2009

Two seasons of excavation at the 1865 office building at scenic Hudson's West Point foundry preserve

Timothy Scarlett
Michigan Technological University

Follow this and additional works at: http://digitalcommons.mtu.edu/social-sciences-fp
Part of the Social and Behavioral Sciences Commons

Recommended Citation
Retrieved from: http://digitalcommons.mtu.edu/social-sciences-fp/82

Follow this and additional works at: http://digitalcommons.mtu.edu/social-sciences-fp
Part of the Social and Behavioral Sciences Commons
Two Seasons of Excavation at the 1865 Office Building at Scenic Hudson’s West Point Foundry Preserve

Timothy James Scarlett, Michael Deegan, and Renée Blackburn

In 1865 Robert P. Parrott ordered a stately office building be built as a symbol of the West Point Foundry’s national prestige and success. Once constructed, the building’s distinctive cupola was easily visible from various places in the landscape, including locations throughout the factory, the worker and management housing on Mount Rascal, and from West Point and ships passing on the Hudson River. As the physical and symbolic center of administrative power on the site, the office was an important part of the productive process. Archaeological excavation permitted a detailed reconstruction of the building’s construction, use, reuse and abandonment.

In an industrial landscape, the office building is the main hub of management. Here the management displays its dominance over the workers and the landscape while also portraying a sense of permanence and stability. It is where the decisions are made and in which power resides, even if some of the industrial facilities might be larger or more physically impressive. The 1865 office building at West Point Foundry accomplished these goals through both its architecture and location on the landscape (figure 1). As the West Point Foundry (WPF) survived and thrived through the Civil War years, the management built an office building that proudly displayed how well the company had done throughout the tumultuous years of the war.1

Although the office was a prominent detail in the industrial landscape of West Point Foundry, its importance faded as WPF began its decline. Eventually, the property became part of other companies, changing the role of the office building along with the change in ownership. After the site’s abandonment, the office remained, but when archaeologists from Michigan Technological University conducted excavations at the site in 2003 and 2004, the office was in dire need of stabilization and rehabilitation.

The West Point Foundry Office and the Evolving Factory Landscape

Gouverneur Kemble, who helped to establish the West Point Foundry in 1817, initially located the foundry office in a house that had been built by Elija Davenport in 1795 on the south side of Main Street. Davenport ran a store out of the front and Kemble used the rear section as the office until the buildings at the foundry could be constructed.2 By about 1818, the office had moved into the basement of the boring mill complex depicted in the 1821 engraving from an advertising broadside for the “West Point Foundry and Boring Mill” (figure 2). This office saw use during the West Point Foundry’s first decades of operation, but this space must have been intolerably loud and either horribly dusty or impossibly damp. An inventory of buildings created sometime between the 1821 engraving and the 1827 construction of the blast furnace mentioned a separate office building, a wooden frame structure, twenty by fourteen feet in size and thirteen feet high.3 This was the first freestanding office at the factory site.

Shortly after Robert P. Parrott’s appointment as superintendent in 1836, he and Kemble closed the New York City facilities of the foundry, which had been their steam engine and fitting branch, and consolidated their operations to the Cold Spring campus in 1839. One Cold Spring resident remembered that a foundry office operated in the basement of a house on Rascal Hill during this time, after the new housing had been built to accommodate the workers from the New York City shops.4 Perhaps the expansion of operations that accompanied


© 2012 by the Society for Industrial Archeology. All rights reserved. Please direct all requests for permission to photocopy or reproduce article content through the Society for Industrial Archeology’s website: http://www.sia-web.org/iajournal/siaia.html.
Figure 1. The West Point Foundry 1865 office building in 2003. Workers removed the cupola and sealed the roof against water. During 2004, masons removed the damaged brick from the building and re-pointed the building. Photo by Larry Mishkar.

Figure 2. The West Point Foundry, 1821. The office probably occupied the basement of the building highlighted here. Image courtesy of Putnam History Museum.
the influx of workers as production increased demanded that the previous wood-framed office building be rededicated to another function. It seems unlikely that this basement office was the foundry’s center of business, but perhaps was the office for a division or shop head within the company.

Gouverneur Kemble took sole proprietorship of the company when the first West Point Foundry Association’s charter expired in 1843, and he promoted Robert Parrott to vice-president. Between about 1840 and Kemble’s retirement in 1857, Parrott and Kemble launched an aggressive campaign of construction and expanded the physical plant of the factory, including building a dedicated office building. In his 1849 History of Putnam County, New York, William J. Blake listed a new office building at the foundry site: “W. P. F. Office 42 feet long by 23 feet wide; a frame building with shingle roof. The Drafting Office is on the second floor”.

The office building inventoried by Blake appears on a Barber and Howe engraving from 1841, although the artist did not identify it as such (figure 3). The engraving shows a wooden building in the foreground with a cupola and bell on the roof, just south of the machine shop on the west side of Foundry Brook. This building was very likely the office, since the bell called people to work or marked shift changes in an era when few people could afford watches. A building in this location was labeled “office” on the Bevan map of the foundry layout, drafted between 1849 and 1865, probably in 1854 (figure 4), as well as another anonymous map also published about that same year (figure 5). All trace of this first office is gone, as the building is now probably under the modern concrete pad that served as the floor of a Quonset hut used by the site’s final commercial occupant in the early twentieth century.

West Point Foundry’s operations peaked during the 1850s and 1860s and the foundry operated with outstanding financial success throughout the Civil War. By this point, Robert Parrott had been in charge of the day-to-day operations of the foundry since 1857, when Gouverneur Kemble had retired to his home bordering the company’s grounds. The United States War Department’s demand for cannon and ordinance had enabled Robert Parrott’s staff to produce 25 guns and 7,000 projectiles each week during 1864 and 1865. The foundry had become very well known for their technical achievements with rifled iron cannon, so much so that Jules Verne used the “Foundry at Coldspring, New York” as the American ordinance manufacturer in his novel

Figure 3. The 1841 Barber and Howe engraving of the West Point Foundry. Note the building with the cupola and bell highlighted on the right. The presence of the bell, the symbol of management’s power during the nineteenth century, likely marks this structure as the office building. Image courtesy of Putnam History Museum.

Figure 4. Detail from the 1854 Bevan map of the site. Image courtesy of Putnam History Museum.
From the Earth to the Moon, in which he critiqued the links between scientific research, industrial production, and the professional military of the modern nation-state. With the boom from wartime business, Parrott decided to erect a stately office building in 1865 as a clear symbol of the West Point Foundry’s national prestige and success. He chose to site the building at a location where the valley dramatically widened as the slope dropped to the cove’s marsh. Parrott had the office built on the eastern side of Foundry Brook and he had workers construct an iron-railed bridge spanning the brook that joined the office to the factory’s core where visitors arrived via the rail dock, rail station, or road from Cold Spring along Kemble Avenue. Once constructed, the building’s distinctive cupola was easily visible from various places in the landscape, including locations throughout the factory, the worker and management housing on Mount Rascal, and from ships passing on the Hudson River.

The 1865 office was also connected to a road built upon the eastern ridge of Foundry Brook. The 1854 map (figure 5) was the first to show that workers had already completed construction of a road running along the valley’s eastern rim. This road connected a house site on the ridge with a road running approximately the same route as modern NY State route 9D north of the furnace. From that building upon the East Bank, the road ran south along the ridge above the foundry, down a slope to one of the later pattern shops, to the office, and to Foundry Cove. That road then ran across the marsh’s shallow water on a constructed causeway to a house and some defensive batteries on Constitution Island.

The builders connected the office to the eastern ridge road via a path leaving from a side door in the eastern wing, but the office building faced the foundry’s core and the front door opened onto the bridge that spanned the moat-like brook. An unknown architect designed the office, but Parrott chose a symmetrically balanced Victorian building with Renaissance detailing. The office design included two stories of brick with a hip roof and three-story square tower and an impressive cupola to house the symbolically important factory bell. The architect gave the building a formal plan with a center hall and staircase. This brick building also included a heavily built fireproof vault off the north wall in which to store the payroll and foundry financial records. The building served as the foundry’s administrative center at the height of its fame as one of the United States’ leading centers for military ordnance production and innovation.

The Corporate Office Structure in the Late Nineteenth Century

In the early 1840s, Kemble and Parrott combined the managerial and drafting offices into a single building at the West Point Foundry. Robert P. Parrott as manager and vice-president was the centralizing power at the foundry. Drafting became a tool through which nineteenth-century American managers sought to subvert the autonomy of skilled craft workers in the factory. At the same time, scholars have long understood the bell as one of management’s tools for changing social disciplines of work during the rise of factory-based modes of production. Although beyond the scope of this present study, both resonate with Parrott’s background at the U.S. Military Academy at West Point, where he had been assigned an inspector for the WPF production in the 1830s, and from which he resigned his commission to take over the superintendence of the foundry.

Commerce grew generally in the United States around mid-century, and many American manufacturing operations grew accordingly. The changing complexity of work at industrial sites created a need for a new system of organizational management. At large, segmented factories like the West Point Foundry, a large and centralized office operation was found to work more effi-
ciently and at less cost than several small-scale office operations spread across the complex. The centralization of authority away from skilled artisan labor helped to facilitate this change even before Parrott ordered the new building. His choice of brick construction and the inclusion of a secure vault in which the company could store money, technical documents, correspondence, and drawings, gave these social changes a substantial place and permanence within the factory landscape.

As factories like the West Point Foundry grew in size and management strategies changed, however, important new social and communication networks developed within the organization. Each section of the productive network was dependent upon all the others and breakdowns in the network could seriously damage the factory's operation. However dependent the organization was on each of its various sections, as a whole the corporate office structure was not meant to display this dependency to those on the outside. Parrott and his contemporaries knew that an office building could portray a sense of permanence, dominance, and success to outsiders as well as workers. The choice made by Parrott to situate the office in a prominent place within the valley showed anyone who encountered the office that West Point Foundry was a dominant force in the local landscape. Whether its situation across a bridge from the main part of the foundry also served to distance the management from the workers remains an open question, though its situation is provocative in this regard.

From West Point to Cornell and Beyond
At the war's end, the War Department canceled most of the foundry's ordnance contracts. The West Point Foundry began a slow decline in the decade that followed, and Parrott terminated his lease in 1867. The foundry continued operation under the direction of younger family members, running as Paulding, Kemble, and Co. between 1867 and 1897. In 1870, however, Parrott again bought into the company and remained involved until his death in 1877. Paulding, Kemble, and Co. continued to operate the foundry until it fell into receivership in 1897.

J.B. and J.M. Cornell from New York City bought the bankrupt facility at Cold Spring and operated the Cornell Brothers' Ironworks at the site. They retained the West Point Foundry name and expanded the facilities toward the marsh and cove. The Cornell Brothers sublet portions of the works to the Baldwin Steel Company and the Cornell Art Metal Company in 1905, but records indicate that the 1865 office building retained its function as an administrative center until the Cornell company shut down operations in 1911.

The office building's story during the twentieth century is one of varied and transient use. In 1920, the Astoria Silk Works established processing and dying facilities at the West Point Foundry site in the old pattern shop complex. During this time, the office building was partially converted into a residence and was likely retrofitted with indoor plumbing at that time. In 1927, Boyd and Company began using the pattern shops to manufacture silk cloth, while J.T. Robinson and Son used other nearby buildings to manufacture "pearl" buttons from shell. Ten years later, in 1937, the Remington Bolt Manufacturing Company used the same buildings to make nuts, bolts, and assorted hardware. After this company closed, archaeologists and historians believe that foundry's remaining standing buildings were stripped of metals for scrap drives during World War II.

In 1952, the Deuterium Corporation purchased the entire foundry site and the standing office building. Deuterium operated the Marathon Battery Company west of the foundry on a lot at the end of Kemble Avenue. They manufactured nickel-cadmium batteries until 1979, during which time the office building and pattern shops were used for storage. According to local oral tradition, at some time in the mid-twentieth century, a chemical reclamation company also operated near the office building. The hut sat on the concrete pad directly west across the brook from the office building. The office and pattern shop buildings fell into serious disrepair during this time, joining the rest of the old foundry campus as ruins.

Archaeological Excavations at the Office Building Site
In 2003 and 2004, excavations revealed a great deal about the construction of the building, the landscape's evolution during the building's life, and the sequence of events that led to the formation of the standing ruin after the mid-twentieth century. The information summarized below will allow Scenic Hudson to begin telling the office building's story and will also provide for some useful details for restoration efforts.

During the 2003 summer field school, Michigan Tech archaeologists undertook excavations to assist the ar-
Architectural staff from Steven R. Tilly, Associates (SRTA). The architects selected the locations of the first two excavation units so they could examine the conditions of the building’s foundations below significant settling cracks visible above ground in the bricks of one exterior wall. SRTA staff then spent the winter of 2003–2004 developing a set of preservation and restoration plans for Scenic Hudson.

The next summer, archaeologists again excavated units at the office building, this time assisting the preservation masons who were implementing SRTA’s stabilization plans. During their efforts to arrest the office building’s decay, the masons spent most of the summer and fall of 2004 removing loose masonry from the standing walls. They then carefully re-pointed the brick courses, stabilized the chimneys, and raised the walls, where needed, to a stable level in preparation for a temporary roof to ward off rainwater. During this process, workers discovered that a voussoir had fallen from a segmented window arch in the northern-most corner of the building’s eastern wall* (figure 6). They immediately found one fragment of the bluestone element partly buried in the topsoil outside the building. At their request, archaeologists opened two excavation units outside that window, in front of the northern door of the east wing. Project team members sought to locate the missing voussoir without damaging otherwise intact stratigraphic layers.

The office building had not been a priority for the archaeological research teams for whom the workplaces of the industrial core held more research potential. However, these small excavations serve as an exemplary model of the ongoing collaboration between archaeological research and the Scenic Hudson Land Trust’s preservation ethic—excavators, masons, students, architects, historians, community members, and landscape designers all engaged in a discussion about the history of this part of the ruins. We now can tell more details of the building’s stories.*

Archaeological Excavations: Levels, Features, Contexts, and Matrices.

The map in figure 7 illustrates the location of each excavation unit in relation to the major features of the built environment. Unit #16A examined the southern side of the building’s front façade, and the architects asked that it sit against the basement window well. They requested that the archaeologists place Unit #16B along the northern side of the building’s northeast corner. Unlike the southeastern side of the building, a comparatively large tree grew in the area next to #16B and affected parts of the stratigraphy. During 2004, both Unit #16C and #16D sat outside the northwestern corner of the building’s eastern wing. Both these units sat around the northeastern corner from 16B.

Since excavators sought to learn of the integrity of the building’s foundation during 2004, they dug deeply into the strata in #16A and #16B (figure 8); Kim Finch reported upon these excavations. The two units excavated in 2004, by contrast, only continued deep enough to demonstrate that the intact stratigraphic sequence excluded the possibility that the missing voussoir had become buried outside the damaged window. These four units,

![Figure 6. “Syrian” segmented window arch at the northernmost corner of the 1865 Office Building’s eastern wall. Photograph by authors.](image-url)
Figure 7. Map of 1865 WPF office building with excavation units.

Figure 8. Examples of soil and sediment layers from the office building excavations, units #16A and #16B.
however, have allowed archaeology to provide an understanding of the 1865 office building’s construction, modification, and habitation over its half-century of working life, and subsequent near-century of decay.

An Archaeological View of the Office Building Site

The office building was constructed on a flattened platform, cut into the slope that rose from the eastern side of Foundry Brook’s engineered channel. The builders removed the yellow-brown silty sand to create the platform. They then dug a foundation and a partial basement for the building. Archaeological excavations on the northern and eastern walls did not reveal a clear sign of a builder’s trench, indicating that the foundation was perhaps completely excavated as a cellar. The builders set large granite blocks directly against the sides of the cellar hole as they built the footing. When the foundations were complete, the workers backfilled sandy sediment into the northern two-thirds of the building’s central block. A shovel test pit (STP #16-1) beneath the floor on the northern section inside the building indicated that the cellar had been filled with loose sand. The sediment’s non-compacted nature, along with the presence of brick and stone fragments deep within the sand, supports this interpretation.

Workers dug a massive hole in which to build the office foundation, then seemingly brought in rubble and fill to raise the front of the office to at least a level equal to the top of the water channel’s coursed stone embankment. Levels 7 and 8 in Unit #16A collectively form Context Unit #9 (CU #9), which was probably deposited shortly after workers erected the building. Someone later installed underground pipes, the trench for which mixed some of these sediment layers and obscured the precise sequence of events. More excavation will be required to determine the grade of the landscaping at various points in the building’s history.

The original cellar hole seems to have extended all the way to the sides of the brook’s channel. Excavations in Unit #16A revealed that, while the sediment formed regular stratigraphic layers horizontally over the surface of the ground in front of the building, the later installation of a segmented iron pipe required that workers dig a trench through those strata on that unit’s western edge (feature 9). Even as the excavators reached the water table in Unit #16A, the sediment in the lowest levels (levels 7 and 8) included small fragments of nineteenth-century ceramic and larger pieces of industrial waste. The artifacts included vitrified firebrick, slag, English-made refined white and red earthenware—including both “creamware” and “pearlware”—and glass chimney fragments from gas or oil lamps. The William H. Berry Company of Woodbridge, New Jersey, manufactured the firebrick, and it was likely used and then removed from a furnace at the foundry in the 1850s or early 1860s. The brick became mixed with other waste and workers deposited it as part of the fill as they raised the building’s front grade to the level of the brook’s embankment.

Workers built brick walls upon the granite foundation. They used bricks bearing the “O.B. & V” mark produced by the O’Brien and Vaughn yard in nearby Beacon, NY. They set a cast iron plaque marked “1865” prominently over the double window just below the cupola’s stylish curves. The building’s trim, belt course, sills, keystones, spring blocks, arch voussoirs, and water table were made of bluestone. The bluestone water table surrounds the main wing of the building but is interlocked with a brick water table line around the east wing.

Of the four units excavated against the office building, only Unit #16A exposed sediments that date to the West Point Foundry’s period of operation between 1865 and 1890. These layers, designated as Context Unit #8 (CU #8), included #16A levels 4, 5, and 6. Most of the artifacts from these layers lacked any distinctive chronological characteristics, but included slate roof fragments, window glass fragments, nails, lamp chimney glass, and brick, mortar, and concrete fragments. Three small fragments of ceramic, however, included both creamware (1762–1820) and pink-colored transfer-printed white improved earthenware (1829–present). In addition, a fragment of asphalt roofing shingle also appeared (1917–present). These artifacts typically represent distinct time periods, and therefore raise questions about the formation of the deposits. Despite possible mixing, the deposits lacked any evidence of the electrical hardware common in overlying strata. Further excavations are required to fully explain the sediments and artifacts in this context unit. These strata, however, provide the best clues regarding the office building’s interior décor and patterns of use during the West Point Foundry’s operation.

Much more excavation needs to occur before researchers can draw maps of the subsurface potable and graywater pipes and electric power systems. Artifacts and
features clearly show the building was refit for both electricity and indoor plumbing during the last few decades of the nineteenth century. While Robert Sillman’s masons cleared away the loose rubble in 2004, they located the footings for indoor plumbing fixtures in the east wing. This discovery resonated with archaeological excavations that revealed subsurface pipes (#16A Feature 9; #16B, Feature 10). Water still flows through one drain visible through cracks in the basement’s concrete floor. Mapping the subsurface pipes should be a priority if the building is to be restored, since any modern utilities such as water, electricity, gas, alarm, or phone will likely be most easily connected to the building via the historic trenches.

Several of the office building sediment deposits in #16A and #16B were related to the very end of the Paulding, Kemble, and Co. period and the era of the Cornell Brothers Iron Works. This context (CU #7) included several levels: #16A level 3 and #16B levels 4, 5, and 6. All these layers contained porcelain electrical insulators of different types. Porcelain, glass, and wooden electrical insulators were installed in homes during the 1880s, and early builders favored wood because it was readily available and inexpensive. Most insurance companies banned wooden insulators by 1891 and porcelain became the dominant material in the knob-and-tube system of wiring for buildings. Their manufacture experienced a boom between 1891 and 1910.30 By the Great Depression, the knob-and-tube system of wiring homes was largely legislated out of practice in new construction by building codes that required safer metal conduits.31 Of course, despite being banned in new construction, porcelain knob-and-tube fixtures remained in use in older houses for decades. If the house was rewired with insulated wire and metal conduits at a later date, the porcelain fixtures often remained screwed or nailed to the building’s joists and studs, unless the floors or walls themselves were removed entirely.

A few other artifacts shed light on the building’s decoration and décor, including fragments of white-improved earthenware ceramics, liquor/wine glass fragments, a white tobacco pipe stem fragment, architectural wood fragments with green paint, and bottle glass shards. Future excavations should expose better stratigraphic units of this period that give a clearer chronological picture of the office building’s use during the late nineteenth century as it was refit with indoor plumbing and electric wiring.

Several sediment layers dated from the Astoria Silk Works period of the West Point Foundry site’s history (CU #6, which includes #16A, level 2; #16B, levels 2 and 3; #16C, level 4; and #16D, levels 4 and 5). The sediments included very dark brown, dark yellow-brown, and very dark grayish-brown sandy silts. CU #6 included artifacts connected to these late-period uses of the site, including much chemical glassware and electrical porcelain. The electrical cleats, knobs, and tubes with embossed patent marks all include dates from the 1890s, but could have been deposited anytime after that. The older electrical fixtures are logical considering the extensive modifications someone made to the building during this time, including adding a pulley/cable system on the second floor that projected crane-like from a modified window, and the extensive excavation and modification of the eastern wing. The chemical glassware that covered the site at this level remained an excellent identifier of the silk dye works and perhaps the chemical reclamation activities.

The topsoil around the office building (CU #1) included a range of artifacts reflecting the use of that space for industrial activities involving chemicals. This deposit in units #16A, #16B, #16C, and #16D all included fragments of electrical porcelain that was manufactured between 1891 and 1911, glass bottle fragments which date to before 1917, and one milk bottle in use between 1900 and 1946. CU #1 in #16A also yielded a silver United States Army officer’s ring. Based upon the ring’s style, it was probably made for an officer in a Buffalo Soldier unit in the 1940s, during World War II, just before the final integration of the United States military. Given the extent of wear on the silver, it may have been worn for many years before the owner dropped it outside the office building. The presence of this ring is curious and further research may link the ring to the presence of a specific individual at the site.

At some time during this period, the office building burned. The fire appears to have been contained, since the bulk of the building’s fabric shows no signs of the event, nor did either of the excavations on the building’s southwestern corner in #16A or on the northern end in #16B. The fire was probably contained within the eastern wing, because the soils outside the eastern wing’s northern door included a layer of blackened sandy-silt with much charcoal, ash, and blackened tarpaper from the roof that fell to lie flat on the sand below (CU#4). On top of the tarpaper sat a large number of window
glass fragments, including ribbed glass tile made by Reed Glass, which fell largely intact but then broke in place. It also appeared that people cleaned up after the fire, because many heat-affected artifacts laid flat upon CU#4, including bits of hardware and fragments of chemical glass such as thermometers, stirring rods, beakers, and a vacuum bell jar cover. The soils from the fire filled units #16C and #16D, but the cleanup event (CU#3) appeared most clearly during the excavation of #16D where it assumed the character of plumes of ash and trash swept or tossed out of the northern door.

After the fire event, the office sat empty for a period of time during which the owners permitted the building to fall into decay. Eventually the roof of the eastern wing collapsed, as did the northern “vault” portion of the building. The roof collapse then encouraged water to loosen bricks in the walls. Bricks eventually fell from the wall into elongated piles that built up against the exterior of the building. After falling, the 1865 mortar decayed from around the bricks and washed down to form a pinkish layer of sand that underlay the rubble (CU #2). The brick piles then sat for a time as the wind blew sand and silt onto them and the natural process of soil generation began to bury the rubble (CU #1). Both the pinkish sandy layer and the brick pile are part of CU #2, although the later soil accumulation of CU #1 occurred between and under the bricks. Artifacts also became buried in CU #1 that reflected the most recent past in the building’s history as a ruin in a wooded valley adjoining a village, including .22, .30, and .32 caliber firearm cartridges, both slate and asphalt roof tile fragments, bottle fragments with screw-top necks, iron crown caps, and crown cap-lipped beer bottle fragments. These artifacts reflect the later recreational use of the ruins by local youth in Cold Spring.

Ruin as Emblem
The office building’s ruins are very important as a component of the site. The office actually shifted locations several times over the foundry’s history. The 1865 office building’s construction marked the peak of the foundry’s business, however, and signaled the owner’s participation in emerging philosophies of factory management. This structure’s ruins are now emblems of the West Point Foundry site. The ruin, and Scenic Hudson Land Trust’s plans for its disposition through potential stabilization, restoration, or rehabilitation, has become symbolic of the status of the entire preserve. Photographs of the ruin abound, and the site has become a focus for “urban explorers,” photographers, and other devotees of industrial heritage. The images Rob Yasinsac posted at HudsonValleyRuins.org are prime examples of the important symbolic role attained by the ruins.

The staff and directors of the Scenic Hudson Land Trust are considering various plans for stabilization and restoration of the 1865 office building. Whether preserved as a ruin or faithfully restored as museum or archaeological laboratory space, the building will remain the anchoring element of the West Point Foundry Preserve. The 2003 and 2004 seasons are a microcosm of the cooperative relationships established between the archaeological research team at Michigan Technological University, the preservation architects at Steven R. Tilly, Associates, and the staff and directors of the Scenic Hudson Land Trust. Good planning permitted the archaeological excavation to meet the needs of the preservation architects and masons, while recovering significant information and preventing accidental destruction of the archaeological record of the building’s history.

Future archaeological work should continue to precede earthmoving at the site of the office, so that the story of the building’s early years are not inadvertently destroyed during attempts to save the building. Since the work to this point has been on a very small scale, the excavations raised additional questions in addition to those that it answered. Excavations to this point only provide skeletal information about the furnishings and appointments of the building. Archaeologists have not yet learned anything about landscaping, for example, or other use of space around the building during the site’s West Point Foundry period. Future work will undoubtedly yield more information critical to a full restoration effort, should this take place.

The office, as the physical and symbolic center of administrative power on the site, was an important part of the production process. The building displayed the prosperity and wealth that WPF attained during the Civil War years as part of the overall industrial landscape. With the office as a focal point for success, WPF management successfully accomplished what many of its contemporary companies also wished for—they displayed their power and authority over WPF through the building itself.

Notes
1. Previous archaeological studies of industrial complexes have been compiled; however, the office building is one place on the land-
scape that is often ignored. The goal of this article is to look at the office as the heart of the whole WPF industrial context and to show the ways in which WPF management purposely used the office building to display the success WPF achieved during the Civil War.


10. This house site, which archaeologists named the "the East Bank House," was the focus of mapping and excavation during the 2005 field season and produced a valuable range of domestic information. See Elizabeth Norris, "Housing a Foundry Community with a 'Liberal and Philanthropic Spirit',"* IA: The Journal of the Society for Industrial Archeology* 35, nos. 1-2 (2009): 91-104.


12. Ibid., 253.


20. The 1865 office building’s windows have Syrian arches, also called “segmental arches.” These arches, unlike the round or semi-circular shape of Roman arches, form a partial curve with a slight rise and partly elliptical profile. Voussoirs are wedge shaped components of the segmented arch. Each of the office building’s windows and doors has three bluestone voussoirs: one keystone and two corner or shoulder stones.


23. The missing voussoir was the southern shoulder of the northernmost window in the eastern wall of the office building’s main wing.

24. A Context Unit (or simply context) is an aggregation of the various levels and features from an excavation site, where post-exca...