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Abstract

Recently nanoscale junctions consisting of 0-D nanostructures (single molecule) or 1-D

nanostructures (semiconducting nanowire) sandwiched between two metal electrodes are

successfully fabricated and characterized. What lacks in the recent developments is the

understanding of the mechanism behind the observed phenomena at the level of atoms

and electrons. For example, the origin of observed switching effect in a semiconducting

nanowire due to the influence of an external gate bias is not yet understood at the electronic

structure level. On the same context, different experimental groups have reported different

signs in tunneling magneto-resistance for the same organic spin valve structure, which has

baffled researchers working in this field. In this thesis, we present the answers to some of

these subtle questions by investigating the charge and spin transport in different nanoscale

junctions. A parameter-free, single particle Green’s function approach in conjunction with

a posteriori density functional theory (DFT) involving a hybrid orbital dependent functional

is used to calculate the tunneling current in the coherent transport limit. The effect of spin

polarization is explicitly incorporated to investigate spin transport in a nanoscale junction.

Through the electron transport studies in PbS nanowire junction, a new orbital controlled

mechanism behind the switching of the current is proposed. It can explain the switching

behavior, not only in PbS nanowire, but in other lead-chalcogenide nanowires as well.

Beside this, the electronic structure properties of this nanowire are studied using periodic

DFT. The quantum confinement effect was investigated by calculating the bandgap of PbS

xxvii



nanowires with different diameters. Subsequently, we explain an observed semiconducting

to metallic phase transition of this nanowire by calculating the bandgap of the nanowire

under uniform radial strain. The compressive radial strain on the nanowire was found to be

responsible for the metallic to semiconducting phase transition.

Apart from studying one dimensional nanostructure, we also present transport properties

in zero dimensional single molecular junctions. We proposed a new codoping approach

in a single molecular carborane junction, where a cation and an anion are simultaneously

doped to find the role of a single atom in the device. The main purpose was to build a

molecular junction where a single atom can dictate the flow of electrons in a circuit. Recent

observations of both positive and negative sign in tunneling magnetoresistance (TMR) the

using same organic spin-valve structure has mystified researchers. From our spin dependent

transport studies in a prototypical organic molecular tunneling device, we found that a

3% change in metal-molecule interfacial distance can alter the sign of TMR. Changing

the interfacial distance by 3%, the number of participating eigenstates as well as their

orbital characteristic changes for anti-parallel configuration of the magnetization at the two

electrodes, leading to the sign reversal of the TMR. Apart from this, the magnetic proximity

effect under applied bias is investigated quantitatively, which can be used to understand the

observed unexpected magnetism in carbon based materials when they are in close proximity

with magnetic substrates.
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Chapter 1

Introduction

Nanotechnology is the technology that manipulates matters at the scale of atoms and

molecules. As Feynman says, “there’s plenty of room at the bottom," nanotechnology can

substantially offer the scope to understand matter at the scale of atoms and molecules.

While classical physics fails to explain at this scale, quantum mechanics, in its most

arcane and practical guises, is used to understand the world of nano or sub-nano particles.

Researchers have harnessed this abstract quantum theory in the nanoworld by building

devices out of these nanometer-sized particles which are used in our daily life. Especially

in the past three decades silicon-based technology has revolutionized our world by offering

us ultra-thin integrated circuits built on a single chip. They are now used in almost all

electronic devices starting from our cars to the mobile phones. The thirst to build a smaller

and faster device is still not satisfied.
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Figure 1.1: Schematic representation of transistor and the evolution of it’s
channel-length with time.

The main ‘working unit’ in a computer device is a transistor, which is schematically shown

in Fig. 1.1. Now, to "pack" more and more transistors in a device in order to make it

faster and smaller, one needs to reduce down the width of the insulating layer (typically

made of SiO2). According to Moore’s law, in the year 2020 the insulating layer would be

as thick as five atoms [1]. Reducing further would be impossible as electrons in the gate

electrode can directly penetrate into the channel and destroy the transistor. Thus, the road

for the silicon industry is predicted to reach its end by the year of 2020 due to the problem

which is technically known as “quantum leakage". As the size of the conventional silicon

based field effect transistor is inching toward its fundamental limit of miniaturization, new

quantum controlled, nanoscale materials have emerged as one of the promising options to

meet this physical challenges.

Fig. 1.1 shows how the length of the channel which connects the source and drain in a

transistor, started becoming shorter and shorter as time progresses. In present commercial
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computer device which has about billion of transistors has channel length of about few

hundreds of nanometers. We can easily realize that reducing down of the channel length

further, one can reach to the nanoscale regime where the channel can be build out of a

single molecule or a nanowire.

If we look carefully in the history of science, we have seen each new major discovery

permits tool for much more discoveries in the future. This process goes on. The

envision of Aviram and Ratner to build a single molecular device was one of such major

inspirations [2]. The realization of that envision by successfully connecting a molecule

in between two metal electrodes and subsequently measuring the tunneling current has

opened up a new horizon in nanoscience research [3, 4, 5, 6]. Several groups have reported

conduction, rectification, and switching phenomena [4, 7, 8, 9] in nanoscale junctions.

These devices are mainly made of zero-dimensional single molecules and one-dimensional

semiconducting nanowires or nanotube. These atomic scale devices exhibit interesting

features like negative differential resistance [8] , phase transition [10], spin valve effect [9].

Understanding these issues by modeling at the scale of atom and electron is a challenging

task. The first challenge is to model this open device without proper knowledge of the

contact geometry. The first principles approach to the transport problem will not only

help understanding the phenomena at the level of electrons and atoms, but at the same

time it will help the experimentalist to build the future electronic devices. Here, using

density functional theory we try to answer some important questions associated with

recent observations in different transport measurements in single molecular and nanowire
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junctions. We also describe a new approach towards achieving the ultimate limit of

miniaturization where a single atom can dictate the flow of the electrons in a circuit. The

rest of the thesis is organized as follows. Density functional theory is described in Chapter

2 followed by theory of quantum transport in nanoscale systems in Chapter 3. Results are

described in subsequent chapters. This thesis ends with a brief summary in Chapter 7.
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Chapter 2

Density Functional Theory

2.1 Introduction

It is impossible to obtain an exact solution of a many-body problem. To gain an accurate

description of interacting quantum many-body problem has been a challenge from a long

time. Particularly when the systems consists of few atoms, the computational cost for

the accurate results involving the traditional wavefunction approach goes up dramatically.

Density functional theory (DFT) maintains an important balance between the accuracy and

the computational cost [11]. In recent years, DFT has gained a huge attention in the field of

physics, chemistry and biology [12]. It is a first principle approach where the computations

are done without assuming any parameter that describes the bonding, the shape of the
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charge and density or the potential [13]. DFT solves an interacting problem by mapping

into a much simpler non-interacting problem. In this chapter, I describe some of the basic

ideas behind density functional calculations.

Figure 2.1: A schematic representation of an interacting many-electron
system.

2.2 Many Electron Hamiltonian

Let me first write down the many-body Hamiltonian for an electronic system [14, 15]:

Ĥ =
1
2

Ne

∑
i
�2

i −
Ne

∑
i

Nn

∑
I

ZI
|�ri− �RI|

+
1
2

Ne

∑
i

Ne

∑
j �=i

1
|�ri−�r j|+

1
2

Nn

∑
I

Nn

∑
J �=I

ZIZJ
|�RI− �RJ|

+
1

2MI

Nn

∑
I
�2

I (2.1)
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In the above equation e=h̄=me=1. �ri, �RI are the coordinate of the electrons and nuclei. Ne

and Nn are the number of electrons and nuclei present in the system; MI represents the

mass of the I-th nucleus. First, we make the Born-Oppenheimer approximation [16, 14] in

which we neglect the last two terms in the above equation that describes the relative motion

of heavy nuclei. We treat the nuclei as fixed points. If you look carefully in the above

Hamiltonian, the first and the second terms depends only on single electron coordinate and

therefore, it is called as a single-electron term. However, the third term describing the

electron-electron interaction depends on the pair of electrons. So the above Hamiltonian

can be written as:

H =
1
2

Ne

∑
i
�2

i −
Ne

∑
i

Nn

∑
I

ZI
|�ri− �RI|

+
1
2

Ne

∑
i

Ne

∑
j �=i

1
|�ri−�r j| (2.2)

or,

H = ∑
i
ĥ1(�xi)+

1
2 ∑
i�= j

ĥ2(�xi,�x j) (2.3)

7



2.3 Hatree-Fock Method

In Hartee-Fock method the non-interacting electron wavefunction is expressed as a Slater

determinant as follows [17]:

Φ(�x1,�x2, ..�xn) =
1√
N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(�x1) φ2(�x1) ... φ3(�x1)

φ1(�x2) φ2(�x2) ... φ3(�x2)

. . .

. . .

φ1(�xN) φ2(�xN) ... φ3(�xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.4)

Although Hatree-Fock approximation is a many-body technique, it is based on a

single-particle picture where the electrons are considered as occupying single-particle

orbitals (φi(�xi)). Electron sees the other electrons through an effective potential. Now,

the next task is to write the Schrodinger equation in terms of the orbitals. First, it can be

easily shown that [17, 18, 19]:

〈Φ|∑
i
ĥ1(�xn)|Φ〉 =

Ne

∑
i
〈φi|ĥ1|φi〉 (2.5)

8



and,

〈Φ|1
2 ∑
i�= j

ĥ2(�xi,�x j)|Φ〉 =
1
2

Ne

∑
i, j

(〈φiφ j|ĥ2|φ1φ j〉−〈φ jφi|ĥ2|φ1φ j〉
)

(2.6)

So, we get,

〈Φ|∑
i
Ĥ(�xi)|Φ〉 =

Ne

∑
i
〈φi|ĥ1|φi〉+ 1

2

Ne

∑
i, j

(〈φiφ j|ĥ2|φ1φ j〉−〈φ jφi|ĥ2|φiφ j〉
)

(2.7)

= ∑
i
hi +

1
2∑

i, j
(Ji j−Ki j), (2.8)

where hi =
∫

φ∗
i (�x)

[−1
2 �2 +v(�x)

]
φi(�x)d�x. In the eq. 2.7, the first and second terms

are the single-body operator while the third term is the integral operator. Ji j =

∫ ∫
φi(�x1)φ∗

i (�x1)
1

|�ri−�r j|φ j(�x2)φ∗
j (�x2)d�x1d�x2 is the coulomb integrals, which describes the

classical interaction of electron distribution. This is referred to the direct term while Ki j =

∫ ∫
φ∗
i (�x1)φ j(�x1)

1
|�ri−�r j|φi(�x2)φ

∗
j (�x2)d�x1d�x2 is called as the exchange term. The exchange

term has no classical analogue and is a direct consequence of the antisymmetric property

of the wavefunction.

Now we will apply the variational principle. The expectation value of energy has to be

minimized with respect to the coefficient of the basis function with the constraint given by
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the normalization condition. So the condition to be satisfied is then:

δ

[
〈Φ|∑

i
Ĥ(�xn)|Φ〉−∑

i, j
λi j(〈φi|φ j〉−δi j)

]
= 0, (2.9)

where λi js are the Lagrange multipliers. Now we take the derivatives in eq. 2.7. It is

customary to write in the following form [18, 19]:

[
ĥ1 +∑

i
(Ĵi− K̂i)

]
φk = ∑

i
λkiφi, (2.10)

2.4 Energy in Terms of Density

As described above, the Hatree-Fock theory works with N-electron wavefunction

Φ(�x1,�x2....., �xN), which is a function of 3N degrees of freedom. This becomes

computationally very expensive and extremely difficult if the system consists of a bundles

of atoms. A very smart way to overcome this issue is to express the Hamiltonian through

electron density [17, 18, 12] [n(�r) = 〈Φ|n̂(�r)|Φ〉 = N
∫ |Φ(�r, ....,�rN)|2d�r2....d�rN , with

∫
d�rn(�r) = N Rewriting the Hamiltonian once again:

H =
1
2

Ne

∑
i
�2

i −
Ne

∑
i

Nn

∑
I

ZI
|�ri− �RI|

+
1
2

Ne

∑
i

Ne

∑
j �=i

1
|�ri−�r j| = T̂ +V̂ne +V̂ee (2.11)
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Now, we can write the nuclear-electron interaction energy in terms of the density in the

following way [18]:

Ene = 〈Φ(�r1, ...,�rN)|V̂ne|Φ(�r1, ...,�rN)〉 (2.12)

= − 1
Ne

Nn

∑
I

[∫
ZId�r1n(�r1)

|�r1−�RI|
+

∫
ZId�r2n(�r2)

|�r2− �RI|
+ ...

]
(2.13)

= −
Nn

∑
I

∫
ZId�rn(�r)

|�r− �RI|
=

∫
n(�r)Vne(�r)d�r (2.14)

However, the equivalent derivations for the electron-electron interaction term is not so

simple. Instead, it is expressed in terms of two-particle density like the following [18]:

Eee =
1
2

∫ ∫
d�rd�r′

n(2)(�r,�r′)
|�r−�r′| , (2.15)

where n(2) can be interpreted as the probability of an electron to exist at a point�r, given

that a second electron exist at�r′. However, if the electrons are completely uncorrelated and

there exists only one-particle density, then n(2) can be expressed as [17, 18]:

n(2) = n(�r)n(�r)+Δn(2)(�r,�r) (2.16)

So the electron-electron term, which makes the many-body problem so difficult, can now
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be expressed as:

Eee =
1
2

∫ ∫
d�r d�r′

n(�r)n(�r′)
|�r−�r′| +ΔEee (2.17)

The second term is due to the correction term in eq. 2.15. Now writing the kinetic energy in

terms of single-particle density is even more difficult as it involves the derivative operator.

Before I describe them, I would like to discuss two important theorems given by Hohenberg

and Kohn in 1964.

2.5 The Hohenberg-Kohn Theorem

Theorem I: For any system of interacting particles in an external potential Vext(�r), the

density is uniquely determined or the external potential Vext(�r) is determined, within a

trivial additive constant, by the electron density. [20]

Proof: The proof is by contradiction. Suppose there exist two potentials Vext1(�r) and

Vext2(�r), which differ by more than a constant but yield the same density. There would have

to be two ground-state wavefunctions Φ1 and Φ2, and they would belong to two distinct

HamiltoniansH1 andH2 respectively. Let’s assume that the ground state is non-degenerate.

So, by variational principle, no wavefunction would give an energy less than the expectation
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value of H1 with Φ1 [17]. Thus,

〈Φ1|H1|Φ1〉 < 〈Φ2|H1|Φ2〉 (2.18)

As we have identical ground state densities for two Hamiltonians, we can write

〈Φ2|H1|Φ2〉 = 〈Φ2|H2|Φ2〉+
∫

n0(�r)d�r[Vext1(�r)−Vext2(�r)] (2.19)

Similarly,

〈Φ1|H2|Φ1〉 = 〈Φ1|H1|Φ1〉+
∫

n0(�r)d�r[Vext2(�r)−Vext2(�r)] (2.20)

Adding the above two equations,

E1 +E2 < E2 +E1 (2.21)

This clearly is a contradiction and hence, the ground-state density uniquely determines the

external potential up to a constant.

Theorem II: The ground state energy can be obtained variationally; the density that

minimizes the total energy is the exact ground state density.
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From the above theorem, we understand that the external potential is uniquely determined

by the density, and the potential uniquely determines the ground-state wavefunction. One

may write the energy in terms of the density functional. As we have already seen (except

the kinetic energy term, which I will describe in the next section), we can convert the total

energy expression from the wavefunction representation to the density representation.

E[n] = T [n(�r)]+Vne[n(�r)]+Vee[n(�r)] =
∫
Vext(�r)n(�r)d�r+F[n(�r)], (2.22)

where F [n(�r)] is a universal functional because the treatment of the kinetic and the internal

potential energies are the same for all systems. Now, in the ground state, the energy can be

determined by the unique ground-state density, n1(�r),

E1 = E[n1] = 〈Φ1|H1|Φ1〉 (2.23)

We know from the variational principle, a different density, n2(�r)must give a higher energy.

E1 = E[n1] = 〈Φ1|H1|Φ1〉 < 〈Φ2|H1|Φ2〉 = E2 (2.24)

So we can say that by minimizing the total energy with respect to n(�r), we can obtain the

total energy of the ground state. The correct density that minimizes the energy is then the

ground state density.
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2.6 Kohn-Sham Method

We have noted before that writing the kinetic energy in terms of the functional is a difficult

task. Kohn and Sham in 1965, found a brilliant approach that turned the density functional

theory into a practical tool for rigorous calculations [21, 22]. The method is known as the

Kohn-Sham method. Here we assume that the density can be written as the sum of the

norm square of a collection of single particle orbitals:

n(�r) =
Ne

∑
n
|φn(�r)|2 (2.25)

These orbitals are called Kohn-Sham orbitals. We express the kinetic energy as a single

particle kinetic energy plus a correction term.

T = −1
2

Ne

∑
n

∫
d�rφ∗

n �2 φn(�r)+ΔT (2.26)

Finally, the total energy can be written as:

E =−1
2

Ne

∑
n

∫
d�rφ∗

n �2φn(�r)+ΔT +
∫

n(�r)Vne(�r)d�r+
1
2

∫ ∫
d�rd�r′

n(�r)n(�r′)
|�r−�r′| +ΔEee (2.27)

In order to write the correction terms in terms of density, we define exchange-correlation
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energy as:

Exc = ΔEee +ΔT, (2.28)

Where

Exc =
∫

n(�r)εxc(n)d�r (2.29)

In the above equation, εxc(n) is a simple function of n. Thus, the total energy can be written

as:

E =−1
2

Ne

∑
n

∫
φ∗
n �2φn(�r)d�r+

∫
n(�r)Vne(�r)d�r+

1
2

∫ ∫
d�r′

n(�r)n(�r′)
|�r−�r′| d�r+

∫
n(�r)εxc(n)d�r

(2.30)

The next step is straight forward. We minimize the total energy with respect to the orbitals

to get the orbitals that produce the ground state energy. Now minimizing the energy in eq.

2.30 with respect to φ∗
i (instead of φi), we get

− 1
2
�2 φn(�r)+

[
Vext(�r)+

∫
n(�r′)
|�r−�r′|d�r

′ + εxc[n]+n(�r)
δεxc[n]
δn(�r)

]
φi(�r) = εiφi(�r)(2.31)

⇒−1
2
�2 φn(�r)+ [Vext(�r)+VH(�r)+Vxc(�r)]φi(�r) = εiφi(�r)(2.32)

⇒ [
T +Ve f f

]
φi(�r) = εiφi(�r)(2.33)
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Ve f f is defined as the sum of the Vext(�r), VH(�r), and Vxc(�r); they depend directly on the

density and indirectly on the orbitals and the equation is solved self-consistently.

2.6.1 Local Density Approximation

In the above section, we showed how an interacting system can be solved by solving

a non-interacting problem. However, the accuracy depends on how we construct the

exchange-correlation potential. The old and the most popular functional is the local

density approximation or LDA, which is considered to be the "mother of all density

functional approximation" [11]. This approximation is based on the uniform electron gas

system where the Fermi energy is defined as the highest filled planewaves and the Fermi

wavevector is found to be [17, 18],

kF = (3π2n)1/3 (2.34)

In this case, the total energy is the integral over all states having wavevectors up to �kF . So

the kinetic energy per electron for each spin is [18]:

Ttot
N

=
1
2

∫
k2d�k∫
d�k

=
3
10

EF =
3
10

∫
d3rk2Fn(r) =

3
10

(3π2)2/3
∫

n5/3d3r = 2.871
∫

n5/3d3r

(2.35)
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So the exchange energy for LDA can be calculated as [11, 18, 17]:

ELDA
x [n] = Ax

∫
d3rn4/3(r) = Ax

∫
nεuni fx d3r, (2.36)

where Ax can be found from the exchange energy per electron for a planewave, which is

equal to -0.738; ε
uni f
x = 3kF

4π = 3
4π (3π2n)1/3. For the correlation part, we write

ELDA
c [n] =

∫
d3rn(r)εuni fc (rs(r)) (2.37)

where rs is the Wigner-Seitz radius, which is equal to
( 3
4πn

)1/3
[we use the relation:

4π
3 r

3
s = 1

N/V = 1
n ]. ε

uni f
c is the correlation energy per electron for the uniform gas. Accurate

exchange-correlation part is obtained by combining the limiting case of the Wigner-Seitz

radius with accurate quantum Monte Carlo data. To summarize, exchange-correlation part

in LDA is described by:

ELDA
xc [n] =

∫
d�rn(�r)εuni fxc (�r) (2.38)

2.6.2 Generalized Gradient Approximation (GGA)

LDA treats the interacting system as a system of non-interacting uniform electron gas.

In reality the electron distribution can be inhomogeneous. GGA which is a semi-local
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approximation, seeks to improve upon LDA by including the derivative information of the

density into the exchange-correlation functional. It is expressed as [11, 18, 17]:

EGGA
xc [n↑,n↓] =

∫
f [n↑,n↓,�n↑,�n↓]d�r (2.39)

GGA for the exchange is given by the following relation :

EGGA
x =

∫
nεuni fx (n)Fx(s)d�r (2.40)

where PBE ansatz of Fx has the form [23]

Fx = 1+κ −κ/(1+ x/κ) (2.41)

with κ=0.804 and x = 0.21951s2

The correlation term in GGA has the following form:

EGGA
c =

∫
n[εuni fc (rs,ζ )+H(rs,ζ , t)]d(�r) (2.42)

where ζ is the relative spin-polarization, t is a dimensionless density gradient.
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2.6.3 B3LYP

Hatree-Fock theory treats the exchange exactly. However it suffers from the absence

of accurate correlation and can produce a wrong description of chemical bonding.

In 1992, Axel. D. Becke successfully mixed the Hatree-Fock exchange and local

density approximation to improve accuracy[24]. This hybrid- density functional theory

incorporates Becke’s three parameter exchange functional and Lee-Yang-Parr correlation

functional, which is known as B3LYP. It is described as:

EB3LYP
xc = ELDA

XC +a0(E
HF
x −ELDA

x )+ax(E
GGA
x −ELDA

x )+ac(E
GGA
c −ELDA

c ) (2.43)

where a0 = 0.2, ax = 0.72, and ac = 0.81 are three empirical fitting parameters.
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Chapter 3

Theory of Quantum Transport for

Nanoscale Systems

3.1 Introduction

The theory that describes the electron transport in a macroscopic system is distinctly

different than the theory that describes the phenomena for nanoscale systems. For example,

the resistance in a piece of conducting wire (bulk) hardly depends on how the wire is

connected to the battery. However for a nanoscale material, junction plays a very important

role in conductance. More importantly, in a bulk material, the resistance is caused by the

collision of electrons when they travel from one electrode to the other. In a nanoscale
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device, the channel length is shorter than the mean free path of the electron or in other

words, the transport is ballistic. Now the natural question is: where does the resistance

come from? The Classical physics can’t explain this. We look forward to quantum

mechanical theory to unravel this.

3.2 Modeling the Device

Figure 3.1: A schematic representation of nanoscale junction where a single
molecule is sandwiched between two electrodes.

A typical nanojunction is shown in Fig. 3.1. A single molecule or a nanowire (spacer)

is sandwiched between two semi-infinite electrodes. When a molecule or nanowire with

discrete energy levels is attached to two infinite electrodes with two different occupation

probabilities, the electron from one electrode (source) pumps into the molecular spacer

and then pumps out and disappears into the other electrode (drain). As the device is

externally connected to the battery (not shown in the figure), the process of the electron

transport continues and makes the current flow possible in the circuit. Electron transport in

nanoscale junction is a nonequilibrium statistical problem [25]. To solve this, we first
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assume that the current is constant over time and the energy levels in the spacer are

stationary. However the molecular spacer can exchange its energy and electrons with

the semi-infinite electrodes and a rigorous treatment of the device can be achieved by

considering it to be an open system. To model an open nanoscale junction, we have

divided it into three regions. The first one is the spacer, which consists of a molecule

or nanowire with a finite length (typically around few nanometers); the second part is part

of the lead that is strongly coupled to the spacer and is represented only by a finite number

of atoms by which the electrodes are made of. Together with the first part and the second

part is called the active scattering region. The third part is the unperturbed electrode part

which is assumed to retain its bulk properties when the extended molecule is attached to the

electrode. Since the electron coming into the spacer is not correlated to the electron going

out from the spacer, we assume the electrochemical potential of the left electrode (μL) is

different from that of the right (μR) [25, 26]. This difference in electrochemical potential

is given by: μ1,2 = Ef ∓Vlow,high. Ef is the equilibrium Fermi energy; Vlow and Vhigh are

the voltage drops at the electrodes. They are calculated self-consistently [27, 28, 29] for

each applied dipole field from the difference between the average electrostatic potentials

[30] at finite and zero bias at the respective electrode. The average electrostatic potential

at the respective electrode (left/right) is calculated by averaging the electrostatic potential

of atoms in the electrodes over the number of atoms present in each electrode (left/right) in

the active region of the device. The potential difference between the source and drain, VSD,

is obtained from the difference of Vlow and Vhigh; at equilibrium Vlow =Vhigh = 0
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3.2.1 Looking Back from the Uncertainty Principles

Before I describe the detailed formalism for electron transport in nano-sized junction,

I would like to discuss an important feature involving the existence of the limit of

conductance [31, 32]. We know in any quantum transition the uncertainty in energy ΔE

is associated with the uncertainty in time (Δt - during which the transition takes place) via

the following uncertainty relation:

ΔEΔt �
h̄
2

⇒ ΔE
e

Δt
e

�
h̄
2e2

(3.1)

The second term in the above equation is associated with one electron current Ie = e/Δt

when the electron is under an external voltage of Ve = ΔE/e. So the above equation tells

us that Ve/Ie � h̄
2e2 or, G0 � 2e2

h̄ . From the above inequality, we can say that one electron

moving in a single channel can have a maximum conductance of G0 which is equal to

1
12.9KΩ . An interesting point to note that the conductance can be viewed as the velocity of

electron in Gaussian unit. Thus the upper limit of conductance is nothing but the upper

limit of the speed of the electron, which is the speed of light.
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3.3 Landauer Approach

The Landauer approach [33, 34, 26, 25] to the quantum transport has been very successful

in recent times. To discuss it in detail, let’s first assume that the leads are identical at both

sides and contains electrons which can freely travel in the x-direction, but confined in other

directions. The Schrodinger equation for the system is the following:

[− h̄2

2m
�2 +V (r)]φiki(r) = Eiφiki(r) (3.2)

The solution for the wavefunction [25]:

φiki(r) =

√
1
Lx

ui(r)eikx, −∞ < k < +∞ (3.3)

with energies

Ei(ki) = εi +
h̄2k2i
2m

, (3.4)

where m is the mass of the electron and k is the wavevector and Lx is normalized length.

Let’s calculate the average current Ii(Ei) carried by the state at energy Ei associated with
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this wavefunction [25].

Ii(Ei) = 〈φiki |Î|φiki〉 (3.5)

= e〈φiki |ĵ(r)|φiki〉 (3.6)

=
eh̄
2im

∫ ∞

−∞
dy

∫ ∞

−∞
dz[φiki(r)

∗∂φiki(r)
∂x

−φiki(r)
∂φ∗

iki
(r)

∂x
] (3.7)

=
eh̄ki
mLx

(3.8)

=
evi(ki)
Lx

(3.9)

Here, ĵ(r) is the probability current density, vi is the velocity with wave vector k1. Similarly,

current reflected back into the left lead is:

I f (Ei) =
eh̄k f
mLx

(3.10)

=
ev f (k f )

Lx
(3.11)

26



where Kf points towards the negative x-direction with velocity v f . The current deep inside

the left lead is thus:

IL(Ei) = Ii(Ei)[1−
NL

∑
f=1

Ri f (Ei)], (3.12)

where NL(NR) is the number of the channel at the energy Ei in the left(right) electrode and

Ri f is the reflection probability, defined by the following quantity:

Ri f ≡ |Ri f |2
|I f (Ei)|
|Ii(Ei)| (3.13)

Now the current deep inside the right lead

IR(Ei) = Ii(Ei)
NR

∑
f=1

Ti f (Ei), (3.14)

where

Ti f ≡ |Ti f |2
|I f (Ei)|
|Ii(Ei)| (3.15)

where Ri f and Ti f are complex numbers.

Total current: Now the total current is the sum over all the channel and all the energies.

We can get the total energy by multiplying by density of states (Di(Ei))and integrate over
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energy. The density of states for a one-dimensional problem like this can be expressed as:

Di(Ei) =
Lx
2π

dki
dEi

=
Lx

2π h̄vi(ki)
(3.16)

So the total current is (with the factor 2 for spin degeneracy) [25, 34]:

I = 2
∫

dE[
NL

∑
i=1

NR

∑
f=1

fLDi(Ei)Ii(Ei)Ti f (Ei)−
NR

∑
i=1

NL

∑
f=1

fRDi(Ei)Ii(Ei)Ti f (Ei)] (3.17)

=
e

π h̄

∫
dE[ fL(E)τLR(E)− fR(E)τRL(E)] (3.18)

=
2e
h

∫
dE[ fL(E)− fR(E)]T (E) (3.19)

In the above equation, we have used the conservation of flux, that is, the transmission

coefficient from left to right (τRL(E)) must be equal to that for the right to left

[τLR(E) = T (E) = τRL]. fL and fR are the Fermi distribution function which can be

expressed as:

fL,R =
1

e(E−μL,R)/kBT +1
(3.20)
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Figure 3.2: A schematic representation of a sample (M) sandwiched
between two semi-infinite electrodes

3.4 Green’s Function and Self Energy

Let’s assume HL and HR to be the Hamiltonian for the isolated semi-infinite electrodes on

the left and on the right region. L and R regions are coupled by the middle region M. If L

and M are coupled by a potential (VLM +V †
LM), and M and R are coupled by the potential

(VMR +V †
MR), then the total Hamiltonian for the system is:

H = HL +HR +HM +VLM +V †
LM +VMR +V †

MR, (3.21)

where HM is the Hamiltonian for the middle region. The Schrodinger equation in matrix

form can be described in the following way [25, 35]:

⎡
⎢⎢⎢⎢⎢⎢⎣

HL VLM 0

V †
LM HM V †

MR

0 VMR HR

⎤
⎥⎥⎥⎥⎥⎥⎦
×

⎡
⎢⎢⎢⎢⎢⎢⎣

|ΦL〉

|ΦM〉

|ΦR〉

⎤
⎥⎥⎥⎥⎥⎥⎦

= E×

⎡
⎢⎢⎢⎢⎢⎢⎣

|ΦL〉

|ΦM〉

|ΦR〉

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.22)
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Where E is the injection energy of the tunneling electron. Solving the above set of

equations, we get:

HL|ΦL〉+VLM|ΦM〉 = E|ΦL〉 =⇒ |ΦL〉 = GLVLM|ΦM〉, (3.23)

and ,

|ΦR〉 = GRVMR|ΦM〉, (3.24)

where

GL,R =
1

E−HL,R
(3.25)

From the eq. 3.22,

V †
LM|ΦL〉+HM|ΦM〉+V †

MR|ΦR〉 = E|ΦM〉 (3.26)

Using eq. 3.23 and eq. 3.24 we get from eq. 3.22,

V †
LMGLVLM|ΦM〉+HM|ΦM〉+V †

MRGRVMR|ΦM〉 = E|ΦM〉 (3.27)

(E−HM−ΣL−ΣR)|ΦM〉 = 0 (3.28)
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The above equation (3.28) is associated with the Green’s function

G(E) =
1

[E−HM−ΣL−ΣR]
, (3.29)

where ΣL,R are the self-energy functions for left and right electrodes [25, 26]. They are

defined as:

ΣL =V †
LMGLVLM (3.30)

ΣR =V †
MRGRVMR (3.31)

Eq. 3.29 can not be uniquely specified without a boundary condition. We define two

different Green’s functions for two different regions [25, 26]. One is the advanced Green’s

(G+) function for the region x′ > x, where the wavefunction at x is a result of an excitation

at x′ and another is the retarded Green’s function (G−) for the region x′ < x. So,

G+(E) =
1

E−HM−Σ+
L −Σ+

R

,G−(E) =
1

E−HM−Σ−
L −Σ−

R

(3.32)
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and

Σ+
L,R(E) ≡ ΣL,R(E + iε) advanced (3.33)

Σ−
L,R(E) ≡ ΣL,R(E− iε) retarded (3.34)

It is important to note that advanced and the retarded self-energy operators are not

Hermitian. Rather they are conjugate to each other.

[
Σ+
L,R(E)

]†
= Σ−

L,R(E) (3.35)

Thus through the non-Hermitian properties of the self-energies, it is easy to understand that

electrons gain a finite ’lifetime’ in the active scattering region before they disappear into

the electrodes [25, 26].

Thus, we have now converted the problem for the entire system into the problem of the

middle (active) region, which is open to the electrodes through the self-energy functions

[25]. The energy levels in the active scattering region get broadened when it is attached

to the semi-infinite electrodes and the broadening functions (ΓL,R) are related to the

self-energy functions via the following relation [25, 26]:

ΓL,R(E) = i[Σ+
L,R−Σ−

L,R] (3.36)
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Finally, the transmission function is related to the Green’s function and the broadening

function as [25, 26]:

T (E) = Tr[ΣLG
−ΣRG

+] = Tr[ΣLGΣRG
†] (3.37)

Next, I will discuss how to obtain the coupling matrices in eq. 3.30 and 3.31 and HM(E)

from the DFT calculations. It is important to note that in order to include the bias

effect explicitly into the self-consistent calculations, we need to express the Hamiltonian,

coupling matrices, and the Green’s function as functions of the bias. HM(E,ε) is the bias

dependent Kohn-Sham molecular Hamiltonian obtained by suitable partitioning of the total

Hamiltonian (H(E,ε))of active scattering region. The use of the real space approach for

the active scattering region allows us to partition the H(E) to obtain HM(E). SMM is the

molecular overlap matrix. ΣL,R(E) are the bias dependent self-energy functions, which can

be rewritten from eq. 3.30 and 3.31:

ΣL,R(E) =V †
LM,MR[GL,R(E)]n×nVLM,MR, (3.38)

where VLM,MR are the bias-dependent molecule-lead coupling matrices and can be

expressed as:

VLM = E×SLM−HLM; VMR = E×SMR−HMR. (3.39)
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HLM(HMR) and SLM(SMR) are the electrode-molecule block of the Hamiltonian and overlap

matrices on the left(right). Green’s functions of the leads in the wide band approximation

[36, 37, 35] are obtained by the following relation:

GL,R = −iπη(E)× In; (3.40)

In is an identity matrix of dimension n×n; n is the total number of Gaussian basis functions

used to represent the atoms of the electrode in the active scattering part of the device. A

periodic DFT is used to obtain η(E); it is calculated as DOS(E) per electron in the unit cell,

where DOS(E) is the bulk (3D) density of states of atoms in the electrodes (typically made

of gold or nickel). For DOS (E), the energy grid is taken as 0.001 eV. The use of periodic

DFT to obtain the DOS(E), maintains the flavor of the electrodes being semi-infinite.

3.5 Spin-dependent Transport

For the spin-dependent transport, the modeling of the device is essentially the same as for

the spin-independent case, except from the fact that we need to include electron’s spin

degrees of freedom. For the spin-dependent case, the electrodes are made of ferromagnetic

materials, like nickel. Depending on the direction of the magnetization at the two

electrodes, we have two configurations: one when the direction of magnetization at two

electrodes are parallel (PC) and the other when they are anti-parallel (APC). In this case, the
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Hamiltonians, electron’s wavefunction, self-energy functions and Green’s function become

spin-dependent and we need to use spin-unrestricted density functional theory [17]. Now

eq. 3.29 will read as:

Gσ (E,ε) = [E−Hσ
M(ε)−Σσ

L (ε)−Σσ
R (ε)]−1. (3.41)

Hσ
M(ε) is now the bias dependent Kohn-Sham molecular Hamiltonian obtained by suitable

partitioning of Hσ (ε).

Σσ
L,R(ε) are the bias dependent, spin-polarized self-energy functions, which are calculated

as:

Σσ
L,R(ε) =Vσ†

LM,MR[G
σ
L,R(E)]

n×n
Vσ

LM,MR, (3.42)

where Vσ
LM and Vσ

MR are the bias-dependent molecule-lead coupling matrices. These

matrices are expressed as:

Vσ
LM = E×SLM−Hσ

LM; Vσ
MR = E×SMR−Hσ

MR. (3.43)

Hσ
LM(Hσ

MR) and SLM(SMR) are the spin-dependent electrode-molecule block of the

Hamiltonian and overlap matrices on the left(right). Gσ
L,R are the spin-dependent Green’s

functions of the leads obtained using wideband approximation [36, 37]. When the direction
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of magnetization at the electrodes are parallel to each other,

Gσ
L (E) = −iπησ (E)× In,G

σ
L (E) = Gσ

R (E). (3.44)

and when the direction of the magnetization are anti-parallel, we have the following cases:

for σ = ↑,

GR = −iπη↓(E)× In;GL = −iπη↑(E)× In (3.45)

and for σ = ↓,

GR = −iπη↑(E)× In;GL = −iπη↓(E)× In. (3.46)

Like the spin-independent case, In is an identity matrix of dimension n× n; n is the total

number of Gaussian basis functions used to represent the Ni atoms in the active scattering

part of the device. Again we use periodic DFT to obtain ησ (E); it is calculated as DOS(E)

per electron in the unit cell, where DOS(E) is the spin-polarized bulk (3D) density of states

of nickel. We have aligned the Fermi energy level of the active region of the device at the

equilibrium condition with the Fermi energy of the bulk Nickel. The Fermi energies of the

active region for PC and APC are taken as the energies of their respective highest occupied

molecular orbitals (HOMO). In case of PC and APC, we found the HOMO corresponds

36



to a spin-down state. It should be noted that the finite part of the Ni electrode on each

side in the active scattering region and the respective unperturbed semi-infinite part of the

electrode are assumed to have the same magnetic domain.
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Chapter 4

Charge Transport in a Zero-dimensional

Codoped Molecular Junction

Portion of this chapter is copied from the Physical Review B. vol. 83, page - 195420, year

-2011 by Subhasish Mandal and Ranjit Pati. Copyright - Appendix B.

4.1 Motivation

Doping is a scheme for tuning electronic, magnetic, and optical properties of materials by

purposely introducing a small amount of impurities. It has been playing a fundamental

role in the rapid growth of silicon based semiconductor technologies. Several groups
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have already started looking at the doping scheme via exploring the role of dopants

in modulating the electronic structure of nanocrystals and molecular nanostructures

[38, 39, 40, 41, 42, 43]. The strong quantum confinement effect makes these nanomaterials

highly sensitive to dopant atoms. A profound impact on the electronic structure causing

dramatic changes in the electrical properties of these materials has been found by doping

even a single atom in to the host. A well-known example is the superconductive nature

found in alkali dopedC60 [44, 45, 46, 47]. It has been revealed that a dopant atom changes

the electronic structure via donating or accepting charge from the host system [48].

However the “conventional controlled-doping of a single atom" [49] has been found to

be exceedingly difficult particularly within a molecular length scale. To overcome such

difficulties, researchers discovered a variety of synthetic approaches [50] resulting in

the synthesis of a range of new molecular compounds [51]. One good example is the

synthesis of polyhedral closo-boranes and closo-carborane structures [52, 53, 54, 55].

These important classes of boron-rich structures have been explored as boron carriers in

boron-neutron-capture therapy and as molecular probes in medical diagnostics [56, 57, 58].

Researchers have also studied electron transfer properties of 10-, and 12-vertex carborane

structures for their possible application in electronics [59]. Despite their rich chemistry,

these inorganic cage structures have never been thought of to be large enough for

encapsulating a dopant atom. It was first shown by Jemmis and co-workers [60] that

closo-boranes can be doped endohedrally to enhance their stability. Subsequently, Oliva

and colleagues have used high level quantum chemistry calculations to demonstrate that the
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Lithium encapsulated carborane structure (Li@C1B11H12) [61] can be used as an effective

mass selective conveyor via photochemical switching [62]. These pioneering works suggest

that a rich fundamental science remains to be explored for such small inorganic cage

structures. For example: How would doping a single atom affect the electronic structure of

such a small inorganic host? Can a single atom play a vital role in controlling the flow of

electrons in a molecular junction?

4.2 Codoping Approach in a Single Molecular Junction

To answer some of the above mentioned subtle questions, we have considered a precursor

1, 12-dicarba-closo-dodecaborane complex and used a codoping model by replacing one

of the vertex carbon atoms by a boron atom and decorating it with an endohedrally doped,

electron rich, alkali atom (X@C1B11H12, X=Li or Na) to investigate the role of dopant on

its electronic structure. This codoping approach allows us to maintain the charge neutrality

of the molecular complex. It should be noted that this type of codoping model, where a

cation and an anion are simultaneously introduced into the host, has been adopted to tune

the optical properties of TiO2 semiconductors[63]. Subsequently, prototype two-terminal

device structures are built from each of these individual molecules by sandwiching

them between two gold electrodes, and a parameter free, first-principles, nonequilibrium

Green’s function approach is used to study their current-voltage characteristics. The

commonly used thiolate (-S) anchoring groups are used to attach the molecule between
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the gold electrodes. Our calculations reveal that the conductivity in the X@C1B11H12

junction, where X=Li or Na, is significantly higher than that in the C2B10H12 junction.

Further analysis shows that the dopant alkali atom donates electronic charges to the cage

(C1B11H12), resulting in a profound effect on its electronic structure, and therefore on its

conductivity - opening up a path toward a single-atom-controlled device.

Figure 4.1: Schematic representation of alkali (X=Li, Na)/B-codoped
carborane junction. Reprinted figure with permission from Subhasish
Mandal and Ranjit Pati, Phys. Rev. B. 83 195420 (2011). c© The American
Physical Society.

4.3 Computational Methods

We have used 1, 12-dicarba-closo-dodecaborane (C2B10H12) molecule as a precursor

(Fig.4.1), and have adopted a simple codoping model to introduce atomic impurities into

the host. We replaced one of the vertex carbon atoms in C2B10H12 by a boron atom and

decorated it simultaneously with an endohedrally doped alkali atom (X@C1B11H12, X=Li

or Na) to maintain the charge neutrality of the molecular end-product (Fig. 4.1 and Fig.
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4.2). The geometry optimizations are performed using the density functional theory, which

involves Becke’s three parameter hybrid functional (B3LYP) [64, 65] for exchange and

correlation. A real space approach, in which the many-body wavefunction of the electron

is expanded in terms of a finite set of Gaussian atomic orbitals [65], is used for this

calculation. We have utilized a triple valence zeta basis set augmented by polarization

and diffuse functions (6-311++G**) to carry out these calculations.

Next, a prototypical two-terminal molecular device is built from each of these molecular

complexes by sandwiching them between two semi-infinite gold electrodes; thiolate (-S)

anchoring groups are used to attach the molecule between the electrodes (Fig. 4.1). The

first part is the active scattering region, which consists of the molecular part of the device

and a finite number of gold atoms from the Au (111) surface. Particularly, we have

embedded the molecule with thiolate (-S) anchoring groups in between two clusters of

three Au atoms each; S is incorporated into the three-fold hollow site of the Au atoms

[10, 66]. For the gold atoms, the Los Alamos double zeta effective core potential basis set

[65] that includes the scalar relativistic effects is used. During self-consistent calculation,

to ensure tight convergence, the convergence criterion for energy, maximum, and root mean

square electron density are set at 10−6, 10−6, and 10−8 a.u. respectively.

It should be noted that the ground state based DFT approach, which is used here to

evaluate H(ε), has limitations in predicting the excitation energy. Accurate description

of the excitation requires approaches beyond mean field theory [67] such as configuration
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interaction, [68, 69] coupled cluster [70] or GW approach [71]. Some of these higher level

methods though have been explored in the context of transport in molecular junctions,

their complete implementation is prohibitively difficult both in the time independent or

the time dependent framework; the time dependent formalism would be more appropriate

[72, 25, 73, 74, 75, 76, 77]. It is important to note that the transport in molecular junction

not only requires the accurate energy level description of the molecular spacer but also

it depends upon the precise determination of the coupling between the molecule and the

semi-infinite electrode. Particularly, for the later case, the higher level approaches are

difficult to implement. In addition, the requirement to include bias effect self consistently

compounds the difficulty. The ground state based DFT approach [140, 79, 80, 74, 81, 82,

83, 84, 85, 28] has been quite successful in explaining the experimental results qualitatively,

and quantitatively in some instances. Here, we have considered a strongly coupled,

chemically bonded junction, where the coupling between molecule and lead plays a more

dominant role. In such a scenario, ground state based DFT approach would be a reasonably

good approximation to treat electronic current.

As discussed in chapter3, we have implemented the single-particle Green’s function

approach to investigate charge transport properties. In this formalism, the nonequilibrium

Green’s function [10, 79, 140, 86, 83, 84], which has an implicit bias dependence.

We have added and subtracted a small thermal smearing term, kBT (=0.026) into the upper

and lower limit of the integration in eq. 3.19 to account for the electronic temperature at
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the interface in the nonequilibrium condition.

4.4 Electronic Structure of Undoped and Codoped

Molecules

Figure 4.2: Energy eigenvalues of C2B10H12, Li@C1B11H12, and
Na@C1B11H12. Respective optimized structures are shown in the inset.
Reprinted figure with permission from Subhasish Mandal and Ranjit Pati,
Phys. Rev. B. 83 195420 (2011). c© The American Physical Society.

The optimized structures and the energy eigenvalues of undoped and doped molecules

are presented in Fig. 4.2. The structural details including the formation energy (ΔFE) are

summarized in Table 4.1. The formation energy is calculated as ΔFE = (EMOL−ΣEI)/ΣI ,

where EMOL is the total energy of the molecule; EI is the energy of the atom present

in the molecule and ΣI is the total number of atoms. It is clear from the values of ΔFE

(Table 4.1) that these three systems are stable. One can also notice from Table 4.1 that
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the bond lengths of p-carborane (p-C2B10H12) compare very well with the previously

reported theoretical and experimental values. The electron diffraction study reported the

structure of p-carborane to be slightly distorted from the icosahedron symmetry with

C(1)-B(2) and B(2)-B(3) bond lengths of 1.710 Å and 1.792 Å respectively [89]. The

theoretical calculation at the MP2 level reported the C(1)-B(2) and B(2)-B(3) bond length

to be 1.703 Å and 1.781 Å respectively [90]. These data are in excellent agreement with

our calculated values of 1.71 Å and 1.77 Å for the respective bond lengths. We then

calculated the energy for the positively charged state of the p-carborane and compared

that with the energy of the neutral state to obtain the ionization potential (IP) value of

10.87 eV, which is in good agreement with the reported experimental IP of 10.6 eV [91].

For the doped molecules, the structural details are not available for comparison. From

Table 4.1, the distance between the two vertex atoms in C2B10H12 is found to be 3.05 Å,

which increases to 3.43 Å in Li@C1B11H12. In Na@C1B11H12, the distance between the

vertex atoms (C and B atoms) is found to be 3.73 Å. Similar expansion in C-B and B-B

bond lengths upon codoping are noted in Table 4.1. The expansion of cage structure upon

codoping has important implications on their electronic structures as revealed from the

eigenvalue spectrum (Fig. 4.2). Upon codoping of Li at the endohedral site and B at the

substitutional site, the highest occupied molecular orbital (HOMO) level in Li@C1B11H12

shifted upwards but the lowest unoccupied molecular orbital (LUMO) level remains almost

at the same position resulting in a reduction of the HOMO-LUMO gap (ΔEg) from 8.29

eV to 8.07 eV. In Na@C1B11H12, the HOMO level shifted upwards and the LUMO level
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shifted downwards resulting in a further reduction of ΔEg; the ΔEg was found to be 7.01

eV. To gain further insight, we carried out the Mulliken charge analysis for the undoped

and doped molecules. In p-carborane, all the boron atoms are negatively charged and all

the carbon atoms are positively charged. However in Li@C1B11H12 and Na@C1B11H12,

the Li and Na have positive charges; negative charges are distributed on the rest of the B

and C atoms. The strong polarization effect in X@C1B11H12, where X =Li or Na, suggests

that these alkali atoms have a strong influence on their electronic structure.

Table 4.1
Calculated ΔFE (eV/atom), bond lengths in undoped, Li/B-codoped, and

Na/B-codoped carborane molecules.

Molecule ΔFE(eV/atom) Atoms 1 Bond length (Å)
C2B10H12 -4.48 C(1)-C(12) 3.05

C(1)-B(2) 1.71
B(2)-B(3) 1.77

Li@C1B11H12 -4.26 B(1)-C(12) 3.43
C(12)-B(3) 1.79
B(1)-B(2) 1.90
B(2)-B(3) 1.86
B(1)-Li 1.74
C(12)-Li 1.69

Na@C1B11H12 -3.55 B(1)-C(12) 3.73
C(12)-B(3) 1.91
B(1)-B(2) 2.12
B(2)-B(3) 1.98
B(1)-Na 1.88
C(12)-Na 1.86
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4.5 Transport Properties of Undoped and Codoped

Molecular Junctions

Now the question arises: Will the observed strong influence of alkali atoms have a

measurable effect on the conductivity of the material? To address this question, we built

a prototype device (Fig. 4.1) as discussed in the previous sections. Since the atomic level

structural details at the molecule-lead interface is not available a priori, we varied the S-Au

distance in the active part of the device to find the equilibrium configuration. In p-carborane

system, the optimized S-Au distance is found to be 2.77Å. As our aim is to explicitly

investigate the effect of dopant atoms on the conductivity, we have kept the interfacial

contact structure the same for all systems.

4.5.1 Potential Profile

To model the device in the nonequilibrium condition and to understand the electronic

response of the molecule, we have applied a dipole electric field along the molecular wire

axis as discussed above. we have calculated the electrostatic potential (EP) self-consistently

at each atomic center in the active part of the device at equilibrium and nonequilibrium

conditions. In the nonequilibrium condition, EP is obtained as a function of external applied

field. Subsequently, the difference of EP between the equilibrium and nonequilibrium
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situation is averaged over the degrees of freedom perpendicular to the wire axis to obtain the

relative electrostatic potential (REP). The REP values at each atomic center are then plotted

as a function of applied bias (VSD) along the molecular wire axis (Fig. 4.1). In Fig. 4.3(a),

the potential profile for three systems atVSD ∼ 1 volt is presented. First, from Fig. 4.3(a), a

sudden drop in potential is noticed at the Au-S junctions for the undoped carborane system.

Second, the two terminal S-atoms forC2B10H10 system are located at the valley and hill of

the potential profile respectively, exhibiting dipole field induced polarization effect. Third,

there is an effective potential barrier between the two terminal S-atoms. However, for the

codoped system, at the left S-Au junction, a steady drop in potential is observed in contrast

to an abrupt change in potential at the right S-Au junction. For the codoped system, the

effective barrier height between the terminal S-atoms is significantly smaller than that in

the undoped system; this could have a significant effect on the conductivity. The observed

asymmetric feature in potential drops at the Au-S junction in the codoped systems is due to

the structural asymmetry at the vertex position; the opposite vertex atoms in the codoped

systems are C and B atoms. In Figs. 4.3(b), 4.3(c), and 4.3(d), we have summarized the

potential profile for undoped, Li/B-codoped, and Na/B-codoped systems respectively. For

the undoped system, at VSD = 1.99 V, the magnitude of potential drop from Au to S on

the left is found to be 0.69 V; on the right Au-S junction the potential drop is found to be

0.88 V. In the case of Li@C1B11H10 system, at 2.06 V, a smaller potential drop of 0.41 V

is observed on the left Au-S junction in contrast to a larger drop of 0.60 V on the right. A

Similar steady drop of 0.46 V on the left junction and a larger drop of 0.71 V is found in the
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Na@C1B11H10 system at 2.06 V. A closer examination reveals a significant change in the

potential profile as a function of applied VSD, suggesting that the inclusion of bias effect is

essential for the quantitative evaluation of the electronic response of the molecular device.

4.5.2 Current-voltage

The current for undoped, Li/B-codoped, and Na/B-codoped systems is calculated using

eq. 3.19 for each applied bias. The calculated current-voltage characteristic for undoped,

Li/B-codoped, and Na/B-codoped systems are summarized in Fig. 4.4. First, for the

undoped system, a steady increase in current with increasing applied bias is noted. For

the codoped systems, the calculated current is found to be significantly higher than the

undoped system. For example, at 1.99 V, for the undoped system, the calculated ISD is

found to be 0.96 mA. In the case of the Li/B-codoped system, the calculated ISD is found

to be 4.11 mA at 1.93 V and for the Na/B-codoped system, the ISD is found to be 8.07

mA at 1.86 V, which is ∼ 8 times higher than that in the undoped system. The two fold

increase in current from the Li@C1B11H10 system to the Na@C1B11H10 system suggests

that the single alkali atom (Na/Li) plays a dominant role in controlling the conductivity of

these molecular junctions; this could potentially lead to an ultimate single-atom controlled

device. Further examination of Fig. 4.4 reveals a non linear feature in current above VSD ∼

1 V in the Na/B-codoped system in contrast to a linear behavior in current for the undoped

and the Li/B-codoped systems.
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Figure 4.3: (a) Potential profile of undoped, Li/B-codoped, and
Na/B-codoped junctions at VSD ∼ 1 V. (b) Bias dependent potential profile
for undoped, (c) Li/B-codoped, and (d) Na/B-codoped junctions. The
vertical doted lines depict the location of the atoms along the wire axis in
the device. Reprinted figure with permission from Subhasish Mandal and
Ranjit Pati, Phys. Rev. B. 83 195420 (2011). c© The American Physical
Society.
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Figure 4.4: Realization of single-atom-controlled device through
the current-voltage characteristic of undoped, Li/B-codoped, and
Na/B-codoped junctions. Reprinted figure with permission from Subhasish
Mandal and Ranjit Pati, Phys. Rev. B. 83 195420 (2011). c© The American
Physical Society.

4.5.3 Bias Dependent Transmission

If we look at the formula (eq. 3.19), electronic current is obtained by integrating

the transmission function T (E). To understand the significant increase in current

upon codoping and to account for the observed non-linear feature in current for the

Na/B-codoped system, we need to look at the bias dependent transmission as a function

of injection energy. T (E) is calculated by using eq. 3.37. The results are presented
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in Figs. 4.5(a) and 4.5(b). The chemical potential window is shown by the dotted line

and the Fermi energy is set to zero in the energy scale. For brevity, we have considered

only two bias points. From the figures it is clear that in the Na/B-codoped system the

transmission is considerably higher than that in the undoped system. For example, at

VSD ∼2 V, the transmission in the case of Na@C1B11H10 at injection energy of 1.0 eV is

116.85 as compared to 11.6 for the undoped system. This ten fold increase in transmission

for Na@C1B11H10 as compared to the undoped system accounts for the ∼ 8 times increase

in current at ∼ 2 V for the former. In the Li/B-codoped system, T (E = 1.0,VSD ∼ 2V ) is

found to be 42.04. At VSD ∼ 1 V, for an injection energy of 0.5 eV, the T (E,V ) is found to

be 5.9 for the undoped system compared to 45.13 for Na@C1B11H10.

By comparing the T (E,V ) in Figs.4.5(a) and 4.5(b), one can notice that there is a steep

increase of T (E,V ) with the increase of injection energy from 0 to 1 eV in the case of

Na/B-codoped system at ∼ 2 V; while, in the case of the Li/B-codoped and the undoped

systems, a steady increase is observed in T (E,V ) with the increase of injection energy.

Thus, the rapidly increasing area under T (E,V ) with increasing bias for Na/B-codoped

system is responsible for the observed nonlinear behavior of current above ∼ 1 V. Further

examination of T (E,V ) in Figs. 4.5(a) and 4.5(b) reveals an interesting phase shift

behavior between the Na/B-codoped and Li/B-codoped systems; the injection energy for

the maximum transmission in the Na/B-codoped system matches that of the minimum

transmission in the Li/B-codoped system. The expansion of the cage structure in the

Na/B-codoped system as compared to that in the Li/B-codoped system resulting in a path
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difference between the leads could possibly be the cause for the observed phase change in

the transmission.

4.5.4 Molecule-lead Coupling

Since the T (E,V ) is a unified feature that depends upon both the intrinsic properties of the

molecule and the electronic structure at the molecule-lead interface, we have investigated

the role of molecule-lead coupling to identify the origin of increase in T (E,V ) in codoped

systems. First, we recalculated the current at 1.99 V for the undoped carborane junction

using VLM and VMR extracted at 0.53 V, say I′. The ratio is then calculated between the

original current at 1.99 V and I′, which is found to be 0.27. A similar approach has been

adopted to evaluate the ratio for Li/B-codoped and Na/B-codoped systems. In the case of

the Li/B-codoped system, we recalculated the current at 1.93 V using the VLM and VMR

extracted at 0.53 V; in the Na/B-codoped system the current was recalculated at 1.85 V

using CL and CR extracted at 0.43 V. The ratio in current for the Li/B-codoped system

is found to be 0.73, while for the Na/B-codoped system it is 1.85. This unambiguously

suggests that the interfacial coupling changes significantly with increasing bias in the

codoped systems resulting in a giant change in conductivity (∼ an order in the case of

the Na/B-codoped system at ∼ 2 V).
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4.5.5 Charge Profile

To gain further insight, we have analyzed the Mulliken charge on each atom of the device

in equilibrium (VHIGH = VLOW ) and nonequilibrium conditions (VHIGH �= VLOW ). The

bias dependent charge profiles at the interfacial S atoms for undoped, Li/B-codoped,

and Na/B-codoped systems are summarized in Fig. 4.6. For the undoped system, at

equilibrium, both the terminal S atoms have the same charge. As the bias increases, the

left S atom steadily gains positive charge whereas the right S atom loses positive charge.

This bias induced polarization effect accounts for the valley and the hill at the terminal S

atoms in the observed potential profile of the undoped system (Fig. 4.3(a)). As expected,

due to structural asymmetry at the vertex position in the codoped systems, both the terminal

S atoms have different charges at equilibrium. The charge asymmetry at S atoms is much

more significant in the case of the Na/B-codoped system. Interestingly, in contrast to the

undoped system, the left S atom is found to lose positive charge while the right S atom

is found to gain positive charge with the increase in VSD in codoped systems. The charge

profile of S in the codoped systems is also reflected from the observed potential profile

described in Figs. 4.3(c) and 4.3(d). To unravel the role of alkali atoms in codoped systems,

we have also plotted the bias dependent Mulliken charge associated with the alkali atoms

as well as the total Mulliken charge associated withC1B11H10S2 in Figs. 4.7(a) and 4.7(b).

The charge in the charge axes is scaled by subtracting the respective charge obtained at

equilibrium condition. An intriguing feature is observed by inspecting the charge profile
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(Figs. 4.7(a) and 4.7(b)). First, we found the alkali atoms are positively charged, and the

negative charge is distributed overC1B11H10S2 in equilibrium. As bias increases, the alkali

atoms gain negative charge while C1B11H10S2 gains positive charge, suggesting prominent

charge transfer from the alkali atoms toC1B11H10S2 with the increase of bias.

It is important to mention that a similar charge transfer from the dopant atom to the host

has been observed in a recent experiment, where K atoms are doped into theC60 host [48].

In the case of the Li/B-codoped system, the loss of charge from Li atom is approximately

same as the charge gain by C1B11H10S2. In contrast, in the case of the Na/B-copdoped

system, the charge loss from Na is not equal to the charge gain byC1B11H10S2; charge loss

in Na is minimal. Further analysis suggests that there is a strong coupling between the Na

atom and the leads via S atoms. This explains the huge increase in current in the case of

the Na/B-codoped system. Since a single alkali atom primarily controls the current-voltage

characteristic in codoped system, we term this device as a single-atom-controlled device.

4.6 Conclusions

In summary, we have used a codoping model and a parameter free nonequilibrium Green’s

function approach in conjunction with the density functional theory to study the role of a

dopant atom in strongly coupled p-carborane junction. When compared to the undoped

system, at ∼ 2 V, we found an order of magnitude increase in the current value in the
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Na/B-codoped system. Comparing to the current value in the Li/B-codoped system, a

two fold increase in the current is observed at ∼ 2 V in the Na/B-codoped system; this

suggests that the single alkali atom dictates the electron flow in codoped junction. Further

analysis reveals that alkali atoms donate charge to the C1B11H10S2 host; the amount

of charge transfer varies with the applied bias. This research thus opens up the door

toward an ultimate limit of the miniaturization, where a single atom controls the device

characteristics.
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Figure 4.5: Bias dependent transmission as a function of injection energy at
(a)∼1 Volt, and (b)∼ 2 Volt; Fermi energy is set to zero in the energy scale;
dotted lines represent the chemical potential window. Reprinted figure with
permission from Subhasish Mandal and Ranjit Pati, Phys. Rev. B. 83
195420 (2011). c© The American Physical Society.
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Figure 4.6: Charge profile characterizing bias dependent polarization effect
on the terminal ‘S’ atoms. Reprinted figure with permission from Subhasish
Mandal and Ranjit Pati, Phys. Rev. B. 83 195420 (2011). c© The American
Physical Society.
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Figure 4.7: Charge profile characterizing bias dependent polarization effect
between the alkali atom and the cage (C1B11H10S2) in (a) Li/B-codoped,
and (b) Na/B-codoped junctions. Reprinted figure with permission from
Subhasish Mandal and Ranjit Pati, Phys. Rev. B. 83 195420 (2011). c© The
American Physical Society.
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Chapter 5

Electronic Structure and Transport

Properties in One-dimensional Nanowire

Portion of this chapter is copied from the Physical Review B, vol. 84, page - 115306, year

-2011 by Subhasish Mandal and Ranjit Pati and the Chemical Physics Letter, vol. 479,

page -244, year - 2009 by Subhasish Mandal and Ranjit Pati. Copyright - Appendix A and

Appendix B.
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5.1 Introduction

While the size of the conventional silicon based field effect transistor is inching

toward its fundamental limit of miniaturization, the quantum controlled, semi-conducting

nano-wire has emerged as one of the promising options to meet the physical challenges

imposed by quantum mechanics [92, 93]. One dimensional nanowires have become the

foremost candidates in building nano transistor, optoelectronic devices, nano sensors, nano

electrodes, and logic circuits [94, 95, 96, 97, 98, 99]. One of the key features that dictate

their suitability in these applications is their tunable electronic structure property and hence

their energy band gap. In recent years, IV-VI PbS hetero nanowire (NW) structures have

drawn considerable interest for their potential applications in optical switches [100, 101]

and solar cells [102, 103]. Controlled synthesis of PbS nanowires with diameters ranging

from 1.2 nm to 10 nm have been reported [104, 105, 106]. This presents exciting

opportunities to explore the tunable electronic structure property of this material in the

strong quantum confinement regime [107, 108, 109, 110, 111, 112]. PbS in the bulk phase

has a cubic close packed (CCP) structure with a near infrared direct band gap of 0.41 eV

at the L point [113]. Current photo luminescence study reveals a wide band gap for PbS

nanowires due to a higher degree of quantum confinement [104]. Before going to discuss

the electron transport properties in PbS nanowire junction, I would like to describe the

electronic structure properties of one dimensional pristine PbS nanowire and try to find

out the reason behind the observed phase transition from the first principles. This chapter
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is divided in two parts. First, we will discuss the electronic structure properties in PbS

nanowire followed and then will discuss the charge transport properties in PbS nanowire

junction.

5.2 Quantum Confinement Effect in PbS Nanowire

Despite the progress made in the last few years in the controlled synthesis of PbS

nanowires, no theoretical calculations have been reported on these systems to understand

the quantum confinement effect and the origin of the observed phase transition

phenomenon. We have made the first attempt to elucidate the tunable confinement effect in

the PbS nanowire as well as the origin of the phase transition from electronic structure

calculations. We have used the first principles density functional theory to study the

variation of the energy band gap (ΔEg) with the diameter of the PbS nanowire. By varying

the diameter(d) of the nanowire from ∼ 1.17 nm to ∼ 3.64 nm, the ΔEg is found to change

from 1.524 eV to 0.955 eV; this is substantially higher than the ΔEg of ∼ 0.4 eV observed

for the bulk PbS - clearly revealing the role of the quantum confinement. The reduced Pb-S

bond length in the∼1.17 nm diameter NW as compared to that in the∼ 3.64 nm wire leads

to a more confined charge density and is found to be responsible for the observed increase

in the ΔEg with the decrease of ‘d’ of the wire.
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5.2.1 Computational Methods

As atomic level structural details of the PbS NWs are not available a priori, we used the

CCP PbS structure as the guiding point and constructed the 1D nanowire in the observed

(200) growth direction. we selected two layers from the bulk structure with twelve Pb

atoms and twelve S atoms and placed them in a tetragonal unit cell with guess lattice

parameter c along the z-axis to construct the unit cell of the NW [115]. To avoid spurious

interaction between the NW and its periodic images in the x and y- directions, we have

taken a relatively large lattice parameter with a 0.72 nm of vacuum space along those two

directions. Subsequently, the NW structure is optimized. The optimum value of c is found

to be 0.60 nm. A similar procedure is used to obtain the equilibrium NW structure for the

other three NWs of d ∼ 1.98 nm, ∼ 2.80 nm, and ∼ 3.64 nm, containing 64, 120, and 192

atoms in the unit cell respectively. The optimum c value (0.60 nm) is found to be insensitive

to the diameter of the NW. The lattice parameter for the PbS nanowire of diameter ∼ 100

nm reported from a recent experiment [114] is∼ 0.597 nm, which is in excellent agreement

with our calculated value of 0.60 nm. The average distance between two Pb atoms or

two S atoms located at two corners of the optimized unit cell (shown in Fig. 5.1 by the

dotted line) is calculated, and the covalent radii of Pb and S are added appropriately to the

average distance to estimate the diameter of the NW [115]. We have used the plane wave

basis functions and periodic density functional approach using the generalized gradient

approximation (GGA) functional of PW91 for the exchange-correlation. The valence-core
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interaction is described by the projector-augmented wave (PAW) approach. Computations

are carried out using Vienna ab-initio simulation (VASP) code [87]. To determine the

optimized structure, we have used a 1× 1× 7 (4 irreducible k-points) k-point grid within

the Monkhorst-Pack (MP) scheme to sample the Brillouin zone. To check the accuracy and

convergence of our results, we have also performed structural optimizations of the NW by

using 1×1×8 and 1×1×11 k-point grids within the MP scheme. The relative difference

in cohesive energy by increasing the irreducible k-points from 4 to 6 is found to be 0.001 %

while the relative difference in band gap energy is 0.01 %. We consider the structure to be

optimized when the force on an individual atom is≤ 0.01 eV/ Å. The convergence criterion

for the energy during the self-consistent calculation is taken to be 10−6 eV. The energy cut

off for the plane wave basis is 280 eV. It is well known that the energy bandgap obtained

from the ground state Kohn-Sham approach does not represent the actual quasiparticle

gap measured in the experiment. Thus, it is important to discuss whether the many-body

correlation effect, which has been found to be significant for small diameter NW, affects

the ΔEg obtained from GGA based DFT. It has been shown in Si-nanowire that the energy

gap obtained using local density approximation (LDA) is significantly smaller than the

observed value, which can be corrected by using self-energy correction within the GW

approximation [116]. However, a recent Configuration Interaction (CI) based study in Si

nanocrystal suggests that excited state correction method does not make notable difference

as compared to the GGA based DFT [117]. In addition, numerous studies have also

confirmed the usefulness of DFT in predicting the trend of energy band gap in nanowires
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Figure 5.1: Structure of PbS nanowire of d ∼ 1.98 nm: Cross sectional
view of one unit cell in (200) direction. S, dark gray (red); Pb, light gray
(golden). Reprinted figure with permission from Subhasish Mandal and
Ranjit Pati, Chem. Phys. Lett. 479, 244 (2009). c© The Elsevier.

[118, 119, 120]. Thus, the trends in ΔEg that we have observed in PbS nanowire is not

expected to change

5.2.2 Results and Discussions

First, we performed energy band structure calculations for the PbS bulk structure to

calibrate our computational approach. We have used 21× 21× 21 k-point grid within the

MP scheme to sample the brillouin zone (BZ). The energy band diagram is summarized

in Fig. 5.2. One can notice from Fig. 5.2 that the PbS in the bulk phase is a direct

band gap semiconductor. The optimum lattice parameter is 5.98 Å. At the L-point the
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ΔEg is found to be 0.44 eV. This is in very good agreement with the 0.41 eV for ΔEg

reported from the experiment [113]. It should be noted that the use of 18×18×18 k-point

sampling within the MP scheme to sample the brillouin zone yields a gap of 0.42 eV at

the L-point, suggesting that convergence in ΔEg is achieved in our calculation with respect

to the number of k-points, adding further confidence in our results. As discussed in the

previous section, nanowires of different diameters are engineered along the observed (200)

growth direction and optimized.The cross sectional view of the optimized unit cell structure

from a representative nanowire of diameter ∼ 1.98 nm is shown in Fig. 5.1. First, we

comment on the stability. To infer the stability of the NW, we have calculated the cohesive

energy per atom (Ec) for each NW, which is summarized in Table 5.1. One notes from

Table 5.1 that the maximum difference in Ec between the bulk and the NW is ∼0.1 eV;

this suggests that the stability of the NWs are comparable to that of the bulk. As expected,

the difference in Ec between PbS nanowire and bulk PbS decreases as the diameter of the

nanowire increases. The difference in Ec between NW of diameter ∼ 3.64 nm and bulk

PbS is only ∼ 0.04 eV. Second, ΔEg (Table 5.1) is found to decrease as the diameter of

the NW increases. For a NW of diameter ∼ 1.17 nm, the energy band gap is found to

be 1.524 eV, which decreases to 0.955 eV for a NW with diameter ∼ 3.64 nm. More

importantly, we found a monotonic decrease in the energy band gap with an increase in

diameter. To develop an atomic level understanding of the observed change in ΔEg, we

analyzed the nearest neighbors’ bond length between Pb and S atoms within the x-y plane.

As the diameter decreases, the average nearest neighbor distance, l, between Pb and S is
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Figure 5.2: Electronic energy band structure for bulk PbS to calibrate
our computational approach with experiment. The Fermi level lies at E=0.
Reprinted figure with permission from Subhasish Mandal and Ranjit Pati,
Chem. Phys. Lett. 479, 244 (2009). c© The Elsevier.

found to decrease (Table 5.1), resulting in a more confined charge density. This higher

degree of quantum confinement for a smaller diameter NW is resulting in an increase in its

band gap.

Table 5.1
Calculated diameter (d), average Pb-S bond length (l), Ec, and ΔEg for PbS

NW.

d(nm) l (nm) Ec (eV) ΔEg(eV )
1.17 0.283 4.316 1.524
1.98 0.286 4.356 1.299
2.8 0.289 4.375 1.098
3.64 0.295 4.380 0.955
Bulk 0.299 4.426 0.44
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Figure 5.3: Electronic energy band structure for PbS nanowires with
different diameters. The Fermi level lies at E=0. Reprinted figure with
permission from Subhasish Mandal and Ranjit Pati, Chem. Phys. Lett. 479,
244 (2009). c© The Elsevier.

To show the diameter dependence of the energy bands, we have plotted the Kohn-Sham

energy bands for all four NWs in Fig. 5.3. For larger diameter NW, the minimum energy

point in the conduction band (CBM) and the maximum energy point in the valence band

(VBM) appear at the same k point. This confirms their direct band gap property as observed

in bulk PbS [115]. But when the diameter decreases, the CBM shifts towards the Γ-point,

resulting in an indirect band gap behavior. Furthermore, as expected, the degeneracy in

the energy bands is lifted as the diameter decreases. The conduction band is found to

be more sensitive to the decrease in diameter. It should be noted that, very recently, a

similar diameter dependence feature is found in tapered silicon nanowires [121, 119]. The
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wavefunction for the conduction band near the X-point is found to be S(s)-Pb(p) hybridized

for the NW with larger diameter. However, as the diameter decreases, the virtual 3d orbital

of the S contributes to the conduction band resulting in an indirect band gap feature.

5.2.3 Strain Induced Phase Transition

Now we turn our discussions toward the strain induced phase transition of the nanowire.

PbS nanowires of diameter ∼1.2 nm grown in Na-4 Mica channels have been found

to exhibit semiconducting to metallic phase transition at ∼ 300 K [105]. The thermal

expansion mismatch at the PbS and Na-4 Mica interface, producing ∼3 GPa pressure on

the nanowire, has been suggested as the cause for this phase transition. To replicate the

effect of radial pressure on the nanowire, we have applied uniform compressive radial strain

on a representative NW of diameter ∼1.98 nm. The NW is allowed to relax in the (200)

growth direction under radial strain. The % radial strain, ζ , is defined as: ζ = 100Δr
r0

,

where Δr = r0 − r; r and r0 are the radii of the nanowire with and without the radial

strain respectively. The energy band diagrams under different ζ are presented in Fig. 5.4.

One can clearly notice the semiconducting to metallic phase transition at ζ = 12%. The

conduction band, which has a contribution from the excited 3d orbital of S, is found to be

more sensitive to the compressive radial strain (CS) with the CBM shifting towards and

eventually crossing the Fermi energy with increasing CS. The contribution from the 3d

orbital of S at the CBM develops a bonding character in the part of the CB wavefunction
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Figure 5.4: (a) Electronic energy band structures for PbS nanowire with
d∼ 1.98 nm for different ζ s. The Fermi level lies at E=0. Reprinted figure
with permission from Subhasish Mandal and Ranjit Pati, Chem. Phys. Lett.
479, 244 (2009). c© The Elsevier.

resulting in the reduction of its energy under CS. A similar effect of shifting the conduction

band under compressive strain is noted in bulk Si [119]. The valence band, which is almost

dispersionless, develops ∼ 0.4 eV dispersion width under compressive radial strain. For

the NW with d ∼ 1.17 nm, the semiconducting to metallic phase transition occurs at about

ζ=13 %. To calculate the amount of pressure required for the phase transition, we have

plotted the relative deformation potential energy (E ) as a function of ζ in Fig. 5.5 for the

NW of diameter∼ 1.98 nm. The excellent parabolic behavior of E from Fig. 5.5 allows us

to use Hooke’s law to determine the coefficient for radial stiffness, Sr, which is defined as:

Sr = δ 2E
δ r2

1
2πz0

. z0 is the length of the unit cell (0.6 nm) at ζ = 0. From the second derivative
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of the deformation potential E, we have calculated the δ 2E
δζ 2 as 1.9692 eV. Subsequently, the

δ 2E
δ r2

is obtained by using the undeformed radius r0=0.988 nm. The Sr is found to be 857

GPa. To calculate the amount of pressure (P) required for the semiconducting to metallic

phase transition (ζ = 12%), we follow the simple relation P = Sr Δr
r that yields 102.8 GPa

for the value of P. For the NW of d ∼1.17 nm, using the same Sr, the P is found to be

111.4 GPa. These values are found to be higher than the reported pressure (∼3 GPa) for

the phase transition estimated using the bulk modulus (∼127 GPa) of PbS [105] . The

substantial difference between experiment and theory can be attributed to the lower bulk

modulus value [105] used to estimate P in the experiment. The use of the bulk modulus

∼ 127 GPa for Sr [105] in our calculation would yield P=15.2 GPa for d∼ 1.98 nm, and

P= 16.5 GPa for d∼ 1.17 nm. These are about five times greater than the experimentally

obtained P. In addition, the calculation reported here is for uniform, pristine, and defect

free PbS NWs, unlike the experimental case, where the PbS NWs are grown within the

Na-4 Mica channels in different directions.

5.3 Gate Field Induced Switching of Current in One

Dimensional Nanowire Junction

Now we will discuss the charge transport in PbS nanowire junction and investigate the

gate field induced switching of current. Field effect transistors (FET), whose main
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Figure 5.5: The variation of the relative deformation potential energy with
ζ . Reprinted figure with permission from SubhasishMandal and Ranjit Pati,
Chem. Phys. Lett. 479, 244 (2009). c© The Elsevier.

function is to switch source-drain current upon the application of gate field, have been

fabricated from semiconducting nano-wires (NW) and nano-crystal arrays [92, 93, 122];

the switching speed for such devices, in some instances, have been found to surpass that

of the conventional semiconductor-FET. Particularly, IV-VI [123, 124, 125, 122] semi

conducting nano-wires based FET devices have been shown to have huge conductivity

and high current gain, which are key requisites for an integrated circuit. The controlled

synthesis of these NWs with diameter ranging from 1.2 nm to 10 nm have been reported

[104, 105, 126]. Despite the rapid development on the experimental side, which provides
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an ample opportunity for theorist to test their models, only nominal theoretical efforts are

made to understand the quantum phenomenon that dictates current modulation in such

a nanowire junction (particularly NW of few nm dimension); thus far, no unswerving

interpretation exists. Since the dimension of the channel is in the nanoscale regime, the

electronic property and/or the field effect switching mechanism is expected to be different

than that of the conventional FET. Here, we present a first principles quantum transport

study in a strongly coupled, single PbS nanowire (PbSNW) junction (Fig. 5.6) to unravel

the mechanism responsible for the gate field induced switching of current. we have used

the same gold electrode to form the nanowire-lead junction as used in the experiment

[123, 124, 125, 127]. Particularly, here we try to answer several fundamental questions:

How does the gate field affect the intrinsic electronic structure of the nanowire? Can we

control the number of participating orbitals of the NW-channel via gate field? Which are

the orbitals that contribute to the conductance? Can we manipulate the shape of the orbital

via gating? and finally, is there a universal model that would explain the observed gate field

induced switching not only in PbSNW but also in other lead-chalcogenide nanowire?

5.3.1 Modeling the device

As discussed in Chapter 3 and Chapter 4, we have adapted the same single particle Green’s

function approach to investigate the gate field induced switching of current in a PbS

nanowire junction (PbSNW). The scattering region is comprised of a finite PbSNW of
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Figure 5.6: Schematic representation of a PbS nanowire junction; solid
arrows show the direction of the applied gate field. Reprinted figure with
permission from Subhasish Mandal and Ranjit Pati, Phys. Rev. B. 84
115306 (2011). c© The American Physical Society.

length ∼ 1.2 nm and diameter ∼1.17 nm; the second part is part of the lead that is strongly

coupled to the NW and is represented only by a finite number of gold atoms (five gold

atoms on each side), and the third part is the unperturbed electrode part which is assumed

to retain the bulk behavior of gold. The atomic level structural details for the finite part of

the PbSNW is taken from the optimized structure of an infinite NW, grown in the observed

(100) direction. The later structure having six Pb and six S atoms in each layer along the

growth direction with a lattice parameter of 6 Å was calculated using the periodic DFT

[115]. Only a five layer NW-structure along the growth direction is considered to build the

symmetric junction with the lead (Fig. 5.6). The atomic composition of the lead is taken

from the Au (100) surface to avoid the lattice mismatch at the NW-lead interface. To realize
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a strongly coupled junction between the NW and the lead, the interfacial distance is varied

to determine the optimum distance (2.80 Å) where the repulsive interaction is minimum.

The difference in modeling from the earlier cases is the inclusion of gate field together

with the source-drain field in our calculations. In the present case, the Hamiltonian of

the active region (NW+ finite lead) of the device is expressed as: H(�εd) = H(0) + �εd ·

∑i�ri + �εg ·∑i�ri, where H(0) is the Hamiltonian in the absence of electric field; �εd is the

applied dipole electric field along the axis parallel to the direction of current flow (z-axis),

and �ri is the coordinate of the ith electron; charging effect on the NW is considered by

including a finite part of the lead. The self-consistent inclusion of dipole interaction term

permits us to include both first and higher order Stark effects, which is also evident from

the comparison of total energy in the active region for different �εd; a non-linear change in

energy by increasing the strength of the �εd confirms the inclusion of higher order effects.

This intrinsic charge imbalance between the two leads is also reflected from the potential

profile summarized in Fig. 5.7. The relative electrostatic potential (REP) in Fig. 5.7 is

calculated by subtracting the average potential at each atomic site in a layer at the EB

condition from that at the NEB condition. A linear drop in the REP value along the wire

axis is noted. The magnitude of the potential drop at both the junctions are equal confirming

the NW-junction to be symmetric. A non linear change in the REP values with different

�εd elucidates the nonlinear response of the field. The REP values at the left and right

Au lead, which are assumed to be at same potential with semi-infinite electrodes on left

and right respectively, are used to calculate VL and VR. The electro chemical potentials
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at the two semi-infinite contacts are obtained as: μL,R = VL,R ∓ kBT [27, 28]. A small

thermal smearing term (∼ kBT ) in μL and μR takes into account the electronic temperature

at the contact in the NEB condition; the potential difference between source and drain

(Vsd) is then obtained from the difference of μL and μR. In order to simulate the effect of

electrostatic gating, we have included an additional dipole interaction term (�εg ·∑i�r(i))in

the Hamiltonian; the dipole field �εg is applied along the direction perpendicular to the

channel axis and is referred to as the transverse gate field in this article. In our calculation,

we have used a posteriori hybrid density functional method (B3LYP) that includes a portion

of the exact Hartree-Fock exchange. The LANL2DZ effective core potential basis set,

which includes scalar relativistic effect, is used to describe the Pb and Au atom in the

device; a triple zeta augmented by polarization function (6-311G*) basis set is used for

the S. Subsequently, we recourse to implicit bias-dependent Green’s function approach

[10, 28] to couple the finite NW to the infinite electrode via the finite self-energy functions;

coherent, single particle scattering formalism is used to calculate the electronic current.

5.3.2 Current-Voltage Characteristics

The calculated current-voltage (Isd-Vsd) characteristic for PbSNW as a function of εg is

summarized in Fig. 5.8. The strength of εg is mapped to the gate potential, Vg, by

calculating the potential drop self-consistently between the terminal atomic layers of the

NW along the direction of gate field. For Vg=0 V, a steady increase in current (Isd) is noted
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Figure 5.7: Electrostatic potential profile of the NW junction in the absence
of gate bias for two different Vsd . Reprinted figure with permission from
Subhasish Mandal and Ranjit Pati, Phys. Rev. B. 84 115306 (2011). c© The
American Physical Society

with the increase of Vsd . Changing the Vg from 0 V to -3.7 V, though an analogous linear

increase in Isd as a function of Vsd is observed, the magnitude of the current is found to

be higher (∼ 1.5 times at Vsd ∼ 0.7 V) for Vg=-3.7 V. A further change of Vg from -3.7 V

to -5.6 V reveals a considerable increase in Isd . Changing the Vg from -5.6 V to -7.6 V, a

non-linear feature in Isd is noted. The current at Vsd=0.74 is found to be 2.32 times higher

for Vg=-5.6 V than that for Vg=-3.7 V; increasing the negative gate potential from -5.6 V to

-7.6 V, 1.53 times higher current is found at Vsd ∼0.7 V. Thus comparing between Vg=0 V

and Vg=-7.6 V, ∼ 5 times increase in Isd is found at Vsd ∼0.7 V. To illustrate this behavior,

we have plotted Isd as function of Vg in the inset of Fig. 5.8; a fixed Vsd is used. First a
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Figure 5.8: Current-Voltage characteristics with different Vg for PbS
nanowire junctions. The insets show Isd-Vg plot for different Vsd . Reprinted
figure with permission from Subhasish Mandal and Ranjit Pati, Phys. Rev.
B. 84 115306 (2011). c© The American Physical Society

slow increase in current (OFF state) is noted till the value of Vg reaches a threshold value

(Vth
g ) of -3.7 V. After Vg=-3.7 V, a steep increase in current (ON state) is observed with the

increase of gate potential resulting in a large change in the slope of Isd −Vg.

The calculated ON/OFF current ratio value is found to be 6.28 at Vsd of 0.54 V between

Vg=0 V andVg=-7.6 V. A similar switching feature is also found in a PbSe NW junction. To

construct the device and to investigate the gate field induced switching phenomena in PbSe

nanowire junction, we have adopted the same approach as we discussed for PbS nanwire.

The calculated current-voltage (Isd-Vsd) characteristic for PbSe nanowire as a function of
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Figure 5.9: Current-Voltage characteristics with different Vg for PbSe
nanowire junctions. The insets show Isd-Vg plot for different Vsd . Reprinted
figure with permission from Subhasish Mandal and Ranjit Pati, Phys. Rev.
B. 84 115306 (2011). c© The American Physical Society

Vg is plotted in Fig. 5.9.

5.3.3 Which Density Functional to Choose?

It should be noted that the ON/OFF current ratio of ∼ 3.75 between Vg=0 V and Vg=-8

V at Vsd of 0.5 V is observed in a recent experiment, where a single PbS nanowire is

used as a channel. The magnitude of Isd reported in the experiment is in the nA range

in contrast to the ∼ μA current observed in our calculations. Several reasons could be
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attributed to the observed differences in Isd . First, in the experiment the channel length

and diameter were 103 and 150 nm respectively, where the diffusive transport could

be the prevalent mechanism. In contrast, we have considered the channel length and

diameter to be 1.2 nm and 1.17 nm for practical purposes. Considering an approximate

exponential decay in current with the length (l) for the nanowire used in the experiment

(∼ e−β l;β -decay constant), we would expect the measured current to be of the order of

μA for a few nm channel length, which has also been reported experimentally in single

PbSe semiconducting nanowire junction [124]. In addition, we have considered an ideal,

defect-free nanowire junction. The magnitude of higher current observed in our calculation

is also not surprising considering the use of static exchange and correlation potential instead

of the true dynamical exchange correlation corrected potential [74, 75, 72, 130]. However,

the consistent increase of calculated current upon increasing negative gate bias as observed

in the experiments [124, 127] reaffirms on the switching phenomenon replicated here.

To examine, whether the increase in magnitude of current is due to the use of an implicit

orbital dependent B3LYP functional approach, we have calculated the current in the same

device geometry using different exchange-correlation functional; same Gaussian basis sets

are used for all the calculations. Our results are summarized in Fig. 5.10. Though all

different functionals (SVWN, PW91PW91, PW91LYP) [65] yield similar current-voltage

characteristic, the magnitude of the current is found to be much higher (∼ 3 times at a

Vsd of ∼0.7 V) than that obtained with the B3LYP approach. An atomic self interaction

corrected DFT scheme yielding a lower conductance than the conventional DFT approach

81



�

�

�

�

��

��

��� ��� ��� ��� ��� ���

� �
�
��

�
�

�����

������	

�
���
���


����


����


�

�

Figure 5.10: Current-Voltage characteristics of PbSNW for different
exchange-correlation functionals at Vg=0 V. Reprinted figure with
permission from Subhasish Mandal and Ranjit Pati, Phys. Rev. B. 84
115306 (2011). c© The American Physical Society.

has been reported in a molecular junction [128]. The inclusion of part of the exact

exchange from the Hartree-Fock formalism in our posteriori B3LYP approach corrects

partly the self-interaction error that occurs in the conventional density functional method;

it represents a substantial improvement in the right direction as evident from the Vsd − Isd

curve (Fig. 5.10).
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5.3.4 Bias Dependent Transmission

To investigate the intriguing features in gate field induced current and to understand the

origin of the field effect behavior in PbSNW, we have calculated the bias dependent

transmission function as a function of injection energy(E) for different Vg(Fig. 5.11).

For brevity, we have only considered Vsd ∼0.76 V. First, the increase of area under the

transmission curve within the chemical potential window (CPW) with the increase of

negative gate bias confirms the observed increase of Isd with Vg (Fig. 5.8); the non-linear

increase in area explains the change of slope in Isd-Vg plot presented in the inset of Fig.

5.8. Analysis of eigenvalues of Hamiltonian for the NW reveals unoccupied levels (shown

in Fig. 5.11) contributes to the conduction. Increasing the Vg, the participating unoccupied

eigen-channel shifts in the direction of Fermi energy. ForVg=0 V, only L0 level contributes

to the T (E,V ) within the CPW. As Vg increases more unoccupied levels move into the

CPW, resulting in an increase in the density of states within the CPW. To quantify the

response of the gate field, we have plotted the Stark shift ( ε ig − ε i0; i-corresponds to

different unoccupied levels, εg and ε0 are respectively the orbital energy in the presence

and absence of gate field) as a function of Vg for different participating unoccupied levels

in Fig. 5.12. A significant Stark shift has been observed. Different levels exhibit different

shift, particularly at higherVg. A closer examination indicates a non linear increase of Stark

shift (Σiαiεi +
1
2Σi, jβi jεiε j + . . . ) with the increase of Vg.
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Figure 5.11: Bias dependent transmission function as a function of
injection energy for different gate bias at Vsd ∼ 0.6 V. The Fermi energy is
set to zero in the energy scale; dotted lines represent the chemical potential
window. Notation: L0, L1, L2, L3, and L4 refer to LUMO, LUMO+1,
LUMO+2, LUMO+3, and LUMO+4. Reprinted figure with permission
from Subhasish Mandal and Ranjit Pati, Phys. Rev. B. 84 115306 (2011).
c© The American Physical Society.

5.3.5 Orbital Analysis

Next, the natural question to ask is: How does the participating orbitals evolve with the

gate bias? Does it have any correlation with the observed increase in transmission in Fig.

5.11? To answer these subtle questions, we have analyzed participating MO coefficients in

the presence and absence of gate field. As expected, for Vg=0V, the MOs are symmetric

along the direction perpendicular to the wire axis (negative Y axis). Increasing the gate
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Figure 5.12: Stark shift as a function of gate bias. Notation: L0, L1,
L2, L3, and L4 refer to LUMO, LUMO+1, LUMO+2, LUMO+3, and
LUMO+4. A fixedVsd of∼ 0.6 V is used. Reprinted figure with permission
from Subhasish Mandal and Ranjit Pati, Phys. Rev. B. 84 115306 (2011).
c© The American Physical Society.

bias to -7.6 V, the symmetry of the wavefunction breaks along the negative Y axis; the

participating MOs localize in the same direction resulting the observed Stark shift (Fig.

5.12). A close inspection of the MO coefficients reveals that S atoms in the participating

MO have only s-components in the absence of gate bias. Increasing the gate bias beyond

the threshold value of -3.7 V, p-components develop at the S atoms due to the strong gate

field induced orbital mixing (Fig. 5.13). It should be noted that the Pb atom, which has

p-component prior to the application of gate field, does not exhibit such orbital evolution.

The p-components at the S atoms for the higher gate bias mediates inter-layer orbital
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Figure 5.13: Schematic representation of orbital controlled mechanism
for the PbSNW FET. In the ON state (Vg > Vth

g ), orbital mixing produces
p-component at the S atoms resulting in an inter-layer orbital interaction
along the channel (z) axis. The S-atom has only s-component in the OFF
state (Vg < Vth

g ). Reprinted figure with permission from Subhasish Mandal
and Ranjit Pati, Phys. Rev. B. 84 115306 (2011). c© The American Physical
Society.

interaction - allowing electron to delocalize along the channel axis (Fig. 5.13). This

explains unambiguously the origin of switching in conductance value observed in Fig. 5.8.

It is worth mentioning that very recently orbital gating has been observed in molecular

junctions [3].
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5.4 Conclusions

In summary, using the density functional approach we have probed for the first time the

variation of energy band gap in PbS nanowire with its diameter. we was able to tune the

ΔEg of the PbS nanowire from 0.955 eV to 1.524 eV by varying the diameter from ∼3.64

nm to∼ 1.17 nm. This ΔEg is substantially higher than the near infrared direct band gap of

0.41 eV observed for the bulk PbS. The compressive radial strain on the NWs is found to

have a significant effect on their electronic properties. A semiconducting to metallic phase

transition occurs at ζ= 12 % for a representative NW of d ∼ 1.98 nm. In addition, we

have also observed the strained NW to have an indirect band gap behavior in contrast to

the near direct band gap property of the NW. The conduction band of the NW, which has

a significant contribution from the excited 3d-orbital of S, is found to be more sensitive to

the compressive radial strain. The contribution from the 3d-orbital of S at the conduction

band minimum develops a bonding characteristic in the part of the CB wavefuntion,

resulting in an energy reduction under CS with the CBM shifting towards and eventually

crossing the Fermi energy. Thus, unambiguously, we have identified that the observed

phase transition in the recent experiment is due to the CS. The tuning of the electronic

structure and hence the bandgap in PbS NWs by varying the diameter of the NWs as well

as the external strain on the NWs opens up a new route for their potential applications

in nano electronics, optical switches, and solar cells. We present a new orbital-control

mechanism to explain the gate field induced switching of current in a semiconducting
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PbSNW junction. An implicit orbital dependent single particle Green’s function approach

that employ a self-interaction correction scheme is used to calculate the electronic current.

A comparative study using different exchange correlation functionals shows a quantitative

improvement in the magnitude of current for the self-interaction corrected scheme over the

conventional DFT. Both first and higher order Stark effects are included in our model. The

consistent increase of calculated current upon increasing negative gate bias as observed

in the experiment, and the similar orbital evolution in a PbSe nanowire junction upon

application of gate field reassure the validity of our generalized model, which can also be

used to understand switching of current in other lead-chalcogenide NW junctions. Thus, the

present work may serve as a guiding point in designing orbital-controlled nanowire-FET

for potential applications in new generation electronic circuit.
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Chapter 6

Spin Transport in Zero-dimensional

Molecular Junction

Portion of this chapter is copied from the ACS Nano, vol. 6, page - 3580, year -2012 by

Subhasish Mandal and Ranjit Pati. Copyright - Appendix C.

6.1 Introduction

A series of successful measurements of electron transport in molecular junctions in recent

years has inspired researchers to look for ways to exploit the quantum spin state of

the electron with intriguing possibilities of realizing a new paradigm in molecular scale
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electronics [4, 5, 6]. Typically, the spin relaxation time in an organic molecule, which

bridges two magnetic electrodes, is longer than the time of flight of the electrons from one

electrode to the other electrode. In addition, the chemical flexibility, low cost production

as well as the lack of spin-orbit and hyperfine coupling in small organic molecules leading

to a longer spin-coherence length make them ideal candidates for exploring coherent spin

conserved tunneling. Though spin transport in organic molecular spin valve junction has

been studied extensively [131, 132, 133, 134, 135, 136], several fundamental questions

remain elusive. For example, researchers have reported a positive sign [131] for the

magnetoresistance in contrast to a negative sign reported by other groups in the same

organic spin valve structure [134, 135, 136].

6.2 What Determines the Sign Reversal of Tunneling

Magnetoresistance?

In an organic spin valve device structure, where two ferromagnetic electrodes are

separated by an insulating or semi-conducting organic layer, the resistance of the circuit

depends upon the direction of magnetization at the electrodes. Usually, the device

resistance changes from minimal resistance for parallel magnetization (PC) to maximal

for anti-parallel magnetization (APC) between the contacts. This gives a positive sign

in the magnetoresistance. The negative sign in magnetoresistance arises when the
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device resistance in the case of parallel magnetization is higher than that obtained with

the anti-parallel magnetization between the electrodes. Using tris(8-hydroxyquinoline)

aluminum (Alq3) organic spacer between two ferromagnetic electrodes, several groups

[134, 135, 136] detected a negative sign in magnetoresistance in contrast to the positive

magnetoresistance reported by Barraud et al. [131] in the same spin valve structure.

These controversial findings have baffled researchers working in this field [137, 138]. The

origin of such anomalous behavior lies in the incomplete understanding of the electronic

structure details at the metal-molecule interface as well as the spin polarized electronic

structure of the spacer including the effect of bias. Considering the true quantum nature

of the problem involving spin state of the electron, first principles theoretical methods

are necessary to address this problem. However, there are only a few foremost first

principles works on spin transport in single molecular spin-valve junction have been

reported [59, 139, 140, 84, 85, 142]. In all of these works the spin-valve actions were

demonstrated only at zero bias or at a very small bias range (∼mV) or using zero-bias

spectra − leaving an open and challenging question on the efficiency of the spin-valve

when a relatively higher external bias is applied. In addition to the broken symmetry

wavefunction due to the opposite alignment of the magnetization at the two electrodes

in the anti-parallel configuration, how the external bias further affects the magnetic state is

a challenging task to probe within the density functional frame work.

Here, we have constructed a prototypical molecular spin-valve device by sandwiching

a planar-organic-molecule 1, 4-Diethynylbenzene between two nickel electrodes to
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investigate the bias dependent spin-valve action [143]. Particularly, we try to answer

several questions: What is the reason behind obtaining both positive and negative signs

in magnetoresistance for the same spin-valve device structure? How does external bias

affect the magnitude as well as the sign of the tunneling magnetoresistance(TMR)? The

bias dependent effects (first and higher order Stark effects) are explicitly incorporated in

our model. The calculations are carried out by using a first principles spin-polarized, orbital

dependent density functional theory (DFT). A parameter-free, single particle Green’s

function approach [86, 140, 84, 26, 25, 10] is used to calculate the spin-polarized electronic

current.

Our calculations reveal that by changing the interfacial distance (d) from its equilibrium

value of 2.06 Å to 2.00 Å (∼ 3%change), the sign of TMR changes from a positive to a

negative value. In the case of d=2.00 Å, the current in the APC is found to be significantly

higher than the PC, resulting in a negative sign in TMR. In contrast, a positive TMR is

observed for d=2.06 Å. The large increase in the number of participating eigenstates as

well as the change in their orbital character in the APC is found to be responsible for

the increase in current. In the APC, the occupied orbitals, which have significant Ni-d

character, contribute to the spin-polarized current at d=2.00 Å. On the contrary, at d=2.06

Å, unoccupied orbitals, which have only Ni-s and p character, take part in conduction.

This clearly suggests that a small change in interfacial distance, which may be generated

by thermal fluctuation in the experimental condition, could lead to a different sign in

TMR. Apart from this, we quantitatively present the magnetic proximity effect and its

92



Figure 6.1: Electron spin density plot for (a) parallel, and (b) anti-parallel
alignment of spins at the two electrodes. Red represents positive (up)
spin density and blue represents negative (down) spin density. Solid arrow
represents the direction of magnetization at the electrodes. Reprinted figure
with permission from Subhasish Mandal and Ranjit Pati, ACS Nano 6, 3580
(2012). c© The American Chemical Society.

bias dependent nature, which can be used to understand the unexpected magnetism often

observed [144] in organic materials that are in close proximity with magnetic substrates. At

the same time, this work provides a unique pathway to electrical manipulation of quantum

spin state, which would help understanding the newly-born “spinterface" science.
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6.3 Computational Details

We have used the thiol-substituted 1, 4-Diethynylbenzene (DTB) molecule to build a

prototypical spin-valve device. The geometry optimization for the molecule is performed

using by DFT, which involves Becke’s three-parameter hybrid functional (B3LYP) for

exchange-correlation [143]. A real space approach that employs the single determinant

many-body wave function is used here. A finite set of Gaussian atomic orbitals [65] is used

to construct the wavefunction. The use of real space approach allows us to understand the

physical details of transport process through some important quantities, such as spatial

distribution of potential, charge and spin densities. We have used all electron 6-311g

basis set to represent the atoms in the DTB. The spin-valve junction is constructed by

sandwiching the DTB between two ferromagnetic Ni electrodes. For the nickel atoms in the

electrode, We have used the LANL2DZ basis set that includes the scalar relativistic effects.

The thiolate (-S) anchoring group is used to attach the molecule between the electrodes

at the three-fold hollow site of the Ni (111) surface. It is important to mention that the

charge transport properties through this molecule have been investigated very recently by

attaching it between Au electrodes [145].

During self-consistent calculation, to ensure an extremely tight convergence, the

convergence criterion for energy, maximum, and root mean square electron density is

set at 10−10, 10−6, and 10−8 a.u. respectively. We have constructed a strongly-coupled
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Figure 6.2: Bias dependent exchange energy (EPC − EAPC) for the
spin-valve device with three interfacial distances (d). Reprinted figure with
permission from Subhasish Mandal and Ranjit Pati, ACS Nano 6, 3580
(2012). c© The American Chemical Society.

(chemically-bonded) junction. The interfacial distance (d), which is the distance from the

S-atom to the vertex of the triangle formed by the three Ni-atoms of the Ni(111) surface,

is varied for both PC and APC to determine the optimum distance where the repulsive

interaction is minimum. For both PC and APC, the optimum distance is found to be 2.06 Å.

The energy-distance graph yields a parabolic feature around the optimum distance. Since,

the metal-molecule interface is the integral part of the device [132, 146] that controls the

spin transport characteristics, We have considered three different spin-valve structures with

d of 2.00, 2.06, and 2.12 Å to investigate the junction dependent TMR. The active scattering
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region at equilibrium is described by the spin-unrestricted Kohn-Sham DFT that requires

the solution of an effective single particle Schrodinger-like equation,

Hσ (0)ψσ
i (�r) =

[−1
2∇2 +Vion(�r)+

∫
d3�r ρ(�r)

|�(r)−�r′| +Vσ
xc]×ψσ

i (�r) = Eσ
i ψσ

i (�r).

The terms in the bracket represent electron’s kinetic energy, ionic potential, coulomb

interaction, and the exchange-correlation potential, respectively. The exchange-correlation

potential is expressed in terms of the hybrid functional as: Vσ
xc(�r) =

δEB3LYP
xc [ρ↑,ρ↓]

δρσ ,

where σ =↑,↓ and ρ(�r) = ρ↑ + ρ↓; ρσ = ∑i n
σ
i |ψσ

i (�r)|2. Here nσ
i is the occupation

number of the spin-dependent Kohn-Sham orbital ψσ
i . It is important to mention that

a true dynamical spin-polarized exchange-correlation potential could better represent the

transport properties in a molecular junction [75, 129]. However, considering the complexity

of the present problem in dealing with bias-dependent spin-polarized electronic current in

a chemically bonded junction, ground-state-based DFT would be a good approximation

[140, 79, 80, 82, 83, 29].

To investigate the spin-transport properties in the DTB molecular spin-valve junction, we

have used spin-dependent single-particle Green’s function approach which is described in

detail in the section 2.5 of Chapter2.
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Figure 6.3: Schematic representation of spin-profile along the wire axis for
both the parallel and anti-parallel configurations; up(down) arrows refer to
the positive (negative) magnetic moment. Reprinted figure with permission
from Subhasish Mandal and Ranjit Pati, ACS Nano 6, 3580 (2012). c© The
American Chemical Society.

6.4 Results and Discussions

6.4.1 Spin Density & Energetics

In Fig. 6.1, we present calculated spin densities of the device at equilibrium for both PC and

APC [143]. For the parallel spin configuration, the total magnetic moment at each electrode

is found to be ∼3 μB. While for the APC it is found to be ∼3 μB at one electrode and ∼-3

μB at the opposite electrode. Next, we calculate the exchange energy (Eex) i.e the energy
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difference between PC and APC(EPC − EAPC) of the extended system. At equilibrium

(VSD=0V), Eex is found to be -0.0299 meV with APC to be lower in energy than PC. This

value is comparable to the energy difference reported earlier in carbon-based molecular

spin-valve junctions [59, 85]. The analysis of spin density distribution in the extended

molecule for parallel and anti-parallel configurations (shown in Fig. 6.3) suggests that the

stability of the anti-parallel magnetic state is dictated by the super exchange interaction.

The bias-dependent Eex for all three interfacial distances are plotted in Fig. 6.2. They all

found to exhibit similar behavior in Eex upon applied bias. For a bias range from 0 to∼ 1 V,

the Eex shows a small oscillation. After 1 V, a sudden drop in Eex (∼ 30 meV) is observed.

It clearly suggests that the anti-parallel configuration becomes more stable after VSD ∼ 1V.

The enhanced stability of the anti-parallel spin state after 1 V can be ascribed to the stronger

super-exchange interaction caused by the observed equal increase in the magnitude of the

magnetic moment at the Nickel site. In contrast, in the parallel magnetic configuration, the

increase of bias beyond 1 V makes the spin distribution asymmetric at the two electrodes

(magnitude of the magnetic moments at two electrodes are slightly different) resulting in a

decrease in stability. This study thus confirms the manipulation of spin state at the junction

by applied bias -a prerequisite for a spin-engineered device.
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6.4.2 Magnetic Proximity

When a metallic lead is coupled with a semiconducting molecule, the metallic property

of the lead transfers to the semiconducting molecule. Likewise, when a ferromagnetic

lead is in close proximity with a non-magnetic material, the non-magnetic material gains

some magnetic property due to exchange interaction. This is referred to as magnetic

proximity effect [147], which plays an important role in spin injection. In our spin-valve

structure, a ferromagnetic lead is in contact with a non-magnetic DTB molecule, allowing

the molecular spacer to gain some magnetic property due to proximity effect. How

the spin distribution in the non-magnetic molecular spacer, for parallel and anti-parallel

spin configuration at the electrodes, is affected by this proximity effect is a challenging

question. The other important questions are: How does the applied bias affect the spin

distribution in the non-magnetic molecular spacer? How does a change in interfacial

distance affect the magnetic character of the spacer? To answer these questions, we looked

at the bias dependent acquired magnetic moment of the molecular spacer (Mμ ) in parallel

and anti-parallel configurations for three different interfacial distances. In the parallel

configuration (Fig. 6.4a), for all three different ds, a similar evolution of Mμ with applied

bias is noted. As expected, for a larger d, the acquired magnetic moment is found to be

smaller. For example, at equilibrium (VSD=0V), for d=2.00, 2.06, and 2.12 Å, the Mμ

is found to be 0.102, 0.088, and 0.074 μB, respectively. It is important to note that, in

recent experiments, a magnetic moment of 0.05 μB per carbon atom was found in C/Fe
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multi-layered system [148] and in meteorite graphite [144]. Further inspection of Fig. 6.4a

reveals that an increase in applied bias from 0V to ∼1.2 V results in a decrease in Mμ ; a

subsequent increase in bias has almost no effect onMμ .

In the case of APC (Fig. 6.4b), as the magnetic moments at the two electrodes are equal and

opposite in sign, there is a zero net gain in magnetic moment of the spacer at equilibrium

(Fig. 6.3); the atoms in the vicinity of the Ni-electrode having a positive (negative) value of

magnetic moment, gain a positive (negative) magnetic moment. For d=2.06 and 2.12 Å, the

Mμ is found to be negative when a finite bias is applied; while for d=2.00 Å, the acquired

magnetic moment is found to be positive. For all interfacial distances, the magnitude of

the Mμ steadily increases for a bias range of 0 to ∼1.2 V. Analogous to the PC, a further

increase in applied bias yields almost no effect on the spacer magnetic moment. The origin

of such intriguing behavior can be unraveled by understanding the orbital hybridization at

the metal-molecule junction. Since the frontier orbitals dictate the electronic and magnetic

properties, we have plotted the highest occupied molecular orbitals for the spin up and spin

down states in the extended molecule (Fig. 6.5). Several remarks are in order.

First, for PC, the strong orbital hybridization between Ni and the spacer molecule is

found for the spin up state at equilibrium, resulting in a positive magnetic moment in the

molecular spacer. As the bias is applied, the symmetry of the wavefunction breaks and

the molecular orbital starts to localize in the direction of the electric field; this leads to a

decrease in Mμ . Increasing the bias beyond 1.2 V yields almost no change in the strength
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of the hybridization between Ni and the molecular spacer. This explains the flat nature of

the magnetic moment after VSD ∼1.2 V. It is important to note that for the PC, the spin

down state does not evolve with the bias. Next, turning to the APC, at equilibrium, the

contribution from the spin up and spin down states (Fig. 6.5) cancels out, resulting in

a net magnetic moment of zero for all three interfacial distances. However, the change

in interfacial distance is found to have a significant effect on the bias-dependent orbital

evolution. For d = 2.06 Å, the spin down states evolve with the increase of bias. In contrast,

for d=2.00 Å, the spin up states evolve. This explains the positive value for Mμ at d=2.00

Å and the negative value for Mμ at d=2.06 Å. A closer inspection reveals that the strength

of hybridization between Ni and the molecule increases with the increase in bias up to

∼1.2 V. This leads to an increase in the magnitude of Mμ with bias. Increasing the bias

beyond 1.2V does not affect the strength of hybridization, and hence Mμ remains almost

unchanged.

6.4.3 Current-voltage

Next, we turn our discussions to current-voltage (I-V) characteristics of the molecular

spin-valve device for three different interfacial distances. The current is calculated within

the coherent and spin conserved tunneling limit [143]. The results are summarized in Fig.

6.6. Total current for both PC (IPC) and APC (IAPC) is obtained by adding the currents for

the spin-up and spin-down states. The contribution to the current from the spin up and spin
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down states is almost identical in the case of APC; while for the PC, the spin up contribution

is higher than that for the spin down states for all three different ds. A non-linear feature in

I-V is noticeable for all three different ds.

From Fig. 6.6, a similar trend in I-V is noted for d=2.06 and 2.12 Å; the current in the PC

is found to be higher than the APC. For d =2.00Å, the current in PC is found to be higher

than the APC only for a small bias range of 0 to ∼ 0.25 V; after 0.25 V, with increasing

bias, the IAPC is found to be significantly higher than the IPC. A closer examination reveals

the IAPC depends sensitively on the interfacial distance. By changing the d from 2.06 to

2.00 Å, the current in the APC is found to increase by ∼4 times at ∼ 1 V. In contrast, for

the PC, the change in d from 2.06 to 2.00 Å yields a decrease in current by 0.86 times.

6.4.4 Tunneling Magnetoresistance

To quantify the spin-valve action in detail, we calculate the TMR as: TMR= IPC−IAPC
(IPC+IAPC)/2×

100%. Fig. 6.7 shows TMR as a function of bias voltage for three different interfacial

distances. As noted from Fig. 6.6, spin-valve structures with d=2.06 and 2.12 Å yield

a similar characteristic in TMR; TMR is positive and the magnitude of TMR is found to

decrease with an increase in bias up to 1.25 V and then remains flat. For d =2.00 Å, TMR

is found to be positive only for a bias range of 0 to ∼0.25 V; a subsequent increase in bias

yields a negative TMR which remains flat after VSD∼ 1.25 V. For example, at VSD =1.00 V,
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the TMR for d=2.00 Å is -113.6%, while for d=2.06 Å the TMR is + 22.39%. The similar

bias-dependent behavior is also noted in Fig. 6.4 where the acquired magnetic moment of

the molecule remains almost flat after VSD ∼1.2 V.

6.4.5 Transmission

To gain deeper insight into the origin of sign reversal in TMR, we calculated spin-polarized

bias dependent transmission for three different interfacial distances. Since both d=2.06

and 2.12 Å show similar trends in TMR, we present spin-polarized transmission for the

contrasting cases i.e for d=2.00 and 2.06 Å in Fig. 6.8. For brevity, we have presented our

results at VSD ∼ 1V. The dotted lines represent the chemical potential window (CPW). In

the case of d=2.06 Å, the spin up transmission for PC is higher than for APC. This gives a

higher net transmission (sum of spin up and spin down transmission) in PC than in APC.

For example, with d =2.06 Å, at injection energy (E) = -0.45 eV, the total transmission for

PC is 0.185, while the transmission for APC is 0.150. This explains the observed higher

current for PC than APC at d=2.06 Å(Fig. 6.6(a)) resulting in a positive TMR (Fig. 6.7).

Next, we discuss the transmission for d = 2.00 Å. We notice that the spin up and spin down

transmission for the PC is significantly smaller than that for APC. The total transmission at

E=-0.45 eV for PC is 0.159 and for APC is 0.704. This ∼4 times increase in transmission

for APC is attributed to the ∼ 4 times increase in current at ∼1 V for APC (Fig. 6.6(c)).
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Now, a natural question arises: What causes the transmission to behave differently for

different ds? To understand this, we looked at the eigen-channels that contribute to the

transmission within the CPW. For APC, the number of eigen-channels within the chemical

potential window increases significantly as we change the d from 2.06 to 2.00 Å. For

d=2.06 Å, mainly frontier unoccupied levels having Ni (s,p) characters contribute to the

conduction; while for d=2.00 Å, all the participating orbitals for APC are found to be

occupied with a significant Ni-d character. This suggests that a small change in intefacial

distance can have a significant effect on the electronic structure of the device, which could

lead to the observed sign reversal in TMR.

6.4.6 Molecule-lead Coupling

Since the conduction in molecular spin-valve junction not only depends on the electronic

structure of the molecular spacer but also on the electronic structure at the metal-molecule

interface, we looked at the role of molecule-lead coupling on electronic current to discern

the junction effect [143]. We recalculated the IPC at 1.0 V for d =2.00 Å (where the TMR

is found to be negative) using Vσ
LM and Vσ

MR (eq. 2.43) extracted from APC at the same

bias. The spin up current in the PC changes from 2.896 to 3.432 μA, while the spin down

current changes from 0.923 to 7.972 μA; this leads to an increase in total current of ∼3

times. Similarly, we recalculated the current for the PC for d =2.06 Å (where the TMR

is found to be positive) using Vσ
LM and Vσ

MR extracted from the APC at the same bias, for
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the spin up and spin down state, respectively. the total current is found to decrease. This

clearly reflects that a small change in interfacial distance can have a significant effect on

the molecule-lead coupling and hence on the escape rate of the electrons.

6.5 Conclusions

We have studied spin-polarized transport properties in a prototypical spin-valve junction,

which is constructed by sandwiching a 1, 4-Diethynylbenzene planar, organic molecule

between two nickel electrodes. A spin-unrestricted, orbital dependent density functional

theory in conjunction with a single particle Green’s function approach is used to calculate

the spin-polarized current. Bias effects are explicitly included in our calculations. Our

calculation shows a small change of ∼3% in metal-molecule interfacial distance can alter

the sign of tunneling magnetoresistance in a molecular spin-valve device. The current in the

APC is found to be strongly affected by the change in the interfacial distance. The higher

current in the APC for certain d is attributed to the increase in the number of eigen-channels

with significant Ni-d characters. Thus, this work not only provides an explanation for the

sign reversal of TMR in a molecular tunnel device at the electronics structure level but it

also opens up a new pathway for orbital manipulation in molecular spintronics.
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(b)

Figure 6.4: Bias dependent magnetic moment of the molecular spacer for
(a) parallel, and (b) anti-parallel alignment of spins at two electrodes.d refers
to the interfacial distance. Reprinted figure with permission from Subhasish
Mandal and Ranjit Pati, ACS Nano 6, 3580 (2012). c© The American
Chemical Society.
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Figure 6.5: Bias dependent molecular orbital for HOMO; panel in green
shows molecular orbital for spin up states while panel in red shows for spin
down states. Reprinted figure with permission from Subhasish Mandal and
Ranjit Pati, ACS Nano 6, 3580 (2012). c© The American Chemical Society.
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(c)

Figure 6.6: Current-voltage characteristics for the parallel and anti-parallel
configurations with d = (a) 2.06, (b) 2.12, and (c) 2.00 Å. Reprinted figure
with permission from Subhasish Mandal and Ranjit Pati, ACS Nano 6, 3580
(2012). c© The American Chemical Society.
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Figure 6.7: Bias dependent tunnel magnetoresistance for three interfacial
distances (d). Reprinted figure with permission from Subhasish Mandal and
Ranjit Pati, ACS Nano 6, 3580 (2012). c© The American Chemical Society.
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(b)

Figure 6.8: Bias dependent transmission function for d = (a) 2.06
and (b) 2.00 Å. The Fermi level lies at E=0. The dotted lines show
the chemical potential window. H0,H1,H2,H3,H4,H5,H6,H7,H8 represent
HOMO, HOMO-1, HOMO-2, HOMO-3, HOMO-4 HOMO-5, HOMO-6,
HOMO-7, and HOMO-8, respectively. L0 and L1 represent LUMO and
LUMO+1, respectively. Reprinted figure with permission from Subhasish
Mandal and Ranjit Pati, ACS Nano 6, 3580 (2012). c© The American
Chemical Society.
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Chapter 7

Summary

In this chapter, I summarize the finding of the projects that compiled this dissertation.

We have used a DFT-based single particle Green’s function approach, which involves

B3LYP functional for exchange-correlation. The use of explicit orbital dependent B3LYP

functional allows us to include a part of the exact Hatree-Fock exchange and thus

corrects partly the self-interaction error. we have shown this partly self-interaction

corrected scheme can yield a lower current value that is in better agreement with the

experimentally measured current, when compared with the calculated current obtained

using other functionals (SVWN, PW91PW91, PW91LYP). First, we investigated transport

properties in single molecular junctions. We studied a new codoping approach in a

single molecular carborane junction, where a cation and an anion are simultaneously

doped to find the role of a single atom in the device. The main purpose was to build a
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molecular junction where a single atom can dictate the flow of electron in a circuit. When

compared to the undoped system, at ∼ 2 V, we found an order of magnitude increase

in the current value in the Na/B-codoped system. Comparing to the current value in

the Li/B-codoped system, a two fold increase in the current is observed at ∼ 2 V in

the Na/B-codoped system; this suggests that the single alkali atom dictates the electron

flow in codoped junction. Further analysis reveals that alkali atoms donate charge to

the C1B11H10S2 host; the amount of charge transfer varies with the applied bias. This

research thus opens up the door toward an ultimate limit of the miniaturization, where a

single atom controls the device characteristics. Subsequently, we studied the electronic

structure properties of this nanowire and investigated the quantum confinement effect by

calculating the bandgap of PbS nanowires with different diameters. We found the bandgap

decreases as we increase the diameter -confirming the quantum confinement effect in PbS

nanowire. Subsequently, we found the explanation of an observed phase transition of

this nanowire. By calculating the bandgap of the nanowire under uniform radial strain,

we found the compressive radial strain on the nanowire is responsible for the metallic

to semiconducting phase transition. Next, we used this nanowire to build a field effect

transistor. The goal was to model a nanowire field effect transistor and to understand the

gate-field induced switching phenomena. A new orbital-control mechanism to explain

the gate field induced switching of current in a semiconducting PbSNW junction has

been proposed in this dissertation. This mechanism can be used to understand the gate

field induced switching not only in PbS nanowire but also in other lead chalcogenides
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nanowire. Next, the focus was turned to the spin transport in single molecular junction.

We have studied spin-polarized transport properties in a prototypical spin-valve junction,

which is constructed by sandwiching a 1, 4-Diethynylbenzene planar, organic molecule

between two nickel electrodes. A spin-unrestricted, orbital dependent density functional

theory in conjunction with a single particle Green’s function approach is used to calculate

the spin-polarized current. Bias effects are explicitly included in our calculations. Our

calculation shows a small change of ∼3% in metal-molecule interfacial distance can alter

the sign of tunneling magnetoresistance in a molecular spin-valve device. The current in the

APC is found to be strongly affected by the change in the interfacial distance. The higher

current in the APC for certain d is attributed to the increase in the number of eigen-channels

with significant Ni-d characters. Thus, this work not only provides an explanation for the

sign reversal of TMR in a molecular tunnel device at the electronics structure level but it

also opens up a new pathway for orbital manipulation in molecular spintronics.

113





References

[1] G. E. Moore, Electronics, 38, 8 (1965).

[2] A. Aviram, and M. A. Ratner, Chem. Phys. Lett. 29, 277 (1974).

[3] H. Song, Y. Kim, Y. H. Jang, H. Jeong, M. A. Reed, T. Lee, Nature 462, 1039 (2009).

[4] M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, J. M. Tour, Science 278, 252 (1997).

[5] B. Xu, N. J. Tao, Science 301, 1221 (2003).

[6] J. Zhou, F. Chen, B. Xu, J. Am. Chem. Soc. 131, 10439 (2009).

[7] N. J. Tao, Nature Nanotechnology 1,173 (2006).

[8] J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Science 286, 1550 (1999).

[9] S. Sahoo, T. Kontos, J. Furer, C. Hoffmann, M. Graber, A. Cottet, and C.

Schonenberger, Nat. Phys. bf 1, 99 (2005).

[10] R. Pati, M. McClain, A. Bandyopadhyay. Phys. Rev. Lett. 100, 246801 (2008).

115



[11] K. Burke, R. Magyar, The ABC of DFT "http://dft.uci.edu/sites/default/files/g1.pdf"

[12] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos, Rev. Mod.

Phys. 64, 1045 (1992).

[13] R. E. Cohen, Nature, 358, 136 (1992).

[14] R. Pati, Theory of Electronic Structures and Nuclear Quadrupole Interactions in

Molecular Solids and Semiconductors Surfaces. Doctoral Thesis, State University of

New York at Albany, 23, 1998.

[15] P. Panigrahi, Controlling Electronic and Magnetic Properties of Ultra Narrow

Multilayered Nanowires.Doctoral Thesis, Michigan Technological University. 13-39,

2009.

[16] M. Born, J. R. Oppenheimer, Ann. Physik. 84, 457 (1927).

[17] R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules ( Oxford

University Press, Oxford, England, 1989).

[18] H. Toffoli,Online lecture notes "http://www.physics.metu.edu.tr/ hande/teaching/741.html".

[19] A. Szabo, N. S. Ostlund,Modern Quantum Chemistry ( Dover Publishingm Mineola,

New York, 1996).

[20] P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964).

[21] W. Kohn, L. J. Sham, Phys. Rev. 140, A1133 (1965).

116



[22] W. Kohn, Rev. Mod. Phys. 71, 1253 (1992).

[23] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

[24] A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

[25] M. Di Ventra, Electrical Transport in Nanoscale Systems, (Cambridge, New York,

2008).

[26] S. Dutta, Electron Transpot in Mesoscopic System ( Cambridge University Press,

Cambridge, England, 1997).

[27] S. Mandal, and R. Pati, Phys. Rev. B 83, 195420 (2011).

[28] P. Pal, R. Pati, Phys. Rev. B 82, 045424 (2010).

[29] S. Mandal, R. Pati, Phys. Rev. B 84, 115306 (2011).

[30] B. G. Johnson, P. M. W. Gill, J. A. Pople, D. J. Fox, Chem. Phys. Lett. 206, 239

(1993).

[31] J. M. Seminario, J. Phys. B: At. Mol. Opt. Phys. 40, F275-F276 (2007).

[32] I. P. Batra, Solid State Commun. 124, 463 (2002).

[33] R. Landauer, IBM J. Res. Dev. 1, 223 (1957).

[34] R. Landauer, J. Phys. Cond. Matt. 1, 8099 (1989).

[35] P. P. Pal, Quantum Transport in a Single Molecular Junction, Doctoral Thesis,

Michigan Technological University. 26-33, 2011.

117



[36] G. D. Mahan, Many-Particle Physics ( Kluwer Academic/Plenum Publishers, New

York, 2000).

[37] M. Galperin, M. A. Ratner, and A. Nitzan, Nano Lett. bf 5, 126, 2005.

[38] S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, D. J. Norris Nature 436,

91 (2005).

[39] D. J. Norris, A. L. Efros, S.C. Erwin, Science 319, 1176 (2008).

[40] M. -H. Du, S. C. Erwin, A. L. Efros, Nano Lett. 8, 2878 (2008).

[41] A. P. Alivisatos, Science 271, 933 (1996).

[42] O. Seitz, A. Vilan, H. Cohen, C. Chan, J. Hwang, A. Kahn, C. Cahen, J. Am. Chem.

Soc. 129, 7494 (2007).

[43] X. Zhong, R. Pandey, A. R. Rocha, S. P. Karna, Phys. Chem. Lett. 1, 1584 (2010).

[44] M. J. Rosseinsky, A. P. Ramirez, S. H. Glarum, D. W. Murphy, R. C. Haddon, A. F.

Hebard, T. T. M. Palstra, A. R. Kortan, S. M. Zahurak, A. V. Makhija, Phys. Rev. Lett.

66, 2830 (1991).

[45] A. F. Hebard, M. J. Rosseinsky, R. C. Haddon, D. W. Murphy, S. H. Glarum,T. T. M.

Palstra, A. P. Ramirez, A. R. Kortan, Nature 350 , 600 (1991).

[46] K. Holczer, O. Klein, S. -M. Huang, R. B. Kaner, K. -J Fu, R. L. Whetten, F.

Diederich, Science 252, 1154, (1991).

118



[47] S. P. Kelty, C. -C. Chen, C. M. Lieber, Nature 352, 223 (1991).

[48] R. Yamachika, M. Grobis, W. M. F. Crommie, Science 304, 281 (2004).

[49] S. R. Schofield, N. J. Curson, M. Y. Simmons, F. J. Rueβ , T. Hallam, L. Oberbeck,

R. G. Clark, Phys. Rev. Lett. 91, 136104 (2003).

[50] P. F. H. Schwab, M. D. Levin, J. Michl, Chem. Rev.99, 1863 (1999).

[51] J. R. Heath, M. A. Ratner, Phys. Today 56, 43 (2003).

[52] L. I. Zakharkin, A. L. Kovredov, Zh. Obshch. Khim. 44, 1840 (1974).

[53] L. I. Zakharkin, A. L. Kovredov, Izv. Akad. Nauk. SSR, Ser. Khim. 1428 (1973).

[54] X. G. Yang, W. Jiang, C. B. Knobler, M. F Hawthorne, J. Am. Chem. Soc. 114, 9719

(1992).

[55] J. Muller, K. Base, T. F. Magnera, J. Michl, J. Am. Chem. Soc. 114, 9721 (1992).

[56] A. Franken, C. A. Kilner, J. D. Kennedy, Chem. Commun. 3, 328 (2004).

[57] R. N. Grimes, J. Chem. Educ. 81, 658 (2004).

[58] S. Morandi, S. Ristori, D. Berti, L. Panza, A. Beccioloni, G. Martini, Biochim.

Biophys. Acta-Biomembranes. 1664, 53 (2004).

[59] R. Pati, A. C. Pineda, R. Pandey, S. P. Karna, Chem. Phys. Lett. 406, 483 (2005).

[60] W. D. Jemmis, M. M. Balakrishnarajan, J. Am. Chem. Soc. 122, 7392 (2000).

119



[61] J. M. Oliva, L. Serrano-Andres, D. J. Klein, P. v. R. Scheleyer, J. Michl, Int. J.

Photoenergy. 2009, 292393 (2009).

[62] L. Serrano-Andres, J. M. Oliva, Chem. Phys. Lett. 432, 235 (2006).

[63] W. Zhu, X. Qiu, V. Iancu, X. -Q. Chen, H. Pan, W. Wang, N. M. Dimitrijevic, T. Rajh,

H. M. Meyer, M. P. Paranthaman, G. M. Stocks, H. H. Weitering, B. Gu, G. Eres, Z.

Zhang, Phys. Rev. Lett. 103, 226401, (2009).

[64] R. G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules ( Oxford,

Science, 1994).

[65] GAUSSIAN 03, Gaussian Inc., Pittsburg, PA, 2003.

[66] J. Zhou, F. Hagelberg, Phys. Rev. Lett. 97, 045505 (2006).

[67] F. Evers, K. Burke, Nano and Molecular Electronics Handbook (CRC Press, 2007).

[68] P. Delaney and J. C. Greer, Phys. Rev. Lett. 93, 036805 (2004).

[69] G. Fagas, P. Delaney, J. C. Greer, Phys. Rev. B 73, 241314 (2006).

[70] I. Lindgren, J. Morrison, Atomic Many Body Theory edited by Lambropoulos and H

Walther,( Berlin, Springer, 1985).

[71] K. S. Thygesen, A. Rubio, Phys. Rev. B 77, 11533 (2008)

[72] N. Sai, M. Zwolak, G. Vignale, M. D. Ventra, Phys. Rev. Lett. 94, 186810 (2005).

[73] C-L. Cheng, J. S. Evans, T. V. Voorish, Phys. Rev. B 74, 15112 (2006).

120



[74] F. Evers, F. Weigend, M. Koentopp, Phys. Rev. B 69, 235411 (2004).

[75] E. Runge and E. K. U. gross, Phys. Rev. Lett. 52, 997 (1984).

[76] K. Burke, R. Car, and R. Gebauer, Phys. Rev. Lett. 94, 146803 (2005).

[77] X. Gonze and M. Scheffler, Phys. Rev. Lett. 82, 4416 (1999).

[78] J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 245407 (2001).

[79] M. Brandbyge, J. L. Mozos, P. Ordejon, J. Taylor, K. Stokbro, Phys. Rev. B 65,

165401 (2002).

[80] Y. Xue, S. Datta, M. A. Ratner, J. Chem. Phys. 115, 4292 (2001).

[81] M. Di Ventra, S. T. Pantelides, and N. D. Lang, Phys. Rev. Lett. 84, 979 (2000).

[82] W. Su, J. Jiang, W. Lu, and Y. Luo, Nano. Lett. 6, 2091 (2006).

[83] G. C. Solomon, C. Herrmann, T. Hansen, V. Mujica, M. A. Ratner, Nature Chem. 2,

223 (2010).

[84] A. R. Rocha, V. M. Garcia-suarez, S. W. Bailey, C. J. Lambert, J. Ferrer, S. Sanvito,

Nature Mat. 4, 335 (2005).

[85] R. Pati, L. Senapati, P. M. Ajayan, S. K. Nayak, Phys. Rev. B 68, 100407 (2003).

[86] A. Nitzan, M. A. Ratner, Science 300, 1384 (2003).

[87] Vienna ab initio Simulation Package, Technische Universität Wien, 1999; G. Kresse,

J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

121



[88] Y. Meir, N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).

[89] R. K. Bohn, M. D. Bohn, Inorg. Chem. 10, 350 (1971).

[90] P. v. R. Schleyer, K. Najafian, Inorg. Chem. 37, 3454 (1998).

[91] T. P. Fehlner, M. Wu, B. J. Meneghelli, R. W. Rudolph, Inorg. Chem. 19, 49 (1980).

[92] J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, and C. M. Lieber, Nature 441, 489 (2006).

[93] H. Yan, H. S. Choe, S. Nam, Y. Hu, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M.

Lieber, Nature 470, 240 (2011).

[94] Yu Huang, Xiangfeng Duan, Yi Cui, Lincoln J. Lauhon, Kyoung-Ha Kim, Charles M.

Lieber, Science 294, 1313 (2001).

[95] Yi Cui, Zhaohui Zhong, Deli Wang, Wayne U. Wang, and Charles M. Lieber, Nano

Lett. 3, 149 (2003).

[96] Nicholas A. Melosh, Akram Boukai, Frederic Diana, Brian Gerardot, Antonio

Badolato, Pierre M. Petroff, James R. Heath, Science 300, 112 (2003).

[97] Fernando Patolsky, Gengfeng Zheng, Oliver Hayden, Melike Lakadamyali, Xiaowei

Zhuang and Charles M. Lieber, Proceedings of the National Academy of Sciences,

U.S.A, 101 14017 (2004).

[98] Yi Cui, Qingqiao Wei, Hongkun Park, Charles M. Lieber, Science 293, 1289 (2001).

122



[99] Eric Stern, James F. Klemic, David A. Routenberg, Pauline N. Wyrembak, Daniel

B. Turner-Evans, Andrew D. Hamilton, David A. LaVan, Tarek M. Fahmy, Mark A.

Reed, Nature, 445, 519 (2007).

[100] V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, Nature 370, 354 (1994).

[101] Wanli Ma, Joseph M. Luther, Haimei Zheng, YueWu, A. Paul Alivisatos, Nano Lett.

published online on 12 March 2009.

[102] Matt Law, Matthew C. Beard, Sukgeun Choi, Joseph M. Luther, Mark C. Hanna,

and Arthur J. Nozik, Nano Lett. 8, 3904 (2008).

[103] Robert Plass, Serge Pelet, Jessica Krueger, Michael Gratzel, Udo Bach, J.Phys.

Chem B 106, 7578 (2002).

[104] I. Patla, S. Acharya, L. Zeiri, J. Israelachvili, S. Efrima, Y. Golan, Nano Lett. 7 1459

(2007).

[105] P. K. Mukherjee, K. Chatterjee, and D. Chakravorty. Phy. Rev B 73, 035414 (2006).

[106] F. Gao, Q. Lu, X. Liu, Y. Yan, and D. Zhao, Nano Lett. 1, 743 (2001).

[107] H. Yu, J. Li, R. A. Loomis, L-W Wang, W. E. Buhro, Nature Materials, 2, 517

(2003).

[108] Q. Wang, Q. Sun, P. Jena, Y. Kawazeo, Nano Lett. 5, 1587 (2005).

[109] Vincent Meunier et. al., Nano Lett. published online on 18 March, 2009.

123



[110] W. Liang, A. I. Hochbuam, M. Fardy, O. Rabin, M. Zhang, P. Yang, Nano Lett.

published online on 24 March 2009.

[111] I. U. Arachchige, M. G. kanatzidis, Nano Lett. published online on 24 March 2009.

[112] Z. Zanolli, M-E Pistol, L E Frogberg, L Samuelson, J. Phys. Condens. Matter 19,

295219 (2007).

[113] G. Nimtz and B. Schlicht, Narrow-Gap Semiconductors Springer-Verlag, New York,

(1985).

[114] Matthew J. Bierman, Y. K. Albert Lau, and Song Jin, Nano Lett. 7, 2907 (2007).

[115] S. Mandal, and R. Pati, Chem. Phys. Lett. 479, 312 (2009).

[116] Xinyuan Zhao, C. M. Wie, L. Yang, M. Y. Chou, Phys. Rev. Lett. 92, 236805 (2004).

[117] X.-H. Peng, S. Ganti, A. Alizadeh, P. Sharma, S. K. Kumar, S. K. Nayak Phys. Rev.

B 2006, 74, 035339

[118] A. K. Singh, V. Kumar, R. Note, Y. Kawazoe, Nano Lett. 6, 920 (2006).

[119] K-H. Hong, J. Kim, S-H. Lee, J. K. Shin, Nano Lett. 8 (2008) 1335.

[120] M. Nolan, S. O’Callaghan, G. Fagas, J. C. Greer, Nano Lett. 7, 34 (2007).

[121] Z. Wu, J. B. Neaton, J. C. Grossman, Phys. Rev. Lett. 100 (2008) 246804.

[122] D. V. Talapin and C. B. Murray, Science 310, 86 (2005).

124



[123] K-S. Cho, D. V. Talapin, W. Gaschler, and C. B. Murray, J. Am. Chem. Soc. 127,

7140 (2005).

[124] D. V. Talapin, C. T. Black, C. R. Kagan, E. V. Shevchenko, A. Afzali, C. M. Murray,

J. Phys. Chem. C 111, 13244 (2007).

[125] J-S. Lee, E. V. Shevchenko, and D. V. Talapin, J. Am. Chem. Soc. 130, 9673 (2008).

[126] F. Gao, Q. Lu, X. Liu, Y. Yan, D. Zhao, Nano Lett. 1 743 (2001).

[127] S. Y. Jang, Y. M. Song, H. S. Kim, Y. J. Cho, Y. S. Seo, G. B. Jung, C.-W. Lee, J.

Park, M. Yung, J. Kim, B. Kim, J-G. Kim, Y.-J. Kim, ACS NANO 4, 2391 (2010).

[128] C. Toher, and S. Sanvito, Phys. Rev. Lett. 99, 056801 (2007).

[129] N. Sai, M. Zwolak, G. Vignale, M. Di Ventra, Phys. Rev. Lett. 94, 186810 (2005).

[130] G. Vignale and M. Di Ventra, Phys. Rev. B 79, 014201 (2009).

[131] C. Barraud, P. Seneor, R. Mattana, S. Fusil1, K. Bouzehouane, C. Deranlot, P.

Graziosi, L. Hueso, I. Bergenti, V. Dediu, F. Petroff, A. Fert, Nature Phys. 6, 615

(2010).

[132] L. Schulz, L. Nuccio, M. Willis, P. Desai, P. Shakya, T. Kreouzis, V. K. Malik, C.

Bernhard, F. L. Pratt, N. A. Morley, A. Suter, G. J. Nieuwenhuys, T. Prokscha, E.

Morenzoni, W. P. Gillin, A. J. Drew, Nature Mater. 10, 39 (2011).

[133] T. S. Santos, J. S. Lee, P. Migdal, I. C. Lekshmi, B. Satpati, J. S. Moodera, Phys.

Rev. Lett. 98, 016601 (2007).

125



[134] Z. H. Xiong, Di. Wu, V. Vardeny, S. Jing, Nature 427, 821 (2004).

[135] S. Majumdar, H. S. Majumdar, R. Laiho, R. Osterbacka, J. Alloys Compounds 423,

169 (2006).

[136] V. Dediiu, L. E. Hueso, I. Bergenti, A. Riminucci, F. Borgatti, P. Graziosi, C. Newby,

F. Casoli, M. P. De Jong, C. Taliani, Y. Zhan, Phys. Rev. B. 78, 115203 (2008).

[137] S. Sanvito, Nature Phys. 6, 562 (2010).

[138] S. Sanvito, Chem. Soc. Rev. 40, 3336 (2011).

[139] D. Waldron, P. Haney, B. Larade, A. MacDonald, H. Guo, Phys. Rev. Lett. 96,

166804 (2006).

[140] Z. Ning, Y. Zhu, J. Wang, H. Guo, Phys. Rev. Lett. 100, 056803 (2008).

[141] L. Senapati, R. Pati, S. C. Erwin, Phys. Rev. B 76, 0244388 (2007).

[142] H. Dalgleish, G. Kirczenow, Phys. Rev. B 72, 184407 (2005).

[143] S. Mandal, and R. Pati, ACS NANO 6, 3580 (2012).

[144] J. M. D. Coey, M. Venkatesan, C. B. Fitzgerald, A. P. Douvalis, I. S. Sanders, Nature

420, 156 (2002).

[145] G. C. Solomon, C. Herrmann, J. Vura-Weis, M. R. Wasielewski, M. A. Ratner, J.

Am. Chem. Soc. 132, 7887 (2010).

[146] P. Ruden, Nature Mater. 10, 8 (2011).

126



[147] D. Liu, Y. Hu, H. Guo, X. F. Han, Phys. Rev. B 78, 19307 (2008).

[148] H. -Ch. Mertins, S. Valencia, W. Gudat, P. M. Oppeneer, O. Zaharko, H. Grimmer,

Europhys. Lett. 66, 743 (2004).

127





Appendix A

Copyrights

The copyright permission from The Elsevier for the articles by Subhasish Mandal and

Ranjit Pati, Chem. Phys. Lett. 479, 244 (2009). The permission applies to Chapter 4.

129



Figure A.1: Copyright permission from The Elsevier for the articles by
Subhasish Mandal and Ranjit Pati, Chem. Phys. Lett. 479, 244 (2009).

130



Appendix B

Copyrights

The copyright permission from The American Physical Society for the articles by

Subhasish Mandal and Ranjit Pati, Phys. Rev. B. 83, 195420 (2011) and Phys. Rev.

B. 84 115306 (2011). The permission applies to Chapter 4 and Chapter 5.

131



Figure B.1: The copyright permission from The American Physical
Society for the articles by Subhasish Mandal and Ranjit Pati, Phys. Rev.
B. 83, 195420 (2011) and Phys. Rev. B. 84 115306 (2011).

132



Appendix C

Copyrights

The copyright permission from The American Chemical Society for the articles by

Subhasish Mandal and Ranjit Pati, ACS Nano 6, 3580 (2012). The permission applies

to Chapter 6.

133



Figure C.1: Copyright permission from The American Chemical Society
for the articles by Subhasish Mandal and Ranjit Pati, ACS Nano 6, 3580
(2012).

134


	Charge and spin transport in nanoscale junction from first principles
	Recommended Citation

	viewcontent.cgi

