractional lattice translation, i.e., can be interpreted as a nonsymmorphic chiral symmetry.

Upon retracing our steps, the upshot of this discussion is the following proposition: taking a square root of a parent tight-binding system as described by \(H_\beta(k) \), it can be possible to break crystal symmetries, at the expense of an expanded unit cell with twice as many components and a Brillouin zone half in size, and in the process generate a chiral symmetry \(X \) that induces spectrally symmetric bands. We will show that this can indeed be achieved, including in cases where the band structure is already topological, resulting in a nontrivial square-root system that displays richer topological features. In particular, we construct a practically realisable model system that only features nearest-neighbour couplings.

III. THE BOW-TIE CHAIN

A. Construction of the minimal model

According to the features described in the preceding section, we require that our minimal parent system features a band gap about a spectral symmetry point; the unit cell therefore needs to comprise at least two sites \((M = 2)\). To be nontrivial, the square-root system will have to have four bands, thus, be periodic with period \(2 \) in the original unit-cell indices. Together with the required spectral symmetries, this allows to identify a minimal model, which will turn out to correspond to the bow-tie chain depicted in Fig. 1.

To implement these constraints we start with the putative nontrivial square root system (termed the "candidate") and iterate the tight-binding equations (1) once, giving
\[
E' \psi_n = H'_n \psi_n + T_{n-1}^o \psi_{n-1} + T_{n+1}^o \psi_{n+1} + \tilde{T}_{n-2}^o \psi_{n-2} + \tilde{T}_{n+2}^o \psi_{n+2}
\]

where
\[
E' = E^2,
\]
\[
H'_n = H_n + T_{n-1}^o T_{n-1}^o + T_{n+1}^o T_{n+1}^o,
\]
\[
T'_n = T_n T_n + T_n T_{n+1},
\]
\[
\tilde{T}'_n = \tilde{T}_n T_{n+1}.
\]
We interpret this as a new tight-binding system, describing the parent system with a positive energy spectrum. This parent system should be periodic, $H_n' = H_0(-1)^n$, $T_n' = T_0(-1)^n$, with vanishing next-nearest neighbor couplings $T_n'' = 0$. As shown in Fig. 2, taking the Rice-Mele model as the candidate this construction leads to a parent system consisting of two uncoupled chains with on-site energies $\beta' = \beta^2 + \gamma^2 + \kappa^2$ and couplings $\gamma' = \gamma \kappa$; the Rice-Mele model then constitutes a trivial square root without any new topological features, consistent with the fact that it still has the same period as its parent.

To ensure that we obtain a nontrivial square root, with four bands arranged symmetrically about $E = 0$, we demand that the candidate system has a period of two, and possesses a chiral symmetry which maps E to $-E$. This can be enforced by the choice

$$H_n = H_0(-1)^n, \quad T_n = T_0(-1)^n.$$
(8)

The chiral symmetry is induced by a translation $X\psi_n = \psi_{n+1}$, thus, a fractional translation by half a period of the candidate system. This spectral symmetry is trivial in the parent system, thus, a fractional translation by half a period of the candidate system. The constraint $T_n'' = 0$ requires $T_0'' = 0$. The freedom to choose the basis in every cell then allows us to write

$$H_n = (-1)^n \begin{pmatrix} \beta & \kappa \\ \kappa & \beta \end{pmatrix}, \quad T_n = (-1)^n \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$
(9)

which defines the minimal nontrivial square root system. Its parent system is given by

$$H_n' = \begin{pmatrix} \beta^2 + \gamma^2 + \kappa^2 & 2\beta\kappa \\ 2\beta\kappa & \beta^2 + \gamma^2 + \kappa^2 \end{pmatrix}, \quad T_n' = \begin{pmatrix} \gamma\kappa & 0 \\ 0 & -\gamma\kappa \end{pmatrix}.
\text{Via a suitable } \mathbb{Z}_2 \text{ gauge transformation we can enforce that the couplings } \gamma, \kappa \geq 0 \text{ are real and nonnegative, which we will assume from hereon.}$$

B. Interpretation and band structure

With help of Fig. 1(b), we now can confirm that the parent Hamiltonian corresponds to a two-legged ladder, with on-site energies $\beta' = \beta^2 + \gamma^2 + \kappa^2$, couplings $\gamma' = \gamma \kappa$ and $-\gamma'$ along the two legs and coupling $\kappa' = 2\beta \kappa$ along the rungs. Given the opposite couplings along the legs, each plaquette is penetrated by a flux phase of π. The Bloch Hamiltonian of the parent is

$$H'(k) = \begin{pmatrix} \beta' + 2\gamma' \cos k & k' \\ k' & -\gamma' \cos k \end{pmatrix},$$
(11)

and the two energy bands are

$$E'_{\mu}(k) = \beta' + \mu \sqrt{\beta'^2 + 4\gamma'^2 \cos^2 k}, \quad \mu = \pm 1.$$
(12)

As depicted in the figure, the nontrivial square root system can be unfolded into a linear chain, where all couplings are still restricted to nearest neighbours (see the Appendix for a very detailed description). Along the chain, the system then displays a repeating coupling sequence $\kappa, \gamma, -\kappa, -\gamma$, and a repeating sequence of on-site energies $\beta, \beta, -\beta, -\beta$. We interpret this as an extended Rice-Mele model, but with topological features that we establish in the next section. For the photonic implementation we will make all couplings positive by an additional \mathbb{Z}_2 gauge transformation; schematically, the system is then composed of oppositely orientated dimers that form the repeating bow-tie pattern shown in Fig. 1. For the analytical considerations, it is more convenient to retain the system with the coupling sequence as derived.

The Bloch Hamiltonian of the unfolded linear chain is

$$H(k) = \begin{pmatrix} \beta & \kappa & 0 & -\gamma e^{-ik} \\ \kappa & \beta & \gamma e^{ik} & 0 \\ 0 & \gamma e^{-ik} & -\beta & -\kappa \\ -\gamma e^{ik} & 0 & -\kappa & -\beta \end{pmatrix},$$
(13)

and the four energy bands are

$$E_{\mu,\eta}(k) = \eta \sqrt{\beta^2 + \gamma^2 + \kappa^2 + 2\mu \kappa \sqrt{\beta^2 + \gamma^2 \cos^2 k}},$$
(14)

where the label $\eta = \pm 1$ selects the bands at positive and negative energies. The four bands thus come in two pairs, covering the ranges

$$\tilde{e}_{-\kappa} < |E| < \tilde{e}_\kappa \quad (\text{finite-energy gaps}).$$
(16b)

The band edges are given by

$$\varepsilon_{\pm} = \sqrt{\beta^2 + \gamma^2} \pm \kappa, \quad \tilde{e}_{\pm} = \sqrt{\gamma^2 + (\beta \pm \kappa)^2}.
\text{These expressions feature an index}$$

$$\xi = \text{sgn } \varepsilon_- = \text{sgn } (\beta^2 + \gamma^2 - \kappa^2),$$
(18)

which changes its sign when the central gap closes while parameters are steered through a band inversion of the inner bands. Analogously, the index

$$\tilde{\xi} = \text{sgn } (\tilde{e}_+ - \tilde{e}_-) = \text{sgn } \beta$$
(19)

changes its sign in a band inversion in which the finite-energy gaps close ($\beta = 0$, where we recover the Su-Schrieffer-Heeger model with only a single, central, gap).

The indices ξ and $\tilde{\xi}$ encode information which cannot be inferred by simply inspecting the band structure—the same band structure is found when one changes the sign of β, which changes the sign of $\tilde{\xi}$; the band structure is also invariant when one passes over to parameters

$$\tilde{k} = \sqrt{\beta^2 + \gamma^2}, \quad \tilde{\beta} = \beta \kappa / \tilde{k}, \quad \tilde{\gamma} = \gamma \kappa / \tilde{k},$$
(20)

which changes the sign of $\tilde{\xi}$. In Figs. 3–5, the four cases delivering the same band structure are distinguished via the
orientation of the dimers (which effectively controls the sign of ϕ and thus $\tilde{\xi}$), while dimers with $\xi = 1$ are denoted in orange-brown, and dimers with $\xi = -1$ are denoted in blue. As we show next, the indices $\tilde{\xi}$ and ξ indeed capture the topological features of the band structure.

IV. TOPOLOGICAL CHARACTERIZATION

To establish the topological features of the bow-tie chain, we identify its symmetries and describe how they relate to the associated topological indices. The index ξ arises from the chiral symmetry that emerges by taking the square root, while the index $\tilde{\xi}$ is inherited from the chiral symmetry of the parent system and translates into an uncommon algebraic property of the linear chain. These indices can be expressed in terms of winding numbers in the bands and in the gaps, while interfaces between regions with different indices give rise to topologically protected defect states.

A. Symmetries

The spectral symmetry $E_{\mu,-}(k) = -E_{\mu,+}(k)$ of the band structure (14) about $E = 0$ is a consequence of the chiral symmetry (8), which for the Bloch Hamiltonian (13) takes the form

$$\mathcal{X} H(k) \mathcal{X} = -H(-k), \quad \mathcal{X} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}. \tag{21}$$

As mentioned before, this symmetry originates from a fractional lattice translation, by half a period of the system. We also note the relations

$$\mathcal{R} H(k) \mathcal{R} = H(-k) = H^*(k), \quad \mathcal{R} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \end{pmatrix}, \tag{22}$$

which correspond to a reflection symmetry and a conventional time-reversal symmetry. Both entail that the bands also are symmetric in β, which simplifies the determination of topological indices [24,25].

The spectral symmetry $E_{\sigma,-}(k) = 2\beta' - E_{\sigma,+}(k)$ of the squared bands about $E^2 = \beta'$ is the consequence of the chiral symmetry $\sigma, H'(k)\sigma_r = 2\beta' - H'(k)$ in the parent system. For the unfolded linear chain, this gives the remarkable algebraic relation

$$\tilde{\mathcal{X}} H^2(k) \tilde{\mathcal{X}} = 2\beta' - H^2(k), \quad \tilde{\mathcal{X}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}. \tag{23}$$

a property which would be difficult to interpret without knowledge of the underlying parent system. This inherited spectral symmetry plays an important role throughout the remainder of this work.

Given these symmetries, applying the conventional classification of free-fermion models we expect that the topological features in the central gap can be captured by the symmetry class BDI for chiral systems with a conventional time-reversal symmetry [11], i.e., the same symmetry class as for the SSH model. As explained in Appendix by adapting the considerations in Ref. [26], the same expectation is born out when we take into account that the chiral symmetry encountered in our model is nonsymmorphic. For the finite-energy gaps, we arrive at the same conclusions starting from the topological features of the parent system, which also suggests that the corresponding topological index is independent. To show that these expectations indeed hold true we explicitly construct the topological invariants for the different bands and band gaps.

B. Zak phase and Witten index

Each band can be associated with a Zak phase [27]

$$z = i \oint_{\mathbf{BZ}} \varphi^i(k) \frac{d}{dk} \varphi(k) = \pi Z. \tag{24}$$

This phase depends on a gauge choice, which can be fixed by demanding that the component $\varphi^i(k)$ is real and positive. In topological systems, the phase is quantized, giving rise to an integer index $Z = z/\pi$, while in nontopological systems the phase can take any value [22].

To evaluate the Zak phase, we adopt the convenient scattering formalism (see Refs. [24,25,28–30], as well as the Appendix providing further details for the statements in the present Subsection). The phase is then expressed in terms of a reflection coefficient $r(E)$ of a wave entering a semi-infinite segment of the system. In the band gaps, including the band edges, the wave will be totally reflected, so that $|r(E)| = 1$. By inspecting the winding deep in the bulk of each different topological sector, we find the remarkably simple relation

$$Z = \frac{1}{2} [r(\text{lower band edge}) - r(\text{upper band edge})] \tag{25}$$

for the Zak phase in each band.

The reflection coefficient can be obtained from the transfer matrix of the system. Given the amplitudes ψ_n in a cell, the tight-binding equations at fixed energy E allow us to determine the amplitudes in the next cell as $\psi_{n+1} = M(E)\psi_n$. The matrix $M(E) = M_{z\pi}(E)M_{\pi}(E)$ then describes the transfer by two cells, thus a period of the square-root system. Unitarity of quantum mechanics enforces the symplectic symmetry $M(E)\sigma_x M(E)^* = \sigma_x$, which amounts to flux conservation. This entails $\det M(E) = 1$, so that the two eigenvalues $\Lambda_{\pm}(E)$ of $M(E)$ are reciprocal, $\Lambda_{-}(E) = 1/\Lambda_{+}(E)$. In the bands, these eigenvalues determine the Bloch factors of the propagating waves. In the gap, the modes become evanescent, where we choose $|\Lambda_{\pm}(E)| < 1$ to describe the decaying wave. The reflection coefficient

$$r(E) = \frac{\phi_{+,1}(E) + i\phi_{+,2}(E)}{\phi_{+,1}(E) + i\phi_{+,2}(E)} \tag{26}$$

follows from the associated eigenvector $\phi_{+,i}(E)$.

At the band edges, the propagating modes must match up with the evanescent modes. This enforces $\Lambda_{+} = \Lambda_{-} = 1$ or $\Lambda_{+} = \Lambda_{-} = -1$, as well as $\phi_{+} = \phi_{-} = (1,1)^T$ or $\phi_{+} = \phi_{-} = (1,-1)^T$, corresponding to $r = 1$ or $r = -1$. At the band edges $E = \pm\varepsilon_{\pm}$ of the central gap, we find $\Lambda_{+} = 1$, $\Lambda_{-} = -1$, $\phi_{+} = (1,0)^T$, and $\phi_{-} = (0,1)^T$.
the phase ϕ edge to the upper band edge (see Fig. 3). At the band edges, ρ is instead encoded in the winding of the reflection coefficient shown on the top). For $(\xi, -\xi)$ or r here relates to the reflection phase at a spectral symmetry corresponding to the four combinations of the topological index ξ, while for $(\xi, \bar{\xi}) = (1, 1)$, we set $\beta = \gamma = \kappa = 1$, and thus change the sign of β (equivalently, interchange the orientation of the dimers, as shown on the top). For $(\xi, \bar{\xi}) = (-1, 1)$, we transform the parameters according to Eq. (20), resulting in $2\beta = 2\gamma = \kappa = \sqrt{2}$ (the dimers corresponding to these transformed values are shown in blue). The case $(\xi, \bar{\xi}) = (-1, -1)$ follows by once more changing the value of β, so that $-2\beta = 2\gamma = \kappa = \sqrt{2}$; this is again equivalent to interchanging the orientation of the dimers.

In each gap, the Witten index is therefore directly related to the index ξ or $\bar{\xi}$ that controls the band inversion. This establishes the topological features of the band structure. We now turn to the observable consequences, and in particular the formation of defect states.

C. Topologically protected defect states

The adopted scattering approach to the topological characterization of the band structure sets up an efficient criterion to infer the existence of topologically protected defect states.

When we terminate the system as shown in Fig. 4, a bound state is formed if the decaying state fulfills the boundary condition $\phi_{\pm, 1}(E) = 0$, hence $r(E) = i$, which is guaranteed for a Witten index $W = -1$ in the central gap, and $\bar{W}_0 = -1$ in the finite-energy gaps. Since the Witten index in the finite-energy gap at positive energies is opposite to the one at negative energies, exactly one such finite-energy bound state exists for any given combination of parameters. In the central gap, the state only exists for some configurations. In particular, the state in the central gap can be switched on or off by passing from the values (β, γ, κ) to the transformed values $(\bar{\beta}, \bar{\gamma}, \bar{\kappa})$ given in Eq. (20), which changes the index W while keeping the bulk band structure unchanged. In the figure, dimers with $W = 1$ are again denoted in orange-brown, while the transformed dimers with $W = -1$ are denoted in blue.

These considerations can be extended to more general boundary conditions. For example, a boundary cutting through the middle of a dimer translates into the condition $\phi_{\pm, 3}(E) = 0$, hence $r(E) = -i$, requiring a Witten index $W = 1$ in the central gap and $\bar{W}_0 = 1$ in the finite-energy gaps. Displacing the boundary by a full dimer amounts to the fractional lattice translation that induces the chiral symmetry (8). Under this translation, the index \bar{W} (and hence also $\bar{\xi}$) changes its sign while W (and hence also ξ) remains unchanged. This is
FIG. 4. Edge states. Each figure (a-d) corresponds to a semi-infinite system with parameters as given in Fig. 3. A defect state exists whenever the Witten index in a gap equals \(\xi = 1 \). In each figure, the left panel shows the mode profile of the edge state while the right panel indicates its position within the spectrum of the system.

consistent with the results shown in Fig. 4, where such a translation interchanges panels (a) and (b), as well as panels (c) and (d).

As already anticipated in Fig. 1(a), defect states can also form at interfaces between two semi-infinite systems, denoted as left (L) and right (R). In the parent Hamiltonian, this defect amounts to a coupling defect between the two ladders, as shown in Fig. 5(c). Two further interface scenarios are shown in Figs. 5(a) and 5(b). In terms of the corresponding reflection matrices, the general quantization condition of states in the gaps can then be written as \(R_{LR} \equiv R_{RL} = 1 \). As we traverse through a gap, this product will rotate by \(2\pi \) along the unit circle, and is guaranteed to pass through 1 if at the band edges \(R_{LR} = -1 \). This occurs exactly when the Witten index of the gap differs on the two sides of the interface. The central gap supports a topological defect state if \(\xi_L \neq \xi_R \), while a topological defect state in both of the finite-frequency gaps appears if \(\xi_L = \xi_R = 1 \). We recall that all combinations of these indices can be achieved while keeping the band structure on both sides aligned. In particular, to set \(\xi_L \neq \xi_R \), one can again pass over to the values from values \((\beta, \gamma, \kappa)\) on one side to the transformed values \((\bar{\beta}, \bar{\gamma}, \bar{\kappa})\) on the other side; the different types of dimers are again indicated by their color.

Therefore, by either using a boundary or an interface, the formation of topological protected bound states can be controlled independently in any of the three gaps. In contrast to the SSH model, these states do not display a sublattice polarization; however, they all decay exponentially and therefore are square normalizable. We next demonstrate the utility of these states in the specific setting of silicon photonics.

V. PHOTONIC REALIZATION

Topological photonics was incepted by considering the behavior of photonic crystals under the influence of
magneto-optical effects [36,37]. Subsequently, a range of mechanisms to effectively break time-reversal symmetry were identified [38–42], and so were mechanisms to engineer a chiral symmetry [18–20] or a charge-conjugation symmetry [43]. The first experimental realizations utilized microwave structures [44], followed by implementations at optical frequencies relying on platforms including resonator arrays [45], waveguide lattices [46], and optical quantum walks [47]. In most cases the design of these structures is based on tight-binding models, e.g., within a coupled-mode description of resonator or waveguide arrays [48,49]. The paradigmatic Su-Schrieffer-Heeger model with staggered couplings has received particular attention on a large variety of platforms, with works directly probing the topological nature of the bands [18,19,21], also in the non-Hermitian regime [50–53], and utilizing the protected defect states for phenomena such as mode selection [20,51] and on-chip optical diodes [54]. Staggered on-site energies have been implemented using optical lattices [19] as well as resonators or waveguides, e.g., to realize a photonic analog of a Peierls-spin chain [55]. Negative couplings can be obtained, e.g., by using auxiliary components that mediate the coupling [56].

To implement the bow-tie chain, we first apply a Z_2 gauge transformation to make all couplings positive. The desired gauge transformation takes the form of a basis change

$$ \psi_n \rightarrow \begin{cases} \psi_n, & n \text{ even}, \\ \sigma \psi_n, & n \text{ odd}, \end{cases} $$

after which the Bloch Hamiltonian (13) becomes

$$ H(k) = \begin{pmatrix} \beta & \kappa & 0 & \gamma e^{-ik} \\ \kappa & \beta & \gamma e^{ik} & 0 \\ 0 & \gamma e^{-ik} & -\beta & \kappa \\ \gamma e^{ik} & 0 & -\beta & \kappa \end{pmatrix}. $$

This corresponds to alternating couplings $\kappa, \gamma, \kappa, \gamma$ that now are all positive, while the on-site energies still follow the sequence $\beta, \beta, -\beta, -\beta$; topological defects amount to irregularities in these sequences.

As in the general discussion, we focus on cases where the structure can be interpreted as a succession of asymmetric dimers, represented by the triangular elements in the pictorial description of Figs. 1–5. In a given physical realization, the components that support the two fundamental dimer modes can have a variety of shapes; all that is required is the existence of two modes that are spectrally well isolated from the remaining modes. The effective tight-binding description employed here then follows from the application of standard coupled mode theory [49].

Here we consider the most straightforward implementation, the ridge waveguide geometry shown in Fig. 6(a) in which each dimer is formed by two distinct waveguides that operate in the single-mode regime. In this setup, the diagonal elements of the Hamiltonian represent propagation constants rather than energies. The on-site elements are controlled via modifying the size or material composition of the guiding channels, while the coupling coefficients can be tuned by adjusting their spacings. A benefit of this waveguide geometry is the possibility to study the wave dynamics along the structure (designated as the z coordinate), which in coupled-mode theory is generated by $i d\psi(z)/dz = H(\psi(z))$.

For a realistic modeling, we consider silicon ridge waveguides on a silica substrate, as depicted in Fig. 6, which we characterize using a full-wave finite element method [57]. The waveguides are designed to support a single fundamental TE mode at a free-space wavelength of $\lambda_0 = 1.55$ μm. The geometric parameters (height and width) of each waveguide as well as their separation distance are listed in Table I. These design parameters correspond to a detuning $\beta = 0.06$ μm$^{-1}$ that equals the intradimer coupling strength, so that $\gamma = \beta$. Figure 6(b) illustrates the supermode structure of an isolated dimer, as shown in (b) for a system with $\beta_0 = 11.24$ μm$^{-1}$ and $\beta = \gamma = 0.06$ μm$^{-1}$ (for the geometric parameters see Table I).

For the extended system, we discuss three different array designs, giving rise to the representative band structures shown...
in the bottom panels of Fig. 7. These scenarios are obtained by choosing the inter-dimer distances according to the values given in Table II, which selects the interdimer coupling κ while keeping β = γ fixed. In case (a) κ = γ/2, hence ξ = ̃ξ = 1, for which one topological edge state exists at the left side of the array (see Fig. 4(a); another such state exists at the right edge). This edge state also exists in case (b) where κ = ̃√2γ, at which still ̃ξ = 1 but the central band gap is closed. In case (c), κ = 2γ, so that now ξ = ̃ξ = 1; then two localized modes having different eigenvalues and residing in different band gaps coexist at each edge [see Fig. 4(c)].

As shown in the top panels of Fig. 7, these modes can be probed by investigating the intensity evolution when an optical beam is launched into the leftmost waveguide. To mimic realistic experimental conditions, we consider an integrated silicon device made of 18 waveguides, each of which is 170-μm long. In case (a), the intensity is guided by the edge state in the finite-frequency gap. In case (b), where the central gap is closed, a secondary emission appears that resembles diffraction in uniform waveguide arrays [58]. The subsequent appearance of a second localized mode in the central gap, case (c), can be inferred from the beating pattern of the optical intensity in the leftmost waveguide. The results for the integrated silicon device agree well with those using coupled-mode theory, which are shown in the middle panels.

The construction of the bow-tie chain, invoking a nontrivial square root, is intimately linked to a tight-binding picture. The results in the present section show that such considerations indeed transfer to realistic continuous systems, as long as they are suitably patterned to justify the coupled-mode description.

VI. POSSIBLE GENERALIZATIONS

As already mentioned in the discussion of Fig. 2, the Rice-Mele model itself can be viewed as an example of a trivial square root, where the parent system consists of two uncoupled chains; both the square root and the parent system possess two sites per unit cell. Starting from the bow-tie chain, further generalization can be achieved by expanding the underlying algebra beyond the square-root operation. For example, a spectrally shifted spectrum is obtained by starting from a parent tight-binding Hamiltonian written as \(H' = H^2 + a H + a' \), which we exploited implicitly for the photonic realization with a reference propagation constant \(\beta \).

In the construction of the bow-tie chain, we also restricted our attention to systems with couplings between adjacent unit cells. More remote couplings introduce nonmonotonous bands, which is a prerequisite to generate multiple defect states in selected band gaps and realize the full scope of a topological quantum number \(v \in \mathbb{Z} \). These features require...
the generalization

\[E^2 \psi_n = \left(H_n^2 + \sum_{m \neq n} T_{nm} T_{mn} \right) \psi_n + \sum_{m \neq n} (H_n T_{nm} + T_{nm} H_m) \psi_m + \sum_{l \neq n, m \neq l, n} T_{nm} T_{ml} \psi_l \]

of the relations Eqs. (6) and (7) between the parent and the child system, obtained by iteration of a tight-binding equation with couplings \(T_{ml} \) between cells \(m \) and \(l \). Additional bands can be created by increasing the period in the child system, so that the unit cell encompasses more components. Alternatively, one could shift the spectrum of the child to positive energies and take additional square roots, effectively generating polynomials of higher order. The unifying key feature in this general one-dimensional setting is the observation that the square root operation allows to replace crystal symmetries by spectral symmetries, and that these can be interpreted as fractional lattice translations, as described in Sec. II B.

To see how our considerations can be further extended beyond this one-dimensional setting, we now briefly describe nontrivial examples in two dimensions, as illustrated in Figs. 8 and 9. The first system [Fig. 8(a)] highlights a typical feature of topologically nontrivial models in higher dimensions, namely, the role of gauge configurations. When generated by a magnetic field, these configurations result in finite fluxes through plaquettes that cannot be gauged away. Starting from four uncoupled copies of square lattices without such fluxes (on-site energies \(\beta'' = \beta^2 + 2\gamma^2 + 2\kappa^2 \) and couplings \(\gamma' = \gamma \kappa \)), a \(\pi \)-flux lattice can be generated via the square-root operation. Such lattices are characterized by one negative coupling around each plaquette, and have been studied extensively due to their rich topological and statistical features.

FIG. 8. Extensions to two-dimensional square lattices. (a) The \(\pi \)-flux square lattice, a systems which has gained considerable attention due to its topological and statistical features, can be interpreted as the square-root of four uncoupled square lattices. The square-root operation leaves freedom to choose between several dimerization patterns, whose interplay has been studied in the past to define topological defects with fractionalized charge [60]. Our construction reveals the additional freedom to choose an on-site corrugation pattern, which maybe exploited to define additional defects. While the unit cell retains four sites, we deem this square root nontrivial as the resulting system has a reduced rotation symmetry (this already applies without the on-site corrugation). The parameters of both models are related by \(\beta'' = \beta^2 + 2\gamma^2 + 2\kappa^2, \gamma' = \gamma \kappa \).

(b) Starting from a square lattice system with \(\pi \) fluxes in alternating cells, and additional next-nearest neighbor couplings (unit cell size 4), the square-root operation allows to obtain a system with 8 sites per unit cell. Again, there is freedom to choose between various dimerization and on-site corrugation patterns, providing scope to form topological defects in the system. This system constitutes the most natural extension of the bow-tie chain into two dimensions. The couplings are defined in the same way as above, with in addition \(\kappa' = 2\beta \kappa \).
statistical features (see, e.g., Ref. [59]). As we see in the figure, the square-root operation introduces the freedom to choose a dimerization pattern, as well as an on-site corrugation pattern. These features do not require to extend the unit cell (there are still four sites per unit cell), but break the rotational symmetry of the system; they therefore still reduce the crystal symmetry. $U(1)$ and Z_2 defects in the dimerization pattern have been introduced in [60] to study charge fractionalization; working backwards as in Eqs. (6) and (7), such defects can now be seen to introduce localized potential variations and couplings between the four parent lattices. Further defects can be introduced through the on-site corrugation pattern, a feature which remains to be explored.

For the second example, we generalize this system so that the square-root operation induces extra components. As shown in Fig. 8(b), the parent system possesses four sites per unit cell and includes next-nearest-neighbour couplings, in analogy to the two-legged ladder. Choosing a suitable flux configuration and exploiting the freedom of dimerization and corrugation patterns, the nontrivial square root features a unit cell with 8 sites. This system appears to be the most natural extension of the bow-tie chain to two dimensions.

As a third example, we consider honeycomb systems such as graphene [61]. Anisotropic versions of these systems appear in the single-particle sector of the Kitaev honeycomb [62], where π fluxes are generated by couplings with an inverted sign (inverted bonds). As shown in Fig. 9, the parent system is the sum of two triangular lattices, each with inverted bonds that generate a corresponding arrangement of π fluxes. Symmetry breaking again occurs as a consequence of a spectral shift in the parent system, which under the square-root operation generates a sublattice-staggered potential $\pm\beta$. In absence of the fluxes, the resulting honeycomb system only displays a threefold rotation symmetry about each plaquette center, while the parent system displays a sixfold rotation symmetry.

These considerations suggest the following criterion to signify whether a square root is nontrivial—a trivial square root displays the same crystal symmetries as the parent system, while in a nontrivial square root some of these symmetries are broken down. Supported by the examples studied here, and recalling also our general considerations for one-dimensional systems in Sec. II B, we then argue that the reduction in symmetry gives scope for richer representations, which in the simplest case amounts to a larger unit cell, effectively equipping the system with more components. The lost crystal symmetries may be replaced by new spectral constraints, as exemplified by the chiral symmetry (8) in the bow-tie chain; additional features such as a chiral symmetry of the parent system yield further nontrivial constraints, as exemplified by Eq. (23).

VII. CONCLUDING REMARKS AND OUTLOOK

In this work, we set out to explore whether interesting topological features can arise when one considers the concept of a square root of a Hamiltonian, as utilized by Dirac in the pursuit of relativistic quantum mechanics, and transfers it to the setting of periodic tight-binding lattices. We identified the simplest nontrivial one-dimensional example, the bow-tie chain, and found that it possesses a rich topological band structure, providing means to generate a versatile combination of edge and interface states. These features arise from spectral symmetries and topological indices that emerge under the square-root operation while some crystal symmetries are broken. The model can be implemented in suitably engineered photonic systems, not only in the integrated silicon photonic structures considered in Sec. V, but also, for example, in plasmonic devices and atom-optical settings, which have been used to implement a wide range of tight-binding systems. In the context of electronic transport, the model may, e.g., be viewed as a topologically nontrivial extension of the Rice-Mele model, corresponding to a conjugated polymer with a larger unit cell.

While we mainly employed this concept to identify a minimal model that can be easily implemented, it also brings a new perspective to a broad range of systems that are already under investigation. By working backwards as in Eqs. (6) and (7), it is indeed not difficult to relate a variety of

![Fig. 9. Anisotropic honeycomb lattice with π fluxes. The Kitaev honeycomb can be solved by a mapping to graphene-like single-particle sectors with anisotropic couplings and inverted bonds, where the latter generate an arrangement of π fluxes [62]. Each of these sectors can be viewed as a square root of two triangular lattices with a corresponding flux arrangement, as shown here for a pair of π fluxes generated by a single inverted bond. The parameters in the parent system are $\beta'''' = \beta^2 + \gamma_x^2 + \gamma_z^2$ and $\gamma_i = \gamma_x, \gamma_y, \gamma_z$, with $i \in \{x,y,z\}$, where we also include a staggered on-site potential β not present in the Kitaev honeycomb.](165109-11)
well-known systems to simple parent configurations. Besides the π-flux square and honeycomb lattices described in Sec. VI, this applies, e.g., to the Lieb lattice [63] or the Haldane model [64]. We are certain that many rich examples of these correspondences remain to be discovered.

In summary, the utility of the constructions presented here is twofold—by taking a nontrivial square root, it is possible to construct simple but topologically rich models from well-understood parent systems; by reading the relations backwards, they present a tool to gain additional insights into a range of interesting models. As an application, we constructed the bow-tie chain, a simple system with two topological invariants that can be implemented on a variety of platforms. Our considerations also open up a range of general questions—in particular, concerning the precise scope for the nontrivial effects that can emerge, both from the point of view of representation theory as well as regarding their place in the well-established system of topological universality classes [11–13,65].

ACKNOWLEDGMENTS

J.A. and H.S. acknowledge support by EPSRC via Grant No. EP/L01548X/1 and Programme Grant No. EP/N031776/1. L.F. acknowledges support from the U.S. Army Research Office Young Investigator Research Program (Grant No. W911NF-16-1-0403). R.E. would like to acknowledge support from the Hennes Center for Quantum Phenomena at Michigan Technological University.

APPENDIX: DETAILED CONSIDERATION OF THE TOPOLOGICAL FEATURES

In this Appendix, we provide the technical details of the topological characterization of the bow-tie chain, including the specific construction of the transfer and reflection matrices, the way these quantities enter the defect quantization condition and how the solutions of these conditions are linked to the topological indices. We also discuss the general topological classification of the system.

1. Transfer matrix and scattering approach

As shown in more detail in Fig. 10(a), the bow-tie chain in Fig. 1 can be unfolded into a linear chain with nearest-neighbour couplings. As shown in Figs. 10(b) and 10(c), this allows us to formulate a convenient scattering picture for the formation of defect states at boundaries and interfaces, which directly connects to the topological analysis of the band structure.

We start with the definition of the transfer matrix. Exploring the fact that we only have nearest-neighbour couplings, we can set $M = 1$ in the tight-binding equations (1). Denoting these amplitudes for clarity as Ψ_l, where in our previous notation from the Hennes Center for Quantum Phenomena at Michigan Technological University.

165109-12
\(\Psi_{2n} = \psi_{n,1} \) and \(\Psi_{2n+1} = \psi_{n,2} \) [see Fig. 10(a)], they take the form

\[
E \Psi_l = V_l \Psi_l + t_{l-1} \Psi_{l-1} + t_l \Psi_{l+1}.
\]

(A1)

Here we assumed that the coefficients \(t_l \) are real, which can always be achieved by adopting a suitable gauge, i.e., fixing the phase of the amplitudes \(\Psi_l \). We still retain the \(Z_2 \) gauge freedom of choosing the signs of \(\Psi_l \), which allows us to switch the sign of any coupling. Given Eq. (A1), we obtain

\[
\Psi_{l+1} = \frac{E - V_l}{t_l} \Psi_l - \frac{t_{l-1}}{t_l} \Psi_{l-1},
\]

(A2)

from which we read off the transfer matrix

\[
\tilde{M}_l(E) = \begin{pmatrix}
0 & 1 \\
-t_{l-1}/t_l & (E - V_l)/t_l
\end{pmatrix}.
\]

(A3)

Given the amplitudes \(\Psi_0 \) and \(\Psi_1 \) on two neighboring sites, the amplitudes throughout the system can then be inferred from

\[
\left(\begin{array}{c}
\Psi_{l+1}
\end{array} \right) = \tilde{M}_l(E) \times \tilde{M}_{l-1}(E) \times \ldots \times \tilde{M}_1(E) \left(\begin{array}{c}
\Psi_0
\end{array} \right).
\]

(A4)

Reverting back to the original paired amplitudes within each cell, we thus have

\[
\Psi_n = M_n(E) \times M_{n-1}(E) \times \ldots \times M_1(E) \psi_0,
\]

(A5)

where \(M_n(E) = \tilde{M}_{2n}(E) \tilde{M}_{2n-1}(E) \).

In the linear chain, the couplings follow the repeating pattern \((t_0, t_1, t_2, t_3, \ldots) = (\kappa, \gamma, -\kappa, -\gamma)\), while the on-site energies repeat according to \((V_0, V_1, V_2, V_3) = (\beta, \beta, -\beta, -\beta)\).

Therefore

\[
\tilde{M}_1(E) = \begin{pmatrix}
0 & 0 \\
-\kappa/\gamma & (E - \beta)/\gamma
\end{pmatrix},
\]

(A6a)

\[
\tilde{M}_2(E) = \begin{pmatrix}
0 & 0 \\
\gamma/\kappa & -(E + \beta)/\kappa
\end{pmatrix},
\]

(A6b)

\[
\tilde{M}_3(E) = \begin{pmatrix}
0 & 0 \\
-\kappa/\gamma & -(E + \beta)/\gamma
\end{pmatrix},
\]

(A6c)

\[
\tilde{M}_4(E) = \begin{pmatrix}
0 & 0 \\
\gamma/\kappa & (E - \beta)/\kappa
\end{pmatrix}.
\]

(A6d)

The transfer by a period of the system (two cells) is then described by the product \(M(E) = \tilde{M}_4(E) \tilde{M}_3(E) \tilde{M}_2(E) \tilde{M}_1(E) \).

As required by flux conservation, this matrix is sympletic, \(M^T(E) \sigma M(E) = \sigma \). The eigenvalues can be written as \(\Lambda_{\pm}(E) = \exp(\pm ik(E)) \) [hence \(\Lambda_{+}(E) \Lambda_{-}(E) = 1 \)], and determine the band structure of the system. For energies in the bands, \(k(E) \) is real, hence \(|\Lambda_{+}(E)| = |\Lambda_{-}(E)| = 1 \). In the gaps we choose the sign of \(k(E) = i k(E) \) according to \(\text{Re} k > 0 \), so that \(|\Lambda_{+}(E)| < 1 \) describes an evanescent wave that decays to the right, while \(|\Lambda_{-}(E)| > 1 \) describes an evanescent wave that decays to the left. The associated eigenvectors are denoted by \(\phi_{\pm}(E) \).

Therefore, for the formation of an edge state in a semi-infinite system as shown in Fig. 4, we require the boundary condition \(\Psi_0 = \psi_{0,1} = 0 \) [see Fig. 10(b)]. This has to be compatible with an evanescent mode that decays to the right, hence

\[
\phi_{+,1}(E) = 0.
\]

(A7)

Analogously, a boundary cutting across a dimer element enforces the boundary condition \(\Psi_1 = \psi_{0,2} = 0 \), hence

\[
\phi_{+,2}(E) = 0.
\]

(A8)

For the interfaces shown in Figs. 1(a), 5(a), and 5(b), we require that decaying modes in the left and right medium match up as shown in Fig. 10(c), which leads to the condition

\[
\phi_{+,2}(E) = \phi_{+,1}(E).
\]

(A9)

To set up the scattering formulation of these conditions, we consider a semi-infinite chain attached to an exterior medium [see again Figs. 10(b) and 10(c)]. The details of this medium will drop out once we replace it by a boundary or an interface to another system. We therefore assume an ideally matched featureless medium, which is obtained by continuing the system as a monoatomic chain with on-site potential set to the energy of the system. We denote the amplitudes in the medium as \(\Psi_l \) with \(l \leq 0 \), while for the system \(l \geq 1 \).

In the medium, the solution is a Bloch wave of the form \(\Psi_l = A(e^{ikl-\gamma} + r_l e^{-ikl-\gamma}) \), where \(k_0 = \pi/2 \) due to our choice of the on-site potential, while the offset by 1/2 refers the reflected wave to the effective location of the interface. This wave has to match with the decaying wave in the system, which is achieved if

\[
\phi_{+,1}(E) = A(e^{ikl-\gamma} + r_l e^{-ikl-\gamma})
\]

\[
= Ae^{-\gamma/4 \pi i (1 + i r(E))},
\]

(A10a)

\[
\phi_{+,2}(E) = A(e^{ikl+\gamma} + r_l e^{-ikl+\gamma})
\]

\[
= Ae^{-\gamma/4 \pi i (1 - i r(E))}.
\]

(A10b)

From this, we obtain the reflection coefficient \(r(E) \) as given in Eq. (26).

2. Quantization conditions and topological invariants

In terms of this reflection coefficient, the boundary condition (A7) yields the quantization condition \(r(E) = i \) while the boundary condition (A8) yields the quantization condition \(r(E) = -i \). To describe an interface, we analogously define

\[
r_R(E) = \frac{\phi_{+,2}(E) + i \phi_{+,1}(E)}{\phi_{+,1}(E) + i \phi_{+,2}(E)},
\]

(A11a)

\[
r_L(E) = \frac{\phi_{-,2}(E) + i \phi_{-,1}(E)}{\phi_{-,1}(E) + i \phi_{-,2}(E)}.
\]

(A11b)

The boundary condition (A9) then requires \(r_R(E) r_L(E) = 1 \), which can be interpreted as the condition for constructive interference in a round trip through the system.

Within the gaps, the reflection coefficient \(|r(E)| = 1 \) and the winding of its phase is constrained by the symmetry-constrained values \(r = \pm 1 \) at the different band edges. It follows that the winding is a topological invariant and can only change when band gaps are closed. The number of solutions for the various boundary conditions can therefore be inferred from the topological features of the band structure.

To characterize these features, we first consider the Zak phase, defined in Eq. (24). As a first step, let us
parametrize
\[\varphi(k) = N(k) \begin{pmatrix} 1 \\ \alpha(k) \\ A(k) \\ \alpha(k)A(k) \end{pmatrix} \] (A12)

with normalization constant \(N(k) \) and parameters \(\alpha(k) \), \(\tilde{\alpha}(k) \), and \(A(k) \). The symmetries (22) imply \(\varphi(k) \propto R\varphi^*(k) \), from which we obtain the constraints \(\tilde{\alpha}(k) = -A^*(k)\alpha(k)/A(k) \) as well as \(|\alpha(k)|^2 = 1 \). Hence
\[\varphi(k) = N(k) \begin{pmatrix} 1 \\ \alpha(k) \\ A(k) \\ -A^*(k)\alpha(k) \end{pmatrix}, \quad N(k) = \frac{1}{\sqrt{2(1 + |A(k)|^2)}}. \] (A13)

To further exploit the symmetries (22), we split the integral into the right-propagating branch \(\varphi_+(E) \) and the left-propagating branch \(\varphi_-(E) = \varphi_+^*(E) \), parameterized by energy. The Zak phase then takes the form
\[
z = i \text{Im} \int_{E_{\text{min}}}^{E_{\text{max}}} dE \left[\varphi_+(E) \frac{d}{dE} \varphi_+(E) - \varphi_+^*(E) \frac{d}{dE} \varphi_-(E) \right] = -2 \text{Im} \int_{E_{\text{min}}}^{E_{\text{max}}} dE \varphi_+(E) \frac{d}{dE} \varphi_+(E)
\]
\[= -\text{Im} \int_{E_{\text{min}}}^{E_{\text{max}}} dE A^*(E) \frac{d}{dE} \alpha_+(E), \] (A14)

where the band edges \(E_{\text{min}} \) and \(E_{\text{max}} \) are taken from Eq. (15), while in the last step we made use of the parametrization (A13). It follows that the Zak phase is determined by the winding of \(\alpha_+(E) \).

The first two components of the Bloch wave \(\varphi_+(E) \) coincide with the eigenvector \(\phi_+(E) \) of the transfer matrix. Therefore the reflection coefficient is
\[r(E) = \frac{1 + i\alpha_+(E)}{\alpha_+(E) + i}, \quad \text{hence } \alpha_+(E) = \frac{r(E) + i}{1 + ir(E)}. \] (A15)

The constraint \(|\alpha_+(E)|^2 = 1 \) implies that within a band \(r(E) \) is real, while \(|r(E)| \leq 1 \) implies that \(\text{Im} \alpha_+(E) \geq 0 \). It follows that multiple windings of this phase factor are forbidden, allowing us to fix the branch \(0 \leq \text{arg} \alpha_+(E) \leq \pi \). With these constraints, it suffices to know \(\alpha_+(E) \) at the band edges,
\[z = \arg \alpha_+(E_{\text{min}}) - \arg \alpha_+(E_{\text{max}}). \] (A16)

As at the edges the reflection coefficient can only take the values \(r(E_{\text{min}, \text{max}}) = \pm 1 \), we have \(\arg \alpha_+(E_{\text{min}, \text{max}}) = (1 + r(E_{\text{min}, \text{max}}))\pi/2 \), from which we recover Eq. (25).

More formally, this result can be substantiated by the transformation
\[z = -\text{Im} \int_{E_{\text{min}}}^{E_{\text{max}}} dE A^*(E) \frac{d}{dE} \alpha_+(E)
\]
\[= -2 \int_{E_{\text{min}}}^{E_{\text{max}}} dE \frac{1}{1 + r^2(E)} \frac{d}{dE} r(E)
\]
\[= 2 \arctan r(E_{\text{min}}) - 2 \arctan r(E_{\text{max}}). \] (A17)

Given that \(\arctan(\pm 1) = \pm \pi/4 \) (with other branches not accessible due to the constraint that \(r(E) \) is real and obeys \(|r(E)| \leq 1 \)), we again recover Eq. (25).

The explicit value of the reflection coefficient at a given band edge \(E_0 = E_{\text{min}},E_{\text{max}} \), specified again by Eqs. (15), is most quickly obtained by testing whether the transfer matrix \(M(E_0) \) has an eigenvector \((1,1)^T \) or \((1, -1)^T \). This amounts to the conditions
\[(1, -1)M(E_0) \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 0 \quad \text{for } r(E_0) = 1, \quad (1) \]
\[(1,1)M(E_0) \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 0 \quad \text{for } r(E_0) = -1, \quad (1) \]

and leads to the Zak phases as summarized in Eq. (27).

These considerations also allow us to establish the winding of the reflection coefficient in the gaps. For each gap, we find from the conditions (A18) that the reflection coefficients at the upper and lower band edge are always opposite. We also find that \(r(E) = \pm 1 \) only occurs at these edges, and at no other energies in the system. From the conditions
\[(0,0)M(E') \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0 \quad \text{for } r(E') = i, \quad (1) \]
\[(0,1)M(E') \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0 \quad \text{for } r(E') = -i, \quad (1) \]

we analogously always find exactly one value \(r(E') = \pm i \) of the reflection coefficient within each of the gaps. These values fix the winding of \(r(E) \) in the gap, according to the Witten index as summarized in Eq. (28). In combination with the values at the edges, we further verify that in each gap, the winding of the reflection coefficient is always by \(\pi \) and occurs in the clockwise sense. This agrees with the scenarios illustrated in Fig. 3.

3. Universality class

As mentioned in the main text, given the symmetries of the bow-tie chain it is reasonable to place this system into the BDI symmetry class of chiral systems with a conventional time reversal symmetry. For the finite energy gaps, the analogous conclusion follows from the consideration of the parent systems, implying also that the topological features in the two finite-energy gaps are related. As we have shown in detail in the previous section of this Appendix, the fact that we can still generate different states in these finite-energy gaps can be understood from the specific quantization conditions at interfaces and boundaries. In practice, we find at most one defect state in each gap, but this can be attributed to the restriction to couplings between neighboring unit cells, in analogy to the situation in the SSH model [the general considerations in Sec. II B do not rely on these assumption; for a starting point for richer one-dimensional models see Eq. (31)]. What requires a more careful consideration, however, is the fact that the chiral symmetry in the bow-tie chain constitutes a fractional lattice translation, and therefore is nonsymmetric. In principle, this can modify the topological nature of the central gap. We therefore supplement the topological classification from the perspective of systems with an additional order-two lattice symmetry \(S \), characterized by the feature \([S^2, H(k)] = 0, \]
for which a complete classification has been developed in Ref. [26]. We make direct use of the results in the cited work, in the hope that they are of interest for the specialist reader (equation and table numbers in the following refer to the cited work).

Reference [26] distinguishes between order-two lattice symmetries that are unitary or antiunitary and commute or anticommute with the Bloch Hamiltonian or other symmetries, in particular time-reversal symmetry. We start in symmetry class AI ($\mathcal{A} = 0$) for systems with a conventional time-reversal symmetry. Our chiral symmetry X fulfills the criteria for a unitary symmetry that anticommutes with the Hamiltonian, squares to $+1$ and commutes with the time-reversal symmetry; such operations are denoted as U_+. According to Table IV we are therefore concerned with the case $t = 3$. The chiral symmetry X conserves the momentum, so that $d_0 = 0$, $d_1 = d = 1$ [see Eq. (3.16) for the decomposition of directions], and the defect dimensions are $D = D_0 = 0$. According to equations (3.27) and (3.31), $K^U_{\mathcal{R}}(s = 0, t = 3, d = 1, d_0 = 0, D = 0, D_0 = 0) = K^U_{\mathcal{R}}(-1 \mod 8, 3, 0, 0, 0, 0) = \pi_0(R_0)$. Table I then confirms that the topological invariant takes values in \mathbb{Z}, which indeed coincides with class BDI in $d = 1$ dimensions.

Finally, we remark that there is a striking duality between these considerations, which are intimately linked to the commutation relation $[X^2, H] = 0$ (interpreting X as a chiral symmetry linked to an order-two spatial symmetry), and our considerations, which are intimately linked to the relation $[X, H^2] = 0$ (starting from a spatial symmetry of a parent Hamiltonian H^2, which generates a chiral symmetry for the underlying child Hamiltonian H). Indeed, it is simple to show that, for general systems, anti-commutative and commutative symmetries represent commutative symmetries in even powers of either the Hamiltonian or the symmetry operation itself. The physical ramifications of this are left as an open question.

[18] Flat bands arise when the chiral operators have unequal numbers of eigenvalues ± 1, hence $\text{tr} \chi \neq 0$.
[40] K. Fang, Z. Yu, and S. Fan, Realizing effective magnetic field for photons by controlling the phase of dynamic modulation, Nat. Photon. 6, 782 (2012).
[57] The calculations of wave propagation in the silicon ridge waveguides were carried in COMSOL using the full-wave finite element method.
[65] The established construction of universality classes relies on mathematically advanced concepts such as dimensional reduction, homotopy groups, Clifford algebras, and K theory. The square-root operation is reminiscent of the factorization of differential operators used in mathematical works on index theorems rooted in functional analysis, see, e.g., Ref. [66] for a proof of the Atiyah-Singer index theorem via factorization of the heat equation and Refs. [33,34] for supersymmetric scattering theory of the Witten index. These works do not explore the role of zero modes in the parent system, which we here utilize to generate states in the finite-frequency gaps.