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Abstract 
How well can a co-located lidar and radar retrieve a drop size distribution in 

drizzling clouds? To answer, we mimic scattering from a laboratory cloud to retrieve a 

lidar-radar effective diameter 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒′ = (〈𝐷𝐷6〉/〈𝐷𝐷2〉)1/4 . Using only the shape parameter of 

the gamma-distributed drops, the mean diameter of the drops can be estimated from 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒′  

to within a few percent of the true mean. In practice, the shape parameter of the gamma 

distribution is not known. To set bounds, mean diameters were calculated from 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒′  

using a range of in situ measured gamma shape parameters. The estimated means varied 

within 13% below to 18% above the true mean. To put this range of inherent uncertainty 

for lidar-radar retrievals in perspective, a decrease of 15-20% in drop size is argued to be 

sufficient to offset a doubling of carbon dioxide concentrations (e.g., Slingo 1990).  
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1 Introduction 
Clouds contribute a net cooling effect to the Earth’s radiation budget 

(Ramanathan et al. 1989). Surprisingly, one cloud type in particular has the ability to 

influence Earth’s radiation budget as much as increasing greenhouse gases do: 

stratocumuli (Wood 2012). Stratocumulus clouds cover more of the Earth than any other 

cloud type and small changes in their fractional coverage and thickness affect their 

albedo. Being able to accurately describe stratocumuli properties may lead to improved 

representation of stratocumulus clouds in global climate models, addressing a current 

challenge facing large scale models of the atmosphere (Kostinski 2008 and O’Connor et 

al. 2005). 

In order to understand the macrophysical and microphysical processes in 

stratocumulus clouds, a detailed knowledge of the sizes of cloud and drizzle drops (a 

drop size distribution) is necessary. From a drop size distribution, cloud properties such 

as number density and mean diameter can be derived. Currently, drop size distributions 

are retrieved from: 1) in situ measurements made during field experiments and 2) 

measurements made by passive and/or active remote sensing systems. In situ 

measurements are considered more accurate, but suffer from the limitation that only 

small areas of the Earth can be covered at any given time (Miles et al. 2000). 

Considerable effort and emphasis has been focused on refining the retrieval methods 

associated with remote sensing due to the ability of remote sensing systems to monitor 

cloud properties on a continual basis while covering large areas of the globe. 

Some remote sensing systems include a co-located cloud radar and high spectral 

resolution lidar (HSRL). The goal is to extract the drop size distribution parameters from 

the remotely sensed data, a not-so-easy task. As Bohren and Huffman (1983) illustrate it, 

remote sensing is similar to evaluating a dragon’s footprints to obtain information about 

the size, shape, and height of the dragon. In our case, we will begin with the cloud drops 

sampled from a laboratory cloud (the dragon), create the lidar and radar footprints, and 

invert the process to determine how well we can reconstruct the original distribution. 
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Specifically, we test the ability to retrieve 1) the total number of drops in a sample 

volume and 2) the mean diameter of the gamma-distributed drops assuming the most 

ideal conditions: a single mode drop size distribution, perfectly aligned instruments, high 

signal to noise ratio, no multiple scattering, etc.  

Donovan and van Lammeren (2001) suggest that cloud properties remotely sensed 

by a lidar-radar system can be described by the ratio of the sixth moment to the second 

moment of the distribution since radar backscatter is proportional to the sixth power of 

the drop diameter while the lidar extinction is proportional to the second power of the 

drop diameter. According to Mie theory, for a particle in the Rayleigh regime (i.e. the 

particle is much smaller than the wavelength as is the case of the radar and a drizzle or 

cloud drop) the scattering cross section of a particle is proportional to 𝑟𝑟6/𝜆𝜆4 where 𝑟𝑟 = 

radius and λ = wavelength. Inversely, for a particle in the geometric scattering regime 

(i.e. the particle is much larger than the wavelength as is the case of the lidar and a drizzle 

or cloud drop), the extinction cross section of a particle is proportional to its geometric 

cross section. 

Stephens (1994) gives the equation for radar backscatter from a sample volume 

containing spherical drops: 

 𝛽𝛽 =  
𝜋𝜋5

𝜆𝜆4
𝑘𝑘2�𝐷𝐷6

𝑣𝑣𝑣𝑣𝑣𝑣

= 𝑁𝑁
𝜋𝜋5

𝜆𝜆4
𝑘𝑘2⟨𝐷𝐷6⟩ (1) 

where 𝛽𝛽 is the radar backscatter cross section, 𝑁𝑁 is the total number of drops in the 

sample volume, 𝜆𝜆 is the wavelength of the radar (e.g. 3.2 mm), 𝑘𝑘2 is the dielectric factor 

related to the index of refraction of water at the radar’s wavelength, 𝐷𝐷 is the diameter of 

the drops, and the brackets denote moment of the size distribution.  

 Although we know the number of drops and the diameters of the drops sampled 

from the laboratory cloud, this information would not normally be known to the remote 

sensor. Since there are two unknowns (the number of drops and the diameters of the 

drops), another measurement is needed. The HSRL extinction provides that second 

measurement. The lidar equation for the extinction cross section from a sample volume of  
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spherical drops is: 

 𝛼𝛼 =
𝜋𝜋
2
�𝐷𝐷2

𝑣𝑣𝑣𝑣𝑣𝑣

= 𝑁𝑁
𝜋𝜋
2
⟨𝐷𝐷2⟩  (2) 

where 𝛼𝛼 is the lidar extinction cross section, 𝑁𝑁 is the total number of drops in the sample 

volume, 𝐷𝐷 is the diameter of the drops, and the brackets denote the moment of the size 

distribution (O’Connor et al. 2005). Combining equations 1 and 2 gives a value for 𝐷𝐷, a 

quantity based upon the ratio of the sixth moment to second moment. Therefore, we label 

it 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒′  the lidar-radar effective diameter: 

𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒′ =  �
𝜆𝜆
𝜋𝜋
�  �

1
2𝑘𝑘2

�
1 4⁄

�
𝛽𝛽
𝛼𝛼
�
1 4⁄

 . (3) 

In section 2, we discuss the gamma distribution as it applies to a cloud probability 

density function (PDF). In section 3, we fit a gamma distribution to the laboratory cloud 

PDF, calculate the lidar-radar effective diameter, and discuss how skewness and 

dispersion affect the normalized difference between the lidar-radar effective diameter and 

the mean diameter.  

In section 4, we mimic scattering from the laboratory cloud to retrieve a lidar-

radar mean diameter and total number of drops using the fitted gamma parameters of the 

laboratory PDF. We also test multiple gamma parameters derived from in situ 

measurements since in practice the gamma parameters are not known. Retrieval 

estimation error ranges are given. 

In section 5, we create and randomly sample an ideal gamma distribution to test 

how the number of drops sampled by the lidar-radar system affects the retrieved 

quantities of the lidar-radar effective diameter and the lidar-radar mean diameter. Lastly, 

we test multiple gamma distribution parameters derived from many in situ measurements 

and give retrieval estimation error ranges for the total number of drops and the lidar-radar 

mean diameter.  



 

4 

2 The Gamma Distribution Applied to the Laboratory Cloud 

Probability Density Function (PDF) 
The gamma distribution is commonly used to describe a cloud drop distribution 

(Stephens et al. 1990, Hu and Stamnes 1993, Miles et al. 2000, Donovan and van 

Lammeren 2001, O’Connor et al. 2005, Fielding et al. 2015). For this study, we have 

chosen to use a gamma probability density function that does not include the number 

density in order to minimize the number of free parameters: 

𝑓𝑓(𝐷𝐷|𝑎𝑎, 𝑏𝑏) =
1

𝑏𝑏𝑎𝑎Γ(𝑎𝑎)
𝐷𝐷𝑎𝑎−1𝑒𝑒−𝐷𝐷 𝑏𝑏⁄  (4) 

where 𝑓𝑓(𝐷𝐷|𝑎𝑎, 𝑏𝑏) has units of inverse length and is the probability density of finding a 

drop with a diameter between 𝐷𝐷 and 𝐷𝐷 + 𝑑𝑑𝑑𝑑, 𝐷𝐷 is the drop diameter with units of length, 

𝑎𝑎 is the unitless shape parameter, 𝑏𝑏 represents the scale parameter with units of length, 

and Γ(𝑎𝑎) = (𝑎𝑎 − 1)! represents the gamma function with argument 𝑎𝑎. The mean 

diameter (𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚), mode diameter (𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚), variance (𝜎𝜎2), and coefficient of skewness 

(𝑆𝑆) of the gamma distribution can be written as (Evans et al. 1993): 

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑎𝑎𝑎𝑎 (5) 

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  𝑏𝑏(𝑎𝑎 − 1),𝑎𝑎 ≥ 1 (6) 

𝜎𝜎2 = 𝑎𝑎𝑏𝑏2 (7) 

𝑆𝑆 = 2𝑎𝑎−1 2⁄   (8) 

The moment (𝑘𝑘) of the distribution is defined as (Petty and Huang 2011): 

 〈𝐷𝐷𝑘𝑘〉 = � 𝐷𝐷𝑘𝑘𝑓𝑓(𝐷𝐷|𝑎𝑎, 𝑏𝑏)𝑑𝑑𝑑𝑑
∞

0
 . (9) 

An effective (or equivalent) diameter, often used to quantify cloud optical 

properties, is the ratio of the third moment of the distribution to the second moment of the 

distribution (Stephens et al. 1990 and Hu and Stamnes 1993): 

𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 =
∫ 𝑓𝑓(𝐷𝐷|𝑎𝑎, 𝑏𝑏) 𝐷𝐷3 𝑑𝑑𝑑𝑑∞
0

∫ 𝑓𝑓(𝐷𝐷|𝑎𝑎, 𝑏𝑏) 𝐷𝐷2 𝑑𝑑𝑑𝑑∞
0

=
Γ(3 + 𝑎𝑎)𝑏𝑏
Γ(2 + 𝑎𝑎)

=  (𝑎𝑎 + 2) 𝑏𝑏. (10) 

Note that Hu and Stamnes (1993), Stephens et al. (1990), and Miles et al. (2000) denote 

the scale parameter (𝑏𝑏) as 𝐷𝐷𝑚𝑚 and define it as a non-physical characteristic diameter (not 
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the mode diameter). In contrast, Donovan and van Lammeren (2001) set the scaling 

parameter (𝑏𝑏) equal to the mode diameter (𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚), thus defining the effective diameter in 

terms of the mode diameter. We argue that this is inappropriate because to do so would 

result in the following equation: 

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑎𝑎 − 1) 𝐷𝐷 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 . (11) 

The equality would only be true if the shape parameter (𝑎𝑎) was equal to 2 and would 

force the mean diameter to always equal two times the mode diameter. These two 

restrictions would severely limit the parameters of the gamma distribution and would not 

describe the vast number of in situ measurements found in Miles et al. (2000) nor the 

laboratory cloud PDF. Without setting the scaling parameter equal the mode diameter, the 

effective diameter in terms of the mode diameter becomes: 

𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 =
(𝑎𝑎 + 2)
(𝑎𝑎 − 1)

 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 . (12) 

The effective diameter in terms of the mean diameter is given by the equation: 

𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 =
(𝑎𝑎 + 2)

𝑎𝑎
 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 . (13) 

(As a side note, Hu and Stamnes (1993), Stephens et al. (1990), and Donovan and van 

Lammeren (2001) derive quantities in terms of radius rather than diameter.) 

Returning to the definitions of 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, and 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 in terms of the two 

gamma parameters, we find that 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 ≥  𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≥  𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 . Further, we derive how 

effective diameter deviates from the mean of the distribution in terms of only the shape 

parameter: 
𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 − 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
=

2
𝑎𝑎

  . (14) 

Since skewness is a function of only the shape parameter, 𝑆𝑆 = 2𝑎𝑎−1 2⁄ , we 

can write skewness in terms of the normalized difference between the 

effective diameter and the mean diameter (i.e. an estimation error): 

 

𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 − 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

=
𝑆𝑆2

2
  

(15) 

limit limit 
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which shows that as skewness increases, the difference between the effective diameter 

and the mean diameter increases and vice versa. Therefore, if a cloud PDF is highly 

skewed, we expect the effective diameter and mean diameter to differ and the amount 

they differ relates only to the shape parameter 𝑎𝑎.  

For example, the software tool SBDART (Ricchiazzi et al. 1998) sets the shape 

parameter 𝑎𝑎 = 7, giving the effective diameter (or radius) an estimation error of 
𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒−𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
= 2

𝑎𝑎
= 2

7
∗ 100 = 30%. For the range of shape parameters given in Miles et 

al. (2000), 𝑎𝑎 = 8.6 +/−7.3, the estimation error ranges from 13% to 154%. Caution 

should be exercised when using the effective diameter rather than the mean diameter to 

compute physical properties. For example, the calculation of the liquid water content 

(LWC) based only upon the effective diameter can result in overestimating the LWC by 

more than a factor of two: 𝐿𝐿𝐿𝐿𝐿𝐿 = � 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒
𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�
3
≈ (1.3 )3 ≅ 2.2. 

As Donovan and van Lammeren (2001) suggest, cloud properties remotely sensed 

by a lidar-radar system are better described by the ratio of the sixth moment to the second 

moment of the distribution rather than the ratio of the third to second moment since radar 

backscatter is proportional to the sixth power of the drop diameter while the lidar 

extinction is proportional to the second power of the drop diameter. The ratio of the sixth 

to second moment yields a quantity defined as the lidar-radar effective diameter:  

𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒′ = �
∫ 𝑓𝑓(𝐷𝐷|𝑎𝑎, 𝑏𝑏) 𝐷𝐷6 𝑑𝑑𝑑𝑑∞
0

∫ 𝑓𝑓(𝐷𝐷|𝑎𝑎, 𝑏𝑏) 𝐷𝐷2 𝑑𝑑𝑑𝑑∞
0

�
1 4⁄

=  𝑏𝑏 �
Γ(6 + 𝑎𝑎)
Γ(2 + 𝑎𝑎)

�
1 4⁄

 (16) 

or in terms of the mean diameter and only the shape parameter (using 

equation 5): 

 

𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒′ =
1
𝑎𝑎
�
Γ(6 + 𝑎𝑎)
Γ(2 + 𝑎𝑎)

�
1 4⁄

 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 . (17) 

Again we compare how the lidar-radar effective diameter relates to the mean of 

the distribution in terms of only the shape parameter: 

𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒′ − 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

=  
1
𝑎𝑎
�
Γ(6 + 𝑎𝑎)
Γ(2 + 𝑎𝑎)

�
1 4⁄

− 1. (18) 
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To determine the estimation error between the lidar-radar effective diameter and the 

mean diameter, we again use SBDART’s shape parameter selection of 𝑎𝑎 = 7: 

𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒
′ −𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
=  1

𝑎𝑎
�Γ(6+𝑎𝑎)
Γ(2+𝑎𝑎)

�
1 4⁄

− 1 =  �1
7
�Γ(6+7)
Γ(2+7)�

1 4⁄
− 1� ∗ 100 = 50%. Similar to the 

effective diameter, caution should be exercised when using the lidar-radar effective 

diameter rather than the mean diameter to compute physical properties. For example, the 

calculation of the liquid water content (LWC) based only upon the lidar-radar effective 

diameter can result in overestimating the LWC by more than a factor of three: 𝐿𝐿𝐿𝐿𝐿𝐿 =

� 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒
𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�
3
≈ (1.5 )3 ≅ 3.4. 

Skewness (𝑆𝑆 = 2𝑎𝑎−1 2⁄ ) is only dependent upon the shape parameter (𝑎𝑎) while 

variance (𝜎𝜎2 = 𝑎𝑎𝑏𝑏2) and dispersion 𝜎𝜎 = (𝑎𝑎𝑎𝑎)1 2⁄  are dependent on both the shape 

parameter (𝑎𝑎) and the scale parameter (𝑏𝑏). However, for one PDF, the mean diameter 

(𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑎𝑎𝑎𝑎) is a constant (𝐶𝐶). Therefore, the variance (𝜎𝜎2) and dispersion (σ) can be 

written in terms of only the scale parameter (𝑏𝑏): 

𝜎𝜎2 =  𝐶𝐶𝐶𝐶 ;  𝜎𝜎 = (𝐶𝐶𝐶𝐶)1 2⁄ . (19) 

 In regional and global climate models the relative dispersion (also called the 

coefficient of variation) is a parameter commonly used to represent drop size 

distributions (Tas et al. 2015). Relative dispersion is of interest because our 

understanding of why drop sizes vary in a given environment is incomplete (Alexander 

Kostinski, personal communication, November 2015). The relative dispersion (𝜀𝜀), a ratio 

of the dispersion (𝜎𝜎) to the mean, can be defined in terms of only the gamma distribution 

shape parameter (𝑎𝑎) or in terms of the skewness: 

𝜀𝜀 =  𝑎𝑎− 1 2⁄  𝑜𝑜𝑜𝑜 𝜀𝜀 = 𝑆𝑆/2 . (20) 

Using SBDART’s shape parameter selection of 𝑎𝑎 = 7, we calculate a relative dispersion 

value of 0.38, a value slightly higher than the range of 0.25 to 0.35 given in Tas et al. 

(2015) for convective clouds. For the range of shape parameters given in Miles et al. 

(2000) for stratus clouds, 𝑎𝑎 = 8.6 +/−7.3, the relative dispersion ranges from 0.25 to 

0.88. The lower bound agrees with Tas et al. (2015), but the upper bound is much greater. 

Investigating the upper bound discrepancy is a topic for future research. 
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3 The Laboratory Cloud Probability Density Function (PDF) 
Chang et al. (in review) have designed a cloud chamber capable of creating a 

steady-state cloud containing both cloud drops (diameters<50 microns) and drizzle drops 

(diameters≥50 microns). The resulting cloud PDF, with an applied gamma fit, is 

illustrated in Figure 3.1. Again, we have chosen to represent the distribution of drops as a 

Figure 3.1: A laboratory cloud PDF is fitted with a gamma distribution in the form 

𝑓𝑓(𝐷𝐷|𝑎𝑎, 𝑏𝑏) = 1
𝑏𝑏𝑎𝑎Γ(𝑎𝑎)

𝐷𝐷𝑎𝑎−1𝑒𝑒−𝐷𝐷 𝑏𝑏⁄  where 𝑎𝑎=7 and 𝑏𝑏=4 and bin width is 1.46 microns. The mean 

diameter is 27.9 microns, the skewness is 𝑆𝑆 = 2𝑎𝑎 −1 2⁄ = 0.76; the dispersion is 𝜎𝜎 =  𝑎𝑎1 2⁄ 𝑏𝑏 =

10.6 𝜇𝜇𝜇𝜇 and the relative dispersion is 𝜀𝜀 =  𝑎𝑎− 1 2⁄ = 0.38. 87,000 drops were sampled from the 

steady-state cloud over a time period of approximately 10 hours, equaling a sample volume of 

~355 cm3. 
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probability density function �∫ 𝑓𝑓(𝐷𝐷|𝑎𝑎, 𝑏𝑏) 𝑑𝑑𝑑𝑑 = 1
∞
0 � by not including the number density in 

order to reduce the number of free parameters.  

Whether the laboratory cloud PDF is representative of one found in nature 

remains to be proven. However, the fitted gamma parameters fall within the mean and 

standard deviation of measured in situ gamma parameters compiled by Miles et al. (2000) 

for marine stratus cloud, but not for continental stratus clouds. Miles et al. (2000) gives 

the shape parameter mean and standard deviation of in situ measured (via airborne 

probes) marine stratus clouds as 8.6 +/- 7.3 and the scaling parameter mean and standard 

deviation as 2.7 +/- 2.0.  

 For the laboratory cloud PDF fitted with gamma parameters 𝑎𝑎=7 and 𝑏𝑏=4, the 

skewness is 2𝑎𝑎 −1 2⁄ = 0.76; the dispersion is 𝜎𝜎 =  𝑎𝑎1 2⁄ 𝑏𝑏 = 10.6 𝜇𝜇𝜇𝜇; and the relative 

dispersion is 𝜀𝜀 =  𝑎𝑎−1 2⁄ = 0.38. The relative dispersion of 0.38 is slightly higher than the 

range of 0.25 to 0.35 given in Tas et al. (2015) for convective clouds, but in the range of 

0.25 to 0.88 calculated from the shape parameters given in Miles et al. (2000) for stratus 

clouds.  

To determine how the gamma distribution parameters affect the skewness and the 

dispersion of the gamma distribution, we use the constant mean from the laboratory cloud 

PDF and vary the gamma parameters within the range given in Miles et al. (2000). Given 

equation 5 and a mean diameter of 27.9 microns, only certain gamma parameters are 

applicable. For example, using equation 5 with a shape parameter of 1.3 produces an 

associated scale parameter of 21 which does not fall within the in situ-measured scale 

parameter range of 0.7 - 4.7 given in Miles et al. (2000). Therefore, some shape and scale 

parameter combinations were discarded. The constrained shape parameter ranged from 6 

to 15.9 and the constrained scale parameter ranged from 1.8 to 4.7.  

Figure 3.2 illustrates that as the skewness increases, the estimation error of the 

lidar-radar diameter increases. Likewise, Figure 3.3 shows that the as the dispersion 

increases, the estimation error of the lidar-radar diameter increases. 
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Figure 3.2: Varying the shape parameter (6 to 15.9) of the gamma distribution shows 
that as the coefficient of skewness (𝑆𝑆 = 2𝑎𝑎−1 2⁄ ) increases, the normalized difference 
between the lidar-radar effective diameter and the mean increases.  
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Figure 3.3: At a constant mean of 27.9 μm, as the dispersion (σ= (𝐶𝐶𝐶𝐶)1 2⁄ ) increases, 
the normalized difference between the lidar-radar effective diameter and the mean 
increases. The scale parameter (𝑏𝑏) varies between 1.8 and 4.7. 
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4 Simulated Scattering from the Laboratory Cloud Drops  
First, we address the common assumption that the radar reflectivity in a drizzling 

cloud is dominated by the larger drizzle drops (O’Connor et al. 2005 and Fielding et al. 

2015). We calculate the radar reflectivity and the lidar reflectivity of the laboratory drops 

as a function of the bin-center drop diameter, resulting values are illustrated in Figure 4.1. 

Here, we define reflectivity as the product of the number of drops in a histogram bin and 

either the sixth power (radar) or second power (lidar) of the bin-center drop diameter. 

Although the maximum number of drops occurs at the bin center diameter of 45 microns 

Figure 4.1: The radar reflectivity and the lidar reflectivity of the laboratory cloud is 
graphed as a function of bin-center drop diameter (bin width=1.46 microns). 91% 
of the drops are with the range of 15 microns to 65 microns and contribute 94% 
of the total radar reflectivity and 98% of the total lidar reflectivity. The maximum 
number of drops occurs at a bin center diameter of 45 microns for the radar and 
33 microns for the lidar. 
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for the radar and 33 microns for the lidar, 91% of all drops fall within the range of 15 to 

65 microns, contributing 94% of the total radar reflectivity and 98% of the total lidar 

reflectivity. Excluding the drops outside of the range of 15 to 65 microns results in an 

effective diameter of 39.9 microns which converts to a lidar-radar mean diameter 

(equation 22) of 26.8 microns, a 4% percent estimation error when compared to the true 

mean diameter of 27.9 microns. Therefore, at least for the laboratory PDF, the radar 

reflectivity is not dominated by the large drops simply because there are so few large 

drops. Hence the number of drops per diameter has a greater influence on the total 

reflectivity than the size of the drops. 

For the 87,000 laboratory cloud drops, we calculate the lidar-radar effective 

diameter, the lidar-radar mean diameter, the total number of drops, and the estimation 

errors of each. Realizing that the gamma fit in shown in Figure 3.1 is not perfect, we 

expect the lidar-radar mean diameter and the total number of drops derived from the 

gamma moments and radar/lidar cross sections to differ from the true values. The lidar-

radar effective diameter associated with the 87,000 drops is calculated using the equation 

(a form of equation 3): 

𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒′ =  �
∑ 𝐷𝐷6
𝑣𝑣𝑣𝑣𝑣𝑣

∑ 𝐷𝐷2
𝑣𝑣𝑣𝑣𝑣𝑣

�
1/4

 . (21) 

To calculate the lidar-radar mean diameter from the lidar-radar effective diameter, we 

rearrange equation 17: 

 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚′ =  𝑎𝑎 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒′ �
Γ(2 + 𝑎𝑎)
Γ(6 + 𝑎𝑎)

�
1/4

 (22) 

where 𝑎𝑎 = 7 is the shape parameter from the gamma fit shown in Figure 3.1. The total 

number of sampled drops (𝑁𝑁) can be calculated from the lidar extinction cross section 

(equation 2) and the second moment of the distribution (〈𝐷𝐷2〉 from equation 9): 

𝑁𝑁 =
2

𝜋𝜋〈𝐷𝐷2〉 𝛼𝛼 (23) 

or the radar backscatter cross section (equation 1) and the sixth moment of the  
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distribution (〈𝐷𝐷6〉 from equation 9): 

 𝑁𝑁 =  
𝜆𝜆4

𝜋𝜋5𝑘𝑘2〈𝐷𝐷6〉 𝛽𝛽 (24) 

The estimations errors are computed using the following equations: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑜𝑜𝑜𝑜 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒′  =  
 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒′ − 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
∗ 100 (25) 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑜𝑜𝑜𝑜 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚′ =  
𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚′ − 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
∗ 100 (26) 

Note that 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚′  are statistically different in that 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚′  is computed from 

 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒′  while 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (27.9 microns) is the true mean diameter of the 87,000 drops sampled 

from the laboratory cloud.  

For the 87,000 laboratory drops, the lidar-radar effective diameter is 40.2 

microns, yielding an estimation error of 44% from the mean (27.9 microns); the lidar-

radar mean diameter computed from equation 22 is 26.9 microns, yielding a 4% 

estimation error; the total number of drops computed using equation 23 is 86,200 drops, 

yielding a few percent estimation error; and the total number of drops computed using 

equation 24 is 73,900 drops, yielding a 15% estimation error. 

Assuming the shape and scale parameters were not known for the 87,000 drops, 

we set bounds using the gamma parameters given in Miles et al. (2000). The estimated 

means varied within 13% below to 18% above the true mean as shown in Figure 4.2. 

Figure 4.3 shows the estimation error associated with the total number of sampled drops 

(𝑁𝑁) varied within 23% below to 27% above the true number of drops. Some shape and 

scale parameter combinations were discarded if outside the range given in Miles et al. 

(2000). 
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Figure 4.2: Using the lidar-radar effective diameter of the 87,000 laboratory 
drops and the shape parameter range of 5.2 to 15.9 from Miles et al. (2000), 
we show the estimation error of the lidar-radar mean diameter as a function 
of gamma distribution shape parameters.  
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Figure 4.3: Using the simulated scattering from 87,000 laboratory drops and the 
shape parameter range of 5.2 to 15.9 from Miles et al. (2000), we show the 
estimation error of the total number of drops as a function of gamma distribution 
shape parameters. The number of drops was computed using either the second 
moment of the distribution and the lidar extinction cross section (dots) or the sixth 
moment of the distribution and the radar backscatter cross section (circles).  
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5 Simulated Scattering from a Randomly Sampled Ideal Gamma 

Distribution 
Due to the fact that lidars and radars sample a much larger number of drops than 

the number sampled from the cloud chamber, we have chosen to randomly sample the 

gamma distribution (shown in Figure 3.1) parameterized from the cloud chamber’s 

87,000 drops: 

𝑓𝑓(𝐷𝐷|7,4) =
1

47Γ(7)𝐷𝐷
7−1𝑒𝑒−𝐷𝐷 4⁄ . (27) 

This allows us to mimic the sampling of a much larger number of drops to see how the 

lidar-radar effective diameter (defined in equation 21) and lidar-radar mean diameter 

(defined in equation 22) vary with the sample size.  

To sample, we create a cumulative distribution function (CDF), as shown in 

Figure 5.1, from the gamma distribution parameterized from the cloud chamber drops. 

Using numbers randomly drawn from a uniform distribution in the interval [0,1], we use 

the CDF to convert each random number to a drop diameter.  

The number of drops sampled will depend upon the distance of the lidar and the 

radar to the sample volume. Sampling from spaceborne lidar-radar systems, because their 

footprints are very large due to their distance from the target, will image more drops than 

ground-based or aircraft-based systems. Of these three, aircraft-based systems due to 

their proximity to the sample volume will sample the smallest number of drops. 

However, even sampling with an in-cloud aircraft system will still allow for a large 

number of drops to be sampled compared to typical in situ or lab measurements.  

For example, if the in-cloud lidar-radar system is imaging a sample volume 

between 62.5 and 100 meters above or below the lidar, the lidar will sample 

approximately 4 million drops. However, the aircraft radar, because of its larger beam 

width, will sample 3 billion drops at this same range, assuming 100 drops/cm3 (see 

Appendix A). The results of sampling the distribution are presented in Table 5.1. Note 

that we chose to test very small, unrealistic lidar-radar samples to illustrate the 

dependence of sample size on the results. 
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Figure 5.1: A cumulative distribution function is created from 
the gamma distribution of the cloud chamber drops. 
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When the gamma distribution parameters are well known and sampled drops are 

greater than 10,000, the percentage change of 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚′  is insignificant. However, we have 

assumed that the lidar and radar illuminate the same number of drops which is not the 

case. Table 5.2 illustrates the results of varying the number of drops sampled by the radar 

versus the lidar. To be able to compute the lidar-radar effective diameter, an allowance is 

made for the difference in volume by multiplying the total lidar extinction cross section 

by a volume factor equal to the ratio of the radar volume to the lidar volume (Case 1 in 

Table 5.2).  

Using the ratio of the sample volumes assumes that the cloud is homogeneous 

which may or may not be true. To determine if this is a reasonable assumption, we also 

compute the lidar-radar effective diameter by dividing the total lidar extinction by the 

number of drops sampled by the lidar and dividing the total radar backscatter by the 

number of drops sampled by the radar (Case 2 in Table 5.2). Comparing the values in 

Table 5.2 shows that there is no appreciable difference between the two cases. Therefore, 

accounting for the ratio of volumes is sufficient to account for the sampling differences 

between the lidar and radar footprints assuming a cloud is statistically homogeneous. 

Sampling from 
an Ideal Gamma 

Distribution 

Number of 
Drops 

Randomly 
Sampled 

𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒′  
(μm) 

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚′  
(μm) 

Estimation 
Error of 
𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒′  

Estimation 
Error of 
𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚′  

a = 7.0 1 𝑋𝑋 103 44.8 30.0 60% 7% 

b = 4.0 1 𝑋𝑋 104 42.7 28.6 52.5% 2% 

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 28 μm 1 𝑋𝑋 105 41.9 28.1 49.6% 0.4% 

 1 𝑋𝑋 106 41.7 28.0 48.9% 0% 
 1 𝑋𝑋 107 41.8 28.0 49.3% 0% 

 1 𝑋𝑋 108 41.8 28.0 49.3% 0% 

Table 5.1: Lidar-Radar Simulated (Random) Sampling of the Gamma Distribution 
Parameterized from the Cloud Chamber Drops 
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Rarely are the distribution parameters of a cloud PDF well known in advance. 

Instead only the lidar-radar effective diameter is known. Therefore, we select parameters 

derived from many in situ measurements of marine stratus clouds compiled by Miles et 

al. (2000). Using the lidar-radar effective diameter from Case 1 in Table 4.2 (41.9 

microns), we test the range of shape parameters from 1.3 to 15.9 and scale parameters 

from 0.7 to 4.7. 
Note that because of equation 5, not all shape parameters and scale parameters in 

Miles et al. (2000) are appropriate for a lidar-radar effective diameter of 41.9 microns. 

For example, converting the lidar-radar effective diameter to the lidar-radar mean 

diameter (equation 22) using a shape parameter of 1.3 produces an associated scale 

parameter (equation 5) of 9 which does not fall within in situ-measured parameter range 

of 0.7 - 4.7 given in Miles et al. (2000). Therefore, some shape and scale parameter 

combinations were discarded. The constrained range for the shape parameter is 5.5 to 

15.9 and the constrained range for the scale parameter is 2.2 to 4.7. 

Case  
Number of 

Drops 
Sampled 

𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒′  
(μm) 

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚′  
(μm) 

Estimation 
Error of 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒′  

Estimation Error 
of 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚′  

1 Lidar  4 𝑋𝑋 106 41.9 28.1 50% 0.7% 

 Radar 3 𝑋𝑋 109     

2 Lidar 4 𝑋𝑋 106 41.8 28.0 50% 0.4% 

 Radar 3 𝑋𝑋 109     

Table 5.2: Accounting for the difference in the number of drops sampled by the lidar 
versus the radar: In Case 1, the volumes are made comparable by multiplying the total 
lidar extinction by the ratio of the radar volume to the lidar volume. In Case 2, the 
volumes are made comparable by dividing the total lidar extinction by the number of 
lidar-sampled drops and the total radar backscatter by the number of radar-sampled 
drops. No appreciable difference exists between the two cases. 
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Figure 5.2 shows that the estimation error of the lidar-radar mean diameter varied 

within 8% below to 24% above the true mean. In addition to retrieving the mean diameter 

from the lidar-radar effective diameter, we retrieved the total number of drops in the 

sample volume using equations 23 and 24. Figure 5.3 shows that the estimation error 

associated with the total number of sampled drops (𝑁𝑁) varied within 12% above to 30% 

below the true number of drops.  

Figure 5.2: Using the lidar-radar effective diameter derived from the random 
sampling of the cumulative distribution function in Figure 4.1.1 and the shape 
parameter range of 5.5 to 15.9 given Miles et al. (2000), we show the 
estimation error of the lidar-radar mean diameter as a function of gamma 
distribution shape parameters.  
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Given Slingo’s (1990) argument that a decrease of 15-20% in drop size is sufficient 

to offset a doubling of carbon dioxide concentrations, a smaller lidar-radar estimation 

error range is needed to describe percentage changes in drop size. To achieve a smaller 

error range, more in situ measurements from airborne probes and laboratory clouds 

would likely further constrain the gamma parameters thus leading to more accurate 

results. Currently the gamma parameter range compiled by Miles et al. (2000) is too large 

to accurately describe the laboratory drizzling cloud. 

Figure 5.3: Using the lidar-radar-derived lidar-radar effective diameter from the 
random sampling of a distribution (parameterized from the cloud chamber PDF) 
and the shape parameter range of 5.5 to 15.9 from Miles et al. (2000), we show the 
estimation error of the total number of drops as a function of gamma distribution 
shape parameters. The total number of drops in a given sample volume was 
computed using either the second moment of the distribution and the lidar 
extinction cross section (dots) or the sixth moment of the distribution and the radar 
backscatter cross section (circles). 
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6 Conclusion 
We simulated the results of lidar and radar scattering from a laboratory cloud to 

retrieve the mean diameter and the total number of gamma-distributed drop sizes in a 

sample volume. The lidar-radar mean diameter is retrieved within only a few percent of 

the true mean. In addition, the calculated total number of drops is retrieved within a few 

percent of the true value if only the lidar extinction cross section is used. However, if the 

radar backscatter cross section is used the total number of drops is not retrieved as well. 

In practice, the gamma distribution parameters are not known. To set bounds, a range of 

in situ measured gamma parameters were used to convert the lidar-radar effective 

diameter to a mean diameter. The estimated means varied within 13% below to 18% 

above the true mean. The total number of drops varied within 23% below to 27% above 

the true number of drops. 

Due to the fact that lidars and radars sample a much larger number of drops than 

the number sampled from the laboratory cloud, we created a representative gamma 

distribution with a shape parameter 𝑎𝑎 = 7 and a scale parameter 𝑏𝑏 = 4 (the gamma 

parameters from the laboratory cloud). The distribution was randomly sampled to 

generate lidar extinction and radar backscatter data. Using the lidar-radar effective 

diameter and a range of in situ gamma parameters, the mean diameter and total number of 

drops in the sample volume were calculated. The total number of drops varied within 

30% below to 12% above the true number of drops. The lidar-radar mean diameter varied 

within 8% below to 24% above the true mean.  

To put the range of uncertainty for lidar-radar retrievals in perspective, a decrease 

of 15-20% in drop size is argued to be sufficient to offset a doubling of carbon dioxide 

concentrations (e.g., Slingo 1990). Thus, the inherent uncertainties associated with the 

lidar-radar retrieval method described here are too large to be useful. More in situ 

measurements from airborne probes and laboratory clouds are needed to constrain the 

gamma parameters to achieve more accurate results.  
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Appendix A: Comparing the number of drops in a Lidar sample 

volume to the number in a Radar sample volume 

 

Given the lidar’s field of view (FOV) of 0.025 degrees (CSET Website- 

https://www.eol.ucar.edu/field_projects/cset), we calculate the number of droplets in a 

lidar sample volume: 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐹𝐹𝐹𝐹𝐹𝐹 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =  
𝜋𝜋ℎ
3
�
𝐷𝐷
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2

+
𝐷𝐷𝐷𝐷
4

+
𝑑𝑑
4

2

� 

where ℎ is sample volume height (37.5m in this case), 𝐷𝐷 is the footprint diameter at the 

far range of 100m, and 𝑑𝑑 is the footprint diameter at the near range of 62.5m. Using an 

Figure A.1: Sample Volume from a High Spectral Resolution 
Lidar. 
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estimated number density of 100 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑐𝑐𝑚𝑚3  yields a volume of approximately 4 million 

drops. 

The radar’s field of view is 0.68 degrees (CSET Website - 

https://www.eol.ucar.edu/field_projects/cset). The same number density yields a radar 

sample volume of approximately 3 billion drops, almost 3 orders of magnitude greater 

than the lidar sample volume. 

 

Figure A.2: Sample Volume from the HIAPER Cloud Radar. 
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